

Hands-On Game Development
with WebAssembly

Learn WebAssembly C++ programming by building a retro
space game

Rick Battagline

BIRMINGHAM - MUMBAI

Hands-On Game Development with
WebAssembly
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Acquisition Editor: Ashitosh Gupta
Content Development Editor: Smit Carvalho
Technical Editor: Ralph Rosario, Jane D'souza
Copy Editor: Safis Editing
Project Coordinator: Kinjal Bari
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Alishon Mendonsa
Production Coordinator: Jayalaxmi Raja

First published: May 2019

Production reference: 1300519

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-83864-465-9

www.packtpub.com

http://www.packtpub.com

To Kate, Luke, Lilly, and Cora – you are my world.

– Rick Battagline

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author

Rick Battagline is a game developer who has been working with web- and browser-based
technologies since 1997. He wrote his first computer game in 1996 and, in 2006, he founded
BattleLine Games LLC., an independent game studio where he works to this day. That
same year, his game, Epoch Star, was nominated for an award at the Slamdance Guerrilla
Games Competition, and was listed in Game Informer Magazine issue 156 as one of "The
top ten games you've never heard of."

Since then, Rick has written hundreds of games for platforms including the web, Windows
PC, iOS, Android, Wii U, and Nintendo Entertainment System emulators. He has
developed games in web technologies including WebAssembly, HTML5, WebGL,
JavaScript, TypeScript, Flash, and PHP.

I want to thank Prasad Annadata and Steve Tack for their tremendous contributions to
this book. Without your help, I would have never finished this. Special thanks to my
editors, Ashitosh Gupta, Ralph Rosario, and Smit Carvalho, for all of their hard work. I
would also like to thank my father, Richard, and my brother, John, who are there for me
when I need them.

Finally, I want to thank my wife, Kate, and my children, Luke, Lilly, and Cora. You mean
everything to me.

About the reviewers
Prasad Annadata is a senior technologist with experience ranging from mainframes to
cloud computing. His foray into game development started when he adopted classic
minesweeper game to Unix. Recruited right out of college into a major consulting firm his
career spawned consulting and major financial institutions. Prasad Annadata has been an
author of several peer-reviewed papers on privacy and security, a professional technology
reviewer for a chapter on Cyber Law in the book Chitty on Contracts: Hong Kong and a
sole inventor of a B2B technology patent.

He has a bachelors and masters degrees in Computer Science and currently serves as an
SVP in a major financial institution and his interests include cloud computing and cloud
security.

I wish to thank the author, Rick Battagline, for thinking of me when it came to providing a
technical review of this book. Also, I thank Packt Publishing for the opportunity.

Steve Tack is a software developer with 28 years of experience. Since the 1980s, he's
enjoyed making computers do fun things, from programming simple games in BASIC on a
Sinclair ZX81 to creating real-time 3D graphics on modern hardware.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Introduction to WebAssembly and Emscripten 8
What is WebAssembly? 9

Why do we need WebAssembly? 10
Why is WebAssembly faster than JavaScript? 11
Will WebAssembly replace JavaScript? 15

What is asm.js? 16
A brief introduction to LLVM 17
A brief introduction to WebAssembly text 18
Emscripten 19

Installing Emscripten on Windows 19
Installing Emscripten on Ubuntu 21
Using Emscripten 22

Additional installation resources 24
Summary 24

Chapter 2: HTML5 and WebAssembly 26
The Emscripten minimal shell file 27
Creating a new HTML shell and C file 34
Defining the CSS 42
HTML5 and game development 48

Immediate mode versus retained mode 48
Adding a canvas to the Emscripten template 49
Summary 57

Chapter 3: Introduction to WebGL 58
WebGL and canvas contexts 59
An introduction to WebGL shaders 60
WebGL and JavaScript 63

WebGL coordinate system versus 2D canvas 64
Vertex and UV data 65
2D canvas to WebGL 67
Minor tweaks to the head tag 67
Major JavaScript changes 68
WebGL global variables 68
The return of vertex and texture data 69
Buffer constants 70
Defining the shaders 71
The ModuleLoaded function 72

Table of Contents

[ii]

The ShipPosition function 78
The MoveShip function 78

Summary 81

Chapter 4: Sprite Animations in WebAssembly with SDL 82
Using SDL in WebAssembly 83

Initializing SDL 85
Clearing the SDL renderer 86
Using the WebAssembly virtual filesystem 87
Rendering a texture to the HTML5 canvas 88
Cleaning up SDL 89
Compiling hello_sdl.html 89

Render a sprite to the canvas 91
Animating a sprite 93
Moving the sprite 98

Compiling sprite.html 101
Summary 102

Chapter 5: Keyboard Input 103
JavaScript keyboard input 104
Adding SDL keyboard input to WebAssembly 112
Using keyboard input to move a sprite 118
Summary 126

Chapter 6: Game Objects and the Game Loop 127
Understanding the game loop 128

Writing a basic game loop 129
Compiling gameloop.html 140

Game objects 141
The player's spaceship game object 142

Object pooling 145
Pooling the player's projectiles 148
Creating an enemy 153

Compiling game_objects.html 159
Summary 161

Chapter 7: Collision Detection 162
Types of 2D collision detection 162

Circle collision detection 163
Rectangle collision detection 164
A short refresher on trigonometry 164
Line collision detection 166
Compound colliders 168

Implementing circle collision detection 169
Destroying a spaceship on collision 178
Pointers in memory 189

Table of Contents

[iii]

Implementing compound circle colliders 190
Compiling collider.html 198

Summary 199

Chapter 8: Basic Particle System 201
Adding to the virtual file system 202
A brief introduction to SVG 213

Vector versus raster graphics 214
Trigonometry again? 215
Adding the JavaScript 217
The simple particle emitter tool 220
The Point class 230
The Particle class 231
The Emitter class 234
WebAssembly interface functions 238

C++ name mangling 242
Dead code elimination 242
Updating the emitter 242
The looping function 243
Initialization 244

Compiling and testing the particle emitter 245
Summary 247

Chapter 9: Improved Particle Systems 248
Modifying our HTML shell file 249

Scaling values 250
Color-blending values 251
Particle burst 252
Looping the emitter 252
Aligning particle rotation 253
Emission time 253
Animation frames 254

Modifying the JavaScript 254
The JavaScript UpdateClick function 254
Coercing color values 256
Additional variable coercions 257
Modifying the handleFiles function 258

Modifying the Particle class 261
New attributes 262
Aligning rotation attributes 263
Color attributes 263
Animation attributes 264
Size and scale attributes 264
The source rectangle attribute 265
Additional constructor parameters 265

Table of Contents

[iv]

The Update function's parameters 265
The Spawn function's parameters 266
Changes to particle.cpp 266
Particle constructor logic 266
Particle Update logic 270
Particle Spawn function 271
Particle Move function 272
Particle Render function 276

Modifying the Emitter class 277
The Emitter constructor function 277
Emitter update logic 280
Emitter Move function 282

External functions 287
Random floating-point numbers 287
Adding an emitter 289
Updating an emitter 290

Configuring the particle emitter 291
HTML shell and WebAssembly module interaction 291
Compiling and running the new tool 292

Creating a particle emitter 294
Changes to game.hpp 294
Adding the Particle class definition 294
Emitter class definition 296
Changes to emitter.cpp 298

Changes to the constructor function 299
Changes to the Update function 301
Adding a Run function 301
Changes to the Move function 302

Changes to ship.cpp 305
The Ship class' constructor function 305
The Ship class' Acceleration function 309
The Ship class' Render function 309

Changes to projectile_pool.cpp 310
Changes to main.cpp 311
Taking it further 312

Summary 313

Chapter 10: AI and Steering Behaviors 314
What is Game AI? 315
Autonomous agents versus top-down AI 317
What is an FSM? 317
Introducing steering behaviors 318

The seek behavior 319
The flee behavior 319
The arrival behavior 321
The pursuit behavior 321

Table of Contents

[v]

The evade behavior 322
Obstacle avoidance 323
The wander behavior 324
Combining forces 325

Modifying game.hpp 325
Adding obstacles to our game 336
Adding force fields 347
More collision detection 351

Circle-line collision detection 353
Vector projection 353
The Vector2D class 358

Writing an FSM 363
The AvoidForce function 368
Compiling the ai.html file 380

Summary 381

Chapter 11: Designing a 2D Camera 382
Creating a camera for our game 383
Camera for tracking player movement 384
Projected focus and camera attractors 384
Modifying our code 385

Modifying the game.hpp file 385
The Vector2D class definition 386
The Locator class definition 387
The Camera class definition 388
The RenderManager class definition 388

The camera.cpp file 389
The render_manager.cpp file 390
Modifying main.cpp 394

New global variables 394
Modifying the move function 394
Modifying the render function 395
Modifying the main function 396

Modifying asteroid.cpp 397
Modifying collider.cpp 398
Modifying enemy_ship.cpp 399
Modifying finite_state_machine.cpp 400
Modifying particle.cpp 402
Modifying player_ship.cpp 403
Modifying projectile.cpp 404
Modifying shield.cpp 404
Modifying ship.cpp 405
Modifying star.cpp 406
Modifying vector.cpp 407
Compiling and playing with a locked-on camera 407

A more advanced camera 408

Table of Contents

[vi]

Changes to games.hpp 408
Changes to camera.cpp 409
Compiling and playing with the advanced camera 412

Summary 414

Chapter 12: Sound FX 415
Where to get sound effects 416
Simple audio with Emscripten 416
Adding sound to our game 423

Updating game.hpp 423
Updating main.cpp 425
Updating ship.cpp 430
The new audio.cpp file 430

Compiling and running 432
Summary 432

Chapter 13: Game Physics 433
Newton's third law 434
Adding gravity 435
Improving collisions 435
Modifying the code 435

Changing the game.hpp file 436
Changing collider.cpp 440
Changes to star.cpp 441
Changing the main.cpp file 443
Changes to asteroid.cpp and projectile.cpp 451
Changes to the ship.cpp file 453
Compiling the physics.html file 454

Summary 456

Chapter 14: UI and Mouse Input 457
UI requirements 458

Opening screen 459
Play screen 460
Game over screen 460

Mouse input 461
Creating a button 463
Screen states 466
Changes to games.hpp 466

Modifying the RenderManager class 467
New external variables 468

Changes to main.cpp 468
Adding global variables 469
Input functions 470
The end_input function 473
The render functions 474

Table of Contents

[vii]

The collisions function 474
The transition state 478
The game loop 479
Play and play again callbacks 481
Changes to the main function 481

ui_button.cpp 484
The MouseMove function 487
The MouseClick function 487
The MouseUp function 488
The KeyDown function 488
The RenderUI function 489

ui_sprite.cpp 489
Defining the constructor 489
The RenderUI function 490
Compile ui.html 491

Summary 492

Chapter 15: Shaders and 2D Lighting 493
Using OpenGL with WebAssembly 494
More about shaders 494

GLSL ES 1.0 and 3.0 495
WebGL app redux 496

Shader code 497
OpenGL global variables 498
SDL global variables 499
The main function 500
The game loop 507
Compiling and running our code 508

Mixing textures for a glow effect 509
Fragment shader changes 510
OpenGL global variable changes 511
Other global variable changes 511
Changes to main() 512
Updating game_loop() 517
Compiling and running our code 518

3D lighting 519
Ambient light 520
Diffuse light 520
Specular light 521

Normal maps 522
Creating a 2D lighting demo app 522

Fragment shader updates 523
OpenGL global variables 526
SDL global variables 527
Function prototypes 527

Table of Contents

[viii]

The main function 528
The game_loop function 534
The input function 536
The draw_light_icon function 538
Compiling and running our lighting app 538

Summary 540

Chapter 16: Debugging and Optimization 541
Debug macro and stack trace 542
Source maps 546
Browser debugging 546

Compiling your code for debugging 547
Using asm.js as an alternative for debugging 547
Debugging using Chrome 548
Debugging using Firefox 550
Firefox Developer Edition 553

Optimizing for WebAssembly 554
Optimization flags 554

Optimizing for performance 554
Optimizing for size 555
Unsafe flags 555

Profiling 555
Problems with try/catch blocks 561

Optimizing OpenGL for WebAssembly 561
Using WebGL 2.0 if possible 562
Minimizing the number of OpenGL calls 562
Emscripten OpenGL flags 562

Summary 563
This is the end 563

Other Books You May Enjoy 564

Index 567

Preface
WebAssembly is a technology that will change the web as we know it within the next few
years. WebAssembly promises a world where web-based applications run at near-native
speeds. It is a world where you can write an application for the web in any language you
like, and compile it for native platforms as well as the web. It is early days for
WebAssembly, but this technology is already taking off like a rocket. If you are interested in
where the web is going, as much as where it is today, read on!

I wrote this book to reflect the way I like to learn new skills. I will walk you through the
development of a game using WebAssembly and all of its related technologies. I am a long-
time game and web developer, and I have always enjoyed learning new programming
languages by writing games. In this book, we will be covering a lot of ground on a lot of
topics using both web and game development tools that go hand in hand with
WebAssembly. We will learn how to write games that target WebAssembly utilizing a
plethora of programming languages and tools, including Emscripten, C/C++, WebGL,
OpenGL, JavaScript, HTML5, and CSS. As a long-time owner of an independent game
development studio that specializes in the development of web-based games, I have found
that it is essential to have a broad understanding of web- and game-based technologies and
I have stuffed this book full of them. You will be learning a sample platter of skills with a
focus on getting your apps up and running with WebAssembly. If you want to learn how to
develop games with WebAssembly, or if you would like to create web-based applications
that are lightning fast, this book is for you.

Who this book is for
This book is not an introduction to programming. It is intended for people who know how
to code in at least one programming language. It would be helpful, but is not strictly
necessary, to have at least a rudimentary understanding of some web-based technologies,
such as HTML. This book contains instructions on how to install the required tools on
Windows or Ubuntu Linux, and, out of the two, I would recommend using Ubuntu, as its
installation process is much simpler.

Preface

[2]

What this book covers
Chapter 1, Introduction to WebAssembly and Emscripten, introduces WebAssembly, why the
web needs it, and why it is so much faster than JavaScript. We will introduce Emscripten,
why we need it for WebAssembly development, and how to install it. We will also discuss
technologies related to WebAssembly, such as asm.js, LLVM, and WebAssembly Text.

Chapter 2, HTML5 and WebAssembly, discusses how WebAssembly modules integrate with
HTML using the JavaScript "glue code". We will learn how to create our own Emscripten
HTML shell file, and we will learn how to make calls to and from our WebAssembly
module, which we will write in C. Finally, we will learn how to compile and run an HTML
page that interacts with our WebAssembly module, and we will learn how to build a
simple HTML5 Canvas app with Emscripten.

Chapter 3, Introduction to WebGL, introduces WebGL and the new canvas contexts that
support it. We will learn about shaders, what they are, and how WebGL uses them to
render geometry to the canvas. We will learn how to use WebGL and JavaScript to draw a
sprite to the canvas. And finally, we will write an app that integrates WebAssembly,
JavaScript, and WebGL that displays a sprite and moves it across the canvas.

Chapter 4, Sprite Animations in WebAssembly with SDL, teaches you about the SDL library
and how we use it to simplify calls to WebGL from WebAssembly. We will learn how to
use SDL to render, animate, and move sprites on the HTML5 canvas.

Chapter 5, Keyboard Input, looks at how to take input from the keyboard from JavaScript
and make calls to the WebAssembly module. We will also learn how to accept keyboard
input using SDL inside our WebAssembly module, and use the input to move a sprite
around the HTML5 canvas.

Chapter 6, Game Objects and the Game Loop, explores some basic game design. We will learn
about the game loop, and how a game loop in WebAssembly is different than in other
games. We will also learn about game objects and how to create an object pool from within
our game. We will end the chapter by coding the beginning of our game, with two
spaceships that move about the canvas and shoot projectiles at each other.

Chapter 7, Collision Detection, introduces collision detection into our game. We will explore
the types of 2D collision detection, implement a basic collision detection system, and learn a
little about the trigonometry that makes it work. We will modify our game so that
projectiles destroy the spaceships when they collide.

Preface

[3]

Chapter 8, Basic Particle System, introduces particle systems and discusses how they can
visually improve our game. We will talk about the virtual filesystem, and we learn how to
add files to it through a web page. We will briefly introduce SVG and Vector graphics, and
how to use them for data visualization. We will further discuss trigonometry and how we
will be using it in our particle systems. We will build a new HTML5 WebAssembly app that
will help us to configure and test particle systems that we will later add to our game.

Chapter 9, Improved Particle Systems, goes into improving our particle system configuration
tool by adding particle scaling, rotation, animation, and color transitions. We will modify
the tool to allow the particle systems to loop, and add a burst effect. We will then update
our game to support particle systems and add in particle system effects for our engine
exhaust and explosions.

Chapter 10, AI and Steering Behaviors, introduces the concept of AI and game AI and
discusses the difference between them. We will discuss the AI concepts of finite state
machines, autonomous agents, and steering behaviors, and we will implement these
behaviors in an enemy AI that will avoid obstacles and combat the player.

Chapter 11, Designing a 2D Camera, brings in the concept of 2D camera design. We
will begin by adding a render manager to our game and creating a camera that locks on to
the player's spaceship, following it around an expanded gameplay area. We will then add
the advanced 2D camera features of projected focus and camera attractors.

Chapter 12, Sound FX, covers the use of SDL Audio in our game. We will discuss where we
can get our sound effects online, and how to include those sounds in our WebAssembly
module. We will then add sound effects to our game.

Chapter 13, Game Physics, introduces the concept of physics in computer games. We will be
adding elastic collisions between our game objects. We will add Newton's third law to the
physics of our game in the form of recoil when the spaceships launch projectiles. We will
add a gravitational field to our star that will attract the spaceships.

Chapter 14, UI and Mouse Input, discusses adding a user interface to be managed and
rendered within our WebAssembly module. We will gather requirements and translate
them into new screens for our game. We will add a new button object and learn how we
can manage mouse input from within our WebAssembly module using SDL.

Chapter 15, Shaders and 2D lighting, dives into how to create a new app that mixes OpenGL
and SDL. We will create a new shader that loads and renders multiple textures to a quad.
We will learn about normal maps, and how we can use normal maps to approximate the
Phong lighting model in 2D, using OpenGL in our WebAssembly module.

Preface

[4]

Chapter 16, Debugging and Optimization, introduces the basic methods for debugging and
optimizing WebAssembly modules. We will start with debug macros and stack traces from
WebAssembly. We will introduce the concepts of source maps and how web browsers use
them to debug WebAssembly modules. We will learn about optimizing WebAssembly code
using optimization flags. We will discuss using a profiler to optimize our WebAssembly
code.

To get the most out of this book
You must understand the basics of computer programming.

It is helpful to have a basic understanding of web technologies such as HTML and CSS.

Download the example code files
You can download the code bundle for this book from
here: https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssem
bly.

We also have other code bundles from our rich catalog of books and videos available at
https:/​/​github.​com/ ​PacktPublishing/ ​. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​9781838644659_ ​ColorImages. ​pdf.

Conventions used
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.

https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

[5]

Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembl
y. In case there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "We are going to copy the basic_particle_shell.html file to a new shell file
that we will call advanced_particle_shell.html."

A block of code is set as follows:

<label class="ccontainer">loop:
<input type="checkbox" id="loop" checked="checked">

</label>

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<label class="ccontainer">loop:
<input type="checkbox" id="loop" checked="checked">

</label>

https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[6]

Any command-line input or output is written as follows:

emrun --list_browsers

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/

Preface

[7]

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/

1
Introduction to WebAssembly

and Emscripten
Welcome to the exciting new world of WebAssembly! These are early days for
WebAssembly, but the technology is currently taking off like a rocket, and by reading this
book, you are in a position to get in on the ground floor. If you are interested in game
development on the web, or you are interested in learning as much about this new
technology as you can to position yourself for when it does reach maturity, you are in the
right place. Even though WebAssembly is in its infancy, all major browser vendors have
adopted it. These are early days and use cases are limited, but lucky for us, game
development is one of them. So, if you want to be early to the party for the next generation
of application development on the web, read on, adventurer!

In this chapter, I will introduce you to WebAssembly, Emscripten, and some of the
underlying technologies around WebAssembly. I will teach you the basics of the
Emscripten toolchain, and how you can use Emscripten to compile C++ code into
WebAssembly. We will discuss what LLVM is and how it fits into the Emscripten toolchain.
We will talk about WebAssembly's Minimum Viable Product (MVP), the best use cases for
WebAssembly in its current MVP form, and what will soon be coming to WebAssembly. I
will introduce WebAssembly text (.wat), how we can use it to understand the design of
WebAssembly bytecode, and how it differs from other machine bytecodes. We will also
briefly discuss asm.js, and its historical significance in the design of WebAssembly. Finally,
I will show you how to install and run Emscripten on Windows and Linux.

Introduction to WebAssembly and Emscripten Chapter 1

[9]

In this chapter, we will cover the following topics:

What is WebAssembly?
Why do we need WebAssembly?
Why is WebAssembly faster than JavaScript?
Will WebAssembly replace JavaScript?
What is asm.js?
A brief introduction to LLVM
A brief introduction to WebAssembly text
What is Emscripten and how do we use it?

What is WebAssembly?
WebAssembly is not a high-level programming language like JavaScript, but a compiled
binary format that all major browsers are currently able to execute. WebAssembly is a kind
of machine bytecode that was not designed to run directly on any real machine hardware,
but runs in the JavaScript engine built into every browser. In some ways, it is similar to the
old Java Virtual Machine (JVM); for example, it is a platform-independent compiled
bytecode. One major problem with JavaScript bytecode is its requirement for a plugin to be
downloaded and installed in the browser for the bytecode to run. Not only is
WebAssembly designed to be run directly in a browser without a plugin, but it is also
intended to produce a compact binary format that executes efficiently inside a web
browser. The MVP version of the specification leverages existing work by the browser
makers designing their JavaScript just-in-time (JIT) compiler. WebAssembly is currently a
young technology and many improvements are planned. However, developers using the
current version of WebAssembly have already seen performance improvements over
JavaScript of 10–800%.

An MVP is the smallest set of features that can be given to a product to
allow it to appeal to early adopters. Because the current version is an
MVP, the feature set is small. For more information, see this excellent
article discussing the "post-MVP future" of WebAssembly: https:/ ​/
hacks. ​mozilla. ​org/ ​2018/ ​10/ ​webassemblys- ​post- ​mvp- ​future/ ​.

https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/

Introduction to WebAssembly and Emscripten Chapter 1

[10]

Why do we need WebAssembly?
JavaScript has been around for a long time. It has evolved from a little scripting language
that allowed bells and whistles to be added to a web page, to a sprawling JIT compiled
language with a massive ecosystem that can be used to write fully fledged applications.
Today, JavaScript is doing a lot of things that were probably never imagined when it was
created by Netscape in 1995. JavaScript is an interpreted language, meaning that it must be
parsed, compiled, and optimized on the fly. JavaScript is also a dynamically typed
language, which creates headaches for an optimizer.

Franziska Hinkelmann, a member of the Chrome V8 team, gave a great
talk at the Web Rebels 2017 conference where she discusses all the
performance improvements made to JavaScript over the past 20 years, as
well as the difficulties they had in squeezing every bit of performance
imaginable out of the JavaScript V8 engine: https:/ ​/ ​youtu. ​be/
ihANrJ1Po0w.

WebAssembly solves a lot of the problems created by JavaScript and its long history in the
browser. Because the JavaScript engine is already in bytecode format, it does not need to
run a parser, which removes a significant bottleneck in the execution of our application.
This design also allows the JavaScript engine to know what data types it is dealing with at
all times. The bytecode makes optimization a lot easier. The format allows multiple threads
in the browsers to work on compiling and optimizing different parts of the code at the same
time.

For a detailed explanation of what is happening when the Chrome V8
engine is parsing code, please refer to this video from the JSConf EU 2017,
in which Marja Hölttä (who works on the Chrome V8 tool) goes into more
detail than you ever imagined you wanted to learn about parsing
JavaScript: https:/ ​/​www. ​youtube. ​com/ ​watch? ​v= ​Fg7niTmNNLg ​t=​123s.

WebAssembly is not a high-level programming language, but a binary file with opcodes for
a virtual machine. Currently, it is considered to be in an MVP stage of development. The
technology is still in its infancy, but even now it offers notable performance and file size
benefits for many use cases, such as game development. Because of the current limitations
of WebAssembly, we have only two choices for languages to use for its
development—C/C++ or Rust. The long-term plan for WebAssembly is to support a wide
selection of programming languages for its development. If I wanted to write at the lowest
level of abstraction, I could write everything in Web Assembly Text (WAT), but WAT was
developed as a language to support debugging and testing and was not intended to be used
by developers for writing applications.

https://youtu.be/ihANrJ1Po0w
https://youtu.be/ihANrJ1Po0w
https://youtu.be/ihANrJ1Po0w
https://youtu.be/ihANrJ1Po0w
https://youtu.be/ihANrJ1Po0w
https://youtu.be/ihANrJ1Po0w
https://youtu.be/ihANrJ1Po0w
https://youtu.be/ihANrJ1Po0w
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s

Introduction to WebAssembly and Emscripten Chapter 1

[11]

Why is WebAssembly faster than JavaScript?
As I have mentioned, WebAssembly is 10–800% faster than JavaScript, depending on the
application. To understand why, I need to talk a little about what a JavaScript engine does
when it runs JavaScript code versus what it has to do when it runs WebAssembly. I am
going to talk specifically about V8 (the Chrome JavaScript engine), although, to my
knowledge, the same general process exists within SpiderMonkey (Firefox) and the Chakra
(IE & Edge) JavaScript engines.

The first thing the JavaScript engine does is parse your source code into an Abstract Syntax
Tree (AST). The source is broken into branches and leaves based on the logic within your
application. At this point, an interpreter starts processing the language that you are
currently executing. For many years, JavaScript was just an interpreted language, so, if you
ran the same code in your JavaScript 100 times, the JavaScript engine had to take that code
and convert it to machine code 100 times. As you can imagine, this is wildly inefficient.

The Chrome browser introduced the first JavaScript JIT compiler in 2008. A JIT compiler
contrasts with an Ahead-of-Time (AOT) compiler in that it compiles your code as it is
running that code. A profiler sits and watches the JavaScript execution looking for code that
repeatedly executes. Whenever it sees code executed a few times, it marks that code as
"warm" for JIT compilation. The compiler then compiles a bytecode representation of that
JavaScript "stub" code. This bytecode is typically an Intermediate Representation (IR), one
step removed from the machine-specific assembly language. Decoding the stub will be
significantly faster than running the same lines of code through our interpreter the next
time.

Here are the steps needed to run JavaScript code:

Figure 1.1: Steps required by a modern JavaScript engine

Introduction to WebAssembly and Emscripten Chapter 1

[12]

While all of this is going on, there is an optimizing compiler that is watching the profiler
for "hot" code branches. The optimizing compiler then takes these code branches and
optimizes the bytecode that was created by the JIT into highly optimized machine code. At
this point, the JavaScript engine has created some super fast running code, but there is a
catch (or maybe a few).

The JavaScript engine must make some assumptions about the data types to have an
optimized machine code. The problem is, JavaScript is a dynamically typed language.
Dynamic typing makes it easier for a programmer to learn how to program JavaScript, but
it is a terrible choice for code optimizers. The example I often see is what happens when
JavaScript sees the expression c = a + b (although we could use this example for almost
any expression).

Just about any machine code that performs this operation does it in three steps:

Load the a value into a register.1.

Add the b value into a register.2.
Then store the register into c.3.

The following pseudo code was taken from section 12.8.3 of the ECMAScript® 2018
Language Specification and describes the code that must run whenever the addition operator
(+) is used within JavaScript:

1. Let lref be the result of evaluating AdditiveExpression.
2. Let lval be ? GetValue(lref).
3. Let rref be the result of evaluating MultiplicativeExpression.
4. Let rval be ? GetValue(rref).
5. Let lprim be ? ToPrimitive(lval).
6. Let rprim be ? ToPrimitive(rval).
7. If Type(lprim) is String or Type(rprim) is String, then
 a. Let lstr be ? ToString(lprim).
 b. Let rstr be ? ToString(rprim).
 c. Return the string-concatenation of lstr and rstr.
8. Let lnum be ? ToNumber(lprim).
9. Let rnum be ? ToNumber(rprim).
10.Return the result of applying the addition operation to lnum and
 rnum.

You can find the ECMAScript® 2018 Language Specification on the web
at https:/ ​/ ​www. ​ecma- ​international. ​org/ ​ecma- ​262/ ​9.​0/ ​index. ​html.

https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html

Introduction to WebAssembly and Emscripten Chapter 1

[13]

This pseudo code is not the entirety of what we must evaluate. Several of these steps are
calling high-level functions, not running machine code commands. GetValue for example,
has 11 steps of its own that are, in turn, calling other steps. All of this could end up
resulting in hundreds of machine opcodes. The vast majority of what is happening here is
type checking. In JavaScript, when you execute a + b, each one of those variables could be
any one of the following types:

Integer
Float
String
Object
Any combination of these

To make matters worse, objects in JavaScript are also highly dynamic. For example, maybe
you have defined a function called Point and created two objects with that function using
the new operator:

function Point(x, y) {
 this.x = x;
 this.y = y;
}

var p1 = new Point(1, 100);
var p2 = new Point(10, 20);

Now we have two points that share the same class. Say we added this line:

p2.z = 50;

This would mean that these two points would then no longer share the same class.
Effectively, p2 has become a brand new class, and this has consequences for where that
object exists in memory and available optimizations. JavaScript was designed to be a highly
flexible language, but this fact creates a lot of corner cases, and corner cases make
optimization difficult.

Another problem with optimization created by the dynamic nature of JavaScript is that no
optimization is definitive. All optimizations around typing have to use resources
continually checking to see whether their typing assumptions are still valid. Also, the
optimizer has to keep the non-optimized code just in case those assumptions turn out to be
false. The optimizer may determine that assumptions made initially turn out not to have
been correct assumptions. That results in a "bailout" where the optimizer will throw away
its optimized code and deoptimize, causing performance inconsistencies.

Introduction to WebAssembly and Emscripten Chapter 1

[14]

Finally, JavaScript is a language with Garbage Collection (GC), which allows the authors
of the JavaScript code to take on less of the burden of memory management while writing
their code. Although this is a convenience for the developer, it just pushes the work of
memory management on to the machine at run time. GC has become much more efficient
in JavaScript over the years, but it is still work that the JavaScript engine must do when
running JavaScript that it does not need to do when running WebAssembly.

Executing a WebAssembly module removes many of the steps required to run JavaScript
code. WebAssembly eliminates parsing because the AOT compiler completes that function.
An interpreter is unnecessary. Our JIT compiler is doing a near one-to-one translation from
bytecode to machine code, which is extremely fast. JavaScript requires the majority of its
optimizations because of dynamic typing that does not exist in WebAssembly. Hardware
agnostic optimizations can be done in the AOT compiler before the WebAssembly
compiles. The JIT optimizer need only perform hardware-specific optimizations that the
WebAssembly AOT compiler cannot.

Here are the steps performed by the JavaScript engine to run a WebAssembly binary:

Figure 1.2: The steps required to execute WebAssembly

The last thing that I would like to mention is not a feature of the current MVP, but a
potential future enabled by WebAssembly. All the code that makes modern JavaScript fast
takes up memory. Keeping old copies of the nonoptimized code for bailout takes up
memory. Parsers, interpreters, and garbage collectors all take up memory. On my desktop,
Chrome frequently takes up about 1 GB of memory. By running a few tests on my website
using https:/​/​www. ​classicsolitaire. ​com, I can see that with the JavaScript engine turned
on, the Chrome browser takes up about 654 MB of memory.

Here is a Task Manager screenshot:

Figure 1.3: Chrome Task Manager process screenshot with JavaScript

https://www.classicsolitaire.com
https://www.classicsolitaire.com
https://www.classicsolitaire.com
https://www.classicsolitaire.com
https://www.classicsolitaire.com
https://www.classicsolitaire.com
https://www.classicsolitaire.com
https://www.classicsolitaire.com
https://www.classicsolitaire.com

Introduction to WebAssembly and Emscripten Chapter 1

[15]

With JavaScript turned off, the Chrome browser takes up about 295MB.

Here is a Task Manager screenshot:

Figure 1.4: Chrome Task Manager process screenshot without JavaScript

Because this is one of my websites, I know there are only a few hundred kilobytes of
JavaScript code on that website. It's a little shocking to me that running that tiny amount of
JavaScript code can increase my browser footprint by about 350 MB. Currently,
WebAssembly runs on top of the existing JavaScript engines and still requires quite a bit of
JavaScript glue code to make everything work, but in the long run, WebAssembly will not
only allow us to speed up execution on the web but will also let us do it with a much
smaller memory footprint.

Will WebAssembly replace JavaScript?
The short answer to this question is not anytime soon. At present, WebAssembly is still in
its MVP stage. At this stage, the number of use cases is limited to applications where
WebAssembly has limited back and forth with the JavaScript and the Document Object
Model (DOM). WebAssembly is not currently able to directly interact with the DOM, and
Emscripten uses JavaScript "glue code" to make that interaction work. That interaction will
probably change soon, possibly by the time you are reading this, but in the next few years,
WebAssembly will need additional features to increase the number of possible use cases.

WebAssembly is not a "feature complete" platform. Currently, it cannot be used with any
languages that require GC. That will change and, eventually, almost all strongly typed
languages will target WebAssembly. In addition, WebAssembly will soon become tightly
integrated with JavaScript, allowing frameworks such as React, Vue, and Angular to begin
replacing significant amounts of their JavaScript code with WebAssembly without
impacting the application programming interface (API). The React team is currently
working on this to improve the performance of React.

In the long run, it is possible that JavaScript may compile into WebAssembly. For technical
reasons, this is a very long way off. Not only does JavaScript require a GC (not currently
supported), but because of its dynamic nature, JavaScript also requires a runtime profiler to
optimize. Therefore, JavaScript would produce very poorly optimized code, or significant
modifications would be needed to support strict typing. It is more likely that a language,
such as TypeScript, will add features that allow it to compile into WebAssembly.

Introduction to WebAssembly and Emscripten Chapter 1

[16]

The AssemblyScript project in development on GitHub is working on a
TypeScript-to-WebAssembly compiler. This project creates JavaScript and
uses Binaryen to compile that JavaScript into WebAssembly. How
AssemblyScript handles the problem of garbage collection is unclear. For
more information, refer to https:/ ​/ ​github. ​com/ ​AssemblyScript/
assemblyscript.

JavaScript is currently ubiquitous on the web; there are a tremendous number of libraries
and frameworks developed in JavaScript. Even if there were an army of developers eager to
rewrite the entire web in C++ or Rust, WebAssembly is not yet ready to replace
these JavaScript libraries and frameworks. The browser makers have put immense efforts
into making JavaScript run (relatively) fast, so JavaScript will probably remain as the
standard scripting language for the web. The web will always need a scripting language,
and countless developers have already put in the work to make JavaScript that scripting
language, so it seems unlikely that JavaScript will ever go away.

There is, however, a need for a compiled format for the web that WebAssembly is likely to
fulfill. Compiled code may be a niche on the web at the moment, but it is a standard just
about everywhere else. As WebAssembly approaches feature-complete status, it will offer
more choices and better performance than JavaScript, and businesses, frameworks, and
libraries will gradually migrate toward it.

What is asm.js?
One early attempt to achieve native-like speed in the web browser using JavaScript was
asm.js. Although that goal was reached and asm.js was adopted by all the major browser
vendors, it never achieved widespread adoption by developers. The beauty of asm.js is that
it still runs in most browsers, even in those that do not optimize for it. The idea behind
asm.js was that typed arrays could be used in JavaScript to fake a C++ memory heap. The
browser simulates pointers and memory allocation in C++, as well as types. A well-
designed JavaScript engine can avoid dynamic type checking. Using asm.js, browser
makers could get around many of the optimization problems created by the dynamic
nature of JavaScript, by just pretending that this version of JavaScript is not dynamically
typed. Emscripten, designed as a C++-to-JavaScript compiler, quickly adopted asm.js as the
subset of JavaScript that it would compile to because of its improved performance in most
browsers. The performance improvements driven by asm.js lead the way to WebAssembly.
The same engine modifications used to make asm.js perform well could be used to
bootstrap the WebAssembly MVP. Only the addition of a bytecode-to-bytecode compiler
was required to take the WebAssembly bytecode and directly convert it into the IR
bytecode used by the browser.

https://github.com/AssemblyScript/assemblyscript
https://github.com/AssemblyScript/assemblyscript
https://github.com/AssemblyScript/assemblyscript
https://github.com/AssemblyScript/assemblyscript
https://github.com/AssemblyScript/assemblyscript
https://github.com/AssemblyScript/assemblyscript
https://github.com/AssemblyScript/assemblyscript
https://github.com/AssemblyScript/assemblyscript
https://github.com/AssemblyScript/assemblyscript
https://github.com/AssemblyScript/assemblyscript

Introduction to WebAssembly and Emscripten Chapter 1

[17]

At the time of writing, Emscripten does not compile directly from LLVM
to WebAssembly. Instead, it compiles to asm.js and uses a tool called
Binaryen to convert the asm.js output from Emscripten into
WebAssembly.

A brief introduction to LLVM
Emscripten is the tool we will be using to compile C++ into WebAssembly. Before I discuss
Emscripten, I need to explain a technology called LLVM and its relationship to Emscripten.

First, take a moment to think of airlines (stay with me here). Airlines want to get passengers
from one airport to another airport. But it's challenging to offer a direct flight from every
single airport to every other airport on Earth. That would mean that airlines would have to
provide a vast number of direct flights, such as Akron, Ohio to Mumbai, India. Let's travel
back in time to the 1990s—that was the state of the compiler world. If you wanted to
compile from C++ to ARM, you needed a compiler capable of compiling C++ to ARM. If you
needed to compile from Pascal to x86, you needed a compiler that could compile from
Pascal to x86. These are like having only direct flights between any two cities: a compiler
for every combination of language and hardware. The result is either that you have to limit
the number of languages you write compilers for, limit the number of platforms you can
support with that language, or more likely, both.

In 2003, a student at the University of Illinois named Chris Lattner wondered, "What if we
created a hub-and-spoke model for programming languages?" His idea led to LLVM, which
originally stood for "Low-Level Virtual Machine." The idea was that, instead of compiling
your source code for any possible distribution, you compile it for LLVM. There are then
compilers between the intermediate language and your final output language. In theory,
this means that if you develop a new target platform on the right side of the following
diagram, you get all languages on the left side right away:

Figure 1.5: LLVM as a hub between programming languages and the hardware

Introduction to WebAssembly and Emscripten Chapter 1

[18]

To learn more about LLVM, visit the LLVM project home page at https:/
/​llvm. ​org or read the LLVM Cookbook, Mayur Padney, and Suyog Sarda,
Packt Publishing: https:/ ​/​www.​packtpub. ​com/ ​application- ​development/
llvm- ​cookbook.

A brief introduction to WebAssembly text
WebAssembly binary is not a language, but a build target similar to building for ARM or
x86. The bytecode, however, is structured differently than other hardware-specific build
targets. The designers of the WebAssembly bytecode had the web in mind. The aim was to
create a bytecode that was compact and streamable. Another goal was that the user should
be able to do a "view/source" on the WebAssembly binary to see what is going on.
WebAssembly text is a companion code to the WebAssembly binary that allows the user to
view the bytecode instructions in a human-readable form, similar to the way an assembly
language would let you see what opcodes execute in a machine-readable form.

WebAssembly text may initially look unfamiliar to someone used to writing assembly for
hardware such as ARM, x86, or 6502 (if you're old school). You write WebAssembly text in
S-expressions, which has a parentheses-heavy tree structure. Some of the operations are
also strikingly high level for an assembly language, such as if/else and loop opcodes. That
makes a lot more sense if you remember that WebAssembly was not designed to run
directly on computer hardware, but to download and translate into machine code quickly.

Another thing that will seem a little alien at first when you are dealing with WebAssembly
text is the lack of registers. WebAssembly is designed to be a virtual stack machine, which is
an alternative to a register machine, such as x86 and ARM, with which you might be familiar.
A stack machine has the advantage of producing significantly smaller bytecode than a
register machine, which is one good reason to choose a stack machine for WebAssembly.
Instead of using a series of registers to store and manipulate numbers, every opcode in a
stack machine pushes values on or off a stack (and sometimes does both). For example, a
call to i32.add in WebAssembly pulls two 32-bit integers off the stack, adds them together,
then pushes their value back on to the stack. The computer hardware can make the best use
of whichever registers are available to perform this operation.

https://llvm.org
https://llvm.org
https://llvm.org
https://llvm.org
https://llvm.org
https://llvm.org
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook

Introduction to WebAssembly and Emscripten Chapter 1

[19]

Emscripten
Now that we know what LLVM is, we can discuss Emscripten. Emscripten was developed
to compile LLVM IR into JavaScript, but has recently been updated to compile LLVM into
WebAssembly. The idea is that, when you get the LLVM compiler working, you can have
the benefit of all the languages that compile to LLVM IR. In practice, the WebAssembly
specification is still in its early days and does not support common language features such
as GC. Therefore, only non-GC languages such as C/C++ and Rust are currently supported.
WebAssembly is still in the early MVP phase of its development, but the addition of GC
and other common language features are coming soon. When that happens, there should be
an explosion of programming languages that will compile to WebAssembly.

When Emscripten was released in 2012, it was intended to be an LLVM-to-JavaScript
compiler. In 2013, support was added for asm.js, which is a faster, easily optimized subset
of the JavaScript language. In 2015, Emscripten began to add support for LLVM-to-
WebAssembly compiling. Emscripten also provides a Software Development Kit (SDK)
for both C++ and JavaScript that provides glue code to give users better tools for interaction
between JavaScript and WebAssembly than those currently offered by the WebAssembly
MVP alone. Emscripten also integrates with a C/C++-to-LLVM compiler called Clang, so
that you can compile your C++ into WebAssembly. In addition, Emscripten will generate
the HTML and JavaScript glue code you need to get your project started.

Emscripten is a very dynamic project and changes to the toolchain happen
frequently. To stay up to date with the latest changes in Emscripten, visit
the project home page at https:/ ​/​emscripten. ​org.

Installing Emscripten on Windows
I am going to keep this section brief because these instructions are subject to change. You
can supplement these instructions with the official Emscripten download and install
instructions found on the Emscripten website: https:/ ​/​emscripten. ​org/ ​docs/ ​getting_
started/​downloads. ​html.

We will need to download and build Emscripten from the emsdk source files on
GitHub. First, we will walk through what to do on Windows.

Python 2.7.12 or higher is a prerequisite. If you do not have a version of Python higher than
2.7.12 installed, you will need to get the windows installer from python.org and install that
first: https:/​/​www. ​python. ​org/ ​downloads/ ​windows/ ​.

https://emscripten.org
https://emscripten.org
https://emscripten.org
https://emscripten.org
https://emscripten.org
https://emscripten.org
https://emscripten.org
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
http://python.org
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/

Introduction to WebAssembly and Emscripten Chapter 1

[20]

If you have installed Python and you are still getting errors telling you
that Python is not found, you may need to add Python to your Windows
PATH variable. For more information, refer to this tutorial: https:/ ​/​www.
pythoncentral. ​io/ ​add- ​python- ​to- ​path- ​python- ​is- ​not-​recognized- ​as-
an-​internal- ​or- ​external- ​command/ ​.

If you have Git installed already, cloning the repository is relatively simple:

Run the following command to clone the repository:1.

git clone https://github.com/emscripten-core/emsdk.git

Wherever you run this command, it will create an emsdk directory. Enter that2.
directory using the following:

cd emsdk

You may not have Git installed, in which case, the following steps will bring you up to
speed:

Go to the following URL in a web browser: https:/ ​/​github. ​com/ ​emscripten-1.
core/​emsdk.
You will see a green button on the right-hand side that says Clone or download.2.
Download the ZIP file:

https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://github.com/juj/emsdk
https://github.com/juj/emsdk
https://github.com/juj/emsdk
https://github.com/juj/emsdk
https://github.com/juj/emsdk
https://github.com/juj/emsdk
https://github.com/juj/emsdk
https://github.com/juj/emsdk
https://github.com/juj/emsdk
https://github.com/juj/emsdk
https://github.com/juj/emsdk
https://github.com/juj/emsdk

Introduction to WebAssembly and Emscripten Chapter 1

[21]

Unzip the downloaded file to the c:\emsdk directory.3.
Open up a Windows Command Prompt by typing cmd into the start menu and4.
pressing Enter.
From there, you can change to the c:\emsdk\emsdk-master directory by5.
typing the following:

 cd \emsdk\emsdk-master

At this point, it does not matter whether you had Git installed or not. Let's move forward:

Install emsdk from the source code running the following command:1.

emsdk install latest

Then activate the latest emsdk:2.

emsdk activate latest

Finally, set up our path and environment variables:3.

emsdk_env.bat

This last step will need to be rerun from your install directory every time
you open a new command-line window. Unfortunately, it does not
permanently set the Windows environment variables. Hopefully, that will
change in the future.

Installing Emscripten on Ubuntu
If you are installing on Ubuntu, you should be able to use the apt-get package manager
and git for the complete install. Let's move forward:

Python is required, so if you do not have Python installed, be sure to run the1.
following:

sudo apt-get install python

If you do not already have Git installed, run the following:2.

sudo apt-get install git

Introduction to WebAssembly and Emscripten Chapter 1

[22]

Now you will need to clone the Git repository for emsdk:3.

git clone https://github.com/emscripten-core/emsdk.git

Change your directory to move into the emsdk directory:4.

cd emsdk

From here, you need to install the latest version of the SDK tools, activate it, and5.
set your environment variables:

./emsdk install latest

./emsdk activate latest
source ./emsdk_env.sh

To make sure everything was installed correctly, run the following command:6.

emcc --version

Using Emscripten
We run Emscripten from the command line; therefore, you can use any text editor you
choose to write your C/C++ code. Personally, I am partial to Visual Studio Code, which you
can download here: https:/ ​/​code. ​visualstudio. ​com/ ​download.

One beautiful thing about Visual Studio Code is that it has a built-in command-line
terminal, which lets you compile your code without switching windows. It also has an
excellent C/C++ extension that you can install. Just search for C/C++ from the extensions
menu and install the Microsoft C/C++ Intellisense extension.

Whatever you choose for your text editor or integrated development environment, you
need a simple piece of C code to test out the emcc compiler.

Create a new text file and name it hello.c.1.
Type the following code into hello.c:2.

#include <emscripten.h>
#include <stdlib.h>
#include <stdio.h>

int main() {
 printf("hello wasm\n");
}

https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download

Introduction to WebAssembly and Emscripten Chapter 1

[23]

Now I can compile the hello.c file into WebAssembly and generate a3.
hello.html file:

emcc hello.c --emrun -o hello.html

The --emrun flag is necessary if you want to run the HTML page from emrun.4.
This flag adds code that will capture stdout, stderr, and exit in the C code and
emrun will not work without it:

emrun --browser firefox hello.html

Running emrun with the --browser flag will pick the browser where you would like to
run the script. The behavior of emrun seems to be different between browsers. Chrome will
close the window when the C program exits. That can be annoying because we are just
trying to display a simple print message. If you have Firefox, I would suggest running
emrun using the --browser flag.

I do not want to imply that Chrome cannot run WebAssembly. Chrome
does have different behavior when a WebAssembly module exits. Because
I was trying to keep our WebAssembly module as simple as possible, it
exits when the main function completes. That is what is causing problems
in Chrome. These problems will go away later when we learn about game
loops.

To find out what browsers are available to you, run the following:

emrun --list_browsers

 emrun should open an Emscripten-templated HTML file in a browser.

Make sure you have a browser capable of running WebAssembly. The following versions of
the major browsers should work with WebAssembly:

Edge 16
Firefox 52
Chrome 57
Safari 11
Opera 44

Introduction to WebAssembly and Emscripten Chapter 1

[24]

If you are familiar with setting up your own web server, you may want to
consider using it rather than emrun. After using emrun for the first few
chapters of this book, I returned to using my Node.js web server. I found
it easier to have a Node-based web server up and running at all times,
rather than restarting the emrun web server every time I wanted to test
my code. If you know how to set up an alternative web server (such as
one for Node, Apache, and IIS), you may use whatever web server you
prefer. Although IIS requires some additional configuration to handle
WebAssembly MIME types.

Additional installation resources
Creating an installation guide for Emscripten is going to be somewhat problematic. The
WebAssembly technology changes frequently and the installation process for Emscripten
may be different by the time you read this. I would recommend consulting the download
and install instructions on the Emscripten website if you have any problems: https:/ ​/
emscripten.​org/​docs/ ​getting_ ​started/ ​downloads. ​html.

You may also want to consult the Emscripten page on GitHub: https:/ ​/​github. ​com/
emscripten-​core/ ​emsdk.

Google Groups has an Emscripten discussion forum where you may ask questions if you
are having installation problems: https:/ ​/ ​groups. ​google. ​com/ ​forum/ ​?​nomobile=
true#!forum/​emscripten- ​discuss.

You can also contact me on Twitter (@battagline), and I will do my best to help you:
https:/​/​twitter. ​com/ ​battagline.

Summary
In this chapter, we learned what WebAssembly is and why it will be the future of
application development on the web. We learned why we need WebAssembly, even
though we already have a robust language like JavaScript. We learned why WebAssembly
is so much faster than JavaScript, and how it has the potential to increase its performance
lead. We have also discussed the possibility of WebAssembly replacing JavaScript as the de
facto standard for application development on the web.

https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://github.com/emscripten-core/emsdk
https://github.com/emscripten-core/emsdk
https://github.com/emscripten-core/emsdk
https://github.com/emscripten-core/emsdk
https://github.com/emscripten-core/emsdk
https://github.com/emscripten-core/emsdk
https://github.com/emscripten-core/emsdk
https://github.com/emscripten-core/emsdk
https://github.com/emscripten-core/emsdk
https://github.com/emscripten-core/emsdk
https://github.com/emscripten-core/emsdk
https://github.com/emscripten-core/emsdk
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://twitter.com/battagline
https://twitter.com/battagline
https://twitter.com/battagline
https://twitter.com/battagline
https://twitter.com/battagline
https://twitter.com/battagline
https://twitter.com/battagline
https://twitter.com/battagline
https://twitter.com/battagline

Introduction to WebAssembly and Emscripten Chapter 1

[25]

We have discussed the practical side of creating a WebAssembly module as it is done today
using Emscripten and LLVM. We have talked about WebAssembly text and how it is
structured. We have also discussed using Emscripten to compile our first WebAssembly
module, as well as using it to create the HTML and JavaScript glue code to run that
module.

In the next chapter, we will go into further detail on how to use Emscripten to create our
WebAssembly module, as well as the HTML/CSS and JavaScript used to drive it.

2
HTML5 and WebAssembly

In this chapter, we will show you how the C code we write to target WebAssembly comes
together with HTML5, JavaScript, and CSS to create a web page. We will teach you how to
create a new HTML shell file to be used by Emscripten in the creation of our WebAssembly
app. We will discuss the Module object and how Emscripten uses it as an interface between
our JavaScript and the WebAssembly module. We will show you how to call WebAssembly
functions written in C from within JavaScript on our HTML page. We will also show you
how to call JavaScript functions from our C code. We will discuss how to use CSS to
improve the look of our web page. We will introduce you to the HTML5 Canvas element
and show how it is possible to display images to the canvas from within JavaScript. We will
briefly discuss moving those images around the canvas from our WebAssembly
module. This chapter will give you an understanding of how everything works together
and lays the foundation for other features we are developing for our WebAssembly
applications.

Beginning with this chapter and continuing through the remainder of the
book, you will need image and font files from the GitHub project to
compile the examples. For this chapter, you will need
the /Chapter02/spaceship.png image file from the project directory.
Please download the project from the following URL: https:/ ​/​github.
com/​PacktPublishing/ ​Hands- ​On-​Game- ​Development- ​with- ​WebAssembly.

I highly recommend working along as you read each section of this
chapter. You may use your favorite code editor and the command line to
follow along. Even though we have provided links to download the code
directly, it cannot be emphasized enough how much you will learn by
actually following edits suggested in this chapter. You are going to make
mistakes and learn a lot from them. If you decide to work along, another
suggestion is the following: do not proceed to the next section unless your
edit/steps in the current section are successful. If you need help, contact
me on twitter (@battagline).

https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly

HTML5 and WebAssembly Chapter 2

[27]

In this chapter, we will cover the following topics:

The Emscripten minimal shell file
Creating a new HTML shell and C file
Defining our CSS
HTML5 and game development
Adding a canvas to the Emscripten template

The Emscripten minimal shell file
The first build we created with Emscripten used a default HTML shell file. If you have a
website, this is probably not the way you would prefer your web page to look. You would
probably prefer to design your look and feel using CSS and HTML5 specific to your design
or business needs. For instance, the templates I use for my websites typically include
advertisements to the left and right of the game's canvas. That is how traffic to these sites is
monetized. You may choose to add a logo for your website above your game's canvas.
There is also a text area where Emscripten logs output from printf or other standard IO
calls. You may choose to remove this textarea element altogether, or you may keep it, but
keep it hidden because it is useful for debugging later.

To build the HTML file based on a new shell file that is not the default Emscripten shell, we
must use the --shell-file parameter, passing it the new HTML template file we would
like to use, instead of Emscripten's default. The new emcc command will look like this:

emcc hello.c --shell-file new_shell.html --emrun -o hello2.html

Do not execute this command just yet. We do not currently have a new_shell.html file in
our project directory, so running the command before that file exists will result in an error
message. We need to create the new_shell.html file and use it as the HTML shell instead
of Emscripten's default HTML shell. This shell file must follow a specific format. To
construct it, we have to start with Emscripten's minimum HTML shell file, which you can
find at GitHub here:

https:/​/​github.​com/ ​emscripten- ​core/ ​emscripten/ ​blob/ ​master/ ​src/ ​shell_ ​minimal.
html

https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html

HTML5 and WebAssembly Chapter 2

[28]

We will be writing our own HTML shell, using the shell_minimal.html file as a starting
point. Much of what is in the minimal shell is not required, so we will make some
significant edits to it. We will remove much of the code to suit our purpose. When you
open shell_minimal.html in your text editor, you will see that it starts with a standard
HTML header and a style tag:

<style>
 .emscripten { padding-right: 0; margin-left: auto; margin-right: auto;
 display: block; }
 textarea.emscripten { font-family: monospace; width: 80%; }
 div.emscripten { text-align: center; }
 div.emscripten_border { border: 1px solid black; }
 /* the canvas *must not* have any border or padding, or mouse coords
 will be wrong */
 canvas.emscripten { border: 0px none; background-color: black; }
 .spinner {
 height: 50px;
 width: 50px;
 margin: 0px auto;
 -webkit-animation: rotation .8s linear infinite;
 -moz-animation: rotation .8s linear infinite;
 -o-animation: rotation .8s linear infinite;
 animation: rotation 0.8s linear infinite;
 border-left: 10px solid rgb(0,150,240);
 border-right: 10px solid rgb(0,150,240);
 border-bottom: 10px solid rgb(0,150,240);
 border-top: 10px solid rgb(100,0,200);
 border-radius: 100%;
 background-color: rgb(200,100,250);
 }
 @-webkit-keyframes rotation {
 from {-webkit-transform: rotate(0deg);}
 to {-webkit-transform: rotate(360deg);}
 }
 @-moz-keyframes rotation {
 from {-moz-transform: rotate(0deg);}
 to {-moz-transform: rotate(360deg);}
 }
 @-o-keyframes rotation {
 from {-o-transform: rotate(0deg);}
 to {-o-transform: rotate(360deg);}
 }
 @keyframes rotation {
 from {transform: rotate(0deg);}
 to {transform: rotate(360deg);}
 }
 </style>

HTML5 and WebAssembly Chapter 2

[29]

This code is based on the version of shell_minimal.html available at
the time of writing. No changes to this file are anticipated. However,
WebAssembly is evolving quickly. Unfortunately, we cannot say with
complete certainty that this file will remain unchanged by the time you
read this. As mentioned earlier, if you run into problems, please feel free
to contact me on Twitter (@battagline).

We remove this style tag so you can style your code any way you like. It is necessary if you
like their spinner loading image and want to keep it, but it is preferable to yank all of this
out and replace it with CSS loaded externally from a CSS file with the link tag, as follows:

<link href="shell.css" rel="stylesheet" type="text/css">

Scroll down a little further, and you will see the loading indicators they use. We are going
to replace that with our own eventually, but for now, we are testing all of this locally, and
our files are all tiny, so we would remove this code as well:

<figure style="overflow:visible;" id="spinner">
 <div class="spinner"></div>
 <center style="margin-top:0.5em">emscripten</center>
</figure>
<div class="emscripten" id="status">Downloading...</div>
 <div class="emscripten">
 <progress value="0" max="100" id="progress" hidden=1></progress>
 </div>

After that, there is an HTML5 canvas element and some other tags related to it. We will
eventually need to add a canvas element back in, but for now, we will not be using
the canvas, so that part of the code is not necessary either:

<div class="emscripten">
 <input type="checkbox" id="resize">Resize canvas
 <input type="checkbox" id="pointerLock" checked>Lock/hide mouse
 pointer
 <input type="button" value="Fullscreen" onclick=
 "Module.requestFullscreen(document.getElementById
 ('pointerLock').checked,
 document.getElementById('resize').checked)">
 </div>

HTML5 and WebAssembly Chapter 2

[30]

After the canvas, there is a textarea element. That is also not necessary, but it would be
good to use it as the location where any printf commands executed from my C code are
printed. The shell has surrounded it with two <hr/> tags, used for formatting, so we can
remove those as well:

 <hr/>
 <textarea class="emscripten" id="output" rows="8"></textarea>
 <hr/>

The next thing we have is our JavaScript. That starts with three variables that represent
HTML elements that we removed earlier, so we are going to need to remove all of those
JavaScript variables as well:

var statusElement = document.getElementById('status');
var progressElement = document.getElementById('progress');
var spinnerElement = document.getElementById('spinner');

The Module object inside JavaScript is the interface that the Emscripten-generated
JavaScript glue code uses to interact with our WebAssembly module. It is the most crucial
part of a shell HTML file, and it is essential to understand what it is doing. The Module
object begins with two arrays, preRun, and postRun. These are arrays of functions that will
run before and after the module is loaded, respectively.

var Module = {
 preRun: [],
 postRun: [],

For demonstration purposes, we could add functions to these arrays like this:

preRun: [function() {console.log("pre run 1")},
 function() {console.log("pre run 2")}],
postRun: [function() {console.log("post run 1")},
 function() {console.log("post run 2")}],

This would produce the following output from our hello WASM app that we created in
Chapter1, Introduction to WebAssembly and Emscripten:

pre run 2
pre run 1
status: Running...
Hello wasm
post run 2
post run 1

HTML5 and WebAssembly Chapter 2

[31]

Notice that the preRun and postRun functions run in the reverse order in
which they are placed in the array. We could use the postRun array to call
a function that would initialize our WebAssembly wrappers, but, for
demonstration purposes, we will instead call a JavaScript function from
within our C main() function.

The next two functions inside the Module object are the print and printErr functions.
The print function is used to print out the output of the printf calls to both the console
and to the textarea that we have named output. You can change this output to print out
to any HTML tag, but, if your output is raw HTML, there are several commented-out text
replace calls that must run. Here is what the print function looks like:

print: (function() {
 var element = document.getElementById('output');
 if (element) element.value = ''; // clear browser cache
 return function(text) {
 if (arguments.length > 1) text =
 Array.prototype.slice.call(arguments).join(' ');
 // These replacements are necessary if you render to raw HTML
 //text = text.replace(/&/g, "&");
 //text = text.replace(/</g, "<");
 //text = text.replace(/>/g, ">");
 //text = text.replace('\n', '
', 'g');
 console.log(text);
 if (element) {
 element.value += text + "\n";
 element.scrollTop = element.scrollHeight; // focus on
 bottom
 }
 };
})(),

The printErr function is run by the glue code when an error or warning occurs in either
our WebAssembly module or the glue code itself. The output of printErr is only the
console, although, in principle, if you wanted to add code that would write to an HTML
element, you could do that as well. Here is the printErr code:

printErr: function(text) {
 if (arguments.length > 1) text =
 Array.prototype.slice.call(arguments).join(' ');
 if (0) { // XXX disabled for safety typeof dump == 'function') {
 dump(text + '\n'); // fast, straight to the real console
 } else {
 console.error(text);
 }
 },

HTML5 and WebAssembly Chapter 2

[32]

After the print functions, there is a canvas function. This function is set up to alert the
user to a lost WebGL context. We do not need that code right now, because we have
removed the HTML Canvas. When we add the canvas element back in, we will need to
restore this function. It also makes sense to update it to handle a lost context event, instead
of just alerting the user.

canvas: (function() {
 var canvas = document.getElementById('canvas');
 // As a default initial behavior, pop up an alert when webgl
 context is lost. To make your
 // application robust, you may want to override this behavior
 before shipping!
 // See http://www.khronos.org/registry/webgl/specs/latest/1.0/#5.15.2
 canvas.addEventListener("webglcontextlost", function(e) {
 alert('WebGL context lost. You will need to reload the page.');
 e.preventDefault(); }, false);
 return canvas;
 })(),

There are several different situations when your web page could lose its
WebGL context. The context is your portal into the GPU, and your app's
access to the GPU is managed by both the browser and the operating
system. Let's take a trip to The Land of Metaphor, where we imagine the
GPU is a bus, the web browser is the bus driver, and the apps using their
context are a bunch of rowdy middle school kids. If the bus driver
(browser) feels that the kids (apps) are getting too rowdy, he can stop the
bus (GPU), throw all the kids off the bus (make the apps lose their
context), and let them come back one at a time if they promise to behave.

After that, the minimal shell has some code that keeps track of the module's status and
dependencies. In this code, we can remove references to
the spinnerElement, progressElement, and statusElement. Later, if we choose, we
can replace these with elements to keep track of the state of loaded modules, but, for the
moment, they are not needed. Here is the status and run dependency monitoring code in
the minimal shell:

setStatus: function(text) {
 if (!Module.setStatus.last) Module.setStatus.last = { time:
 Date.now(), text: '' };
 if (text === Module.setStatus.last.text) return;
 var m = text.match(/([^(]+)\((\d+(\.\d+)?)\/(\d+)\)/);
 var now = Date.now();

 // if this is a progress update, skip it if too soon
 if (m && now - Module.setStatus.last.time < 30) return;

HTML5 and WebAssembly Chapter 2

[33]

 Module.setStatus.last.time = now;
 Module.setStatus.last.text = text;
 if (m) {
 text = m[1];
 }
 console.log("status: " + text);
},
totalDependencies: 0,
monitorRunDependencies: function(left) {
 this.totalDependencies = Math.max(this.totalDependencies, left);
 Module.setStatus(left ? 'Preparing... (' + (this.totalDependencies-
 left) + '/' + this.totalDependencies + ')' : 'All
 downloads complete.');
}
};
 Module.setStatus('Downloading...');

The final piece of JavaScript code inside the minimal shell file determines what JavaScript
will do in the event of a browser error:

window.onerror = function() {
 Module.setStatus('Exception thrown, see JavaScript console');
 Module.setStatus = function(text) {
 if (text) Module.printErr('[post-exception status] ' + text);
 };

After our JavaScript, there is one more important line:

{{{ SCRIPT }}}

This tag tells Emscripten to place the link to the JavaScript glue code here. Here is an
example of what gets compiled into the final HTML file:

<script async type="text/javascript" src="shell-min.js"></script>

shell-min.js is the JavaScript glue code that is built by Emscripten. In the next section,
we will learn how to create our own HTML shell file.

HTML5 and WebAssembly Chapter 2

[34]

Creating a new HTML shell and C file
In this section, we are going to create a new shell.c file that exposes several functions
called from our JavaScript. We will also use EM_ASM to call the InitWrappers function that
we will define inside the new HTML shell file that we will be creating. This function will
create wrappers inside JavaScript that can call functions defined in the WebAssembly
module. Before creating the new HTML shell file, we need to create the C code that will be
called by the JavaScript wrappers inside the HTML shell:

Create the new shell.c file as follows:1.

#include <emscripten.h>
#include <stdlib.h>
#include <stdio.h>

int main() {
 printf("Hello World\n");
 EM_ASM(InitWrappers());
 printf("Initialization Complete\n");
}

void test() {
 printf("button test\n");
}

void int_test(int num) {
 printf("int test=%d\n", num);
}

void float_test(float num) {
 printf("float test=%f\n", num);
}

void string_test(char* str) {
 printf("string test=%s\n", str);
}

The main function runs when the WebAssembly module is loaded. At this point,
the Module object can use cwrap to create a JavaScript version of that function that we can
tie to onclick events on the HTML elements. Inside the main function, the EM_ASM(
InitWrappers()); code calls an InitWrappers() function that is defined inside
JavaScript in the HTML shell file. The DOM uses events to call the next four functions.

HTML5 and WebAssembly Chapter 2

[35]

Another way we could have initialized the wrappers is by calling
the InitWrappers() function from the Module object postRun:
[] array.

We will tie a call to the test() function to a button click in the DOM. The int_test
function will be passed as a value from an input field in the DOM and will print a message
to the console and textarea element that includes that integer, by using
a printf statement. The float_test function will be passed a number as a floating point,
printed to the console and textarea element. The string_test function will print out a
string that is passed in from JavaScript.

Now, we are going to add the following code to an HTML shell file and call it
new_shell.html. The code is based on the Emscripten minimal shell file created by the
Emscripten team and explained in the previous section. We will present the entire HTML
page divided into four parts.

To begin with, there is the beginning of the HTML file and the head element:

<!doctype html>
<html lang="en-us">
<head>
 <meta charset="utf-8">
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>New Emscripten Shell</title>
 <link href="shell.css" rel="stylesheet" type="text/css">
</head>

Next, is the beginning of the body tag. After that, we have several HTML input elements
as well as the textarea element:

<body>
 <div class="input_box"> </div>
 <div class="input_box">
 <button id="click_me" class="em_button">Click Me!</button>
 </div>
 <div class="input_box">
 <input type="number" id="int_num" max="9999" min="0" step="1"
 value="1" class="em_input">
 <button id="int_button" class="em_button">Int Click!</button>
 </div>
 <div class="input_box">
 <input type="number" id="float_num" max="99" min="0"
 step="0.01" value="0.0" class="em_input">
 <button id="float_button" class="em_button">Float Click!</button>
 </div>

HTML5 and WebAssembly Chapter 2

[36]

 <div class="input_box"> </div>
 <textarea class="em_textarea" id="output" rows="8"></textarea>
 <div id="string_box">
 <button id="string_button" class="em_button">String Click!</button>
 <input id="string_input">
 </div>

After our HTML, we have the beginning of our script tag, and some JavaScript code we
have added to the default shell file:

 <script type='text/javascript'>
 function InitWrappers() {
 var test = Module.cwrap('test', 'undefined');
 var int_test = Module.cwrap('int_test', 'undefined', ['int']);
 var float_test = Module.cwrap('float_test', 'undefined',
 ['float']);
 var string_test = Module.cwrap('string_test', 'undefined',
 ['string']);
 document.getElementById("int_button").onclick = function() {

 if(int_test != null) {
 int_test(document.getElementById('int_num').value);
 }
 }

 document.getElementById("string_button").onclick = function() {
 if(string_test != null) {
 string_test(document.getElementById('string_input').value);
 }
 }

 document.getElementById("float_button").onclick = function() {
 if(float_test != null) {
 float_test(document.getElementById('float_num').value);
 }
 }

 document.getElementById("click_me").onclick = function() {
 if(test != null) {
 test();
 }
 }
 }

function runbefore() {
 console.log("before module load");
}

HTML5 and WebAssembly Chapter 2

[37]

function runafter() {
 console.log("after module load");
}

Next, we have the Module object that we brought in from the default shell file. After
the Module object, we have the end to the script tag, the {{{ SCRIPT }}} tag, which is
replaced by Emscripten when compiled, and the ending tags in our file:

var Module = {
 preRun: [runbefore],
 postRun: [runafter],
 print: (function() {
 var element = document.getElementById('output');
 if (element) element.value = ''; // clear browser cache
 return function(text) {
 if (arguments.length > 1) text =
 Array.prototype.slice.call(arguments).join(' ');
 /*
 // The printf statement in C is currently writing to a
 textarea. If we want to write
 // to an HTML tag, we would need to run these lines of
 codes to make our text HTML safe
 text = text.replace(/&/g, "&");
 text = text.replace(/</g, "<");
 text = text.replace(/>/g, ">");
 text = text.replace('\n', '
', 'g');
 */
 console.log(text);
 if (element) {
 element.value += text + "\n";
 element.scrollTop = element.scrollHeight;
 // focus on bottom
 }
 };
 })(),
 printErr: function(text) {
 if (arguments.length > 1) text =
 Array.prototype.slice.call(arguments).join(' ');
 if (0) { // XXX disabled for safety typeof dump ==
 'function') {
 dump(text + '\n'); // fast, straight to the real
console
 } else {
 console.error(text);
 }
 },
 setStatus: function(text) {
 if (!Module.setStatus.last) Module.setStatus.last = { time:

HTML5 and WebAssembly Chapter 2

[38]

 Date.now(), text: '' };
 if (text === Module.setStatus.last.text) return;
 var m = text.match(/([^(]+)\((\d+(\.\d+)?)\/(\d+)\)/);
 var now = Date.now();

 // if this is a progress update, skip it if too soon
 if (m && now - Module.setStatus.last.time < 30) return;
 Module.setStatus.last.time = now;
 Module.setStatus.last.text = text;

 if (m) {
 text = m[1];
 }
 console.log("status: " + text);
 },
 totalDependencies: 0,
 monitorRunDependencies: function(left) {
 this.totalDependencies = Math.max(this.totalDependencies,
 left);
 Module.setStatus(left ? 'Preparing... (' +
 (this.totalDependencies-left) + '/' +
 this.totalDependencies + ')' : 'All downloads complete.');
 }
 };
 Module.setStatus('Downloading...');
 window.onerror = function() {
 Module.setStatus('Exception thrown, see JavaScript console');
 Module.setStatus = function(text) {
 if (text) Module.printErr('[post-exception status] ' + text);
 };
};
</script>
{{{ SCRIPT }}}
</body>
</html>

These previous four sections all make up a single shell file called new_shell.html. You
can create this code by typing out the last four parts into a file you name new_shell.html,
or you can download the file from our GitHub page at https:/ ​/​github. ​com/
PacktPublishing/​Hands- ​On- ​Game- ​Development- ​with- ​WebAssembly/ ​blob/ ​master/
Chapter02/​new_​shell. ​html.

https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html

HTML5 and WebAssembly Chapter 2

[39]

Now that we have seen the entire new_shell.html file in large chunks, we can spend a
little time breaking down the essential parts and going over it at a granular level. You will
notice that we removed all of the CSS style code and have created a new shell.css file
included with the following line:

<link href="shell.css" rel="stylesheet" type="text/css">

Next, we have reworked the HTML code inside this file to create elements that will interact
with the WebAssembly module. First, we are going to add a button that will call
the test() function inside the WebAssembly module:

<div class="input_box">
 <button id="click_me" class="em_button">Click Me!</button>
</div>

We will style the button and its included div element inside the shell.css file that we
have created. We will need to define the function that will be called by the onclick event
of this button element inside the JavaScript code we will write later. We will do something
similar for the two input/button pairs we will define in the HTML, as demonstrated in the
following code block:

<div class="input_box">
 <input type="number" id="int_num" max="9999" min="0" step="1"
 value="1" class="em_input">
 <button id="int_button" class="em_button">Int Click!</button>
</div>
<div class="input_box">
 <input type="number" id="float_num" max="99" min="0" step="0.01"
 value="0.0" class="em_input">
 <button id="float_button" class="em_button">Float Click!</button>
</div>

Like we did with the first button element, we will tie these next two buttons to functions
that will make calls into the WebAssembly module. These function calls will also pass the
values defined in the input elements into the WebAssembly functions. We have left
the textarea element as an output for the printf calls that happen within the
WebAssembly module. We have styled it differently in the CSS file, but we will leave the
functionality unchanged:

<textarea class="em_textarea" id="output" rows="8"></textarea>
<div id="string_box">
 <button id="string_button" class="em_button">String Click!</button>
 <input id="string_input">
</div>

HTML5 and WebAssembly Chapter 2

[40]

Underneath the textarea element, we have added one more button and a
string input element. This button will call the string_test function inside the
WebAssembly module, passing it the value inside the string_input element as a
C char* parameter.

Now that we have defined all of the elements we need in the HTML, we will go through
and add some JavaScript code to tie the JavaScript and WebAssembly module together. The
first thing we need to do is define the InitWrappers function. InitWrappers will be
called from within the main function in the C code:

function InitWrappers() {
 var test = Module.cwrap('test', 'undefined');
 var int_test = Module.cwrap('int_test', 'undefined', ['int']);
 var float_test = Module.cwrap('float_test', 'undefined',
 ['float']);
 var string_test = Module.cwrap('string_test', 'undefined',
 ['string']);
 document.getElementById("int_button").onclick = function() {
 if(int_test != null) {
 int_test(document.getElementById('int_num').value);
 }
 }

 document.getElementById("string_button").onclick = function() {
 if(string_test != null) {
 string_test(document.getElementById('string_input').value);
 }
 }

 document.getElementById("float_button").onclick = function() {
 if(float_test != null) {
 float_test(document.getElementById('float_num').value);
 }
 }

 document.getElementById("click_me").onclick = function() {
 if(test != null) {
 test();
 }
 }
}

HTML5 and WebAssembly Chapter 2

[41]

This function uses Module.cwrap to create JavaScript function wrappers around the
exported functions inside the WebAssembly module. The first parameter we pass
to cwrap is the name of the C function we are wrapping. All of these JavaScript functions
will return undefined. JavaScript does not have a void type like C, so when we declare
the return type in JavaScript, we need to use the undefined type instead. If the function
were to return an int or a float, we would need to put the 'number' value here. The
final parameter passed into cwrap is an array of strings that represent the C type of the
parameters passed into the WebAssembly module.

After we have defined the JavaScript wrappers around the functions, we need to call them
from the buttons. The first one of these calls is to the WebAssembly int_test function.
Here is how we set the onclick event for the int_button:

document.getElementById("int_button").onclick = function() {
 if(int_test != null) {
 int_test(document.getElementById('int_num').value);
 }
}

The first thing we will do is check to see whether int_test is defined. If so, we call
the int_test wrapper we explained earlier, passing it the value from the int_num input.
We then do something similar for all of the other buttons.

The next thing we do is create a runbefore and runafter function that we place in
the preRun and postRun arrays on the Module object:

function runbefore() {
 console.log("before module load");
}
function runafter() {
 console.log("after module load");
}
var Module = {
 preRun: [runbefore],
 postRun: [runafter],

That will cause "before module load" to be printed to the console before the module is
loaded, and "after module load" is printed after the module is loaded. These functions are
not required; they are designed to show how you might run code before and after a
WebAssembly module is loaded. If you do not want to call the InitWrappers function
from the main function in the WebAssembly module, you could instead put that function
inside the postRun array.

HTML5 and WebAssembly Chapter 2

[42]

The remainder of the JavaScript code is similar to what you would find inside the
shell_minimal.html file created by Emscripten. We have removed code that is
superfluous for this demonstration, such as code related to the spinnerElement,
progressElement, and statusElement, as well as code having to do with the
HTML5 canvas. It is not that there is anything wrong with leaving that code in JavaScript,
but it is not truly necessary for our demonstration, so we have removed it to reduce this
shell to the minimum required.

Defining the CSS
Now that we have some basic HTML, we need to create a new shell.css file. Without
any CSS styling, our page looks pretty terrible.

A page without styling will be similar to the one shown as follows:

Figure 2.1: The Hello WebAssembly app without a CSS style

Luckily for us, a little bit of CSS goes a long way to make our web page look presentable.
Here is what the new shell.css file we are creating looks like:

body {
 margin-top: 20px;
}

.input_box {
 width: 20%;
 display: inline-block;
}
.em_button {
 width: 45%;
 height: 40px;
 background-color: orangered;
 color: white;

HTML5 and WebAssembly Chapter 2

[43]

 border: 2px solid white;
 font-size: 20px;
 border-radius: 8px;
 transition-duration: 0.5s;
}

.em_button:hover {
 background-color: orange;
 color: white;
 border: 2px solid white;
}

.em_input {
 width: 45%;
 height: 20px;
 font-size: 20px;
 background-color: darkslategray;
 color: white;
 padding: 6px;
}

#output {
 background-color: darkslategray;
 color: white;
 font-size: 16px;
 padding: 10px;
 padding-right: 0;
 margin-left: auto;
 margin-right: auto;
 display: block;
 width: 60%;
}

#string_box {
 padding-top: 10px;
 margin-left: auto;
 margin-right: auto;
 display: block;
 width: 60%;
}

#string_input {
 font-size: 20px;
 background-color: darkslategray;
 color: white;
 padding: 6px;
 margin-left: 5px;
 width: 45%;

HTML5 and WebAssembly Chapter 2

[44]

 float: right;
}

Let me quickly walk through what we need to do to style this page. This book is not a book
on CSS, but it does not hurt to cover the topic in a cursory fashion.

The first thing we will do is put a little 20-pixel margin on the page body to put a1.
little bit of space between the browser toolbar and the content on our page:

body {
 margin-top: 20px;
}

We have created five input boxes that take up 20% of the browser width each.2.
The boxes on the left and the right have nothing in them, so that the content takes
up 60% of the browser width. They are displayed as an inline-block, so that they
line up horizontally across the screen. Here is the CSS that makes it happen:

.input_box {
 width: 20%;
 display: inline-block;
}

We then have a few classes to style our buttons using a class called em_button:3.

.em_button {
 width: 45%;
 height: 40px;
 background-color: orangered;
 color: white;
 border: 0px;
 font-size: 20px;
 border-radius: 8px;
 transition-duration: 0.2s;
}

.em_button:hover {
 background-color: orange;
}

We have set the button width to take up 45% of the containing element. We set the button
height to 40 pixels. We have set the button's color to orangered, and the text color to
white. We remove the border by setting its width to 0 pixels. We have set the font size to 20
pixels and given it an 8 pixel border-radius, which provides the button with a rounded
look. The last line sets the amount of time it takes to transition to a new color when the user
hovers over the button.

HTML5 and WebAssembly Chapter 2

[45]

After we finish the definition of the em_button class, we define
the em_button:hover class, which changes the color of the button when the user hovers
over it.

Some versions of Safari require the line -webkit-transition-
duration: 0.2s; inside the em_button class definition to have a
transition to the hover state. Without this line, the button would instantly
change from orangered to orange in some versions of Safari, rather than
transitioning over 200 milliseconds.

The next class we define is for the input elements:

.em_input {
 width: 45%;
 height: 20px;
 font-size: 20px;
 background-color: darkslategray;
 color: white;
 padding: 6px;
}

We have set its height, width, and font-size at the beginning. We set the background
color to a darkslategray with white text. We have added 6 pixels of padding so that
there is a small space between the font and the edge of the input element.

The # in front of the name of a CSS element styles an ID instead of a class. An ID defines a
specific element where a class (preceded by a . in CSS) can be assigned to multiple
elements in your HTML. The next bit of CSS styles the textarea that has the ID of output:

#output {
 background-color: darkslategray;
 color: white;
 font-size: 16px;
 padding: 10px;
 margin-left: auto;
 margin-right: auto;
 display: block;
 width: 60%;
}

HTML5 and WebAssembly Chapter 2

[46]

The first two lines set the background and text color. We set the font size to 16 pixels and
add 10 pixels of padding. The next two lines use the left and right margin to center
the textarea:

margin-left: auto;
margin-right: auto;

Setting display: block; puts this element on a line by itself. Setting the width to 60%
makes the element take up 60% of the containing element, which, in this case, is the
browser's body tag.

Finally, we style the string_box and string_input elements:

#string_box {
 padding-top: 10px;
 margin-left: auto;
 margin-right: auto;
 display: block;
 width: 60%;
}

#string_input {
 font-size: 20px;
 background-color: darkslategray;
 color: white;
 padding: 6px;
 margin-left: 5px;
 width: 45%;
 float: right;
}

The string_box is the box that contains the string button and the string input elements.
We pad the top of the box to add some space between the string_box and
the textarea above it. margin-left: auto and margin-right: auto center the box.
Then, we use display:block and width: 60% to have it take up 60% of the web browser.

For the string_input element, we set the font size and the colors and pad it by 6 pixels.
We set a left margin of 5 pixels to put some space on the left between the element and its
button. We set it to take up 45% of the width of the containing element, while the float:
right style pushes the element to the right side of the containing element.

HTML5 and WebAssembly Chapter 2

[47]

To build our app, we need to run emcc:

 emcc shell.c -o shell-test.html --shell-file new_shell.html -s
NO_EXIT_RUNTIME=1 -s EXPORTED_FUNCTIONS="['_test', '_string_test',
'_int_test', '_float_test', '_main']" -s
EXTRA_EXPORTED_RUNTIME_METHODS="['cwrap', 'ccall']"

EXPORTED_FUNCTIONS is used to define all of the functions called from JavaScript. They are
listed with a preceding _ character. EXTRA_EXPORTED_RUNTIME_METHODS is used to make
the cwrap and ccall methods available to the JavaScript inside our shell file. We are not
currently using ccall, which is an alternative to cwrap, which we may choose to use in the
future.

It is important to remember that you must run WebAssembly apps using
a web server, or with emrun. If you would like to run your WebAssembly
app using emrun, you must compile it with the --emrun flag. The web
browser requires a web server to stream the WebAssembly module. If you
attempt to open an HTML page that uses WebAssembly in a browser
directly from your hard drive, that WebAssembly module will not load.

Now that we have added some CSS styling, we have a much nicer looking app:

Figure 2.2: The Hello WebAssembly app with a CSS style

In the next section, we will discuss HTML5 web game development.

HTML5 and WebAssembly Chapter 2

[48]

HTML5 and game development
Most HTML rendering is done through the HTML Document Object Model (DOM). The
DOM is what is known as a retained mode graphical library. Retained mode graphics retain a
tree known as a scene graph. This scene graph keeps track of all the graphical elements in
our model and how to render them. The nice thing about retained mode graphics is that
they are straightforward for a developer to manage. The graphical library does all the
heavy lifting and keeps track of our objects for us as well as where they render. The
downside is that a retained mode system takes up a lot more memory and provides a lot
less control to the developer. When we write HTML5 games, we could take images
rendered in the DOM using HTML elements and move those elements around using
JavaScript or CSS animations to manipulate the positions of those images within the DOM
directly.

However, this would, in most circumstances, make the game painfully slow. Every time we
move an object in our DOM, it forces our browser to recalculate the position of all other
objects within our DOM. Because of this, manipulating objects from within our DOM to
make web games is usually a non-starter.

Immediate mode versus retained mode
Immediate mode is frequently thought of as the opposite of retained mode, but, in practice,
when we write code for an immediate mode system, we may build on top of an API that
gives us some of the functionality of a retained mode library. Immediate mode forces the
developer to do all or most of the heavy lifting done by a retained mode library. We, as
developers, are forced to manage our scene graph, and understand what graphical objects
we need to render and how and when those objects must render. In short, it is a lot more
work, but if done well, the payoff is a game that will render much faster than what is
possible to render using the DOM.

You might be asking yourself right now: How do I go about using this Immediate Mode thingy?
Enter the HTML5 Canvas! In 2004, Apple Inc. developed the canvas element as an
immediate mode display tag for Apple's proprietary browser technology. The canvas
partitions off a section of our web page, which allows us to render to that area using
immediate mode rendering. That will enable us to render to a part of the DOM (the canvas)
without requiring the browser to recalculate the position of all the elements from within the
DOM. That allows the browser to optimize the rendering of the canvas further, using the
computer's Graphical Processing Unit (GPU).

HTML5 and WebAssembly Chapter 2

[49]

Adding a canvas to the Emscripten template
In an earlier part of this chapter, we discussed making calls to the Emscripten
WebAssembly app from a shell template. Now that you know how to make the interaction
work between JavaScript and WebAssembly, we can add a canvas element back into the
template and start to manipulate that canvas using the WebAssembly module. We are
going to create a new .c file that will call a JavaScript function passing it an x and y
coordinate. The JavaScript function will manipulate a spaceship image, moving it around
the canvas. We will also create a brand new shell file called canvas_shell.html.

As we did for the previous version of our shell, we will start by breaking this file down into
four sections to discuss it at a high level. We will then discuss the essential parts of this file
a piece at a time.

The beginning of the HTML file starts with the opening HTML tag and the head1.
element:

<!doctype html>
<html lang="en-us">
<head>
 <meta charset="utf-8">
 <meta http-equiv="Content-Type" content="text/html;
charset=utf-8">
 <title>Canvas Shell</title>
 <link href="canvas.css" rel="stylesheet" type="text/css">
</head>

After that, we have the opening body tag, and we have removed many of the2.
HTML elements that we had in the earlier version of this file:

<body>
 <canvas id="canvas" width="800" height="600"
oncontextmenu="event.preventDefault()"></canvas>
 <textarea class="em_textarea" id="output" rows="8"></textarea>

Next, there is the opening script tag, a few global JavaScript variables, and a3.
few new functions that we added:

 <script type='text/javascript'>
 var img = null;
 var canvas = null;
 var ctx = null;
 function ShipPosition(ship_x, ship_y) {
 if(img == null) {

HTML5 and WebAssembly Chapter 2

[50]

 return;
 }
 ctx.fillStyle = "black";
 ctx.fillRect(0, 0, 800, 600);
 ctx.save();
 ctx.translate(ship_x, ship_y);
 ctx.drawImage(img, 0, 0, img.width, img.height);
 ctx.restore();
 }
 function ModuleLoaded() {
 img = document.getElementById('spaceship');
 canvas = document.getElementById('canvas');
 ctx = canvas.getContext("2d");
 }

After the new JavaScript functions, we have the new definition of the Module4.
object:

 var Module = {
 preRun: [],
 postRun: [ModuleLoaded],
 print: (function() {
 var element = document.getElementById('output');
 if (element) element.value = ''; // clear browser cache
 return function(text) {
 if (arguments.length > 1) text =
 Array.prototype.slice.call(arguments).join(' ');
 // uncomment block below if you want to write
 to an html element
 /*
 text = text.replace(/&/g, "&");
 text = text.replace(/</g, "<");
 text = text.replace(/>/g, ">");
 text = text.replace('\n', '
', 'g');
 */
 console.log(text);
 if (element) {
 element.value += text + "\n";
 element.scrollTop = element.scrollHeight;
 // focus on bottom
 }
 };
 })(),
 printErr: function(text) {
 if (arguments.length > 1) text =
 Array.prototype.slice.call(arguments).join(' ');
 console.error(text);
 },

HTML5 and WebAssembly Chapter 2

[51]

 canvas: (function() {
 var canvas = document.getElementById('canvas');
 canvas.addEventListener("webglcontextlost",
 function(e) {
 alert('WebGL context lost. You will need to
 reload the page.');
 e.preventDefault(); },
 false);
 return canvas;
 })(),
 setStatus: function(text) {
 if (!Module.setStatus.last) Module.setStatus.last =
 { time: Date.now(), text: '' };
 if (text === Module.setStatus.last.text) return;
 var m = text.match(/([^(]+)\((\d+
 (\.\d+)?)\/(\d+)\)/);
 var now = Date.now();

 // if this is a progress update, skip it if too
 soon
 if (m && now - Module.setStatus.last.time < 30)
 return;
 Module.setStatus.last.time = now;
 Module.setStatus.last.text = text;
 if (m) {
 text = m[1];
 }
 console.log("status: " + text);
 },
 totalDependencies: 0,
 monitorRunDependencies: function(left) {
 this.totalDependencies =
 Math.max(this.totalDependencies, left);
 Module.setStatus(left ? 'Preparing... (' +
 (this.totalDependencies-left) +
 '/' + this.totalDependencies + ')' : 'All
 downloads complete.');
 }
 };
 Module.setStatus('Downloading...');
 window.onerror = function() {
 Module.setStatus('Exception thrown, see JavaScript
 console');
 Module.setStatus = function(text) {
 if (text) Module.printErr('[post-exception status]
 ' + text);
 };
 };

HTML5 and WebAssembly Chapter 2

[52]

The last few lines close out our tags and include the {{{ SCRIPT }}} Emscripten tag:

 </script>
{{{ SCRIPT }}}
</body>
</html>

Those previous four blocks of code define our new canvas_shell.html file. If you would
like to download the file, you can find it on GitHub at the following address: https:/ ​/
github.​com/​PacktPublishing/ ​Hands- ​On- ​Game-​Development- ​with- ​WebAssembly/ ​blob/
master/​Chapter02/ ​canvas. ​html.

Now that we have looked at the code at a high level, we can look at the source in more
detail. In the head section of the HTML, we are changing the title and the name of the
CSS file that we are linking. Here is the change in the HTML head:

<title>Canvas Shell</title>
<link href="canvas.css" rel="stylesheet" type="text/css">

We do not need most of the elements that were in the previous <body> tag. We need
a canvas, which we had removed from the shell_minimal.html file provided by
Emscripten, but now we need to add it back in. We are keeping the textarea that was
initially in the minimal shell, and we are adding a new img tag that has a spaceship image
taken from a TypeScript canvas tutorial on the embed.com website at https:/ ​/​www. ​embed.
com/​typescript-​games/ ​draw- ​image. ​html. Here are the new HTML tags in
the body element:

<canvas id="canvas" width="800" height="600"
oncontextmenu="event.preventDefault()"></canvas>
<textarea class="em_textarea" id="output" rows="8"></textarea>

Finally, we need to change the JavaScript code. The first thing we are going to do is add
three variables at the beginning to hold a reference to the canvas element, the canvas
context, and the new spaceship img element:

var img = null;
var canvas = null;
var ctx = null;

The next thing we are adding to the JavaScript is a function that renders the spaceship
image to the canvas at a given x and y coordinate:

function ShipPosition(ship_x, ship_y) {
 if(img == null) {
 return;

https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://www.embed.com
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html

HTML5 and WebAssembly Chapter 2

[53]

 }
 ctx.fillStyle = "black";
 ctx.fillRect(0, 0, 800, 600);
 ctx.save();
 ctx.translate(ship_x, ship_y);
 ctx.drawImage(img, 0, 0, img.width, img.height);
 ctx.restore();
}

This function first checks to see whether the img variable is a value other than null. That
will let us know if the module has been loaded or not because the img variable starts set to
null. The next thing we do is clear the canvas with the color black using
the ctx.fillStyle = “black” line to set the context fill style to the color black, before
calling ctx.fillRect to draw a rectangle that fills the entire canvas with a black rectangle.
The next four lines save off the canvas context, translate the context position to the ship's x
and y coordinate value, and then draw the ship image to the canvas. The last one of these
four lines performs a context restore to set our translation back to (0,0) where it started.

After defining this function, the WebAssembly module can call it. We need to set up some
initialization code to initialize those three variables when the module is loaded. Here is that
code:

function ModuleLoaded() {
 img = document.getElementById('spaceship');
 canvas = document.getElementById('canvas');
 ctx = canvas.getContext("2d");
}
var Module = {
 preRun: [],
 postRun: [ModuleLoaded],

The ModuleLoaded function uses getElementById to set img and canvas to the
spaceship and canvas HTML elements, respectively. We will then
call canvas.getContext(”2d”) to get the 2D canvas context and set the ctx variable to
that context. All of this gets called when the Module object finishes loading because we
added the ModuleLoaded function to the postRun array.

We have also added back the canvas function that was on the Module object in the
minimum shell file, which we had removed along with the canvas in an earlier tutorial.
That code watches the canvas context and alerts the user if that context is lost. Eventually,
we will want this code to fix the problem, but, for now, it is good to know when it happens.
Here is that code:

canvas: (function() {
 var canvas = document.getElementById('canvas');

HTML5 and WebAssembly Chapter 2

[54]

 // As a default initial behavior, pop up an alert when webgl
 context is lost. To make your
 // application robust, you may want to override this behavior
 before shipping!
 // See http://www.khronos.org/registry/webgl/specs/latest/1.0/#5.15.2
 canvas.addEventListener("webglcontextlost", function(e) {
 alert('WebGL context lost. You will need to reload the page.');
 e.preventDefault(); }, false);
 return canvas;
})(),

To go along with this new HTML shell file, we have created a new canvas.c file to
compile into a WebAssembly module. Be aware that, in the long run, we will be doing a lot
less in our JavaScript and a lot more inside our WebAssembly C/C++ code. Here is the new
canvas.c file:

#include <emscripten.h>
#include <stdlib.h>
#include <stdio.h>

int ship_x = 0;
int ship_y = 0;

void MoveShip() {
 ship_x += 2;
 ship_y++;

 if(ship_x >= 800) {
 ship_x = -128;
 }

 if(ship_y >= 600) {
 ship_y = -128;
 }
 EM_ASM(ShipPosition($0, $1), ship_x, ship_y);
}

int main() {
 printf("Begin main\n");
 emscripten_set_main_loop(MoveShip, 0, 0);
 return 1;
}

HTML5 and WebAssembly Chapter 2

[55]

To start, we create a ship_x and ship_y variable to track the ship's x and y coordinates.
After that, we create a MoveShip function. This function increments the ship's x position by
2 and the ship's y position by 1 each time it is called. It also checks to see whether the ship's
x coordinates have left the canvas on the right side, which moves it back to the left side if it
has, and does something similar if the ship has moved off the canvas on the bottom. The
last thing this function does is call our JavaScript ShipPosition function, passing it the
ship's x and y coordinates. That final step is what will draw our spaceship to the new
coordinates on the HTML5 canvas element.

In the new version of our main function, we have the following line:

emscripten_set_main_loop(MoveShip, 0, 0);

This line turns the function passed in as the first parameter into a game loop. We will go
into more detail about how emscripten_set_main_loop works in a later chapter, but for
the moment, know that this causes the MoveShip function to be called every time a new
frame is rendered to our canvas.

Finally, we will create a new canvas.css file that keeps the code for
the body and #output CSS and adds a new #canvas CSS class. Here are the contents of the
canvas.css file:

body {
 margin-top: 20px;
}

#output {
 background-color: darkslategray;
 color: white;
 font-size: 16px;
 padding: 10px;
 margin-left: auto;
 margin-right: auto;
 display: block;
 width: 60%;
}

#canvas {
 width: 800px;
 height: 600px;
 margin-left: auto;
 margin-right: auto;
 display: block;
}

HTML5 and WebAssembly Chapter 2

[56]

After everything is complete, we will use emcc to compile the new canvas.html file as
well as canvas.wasm and the canvas.js glue code. Here is what the call to emcc will look
like:

emcc canvas.c -o canvas.html --shell-file canvas_shell.html

Immediately after emcc, we pass in the name of the .c file, canvas.c, which will be used
to compile our WASM module. The -o flag tells our compiler that the next argument will
be the output. Using an output file with a .html extension tells emcc to compile the
WASM, JavaScript, and HTML files. The next flag passed in is --shell-file, which tells
emcc that the argument to follow is the name of the HTML shell file, which will be used to
create the HTML file of our final output.

It is important to remember that you must run WebAssembly apps using
a web server, or with emrun. If you would like to run your WebAssembly
app using emrun, you must compile it with the --emrun flag. The web
browser requires a web server to stream the WebAssembly module. If you
attempt to open an HTML page that uses WebAssembly in a browser
directly from your hard drive, that WebAssembly module will not load.

The following is a screenshot of canvas.html:

Figure 2.3: Our first WebAssembly HTML5 canvas app

HTML5 and WebAssembly Chapter 2

[57]

Summary
In this chapter, we discussed the Emscripten minimal shell HTML file, what its various
components are, and how they work. We also wrote about what parts of the file we can do
without, if we are not using our shell to generate canvas code. You learned about the
Module object, and how it is the interface that uses the JavaScript glue code to tie the
JavaScript in our HTML and our WebAssembly together. We then created a new
WebAssembly module that contained functions we exported to allow JavaScript to
use Module.cwrap to create JavaScript functions we could then call from our DOM that
executes our WebAssembly functions.

We created a brand new HTML shell file that used some of the Module code from the
Emscripten minimal shell, but rewrote the HTML and CSS of the original shell almost
entirely. We were then able to compile that new C code and HTML shell file into a working
WebAssembly app that was able to call WebAssembly functions from JavaScript, as well as
call JavaScript functions from WebAssembly.

We discussed the benefits of using the HTML5 canvas element, and the differences between
immediate and retained mode graphics. We also explained why it makes sense for games
and other graphics-intensive tasks to use immediate mode instead of retained mode.

We then created a shell file to make use of the HTML5 canvas element. We added
JavaScript code to draw an image to the canvas and wrote C code that used WebAssembly
to modify the position of that image on the canvas every frame creating the appearance of a
moving spaceship on the HTML5 canvas.

In the next chapter, we will introduce you to WebGL, what it is, and how it improves
graphics rendering on the web.

3
Introduction to WebGL

After Apple created the Canvas element, the Mozilla Foundation began working on a
Canvas 3D prototype in 2006, and by 2007, there were implementations of this early
version, which would eventually become WebGL. In 2009, a consortium called the Kronos
Group began a WebGL Working Group. By 2011, this group had produced the 1.0 version
of WebGL, which is based on the OpenGL ES 2.0 API.

As I stated earlier, WebGL was seen as a 3D rendering API that would be used with the
HTML5 Canvas element. Its implementation eliminates some of the rendering bottlenecks
of the traditional 2D canvas API and gives near-direct access to the computer's GPU.
Because of this, it is typically faster to use WebGL to render 2D images to the HTML5
canvas than it is to use the original 2D canvas implementation. However, WebGL is
significantly more complicated to use due to the added complexity of three-dimensional
rendering. Because of this, several libraries are built on top of WebGL. This allows users to
work with WebGL but use a simplified 2D API. If we were writing our game in traditional
JavaScript, we might use a library such as Pixi.js or Cocos2d-x for 2D rendering on top of
WebGL in order to simplify our code. Right now, WebAssembly uses an implementation of
Simple DirectMedia Layer (SDL), and is the library that's used by most developers to
write games. This WebAssembly version of SDL is built on top of WebGL and provides
high-end performance, but is much easier to use.

Introduction to WebGL Chapter 3

[59]

Using SDL does not prevent you from also using WebGL directly from within the C++ code
compiled into WebAssembly. There are times where we may be interested in directly
interacting with WebGL because the features we are interested in are not directly available
from within SDL. One example of these use cases is creating custom shaders that allow for
special 2D lighting effects.

In this chapter, you will need an image file from the GitHub project to run
the examples. The app requires the /Chapter03/spaceship.png image
file from the project directory. Please download the project from the
following URL: https:/ ​/​github. ​com/ ​PacktPublishing/ ​Hands- ​On- ​Game-
Development- ​with- ​WebAssembly.

In this chapter, we will be covering the following topics:

WebGL and canvas contexts
An introduction to WebGL shaders
WebGL and JavaScript

WebGL and canvas contexts
WebGL is a rendering context for drawing to the HTML5 element, and is an alternative to
the 2D rendering context. Often, when someone mentions the canvas, they are referring to
the 2D rendering context, which is accessed by calling getContext and passing in the
string 2d. Both contexts are methods of rendering to the HTML5 canvas element. A context
is a type of API for immediate mode rendering. Two different WebGL contexts can be
requested, both of which provide access to different versions of the WebGL API. These
contexts are webgl and webgl2. In the following examples, I will be using the webgl context
and will be using the WebGL 1.0 API. There is also a rarely used context for rendering a
bitmap to the canvas that we can access by passing in bitmaprenderer as a string value.

I want to point out that the term canvas is sometimes used to refer to the
2D canvas context and sometimes used to refer to the immediate mode
rendering HTML5 canvas element. When I refer to canvas in this book
without mentioning the 2D context, I am referring to the HTML5 canvas
element.

In the next section, I will introduce you to shaders and the GLSL shader language.

https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly

Introduction to WebGL Chapter 3

[60]

An introduction to WebGL shaders
When OpenGL or WebGL interact with a GPU, they pass in data to tell the GPU the
geometry and textures it needs to render. At this point, the GPU needs to know how it must
render those textures and the geometry associated with them into a single 2D image that
will be displayed on your computer monitor. OpenGL Shader Language (GLSL) is a
language that is used with both OpenGL and WebGL to instruct the GPU on how to render
a 2D image.

Technically, WebGL uses the GLSL ES shader language (sometimes
referred to as ELSL), which is a subset of the GLSL language. GLSL ES is
the shader language that's used with OpenGL ES, a mobile-friendly subset
of OpenGL (the ES is for Embedded Systems). Because WebGL is based on
OpenGL ES, it inherited the GLSL ES shader language. Note that
whenever I refer to GLSL within the context of WebGL or WebAssembly, I
am referring to GLSL ES.

The WebGL rendering pipeline requires us to write two types of shaders to render an
image to the screen. These are the vertex shader, which renders the geometry on a per-
vertex basis, and the fragment shader, which renders pixel candidates known as fragments.
The GLSL looks a lot like the C language, so the code will look somewhat familiar if you
work in C or C++.

This introduction to GLSL shaders will not go into a lot of detail. In a later chapter, I will
discuss WebGL shaders more extensively. Right now, I only want to introduce the concept
and show you a very simple 2D WebGL shader. I will go into a lot more detail in the
chapter on 2D lighting. Here is an example of a simple vertex shader that is used to render
quads for a 2D WebGL rendering engine:

precision mediump float;

attribute vec4 a_position;
attribute vec2 a_texcoord;

uniform vec4 u_translate;

varying vec2 v_texcoord;

void main() {
 gl_Position = u_translate + a_position;
 v_texcoord = a_texcoord;
}

Introduction to WebGL Chapter 3

[61]

This very simple shader takes in the position of a vertex and moves it based on a positional
uniform value that's passed into the shader through WebGL. This shader will run on every
single vertex in our geometry. In a 2D game, all geometry would be rendered as a quad
(that is, a rectangle). Using WebGL in this way allows us to make better use of the
computer's GPU. Let me briefly discuss what is going on in the code of this vertex shader.

If you are new to game development, the concept of vertex and pixel
shaders may feel a little foreign. They are not as mysterious as they may
first seem. You may want to quickly read over the Wikipedia Shader article
if you want a better understanding of what shaders are (https:/ ​/ ​en.
wikipedia. ​org/ ​wiki/ ​Shader). If you are still feeling lost, feel free to ask
me questions on Twitter (@battagline).

The first line of this shader sets the floating-point precision:

precision mediump float;

All floating-point operations on a computer are approximations for real fractions. We can
approximate 1/3 with a low precision using 0.333 and with higher precision with
0.33333333. The precision line of the code indicates the precision of the floating-point values
on the GPU. We can use one of three possible precisions: highp, mediump, or lowp. The
higher the floating-point precision, the slower the GPU will execute the code, but the higher
the accuracy of all the values of the computations. In general, I have kept this value at
mediump, and that has worked well for me. If you have an application that demands
performance over precision, you can change this to lowp. If you require high precision, be
sure that you know the capabilities of the target GPUs. Not all GPUs support highp.

The attribute variables are values that are passed in with the vertex arrays into the pipeline.
In our code, these values include the texture coordinates associated with the vertex, as well
as the 2D translation matrix associated with the vertex:

attribute vec4 a_position;
attribute vec2 a_texcoord;

The uniform variable type is a type of variable that remains constant across all vertices and
fragments. In this vertex shader, we are passing in one uniform vector, u_translate.
Typically, you would not want to translate all your vertices by the same amount unless it is
for a camera, but because we are only writing a WebGL program to draw a single sprite,
using a uniform variable for translate will work fine:

uniform vec4 u_translate;

https://en.wikipedia.org/wiki/Shader
https://en.wikipedia.org/wiki/Shader
https://en.wikipedia.org/wiki/Shader
https://en.wikipedia.org/wiki/Shader
https://en.wikipedia.org/wiki/Shader
https://en.wikipedia.org/wiki/Shader
https://en.wikipedia.org/wiki/Shader
https://en.wikipedia.org/wiki/Shader
https://en.wikipedia.org/wiki/Shader
https://en.wikipedia.org/wiki/Shader
https://en.wikipedia.org/wiki/Shader
https://en.wikipedia.org/wiki/Shader

Introduction to WebGL Chapter 3

[62]

The varying variables (sometimes known as interpolators) are values that are passed from
the vertex shader into the fragment shader, with each fragment in the fragment shader
getting an interpolated version of that value. In this code, the only varying variable is the
texture coordinate for the vertex:

varying vec2 v_texcoord;

In mathematics, an interpolated value is a calculated intermediate value. For example, if we
interpolate the halfway point between 0.2 and 1.2, we would get a value of 0.7. That is, the
starting value of 0.2, plus the average of (1.2 - 0.2) / 2 = 0.5. So, 0.2 + 0.5 = 0.7. Values passed
from the vertex shader to the fragment shader using the varying keyword will be
interpolated based on the position of the fragments relative to the vertex.
Finally, the code executed in the vertex shader is inside of the main function. This code
takes the position of the vertex and multiplies it by the translation matrix to get the world
coordinates of the vertex so that it can place them into gl_Position. It then sets the
texture coordinate that's passed into the vertex shader directly into the varying variable so
that it can pass it into the fragment shader:

void main() {
 gl_Position = u_translate + a_position;
 v_texcoord = a_texcoord;
}

After the vertex shader has been run, all the fragments that vertex shader generated are run
through the fragment shader, which interpolates all of the varying variables for each
fragment.

Here is a simple example of a fragment shader:

precision mediump float;

varying vec2 v_texcoord;

uniform sampler2D u_texture;

void main() {
 gl_FragColor = texture2D(u_texture, v_texcoord);
}

Just like in our vertex shader, we start by setting our floating-point precision to mediump.
The fragments have a uniform sample2D texture that defines the texture map that's used
to generate the 2D sprites in our game:

uniform sampler2D u_texture;

Introduction to WebGL Chapter 3

[63]

uniform is a little like a global variable that is passed into the pipeline and applies to either
every vertex or every fragment in the shader that uses it. The code that's executed in the
main function is also straightforward. It takes the interpolated texture coordinate from
the v_texcoord varying variable and retrieves the color value from our sampled texture,
and then uses that value to set the color of the gl_FragColor fragment:

void main() {
 gl_FragColor = texture2D(u_texture, v_texcoord);
}

Drawing a simple 2D image to the screen using WebGL directly inside of JavaScript
requires a lot more code. In the next section, we will write out the simplest version of a 2D
sprite rendering WebGL app I can think of, which happens to be a new version of the 2D
canvas app we wrote in the previous chapter. I think it is worthwhile to see the differences
between the two methods of rendering 2D images to the HTML canvas. Knowing more
about WebGL will also help us understand what is going on behind the scenes when we
eventually use the SDL API in WebAssembly. I am going to try and keep the demonstration
and code as simple as I possibly can while creating the WebGL JavaScript app.

As I mentioned previously, the point of this chapter is for you to get some
hands-on experience with WebGL. For most of this book, we will not
directly deal with WebGL, but rather use the simpler SDL API. If you are
not interested in writing your own shaders, you can consider this chapter
optional but beneficial information.

In the next section, we will learn how to draw to the canvas with WebGL.

WebGL and JavaScript
As we learned in the previous chapter, working with the 2D canvas was pretty
straightforward. To draw an image, you just need to translate the context to the pixel
coordinates where you want to draw the image, and call the drawImage context function
by passing in the image, its width, and its height. You could make this even simpler and
forget about the translation passing the x and y coordinates directly into the drawImage
function if you prefer. With the 2D canvas, you are working with images, but with WebGL,
you are always working with 3D geometry, even when you are coding a 2D game. With
WebGL, you will need to render textures onto geometry. You need to work with vertex
buffers and texture coordinates. The vertex shader we wrote earlier takes 3D coordinate
data and texture coordinates and passes those values onto a fragment shader that will
interpolate between the geometry, and use a texture sampling function to retrieve the
proper texture data to render pixels to the canvas.

Introduction to WebGL Chapter 3

[64]

WebGL coordinate system versus 2D canvas
With WebGL, the center of the canvas element is the origin point (0,0). Positive Y is up,
whereas Positive X is to the right. This is a bit more intuitive for someone who has never
worked with 2D graphics, as it is similar to quadrants in coordinate geometry, which we
learned about in grade school. With the 2D canvas, you are always working with pixels,
and there are no negative numbers that appear on the canvas:

When you called drawImage, the X and Y coordinates were where the top left corner of the
image would draw. WebGL is a bit different. Everything is using geometry, and both a
vertex and a pixel shader are required. We convert the image into a texture and then stretch
it over the geometry so that it's displayed. Here is what the WebGL coordinate system
looks like:

Introduction to WebGL Chapter 3

[65]

If you want to place an image at a specific pixel location on the canvas, you have to know
the width and height of your canvas. The center point of your canvas is (0,0), the Top left
corner is (-1, 1), and the Bottom right corner is (1, -1). So, if you want to place an image at
x=150, y=160 you need to use the following equation to find the WebGL x coordinate:

 webgl_x = (pixel_x - canvas_width / 2) / (canvas_width / 2)

So, for a pixel_x position of 150, we have to subtract 400 from 150 to get -250. Then, we
have to divide -250 by 400, and we would get -0.625. We have to do something similar to
get the y coordinate for WebGL, but the sign of the axes are flipped, so instead of what we
did for the pixel_x value, we need to do the following:

((canvas_height / 2) - pixel_y) / (canvas_height / 2)

By plugging in the values, we get ((600 / 2) - 160) / (600 / 2) or (300 - 160) / 300 = 0.47.

I am skipping a lot of information about WebGL to simplify this
explanation. WebGL is not a 2D space, even though I am treating it as a
2D space in this example. Because it is a 3D space, the size of the canvas in
units is based on a view area known as clip space. Mozilla has an excellent
article on clip space if you would like to learn more: https:/ ​/ ​developer.
mozilla. ​org/ ​en- ​US/ ​docs/ ​Web/ ​API/ ​WebGL_ ​API/ ​WebGL_ ​model_ ​view_
projection.

Vertex and UV data
Before we look at a large chunk of scary WebGL JavaScript code, I want to briefly discuss
data buffers and how we are going to pass the geometry and texture coordinate data into
the shaders. We will be passing in 32-bit floating point data in a large buffer that will
contain a combination of the X and Y coordinates for the vertex and UV texture coordinates
for that same vertex. UV mapping is the method by which your GPU maps 2D texture
coordinates onto 3D geometry:

https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection

Introduction to WebGL Chapter 3

[66]

WebGL and OpenGL accomplish this by assigning a U and V coordinate to every vertex. A
UV coordinate of (0,0) assigned to a vertex means that the vertex will be colored based on
the color in the texture in the top left corner. A UV coordinate of (1,1) would imply that it
would be painted based on what color is in the texture on the bottom right. As we
interpolate between the points in our 3D object, we also interpolate between the different
UV coordinates inside of the texture. Those UV coordinates can be sampled in our fragment
shader using the texture2D built-in function by passing in the texture and the current UV
coordinates.

Let's take a look at the vertex and texture data array that we are using inside of this WebGL
app:

var vertex_texture_data = new Float32Array([
 // X, Y, U, V
 0.16, 0.213, 1.0, 1.0,
 -0.16, 0.213, 0.0, 1.0,
 0.16, -0.213, 1.0, 0.0,
 -0.16, -0.213, 0.0, 0.0,
 -0.16, 0.213, 0.0, 1.0,
 0.16, -0.213, 1.0, 0.0
]);

This data has been typed out in rows and columns. Even though this is a linear array of
data, the formatting allows you to see that we have four floating-point values that will be
passed in for each vertex. There is a comment above the data showing what each column
represents. The first two data values are the X and Y coordinates of the geometry. The
second two values are the U and V coordinates that map the texture to the X and Y
coordinates in the geometry. There are six rows here, even though we are rendering a
rectangle. The reason we need six points instead of just four is that the geometry used by
WebGL typically consists of triangles. Because of this, we will need to repeat two of the
vertices.

You may be wondering, why triangles? Well, there was a time when
computer graphics used geometry that was not decomposed into
triangles. But a problem arises when you have a quad, and not all the
points are coplanar (in the same plane). This is the same problem I have
whenever I go to a bar that uses four-legged stools. I am pretty sure the
existence of the four-legged stool is some sort of Illuminati plot to keep
me off balance, but I digress. Because three points define a plane, a
triangle is, by definition, always coplanar, just like a three-legged stool
will never wobble.

Introduction to WebGL Chapter 3

[67]

2D canvas to WebGL
Let's begin by copying out canvas code from the Chapter02 directory into the Chapter03
directory. Next, we are going to rename the canvas_shell.html file
to webgl_shell.html. We will rename canvas.css to webgl.css. Lastly, we will
rename the canvas.c file webgl.c. We will also need to make sure that we copy over the
spaceship.png file. We are not going to be changing the webgl.css file at all. We will
make the most significant changes to the webgl_shell.html file. There is a lot of code that
must be added to make the switch from 2D canvas to WebGL; almost all of it is additional
JavaScript code. We will need to make some minor tweaks to webgl.c so that the ship's
position in the MoveShip function reflects the WebGL coordinate system with its origin in
the center of the canvas.

Before we begin, I would like to mention that this WebGL code is not meant to be
production ready. The game we will be creating will not use WebGL in the way that I am
demonstrating here. That is not the most efficient or scalable code. What we are writing will
not be able to render more than one sprite at a time without significant changes. The reason
I am walking you through what it takes to render 2D images using WebGL is to give you an
idea of what is going on behind the scenes when you are using a library like SDL. If you do
not care how things work behind the scenes, no one will fault you for skipping ahead.
Personally, I always prefer knowing a little more.

Minor tweaks to the head tag
Inside of our head tag, we will want to change title, and because we renamed
canvas.css to webgl.css, we will need to point our link tag to the new stylesheet name.
Here are the only two tags that must change at the beginning of the HTML:

<title>WebGL Shell</title>
<link href="webgl.css" rel="stylesheet" type="text/css">

Later in the HTML, we will remove the img tag where the src is set to "spaceship.png".
It is not strictly necessary to do this. In the canvas version, we were using this tag to render
an image to the canvas. In this WebGL version, we will load the image dynamically, so it is
not necessary to keep it around, but if you forget to remove it, having it there will not harm
the app in any way.

Introduction to WebGL Chapter 3

[68]

Major JavaScript changes
The Module code inside of the JavaScript portion of the webgl_shell.html file will
remain the same, so you do not have to worry about modifying anything after the
following line:

var Module = {

However, the top half of the code in the script tag is going to require some significant
modifications. You may want to start fresh and delete the entire module.

WebGL global variables
The first thing we are going to do is create a lot of JavaScript global variables. If this code
were meant for more than demonstration, using this many global variables is generally
frowned upon and considered bad practice. But for what we are doing right now, it helps
simplify things:

<script type='text/javascript'>
 var gl = null; // WebGLRenderingContext
 var program = null; // WebGLProgram
 var texture = null; // WebGLTexture
 var img = null; // HTMLImageElement
 var canvas = null;
 var image_width = 0;
 var image_height = 0;
 var vertex_texture_buffer = null; // WebGLBuffer
 var a_texcoord_location = null; // GLint
 var a_position_location = null; // GLint
 var u_translate_location = null; // WebGLUniformLocation
 var u_texture_location = null; // WebGLUniformLocation

The first variable, gl, is the new version of the rendering context. Typically, if you are using
a 2D rendering context, you call it ctx, and if you are using a WebGL rendering context,
you name it gl. The second line defines the program variable. When we compile the vertex
and fragment shaders, we get a compiled version in the form of a WebGLProgram object
stored inside of this program variable. The texture variable will hold a WebGLTexture
that we will be loading from the spaceship.png image file. That is the image that we used
in the previous chapter for the 2D canvas tutorial. The img variable will be used to load the
spaceship.png image file that will be used to load the texture. The canvas variable will
once again be a reference to our HTML canvas element and image_width, and
image_height will hold the height and width of the spaceship.png image once it is
loaded.

Introduction to WebGL Chapter 3

[69]

The vertex_texture_buffer attribute is a buffer that will be used to transfer vertex
geometry and texture data to the GPU so that the shader we wrote in the previous section
can use it. The a_texcoord_location and a_position_location variables will be used
to hold references to the a_texcoord and a_position attribute variables in the vertex
shader, and finally, u_translate_location and u_texture_location are used to
reference the u_translate and u_texture uniform variables in the shader.

The return of vertex and texture data
Would you be upset if I told you we had some more variables to discuss? Well, the next one
is a variable we discussed earlier, but I will mention it again because it is important. The
vertex_texture_data array is an array that stores all of the vertex geometry and UV
texture coordinate data that are used for rendering:

var vertex_texture_data = new Float32Array([
 // x, y, u, v
 0.16, 0.213, 1.0, 1.0,
 -0.16, 0.213, 0.0, 1.0,
 0.16, -0.213, 1.0, 0.0,
 -0.16, -0.213, 0.0, 0.0,
 -0.16, 0.213, 0.0, 1.0,
 0.16, -0.213, 1.0, 0.0
]);

One thing I did not mention earlier is why the x and y values range from -0.16 to 0.16 on
the x-axis and -0.213 to 0.213 on the y-axis. Because we are rendering a single image, we
do not need to scale the geometry to fit the image dynamically. The spaceship image we are
using is 128 x 128 pixels. The canvas size we are using is 800 x 600 pixels. As we discussed
earlier, no matter what size we use for the canvas, WebGL fits both axes into a range from
-1 to +1. This makes the coordinate (0, 0) the center of the canvas element. It also means that
the canvas width is always 2 and the canvas height is always 2, no matter how many pixels
wide or high the canvas element is. So, if we want to figure out how wide we want our
geometry to be to have it match the width of the image, we have to do some calculations.
First, we need to figure out how many units of WebGL clip space width corresponds to one
pixel. The WebGL clip space has a width of 2.0, and the actual canvas has a width of 800
pixels, so the width of a single pixel in WebGL space is 2.0 / 800 = 0.0025. We need to know
how wide our image is in WebGL clip space, so we will multiply the 128 pixels by 0.0025
and get a WebGL clip space width of 0.32. Because we would like to have the x value at the
center of our geometry to be 0, we have our x geometry range from -0.16 to +0.16.

Introduction to WebGL Chapter 3

[70]

Now that we have done the width, let's tackle the height. The height of the canvas is 600
pixels, but in WebGL clip space, the height of the canvas is always 2.0 (-1.0 Y to +1.0 Y). So,
how many WebGL units are in a single pixel? 2.0 / 600 = 0.00333333…repeating. Obviously,
this is an instance where floating-point precision is unable to match a real-world value. We
are going to lop off some of those trailing 3s and hope that the precision is enough. Going
back to figuring out the height of the image in WebGL clip space, it is 128-pixels high, so we
need to multiply 128 by 0.0033333…repeating. The result is 0.4266666…repeating, which we
will truncate to 0.426. So, our y geometry must go from -0.213 to +0.213.

I am doing my best to ignore the complexity of the WebGL clip space.
This is a 3D volume and not a simple 2D drawing area like the 2D canvas
context. For more information on this topic, please consult the Mozilla
developer docs for clip space: https:/ ​/ ​developer. ​mozilla. ​org/ ​en- ​US/
docs/ ​Web/ ​API/ ​WebGL_ ​API/ ​WebGL_ ​model_ ​view_ ​projection#Clip_ ​space.

As I said earlier, a lot of this will be managed for us by SDL when we work on our game,
but in the future, you may wish to work with OpenGL in WebAssembly. The OpenGL ES
2.0 and OpenGL ES 3.0 libraries have been ported to WebAssembly, and those libraries
more or less have direct analogs with WebGL. WebGL 1.0 is a modified version of OpenGL
ES 2.0, which was a version of OpenGL that was designed to run on mobile hardware.
WebGL 2.0 is a modified version of OpenGL ES 3.0. Understanding what WebGL is doing
through calls to SDL can make us better game developers, even if SDL is doing a lot of the
heavy lifting for us.

Buffer constants
I have chosen to use a single Float32Array to hold all of the vertex data for this
application. That includes the X and Y coordinate data, as well as U and V texture
coordinate data. Because of this, we are going to need to tell WebGL how to separate this
data into different attributes when we load this data into the GPU's buffer. We will use the
following constants to tell WebGL how the data in Float32Array is broken out:

const FLOAT32_BYTE_SIZE = 4; // size of a 32-bit float
const STRIDE = FLOAT32_BYTE_SIZE * 4; // there are 4 elements for every
vertex. x, y, u, v
const XY_OFFSET = FLOAT32_BYTE_SIZE * 0;
const UV_OFFSET = FLOAT32_BYTE_SIZE * 2;

https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API/WebGL_model_view_projection#Clip_space

Introduction to WebGL Chapter 3

[71]

The FLOAT32_BYTE_SIZE constant is the size of each variable in Float32Array. The
STRIDE constant will be used to tell WebGL how many bytes are used for the data of a
single vertex. The four columns we defined in the previous code represent x, y, u, and v.
Since each one of those variables uses four bytes of data, we will multiply the number of
variables by the number of bytes that are used by each variable to get the stride, or how
many bytes are used by a single vertex. The XY_OFFSET constant is the starting location
inside of each stride where we will find the x and y coordinate data. For consistency, I
multiplied the floating-point byte size by the position, but since it is 0, we could have just
used const XY_OFFSET = 0. Now, UV_OFFSET is the offset in bytes from the beginning of
each stride where we will find the UV texture coordinate data. Since those are in positions 2
and 3, the offset is the number of bytes that's used for each variable, multiplied by 2.

Defining the shaders
I walked through everything that's being done by the shaders in the previous section. You
may want to go through that section again as a refresher. The next part of the code defines
the vertex shader code and the fragment shader code in multiline JavaScript strings. Here is
the vertex shader code:

var vertex_shader_code = `
 precision mediump float;
 attribute vec4 a_position;
 attribute vec2 a_texcoord;
 varying vec2 v_texcoord;
 uniform vec4 u_translate;

 void main() {
 gl_Position = u_translate + a_position;
 v_texcoord = a_texcoord;
 }
`;

The fragment shader code is as follows:

var fragment_shader_code = `
 precision mediump float;
 varying vec2 v_texcoord;
 uniform sampler2D u_texture;

 void main() {
 gl_FragColor = texture2D(u_texture, v_texcoord);
 }
`;

Introduction to WebGL Chapter 3

[72]

Let's take a look at the attribute in the vertex shader code:

attribute vec4 a_position;
attribute vec2 a_texcoord;

Those two attributes will be passed in from the data in Float32Array. One of the neat
tricks in WebGL is that if you are not using all four position variables (x,y,z,w), you can pass
in the two you are using (x,y) and the GPU will know how to use appropriate values in the
other two positions. These shaders will require passing in two attributes:

attribute vec4 a_position;
attribute vec2 a_texcoord;

Once again, we will be doing this using buffers and Float32Array. We will also need to
pass in two uniform variables. The u_translate variable will be used by the vertex
shader to translate the position of the sprite, and u_texture is a texture buffer that will be
used by the fragment shader. These shaders are almost as simple as they get. Many
tutorials start you out without a texture and just hardcode the color output of the fragment
shader, like this:

gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);

Making this change would cause the fragment shader to always output a red color, so
please don't make this change. The only things I can think of that could have made this
tutorial simpler are not loading the texture and rendering a solid color, and not allowing
the geometry to be moved.

The ModuleLoaded function
In the old 2D canvas code, we defined the ShipPosition JavaScript function before the
ModuleLoaded function, but we have swapped these two functions for the WebGL demo. I
felt it was better to explain the WebGL initialization before the rendering portion of the
code. Here is the new version of the ModuleLoaded function in its entirety:

function ModuleLoaded() {
 canvas = document.getElementById('canvas');
 gl = canvas.getContext("webgl", { alpha: false }) ||
 canvas.getContext("experimental-webgl", {
 alpha: false });

 if (!gl) {
 console.log("No WebGL support!");
 return;
 }

Introduction to WebGL Chapter 3

[73]

 gl.blendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA);
 gl.enable(gl.BLEND);

 var vertex_shader = gl.createShader(gl.VERTEX_SHADER);
 gl.shaderSource(vertex_shader, vertex_shader_code);
 gl.compileShader(vertex_shader);

 if(!gl.getShaderParameter(vertex_shader, gl.COMPILE_STATUS)) {
 console.log('Failed to compile vertex shader' +
 gl.getShaderInfoLog(vertex_shader));
 gl.deleteShader(vertex_shader);
 return;
 }

 var fragment_shader = gl.createShader(gl.FRAGMENT_SHADER);
 gl.shaderSource(fragment_shader, fragment_shader_code);
 gl.compileShader(fragment_shader);

 if(!gl.getShaderParameter(fragment_shader, gl.COMPILE_STATUS)) {
 console.log('Failed to compile fragment shader' +
 gl.getShaderInfoLog(fragment_shader));
 gl.deleteShader(fragment_shader);
 return;
 }

 program = gl.createProgram();

 gl.attachShader(program, vertex_shader);
 gl.attachShader(program, fragment_shader);
 gl.linkProgram(program);

 if(!gl.getProgramParameter(program, gl.LINK_STATUS)) {
 console.log('Failed to link program');
 gl.deleteProgram(program);
 return;
 }

 gl.useProgram(program);

 u_texture_location = gl.getUniformLocation(program, "u_texture");
 u_translate_location = gl.getUniformLocation(program,
 "u_translate");

 a_position_location = gl.getAttribLocation(program, "a_position");
 a_texcoord_location = gl.getAttribLocation(program, "a_texcoord");

 vertex_texture_buffer = gl.createBuffer();

Introduction to WebGL Chapter 3

[74]

 gl.bindBuffer(gl.ARRAY_BUFFER, vertex_texture_buffer);
 gl.bufferData(gl.ARRAY_BUFFER, vertex_texture_data,
 gl.STATIC_DRAW);

 gl.enableVertexAttribArray(a_position_location);
 gl.vertexAttribPointer(a_position_location, 2, gl.FLOAT, false,
 STRIDE, XY_OFFSET);

 gl.enableVertexAttribArray(a_texcoord_location);
 gl.vertexAttribPointer(a_texcoord_location, 2, gl.FLOAT, false,
 STRIDE, UV_OFFSET);

 texture = gl.createTexture();

 gl.bindTexture(gl.TEXTURE_2D, texture);
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.REPEAT);
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.REPEAT);

 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
 gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);

 img = new Image();
 img.addEventListener('load', function() {
 image_width = img.width;
 image_height = img.height;

 gl.bindTexture(gl.TEXTURE_2D, texture);
 gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA,
 gl.UNSIGNED_BYTE, img);
 });
 img.src = "spaceship.png";

 gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);
}

The first few lines get the canvas element and use that to get a WebGL context. If the
JavaScript fails to get the WebGL context, we alert the user, letting them know they have a
browser that does not support WebGL:

canvas = document.getElementById('canvas');

gl = canvas.getContext("webgl", { alpha: false }) ||
 canvas.getContext("experimental-webgl", {
 alpha: false });
if (!gl) {
 console.log("No WebGL support!");
 return;
}

Introduction to WebGL Chapter 3

[75]

The two lines after that turn on alpha blending:

gl.blendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA);
gl.enable(gl.BLEND);

Compiling, loading, and linking the vertex and the fragment shader is a lot of challenging
code. I am not sure why there is no function inside of the WebGL library that does all of
this in one step. Almost everyone writing webgl for 2D to do this, and they either put it into
a separate .js file, or they copy and paste it into their code for every project. For now, all
you need to know about the following batch of code is that it is taking the vertex and
fragment shader we wrote earlier and compiling it into the program variable. From that
point on, we will be using the program variable to interact with the shaders. Here is the
code:

var vertex_shader = gl.createShader(gl.VERTEX_SHADER);
gl.shaderSource(vertex_shader, vertex_shader_code);
gl.compileShader(vertex_shader);

if(!gl.getShaderParameter(vertex_shader, gl.COMPILE_STATUS)) {
 console.log('Failed to compile vertex shader' +
 gl.getShaderInfoLog(vertex_shader));
 gl.deleteShader(vertex_shader);
 return;
}

var fragment_shader = gl.createShader(gl.FRAGMENT_SHADER);
gl.shaderSource(fragment_shader, fragment_shader_code);
gl.compileShader(fragment_shader);

if(!gl.getShaderParameter(fragment_shader, gl.COMPILE_STATUS)) {
 console.log('Failed to compile fragment shader' +
 gl.getShaderInfoLog(fragment_shader));
 gl.deleteShader(fragment_shader);
 return;
}

program = gl.createProgram();
gl.attachShader(program, vertex_shader);
gl.attachShader(program, fragment_shader);
gl.linkProgram(program);

if(!gl.getProgramParameter(program, gl.LINK_STATUS)) {
 console.log('Failed to link program');
 gl.deleteProgram(program);
 return;
}
gl.useProgram(program);

Introduction to WebGL Chapter 3

[76]

Now that we have the WebGLProgram object in our program variable, we can use that
object to interact with our shaders.

The first thing we are going to do is grab references to the uniform variables in1.
our shader programs:

u_texture_location = gl.getUniformLocation(program, "u_texture");
u_translate_location = gl.getUniformLocation(program,
"u_translate");

After that, we will use the program object to get references to the attribute2.
variables that are used by our vertex shader:

a_position_location = gl.getAttribLocation(program, "a_position");
a_texcoord_location = gl.getAttribLocation(program, "a_texcoord");

Now, it is time to start working with buffers. Do you remember when we created3.
that Float32Array with all of our vertex data in it? It is time to use buffers to
send that data to the GPU:

vertex_texture_buffer = gl.createBuffer();

gl.bindBuffer(gl.ARRAY_BUFFER, vertex_texture_buffer);
gl.bufferData(gl.ARRAY_BUFFER, vertex_texture_data,
 gl.STATIC_DRAW);

gl.enableVertexAttribArray(a_position_location);
gl.vertexAttribPointer(a_position_location, 2, gl.FLOAT, false,
 STRIDE, XY_OFFSET);

gl.enableVertexAttribArray(a_texcoord_location);
gl.vertexAttribPointer(a_texcoord_location, 2, gl.FLOAT, false,
 STRIDE, UV_OFFSET);

The first line creates a new buffer called vertex_texture_buffer. The line that starts
with gl.bindBuffer binds vertex_texture_buffer to ARRAY_BUFFER, and then
bufferData adds the data we had in vertex_texture_data to ARRAY_BUFFER. After
that, we need to use the references to a_position and a_texcoord that we created earlier
in the a_position_location and a_texcoord_location variables to tell WebGL where
in this array buffer it will find the data for the a_position and a_texcoord attributes.
The first thing it does is call enableVertexAttribArray to enable that attribute using the
location variable we created. Next, vertexAttribPointer uses the STRIDE and
XY_OFFSET or UV_OFFSET to tell WebGL where the attribute data is inside of the buffer
data.

Introduction to WebGL Chapter 3

[77]

After that, we will create and bind a texture buffer:4.

texture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, texture);

Now that we have a bound texture buffer, we can configure that buffer for mirror5.
wrapping and nearest neighbor interpolation when scaling:

gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.REPEAT);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.REPEAT);

gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.NEAREST);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.NEAREST);

We are using gl.NEAREST instead of gl.LINEAR because I would like the game to have an
old-school pixelated look. In your game, you may prefer a different algorithm.

After configuring the texture buffer, we are going to download the6.
spaceship.png image and load that image data into the texture buffer:

img = new Image();

img.addEventListener('load', function() {
 image_width = img.width;
 image_height = img.height;

 gl.bindTexture(gl.TEXTURE_2D, texture);
 gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA,
 gl.UNSIGNED_BYTE, img);
});

img.src = "spaceship.png";

The final thing we will do is set the viewport to go from (0,0) to the canvas width7.
and height. The viewport tells WebGL how the space in the canvas element will
relate to our WebGL clip space:

gl.viewport(0, 0, gl.canvas.width, gl.canvas.height);

Introduction to WebGL Chapter 3

[78]

The ShipPosition function
If this were production quality code, I would be doing a lot of the work that I am currently
doing inside of the initialization routine in this rendering function. Moving sprites around
independently on the canvas would require updates to our array buffers. I probably
wouldn't define my geometry in the way I did, that is, calculating the sizes by hand. I am
not currently making any changes to the array buffer or the texture buffer; I am trying to
keep this code to the bare minimum necessary to render a sprite onto the canvas using
WebGL. Here is what I have:

function ShipPosition(ship_x, ship_y) {
 if(image_width == 0) {
 return;
 }

 gl.uniform4fv(u_translate_location, [ship_x, ship_y, 0.0, 0.0]);
 gl.drawArrays(gl.TRIANGLES, 0, 6);
}

The first few lines check to see whether the image download has completed. If1.
not, we will exit out of this function:

if(image_width == 0) {
 return;
}

Next, we tell WebGL to load the uniform u_translate uniform variable with2.
our spaceship's coordinates:

gl.uniform4fv(u_translate_location, [ship_x, ship_y, 0.0, 0.0]);

Finally, we instruct WebGL to draw triangles with the six vertices in our array3.
buffer:

gl.drawArrays(gl.TRIANGLES, 0, 6);

The MoveShip function
We are going to need to jump back into the WebAssembly C module. The webgl.c file is a
copied version of canvas.c where the only changes we need to make are inside of the
MoveShip function. Here is the new version of MoveShip:

void MoveShip() {
 ship_x += 0.002;

Introduction to WebGL Chapter 3

[79]

 ship_y += 0.001;

 if(ship_x >= 1.16) {
 ship_x = -1.16;
 }

 if(ship_y >= 1.21) {
 ship_y = -1.21;
 }

 EM_ASM(ShipPosition($0, $1), ship_x, ship_y);
}

The changes are all conversions from pixel space into WebGL clip space. In the 2D canvas
version, we were adding two pixels to the ship's x coordinate and one pixel to the ship's y
coordinate every frame. But in WebGL, moving the x coordinate by two would be moving
it by the entire width of the screen. So, instead, we have to modify these values into small
units that would work with the WebGL coordinate system:

ship_x += 0.002;
ship_y += 0.001;

Adding 0.002 to the x coordinate moves the ship by 1/500th of the width of the canvas
each frame. Moving the y coordinate by 0.001 moves the ship on the y-axis by 1/1,000th of
the height of the screen each frame. You may notice that in the 2D canvas version of this
app, the ship was moving to the right and down. That was because increasing the y
coordinate in the 2D canvas coordinate system moves an image down the screen. In the
WebGL coordinate system, the ship moves up. The only other thing we have to do is
change the coordinates at which the ship wrapped its x and y coordinates to WebGL clip
space:

if(ship_x >= 1.16) {
 ship_x = -1.16;
}

if(ship_y >= 1.21) {
 ship_y = -1.21;
}

Now that we have all of our source code, go ahead and run emcc to compile our new
webgl.html file:

emcc webgl.c -o webgl.html --shell-file webgl_shell.html

Introduction to WebGL Chapter 3

[80]

Once you have webgl.html compiled, load it into a web browser. It should look like this:

Figure 3.1: Screenshot of our WebGL app

It is important to remember that the app must be run from a web server,
or using emrun. If you do not run the app from a web server, or use
emrun, you will receive a variety of errors when the JavaScript glue code
attempts to download the WASM and data files. You should also know
that IIS requires additional configuration in order to set the proper MIME
types for the .wasm and .data file extensions.

Now that we have all of this working in WebGL, in the next chapter, I will talk about how
much easier all of this would have been if we just did it using SDL in the first place.

Introduction to WebGL Chapter 3

[81]

Summary
In this chapter, we have discussed WebGL and how it can improve performance in web
games. I have introduced you to the concept of GLSL shaders and talked about vertex
shaders and fragment shaders, what the differences between the two types of shaders are,
and how they are used to render a combination of geometry and images to the HTML5
canvas.

We also recreated the moving spaceship that we created with the 2D canvas using WebGL.
We have discussed how to use vertex geometry to render 2D images to a 3D canvas. We
also talked about the differences between the pixel-based 2D canvas coordinate system and
the 3D WebGL coordinate system.

WebGL is a broad topic to cover, so a single chapter can only give a very cursory
introduction at best. WebGL is a 3D rendering space, and in this chapter, I went out of my
way to ignore that and treat it like a 2D space. You could take what we have done here and
build on it, but to improve the performance of our application, we will be using the
WebAssembly SDL API for all of our interactions with WebGL in the future. If you would
like to learn more about WebGL, Packt has a large selection of books devoted entirely to
WebGL at https:/ ​/​search. ​packtpub. ​com/ ​?​query= ​webgl.

In the next chapter, I will teach you the basics of SDL, what it is, and how it works with
WebAssembly. We will also learn how to render a sprite to the HTML5 canvas using SDL,
animate it, and move it around the canvas.

https://search.packtpub.com/?query=webgl
https://search.packtpub.com/?query=webgl
https://search.packtpub.com/?query=webgl
https://search.packtpub.com/?query=webgl
https://search.packtpub.com/?query=webgl
https://search.packtpub.com/?query=webgl
https://search.packtpub.com/?query=webgl
https://search.packtpub.com/?query=webgl
https://search.packtpub.com/?query=webgl
https://search.packtpub.com/?query=webgl
https://search.packtpub.com/?query=webgl
https://search.packtpub.com/?query=webgl
https://search.packtpub.com/?query=webgl
https://search.packtpub.com/?query=webgl
https://search.packtpub.com/?query=webgl

4
Sprite Animations in

WebAssembly with SDL
At the time of writing, Simple DirectMedia Layer (SDL) is the only 2D rendering library
integrated into Emscripten for use in WebAssembly. But, even as more rendering libraries
become available, SDL is a highly supported rendering library that has been ported to a
large number of platforms and will remain both relevant and useful for WebAssembly and
C++ development into the foreseeable future. Using SDL to render to WebGL saves us a
tremendous amount of time, because we do not have to write the code to interface between
our WebAssembly C++ code and WebGL ourselves. The large community also offers
support and documentation. You can find more SDL resources online at libsdl.org.

You will need to include several images in your build to make this project
work. Make sure you include the /Chapter04/sprites/ and
/Chapter04/font/ folders from the project's GitHub. If you haven't yet
downloaded the GitHub project, you can get it online from: https:/ ​/
github. ​com/ ​PacktPublishing/ ​Hands- ​On- ​Game- ​Development- ​with-
WebAssembly.

We will cover the following topics in this chapter:

Using SDL in WebAssembly
Rendering a sprite to the canvas
Animating a sprite
Moving the sprite

http://libsdl.org
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly

Sprite Animations in WebAssembly with SDL Chapter 4

[83]

Using SDL in WebAssembly
At this point, I could roll my own system for interaction between the WebAssembly
module and the JavaScript WebGL library. That would involve using a function table to call
the JavaScript WebGL functions from within C++. Luckily for us, the Emscripten team has
done most of this work. They have created a port of a popular 2D C++ graphics library that
does this for us. SDL is a 2D graphics Application Programming Interface (API) built on
top of OpenGL in most implementations. There is an Emscripten port that is used to help us
render our 2D graphics on top of WebGL. If you would like to know what other libraries
have been integrated into Emscripten, use the following emcc command:

emcc --show-ports

If you run this command, you will notice that several different SDL libraries are displayed.
These include SDL2, SDL2_image, SDL2_gfx, SDL2_ttf, and SDL2_net. SDL was created
with a modular design to allow the user to include only the parts of SDL that they need,
allowing the core SDL library to remain small. This is very helpful if your goal is to create a
web game where download size is limited.

The first thing we will do is get familiar with SDL by creating a simple "Hello World"
application that writes some text to the HTML5 canvas element. To do this, we will need to
include two of the Emscripten libraries listed when we ran the emcc --show-ports
command. We will need to add the core SDL library to our Emscripten compiled with
the USE_SDL=2, flag, and we will need to add the SDL TrueType font library by adding the
USE_SDL_TTF=2 flag.

The .c source code that will display a message such as "HELLO SDL!" inside an HTML
canvas is relatively simple:

#include <SDL2/SDL.h>
#include <SDL2/SDL_ttf.h>
#include <emscripten.h>
#include <stdio.h>

#define MESSAGE "HELLO SDL!"
#define FONT_SIZE 16
#define FONT_FILE "font/Roboto-Black.ttf"

int main() {
 SDL_Window *window;
 SDL_Renderer *renderer;

 SDL_Rect dest = {.x = 160, .y = 100, .w = 0, .h = 0 };

 TTF_Font *font;

Sprite Animations in WebAssembly with SDL Chapter 4

[84]

 SDL_Texture* texture;

 SDL_Init(SDL_INIT_VIDEO);
 TTF_Init();

 SDL_CreateWindowAndRenderer(320, 200, 0, &window, &renderer);

 SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
 SDL_RenderClear(renderer);

 font = TTF_OpenFont(FONT_FILE, FONT_SIZE);

 SDL_Color font_color = {255, 255, 255, 255 }; // WHITE COLOR
 SDL_Surface *temp_surface = TTF_RenderText_Blended(font,
 MESSAGE,
 font_color);

 texture = SDL_CreateTextureFromSurface(renderer, temp_surface);

 SDL_FreeSurface(temp_surface);
 SDL_QueryTexture(texture,
 NULL, NULL,
 &dest.w, &dest.h); // query the width and
 height

 dest.x -= dest.w / 2;
 dest.y -= dest.h / 2;

 SDL_RenderCopy(renderer, texture, NULL, &dest);
 SDL_RenderPresent(renderer);

 return EXIT_SUCCESS;
}

Let me walk you through exactly what is going on here. The first four lines of code are the
SDL header files, as well as the Emscripten header file:

#include <SDL2/SDL.h>
#include <SDL2/SDL_ttf.h>
#include <emscripten.h>
#include <stdio.h>

Sprite Animations in WebAssembly with SDL Chapter 4

[85]

Following this, there are three preprocessor defines. If we wanted to change the message or
font size quickly, we would modify these first two lines. The third define is a little less
clear. We have something called FONT_FILE, which is a string that appears to be a
filesystem location. That is a little bit weird, because WebAssembly does not have access to
the local filesystem. To give the WebAssembly module access to the TrueType font file in
the fonts directory, we will use the --preload-file flag when we compile the WASM file.
This will generate a .data file from the contents of the font directory. The web browser
loads this data file into the virtual filesystem, which is accessed by the WebAssembly
module. That means that the C code that we are writing will have access to this file as if it
were accessing it inside a local filesystem:

#define MESSAGE "HELLO SDL!"
#define FONT_SIZE 16
#define FONT_FILE "font/Roboto-Black.ttf"

Initializing SDL
Like in other targets for C/C++, the code begins execution from within the main function.
We are going to start our main function by declaring some variables:

int main() {
 SDL_Window *window;
 SDL_Renderer *renderer;

 SDL_Rect dest = {.x = 160, .y = 100, .w = 0, .h = 0 };
 TTF_Font *font;

 SDL_Texture *texture;

The first two variables are the SDL_Window and SDL_Renderer objects. The window object
would define the application window that we would be rendering into if we were writing
code for a Windows, Mac, or Linux system. When we build for WebAssembly, there is a
canvas in our HTML, but SDL still requires a window object pointer for initialization and
cleanup. All calls to SDL use the renderer object to render images to the canvas.

The SDL_Rect dest variable is a rectangle that represents the destination where we will
be rendering onto the canvas. We will render to the center of the 320x200 canvas, so we will
start with an x and y value of 160 and 100. We do not yet know the width and height of
the text we will render, so, at this point, we are going to set w and h to 0. We will reset this
value later, so, in theory, we could set it to anything.

Sprite Animations in WebAssembly with SDL Chapter 4

[86]

The TTF_Font *font variable is a pointer to the SDL_TTF library's font object. Later, we
will use that object to load up a font from the virtual filesystem and render that font to the
SDL_Texture *texture pointer variable. The SDL_Texture variables are used by SDL to
render sprites to the canvas.

These next few lines are used to do some initialization work in SDL:

SDL_Init(SDL_INIT_VIDEO);
TTF_Init();

SDL_CreateWindowAndRenderer(320, 200, 0, &window, &renderer);

The SDL_Init function is called with a single flag initializing only the video subsystem. As
a side note, I am not aware of any use case for SDL that does not require the video
subsystem to be initialized. Many developers use SDL as an OpenGL/WebGL graphics
rendering system; so, unless you have designed a game that is audio only, you should
always pass in the SDL_INIT_VIDEO flag. If you would like to initialize additional SDL
subsystems, you would pass in the flags for those subsystems using a Boolean
or | operator, as shown in the following code snippet:

 SDL_Init(SDL_INIT_VIDEO | SDL_INIT_AUDIO | SDL_INIT_HAPTIC);

If we use the preceding line, SDL would have also initialized the audio and haptic
subsystems, but we do not need them right now, so we will not be making that change.

The TTF_Init(); function initializes our TrueType fonts, and
SDL_CreateWindowAndRenderer returns a window and renderer object to us. We are
passing 320 for the width of the canvas and 200 for the height. The third variable is the
window flags. We pass 0 in for that parameter to indicate that we do not need any window
flags. Because we are working with the SDL Emscripten port, we do not have control of the
window, so these flags do not apply.

Clearing the SDL renderer
After the initialization is complete, we will need to clear out the renderer. We can clear our
renderer with any color we choose. To do this, we will make a call to the
SDL_RenderDrawColor function:

SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
SDL_RenderClear(renderer);

Sprite Animations in WebAssembly with SDL Chapter 4

[87]

That sets the drawing color for the renderer to black with full opacity. 0, 0, 0 are the RGB
color values, and 255 is the alpha opacity. These numbers all range from 0 to 255, where
255 is the full color on the color spectrum. We set this up so that when we call the
SDL_RenderClear function in the next line, it will clear the renderer with the color black. If
we wanted the color to clear red instead of black, we would have to modify the call in the
following way:

SDL_SetRenderDrawColor(renderer, 255, 0, 0, 255);

That is not what we want, so we will not make that change. I just wanted to point out that
we could clear the renderer with any color we like.

Using the WebAssembly virtual filesystem
The next few lines will open up the TrueType font file in the virtual filesystem, and render
it to SDL_Texture, which can be used to render to the canvas:

font = TTF_OpenFont(FONT_FILE, FONT_SIZE);
SDL_Color font_color = {255, 255, 255, 255 }; // WHITE COLOR
SDL_Surface *temp_surface = TTF_RenderText_Blended(font, MESSAGE,
 font_color);
texture = SDL_CreateTextureFromSurface(renderer, temp_surface);
SDL_FreeSurface(temp_surface);

In the first line of the preceding code, we open the TrueType font by passing in the location
of the file in the WebAssembly virtual filesystem, defined at the top of the program. We
also need to specify the font's point size, which was defined as 16 at the top of the program
as well. The next thing we do is create an SDL_Color variable that we will use for the font.
This is a RGBA color, and we have all values set to 255 so that it is a fully opaque white
color. After we have done this, we will need to render the text to a surface using the
TTF_RenderText_Blended function. We pass the TrueType font we opened a few lines
earlier, the MESSAGE, which was defined as "HELLO SDL!", near the top of the program,
and the font color, defined as white. Then, we will create a texture from our surface and
free the surface memory we have just allocated. You should always free the memory from
your surface pointers immediately after using them to create a texture, as once you have
your textures the surfaces are no longer needed.

Sprite Animations in WebAssembly with SDL Chapter 4

[88]

Rendering a texture to the HTML5 canvas
After we load a font from the virtual filesystem and then render that font to the texture, we
need to take that texture and copy it to a location in our renderer object. After we have done
that, we will need to take that renderer and present its contents to the HTML5 canvas
element.

The following is the source code that renders the texture to the canvas:

SDL_QueryTexture(texture,
 NULL, NULL,
 &dest.w, &dest.h); // query the width and height

dest.x -= dest.w / 2;
dest.y -= dest.h / 2;

SDL_RenderCopy(renderer, texture, NULL, &dest);
SDL_RenderPresent(renderer);

The call to the SDL_QueryTexture function is used to retrieve the width and height of the
texture. We need to use these values in the destination rectangle so that we render our
texture to the canvas without changing its dimensions. After that call, the program knows
the width and height of the texture, so it can use those values to modify the x and y
variables of the destination rectangle so that it can center our text on the canvas. Because
the x and y values of the dest (destination) rectangle specify the top-left corner of that
rectangle, we need to subtract half the width and half the height of the rectangle to make
sure that it is centered. The SDL_RenderCopy function then renders this texture to our
rendering buffer and SDL_RenderPresent moves that entire buffer to the HTML5 canvas.

At this point, all that is left to do in the code is return:

return EXIT_SUCCESS;

Returning with a value of EXIT_SUCCESS tells our JavaScript glue code that everything
went well when running this module.

Sprite Animations in WebAssembly with SDL Chapter 4

[89]

Cleaning up SDL
Something that you may notice is missing from this code, that would be in a Windows or
Linux version of an SDL application, is code that does some SDL clean up at the end of the
program. If we exited an application in Windows, for instance, and did not do our cleanup
work, we would be exiting without clearing out some of the memory allocated by SDL. If
this were not a WebAssembly module, the following lines would be included at the end of
the function:

SDL_Delay(5000);
SDL_DestroyWindow(window);
SDL_Quit();

Because we have not spent the time to make a game loop, we would want to delay the
cleanup and exiting of the program by five seconds using a call to SDL_Delay(5000), 5000
being the number of milliseconds to wait before doing the cleanup. We want to reiterate
that, because we are compiling to WebAssembly, we do not want to clean up our SDL.
Doing so has different effects on different browsers.

When testing this code in Firefox, using the delay is unnecessary, because the web browser
tab will stay open even after the WebAssembly module stops executing. However, the
Chrome browser tab will display an error page as soon as SDL destroys the window object.

The SDL_DestroyWindow function would destroy the window object if this were a
Windows environment. The SDL_Quit function terminates the SDL engine, and,
finally, return EXIT_SUCCESS; exits successfully from the main function.

Compiling hello_sdl.html
Finally, we will compile and test our WebAssembly module using the Emscripten emcc
compiler:

emcc hello_sdl.c --emrun --preload-file font -s USE_SDL=2 -s USE_SDL_TTF=2
-o hello_sdl.html

It is important to remember that you must run WebAssembly apps using
a web server, or with emrun. If you would like to run your WebAssembly
app using emrun, you must compile it with the --emrun flag. The web
browser requires a web server to stream the WebAssembly module. If you
attempt to open an HTML page that uses WebAssembly in a browser
directly from your hard drive, that WebAssembly module will not load.

Sprite Animations in WebAssembly with SDL Chapter 4

[90]

There are a few new flags we are using in this call to emcc, and we have temporarily left
out the --shell-file new_shell.html flag that is used to generate a customized
version of the template. If you would like to continue using emrun to test the app, you must
include the --emrun flag, to run with the emrun command. If you are using a WebServer,
such as Node.js, to serve the app, you may omit the --emrun flag from this point forward.
If you like using emrun, continue to compile with that flag.

We have added the --preload-file font flag to allow us to create a virtual filesystem
contained in the hello_sdl.data file. This file holds our TrueType font. The application
uses the core SDL library and the additional SDL TrueType font module, so we have
included the following flag, -s USE_SDL=2 -s USE_SDL_TTF=2, to allow calls to SDL and
SDL_ttf. If everything went well in your compile, this is what the new hello_sdl.html
file will look like when you bring it up in a browser:

Figure 4.1: Hello SDL! app screenshot

In the next section, we will learn how to use SDL to render a sprite to the HTML5 canvas.

Sprite Animations in WebAssembly with SDL Chapter 4

[91]

Render a sprite to the canvas
Now that we have learned how to render text to our HTML canvas element using SDL and
Emscripten, we can take the next step and learn how to render sprites. The code used to
render a sprite to the canvas is quite similar to the code that we used to render a TrueType
font. We will still be using the virtual filesystem to generate a data file that contains the
sprites we are using, but we will need a new SDL library to do this. We no longer need
SDL2_ttf to load a TrueType font and render it to a texture. Instead, we need
SDL2_image. We will show you how to change our call to emcc to include this new library
a little later.

First, let's take a look at the new version of the SDL code that renders an image to our
HTML canvas element instead of the text we rendered in the previous section:

#include <SDL2/SDL.h>
#include <SDL2/SDL_image.h>
#include <emscripten.h>
#include <stdio.h>
#define SPRITE_FILE "sprites/Franchise1.png"

int main() {
 SDL_Window *window;
 SDL_Renderer *renderer;
 SDL_Rect dest = {.x = 160, .y = 100, .w = 0, .h = 0 };
 SDL_Texture *texture;
 SDL_Init(SDL_INIT_VIDEO);
 SDL_CreateWindowAndRenderer(320, 200, 0, &window, &renderer);
 SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
 SDL_RenderClear(renderer);
 SDL_Surface *temp_surface = IMG_Load(SPRITE_FILE);

 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return 0;
 }

 texture = SDL_CreateTextureFromSurface(renderer, temp_surface);

 SDL_FreeSurface(temp_surface);

 SDL_QueryTexture(texture,
 NULL, NULL,
 &dest.w, &dest.h); // query the width and
 height

 dest.x -= dest.w / 2;

Sprite Animations in WebAssembly with SDL Chapter 4

[92]

 dest.y -= dest.h / 2;

 SDL_RenderCopy(renderer, texture, NULL, &dest);
 SDL_RenderPresent(renderer);

 SDL_Delay(5000);
 SDL_DestroyWindow(window);
 SDL_Quit();
 return 1;
}

This code is similar to the code we wrote in the last section, HTML5 and WebAssembly, for
the HELLO SDL! application. Instead of using the SDL2_ttf module, we are using the
SDL2_image module. Because of this, we will need to include the SDL2/SDL_image.h
header file. We will also need to load a sprite file from the sprites directory, which we
will add to the WebAssembly virtual filesystem:

SDL_Surface *temp_surface = IMG_Load(SPRITE_FILE);

if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return 0;
}

Below the call to IMG_Load, we add an error check that will let us know what went wrong
if the file fails to load. Aside from that, the code is mostly the same. If we are successful, the
canvas will display our 16x16 pixel image of the Starship Franchise:

Figure 4.2: Franchise1.png

In the next section, we will learn how to use SDL to animate a sprite on our canvas.

Sprite Animations in WebAssembly with SDL Chapter 4

[93]

Animating a sprite
In this section, we will learn how to make a quick and dirty little animation in our SDL
application. That will not be the way we do animations in our final game, but it will give
you an idea of how we could create animations from within SDL by swapping out textures
over time. I am going to present the code to animate a sprite broken into two parts. The first
part includes our preprocessor macros, global variables, and the show_animation
function:

#include <SDL2/SDL.h>
#include <SDL2/SDL_image.h>

#include <emscripten.h>
#include <stdio.h>

#define SPRITE_FILE "sprites/Franchise1.png"
#define EXP_FILE "sprites/FranchiseExplosion%d.png"
#define FRAME_COUNT 7

int current_frame = 0;
Uint32 last_time;
Uint32 current_time;
Uint32 ms_per_frame = 100; // animate at 10 fps

SDL_Window *window;
SDL_Renderer *renderer;
SDL_Rect dest = {.x = 160, .y = 100, .w = 0, .h = 0 };
SDL_Texture *sprite_texture;
SDL_Texture *temp_texture;
SDL_Texture* anim[FRAME_COUNT];

void show_animation() {
 current_time = SDL_GetTicks();
 int ms = current_time - last_time;

 if(ms < ms_per_frame) {
 return;
 }

 if(current_frame >= FRAME_COUNT) {
 SDL_RenderClear(renderer);
 return;
 }

 last_time = current_time;
 SDL_RenderClear(renderer);

Sprite Animations in WebAssembly with SDL Chapter 4

[94]

 temp_texture = anim[current_frame++];

 SDL_QueryTexture(temp_texture,
 NULL, NULL,
 &dest.w, &dest.h); // query the width and
 height

 dest.x = 160 - dest.w / 2;
 dest.y = 100 - dest.h / 2;

 SDL_RenderCopy(renderer, temp_texture, NULL, &dest);
 SDL_RenderPresent(renderer);
}

After we define our show_animation function, we will need to define our module's main
function:

int main() {
 char explosion_file_string[40];
 SDL_Init(SDL_INIT_VIDEO);
 SDL_CreateWindowAndRenderer(320, 200, 0, &window, &renderer);

 SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
 SDL_RenderClear(renderer);

 SDL_Surface *temp_surface = IMG_Load(SPRITE_FILE);

 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return 0;
 }

 sprite_texture = SDL_CreateTextureFromSurface(renderer,
 temp_surface);

 SDL_FreeSurface(temp_surface);

 for(int i = 1; i <= FRAME_COUNT; i++) {
 sprintf(explosion_file_string, EXP_FILE, i);
 SDL_Surface *temp_surface = IMG_Load(explosion_file_string);

 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return 0;
 }

 temp_texture = SDL_CreateTextureFromSurface(renderer,

Sprite Animations in WebAssembly with SDL Chapter 4

[95]

 temp_surface);
 anim[i-1] = temp_texture;
 SDL_FreeSurface(temp_surface);
 }

 SDL_QueryTexture(sprite_texture,
 NULL, NULL,
 &dest.w, &dest.h); // query the width and
 height

 dest.x -= dest.w / 2;
 dest.y -= dest.h / 2;

 SDL_RenderCopy(renderer, sprite_texture, NULL, &dest);
 SDL_RenderPresent(renderer);

 last_time = SDL_GetTicks();
 emscripten_set_main_loop(show_animation, 0, 0);
 return 1;
}

There is a lot to unpack here. There are much more efficient ways to do this animation, but
what we are doing here takes what we have already done and adds to it. In earlier versions
of the code, we rendered a single frame to the canvas, then exited the WebAssembly
module. That works well enough if your goal is to render something static to the canvas
and never change it. If you are writing a game, however, you need to be able to animate
your sprites and move them around the canvas. Here, we run into a problem that we do not
have if we are compiling our C++ code for any target other than WebAssembly. Games
typically run in a loop and are directly responsible for rendering to the screen.
WebAssembly runs inside of the JavaScript engine in your web browser. The WebAssembly
module itself cannot update our canvas. Emscripten uses the JavaScript glue code to update
the HTML canvas indirectly from the SDL API. However, if the WebAssembly runs in a
loop, and uses that loop to animate our sprite through SDL, the WebAssembly module
never lets go of the thread it is in, and the JavaScript never has an opportunity to update
the canvas. Because of this, we can not put the game loop inside the main function. Instead,
we must create a different function, and use Emscripten to set up the JavaScript glue code
to call that function every time the browser renders a frame. The function we will use to do
that is as follows:

emscripten_set_main_loop(show_animation, 0, 0);

The first parameter we will pass to emscripten_set_main_loop is show_animation.
This is the name of a function we defined near the top of the code. I will talk about the
specifics of the show_animation function a little later. For now, it is enough to know that
this is the function called every time the browser renders a new frame on the canvas.

Sprite Animations in WebAssembly with SDL Chapter 4

[96]

The second parameter of emscripten_set_main_loop is frames per second (FPS). If you
want to set the FPS of your game to a fixed rate, you can do so by passing the target frame
rate into the function here. If you pass in 0, this tells emscripten_set_main_loop to run
with the highest frame rate it can. As a general rule, you want your game to run with the
highest frame rate possible, so passing in 0 is usually the best thing to do. If you pass in a
value higher than what the computer is capable of rendering, it will merely render as fast as
it is able anyway, so this value only puts a cap on your FPS.

The third parameter we pass in is simulate_infinite_loop. Passing in 0 is equivalent to
passing a false value. If the value of this parameter is true, it forces the module to re-
enter through the main function for every frame. I am not sure what the use case for this is.
I would recommend keeping it at 0 and separating your game loop into another function as
we have done here.

Before calling emscripten_set_main_loop, we will set up an array of SDL texture
surface pointers:

for(int i = 1; i <= FRAME_COUNT; i++) {
 sprintf(explosion_file_string, EXP_FILE, i);
 SDL_Surface *temp_surface = IMG_Load(explosion_file_string);

 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return 0;
 }

 temp_texture = SDL_CreateTextureFromSurface(renderer, temp_surface);
 anim[i-1] = temp_texture;
 SDL_FreeSurface(temp_surface);
}

This loop loads FranchiseExplosion1.png through FranchiseExplosion7.png into
an array of SDL textures and stores them into a different array, called anim. That is the
array we will loop through later in the show_animation function. There are more efficient
ways to do this using sprite sheets, and by modifying the destination rectangle. We will
discuss those techniques for rendering animated sprites in later chapters.

Near the top of the code, we defined the show_animation function, called every rendered
frame:

void show_animation() {
 current_time = SDL_GetTicks();
 int ms = current_time - last_time;

 if(ms < ms_per_frame) {

Sprite Animations in WebAssembly with SDL Chapter 4

[97]

 return;
 }

 if(current_frame >= FRAME_COUNT) {
 SDL_RenderClear(renderer);
 return;
 }

 last_time = current_time;
 SDL_RenderClear(renderer);

 temp_texture = anim[current_frame++];

 SDL_QueryTexture(temp_texture,
 NULL, NULL,
 &dest.w, &dest.h); // query the width and
 height

 dest.x = 160 - dest.w / 2;
 dest.y = 100 - dest.h / 2;

 SDL_RenderCopy(renderer, temp_texture, NULL, &dest);
 SDL_RenderPresent(renderer);
}

This function is designed to wait a certain number of milliseconds, then update the texture
we are rendering. I have created a seven frame animation that blows up the Starship
Franchise in a little pixelated explosion. The reason we need a short wait in this loop is that
our refresh rate is probably 60+ FPS, and if we render a new frame of our animation every
time show_animation is called, the entire animation would run in about 1/10 of a second.
Classic arcade games frequently flipped through their animation sequences at a much
slower rate than the games frame rate. Many classic Nintendo Entertainment System
(NES) games used two-stage animations where the animation would alternate sprites every
few hundred milliseconds, even though the NES ran with a frame rate of 60 FPS.

The core of this function is similar to the single texture render we created earlier. The
primary difference is that we wait a fixed number of milliseconds before changing the
frame of our animation by incrementing the current_frame variable. That takes us
through all seven stages of our animation in a little less than a second.

Sprite Animations in WebAssembly with SDL Chapter 4

[98]

Moving the sprite
Now that we have learned how to animate our sprite in a frame-by-frame animation, we
will learn how to move a sprite around on our canvas. I want to keep our spaceship
animated, but I would prefer it not run in an explosion loop. In our sprites folder, I
have included a simple four-stage animation that causes our ship's engines to flicker. The
source code is quite lengthy, so I will introduce it in three parts: a preprocessor and global
variable section, the show_animation function, and the main function.

Here is the code that defines the preprocessor directives and the global variables at the
beginning of our cpp file:

#include <SDL2/SDL.h>
#include <SDL2/SDL_image.h>

#include <emscripten.h>
#include <stdio.h>

#define SPRITE_FILE "sprites/Franchise1.png"
#define EXP_FILE "sprites/Franchise%d.png"

#define FRAME_COUNT 4

int current_frame = 0;
Uint32 last_time;
Uint32 current_time;
Uint32 ms_per_frame = 100; // animate at 10 fps

SDL_Window *window;

SDL_Renderer *renderer;
SDL_Rect dest = {.x = 160, .y = 100, .w = 0, .h = 0 };
SDL_Texture *sprite_texture;
SDL_Texture *temp_texture;
SDL_Texture* anim[FRAME_COUNT];

Following the preprocessor directives and global variables, our cpp file contains a
show_animation function that defines our game loop. Here is the code for our
show_animation function:

void show_animation() {
 current_time = SDL_GetTicks();
 int ms = current_time - last_time;

 if(ms >= ms_per_frame) {
 ++current_frame;

Sprite Animations in WebAssembly with SDL Chapter 4

[99]

 last_time = current_time;
 }

 if(current_frame >= FRAME_COUNT) {
 current_frame = 0;
 }

 SDL_RenderClear(renderer);
 temp_texture = anim[current_frame];

 dest.y--;

 if(dest.y < -16) {
 dest.y = 200;
 }

 SDL_RenderCopy(renderer, temp_texture, NULL, &dest);
 SDL_RenderPresent(renderer);
}

The final part of our cpp file defines the main function. That is the initialization code in our
WebAssembly module:

int main() {
 char explosion_file_string[40];
 SDL_Init(SDL_INIT_VIDEO);
 SDL_CreateWindowAndRenderer(320, 200, 0, &window, &renderer);
 SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
 SDL_RenderClear(renderer);
 SDL_Surface *temp_surface = IMG_Load(SPRITE_FILE);

 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return 0;
 }

 sprite_texture = SDL_CreateTextureFromSurface(renderer,
 temp_surface);
 SDL_FreeSurface(temp_surface);

 for(int i = 1; i <= FRAME_COUNT; i++) {
 sprintf(explosion_file_string, EXP_FILE, i);
 SDL_Surface *temp_surface = IMG_Load(explosion_file_string);

 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return 0;
 }

Sprite Animations in WebAssembly with SDL Chapter 4

[100]

 temp_texture = SDL_CreateTextureFromSurface(renderer,
 temp_surface);

 anim[i-1] = temp_texture;
 SDL_FreeSurface(temp_surface);
 }

 SDL_QueryTexture(sprite_texture,
 NULL, NULL,
 &dest.w, &dest.h); // query the width and
 height

 dest.x -= dest.w / 2;
 dest.y -= dest.h / 2;

 SDL_RenderCopy(renderer, sprite_texture, NULL, &dest);
 SDL_RenderPresent(renderer);

 last_time = SDL_GetTicks();
 emscripten_set_main_loop(show_animation, 0, 0);
 return 1;
}

This code is similar to our sprite_animation code. There are only a few modifications,
and most of them are within the show_animation function:

void show_animation() {
 current_time = SDL_GetTicks();

 int ms = current_time - last_time;

 if(ms >= ms_per_frame) {
 ++current_frame;
 last_time = current_time;
 }

 if(current_frame >= FRAME_COUNT) {
 current_frame = 0;
 }

 SDL_RenderClear(renderer);
 temp_texture = anim[current_frame];

 dest.y--;

 if(dest.y < -16) {
 dest.y = 200;
 }

Sprite Animations in WebAssembly with SDL Chapter 4

[101]

 SDL_RenderCopy(renderer, temp_texture, NULL, &dest);
 SDL_RenderPresent(renderer);
}

We advance our frame whenever the value in ms, which tracks the milliseconds since the
last frame change, exceeds ms_per_frame, which we set to a value of 100. Because the
spaceship is moving, we still need to update our canvas every frame with the new
spaceship position. We do this by modifying the dest.y value, which tells SDL where to
render our spaceship on the y-axis. We subtract one from the dest.y variable every frame
to move the spaceship up. We also perform a check to see whether this value has become
smaller than -16. Because the sprite is 16-pixels high, this will happen when the sprite has
moved entirely off the screen at the top. If this is the case, we need to move the sprite back
down to the bottom of the game screen by setting the y value back to 200. In an actual
game, to tie our movement directly to the frame rate like this would be a bad idea, but for
this demonstration, it will be fine.

Compiling sprite.html
We can now compile our sprite WebAssembly app by using the emcc command. You will
need the sprites folder from the Chapter02 folder on GitHub. After you have
downloaded the sprites folder and placed it in your project's folder, you can compile the
app with the following command:

emcc sprite_move.c --preload-file sprites -s USE_SDL=2 -s USE_SDL_IMAGE=2 -
s SDL2_IMAGE_FORMATS=["png"] -o sprite_move.html

It is important to remember that the app must be run from a web server,
or using emrun. If you do not run the app from a web server, or use
emrun, you will receive a variety of errors when the JavaScript glue code
attempts to download the WASM and data files. You should also know
that IIS requires additional configuration in order to set the proper MIME
types for the .wasm and .data file extensions.

We are still using the --preload-file flag, however, this time we are passing in the
sprites folder instead of the fonts folder. We will continue to use the -s USE_SDL=2
flag and will be adding the -s USE_SDL_IMAGE=2 flag, which will allow us to use images
with SDL that are an alternative to the .bmp file format.

Sprite Animations in WebAssembly with SDL Chapter 4

[102]

To tell SDL_IMAGE which file format to use, we pass in the png format using the following -
s SDL2_IMAGE_FORMATS=["png"] flag:

Figure 4.3: Screenshot of sprite_move.html

Summary
In this chapter, I have introduced you to SDL and its library of modules that are available
for use within WebAssembly. We have learned about the WebAssembly virtual filesystem,
and how Emscripten creates the .data files for access within the WebAssembly virtual
filesystem. I have taught you how to use SDL to render images and fonts to the HTML
canvas. Finally, we have learned how to use SDL to create a simple animation in our game.

In the next chapter, we will learn how to use keyboard input to move game objects on the
canvas.

5
Keyboard Input

Now that we have sprites and animations, and can move these sprites around our canvas,
we will need to add some interaction into our game. There are a few ways we can get
keyboard input for our game. One way is through JavaScript, making calls to different
functions in our WebAssembly module based on that input. The first section of our code
will do just that. We will add some functions inside the WebAssembly module for us to
wrap in JavaScript wrappers. We will also set up some JavaScript keyboard event handlers
that we will use to make calls into our WebAssembly module whenever the keyboard
events are triggered.

The other way we can get input into our WebAssembly module is to allow SDL to do all the
heavy lifting for us. That involves adding C code into our WebAssembly module that
captures the SDL_KEYDOWN and SDL_KEYUP events. The module will then look at the event
keycode to determine what key triggered the event. There are costs and benefits to writing
our code using either method. Generally speaking, having SDL managing our keyboard
input costs us some of the flexibility of writing our keyboard input manager inside the
JavaScript, while, at the same time, we gain the benefit of more straightforward code.

You will need to include several images in your build to make this project
work. Make sure you include the /Chapter05/sprites/ folder from the
project's GitHub. If you haven't yet downloaded the GitHub project, you
can get it online at: https:/ ​/​github. ​com/​PacktPublishing/ ​Hands- ​On-
Game- ​Development- ​with- ​WebAssembly.

https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly

Keyboard Input Chapter 5

[104]

In this chapter, we will do the following:

Learn how to use JavaScript keyboard events to make calls into our
WebAssembly module
Learn how to use SDL events to manage keyboard input from inside our
WebAssembly module
Demonstrate what we have learned by using keyboard input to move a
spaceship sprite around the canvas

JavaScript keyboard input
The first thing we will do is learn how to listen for JavaScript keyboard events and make
calls into our WebAssembly module based on those events. We will be reusing a lot of the
code we wrote for Chapter 2, HTML5 and WebAssembly, so the first thing we should do is
grab that code from the Chapter02 folder and copy it into our new Chapter05 folder.
Copy the new_shell.html file from inside the Chapter02 directory to the Chapter05
directory, then rename that file jskey_shell.html. Next, copy shell.c from the
Chapter02 directory to the Chapter05 directory and rename that file jskey.c. Finally,
copy the shell.css file from the Chapter02 directory into the Chapter05 directory, but
do not rename it. These three files will give us a starting point for writing the JavaScript
keyboard input code.

First, let's take a look at the jskey.c file that we have just created from shell.c. We can
get rid of most of the code inside this file right at the beginning. Delete all of the code after
the end of the main function. That means you will be deleting all of the following code:

void test() {
 printf("button test\n");
}

void int_test(int num) {
 printf("int test=%d\n", num);
}

void float_test(float num) {
 printf("float test=%f\n", num);
}

void string_test(char* str) {
 printf("string test=%s\n", str);
}

Keyboard Input Chapter 5

[105]

Next, we will modify the main function. We no longer want to use EM_ASM inside our main
function to call our JavaScript wrapper initialization function, so delete the following two
lines of code from the main function:

EM_ASM(InitWrappers());
printf("Initialization Complete\n");

The only thing left in our main function is a single printf statement. We will change that
line to let us know that the main function has run. You can change this code to say anything
you like, or remove the printf statement entirely. The following code shows what we
have for the main function:

int main() {
 printf("main has run\n");
}

Now that we have modified the main function, and removed all of the functions we no
longer need, let's put in some functions called when a JavaScript keyboard event is
triggered. We will add a function for a keypress event when the user presses one of the
arrow keys on the keyboard. The following code will be called by those keypress events:

void press_up() {
 printf("PRESS UP\n");
}

void press_down() {
 printf("PRESS DOWN\n");
}

void press_left() {
 printf("PRESS LEFT\n");
}

void press_right() {
 printf("PRESS RIGHT\n");
}

We would also like to know when the user releases a key. So,to do this, we will add four
release functions into the C module, as follows:

void release_up() {
 printf("RELEASE UP\n");
}

void release_down() {
 printf("RELEASE DOWN\n");

Keyboard Input Chapter 5

[106]

}

void release_left() {
 printf("RELEASE LEFT\n");
}

void release_right() {
 printf("RELEASE RIGHT\n");
}

Now that we have our new C file, we can change our shell file. Open up
jskey_shell.html. We do not need to change anything in the head tag, but inside the
body, we will want to remove a lot of the HTML elements that we will no longer be using.
Go ahead and delete all of the elements except the textarea element. We want to keep
our textarea element around so that we can see the output of the printf statements
inside our module. We need to delete the following HTML from the jskey_shell.html
before our textarea element:

<div class="input_box"> </div>
<div class="input_box">
 <button id="click_me" class="em_button">Click Me!</button>
</div>

<div class="input_box">
 <input type="number" id="int_num" max="9999" min="0" step="1"
 value="1" class="em_input">
 <button id="int_button" class="em_button">Int Click!</button>
</div>

<div class="input_box">
 <input type="number" id="float_num" max="99" min="0" step="0.01"
 value="0.0" class="em_input">
 <button id="float_button" class="em_button">Float Click!</button>
</div>

<div class="input_box"> </div>

Then, after the textarea element, we need to delete the following div and its contents:

<div id="string_box">
 <button id="string_button" class="em_button">String Click!</button>
 <input id="string_input">
</div>

Keyboard Input Chapter 5

[107]

After that, we have the script tag that contains all of our JavaScript code. We will need to
add some global variables into that script tag. First, let's add some Boolean variables that
will tell us if the player is pressing any of our arrow keys. Initialize all of these values to
false, as per the following example:

var left_key_press = false;
var right_key_press = false;
var up_key_press = false;
var down_key_press = false;

Following our key_press flags, we will have all of the wrapper variables that will be used
to hold the wrapper functions that call functions within our WebAssembly module. We
will initialize all of these wrappers to null. Later, we will only call these functions if they
are not null. The following code shows our wrappers:

var left_press_wrapper = null;
var left_release_wrapper = null;

var right_press_wrapper = null;
var right_release_wrapper = null;

var up_press_wrapper = null;
var up_release_wrapper = null;

var down_press_wrapper = null;
var down_release_wrapper = null;

Now that we have defined all of our global variables, we need to add functions triggered
on the key_press and key_release events. The first of these functions is keyPress. The
code we have for this function is as follows:

function keyPress() {
 event.preventDefault();
 if(event.repeat === true) {
 return;
 }

 // PRESS UP ARROW
 if (event.keyCode === 38) {
 up_key_press = true;
 if(up_press_wrapper != null) up_press_wrapper();
 }

 // PRESS LEFT ARROW
 if (event.keyCode === 37) {
 left_key_press = true;
 if(left_press_wrapper != null) left_press_wrapper();

Keyboard Input Chapter 5

[108]

 }

 // PRESS RIGHT ARROW
 if (event.keyCode === 39) {
 right_key_press = true;
 if(right_press_wrapper != null) right_press_wrapper();
 }

 // PRESS DOWN ARROW
 if (event.keyCode === 40) {
 down_key_press = true;
 if(down_press_wrapper != null) down_press_wrapper();
 }
}

The first line of this function is event.preventDefault();. This line prevents the web
browser from doing what it would normally do when the user presses the key in question.
For instance, if you are playing a game, and you press the down arrow key to have your
spaceship move down, you would not want the web page also to scroll down. Placing
this preventDefault call at the beginning of the keyPress function will disable the
default behavior for all key presses. In other projects, this may not be what you want. If you
only wanted to disable the default behavior when pressing the down arrow key, you would
place that call inside of the if block that manages the down arrow key press. The following
block of code checks to see if the event is a repeat event:

if(event.repeat === true) {
 return;
}

That would be true if you held down one of the keys. For example, if you held down the up
arrow key, you would initially get one up arrow key press event, but, after a delay, you
would start getting a repeat event for the up arrow key. You may have noticed that
behavior inside a word processor if you have ever held down a single key, like the F key for
instance. You would start with a single f that appears inside your word processor, but, after
a second or so you would start to get ffffffffffffff, and you would continue to see f
repeated into your word processor for as long as you held down the F key. Generally
speaking, this behavior may be helpful when you are using a word processor, but is
detrimental when you are playing a game. The preceding if block causes us to exit the
function when we are receiving repeat key events.

Keyboard Input Chapter 5

[109]

The next several if blocks in our function check the various JavaScript keycodes and make
calls to our WebAssembly module based on those keycodes. Let's take a quick look at what
happens when the player presses the up arrow key, as follows:

// PRESS UP ARROW
if (event.keyCode === 38) {
 up_key_press = true;
 if(up_press_wrapper != null) up_press_wrapper();
}

The if statement is checking the event's keycode against the value 38, which is the keycode
value for the up arrow. You can find a list of HTML5 keycodes at: https:/ ​/​www. ​embed. ​com/
typescript-​games/ ​html- ​keycodes. ​html. If the triggering event was an up arrow key press,
we set the up_key_press variable to true. If our up_press_wrapper is initialized, we
call it, which in turn will call the press_up function inside our WebAssembly module.
After the if block that checks against the up arrow keycode, we will need more if blocks
to check against the other arrow keys, as shown in the following example:

 // PRESS LEFT ARROW
 if (event.keyCode === 37) {
 left_key_press = true;
 if(left_press_wrapper != null) left_press_wrapper();
 }

 // PRESS RIGHT ARROW
 if (event.keyCode === 39) {
 right_key_press = true;
 if(right_press_wrapper != null) right_press_wrapper();
 }

 // PRESS DOWN ARROW
 if (event.keyCode === 40) {
 down_key_press = true;
 if(down_press_wrapper != null) down_press_wrapper();
 }
}

After the keyUp function, we need to create a very similar function: keyRelease. This
function is pretty much the same as keyUp, except it will be calling the key release
functions in the WebAssembly module. The following code shows what
the keyRelease() function looks like:

function keyRelease() {
 event.preventDefault();

 // PRESS UP ARROW

https://www.embed.com/typescript-games/html-keycodes.html
https://www.embed.com/typescript-games/html-keycodes.html
https://www.embed.com/typescript-games/html-keycodes.html
https://www.embed.com/typescript-games/html-keycodes.html
https://www.embed.com/typescript-games/html-keycodes.html
https://www.embed.com/typescript-games/html-keycodes.html
https://www.embed.com/typescript-games/html-keycodes.html
https://www.embed.com/typescript-games/html-keycodes.html
https://www.embed.com/typescript-games/html-keycodes.html
https://www.embed.com/typescript-games/html-keycodes.html
https://www.embed.com/typescript-games/html-keycodes.html
https://www.embed.com/typescript-games/html-keycodes.html
https://www.embed.com/typescript-games/html-keycodes.html
https://www.embed.com/typescript-games/html-keycodes.html
https://www.embed.com/typescript-games/html-keycodes.html
https://www.embed.com/typescript-games/html-keycodes.html
https://www.embed.com/typescript-games/html-keycodes.html
https://www.embed.com/typescript-games/html-keycodes.html

Keyboard Input Chapter 5

[110]

 if (event.keyCode === 38) {
 up_key_press = false;
 if(up_release_wrapper != null) up_release_wrapper();
 }

 // PRESS LEFT ARROW
 if (event.keyCode === 37) {
 left_key_press = false;
 if(left_release_wrapper != null) left_release_wrapper();
 }

 // PRESS RIGHT ARROW
 if (event.keyCode === 39) {
 right_key_press = false;
 if(right_release_wrapper != null) right_release_wrapper();
 }

 // PRESS DOWN ARROW
 if (event.keyCode === 40) {
 down_key_press = false;
 if(down_release_wrapper != null) down_release_wrapper();
 }
}

After we have defined these functions, we need to make them event listeners with the
following two lines of JavaScript code:

document.addEventListener('keydown', keyPress);
document.addEventListener('keyup', keyRelease);

The next thing we need to do is modify our InitWrappers function to wrap the functions
we created earlier. We do this using the Module.cwrap function. The new version of
our InitWrappers function is as follows:

function InitWrappers() {
 left_press_wrapper = Module.cwrap('press_left', 'undefined');
 right_press_wrapper = Module.cwrap('press_right', 'undefined');
 up_press_wrapper = Module.cwrap('press_up', 'undefined');
 down_press_wrapper = Module.cwrap('press_down', 'undefined');

 left_release_wrapper = Module.cwrap('release_left', 'undefined');
 right_release_wrapper = Module.cwrap('release_right', 'undefined');
 up_release_wrapper = Module.cwrap('release_up', 'undefined');
 down_release_wrapper = Module.cwrap('release_down', 'undefined');
}

Keyboard Input Chapter 5

[111]

We have two functions that are no longer needed that we can remove. These are
the runbefore and runafter functions. These functions were used in our shell in chapter
2, HTML5 and WebAssembly, to demonstrate the preRun and postRun module functionality.
All they do is log a line out to the console, so please remove the following code from the
jskey_shell.html file:

function runbefore() {
 console.log("before module load");
}

function runafter() {
 console.log("after module load");
}

Now that we have deleted these lines, we can remove the call to these functions from our
module's preRun and postRun arrays. Because we had earlier removed the call to EM_ASM(
InitWrappers()); inside our WebAssembly module's main function, we will need to
run InitWrappers from the module's postRun array. The following code shows what the
beginning of the Module object definition looks like after these changes:

preRun: [],
postRun: [InitWrappers],

Now we should build and test our new JavaScript keyboard handler. Run the following
emcc command:

emcc jskey.c -o jskey.html -s NO_EXIT_RUNTIME=1 --shell-file
jskey_shell.html -s EXPORTED_FUNCTIONS="['_main', '_press_up',
'_press_down', '_press_left', '_press_right', '_release_up',
'_release_down', '_release_left', '_release_right']" -s
EXTRA_EXPORTED_RUNTIME_METHODS="['cwrap', 'ccall']"

You will notice that we have used the -s EXPORT_FUNCTIONS flag to export all of our key
press and key release functions. Because we are not using the default shell, we have used
the --shell-file jskey_shell.html flag. The -s NO_EXIT_RUNTIME=1 flag prevents
the browser from exiting the WebAssembly module if there is no emscripten main loop.
We also exported cwrap and ccall with -s
EXTRA_EXPORTED_RUNTIME_METHODS="['cwrap', 'ccall']".

Keyboard Input Chapter 5

[112]

The following is a screenshot of the app:

Figure 5.1: Screenshot of jskey.html

It is important to remember that the app must be run from a web server,
or using emrun. If you do not run the app from a web server, or use
emrun, you will receive a variety of errors when the JavaScript glue code
attempts to download the WASM and data files. You should also know
that IIS requires additional configuration in order to set the proper MIME
types for the .wasm and .data file extensions.

In the next section, we will be using the SDL event handler and the default WebAssembly
shell to capture and process keyboard events.

Adding SDL keyboard input to
WebAssembly
SDL allows us to poll for keyboard input. Whenever the user presses a key, a call
to SDL_PollEvent(&event) will return us an SDK_KEYDOWN SDL_Event. When a key
is released, it will return an SDK_KEYUP event. We can look into the values in such a case to
figure out which key has been pressed or released. We can use this information to set flags
in our game to let us know when to move our spaceship, and in what direction. Later, we
can add code that detects a space bar press that will fire our ship's weapons.

For now, we are going to go back to using the default Emscripten shell. For the rest of this
section, we will be able to do everything from within the WebAssembly C code. I will walk
you through creating a new keyboard.c file from scratch, which will handle keyboard
events and print to the textarea in our default shell.

Keyboard Input Chapter 5

[113]

Start by creating a new keyboard.c file, and add the following #include directives at the
top of the file:

#include <SDL2/SDL.h>
#include <emscripten.h>
#include <stdio.h>
#include <stdbool.h>

After that, we need to add our global SDL objects. The first
two, SDL_Window and SDL_Renderer, should look familiar by now. The third
one, SDL_Event, is new. We will be populating this event object using a call
to SDL_PollEvent later in our code:

SDL_Window *window;
SDL_Renderer *renderer;
SDL_Event event;

Like the JavaScript version of this code, we will be using global variables to keep track of
which arrow keys we are currently pressing. These will all be Boolean variables, as shown
in the following code:

bool left_key_press = false;
bool right_key_press = false;
bool up_key_press = false;
bool down_key_press = false;

The first function we are going to define is input_loop, but before we can define that
function, we need to declare two functions that input_loop will be calling, as follows:

void key_press();
void key_release();

This will allow us to define the input_loop function before actually defining what
happens when input_loop calls those functions. The input_loop function will
call SDL_PollEvent to get an event object. We can then look at the type of event, and, if it
is an SDL_KEYDOWN or SDL_KEYUP event, we can call the appropriate function to handle
those events, as follows:

void input_loop() {
 if(SDL_PollEvent(&event)){
 if(event.type == SDL_KEYDOWN){
 key_press();
 }
 else if(event.type == SDL_KEYUP) {
 key_release();
 }

Keyboard Input Chapter 5

[114]

 }
}

The first of these functions that we will define will be the key_press() function. Inside
this function, we will look at the keyboard event in a switch and compare the value to the
different arrow key SDLK events. If the key had been previously up, it prints out a message
that lets us know the key the user pressed. Then we should set the keypress flag to true.
The following example shows the key_press() function in its entirety:

void key_press() {
 switch(event.key.keysym.sym){
 case SDLK_LEFT:
 if(!left_key_press) {
 printf("left arrow key press\n");
 }
 left_key_press = true;
 break;

 case SDLK_RIGHT:
 if(!right_key_press) {
 printf("right arrow key press\n");
 }
 right_key_press = true;
 break;

 case SDLK_UP:
 if(!up_key_press) {
 printf("up arrow key press\n");
 }
 up_key_press = true;
 break;

 case SDLK_DOWN:
 if(!down_key_press) {
 printf("down arrow key press\n");
 }
 down_key_press = true;
 break;

 default:
 printf("unknown key press\n");
 break;
 }
}

Keyboard Input Chapter 5

[115]

The first line inside the key_press function is a switch
statement, switch(event.key.keysym.sym). These are structures within structures.
Inside the input_loop function, we called SDL_PollEvent, passing a reference to
an SDL_Event structure. This structure contains event data for any possible event that may
be returned to us, as well as a type that tells us what kind of event this is. If the type
is SDL_KEYDOWN or SDL_KEYUP, that means the internal key structure, which is a structure
of type SDL_KeyboardEvent, is populated. If you would like to see the full definition of
the SDL_Event structure, you can find it on the SDL website, at: https:/ ​/ ​wiki. ​libsdl.
org/​SDL_​Event. Looking at the key variable inside of SDL_Event, you will notice it is a
structure of type SDL_KeyboardEvent. This structure has a lot of data in it that we will not
be using yet. It includes information such as timestamp, whether this key is a repeat press,
or whether this key is being pressed or released; but what we are looking at in our switch is
they keysym variable, which is a structure of type SDL_Keysym. For more information on
the SDL_KeyboardEvent, you can find its definition on the SDL website, at: https:/ ​/​wiki.
libsdl.​org/​SDL_​KeyboardEvent. The keysym variable in
the SDL_KeyboardEvent structure is where you will find the SDL_Keycode in
the sym variable. This keycode is what we must look at to determine which key the player
pressed. That is why we have the switch statement built around switch(
event.key.keysym.sym). A link to all of the possible values for the SDL keycodes is
available at: https:/ ​/ ​wiki. ​libsdl. ​org/ ​SDL_ ​Keycode.

All of the case statements inside our switch look pretty similar: if a given SDLK keycode is
pressed, we check to see if that key was pressed in the previous cycle, and we only print
out the value if it has not. Then we set the keypress flag to true. The following example
shows the code where we detect the press of the left arrow key:

case SDLK_LEFT:
 if(!left_key_press) {
 printf("left arrow key press\n");
 }
 left_key_press = true;
 break;

Our application calls the key_release function when the event type is SDL_KEYUP . That
is very similar to the key_down function. The primary difference is that it is looking to see if
the user pressed the key, and only prints out a message when the state changes to
unpressed. The following example shows that function in its entirety:

void key_release() {
 switch(event.key.keysym.sym){

 case SDLK_LEFT:
 if(left_key_press) {

https://wiki.libsdl.org/SDL_Event
https://wiki.libsdl.org/SDL_Event
https://wiki.libsdl.org/SDL_Event
https://wiki.libsdl.org/SDL_Event
https://wiki.libsdl.org/SDL_Event
https://wiki.libsdl.org/SDL_Event
https://wiki.libsdl.org/SDL_Event
https://wiki.libsdl.org/SDL_Event
https://wiki.libsdl.org/SDL_Event
https://wiki.libsdl.org/SDL_Event
https://wiki.libsdl.org/SDL_Event
https://wiki.libsdl.org/SDL_Event
https://wiki.libsdl.org/SDL_KeyboardEvent
https://wiki.libsdl.org/SDL_KeyboardEvent
https://wiki.libsdl.org/SDL_KeyboardEvent
https://wiki.libsdl.org/SDL_KeyboardEvent
https://wiki.libsdl.org/SDL_KeyboardEvent
https://wiki.libsdl.org/SDL_KeyboardEvent
https://wiki.libsdl.org/SDL_KeyboardEvent
https://wiki.libsdl.org/SDL_KeyboardEvent
https://wiki.libsdl.org/SDL_KeyboardEvent
https://wiki.libsdl.org/SDL_KeyboardEvent
https://wiki.libsdl.org/SDL_KeyboardEvent
https://wiki.libsdl.org/SDL_KeyboardEvent
https://wiki.libsdl.org/SDL_Keycode
https://wiki.libsdl.org/SDL_Keycode
https://wiki.libsdl.org/SDL_Keycode
https://wiki.libsdl.org/SDL_Keycode
https://wiki.libsdl.org/SDL_Keycode
https://wiki.libsdl.org/SDL_Keycode
https://wiki.libsdl.org/SDL_Keycode
https://wiki.libsdl.org/SDL_Keycode
https://wiki.libsdl.org/SDL_Keycode
https://wiki.libsdl.org/SDL_Keycode
https://wiki.libsdl.org/SDL_Keycode
https://wiki.libsdl.org/SDL_Keycode
https://wiki.libsdl.org/SDL_Keycode

Keyboard Input Chapter 5

[116]

 printf("left arrow key release\n");
 }
 left_key_press = false;
 break;

 case SDLK_RIGHT:
 if(right_key_press) {
 printf("right arrow key release\n");
 }
 right_key_press = false;
 break;

 case SDLK_UP:
 if(up_key_press) {
 printf("up arrow key release\n");
 }
 up_key_press = false;
 break;

 case SDLK_DOWN:
 if(down_key_press) {
 printf("down arrow key release\n");
 }
 down_key_press = false;
 break;

 default:
 printf("unknown key release\n");
 break;
 }
}

Our last function is a new version of the main function, called when our Module is loaded.
We still need to use emscripten_set_main_loop to prevent our code from tying up the
JavaScript engine. We have created an input_loop which we defined earlier. It uses SDL
to poll for keyboard events. But, before that, we still need to do our SDL initialization. We
are using the Emscripten default shell, so the call to SDL_CreateWindowAndRenderer will
set the width and height of our canvas element. We will not be rendering to
the canvas element inside our input_loop, but we still want to have it initialized here
because, in the next section, we will be adapting this code to render a spaceship image to
the canvas and to move it around with key presses. The following code shows what the
new version of our main function will look like:

int main() {
 SDL_Init(SDL_INIT_VIDEO);

Keyboard Input Chapter 5

[117]

 SDL_CreateWindowAndRenderer(320, 200, 0, &window, &renderer);
 SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);

 SDL_RenderClear(renderer);
 SDL_RenderPresent(renderer);

 emscripten_set_main_loop(input_loop, 0, 0);
 return 1;
}

Now that we have all the code inside our keyboard.c file, we can compile our
keyboard.c file with the following emcc command:

emcc keyboard.c -o keyboard.html -s USE_SDL=2

When you run keyboard.html in the browser, you will notice that pressing the arrow
keys results in a message printed to the Emscripten default shell's textarea.

Consider the following screenshot:

Figure 5.2: Screenshot of keyboard.html

In the next section, we will learn how to use this keyboard input to move a sprite around
our canvas.

Keyboard Input Chapter 5

[118]

Using keyboard input to move a sprite
Now that we know how to get keyboard input and use it in our WebAssembly module, let's
figure out how we can take that keyboard input and use it to move our spaceship sprite
around the HTML canvas. Let's begin by copying sprite_move.c from the Chapter04
directory into the Chapter05 directory. That will give us a good starting point. Now we
can start modifying the code. We will need to add a single #include to the beginning of
our .c file. Because we need Boolean variables, we must add #include <stdbool.h>.
The new start of our .c file will now look as follows:

#include <SDL2/SDL.h>
#include <SDL2/SDL_image.h>
#include <emscripten.h>
#include <stdio.h>
#include <stdbool.h>

After that, all the #define directives will remain unchanged from what they were in the
sprite_move.c file, as can be seen in the following code:

#define SPRITE_FILE "sprites/Franchise1.png"
#define ANIM_FILE "sprites/Franchise%d.png"
#define FRAME_COUNT 4

The sprite_move.c file had several global variables that we will continue to use in
keyboard_move.c. Do not remove any of these variables; we will only be adding to them:

int current_frame = 0;

Uint32 last_time;
Uint32 current_time;
Uint32 ms_per_frame = 100; // animate at 10 fps

SDL_Window *window;
SDL_Renderer *renderer;
SDL_Rect dest = {.x = 160, .y = 100, .w = 0, .h = 0 };

SDL_Texture *sprite_texture;
SDL_Texture *temp_texture;
SDL_Texture* anim[FRAME_COUNT];

Keyboard Input Chapter 5

[119]

Now we need to bring in some variables from the keyboard.c file that we used in the
previous section. We need the SDL_Event global variable so that we have something to
pass into our call to SDL_PollEvent, and we need our Boolean key press flags, as follows:

SDL_Event event;

bool left_key_press = false;
bool right_key_press = false;
bool up_key_press = false;
bool down_key_press = false;

We then have the function declarations, which allow us to define
the key_press and key_release functions after we have defined
our input_loop function, as shown in the following example:

void key_press();
void key_release();

Next, we will bring in the input_loop function from our keyboard.c file. This is the
function that we use to call SDL_PollEvent, and, based on the event type returned, either
calls key_press or key_release. This function remains unchanged from the version we
had in keyboard.c, as can be seen in the following example:

void input_loop() {
 if(SDL_PollEvent(&event)){
 if(event.type == SDL_KEYDOWN){
 key_press();
 }
 else if(event.type == SDL_KEYUP) {
 key_release();
 }
 }
}

The key_press and key_release functions follow the input_loop function and remain
unchanged from the keyboard.c version. The primary purpose of these functions is to set
the keypress flags. The printf statements are now unnecessary, but we will leave them
there. This is not a good thing for performance because continuing to add lines to
our textarea with every key press and release will eventually slow our game down, but,
at this point, I feel it is better to leave these statements in for demonstration purposes:

void key_press() {
 switch(event.key.keysym.sym){

 case SDLK_LEFT:
 if(!left_key_press) {

Keyboard Input Chapter 5

[120]

 printf("left arrow key press\n");
 }
 left_key_press = true;
 break;

 case SDLK_RIGHT:
 if(!right_key_press) {
 printf("right arrow key press\n");
 }
 right_key_press = true;
 break;

 case SDLK_UP:
 if(!up_key_press) {
 printf("up arrow key press\n");
 }
 up_key_press = true;
 break;

 case SDLK_DOWN:
 if(!down_key_press) {
 printf("down arrow key press\n");
 }
 down_key_press = true;
 break;

 default:
 printf("unknown key press\n");
 break;
 }
}

void key_release() {
 switch(event.key.keysym.sym){

 case SDLK_LEFT:
 if(left_key_press) {
 printf("left arrow key release\n");
 }
 left_key_press = false;
 break;

 case SDLK_RIGHT:
 if(right_key_press) {
 printf("right arrow key release\n");
 }
 right_key_press = false;
 break;

Keyboard Input Chapter 5

[121]

 case SDLK_UP:
 if(up_key_press) {
 printf("up arrow key release\n");
 }
 up_key_press = false;
 break;

 case SDLK_DOWN:
 if(down_key_press) {
 printf("down arrow key release\n");
 }
 down_key_press = false;
 break;

 default:
 printf("unknown key release\n");
 break;
 }
}

The next function in the keyboard_move.c file will be show_animation. This function
will need to be changed significantly from the version that appears in sprite_move.c, to
allow the player to control the spaceship and move it around the canvas. The following
example shows you the new function in its entirety before we go through it a piece at a
time:

void show_animation() {
 input_loop();

 current_time = SDL_GetTicks();
 int ms = current_time - last_time;

 if(ms >= ms_per_frame) {
 ++current_frame;
 last_time = current_time;
 }

 if(current_frame >= FRAME_COUNT) {
 current_frame = 0;
 }

 SDL_RenderClear(renderer);
 temp_texture = anim[current_frame];

 if(up_key_press) {
 dest.y--;
 if(dest.y < -16) {

Keyboard Input Chapter 5

[122]

 dest.y = 200;
 }
 }

 if(down_key_press) {
 dest.y++;

 if(dest.y > 200) {
 dest.y = -16;
 }
 }

 if(left_key_press) {
 dest.x--;

 if(dest.x < -16) {
 dest.x = 320;
 }
 }

 if(right_key_press) {
 dest.x++;

 if(dest.x > 320) {
 dest.x = -16;
 }
 }

 SDL_RenderCopy(renderer, temp_texture, NULL, &dest);
 SDL_RenderPresent(renderer);
}

We added the very first line in show_animation to this new version of the function. The
call to input_loop is used to set the key press flags every frame. After the call
to input_loop, there is a chunk of the code that we have not changed from the
sprite_move.c file, as shown in the following example:

current_time = SDL_GetTicks();
int ms = current_time - last_time;

if(ms >= ms_per_frame) {
 ++current_frame;
 last_time = current_time;
}

if(current_frame >= FRAME_COUNT) {
 current_frame = 0;

Keyboard Input Chapter 5

[123]

}

SDL_RenderClear(renderer);
temp_texture = anim[current_frame];

This code calls SDL_GetTicks() to get the current time, and then subtracts the current
time from the last time the current frame changed, to get the number of milliseconds it has
been since we last had a frame change. If the number of milliseconds since the last frame
change is greater than the number of milliseconds that we want to stay on any given frame,
we need to advance the current frame. Once we have figured out whether or not we have
advanced the current frame, we need to make sure that the current frame is not more than
our frame count. If it is, we need to reset it to 0. After that, we need to clear out our
renderer and set the texture we are using to the texture in our animation array that
corresponds with the current frame.

In sprite_move.c, we moved the y coordinates of our spaceship up one pixel per frame
with the following few lines of code:

dest.y--;

if(dest.y < -16) {
 dest.y = 200;
}

In the new keyboard app, we only want to change our y coordinate when the player
presses the up arrow key. To do this, we must enclose the code that changes the y
coordinate in an if block that checks the up_key_press flag. Here is the new version of
that code:

if(up_key_press) {
 dest.y--;

 if(dest.y < -16) {
 dest.y = 200;
 }
}

We also need to add code that moves the spaceship when the player presses the other
arrow keys. The following code moves the spaceship down, left or right based on what
keys the player is currently pressing:

if(down_key_press) {
 dest.y++;

 if(dest.y > 200) {
 dest.y = -16;

Keyboard Input Chapter 5

[124]

 }
}

if(left_key_press) {
 dest.x--;

 if(dest.x < -16) {
 dest.x = 320;
 }
}

if(right_key_press) {
 dest.x++;

 if(dest.x > 320) {
 dest.x = -16;
 }
}

Finally, we have to render the texture and present it, as follows:

SDL_RenderCopy(renderer, temp_texture, NULL, &dest);
SDL_RenderPresent(renderer);

The main function will not change from the version inside sprite_move.c because none
of the initialization has changed. The following code shows the main function as it appears
in keyboard_move.c:

int main() {
 char explosion_file_string[40];

 SDL_Init(SDL_INIT_VIDEO);
 SDL_CreateWindowAndRenderer(320, 200, 0, &window, &renderer);
 SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
 SDL_RenderClear(renderer);

 SDL_Surface *temp_surface = IMG_Load(SPRITE_FILE);

 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return 0;
 }

 sprite_texture = SDL_CreateTextureFromSurface(renderer, temp_surface
);

 SDL_FreeSurface(temp_surface);

Keyboard Input Chapter 5

[125]

 for(int i = 1; i <= FRAME_COUNT; i++) {
 sprintf(explosion_file_string, ANIM_FILE, i);
 SDL_Surface *temp_surface = IMG_Load(explosion_file_string);

 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return 0;
 }

 temp_texture = SDL_CreateTextureFromSurface(renderer, temp_surface
);
 anim[i-1] = temp_texture;
 SDL_FreeSurface(temp_surface);
 }

 SDL_QueryTexture(sprite_texture,
 NULL, NULL,
 &dest.w, &dest.h); // query the width and height

 dest.x -= dest.w / 2;
 dest.y -= dest.h / 2;

 SDL_RenderCopy(renderer, sprite_texture, NULL, &dest);
 SDL_RenderPresent(renderer);

 last_time = SDL_GetTicks();
 emscripten_set_main_loop(show_animation, 0, 0);
 return 1;
}

As I said earlier, this code is a combination of the last application we wrote in Chapter
4, Sprite Animations in WebAssembly with SDL, and the code we wrote in the section Adding
SDL keyboard input to WebAssembly where we were taking input from the keyboard and
logging our keys with the printf statement. We kept our input_loop function and added
a call to it from the beginning of our show_animation function.
Inside show_animation, we no longer move the ship one pixel up every frame, but only
move the ship up if we are pressing the up arrow key. Likewise, we move the ship left
when the user presses the left arrow key, right when the right arrow key is pressed and
down when the user presses the down arrow key.

Now that we have our new keyboard_move.c file, let's compile it and try out our new
moving spaceship. Run the following emcc command to compile the code:

emcc keyboard_move.c -o keyboard_move.html --preload-file sprites -s
USE_SDL=2 -s USE_SDL_IMAGE=2 -s SDL2_IMAGE_FORMATS=["png"]

Keyboard Input Chapter 5

[126]

We need to add the --preload-file sprites flag to indicate that we want a virtual file
system with the sprites folder included. We also need to add the -s USE_SDL=2 and -s
USE_SDL_IMAGE=2 -s SDL2_IMAGE_FORMATS=["png"] flags to allow us to load .png
files from the virtual file system. Once you have compiled keyboard_move.html, load it
into a browser and use the arrow keys to move the spaceship around the canvas. See the
following screenshot:

Figure 5.3: Screenshot of keyboard_move.html

Summary
In this chapter, we learned how to get keyboard input for use with WebAssembly. There
are two primary methods. We could either take in keyboard input on the JavaScript side
and communicate with WebAssembly through a wrapper made with Module.cwrap, or by
calling WebAssembly functions directly with Module.ccall. The other way to accept
keyboard input in WebAssembly is by using SDL keyboard input events. When we use this
method, we can use the default Emscripten shell. This second method, using SDL events,
will be our preferred method throughout the rest of this book.

In the next chapter, we will learn more about the game loop and how we will use it in our
game, as well as games in general.

6
Game Objects and the Game

Loop
In this chapter, we will begin to put the framework of a game into place. All games have
game objects and a game loop. A game loop exists in every game ever written. Some tools,
such as Unity, do their best to abstract away the game loop so that the developer does not
necessarily need to know it is there, but even in these cases it still is. All games must take
some control over the rendering capabilities of the operating system or hardware it is
running on and draw images out to the screen while the game is running. All of the work of
the game is done within a big loop. Game objects can be either an instance of classes in the
case of Object-Oriented Programming (OOP) languages such as C++, or in the case of
procedural languages such as C, they could be loose collections of variables or structures. In
this chapter, we will be learning how to design a game loop and some early versions of our
game objects from within C++ compiled into WebAssembly.

You will need to include several images in your build to make this project
work. Make sure you include the /Chapter06-game-object/sprites/
folder from the project's GitHub repository. If you haven't yet
downloaded the GitHub project, you can get it online here: https:/ ​/
github. ​com/ ​PacktPublishing/ ​Hands- ​On- ​Game- ​Development- ​with-
WebAssembly.

In this chapter, we will cover the following topics:

Game loops
Object pooling
Player game object
Enemy game object
Projectiles

https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly

Game Objects and the Game Loop Chapter 6

[128]

Understanding the game loop
A key concept in game design is the game loop. In any game, the code must run over and
over again, performing a series of tasks such as input, AI, physics, and rendering. A game
loop might look something like this:

while(loop_forever) {
 get_user_input();
 move_game_objects();
 collision_detection();
 render_game_objects();
 play_audio();
}

An SDL/C++ game targeting almost any platform except WebAssembly would have a
while loop, probably located within the main function of the C++ code, that would exit
only when the player exits the game. WebAssembly shares its runtime with the JavaScript
engine inside your web browser. The JavaScript engine runs on a single thread, and
Emscripten uses JavaScript glue code to take what you have done inside SDL within
WebAssembly and render that to the HTML canvas element. Therefore, we need to use an
Emscripten-specific piece of code for our game loop:

emscripten_set_main_loop(game_loop, 0, 0);

In the next few chapters, we will be adding some of these functions to our game:

Game object management
Collision detection between game objects
Particle systems
Enemy spaceship AI using a finite state machine (FSM)
Game camera for tracking our player
Play audio and sound effects
Game physics
User interface

These will be functions called from the game loop.

Game Objects and the Game Loop Chapter 6

[129]

Writing a basic game loop
To some degree, we already have a simple game loop, although we did not create a
function called game_loop explicitly. We are going to modify our code to have a more
explicit game loop that will separate the input, move, and render functions. At this point,
our main function becomes an initialization function that finishes by using Emscripten to
set the game loop. The code for this new app is larger than earlier apps. Let's first walk
through the code at a high level, introducing each section. Then we will walk through each
of the individual sections of code in detail.

We begin the code with our #include and #define preprocessor macros:

#include <SDL2/SDL.h>
#include <SDL2/SDL_image.h>
#include <emscripten.h>
#include <stdio.h>
#include <stdbool.h>
#include <math.h>

#define SPRITE_FILE "sprites/Franchise.png"
#define PI 3.14159
#define TWO_PI 6.28318
#define MAX_VELOCITY 2.0

After the preprocessor macros, we have a few global time variables:

Uint32 last_time;
Uint32 last_frame_time;
Uint32 current_time;

We will then define several SDL-related global variables:

SDL_Window *window;
SDL_Renderer *renderer;
SDL_Rect dest = {.x = 160, .y = 100, .w = 16, .h = 16 };
SDL_Texture *sprite_texture;
SDL_Event event;

After our SDL global variables, we have a block of keyboard flags:

bool left_key_down = false;
bool right_key_down = false;
bool up_key_down = false;
bool down_key_down = false;

Game Objects and the Game Loop Chapter 6

[130]

The last global variables track player data:

float player_x = 160.0;
float player_y = 100.0;
float player_rotation = PI;
float player_dx = 0.0;
float player_dy = 1.0;
float player_vx = 0.0;
float player_vy = 0.0;
float delta_time = 0.0;

Now that we have all of our global variables defined, we need two functions that rotate the
player's spaceship left and right:

void rotate_left() {
 player_rotation -= delta_time;
 if(player_rotation < 0.0) {
 player_rotation += TWO_PI;
 }
 player_dx = sin(player_rotation);
 player_dy = -cos(player_rotation);
}

void rotate_right() {
 player_rotation += delta_time;
 if(player_rotation >= TWO_PI) {
 player_rotation -= TWO_PI;
 }
 player_dx = sin(player_rotation);
 player_dy = -cos(player_rotation);
}

We then have three movement-related functions for our player's ship. We use them to
accelerate and decelerate our spaceship, and to capp the velocity of our spaceship:

void accelerate() {
 player_vx += player_dx * delta_time;
 player_vy += player_dy * delta_time;
}

void decelerate() {
 player_vx -= (player_dx * delta_time) / 2.0;
 player_vy -= (player_dy * delta_time) / 2.0;
}

void cap_velocity() {
 float vel = sqrt(player_vx * player_vx + player_vy * player_vy);
 if(vel > MAX_VELOCITY) {

Game Objects and the Game Loop Chapter 6

[131]

 player_vx /= vel;
 player_vy /= vel;
 player_vx *= MAX_VELOCITY;
 player_vy *= MAX_VELOCITY;
 }
}

The move function performs the high-level movement of the game objects:

void move() {
 current_time = SDL_GetTicks();
 delta_time = (float)(current_time - last_time) / 1000.0;
 last_time = current_time;

 if(left_key_down) {
 rotate_left();
 }
 if(right_key_down) {
 rotate_right();
 }
 if(up_key_down) {
 accelerate();
 }
 if(down_key_down) {
 decelerate();
 }
 cap_velocity();

 player_x += player_vx;

 if(player_x > 320) {
 player_x = -16;
 }
 else if(player_x < -16) {
 player_x = 320;
 }

 player_y += player_vy;

 if(player_y > 200) {
 player_y = -16;
 }
 else if(player_y < -16) {
 player_y = 200;
 }
}

Game Objects and the Game Loop Chapter 6

[132]

The input function determines the keyboard input states and sets our global keyboard
flags:

void input() {
 if(SDL_PollEvent(&event)){
 switch(event.type){
 case SDL_KEYDOWN:
 switch(event.key.keysym.sym){
 case SDLK_LEFT:
 left_key_down = true;
 break;
 case SDLK_RIGHT:
 right_key_down = true;
 break;
 case SDLK_UP:
 up_key_down = true;
 break;
 case SDLK_DOWN:
 down_key_down = true;
 break;
 default:
 break;
 }
 break;
 case SDL_KEYUP:
 switch(event.key.keysym.sym){
 case SDLK_LEFT:
 left_key_down = false;
 break;
 case SDLK_RIGHT:
 right_key_down = false;
 break;
 case SDLK_UP:
 up_key_down = false;
 break;
 case SDLK_DOWN:
 down_key_down = false;
 break;
 default:
 break;
 }
 break;

 default:
 break;
 }
 }
}

Game Objects and the Game Loop Chapter 6

[133]

The render function draws the player's sprite to the canvas:

void render() {
 SDL_RenderClear(renderer);

 dest.x = player_x;
 dest.y = player_y;

 float degrees = (player_rotation / PI) * 180.0;
 SDL_RenderCopyEx(renderer, sprite_texture,
 NULL, &dest,
 degrees, NULL, SDL_FLIP_NONE);

 SDL_RenderPresent(renderer);
 }

The game_loop function runs all of our high-level game objects in each frame:

void game_loop() {
 input();
 move();
 render();
}

As always, the main function does all of our initialization:

int main() {
 char explosion_file_string[40];
 SDL_Init(SDL_INIT_VIDEO);
 SDL_CreateWindowAndRenderer(320, 200, 0, &window, &renderer);
 SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
 SDL_RenderClear(renderer);
 SDL_Surface *temp_surface = IMG_Load(SPRITE_FILE);

 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return 0;
 }

 sprite_texture = SDL_CreateTextureFromSurface(renderer,
 temp_surface);
 SDL_FreeSurface(temp_surface);
 last_frame_time = last_time = SDL_GetTicks();

 emscripten_set_main_loop(game_loop, 0, 0);
 return 1;
}

Game Objects and the Game Loop Chapter 6

[134]

You may have noticed that in the preceding code we have added a significant number of
global variables to define player-specific values:

float player_x = 160.0;
float player_y = 100.0;
float player_rotation = PI;
float player_dx = 0.0;
float player_dy = 1.0;
float player_vx = 0.0;
float player_vy = 0.0;

In the Game objects section, we will begin to create game objects and move these values from
global definitions into objects, but, for the time being, having them as global variables will
work. We are adding the ability to move the player's ship around in a way that is similar to
the classic arcade game Asteroids. In the final version of our game, we will have two
spaceships fighting in a duel. To do this, we will need to keep track of the x and y
coordinates of our ship and the ship's rotation; player_dx and player_dy make up a
normalized direction vector for our spaceship.

The player_vx and player_vy variables are the player's current x and y velocities
respectively.

Instead of having the left and right keys move the spaceship left or right while they are
being held down, we are going to have those keys turn the spaceship to the left or the right.
To do this, we will have our input function call the rotate_left and rotate_right
functions:

void rotate_left() {
 player_rotation -= delta_time;
 if(player_rotation < 0.0) {
 player_rotation += TWO_PI;
 }
 player_dx = sin(player_rotation);
 player_dy = -cos(player_rotation);
}

void rotate_right() {
 player_rotation += delta_time;
 if(player_rotation >= TWO_PI) {
 player_rotation -= TWO_PI;
 }
 player_dx = sin(player_rotation);
 player_dy = -cos(player_rotation);
}

Game Objects and the Game Loop Chapter 6

[135]

If the player is turning left, we subtract the delta_time variable from the player rotation,
which is the amount of time in seconds since the last frame rendered.
The player_rotation variable is the player's rotation in radians, where 180 degrees = π
(3.14159…). That means that the player can turn 180 degrees by pressing and holding the
left or right arrows for about three seconds. We also have to correct our rotation if the
player's rotation goes below 0 or if the player's rotation goes above 2π (360 degrees). If you
are not familiar with radians, it is an alternative to the system of measuring angles in which
there are 360 degrees in a circle. Using radians, you think of how far you would have to
walk around the circumference of a unit circle to get to that angle. A circle with a radius of
1 is called a unit circle.

The unit circle is on the left:

A unit circle and a circle with a radius of 2

The formula for the diameter of a circle is 2πr (in our code 2 * PI * radius). So, 2π in
radians is the same as saying 360 degrees. Most game engines and math libraries use
radians instead of degrees, but for some reason SDL uses degrees when it rotates sprites,
so we will need to change our rotation in radians back to degrees when we render our
game objects (yuck!).

Just to make sure everyone is following me, in our code the PI macro
holds an approximate value for π that is defined as the ratio of a circle's
diameter to its circumference. A typical approximation for π is 3.14,
although we will approximate π as 3.14159 in our code.

Game Objects and the Game Loop Chapter 6

[136]

We also need to accelerate or decelerate the spaceship if the player hits the up or down keys
on the keyboard. To do this, we will create accelerate and decelerate functions that
are called when the player holds down the up or down keys:

void accelerate() {
 player_vx += player_dx * delta_time;
 player_vy += player_dy * delta_time;
}

void decelerate() {
 player_vx -= (player_dx * delta_time) / 2.0;
 player_vy -= (player_dy * delta_time) / 2.0;
}

Both these functions take the player_dx and player_dy variables that were calculated
using sin and -cos in our rotation functions and use those values to add to the player's x
and y velocity stored in the player_vx and player_vy variables. We multiply the value
by delta_time, which will set our acceleration to 1 pixel per second squared. Our
decelerate function divides that value by 2, which sets our deceleration rate to 0.5 pixels per
second squared.

After we define the accelerate and decelerate functions, we will need to create a
function that will cap the x and y velocity of our spaceship to 2.0 pixels per second:

void cap_velocity() {
 float vel = sqrt(player_vx * player_vx + player_vy * player_vy);

 if(vel > MAX_VELOCITY) {
 player_vx /= vel;
 player_vy /= vel;
 player_vx *= MAX_VELOCITY;
 player_vy *= MAX_VELOCITY;
 }
}

That is not the most efficient way to define this function, but it is the easiest to understand.
The first line determines the magnitude of our velocity vector. If you do not know what
that means, let me explain it a little better. We have a speed along the x axis. We also have a
speed along the y axis. We want to cap the overall speed. If we capped the x and y
velocities individually, we would be able to go faster by traveling diagonally. To calculate
our total velocity, we need to use the Pythagorean theorem (do you remember high-school
trigonometry?). If you don't remember, when you have a right triangle, to calculate its
hypotenuse you take the square root of the sum of the square of the other two sides
(remember A2 + B2 = C2?):

Game Objects and the Game Loop Chapter 6

[137]

Using the Pythagorean theorem to determine the magnitude of the velocity using the x and y velocities

So, to calculate our velocity overall we need to square the x velocity, square the y velocity,
add them together, and then take the square root. At this point, we check our velocity
against the MAX_VELOCITY value, which we have defined as 2.0. If the current velocity is
greater than this maximum velocity, we need to adjust our x and y velocities so that we are
at a value of 2. We do this by dividing both the x and y velocities by the overall velocity,
then multiplying by MAX_VELOCITY.

We will eventually need to write a move function that will move all of our game objects, but
for the moment we will only be moving our player's spaceship:

void move() {
 current_time = SDL_GetTicks();
 delta_time = (float)(current_time - last_time) / 1000.0;
 last_time = current_time;

 if(left_key_down) {
 rotate_left();
 }

 if(right_key_down) {
 rotate_right();
 }

 if(up_key_down) {
 accelerate();
 }

Game Objects and the Game Loop Chapter 6

[138]

 if(down_key_down) {
 decelerate();
 }

 cap_velocity();
 player_x += player_vx;

 if(player_x > 320) {
 player_x = -16;
 }
 else if(player_x < -16) {
 player_x = 320;
 }
 player_y += player_vy;

 if(player_y > 200) {
 player_y = -16;
 }
 else if(player_y < -16) {
 player_y = 200;
 }
}

The first thing we need to do is get the current time for this frame, and then use that in
combination with our previous frame time to calculate the delta_time.
The delta_time variable is the amount of time in seconds since the last frame time. We
will need to tie much of the movement and animation to this value to get a consistent game
speed that's independent of the frame rate on any given computer. After that, we need to
rotate and accelerate or decelerate our spaceship based on the flags we set in our input
function. We then cap our velocity and use the x and y values to modify the x and y
coordinates of the player's spaceship.

There were a series of flags we used in the move function that told us whether we were
currently holding down specific keys on the keyboard. To set those flags, we need an
input function that uses SDL_PollEvent to find keyboard events and set the flags
accordingly:

void input() {
 if(SDL_PollEvent(&event)){
 switch(event.type){
 case SDL_KEYDOWN:
 switch(event.key.keysym.sym){
 case SDLK_LEFT:
 left_key_down = true;
 break;
 case SDLK_RIGHT:

Game Objects and the Game Loop Chapter 6

[139]

 right_key_down = true;
 break;
 case SDLK_UP:
 up_key_down = true;
 break;
 case SDLK_DOWN:
 down_key_down = true;
 break;
 default:
 break;
 }
 break;
 case SDL_KEYUP:
 switch(event.key.keysym.sym){
 case SDLK_LEFT:
 left_key_down = false;
 break;
 case SDLK_RIGHT:
 right_key_down = false;
 break;
 case SDLK_UP:
 up_key_down = false;
 break;
 case SDLK_DOWN:
 down_key_down = false;
 break;
 default:
 break;
 }
 break;
 default:
 break;
 }
 }
}

This function includes a few switch statements that look for the arrow key presses and
releases. If one of the arrow keys is pressed, we set the appropriate flag to true; if one is
released, we set that flag to false.

Next, we define the render function. This function currently renders our spaceship sprite
and will eventually render all of our sprites to the HTML canvas:

void render() {
 SDL_RenderClear(renderer);
 dest.x = player_x;
 dest.y = player_y;

Game Objects and the Game Loop Chapter 6

[140]

 float degrees = (player_rotation / PI) * 180.0;
 SDL_RenderCopyEx(renderer, sprite_texture,
 NULL, &dest,
 degrees, NULL, SDL_FLIP_NONE);
 SDL_RenderPresent(renderer);
}

This function clears the HTML canvas, sets the destination x and y values
to player_x and player_y, calculates the player's rotation in degrees, and then renders
that sprite to the canvas. We swapped out our previous call to SDL_RenderCopy with a call
to SDL_RenderCopyEx. This new function allows us to pass in a value that rotates the
sprite of our spaceship.

After we defined our render function, we have our new game_loop function:

void game_loop() {
 input();
 move();
 render();
}

This function will be called by emscripten_set_main_loop from within our main
function. This function runs every frame that is rendered and is responsible for managing
all the activities that go on within our game. It currently calls the input, move, and render
functions that we defined earlier in our game code, and in the future it will call our AI code,
sound effects, physics code, and more.

Compiling gameloop.html
Now that we have written our code, we can go ahead and compile our game loop app.
Before you run this command, I want to reiterate that you need to have downloaded the
project from GitHub (https:/ ​/​github. ​com/​PacktPublishing/ ​Hands- ​On-​Game-
Development-​with- ​WebAssembly) because you will need the PNG files located in the
/Chapter06-game-loop/sprites folder in order to build this project.

Once you have your folders set up properly, compile the app with the following command:

emcc game_loop.c -o gameloop.html --preload-file sprites -s
NO_EXIT_RUNTIME=1 -s USE_SDL_IMAGE=2 -s SDL2_IMAGE_FORMATS=["png"] -s
EXTRA_EXPORTED_RUNTIME_METHODS="['cwrap', 'ccall']" -s USE_SDL=2

Serve the directory where you compiled it with a web server, or build and run it with
emrun, and it should look like this when loaded into a web browser:

https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly

Game Objects and the Game Loop Chapter 6

[141]

 The screenshot gameloop.html

It is important to remember that you must run WebAssembly apps using
a web server, or with emrun. If you would like to run your WebAssembly
app using emrun, you must compile it with the --emrun flag. The web
browser requires a web server to stream the WebAssembly module. If
you attempt to open an HTML page that uses WebAssembly in a browser
directly from your hard drive, that WebAssembly module will not load.

After the app has compiled, you should be able to move the spaceship around the canvas
using the arrow keys. Now that we have a basic game loop, in the next section, we will be
adding some game objects to our app, making it more of a game.

Game objects
Our approach so far has been entirely procedural and has been coded so that it could have
been written in C and not C++. Developers have been writing games in C and even
assembly language for a long time, so having an object-oriented approach to game design is
not strictly necessary, but from a code management perspective OOP is a great way to
design and write your games. Game objects can help us manage our allocated memory
through object pooling. At this point, it will also make sense to begin breaking our program
up into multiple files. My approach will be to have a single .hpp file that defines all of our
game objects, and one .cpp file for each of our objects.

Game Objects and the Game Loop Chapter 6

[142]

The player's spaceship game object
Up to this point, we have been keeping all of the values that track our player's ship in
global variables. From an organizational perspective, this is less than ideal. The first game
object we will create will be the player's ship object. We will start with a basic class and add
more object-oriented features to our code later.

Here is the code for our new header file, game.hpp:

#ifndef __GAME_H__
#define __GAME_H__
#include <SDL2/SDL.h>
#include <SDL2/SDL_image.h>
#include <emscripten.h>
#include <stdio.h>
#include <stdbool.h>
#include <math.h>
#include <string>
#include <vector>

#define SPRITE_FILE "sprites/Franchise.png"
#define MAX_VELOCITY 2.0
#define PI 3.14159
#define TWO_PI 6.28318

extern Uint32 last_time;
extern Uint32 last_frame_time;
extern Uint32 current_time;
extern SDL_Window *window;
extern SDL_Renderer *renderer;
extern SDL_Rect dest;
extern SDL_Texture *sprite_texture;
extern SDL_Event event;
extern bool left_key_down;
extern bool right_key_down;
extern bool up_key_down;
extern bool down_key_down;
extern bool space_key_down;
extern float delta_time;
extern int diff_time;

class PlayerShip {
 public:
 float m_X;
 float m_Y;
 float m_Rotation;
 float m_DX;

Game Objects and the Game Loop Chapter 6

[143]

 float m_DY;
 float m_VX;
 float m_VY;

 PlayerShip();
 void RotateLeft();
 void RotateRight();
 void Accelerate();
 void Decelerate();
 void CapVelocity();
 void Move();
 void Render();
};

extern PlayerShip player;
#endif

All of our CPP files will include this game.hpp header file. The first few lines of this file are
to make sure we do not include this file more than once. We are then defining all of the
global variables we had defined in our older C files:

extern Uint32 last_time;
extern Uint32 last_frame_time;
extern Uint32 current_time;
extern SDL_Window *window;
extern SDL_Renderer *renderer;
extern SDL_Rect dest;
extern SDL_Texture *sprite_texture;
extern SDL_Event event;
extern bool left_key_down;
extern bool right_key_down;
extern bool up_key_down;
extern bool down_key_down;
extern float delta_time;

In the header file, we are not allocating space on to the heap. The use of
the extern keyword before our global variable definitions tells the compiler that we
declared the global variable in one of the .cpp files. Right now, we still have a lot of global
variables. We will be reducing the number of these globals as we make modifications to our
code in this chapter.

If this were production code, it would make sense to move all of these values into classes,
but, for now, we are only creating a PlayerShip object. We also have our class definition
for PlayerShip. Developers usually create class definitions inside header files.

Game Objects and the Game Loop Chapter 6

[144]

After we define all of our global variables, we will need our class definition.

Here is the definition of our PlayerShip class:

class PlayerShip {
 public:
 float m_X;
 float m_Y;
 float m_Rotation;
 float m_DX;
 float m_DY;
 float m_VX;
 float m_VY;

 PlayerShip();
 void RotateLeft();
 void RotateRight();
 void Accelerate();
 void Decelerate();
 void CapVelocity();
 void Move();
 void Render();
 };

extern PlayerShip player;

In this book, we are going to declare all of our attributes public. That means our code can
access them from anywhere, not just from inside this function. If you are working on a
project with more than one developer, this is not usually considered to be a good practice.
Preventing other classes from being able to directly modify some of our attributes such
as m_DX and m_DY is a good idea if you do not want another developer to directly alter
specific attributes that only functions in a class are meant to modify. For demonstration
purposes, however, having everything in our class defined as public will simplify our
design.

After we define our attributes, we have a series of functions that will be associated with this
class once defined. The first function, PlayerShip(), has the same name as our class,
which makes it the constructor, that is, the function that is called by default when our app
creates an object of the PlayerShip type. If we wished, we could define a destructor
function, which would run when the object was destroyed, by calling it ~PlayerShip().
We do not currently need a destructor for that object so we will not define it here, which
means we will rely on C++ to create a default destructor for this class.

Game Objects and the Game Loop Chapter 6

[145]

All of the other functions we have defined in this class correspond to functions we created
in previous C versions of our game. Moving all of these functions to a class allows us to
organize our code better. Notice that after our class definition, we created another global
variable that is a PlayerShip called player. The compiler shares this player object in all of
the .cpp files that include our game.hpp file.

Object pooling
We have defined our first game object, which represents our player's spaceship, but all we
can do is fly around the game screen. We need to allow our player to shoot a projectile. If
we created a new projectile object every time a player shot a projectile, we would quickly
fill up the WASM module's memory. What we need to do is create what is known as an
object pool. Object pools are used to create objects with a fixed lifespan. Our projectiles
only need to be alive long enough to either hit a target or travel a fixed distance before
disappearing. If we create a set number of projectiles that is a little more than we need on
the screen at one time, we can keep those objects in a pool in either an active or inactive
state. When we need to launch a new projectile, we scan our object pool for an inactive one,
then activate it and place it at the launch point. This way, we are not continually allocating
and de-allocating memory to create our projectiles.

Let's go back to our game.hpp file and add a few class definitions right before the #endif
macro:

class Projectile {
 public:
 const char* c_SpriteFile = "sprites/Projectile.png";
 const int c_Width = 8;
 const int c_Height = 8;
 SDL_Texture *m_SpriteTexture;
 bool m_Active;
 const float c_Velocity = 6.0;
 const float c_AliveTime = 2000;
 float m_TTL;
 float m_X;
 float m_Y;
 float m_VX;
 float m_VY;

 Projectile();
 void Move();
 void Render();
 void Launch(float x, float y, float dx, float dy);
};

Game Objects and the Game Loop Chapter 6

[146]

class ProjectilePool {
 public:
 std::vector<Projectile*> m_ProjectileList;
 ProjectilePool();
 ~ProjectilePool();
 void MoveProjectiles();
 void RenderProjectiles();
 Projectile* GetFreeProjectile();
};

extern ProjectilePool* projectile_pool;

So, we have defined all of our classes inside the game.hpp file. Right now, we have three
classes: PlayerShip, Projectile, and ProjectilePool.

The PlayerShip class existed before, but we are adding some additional functionality to
that class to allow us to fire projectiles. To allow for this new functionality, we are adding
some new public attributes to our class definition:

public:
 const char* c_SpriteFile = "sprites/Franchise.png";
 const Uint32 c_MinLaunchTime = 300;
 const int c_Width = 16;
 const int c_Height = 16;
 Uint32 m_LastLaunchTime;
 SDL_Texture *m_SpriteTexture;

We moved a few of the values we had in #define macros directly into the class. The
 c_SpriteFile constant is the name of the PNG file we will load to render our player's
spaceship sprite. The c_MinLaunchTime constant is the minimum amount of time in
milliseconds between two launches of projectiles. We have also defined the width and
height of our sprite with the c_Width and c_Height constants. This way, we can have
different values for different object types. The m_LastLaunchTime attribute tracks the most
recent projectile launch time in milliseconds. The sprite texture, which had previously been
a global variable, will move into the attributes of the player's ship class.

After making our modifications to the PlayerShip class definition, we must add a class
definition for two new classes. The first of these two classes is the Projectile class:

class Projectile {
 public:
 const char* c_SpriteFile = "sprites/Projectile.png";
 const int c_Width = 8;
 const int c_Height = 8;
 const float c_Velocity = 6.0;
 const float c_AliveTime = 2000;

Game Objects and the Game Loop Chapter 6

[147]

 SDL_Texture *m_SpriteTexture;
 bool m_Active;
 float m_TTL;
 float m_X;
 float m_Y;
 float m_VX;
 float m_VY;

 Projectile();
 void Move();
 void Render();
 void Launch(float x, float y, float dx, float dy);
};

This class represents the projectile game objects that will be shot by the player, and later the
enemy spaceship. We start with several constants that define where we place our sprite in
the virtual filesystem, as well as the width and height:

class Projectile {
 public:
 const char* c_SpriteFile = "sprites/Projectile.png";
 const int c_Width = 8;
 const int c_Height = 8;

The next attribute is m_SpriteTexture, which is a pointer to the SDL texture used to
render our projectiles. We need a variable to tell our object pool that this game object is
active. We have called that attribute m_Active. Next, we have a constant that defines how
fast our projectile will move in pixels per second, called c_Velocity, and a constant that
indicates how long the projectile will stay alive in milliseconds before self-destructing,
called c_AliveTime.

The m_TTL variable is a time to live variable that tracks how many milliseconds remain
until this projectile will change its m_Active variable to false and recycle itself back into
the projectile pool. The m_X, m_Y, m_VX, and m_VY variables are used to track the x and y
position and the x and y velocity of our projectile.

We then declare four functions for our projectile class:

Projectile();
void Move();
void Render();
void Launch(float x, float y, float dx, float dy);

Game Objects and the Game Loop Chapter 6

[148]

The Projectile function is our class constructor. If our projectile is currently active, Move
and Render will be called once per frame. The Move function will manage the movement of
an active projectile and Render will manage drawing the projectile sprite to our HTML
canvas element. The Launch function will be called from our PlayerShip class to make
our ship launch a projectile in the direction the ship is facing.

The final class definition we must add to our game.hpp file is the ProjectilePool class:

class ProjectilePool {
 public:
 std::vector<Projectile*> m_ProjectileList;
 ProjectilePool();
 ~ProjectilePool();
 void MoveProjectiles();
 void RenderProjectiles();
 Projectile* GetFreeProjectile();
};

This class manages a pool of 10 projectiles stored inside a vector
attribute, m_ProjectileList. The functions for this class include a constructor and
destructor, MoveProjectiles, RenderProjectils, and GetFreeProjectile.

The MoveProjectiles() function loops over our projectile list calling the move function
on any active projectile. The RenderProjectiles() function loops over our projectile list
and renders to canvas any active projectile, and GetFreeProjectile returns the first
projectile in our pool that is not active.

Pooling the player's projectiles
Now that we have looked at the class definitions for our Projectile and
ProjectilePool classes, we need to create a projectile.cpp file and
a projectile_pool.cpp file to store the function code for those classes. Because this is in
Chapter 6, Game Objects and the Game Loop, I would recommend creating a new folder
named Chapter06 to hold these files. This code will do the work of pooling our projectiles,
requesting an inactive projectile when we need one, and moving and rendering our active
projectiles. First, let's look at the code we have in projectile.cpp:

#include "game.hpp"

Projectile::Projectile() {
 m_Active = false;
 m_X = 0.0;
 m_Y = 0.0;

Game Objects and the Game Loop Chapter 6

[149]

 m_VX = 0.0;
 m_VY = 0.0;

 SDL_Surface *temp_surface = IMG_Load(c_SpriteFile);

 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;
 }

 m_SpriteTexture = SDL_CreateTextureFromSurface(renderer,
 temp_surface);

 if(!m_SpriteTexture) {
 printf("failed to create texture: %s\n", IMG_GetError());
 return;
 }

 SDL_FreeSurface(temp_surface);
}

void Projectile::Move() {
 m_X += m_VX;
 m_Y += m_VY;
 m_TTL -= diff_time;

 if(m_TTL <= 0) {
 m_Active = false;
 m_TTL = 0;
 }
}

void Projectile::Render() {
 dest.x = m_X;
 dest.y = m_Y;
 dest.w = c_Width;
 dest.h = c_Height;

 int return_val = SDL_RenderCopy(renderer, m_SpriteTexture,
 NULL, &dest);
 if(return_val != 0) {
 printf("SDL_Init failed: %s\n", SDL_GetError());
 }
}

void Projectile::Launch(float x, float y, float dx, float dy) {
 m_X = x;
 m_Y = y;

Game Objects and the Game Loop Chapter 6

[150]

 m_VX = c_Velocity * dx;
 m_VY = c_Velocity * dy;
 m_TTL = c_AliveTime;
 m_Active = true;
}

That is the code that deals with moving, rendering, and launching a single projectile. The
first function declared here is the constructor:

Projectile::Projectile() {
 m_Active = false;
 m_X = 0.0;
 m_Y = 0.0;
 m_VX = 0.0;
 m_VY = 0.0;

 SDL_Surface *temp_surface = IMG_Load(c_SpriteFile);

 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;
 }

 m_SpriteTexture = SDL_CreateTextureFromSurface(renderer,
 temp_surface);

 if(!m_SpriteTexture) {
 printf("failed to create texture: %s\n", IMG_GetError());
 return;
 }
 SDL_FreeSurface(temp_surface);
}

The primary concern of this constructor is to set the projectile to inactive and create an SDL
texture that we will later use to render our sprite to the canvas element. After defining our
constructor, we define our Move function:

void Projectile::Move() {
 m_X += m_VX;
 m_Y += m_VY;
 m_TTL -= diff_time;
 if(m_TTL <= 0) {
 m_Active = false;
 m_TTL = 0;
 }
}

Game Objects and the Game Loop Chapter 6

[151]

This function changes the x and y position of our projectile based on the velocity, and
reduces the time to live of our projectile, setting it to inactive and recycling it into the
projectile pool if it's time to live is less than or equal to zero. The next function we define is
our Render function:

void Projectile::Render() {
 dest.x = m_X;
 dest.y = m_Y;
 dest.w = c_Width;
 dest.h = c_Height;

 int return_val = SDL_RenderCopy(renderer, m_SpriteTexture,
 NULL, &dest);
 if(return_val != 0) {
 printf("SDL_Init failed: %s\n", SDL_GetError());
 }
}

This code is similar to the code we used to render our spaceship, so it should look pretty
familiar to you. Our final projectile function is the Launch function:

void Projectile::Launch(float x, float y, float dx, float dy) {
 m_X = x;
 m_Y = y;
 m_VX = c_Velocity * dx;
 m_VY = c_Velocity * dy;
 m_TTL = c_AliveTime;
 m_Active = true;
}

This function is called from the PlayerShip class whenever the player presses the
spacebar on the keyboard. The PlayerShip object will pass in the x and y coordinates of
the player's ship, as well as the direction the ship is facing in the dx and dy parameters.
These parameters are used to set the x and y coordinates for the projectile as well as the x
and y velocity of the projectile. The game sets the time to live to the default alive time and
then sets the object to active.

Now that we have fully defined our Projectile class, let's set the ProjectilePool class
that will manage those projectiles. The following code will be in our
projectile_pool.cpp file:

#include "game.hpp"

ProjectilePool::ProjectilePool() {
 for(int i = 0; i < 10; i++) {
 m_ProjectileList.push_back(new Projectile());

Game Objects and the Game Loop Chapter 6

[152]

 }
}

ProjectilePool::~ProjectilePool() {
 m_ProjectileList.clear();
}

void ProjectilePool::MoveProjectiles() {
 Projectile* projectile;
 std::vector<Projectile*>::iterator it;

 for(it = m_ProjectileList.begin(); it != m_ProjectileList.end(); it++
) {
 projectile = *it;
 if(projectile->m_Active) {
 projectile->Move();
 }
 }
}

void ProjectilePool::RenderProjectiles() {
 Projectile* projectile;
 std::vector<Projectile*>::iterator it;

 for(it = m_ProjectileList.begin(); it != m_ProjectileList.end(); it++
) {
 projectile = *it;
 if(projectile->m_Active) {
 projectile->Render();
 }
 }
}

Projectile* ProjectilePool::GetFreeProjectile() {
 Projectile* projectile;
 std::vector<Projectile*>::iterator it;
 for(it = m_ProjectileList.begin(); it != m_ProjectileList.end(); it++
) {
 projectile = *it;
 if(projectile->m_Active == false) {
 return projectile;
 }
 }
 return NULL;
}

Game Objects and the Game Loop Chapter 6

[153]

The first two functions are the constructor and destructor functions. These functions create
and destroy the projectiles inside our list. The next function is the MoveProjectiles
function, which loops through our m_ProjectileList looking for active projectiles and
moving them. After that, we have a RenderProjectiles function, which is quite similar
to our MoveProjectiles function. This function loops through our list calling the Render
function on all active projectiles. The final function is the GetFreeProjectile function,
which steps through m_ProjectileList looking for the first projectile that is not active in
order to return it. Whenever we want to launch a projectile, we will need to call this
function to find one that is not active.

Creating an enemy
So, now that we have a player ship that is shooting, we can work on adding an enemy ship.
It will be similar to the PlayerShip class. Later, we will get into class inheritance so that
we will not end up with a copied and pasted version of the same code, but for right now we
will add a new class definition to our game.hpp file that is almost identical to our
PlayerShip class:

enum FSM_STUB {
 SHOOT = 0,
 TURN_LEFT = 1,
 TURN_RIGHT = 2,
 ACCELERATE = 3,
 DECELERATE = 4
};

class EnemyShip {
 public:
 const char* c_SpriteFile = "sprites/BirdOfAnger.png";
 const Uint32 c_MinLaunchTime = 300;
 const int c_Width = 16;
 const int c_Height = 16;
 const int c_AIStateTime = 2000;

 Uint32 m_LastLaunchTime;
 SDL_Texture *m_SpriteTexture;

 FSM_STUB m_AIState;
 int m_AIStateTTL;

 float m_X;
 float m_Y;
 float m_Rotation;

Game Objects and the Game Loop Chapter 6

[154]

 float m_DX;
 float m_DY;
 float m_VX;
 float m_VY;
 EnemyShip();
 void RotateLeft();
 void RotateRight();
 void Accelerate();
 void Decelerate();
 void CapVelocity();
 void Move();
 void Render();
 void AIStub();
};

You will notice that before the EnemyShip class we defined an FSM_STUB enumeration. An
enumeration is like a new data type that you can define inside your C or C++ code. We will
be discussing artificial intelligence and finite state machines in another chapter, but right
now we still want our enemy ship to do something, even if that something is not very
intelligent. We created an FSM_STUB enumeration to define the things that our enemy ship
can currently do. We have also created an AIStub inside our EnemyShip class that will act
as a stand-in for future AI logic. The m_AIStateTTL integer attribute is a countdown timer
to an AI state change. There is also a new constant called c_AIStateTime that has a value
of 2000. That is the number of milliseconds our AI state will persist before it changes
randomly.

We will create an enemy_ship.cpp file and add nine functions to it. The first function is
our constructor, which is preceded by the #include of our game.hpp file:

#include "game.hpp"
EnemyShip::EnemyShip() {
 m_X = 60.0;
 m_Y = 50.0;
 m_Rotation = PI;
 m_DX = 0.0;
 m_DY = 1.0;
 m_VX = 0.0;
 m_VY = 0.0;
 m_LastLaunchTime = current_time;

 SDL_Surface *temp_surface = IMG_Load(c_SpriteFile);

 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;
 }

Game Objects and the Game Loop Chapter 6

[155]

 else {
 printf("success creating enemy ship surface\n");
 }
 m_SpriteTexture = SDL_CreateTextureFromSurface(renderer,
 temp_surface);

 if(!m_SpriteTexture) {
 printf("failed to create texture: %s\n", IMG_GetError());
 return;
 }
 else {
 printf("success creating enemy ship texture\n");
 }
 SDL_FreeSurface(temp_surface);
}

After that, we have the functions RotateLeft and RotateRight which are used to turn
the space ship:

void EnemyShip::RotateLeft() {
 m_Rotation -= delta_time;
 if(m_Rotation < 0.0) {
 m_Rotation += TWO_PI;
 }
 m_DX = sin(m_Rotation);
 m_DY = -cos(m_Rotation);
}
void EnemyShip::RotateRight() {
 m_Rotation += delta_time;

 if(m_Rotation >= TWO_PI) {
 m_Rotation -= TWO_PI;
 }
 m_DX = sin(m_Rotation);
 m_DY = -cos(m_Rotation);
}

The functions Accelerate, Decelerate and CapVelocity are all used to modify the
Enemy Ship's velocity.:

void EnemyShip::Accelerate() {
 m_VX += m_DX * delta_time;
 m_VY += m_DY * delta_time;
}

void EnemyShip::Decelerate() {
 m_VX -= (m_DX * delta_time) / 2.0;
 m_VY -= (m_DY * delta_time) / 2.0;

Game Objects and the Game Loop Chapter 6

[156]

}

void EnemyShip::CapVelocity() {
 float vel = sqrt(m_VX * m_VX + m_VY * m_VY);

 if(vel > MAX_VELOCITY) {
 m_VX /= vel;
 m_VY /= vel;

 m_VX *= MAX_VELOCITY;
 m_VY *= MAX_VELOCITY;
 }
}

The next thing we add to the file is the Render function:

void EnemyShip::Render() {
 dest.x = (int)m_X;
 dest.y = (int)m_Y;
 dest.w = c_Width;
 dest.h = c_Height;

 float degrees = (m_Rotation / PI) * 180.0;

 int return_code = SDL_RenderCopyEx(renderer, m_SpriteTexture,
 NULL, &dest,
 degrees, NULL, SDL_FLIP_NONE);

 if(return_code != 0) {
 printf("failed to render image: %s\n", IMG_GetError());
 }
}

Finally, we add the Move and AIStub functions:

void EnemyShip::Move() {
 AIStub();

 if(m_AIState == TURN_LEFT) {
 RotateLeft();
 }

 if(m_AIState == TURN_RIGHT) {
 RotateRight();
 }

 if(m_AIState == ACCELERATE) {
 Accelerate();

Game Objects and the Game Loop Chapter 6

[157]

 }

 if(m_AIState == DECELERATE) {
 Decelerate();
 }

 CapVelocity();
 m_X += m_VX;

 if(m_X > 320) {
 m_X = -16;
 }
 else if(m_X < -16) {
 m_X = 320;
 }

 m_Y += m_VY;

 if(m_Y > 200) {
 m_Y = -16;
 }
 else if(m_Y < -16) {
 m_Y = 200;
 }

 if(m_AIState == SHOOT) {
 Projectile* projectile;
 if(current_time - m_LastLaunchTime >= c_MinLaunchTime) {
 m_LastLaunchTime = current_time;
 projectile = projectile_pool->GetFreeProjectile();

 if(projectile != NULL) {
 projectile->Launch(m_X, m_Y, m_DX, m_DY);
 }
 }
 }
}

void EnemyShip::AIStub() {
 m_AIStateTTL -= diff_time;
 if(m_AIStateTTL <= 0) {
 // for now get a random AI state.
 m_AIState = (FSM_STUB)(rand() % 5);
 m_AIStateTTL = c_AIStateTime;
 }
}

Game Objects and the Game Loop Chapter 6

[158]

These functions are all the same as the functions defined in our player_ship.cpp file,
except for the Move function. We have added a new function, AIStub. Here is the code in
the AIStub function:

void EnemyShip::AIStub() {
 m_AIStateTTL -= diff_time;

 if(m_AIStateTTL <= 0) {
 // for now get a random AI state.
 m_AIState = (FSM_STUB)(rand() % 5);
 m_AIStateTTL = c_AIStateTime;
 }
}

This function is meant to be temporary. We will eventually define a real AI for our enemy
spaceship. Right now, this function uses m_AIStateTTL to count down a fixed number of
milliseconds until it reaches or goes below 0. At this point, it randomly sets a new AI state
based on one of the values in the enumeration we defined earlier called FSM_STUB. We
have also made some modifications to the Move() function that we created for the player
ship:

void EnemyShip::Move() {
 AIStub();

 if(m_AIState == TURN_LEFT) {
 RotateLeft();
 }
 if(m_AIState == TURN_RIGHT) {
 RotateRight();
 }
 if(m_AIState == ACCELERATE) {
 Accelerate();
 }
 if(m_AIState == DECELERATE) {
 Decelerate();
 }
 CapVelocity();
 m_X += m_VX;

 if(m_X > 320) {
 m_X = -16;
 }
 else if(m_X < -16) {
 m_X = 320;
 }
 m_Y += m_VY;

Game Objects and the Game Loop Chapter 6

[159]

 if(m_Y > 200) {
 m_Y = -16;
 }
 else if(m_Y < -16) {
 m_Y = 200;
 }

 if(m_AIState == SHOOT) {
 Projectile* projectile;
 if(current_time - m_LastLaunchTime >= c_MinLaunchTime) {
 m_LastLaunchTime = current_time;
 projectile = projectile_pool->GetFreeProjectile();

 if(projectile != NULL) {
 projectile->Launch(m_X, m_Y, m_DX, m_DY);
 }
 }
 }
}

I have taken the code from our PlayerShip::Move function and made some modifications
to it. At the beginning of this new function, we have added a call to the AIStub function.
This function is a stand-in for our future AI. Instead of looking at our keyboard input as we
did for the player ship, the enemy ship will look at the AI state and choose to rotate left,
rotate right, accelerate, decelerate, or shoot. That is not real AI, it is just the ship doing
random things, but it allows us to get an idea of what the ship will look like when it has
real AI, and it will allow us to add more functionality later, such as collision detection.

Compiling game_objects.html
Now that we have built all of these game objects, we no longer have everything inside a
single file. We will need to include several CPP files and compile them all into a single
output file we will call game_objects.html. Because we have moved from the world of C
to C++, we will be using em++ to indicate that the files we are compiling are C++ files and
not C files. That is not strictly necessary, because Emscripten will figure out that we are
compiling with C++ when it receives files with the .cpp extension as input. We are also
telling the compiler explicitly the version of C++ we are using when we pass in the -
std=c++17 flag. Go ahead and compile the game_objects.html file with the following
em++ command:

em++ main.cpp enemy_ship.cpp player_ship.cpp projectile.cpp
projectile_pool.cpp -std=c++17 --preload-file sprites -s USE_WEBGL2=1 -s
USE_SDL=2 -s USE_SDL_IMAGE=2 -s SDL2_IMAGE_FORMATS=["png"] -o
game_objects.html

Game Objects and the Game Loop Chapter 6

[160]

Now that we have our game_objects.html file compiled use a web server to serve the
files and open it in a browser, it should look like this:

A screenshot of game_objects.html

Do not forget that you must run WebAssembly apps using a web server,
or with emrun. If you would like to run your WebAssembly app using
emrun, you must compile it with the --emrun flag. The web browser
requires a web server to stream the WebAssembly module. If you attempt
to open an HTML page that uses WebAssembly in a browser directly from
your hard drive, that WebAssembly module will not load.

You can move your spaceship around the canvas with the arrow keys, and fire a projectile
with the spacebar. The enemy ship will move around the canvas shooting randomly.

If you are having problems building this app, or any of the other apps in
this book, please remember you can contact me on Twitter, https:/ ​/
twitter. ​com/ ​battagline/ ​, using the Twitter handle @battagline to ask
questions. I am happy to help.

https://twitter.com/battagline/
https://twitter.com/battagline/
https://twitter.com/battagline/
https://twitter.com/battagline/
https://twitter.com/battagline/
https://twitter.com/battagline/
https://twitter.com/battagline/
https://twitter.com/battagline/
https://twitter.com/battagline/

Game Objects and the Game Loop Chapter 6

[161]

Summary
In this chapter, we learned how to create a basic game framework. We learned what a game
loop is and how we create one for WebAssembly using Emscripten. We learned about game
objects and created classes to define our player's spaceship, an enemy spaceship, and
projectiles. We learned about object pooling, and how we can use an object pool to recycle
objects in memory so that we do not need to create and destroy new objects in memory
continually. We used this knowledge to create an object pool for our projectiles. We also
created an AI stub for our enemy spaceship that gave that object random behavior, and we
created functions that let our player and enemy shoot at each other while our projectiles
pass harmlessly through the spaceships.

By the end of the next chapter, we will add collision detection; this will allow our projectiles
to destroy the spaceships they hit, and add an animation sequence that will show a ship
being destroyed when it is hit by one of the projectiles.

7
Collision Detection

Right now, our spaceships can fly around and shoot at each other, but nothing happens.

Collision detection is used in the vast majority of video games to determine whether game
objects intersect. There are a large number of methods for detecting collisions between
different game objects. Various methods can work better in different situations. There is
also a trade-off between the amount of computation time and how accurate our collision
detection will be.

You will need to include several images in your build to make this project
work. Make sure you include the /Chapter07/sprites/ folder from the
project's GitHub. If you haven't yet downloaded the GitHub project, you
can get it online here: https:/ ​/​github. ​com/ ​PacktPublishing/ ​Hands- ​On-
Game- ​Development-with-WebAssembly.

In this chapter, we will discuss the following:

Collision detection
Collider objects
Types of colliders
Adding colliders to our game objects

Types of 2D collision detection
I could write an entire book on the kinds of 2D collision detection available to us, let alone
the number available for collision detection in 3D. I have written several TypeScript
tutorials on how to use different detection techniques, both basic and sophisticated
at https:/​/​www.​embed. ​com/ ​typescript- ​games/ ​basic- ​collision- ​detection. ​html, but, in
this book, we will stick to using a combination of some of the more basic collision
techniques.

https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://www.embed.com/typescript-games/basic-collision-detection.html
https://www.embed.com/typescript-games/basic-collision-detection.html
https://www.embed.com/typescript-games/basic-collision-detection.html
https://www.embed.com/typescript-games/basic-collision-detection.html
https://www.embed.com/typescript-games/basic-collision-detection.html
https://www.embed.com/typescript-games/basic-collision-detection.html
https://www.embed.com/typescript-games/basic-collision-detection.html
https://www.embed.com/typescript-games/basic-collision-detection.html
https://www.embed.com/typescript-games/basic-collision-detection.html
https://www.embed.com/typescript-games/basic-collision-detection.html
https://www.embed.com/typescript-games/basic-collision-detection.html
https://www.embed.com/typescript-games/basic-collision-detection.html
https://www.embed.com/typescript-games/basic-collision-detection.html
https://www.embed.com/typescript-games/basic-collision-detection.html
https://www.embed.com/typescript-games/basic-collision-detection.html
https://www.embed.com/typescript-games/basic-collision-detection.html
https://www.embed.com/typescript-games/basic-collision-detection.html
https://www.embed.com/typescript-games/basic-collision-detection.html
https://www.embed.com/typescript-games/basic-collision-detection.html
https://www.embed.com/typescript-games/basic-collision-detection.html
https://www.embed.com/typescript-games/basic-collision-detection.html

Collision Detection Chapter 7

[163]

Circle collision detection
The most basic kind of collision detection is circle or distance collision detection. If we treat
all of our colliders like little circles with a radius and a position, we can calculate the
distance between the two locations and see whether that distance is less than the sum of our
radii. This form of collision detection is high-speed, but precision is limited. If you look at
the projectile in our game, this method works pretty well. Our spaceships, on the other
hand, don't fit neatly into a circle. We can adjust the radius of our circle collider on any
given ship to give slightly different results. When circle collision detection works, it can be
very efficient:

Circle collision hit test

Collision Detection Chapter 7

[164]

Rectangle collision detection
Rectangle collision detection is another fast collision detection method. In many cases, it
may be faster than circle collision detection. A rectangle collider is defined by an x and a y
coordinate that is the position of the top left corner of our rectangle, as well as a width and
a height. Detecting a rectangle collision is pretty straightforward. We look for an overlap on
the x axis between the two rectangles. If there is an overlap on the x axis, we then look for
an overlap on the y axis. If we have an overlap on both axes, there is a collision. This
technique works pretty well for a lot of old-school video games. Several classic games
released on the Nintendo Entertainment System used this method of collision detection. In
the game we are writing, we are rotating our sprites, so using traditional non-oriented
collision detection will not be useful for us.

A short refresher on trigonometry
At this point, our collision detection algorithms start to get a lot more complicated. You
may remember some of the concepts from your high school trigonometry class, but some
basic trigonometry is very important for many collision detection algorithms. Even our
circle collision detection that we discussed earlier relies on the Pythagorean theorem, so, in
reality, unless you are doing simple non-oriented rectangle collision detection, at least a
tiny amount of trigonometry is required. Trigonometry is the study of triangles in
mathematics. Most games use what's called a Cartesian coordinate system. If you're not
familiar with that phrase, Cartesian coordinate system means we have a grid with an x and a y
coordinate (for a 2D game).

The word Cartesian means Rene Descartes invented it—the "I think;
therefore, I am" guy who had a lot of great ideas in mathematics and a lot
of stupid ideas in philosophy (ghost in the machine…yuck!).

There are a few key concepts we have to remember from our trigonometry classes in high
school, and they all have to do with right triangles. A right triangle is a triangle with a 90-
degree angle in it. That is a handy thing when you're working with a Cartesian coordinate
system because your x and y axes happen to form a right angle so any line between two
points that do not share either an x or a y coordinate could be considered the hypotenuse
(long side) of a right triangle. There are a few ratios we also need to remember; they are as
follows:

Sine - Y / Hypotenuse
Cosine - X / Hypotenuse
Tangent - Y / X

Collision Detection Chapter 7

[165]

Do you remember SOHCAHTOA? (Pronounced "Sock-Ah-Toe-Ah")

That was meant to remind you of the following versions of the trigonometry ratios:

Sine - Opposite / Hypotenuse
Cosine - Adjacent / Hypotenuse
Tangent - Opposite / Adjacent

In this formulation, the opposite side of the triangle is the y axis, and the adjacent side of the
triangle is the x axis. If you remember SOHCAHTOA, you may have an easier time
remembering these ratios. If not, just open this book back up or use Google:

SOHCAHTOA

Some people have been taught the phrase "Some Old Horse Came A-Hoppin'
Through Our Alley." I'm not sure if that is helpful. I find it more difficult to
remember than SOHCAHTOA, but that's a matter of opinion. So, if
imagining a horse that hops like a rabbit around some city's back alley is
your bag, then, by all means, use that instead.

You may remember earlier in this book we used the angle the ship was rotated with the
sin and cos math library functions to figure out how fast our ship was moving on the
x axis and the y axis. Those functions return the ratio for a given angle.

Another concept we need to know is the dot product between two unit vectors. A unit
vector is a vector with a length of 1. The dot product between two unit vectors is just the
cosine of the angle between those two unit vectors. The closer the dot products are to 1, the
closer the angle between the two vectors is to 0 degrees. If the dot product is close to 0, the
angles between the two vectors are close to 90 degrees, and if the dot product between the
two angles is close to -1, the angle between the two vectors is near 180 degrees. Dot
products between different vectors are very useful in both collision detection and in-game
physics. Refer to the following diagram:

Collision Detection Chapter 7

[166]

The dot product of two normalized vectors

Line collision detection
So, the first thing we need to do is talk about the difference between a line and a line
segment. We define a line using two points. That line continues after the points to infinity.
A line segment terminates at the two points and does not continue indefinitely. Two lines
that are not parallel will always intersect somewhere. Two non-parallel line segments may
or may not intersect.

For the most part, in games, we are interested in knowing whether two line segments
intersect:

Line versus line segment

Collision Detection Chapter 7

[167]

It is relatively easy to determine whether a line intersects with a line segment. All you have
to do is see whether the two points of the line segments are on opposite sides of your line.
Since a line is infinite, that means your line segment has to intersect with your line
somewhere. If you want to find out whether two line segments intersect, you can do it in
two stages. First, find out whether line segment A intersects with an infinite line B. If they
do intersect, then find out whether line segment B intersects with the infinite line A. If this
is true in both cases, the line segments intersect.

So, the next question is, how do we know mathematically whether two points are on the
opposite sides of a line? To do that, we are going to use the previously discussed dot
product and something called a vector normal. A vector normal is just a 90-degree rotated
version of your vector. See the following diagram:

A vector and that vector's normal

We also need the vector that has an origin at the same point but has a direction aiming at
point 1 of our line segment. If the dot product of those two vectors is a positive value, that
means the point is on the same side of the line as the normalized vector. If the dot product
is a negative value, that means the point is on the opposite side of the line to our normal
vector. If the line segment intersects, that means one point has a positive dot product and
the other side has a negative dot product. Since multiplying two negative numbers and two
positive numbers both give you a positive result and multiplying a negative and a positive
number gives you a negative result, multiply the two dot products together and see
whether the resulting value is negative. If it is, the line segment intersects with the line:

Collision Detection Chapter 7

[168]

Determining whether two points are on the opposite side of a line

Compound colliders
A compound collider is when a game object uses multiple colliders to determine whether
there was a collision. We are going to use compound circle colliders on our ship to improve
the accuracy of our ship collision detection while still providing the increased speed of
using circle colliders. We will cover our player's ship and our enemy ship with three circles.
Our projectiles are a circle shape, so using a circle for those is entirely natural. There is no
reason you need to limit compound colliders to using only one shape of collider. Internally,
a compound collider could mix circle colliders with rectangle colliders or any other type
you like.

Collision Detection Chapter 7

[169]

The following diagram shows a hypothetical compound collider made up of a circle and
two rectangle colliders:

A compound collider composed of three basic colliders

In the next section, we will learn how to implement a basic circle collision detection
algorithm.

Implementing circle collision detection
We are going to start by implementing circle collision detection because it is the fastest
collision detection method available. It also fits well with our projectiles, which will be the
most common kind of collider in our game. It will not do a great job on our ships, but later,
we can improve that situation by implementing a compound collider that will use multiple
circle colliders for each spaceship instead of just one. Because we only have two spaceships,
this will give us the best of both worlds in our collision detection: the speed of circle
collision detection, along with the accuracy of some of our better collision detection
methods.

Let's start by adding a Collider class definition into our game.hpp file and creating a new
collider.cpp file where we can define the functions used by our Collider class. Here's
what our new Collider class will look like in the game.hpp file:

class Collider {
 public:
 double m_X;

Collision Detection Chapter 7

[170]

 double m_Y;
 double m_Radius;

 Collider(double radius);

 bool HitTest(Collider *collider);
};

Here is the code we are putting in the collider.cpp file:

#include "game.hpp"
Collider::Collider(double radius) {
 m_Radius = radius;
}

bool Collider::HitTest(Collider *collider) {
 double dist_x = m_X - collider->m_X;
 double dist_y = m_Y - collider->m_Y;
 double radius = m_Radius + collider->m_Radius;

 if(dist_x * dist_x + dist_y * dist_y <= radius * radius) {
 return true;
 }
 return false;
}

The Collider class is a pretty simple circle collider. As we discussed earlier, a circle
collider has an x and a y coordinate and a radius. The HitTest function does a pretty
simple distance test to see whether the two circles are close enough to touch each other. We
do this by squaring the x distance and squaring the y distance between the two colliders,
which gives us the distance squared between the two points. We could take the square root
to determine the actual distance, but a square root is a relatively slow function to perform,
and it's much faster to square the sum of the radii to compare.

We will also need to talk about class inheritance briefly. If you look back at our code from
earlier, we have a PlayerShip class and an EnemyShip class. These classes share most of
their attributes. They all have x and y coordinates, x and y velocity, and many other
attributes that are identical. Many of the functions use the same code copied and pasted.
Instead of having this code defined twice, let's go back and create a Ship class that has all
of the features that are common to our PlayerShip and EnemyShip classes. Then, we can
refactor our EnemyShip and PlayerShip classes to inherit from our Ship class. Here is our
new Ship class definition that we are adding to game.hpp:

class Ship: public Collider {
 public:
 Uint32 m_LastLaunchTime;

Collision Detection Chapter 7

[171]

 const int c_Width = 16;
 const int c_Height = 16;
 SDL_Texture *m_SpriteTexture;
 Ship();
 float m_Rotation;
 float m_DX;
 float m_DY;
 float m_VX;
 float m_VY;

 void RotateLeft();
 void RotateRight();
 void Accelerate();
 void Decelerate();
 void CapVelocity();
 virtual void Move() = 0;
 void Render();
};

The first line, Ship class: public Collider, tells us that Ship will inherit all of the
public and protected members of the Collider class. We are doing this because we would
like to be able to perform a hit test. The Collider class also now defines the m_X and m_Y
attribute variables that keep track of the x and y coordinates of our object. We have moved
everything common to our EnemyShip and PlayerShip classes into the Ship class. You
will notice that we have one virtual function, virtual void Move() = 0;. This line tells
us that we will have a Move function in all classes that inherit from Ship, but we will need
to define Move inside those classes instead of directly in the Ship class. That makes Ship an
abstract class, which means that we cannot create an instance of Ship, but, instead, it is a
class from which other classes will inherit.

Class inheritance, abstract classes, and virtual functions are all a part of a
style of programming known as Object-Oriented Programming (OOP).
C++ was created in 1979 by Bjarne Stroustrup to add OOP to the C
programming language. If you're not familiar with OOP, there are
hundreds of books that go into great detail on this topic. I will only be able
to cover it in a cursory manner in this book.

Next, we are going to modify the PlayerShip and EnemyShip classes in the game.hpp file
to remove all of the methods and attributes we have moved into the parent Ship class. We
will also modify these classes so that they inherit from Ship. Here is the new version of the
class definitions:

class PlayerShip: public Ship {
 public:
 const char* c_SpriteFile = "sprites/Franchise.png";

Collision Detection Chapter 7

[172]

 const Uint32 c_MinLaunchTime = 300;
 PlayerShip();
 void Move();
};

class EnemyShip: public Ship {
 public:
 const char* c_SpriteFile = "sprites/BirdOfAnger.png";
 const Uint32 c_MinLaunchTime = 300;
 const int c_AIStateTime = 2000;
 FSM_STUB m_AIState;
 int m_AIStateTTL;

 EnemyShip();
 void AIStub();
 void Move();
};

Now, we need to add a ship.cpp file and define all of the methods that will be common to
EnemyShip and PlayerShip. These methods were in both PlayerShip and EnemyShip
previously, but now we can have them all in one place. Here is what the ship.cpp file
looks like:

#include "game.hpp"

Ship::Ship() : Collider(8.0) {
 m_Rotation = PI;
 m_DX = 0.0;
 m_DY = 1.0;
 m_VX = 0.0;
 m_VY = 0.0;
 m_LastLaunchTime = current_time;
}

void Ship::RotateLeft() {
 m_Rotation -= delta_time;

 if(m_Rotation < 0.0) {
 m_Rotation += TWO_PI;
 }
 m_DX = sin(m_Rotation);
 m_DY = -cos(m_Rotation);
}

void Ship::RotateRight() {
 m_Rotation += delta_time;

 if(m_Rotation >= TWO_PI) {

Collision Detection Chapter 7

[173]

 m_Rotation -= TWO_PI;
 }
 m_DX = sin(m_Rotation);
 m_DY = -cos(m_Rotation);
}

void Ship::Accelerate() {
 m_VX += m_DX * delta_time;
 m_VY += m_DY * delta_time;
}

void Ship::Decelerate() {
 m_VX -= (m_DX * delta_time) / 2.0;
 m_VY -= (m_DY * delta_time) / 2.0;
}
void Ship::CapVelocity() {
 double vel = sqrt(m_VX * m_VX + m_VY * m_VY);

 if(vel > MAX_VELOCITY) {
 m_VX /= vel;
 m_VY /= vel;

 m_VX *= MAX_VELOCITY;
 m_VY *= MAX_VELOCITY;
 }
}
void Ship::Render() {
 dest.x = (int)m_X;
 dest.y = (int)m_Y;
 dest.w = c_Width;
 dest.h = c_Height;

 double degrees = (m_Rotation / PI) * 180.0;

 int return_code = SDL_RenderCopyEx(renderer, m_SpriteTexture,
 NULL, &dest,
 degrees, NULL, SDL_FLIP_NONE);

 if(return_code != 0) {
 printf("failed to render image: %s\n", IMG_GetError());
 }
}

The only real difference between the versions of these classes that were in the
player_ship.cpp and the enemy_ship.cpp files are that, instead of PlayerShip:: or
EnemyShip:: in front of each of the function definitions, we now have Ship:: in front of
the function definitions.

Collision Detection Chapter 7

[174]

Next, we are going to need to modify player_ship.cpp and enemy_ship.cpp by
removing all of the functions that we now have defined inside the ship.cpp file. Let's take
a look at what the enemy_ship.cpp file looks like broken into two parts. The first part is
the #include of our game.hpp file and the EnemyShip constructor function:

#include "game.hpp"

EnemyShip::EnemyShip() {
 m_X = 60.0;
 m_Y = 50.0;
 m_Rotation = PI;
 m_DX = 0.0;
 m_DY = 1.0;
 m_VX = 0.0;
 m_VY = 0.0;
 m_LastLaunchTime = current_time;

 SDL_Surface *temp_surface = IMG_Load(c_SpriteFile);

 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;
 }
 else {
 printf("success creating enemy ship surface\n");
 }
 m_SpriteTexture = SDL_CreateTextureFromSurface(renderer,
 temp_surface);

 if(!m_SpriteTexture) {
 printf("failed to create texture: %s\n", IMG_GetError());
 return;
 }
 else {
 printf("success creating enemy ship texture\n");
 }

 SDL_FreeSurface(temp_surface);
}

In the second part of our enemy_ship.cpp file we have the Move and AIStub functions:

void EnemyShip::Move() {
 AIStub();

 if(m_AIState == TURN_LEFT) {

Collision Detection Chapter 7

[175]

 RotateLeft();
 }

 if(m_AIState == TURN_RIGHT) {
 RotateRight();
 }

 if(m_AIState == ACCELERATE) {
 Accelerate();
 }

 if(m_AIState == DECELERATE) {
 Decelerate();
 }

 CapVelocity();
 m_X += m_VX;

 if(m_X > 320) {
 m_X = -16;
 }
 else if(m_X < -16) {
 m_X = 320;
 }

 m_Y += m_VY;

 if(m_Y > 200) {
 m_Y = -16;
 }
 else if(m_Y < -16) {
 m_Y = 200;
 }

 if(m_AIState == SHOOT) {
 Projectile* projectile;

 if(current_time - m_LastLaunchTime >= c_MinLaunchTime) {
 m_LastLaunchTime = current_time;
 projectile = projectile_pool->GetFreeProjectile();

 if(projectile != NULL) {
 projectile->Launch(m_X, m_Y, m_DX, m_DY);
 }
 }
 }
}

Collision Detection Chapter 7

[176]

void EnemyShip::AIStub() {
 m_AIStateTTL -= diff_time;

 if(m_AIStateTTL <= 0) {
 // for now get a random AI state.
 m_AIState = (FSM_STUB)(rand() % 5);
 m_AIStateTTL = c_AIStateTime;
 }
}

Now that we have seen what is in the enemy_ship.cpp file, let's take a look at what the
new player_ship.cpp file looks like:

#include "game.hpp"
PlayerShip::PlayerShip() {
 m_X = 160.0;
 m_Y = 100.0;
 SDL_Surface *temp_surface = IMG_Load(c_SpriteFile);

 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;
 }

 m_SpriteTexture = SDL_CreateTextureFromSurface(renderer,
 temp_surface);

 if(!m_SpriteTexture) {
 printf("failed to create texture: %s\n", IMG_GetError());
 return;
 }

 SDL_FreeSurface(temp_surface);
}

void PlayerShip::Move() {
 current_time = SDL_GetTicks();
 diff_time = current_time - last_time;
 delta_time = (double)diff_time / 1000.0;
 last_time = current_time;

 if(left_key_down) {
 RotateLeft();
 }

 if(right_key_down) {
 RotateRight();
 }

Collision Detection Chapter 7

[177]

 if(up_key_down) {
 Accelerate();
 }

 if(down_key_down) {
 Decelerate();
 }

 CapVelocity();
 m_X += m_VX;

 if(m_X > 320) {
 m_X = -16;
 }
 else if(m_X < -16) {
 m_X = 320;
 }
 m_Y += m_VY;

 if(m_Y > 200) {
 m_Y = -16;
 }
 else if(m_Y < -16) {
 m_Y = 200;
 }

 if(space_key_down) {
 Projectile* projectile;

 if(current_time - m_LastLaunchTime >= c_MinLaunchTime) {
 m_LastLaunchTime = current_time;
 projectile = projectile_pool->GetFreeProjectile();
 if(projectile != NULL) {
 projectile->Launch(m_X, m_Y, m_DX, m_DY);
 }
 }
 }
}

Next, let's modify the Move function in our ProjectilePool class so that, every time it
moves a Projectile, it also tests to see whether it hit one of our ships:

void ProjectilePool::MoveProjectiles() {
 Projectile* projectile;
 std::vector<Projectile*>::iterator it;
 for(it = m_ProjectileList.begin(); it != m_ProjectileList.end();
 it++) {
 projectile = *it;

Collision Detection Chapter 7

[178]

 if(projectile->m_Active) {
 projectile->Move();
 if(projectile->HitTest(player)) {
 printf("hit player\n");
 }
 if(projectile->HitTest(enemy)) {
 printf("hit enemy\n");
 }
 }
 }
}

For right now, we are only going to print to the console when either the player or the
enemy collides with a projectile. That will tell us whether our collision detection is working
correctly. In later sections, we will add animations to destroy our ships when they collide
with the projectile.

There is one last change we need to make to the Launch function on our Projectile class.
When we launch a projectile from our ships, we give the projectile an x and a y position
and an x and y velocity based on the direction the ship was facing. We need to take that
direction and move the starting point of the projectile. That is to prevent the projectile from
hitting the ship that launched it by moving it out of the collision detection circle for the
ship:

void Projectile::Launch(double x, double y, double dx, double dy) {
 m_X = x + dx * 9;
 m_Y = y + dy * 9;
 m_VX = velocity * dx;
 m_VY = velocity * dy;
 m_TTL = alive_time;
 m_Active = true;
}

In the next section, we will detect when our ship collides with a projectile and run an
explosion animation.

Destroying a spaceship on collision
Now that we are detecting collisions between the projectiles and the spaceships, it would be
nice to do something more interesting than printing a line to the console. It would be nice to
have a little explosion animation for our projectiles and our ships when they hit something.
We can add an animation associated with each of these objects as they are destroyed.

Collision Detection Chapter 7

[179]

Instead of loading multiple sprites for each frame of the animation as we did in a previous
chapter, I'm going to introduce the concept of sprite sheets. Instead of loading a single
projectile frame and a single ship frame for each of our spaceships, we will load a sprite
sheet for each that includes not only the undamaged version of each but a destruction
sequence that we will animate through when any of these objects are destroyed.

Having three different sprite sheets in this example is done for convenience only. When
you decide how to pack your sprite sheets for production, there are several considerations
that you must take into account. You will most likely want to break out your sprite sheets
based on when you will need them. You may have a series of sprites you need that are
common to all levels of the game. You may choose to break out the sprites based on the
level. You also need to take into consideration that, for performance reasons WebGL
requires power-of-2 sized sprite files. That may impact your decisions concerning what
sprites to pack into what sprite sheets. You may also consider purchasing a tool such as
Texture Packer to pack sprites for you more quickly than you could do by hand.

We have created three sprite sheets to replace the three sprites we were using. These
Sprites are FranchiseExp.png to replace Franchise.png, BirdOfAngerExp.png to
replace BirdOfAnger.png, and ProjectileExp.png to replace Projectile.png. We are
going to need to make some tweaks to the Projectile class, Ship class, EnemyShip class,
PlayerShip, and the ProjectilePool class, as well as the game_loop function.

We are going to start by modifying the game loop to keep track of the game's timing data.
We must remove some code from the PlayerShip::Move function inside the
player_ship.cpp file. This code existed from Chapter 4, Sprite Animations in WebAssembly
with SDL, where we discussed the basics of animating a sprite by animating PlayerShip.
We must delete the following code from the first several lines of PlayerShip::Move:

current_time = SDL_GetTicks();
diff_time = current_time - last_time;
delta_time = (double)diff_time / 1000.0;
last_time = current_time;

This code gets the current time and calculates all of our time-related information we use for
speed adjustments and animation timing. We probably should have moved this code to the
game loop a few chapters ago, but better late than never. The following is the code for the
new game_loop function in main.cpp:

void game_loop() {
 current_time = SDL_GetTicks();
 diff_time = current_time - last_time;
 delta_time = (double)diff_time / 1000.0;
 last_time = current_time;
 input();

Collision Detection Chapter 7

[180]

 move();
 render();
}

Strictly speaking, we did not have to make this change, but it makes more sense to have the
game timing code within the game loop. Now that we have changed our game loop, we are
going to modify the Projectile class. Here are the changes to the class definition we must
make from within the game.hpp file:

class Projectile: public Collider {
 public:
 const char* c_SpriteFile = "sprites/ProjectileExp.png";
 const int c_Width = 16;
 const int c_Height = 16;
 const double velocity = 6.0;
 const double alive_time = 2000;
 SDL_Texture *m_SpriteTexture;
 SDL_Rect src = {.x = 0, .y = 0, .w = 16, .h = 16 };
 Uint32 m_CurrentFrame = 0;
 int m_NextFrameTime;
 bool m_Active;
 float m_TTL;
 float m_VX;
 float m_VY;

 Projectile();
 void Move();
 void Render();
 void Launch(float x, float y, float dx, float dy);
};

We need to modify the c_SpriteFile variable to point to the new sprite sheet PNG file
instead of the single sprite file. We need to increase the size of its width and height. To
make space for the explosion, we will make all frames in the sprite sheet 16 x 16 instead of 8
x 8. We also need a source rectangle. When each sprite has used an entire file, we could
pass in null to SDL_RenderCopy, and the function would render the entire contents of the
sprite file. Now we only want to render one frame, so we need a rectangle that will start at
0,0 and render the width and height of 16. The sprite sheets we have created are horizontal
strip sprite sheets, meaning that every frame is laid out in order and placed horizontally.
To render a different frame of our animation, we will only need to modify the .x value
inside our source rectangle. The final attribute we added is to the public section and is the
m_CurrentFrame attribute. That tracks which frame in the animation we are currently on.
We will keep our current frame at 0 when we are not rendering the explosion animation.

Collision Detection Chapter 7

[181]

Next, we will need to modify a few functions on the Projectile class. These functions are
the Projectile::Move function and the Projectile::Render function inside of the
projectile.cpp file. Here is the new version of the Projectile::Move function:

void Projectile::Move() {
 if(m_CurrentFrame > 0) {
 m_NextFrameTime -= diff_time;
 if(m_NextFrameTime <= 0) {
 ++m_CurrentFrame;
 m_NextFrameTime = ms_per_frame;
 if(m_CurrentFrame >= 4) {
 m_Active = false;
 m_CurrentFrame = 0;
 return;
 }
 }
 return;
 }
 m_X += m_VX;
 m_Y += m_VY;
 m_TTL -= diff_time;
 if(m_TTL < 0) {
 m_Active = false;
 m_TTL = 0;
 }
}

The top section of the Move function is all new. If the current frame is not 0, we will run
through the animation until it ends and then deactivate our projectile, sending it back to the
projectile pool. We do this by subtracting the time since the app last ran the game loop.
That is the value stored in the diff_time global variable. The m_NextFrameTime attribute
variable stores the number of milliseconds until we switch to the next frame in our series.
Once the values are below 0, we increment our current frame and reset m_NextFrameTime
to the number of milliseconds we want between each new frame of our animation. Now
that we have incremented the current animation frame, we can check to see whether it is
greater than or equal to the frame number of the last frame in this animation (in this case,
4). If so, we need to deactivate the projectile and reset the current frame to 0.

Now, that we have made the changes we need to make to the Move() function, here are the
changes we must make to the Projectile::Render() function:

void Projectile::Render() {
 dest.x = m_X + 8;
 dest.y = m_Y + 8;
 dest.w = c_Width;
 dest.h = c_Height;

Collision Detection Chapter 7

[182]

 src.x = 16 * m_CurrentFrame;
 int return_val = SDL_RenderCopy(renderer, m_SpriteTexture,
 &src, &dest);
 if(return_val != 0) {
 printf("SDL_Init failed: %s\n", SDL_GetError());
 }
}

The first change to the Render function is the addition of the src rectangle to the
SDL_RenderCopy call, as well as setting its x value immediately above that call. Each frame
in our sprite sheet is 16 pixels wide, so setting the x value to 16 * m_CurrentFrame will
select a different 16 x 16 sprite from the sprite sheet. The width and height of that rectangle
will always be 16, and the y value will always be 0 because we placed the sprites into this
sprite sheet as a horizontal strip.

Now we are going to make some modifications to the Ship class definitions inside the
game.hpp file:

class Ship: public Collider {
 public:
 Uint32 m_LastLaunchTime;
 const int c_Width = 32;
 const int c_Height = 32;
 SDL_Texture *m_SpriteTexture;
 SDL_Rect src = {.x = 0, .y = 0, .w = 32, .h = 32 };
 bool m_Alive = true;
 Uint32 m_CurrentFrame = 0;
 int m_NextFrameTime;

 float m_Rotation;
 float m_DX;
 float m_DY;
 float m_VX;
 float m_VY;

 void RotateLeft();
 void RotateRight();
 void Accelerate();
 void Decelerate();
 void CapVelocity();

 virtual void Move() = 0;
 Ship();
 void Render();
};

Collision Detection Chapter 7

[183]

We modified the width and height constants to reflect the new sprite size of 32 x 32 pixels
as it appears in our sprite sheet. We also must add a source rectangle to the Projectile
class. Inside our public attributes section, we have added a few variables to track the alive
or dead status of the ship, (m_Alive); the current frame the game is
rendering, (m_CurrentFrame); and the time in milliseconds until we render the next
frame, (m_NextFrameTime). Next, we will make the necessary modifications to the
ship.cpp file. We need to modify the Ship::Render function:

void Ship::Render() {
 if(m_Alive == false) {
 return;
 }
 dest.x = (int)m_X;
 dest.y = (int)m_Y;
 dest.w = c_Width;
 dest.h = c_Height;

 src.x = 32 * m_CurrentFrame;
 float degrees = (m_Rotation / PI) * 180.0;
 int return_code = SDL_RenderCopyEx(renderer, m_SpriteTexture,
 &src, &dest,
 degrees, NULL, SDL_FLIP_NONE);
 if(return_code != 0) {
 printf("failed to render image: %s\n", IMG_GetError());
 }
}

At the top of the function, we have added code to check to see whether the ship is currently
alive. If it is not, we do not want to render the ship, so we return. Later on, we set the
source rectangle x value to 32 times the current frame with the line: src.x = 32 *
m_CurrentFrame;. That changes our render to render a different 32 x 32 block of pixels
from our sprite sheet based on the frame we want to render. Lastly, we must pass that src
rectangle into the call to SDL_RenderCopyEx.

Now that we have modified the Ship class, we will change the EnemyShip class definition
and the PlayerShip class definition to use our sprite sheet PNG files instead of the old
single sprite files. Here are the modifications to those two class definitions inside the
game.hpp file:

class PlayerShip: public Ship {
 public:
 const char* c_SpriteFile = "sprites/FranchiseExp.png";
 const Uint32 c_MinLaunchTime = 300;
 PlayerShip();
 void Move();

Collision Detection Chapter 7

[184]

};

class EnemyShip: public Ship {
 public:
 const char* c_SpriteFile = "sprites/BirdOfAngerExp.png";
 const Uint32 c_MinLaunchTime = 300;
 const int c_AIStateTime = 2000;

 FSM_STUB m_AIState;
 int m_AIStateTTL;

 EnemyShip();
 void AIStub();
 void Move();
};

The only changes made to these class definitions are to the values of the c_SpriteFile
constant in each class. The c_SpriteFile constant in the PlayerShip class was modified
from "sprites/Franchise.png" to "sprites/FranchiseExp.png", and the
c_SpriteFile constant in EnemyShip was modified from "sprites/BirdOfAnger.png"
to "sprites/BirdOfAngerExp.png". Now that we have made that change, these classes
will use the sprite sheet .png files instead of the original sprite files.

Now that we have modified the definitions for these classes, we must change the Move
functions for each of them. First, we will revise the EnemyShip::Move function inside the
enemy_ship.cpp file:

void EnemyShip::Move() {
 if(m_Alive == false) {
 return;
 }
 AIStub();

 if(m_AIState == TURN_LEFT) {
 RotateLeft();
 }
 if(m_AIState == TURN_RIGHT) {
 RotateRight();
 }
 if(m_AIState == ACCELERATE) {
 Accelerate();
 }
 if(m_AIState == DECELERATE) {
 Decelerate();
 }

Collision Detection Chapter 7

[185]

 if(m_CurrentFrame > 0) {
 m_NextFrameTime -= diff_time;

 if(m_NextFrameTime <= 0) {
 m_NextFrameTime = ms_per_frame;
 if(++m_CurrentFrame >= 8) {
 m_Alive = false;
 return;
 }
 }
 }
 CapVelocity();

 m_X += m_VX;

 if(m_X > 320) {
 m_X = -16;
 }
 else if(m_X < -16) {
 m_X = 320;
 }

 m_Y += m_VY;

 if(m_Y > 200) {
 m_Y = -16;
 }
 else if(m_Y < -16) {
 m_Y = 200;
 }

 if(m_AIState == SHOOT) {
 Projectile* projectile;
 if(current_time - m_LastLaunchTime >= c_MinLaunchTime) {
 m_LastLaunchTime = current_time;
 projectile = projectile_pool->GetFreeProjectile();

 if(projectile != NULL) {
 projectile->Launch(m_X, m_Y, m_DX, m_DY);
 }
 }
 }
}

Collision Detection Chapter 7

[186]

There are two places where the code must be changed. First, we do not want to do any of
the Move function's work if the enemy ship is not alive, so we added this check at the
beginning of the function to return if the ship is not alive:

if(m_Alive == false) {
 return;
}

Next, we needed to add the code to check whether we needed to run the death animation.
We do this if the current frame is greater than 0. The code in this section is similar to what
we did for the projectile to run its death animation. We subtract the time between
frames, (diff_time), from the next frame time, (m_NextFrameTime), to determine
whether we need to increment the frame. When this value drops below 0, the frame is
ready to change by incrementing m_CurrentFrame, and we reset the m_NextFrameTime
countdown timer by setting it to the number of milliseconds we want between each
frame, (ms_per_frame). If our current frame hits the end of our frame sprite
sheet, (++m_CurrentFrame >= 8), then we set the enemy ship to no longer be
alive, (m_Alive = false). This is shown here:

if(m_CurrentFrame > 0) {
 m_NextFrameTime -= diff_time;
 if(m_NextFrameTime <= 0) {
 m_NextFrameTime = ms_per_frame;
 if(++m_CurrentFrame >= 8) {
 m_Alive = false;
 return;
 }
 }
}

Now, we will make the same changes to the PlayerShip::Move function within the
player_ship.cpp file:

void PlayerShip::Move() {
 if(m_Alive == false) {
 return;
 }
 if(left_key_down) {
 RotateLeft();
 }
 if(right_key_down) {
 RotateRight();
 }
 if(up_key_down) {
 Accelerate();
 }

Collision Detection Chapter 7

[187]

 if(down_key_down) {
 Decelerate();
 }
 if(m_CurrentFrame > 0) {
 m_NextFrameTime -= diff_time;
 if(m_NextFrameTime <= 0) {
 m_NextFrameTime = ms_per_frame;
 if(++m_CurrentFrame >= 8) {
 m_Alive = false;
 return;
 }
 }
 }
 CapVelocity();
 m_X += m_VX;

 if(m_X > 320) {
 m_X = -16;
 }
 else if(m_X < -16) {
 m_X = 320;
 }

 m_Y += m_VY;

 if(m_Y > 200) {
 m_Y = -16;
 }
 else if(m_Y < -16) {
 m_Y = 200;
 }

 if(space_key_down) {
 Projectile* projectile;
 if(current_time - m_LastLaunchTime >= c_MinLaunchTime) {
 m_LastLaunchTime = current_time;
 projectile = projectile_pool->GetFreeProjectile();
 if(projectile != NULL) {
 projectile->Launch(m_X, m_Y, m_DX, m_DY);
 }
 }
 }
}

Collision Detection Chapter 7

[188]

Just like in our EnemyShip::Move functions, we add a check to see whether the player is
alive with the following code:

if(m_Alive == false) {
 return;
}

And we also add some code to run the death animation if our current frame is greater than
0:

if(m_CurrentFrame > 0) {
 m_NextFrameTime -= diff_time;
 if(m_NextFrameTime <= 0) {
 m_NextFrameTime = ms_per_frame;
 if(++m_CurrentFrame >= 8) {
 m_Alive = false;
 return;
 }
 }
}

The last thing we need to do is modify the collision detection code we added earlier to the
ProjectilePool::MoveProjectiles function to run the death animation for a ship and
a projectile if the two collide. Here is the new version of
ProjectilePool::MoveProjectiles inside of the projectile_pool.cpp file:

void ProjectilePool::MoveProjectiles() {
 Projectile* projectile;
 std::vector<Projectile*>::iterator it;
 for(it = m_ProjectileList.begin(); it != m_ProjectileList.end(); it++
) {
 projectile = *it;
 if(projectile->m_Active) {
 projectile->Move();
 if(projectile->m_CurrentFrame == 0 &&
 player->m_CurrentFrame == 0 &&
 projectile->HitTest(player)) {

 player->m_CurrentFrame = 1;
 player->m_NextFrameTime = ms_per_frame;
 projectile->m_CurrentFrame = 1;
 projectile->m_NextFrameTime = ms_per_frame;
 }
 if(projectile->m_CurrentFrame == 0 &&
 enemy->m_CurrentFrame == 0 &&
 projectile->HitTest(enemy)) {

Collision Detection Chapter 7

[189]

 enemy->m_CurrentFrame = 1;
 enemy->m_NextFrameTime = ms_per_frame;
 projectile->m_CurrentFrame = 1;
 projectile->m_NextFrameTime = ms_per_frame;
 }
 }
 }
}

Inside of this code, every time we move a projectile, we do a hit test against that projectile
and the player as well as a hit test between that projectile and the enemy. If either the ship
or the projectile is running its death animation (m_CurrentFrame == 0 is false), then we
do not need to run the hit test because the ship or the projectile has already been destroyed.
If the hit test returns true, then we need to set the current frame of both the projectile and
the ship to 1 to begin the destruction animation. We also need to set the next frame time to
the number of milliseconds until the frame changes.

Now that we have added all of this new code, the ship and the enemy ship will run an
explosion animation that destroys the ship when hit. The projectiles will also explode
instead of just disappearing. The circle colliders are fast but not very precise. In the
Implementing compound circle colliders section, we will learn the modifications we need to
make to use multiple circle colliders on a single ship. That will give us collisions that look
more accurate than simple circles.

Pointers in memory
WebAssembly's memory model piggybacks on the asm.js memory model, which uses a
large typed ArrayBuffer to hold all of the raw bytes to be manipulated by the module. A
JavaScript call to WebAssembly.Memory sets up the module's memory buffer in 64 KB
pages.

A page is a block of linear data that is the smallest unit of data that can be
allocated by an operating system, or, in the case of WebAssembly, a
virtual machine. For more information on memory pages, see the
Wikipedia Page: https:/ ​/​en. ​wikipedia. ​org/ ​wiki/ ​Page_ ​%28computer_
memory%29.

A WebAssembly module can only access data from within this ArrayBuffer. That
prevents malicious attacks from WebAssembly that create a pointer to a memory address
outside the browser's sandbox. Because of this design, WebAssembly's memory model is
just as safe as JavaScript.

https://en.wikipedia.org/wiki/Page_%28computer_memory%29
https://en.wikipedia.org/wiki/Page_%28computer_memory%29
https://en.wikipedia.org/wiki/Page_%28computer_memory%29
https://en.wikipedia.org/wiki/Page_%28computer_memory%29
https://en.wikipedia.org/wiki/Page_%28computer_memory%29
https://en.wikipedia.org/wiki/Page_%28computer_memory%29
https://en.wikipedia.org/wiki/Page_%28computer_memory%29
https://en.wikipedia.org/wiki/Page_%28computer_memory%29
https://en.wikipedia.org/wiki/Page_%28computer_memory%29
https://en.wikipedia.org/wiki/Page_%28computer_memory%29
https://en.wikipedia.org/wiki/Page_%28computer_memory%29
https://en.wikipedia.org/wiki/Page_%28computer_memory%29
https://en.wikipedia.org/wiki/Page_%28computer_memory%29
https://en.wikipedia.org/wiki/Page_%28computer_memory%29
https://en.wikipedia.org/wiki/Page_%28computer_memory%29
https://en.wikipedia.org/wiki/Page_%28computer_memory%29

Collision Detection Chapter 7

[190]

In the next section, we will be using C++ pointers in our collider object. If you are a
JavaScript developer, you may not be familiar with pointers. A pointer is a variable that
holds a memory location instead of the value directly. Let's look at a little bit of code:

int VAR1 = 1;
int* POINTER = &VAR1;

In this code, we have created a VAR1 variable and given it a value of 1. In the second line,
we use int* to create a pointer called POINTER. We then initialize that pointer to the
address of VAR1 using the & character, which, in C++, is known as the address of operator.
This operator gives us the address of the VAR1 that we declared earlier. If we then want to
change VAR1, we can do so using the pointer instead of directly, as shown here:

*POINTER = 2;
 printf("VAR1=%d\n", VAR1); // prints out "VAR1=2"

Putting the * in front of POINTER tells C++ to set the value in the memory address where
POINTER is pointing; * when used in this way is called the dereference operator.

If you would like to learn more about pointers in C++ and how they work,
the following article goes into a good deal of detail on the subject: http:/ ​/
www.​cplusplus. ​com/ ​doc/ ​tutorial/ ​pointers/ ​.

In the next section, we will implement compound circle colliders for collision detection on
our spaceships.

Implementing compound circle colliders
Now that our collision detection is working, and we have our ships and projectiles
exploding on a collision, let's see how we can make our collision detection better. We chose
circle collision detection for two reasons: the collision algorithm is fast, and it is simple. We
could do better, however, by merely adding more circles to each ship. That will increase
our collision detection time by a factor of n, where n is the average number of circles we
have on each ship. That is because the only collision detection we do is between the
projectiles and the ships. Even so, we don't want to go overboard with the number of circles
we choose to use for each ship.

http://www.cplusplus.com/doc/tutorial/pointers/
http://www.cplusplus.com/doc/tutorial/pointers/
http://www.cplusplus.com/doc/tutorial/pointers/
http://www.cplusplus.com/doc/tutorial/pointers/
http://www.cplusplus.com/doc/tutorial/pointers/
http://www.cplusplus.com/doc/tutorial/pointers/
http://www.cplusplus.com/doc/tutorial/pointers/
http://www.cplusplus.com/doc/tutorial/pointers/
http://www.cplusplus.com/doc/tutorial/pointers/
http://www.cplusplus.com/doc/tutorial/pointers/
http://www.cplusplus.com/doc/tutorial/pointers/
http://www.cplusplus.com/doc/tutorial/pointers/
http://www.cplusplus.com/doc/tutorial/pointers/
http://www.cplusplus.com/doc/tutorial/pointers/
http://www.cplusplus.com/doc/tutorial/pointers/

Collision Detection Chapter 7

[191]

For the player ship, the front of the spaceship is covered well by the basic circle. However,
we could get much better coverage of the back of the player's spaceship by adding a circle
to each side:

Our player ship compound collider

The enemy ship is the opposite. The back of that spaceship is covered pretty well by a
default circle, but the front could use some better coverage, so, for the enemy ship, we will
add some additional circles in front:

Our enemy ship compound collider

The first thing we need to do is change the Collider class to include information from the
parent of our collider. Here is the new version of the Collider class definition inside our
game.hpp file:

class Collider {
 public:
 float* m_ParentRotation;
 float* m_ParentX;
 float* m_ParentY;
 float m_X;
 float m_Y;
 float m_Radius;

Collision Detection Chapter 7

[192]

 bool CCHitTest(Collider* collider);
 void SetParentInformation(double* rotation, double* x, double*
 y);
 Collider(double radius);
 bool HitTest(Collider *collider);
};

We have added three-pointers to attributes of the parent of our Collider class. These will
point to the x and y coordinates, as well as the Rotation of the collider's parent, which will
either be the enemy ship, the player ship, or NULL. We will initialize those values to NULL in
our constructor, and if the value is null, we will not modify the behavior of our collider. If,
however, those values are set to something else, we will call the CCHitTest function to
determine whether there is a collision. This version of the hit test will adjust the position of
the collider to be relative to its parent's position and rotation before doing the collision test.
Now that we have made the changes to the collider's definition, we will make changes to
the functions inside the collider.cpp file to support the new compound colliders.

The first thing to do is modify our constructor to initialize the new pointers to NULL:

Collider::Collider(double radius) {
 m_ParentRotation = NULL;
 m_ParentX = NULL;
 m_ParentY = NULL;
 m_Radius = radius;
}

We have a new function to add to our collider.cpp file, the CCHitTest function, which
will be our compound collider hit test. This version of the hit test will adjust the x and y
coordinates of our collider to be relative to the position and rotation of our parent ship:

bool Collider::CCHitTest(Collider* collider) {
 float sine = sin(*m_ParentRotation);
 float cosine = cos(*m_ParentRotation);
 float rx = m_X * cosine - m_Y * sine;
 float ry = m_X * sine + m_Y * cosine;
 float dist_x = (*m_ParentX + rx) - collider->m_X;
 float dist_y = (*m_ParentY + ry) - collider->m_Y;
 float radius = m_Radius + collider->m_Radius;

 if(dist_x * dist_x + dist_y * dist_y <= radius * radius) {
 return true;
 }
 return false;
}

Collision Detection Chapter 7

[193]

The first thing this function does is take the sine and cosine of the parent's rotation and use
that rotation to get a rotated version of x and y in the variables, rx and ry. We then adjust
that rotated x and y position by the parent's x and y position, before calculating the distance
between the two collider x and y positions. After we add this new CCHitTest function, we
need to modify the HitTest function to call this version of the hit test if the parent values
are set. Here is the latest version of HitTest:

bool Collider::HitTest(Collider *collider) {
 if(m_ParentRotation != NULL && m_ParentX != NULL && m_ParentY !=
NULL) {
 return CCHitTest(collider);
 }

 float dist_x = m_X - collider->m_X;
 float dist_y = m_Y - collider->m_Y;
 float radius = m_Radius + collider->m_Radius;

 if(dist_x * dist_x + dist_y * dist_y <= radius * radius) {
 return true;
 }
 return false;
}

We have created a function to set all of these values called SetParentInformation. Here
is the function definition:

void Collider::SetParentInformation(float* rotation, float* x, float* y)
{
 m_ParentRotation = rotation;
 m_ParentX = x;
 m_ParentY = y;
}

To take advantage of these new kinds of colliders, we need to add a new vector of colliders
into the Ship class. The following is the new class definition for Ship in the game.hpp file:

class Ship : public Collider {
 public:
 Uint32 m_LastLaunchTime;
 const int c_Width = 32;
 const int c_Height = 32;

 SDL_Texture *m_SpriteTexture;
 SDL_Rect src = {.x = 0, .y = 0, .w = 32, .h = 32 };
 std::vector<Collider*> m_Colliders;
 bool m_Alive = true;
 Uint32 m_CurrentFrame = 0;

Collision Detection Chapter 7

[194]

 int m_NextFrameTime;
 float m_Rotation;
 float m_DX;
 float m_DY;
 float m_VX;
 float m_VY;

 void RotateLeft();
 void RotateRight();
 void Accelerate();
 void Decelerate();
 void CapVelocity();
 virtual void Move() = 0;
 Ship();
 void Render();
 bool CompoundHitTest(Collider* collider);
};

There are two differences between this version and the previous version of the Ship class.
The first is the addition of the m_Colliders vector attribute:

 std::vector<Collider*> m_Colliders;

The second change is the new CompoundHitTest function added at the bottom of the class:

bool CompoundHitTest(Collider* collider);

For the change to our class, we will need to add a new function to our ship.cpp file:

bool Ship::CompoundHitTest(Collider* collider) {
 Collider* col;
 std::vector<Collider*>::iterator it;
 for(it = m_Colliders.begin(); it != m_Colliders.end(); it++) {
 col = *it;
 if(col->HitTest(collider)) {
 return true;
 }
 }
 return false;
}

Collision Detection Chapter 7

[195]

This CompoundHitTest function is a pretty simple function that loops over all of our
additional colliders and performs a hit test on them. This line creates a vector of collider
pointers. We will now modify our EnemyShip and PlayerShip constructors to add some
colliders into this vector. First, we will add some new lines to the EnemyShip constructor
inside the enemy_ship.cpp file:

EnemyShip::EnemyShip() {
 m_X = 60.0;
 m_Y = 50.0;
 m_Rotation = PI;
 m_DX = 0.0;
 m_DY = 1.0;
 m_VX = 0.0;
 m_VY = 0.0;
 m_AIStateTTL = c_AIStateTime;
 m_Alive = true;
 m_LastLaunchTime = current_time;

 Collider* temp_collider = new Collider(2.0);
 temp_collider->SetParentInformation(&(this->m_Rotation),
 &(this->m_X), &(this->m_Y));
 temp_collider->m_X = -6.0;
 temp_collider->m_Y = -6.0;
 m_Colliders.push_back(temp_collider);
 temp_collider = new Collider(2.0);
 temp_collider->SetParentInformation(&(this->m_Rotation),
 &(this->m_X), &(this->m_Y));
 temp_collider->m_X = 6.0;
 temp_collider->m_Y = -6.0;
 m_Colliders.push_back(temp_collider);

 SDL_Surface *temp_surface = IMG_Load(c_SpriteFile);

 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;
 }
 else {
 printf("success creating enemy ship surface\n");
 }
 m_SpriteTexture = SDL_CreateTextureFromSurface(renderer,
 temp_surface);
 if(!m_SpriteTexture) {
 printf("failed to create texture: %s\n", IMG_GetError());
 return;
 }
 else {

Collision Detection Chapter 7

[196]

 printf("success creating enemy ship texture\n");
 }
 SDL_FreeSurface(temp_surface);
}

The code that we added creates new colliders and sets the parent information for those
colliders as pointers to the x and y coordinates, as well as the radius to the addresses of
those values inside of this object. We set the m_X and m_Y values for this collider relative to
the position of this object, and then we push the new colliders into the m_Colliders vector
attribute:

Collider* temp_collider = new Collider(2.0);
temp_collider->SetParentInformation(&(this->m_Rotation),
 &(this->m_X), &(this->m_Y));
temp_collider->m_X = -6.0;
temp_collider->m_Y = -6.0;
m_Colliders.push_back(temp_collider);
temp_collider = new Collider(2.0);
temp_collider->SetParentInformation(&(this->m_Rotation),
 &(this->m_X), &(this->m_Y));
temp_collider->m_X = 6.0;
temp_collider->m_Y = -6.0;
m_Colliders.push_back(temp_collider);

We will now do something similar for the PlayerShip constructor inside the
player_ship.cpp file:

PlayerShip::PlayerShip() {
 m_X = 160.0;
 m_Y = 100.0;
 SDL_Surface *temp_surface = IMG_Load(c_SpriteFile);

 Collider* temp_collider = new Collider(3.0);
 temp_collider->SetParentInformation(&(this->m_Rotation),
 &(this->m_X), &(this->m_Y));
 temp_collider->m_X = -6.0;
 temp_collider->m_Y = 6.0;
 m_Colliders.push_back(temp_collider);
 temp_collider = new Collider(3.0);
 temp_collider->SetParentInformation(&(this->m_Rotation),
 &(this->m_X), &(this->m_Y));
 temp_collider->m_X = 6.0;
 temp_collider->m_Y = 6.0;
 m_Colliders.push_back(temp_collider);

 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());

Collision Detection Chapter 7

[197]

 return;
 }
 m_SpriteTexture = SDL_CreateTextureFromSurface(renderer,
 temp_surface);

 if(!m_SpriteTexture) {
 printf("failed to create texture: %s\n", IMG_GetError());
 return;
 }
 SDL_FreeSurface(temp_surface);
}

Now, we have to change our projectile pool to run the collision detection on these new
compound colliders in our ships. Here is the modified version of the MoveProjectiles
function inside the projectile_pool.cpp file:

void ProjectilePool::MoveProjectiles() {
 Projectile* projectile;
 std::vector<Projectile*>::iterator it;
 for(it = m_ProjectileList.begin(); it != m_ProjectileList.end();
 it++) {
 projectile = *it;
 if(projectile->m_Active) {
 projectile->Move();
 if(projectile->m_CurrentFrame == 0 &&
 player->m_CurrentFrame == 0 &&
 (projectile->HitTest(player) ||
 player->CompoundHitTest(projectile))) {
 player->m_CurrentFrame = 1;
 player->m_NextFrameTime = ms_per_frame;
 projectile->m_CurrentFrame = 1;
 projectile->m_NextFrameTime = ms_per_frame;
 }
 if(projectile->m_CurrentFrame == 0 &&
 enemy->m_CurrentFrame == 0 &&
 (projectile->HitTest(enemy) ||
 enemy->CompoundHitTest(projectile))) {
 enemy->m_CurrentFrame = 1;
 enemy->m_NextFrameTime = ms_per_frame;
 projectile->m_CurrentFrame = 1;
 projectile->m_NextFrameTime = ms_per_frame;
 }
 }
 }
}

Collision Detection Chapter 7

[198]

Because we continue to inherit Collider in our Ship class, we still will perform a regular
hit test on our player and enemy ships. We have added a call to CompoundHitTest in our
Ship class that loops over our m_Colliders vector and performs a collision hit test on
each of the colliders in that vector.

Our compound collider solution is not generalized, and, for the most part,
neither is our collision detection. We are only detecting collisions between
our ships and our projectiles. We are not currently performing any
collision detection between our ships. To have a generalized approach to
collision detection, we would need to implement spacial segmenting. That
would prevent the number of collision checks from growing exponentially
with each additional collider added to our game.

Compiling collider.html
The command we use to compile our collider.html file is similar to our compile
command in the last chapter. We will need to add a new collider.cpp file into the
command line, but other than that it should be the same. Here is the command you use to
compile collider.html:

em++ main.cpp collider.cpp ship.cpp enemy_ship.cpp player_ship.cpp
projectile.cpp projectile_pool.cpp -std=c++17 --preload-file sprites -s
USE_WEBGL2=1 -s USE_SDL=2 -s USE_SDL_IMAGE=2 -s SDL2_IMAGE_FORMATS=["png"]
-o collider.html

Now that we have collider.html compiled, we can serve it from our web server of
choice, or run it with emrun, and load it into a web browser. Here is what it looks like:

The enemy spaceship explodes when hit by a projectile

Collision Detection Chapter 7

[199]

Please remember that you must run WebAssembly apps using a web
server, or with emrun. If you would like to run your WebAssembly app
using emrun, you must compile it with the --emrun flag. The web
browser requires a web server to stream the WebAssembly module. If
you attempt to open an HTML page that uses WebAssembly in a browser
directly from your hard drive, that WebAssembly module will not load.

I did not take a screenshot of the entire browser as I have in previous screenshots of the
game because I wanted to zoom in on the player ship destroying the enemy ship. As you
can see, we now have colliders that can detect when a projectile collides with a spaceship
and can destroy that spaceship when the collision happens by running an explosion
animation.

Summary
Circle colliders are what we need right now. They are fast and efficient, and, for a simple
game such as this, you might be able to get away with not doing anything more
sophisticated. We added in a compound collider to demonstrate how this simple
modification could significantly increase the accuracy of your collider. We will need to add
more collision detection methods later in this book. In the future, we will be adding
asteroids and a star to our game, and we will be creating an AI (Artificial Intelligence)
agent to navigate our game and attack our player. This agent will eventually need to know
whether it has a line of sight with the player so that line collision detection will become
more important. Our agent will also want to quickly scan the area close to it to see whether
there are any asteroids it must avoid. For this feature, we will be using rectangle collision.

There are many types of collision detection techniques for 2D games, and we have only
scratched the surface in this chapter. We learned how to implement some basic circle
colliders and compound colliders, and we added code that detects collisions between the
projectiles in our game and the player and enemy spaceships. These kinds of colliders are
fast and relatively easy to implement, but they are not without their drawbacks.

Collision Detection Chapter 7

[200]

One drawback you may notice with simple colliders such as the ones we have implemented
is that, if two objects pass each other with a high enough relative velocity, it is possible they
could pass through each other without colliding. That is because our objects have a new
position calculated every frame, and they do not continuously move from point A to point
B. If it takes one frame to move from point A to point B, the object effectively teleports
between the two points. If there was a second object in between those two points, but we
are not colliding with that object when at either point A or point B, the object collision is
missed. That should not be a problem in our game because we will be keeping our
maximum object velocities relatively low. It is, however, something to keep in mind when
writing your games.

In the next chapter, we will be building a tool to help us to configure particle systems.

8
Basic Particle System

A particle system is a graphics technique where we emit a large number of sprites from an
emitter and have those sprites go through a life cycle where they change in a variety of
ways. We build some randomness into our sprite life cycle to create a wide range of
interesting effects such as explosions, sparks, snow, dust, fire, engine exhaust, and so on.
Some particle effects can interact with their environment. In our game, we are going to use
particle effects to create nice-looking engine exhaust and ship explosion effects.

For this chapter, you will need to include several images in your build to
make this project work. Make sure you include the
/Chapter08/sprites/ folder from the project's GitHub. If you haven't
yet downloaded the GitHub project, you can get it online here: https:/ ​/
github. ​com/ ​PacktPublishing/ ​Hands- ​On- ​Game- ​Develop.

This chapter and the beginning of the next one are going to feel like a digression at first. We
will be spending a lot of time in the following two chapters working on something other
than our game. If you are interested in particle systems, I promise it will be worth it. When
you create a particle system, you spend a lot of time tweaking them and playing with them
to get them to look right. To do this directly within the game will result in a lot of
compiling and testing. What we need is a tool where we can configure and test a particle
system before we add it to our game. This chapter and half of the next chapter are
dedicated to building this tool. If you are not interested in learning how to build the tool,
you can skim the text in this chapter, and download and compile the tool from GitHub. If
you are as interested in learning how JavaScript, HTML, and WebAssembly can interact in
an application, this chapter and the first half of Chapter 9, Improved Particle Systems, are a
good tutorial for learning how to write an application and not just a game with
WebAssembly.

https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly

Basic Particle System Chapter 8

[202]

In this chapter, we're going to cover the following topics:

A brief introduction to SVG
Trigonometry again?
Adding the JavaScript
The simple particle emitter tool
The Point class
The Particle Class
The Emitter Class
WebAssembly interface functions
Compiling and testing the particle emitter

Adding to the virtual file system
This section is going to be a brief digression from particle systems because I would like to
take the time to create a particle system design tool, which will require that we add files to the
WebAssembly virtual file system. We are going to add an input element with a type of file
that we can use to load an image into the virtual file system. We will need to check the file
we are loading to verify it is a .png file, and if it is, we will draw and move the image
around on the canvas using WebAssembly and SDL.

Emscripten does not create a virtual file system by default. Because we
will need to use a virtual file system that will not initially have anything
inside of it, we will need to pass the following flag to em++ to force
Emscripten to build a virtual filesystem: -s FORCE_FILESYSTEM=1.

The first thing we will do is copy canvas_shell.html from Chapter 2, HTML5 and
WebAssembly, and use it to create a new shell file we will call upload_shell.html. We will
need to add some code into the JavaScript that will handle file loads and insert that file into
the WebAssembly virtual file system. We also need to add an HTML input element of
file type that will not display until the Module object has finished loading. In the
following code, we have the new shell file:

<!doctype html><html lang="en-us">
<head><meta charset="utf-8"><meta http-equiv="Content-Type"
content="text/html; charset=utf-8">
 <title>Upload Shell</title>
 <link href="upload.css" rel="stylesheet" type="text/css">
</head>

Basic Particle System Chapter 8

[203]

<body>
 <canvas id="canvas" width="800" height="600"
 oncontextmenu="event.preventDefault()"></canvas>
 <textarea class="em_textarea" id="output" rows="8"></textarea>
 <script type='text/javascript'>
 var canvas = null;
 var ctx = null;
 function ShowFileInput()
 {document.getElementById("file_input_label")
 .style.display="block";}
 var Module = {
 preRun: [],
 postRun: [ShowFileInput],
 print: (function() {
 var element = document.getElementById('output');
 if (element) element.value = '';
 return function(text) {
 if (arguments.length > 1)
 text=Array.prototype.slice.call(arguments).join('
 ');
 console.log(text);
 if (element) {
 element.value += text + "\n";
 element.scrollTop = element.scrollHeight;
 } }; })(),
 printErr: function(text) {
 if (arguments.length > 1)
 text=Array.prototype.slice.call(arguments).join(' ');
 if (0) { dump(text + '\n'); }
 else { console.error(text); } },
 canvas: (function() {
 var canvas = document.getElementById('canvas');
 canvas.addEventListener("webglcontextlost", function(e) {
 alert('WebGL context lost. You will need to reload the page.');
 e.preventDefault(); }, false);
 return canvas; })(),
 setStatus: function(text) {
 if (!Module.setStatus.last) Module.setStatus.last = { time:
 Date.now(), text: '' };
 if (text === Module.setStatus.last.text) return;
 var m = text.match(/([^(]+)\((\d+(\.\d+)?)\/(\d+)\)/);
 var now = Date.now();
 if (m && now - Module.setStatus.last.time < 30) return;
 Module.setStatus.last.time = now;
 Module.setStatus.last.text = text;
 if (m) { text = m[1]; }
 console.log("status: " + text);
 },

Basic Particle System Chapter 8

[204]

 totalDependencies: 0,
 monitorRunDependencies: function(left) {
 this.totalDependencies = Math.max(this.totalDependencies,left);
 Module.setStatus(left ? 'Preparing... (' +
 (this.totalDependencies-left) + '/' +
 this.totalDependencies + ')' : 'All downloads complete.'); }
};
Module.setStatus('Downloading...');
window.onerror = function() {
 Module.setStatus('Exception thrown, see JavaScript console');
 Module.setStatus = function(text) { if (text) Module.printErr('[post-
exception status] ' + text); };
};
function handleFiles(files) {
 var file_count = 0;
 for (var i = 0; i < files.length; i++) {
 if (files[i].type.match(/image.png/)) {
 var file = files[i];
 console.log("file name=" + file.name);
 var file_name = file.name;
 var fr = new FileReader();
 fr.onload = function (file) {
 var data = new Uint8Array(fr.result);
 Module.FS_createDataFile('/', file_name, data, true,
 true, true);
 Module.ccall('add_image', 'undefined', ["string"],
 [file_name]);
 };
 fr.readAsArrayBuffer(files[i]);
 }
 }
}
</script>
<input type="file" id="file_input" onchange="handleFiles(this.files)" />
<label for="file_input" id="file_input_label">Upload .png</label>
{{{ SCRIPT }}}
</body></html>

In the header, the only changes we are making are to the title, and the style sheet:

<title>Upload Shell</title>
<link href="upload.css" rel="stylesheet" type="text/css">

Basic Particle System Chapter 8

[205]

In the body tag, we are leaving the canvas and textarea elements alone, but there are
significant changes to the JavaScript. The first thing we will do to the JavaScript is to add a
ShowFileInput function to display the file_input_label element, which starts as
hidden by our CSS. You can see it in the following code snippet:

function ShowFileInput() {
 document.getElementById("file_input_label").style.display = "block";
}

var Module = {
 preRun: [],
 postRun: [ShowFileInput],

Notice that we have added a call to this function in our postRun array so that it runs after
the module is loaded. That is to make sure no one loads an image file before the Module
object has loaded and our page can handle it. Aside from the addition
of ShowFileInput to the postRun array, the Module object is unchanged. After our
Module object code, we added a handleFiles function that is called by our file input
element when the user picks a new file to load. Here is the code for that function:

function handleFiles(files) {
 var file_count = 0;
 for (var i = 0; i < files.length; i++) {
 if (files[i].type.match(/image.png/)) {
 var file = files[i];
 var file_name = file.name;
 var fr = new FileReader();
 fr.onload = function (file) {
 var data = new Uint8Array(fr.result);
 Module.FS_createDataFile('/', file_name, data, true,
 true, true);
 Module.ccall('add_image', 'undefined', ["string"],
 [file_name]);
 };
 fr.readAsArrayBuffer(files[i]);
 }
 }
}

You will notice that the function is designed to handle multiple files at once by looping
over the files parameter passed into handleFiles. The first thing we will do is check to
see if the image file type is PNG. When we compile the WebAssembly, we need to tell it
what image file types SDL will handle. The PNG format should be all you need, but it is not
difficult to add other types here.

Basic Particle System Chapter 8

[206]

If you do not want to check for PNG files specifically, you can leave out the .png part of the
match string and later add additional file types into the compile command-line
parameters. If the file is an image/png type, we put the filename into its variable,
file_name, and create a FileReader object. We then define the function that runs when
the FileReader loads the file:

fr.onload = function (file) {
 var data = new Uint8Array(fr.result);
 Module.FS_createDataFile('/', file_name, data, true, true, true);
 Module.ccall('add_image', 'undefined', ["string"], [file_name]);
};

This function takes in the data as an 8-bit unsigned integer array and then passes it into the
Module function, FS_createDataFile. This function takes as its parameters a string that
is the parent directory '/' of our file, the filename, file_name, the data we read from our
file, followed by canRead, canWrite, and canOwn, which should all be set to true because
we would like to be able to have our WebAssembly read, write, and own this file. We then
use Module.ccall to call a function defined in our WebAssembly called add_image that
will take the filename so that our WebAssembly can render this image to the HTML canvas
using SDL. After we define the function that tells the FileReader what to do when a file is
loaded, we have to instruct the FileReader to go ahead and read in the loaded file as an
ArrayBuffer:

fr.readAsArrayBuffer(files[i]);

After the JavaScript, we added a file input element and a label to go along with it, as
shown here:

<input type="file" id="file_input" onchange="handleFiles(this.files)" />
<label for="file_input" id="file_input_label">Upload .png</label>

The label is purely for styling. Styling an input file element is not a straightforward thing in
CSS. We will go over how to do that in a little bit. Before discussing the CSS, I would like to
go over the WebAssembly C code that we will use to load and render this image using SDL.
The following code will go inside of a file we have named upload.c:

#include <emscripten.h>
#include <stdlib.h>
#include <SDL2/SDL.h>
#include <SDL2/SDL_image.h>

SDL_Window *window;
SDL_Renderer *renderer;
char* fileName;
SDL_Texture *sprite_texture = NULL;

Basic Particle System Chapter 8

[207]

SDL_Rect dest = {.x = 160, .y = 100, .w = 16, .h = 16 };

int sprite_x = 0;
int sprite_y = 0;

void add_image(char* file_name) {
 SDL_Surface *temp_surface = IMG_Load(file_name);

 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;
 }
 sprite_texture = SDL_CreateTextureFromSurface(renderer,
 temp_surface);
 SDL_FreeSurface(temp_surface);
 SDL_QueryTexture(sprite_texture,
 NULL, NULL,
 &dest.w, &dest.h);
}

void show_animation() {
 if(sprite_texture == NULL) {
 return;
 }

 SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
 SDL_RenderClear(renderer);

 sprite_x += 2;
 sprite_y++;

 if(sprite_x >= 800) {
 sprite_x = -dest.w;
 }

 if(sprite_y >= 600) {
 sprite_y = -dest.h;
 }
 dest.x = sprite_x;
 dest.y = sprite_y;

 SDL_RenderCopy(renderer, sprite_texture, NULL, &dest);
 SDL_RenderPresent(renderer);
}

int main() {
 printf("Enter Main\n");
 SDL_Init(SDL_INIT_VIDEO);

Basic Particle System Chapter 8

[208]

 int return_val = SDL_CreateWindowAndRenderer(800, 600, 0, &window,
 &renderer);

 if(return_val != 0) {
 printf("Error creating renderer %d: %s\n", return_val,
 IMG_GetError());
 return 0;
 }
 emscripten_set_main_loop(show_animation, 0, 0);
 printf("Exit Main\n");
 return 1;
}

There are three functions we have defined inside of our new upload.c file. The first
function is the add_image function. This function takes in a char* string that represents
the file we have just loaded into the WebAssembly virtual file system. We use SDL to load
the image into a surface, and then we use that surface to create a texture we will use to
render the image we loaded. The second function is show_animation, which we use to
move the image around the canvas. The third is the main function, which always gets run
when the module is loaded, so we use it to initialize our SDL.

Let's take a quick look at the add_image function:

void add_image(char* file_name) {
 SDL_Surface *temp_surface = IMG_Load(file_name);

 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;
 }
 sprite_texture = SDL_CreateTextureFromSurface(renderer,
 temp_surface);
 SDL_FreeSurface(temp_surface);
 SDL_QueryTexture(sprite_texture,
 NULL, NULL,
 &dest.w, &dest.h);
}

The first thing we do in the add_image function is use the file_name parameter we
passed in to load an image into an SDL_Surface object pointer, using
the IMG_Load function that is a part of the SDL_image library:

SDL_Surface *temp_surface = IMG_Load(file_name);

Basic Particle System Chapter 8

[209]

If the load fails, we print an error message and return from the function:

if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;
}

If it does not fail, we use the surface to create a texture that we will be able to render in the
frame animation. Then, we free the surface because we no longer need it:

sprite_texture = SDL_CreateTextureFromSurface(renderer, temp_surface
);
SDL_FreeSurface(temp_surface);

The final thing we do is use the SDL_QueryTexture function to get the image's width and
height, and load those values into the dest rectangle:

SDL_QueryTexture(sprite_texture,
 NULL, NULL,
 &dest.w, &dest.h);

The show_animation function is similar to other game loops we have written in the past.
It should run every frame, and as long as a sprite texture is loaded, it should clear the
canvas, increment the sprite's x and y values, and then render the sprite to the canvas:

void show_animation() {
 if(sprite_texture == NULL) {
 return;
 }

 SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
 SDL_RenderClear(renderer);
 sprite_x += 2;
 sprite_y++;

 if(sprite_x >= 800) {
 sprite_x = -dest.w;
 }
 if(sprite_y >= 600) {
 sprite_y = -dest.h;
 }

 dest.x = sprite_x;
 dest.y = sprite_y;
 SDL_RenderCopy(renderer, sprite_texture, NULL, &dest);
 SDL_RenderPresent(renderer);
}

Basic Particle System Chapter 8

[210]

The first thing we do in show_animation is to check if the sprite_texture is still NULL.
If it is, the user has not loaded a PNG file yet so we can not render anything:

if(sprite_texture == NULL) {
 return;
}

The next thing we will do is clear the canvas with the color black:

SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
SDL_RenderClear(renderer);

Then, we will increment the sprite's x and y coordinates and use those values to set
the dest (destination) rectangle:

sprite_x += 2;
sprite_y++;
if(sprite_x >= 800) {
 sprite_x = -dest.w;
}
if(sprite_y >= 600) {
 sprite_y = -dest.h;
}
dest.x = sprite_x;
dest.y = sprite_y;

Finally, we render the sprite to the back buffer, and then move the back buffer to the
canvas:

SDL_RenderCopy(renderer, sprite_texture, NULL, &dest);
SDL_RenderPresent(renderer);

The final function in upload.c is the main function, which gets called when the module is
loaded. This function is used for initialization purposes and looks like this:

int main() {
 printf("Enter Main\n");
 SDL_Init(SDL_INIT_VIDEO);
 int return_val = SDL_CreateWindowAndRenderer(800, 600, 0, &window,
 &renderer);

 if(return_val != 0) {
 printf("Error creating renderer %d: %s\n", return_val,
 IMG_GetError());
 return 0;
 }

 emscripten_set_main_loop(show_animation, 0, 0);

Basic Particle System Chapter 8

[211]

 printf("Exit Main\n");
 return 1;
}

It calls a few SDL functions to initialize our SDL renderer:

SDL_Init(SDL_INIT_VIDEO);
int return_val = SDL_CreateWindowAndRenderer(800, 600, 0, &window,
&renderer);

if(return_val != 0) {
 printf("Error creating renderer %d: %s\n", return_val,
 IMG_GetError());
 return 0;
}

Then, it sets up the show_animation function to run every time we render a frame:

emscripten_set_main_loop(show_animation, 0, 0);

The final thing we will do is set up a CSS file to display the HTML in our shell file correctly.
Here are the contents of the new upload.css file:

body {
 margin-top: 20px;
}
#output {
 background-color: darkslategray;
 color: white;
 font-size: 16px;
 padding: 10px;
 margin-left: auto;
 margin-right: auto;
 display: block;
 width: 780px;
}
#canvas {
 width: 800px;
 height: 600px;
 margin-left: auto;
 margin-right: auto;
 display: block;
 background-color: black;
 margin-bottom: 20px;
}
[type="file"] {
 height: 0;
 overflow: hidden;

Basic Particle System Chapter 8

[212]

 width: 0;
 display: none;
}

[type="file"] + label {
 background: orangered;
 border-radius: 5px;
 color: white;
 display: none;
 font-size: 20px;
 font-family: Verdana, Geneva, Tahoma, sans-serif;
 text-align: center;
 margin-top: 10px;
 margin-bottom: 10px;
 margin-left: auto;
 margin-right: auto;
 width: 130px;
 padding: 10px 50px;
 transition: all 0.2s;
 vertical-align: middle;
}
[type="file"] + label:hover {
 background-color: orange;
}

The first few classes, body, #output, and #canvas, are not much different from the version
of those classes we had in previous CSS files, so we do not need to go into any detail on
those. After those classes is a CSS class that looks a little different:

[type="file"] {
 height: 0;
 overflow: hidden;
 width: 0;
 display: none;
 }

That defines the look of an input element that has a type of file. For some reason, using
CSS to style a file input element is not very straightforward. Instead of styling the element
directly, we will hide the element with the display: none; attribute and then create a
styled label, like this:

[type="file"] + label {
 background: orangered;
 border-radius: 5px;
 color: white;
 display: none;
 font-size: 20px;

Basic Particle System Chapter 8

[213]

 font-family: Verdana, Geneva, Tahoma, sans-serif;
 text-align: center;
 margin-top: 10px;
 margin-bottom: 10px;
 margin-left: auto;
 margin-right: auto;
 width: 130px;
 padding: 10px 50px;
 transition: all 0.2s;
 vertical-align: middle;
}
[type="file"] + label:hover {
 background-color: orange;
}

That is why, in the HTML, we have a label element immediately after our input file
element. You may notice that our label also has set the display to none. That is so that the
user can not use the element to upload a PNG file until after the Module object is loaded. If
you look back to the JavaScript inside of our HTML shell file, we called the following code
on postRun so that the label becomes visible after our Module is loaded:

function ShowFileInput() {
 document.getElementById("file_input_label").style.display =
 "block";
}

Now, we should have an app that can load an image into the WebAssembly virtual file
system. In the next several sections, we will expand this app to configure and test a simple
particle emitter.

A brief introduction to SVG
SVG stands for Scalable Vector Graphics and is an alternative to the immediate-mode raster
graphics rendering that takes place in the HTML canvas. SVG is an XML-based graphics
rendering language and should look at least somewhat familiar to anyone familiar with
HTML. An SVG tag can be placed right inside of the HTML and accessed like any other
DOM node. Because we are writing a tool for configuring particle emitter data, we will be
adding SVG into our app for data visualization purposes.

Basic Particle System Chapter 8

[214]

Vector versus raster graphics
As a game developer, you may not be familiar with vector graphics. When we render
computer graphics, no matter what format we use, they will need to be rasterized into a grid
of pixels before the game displays them on a computer screen. Working with raster
graphics is working with our images on the pixel level. Vector graphics, on the other hand,
involves dealing with graphics at a different level of abstraction where we are working
with lines, points, and curves. In the end, a vector-based graphics engine still must figure
out how the lines, points, and curves it is dealing with are converted to pixels, but working
with vector graphics is not without its benefits. They are as follows:

Vector graphics can be cleanly scaled
Vector graphics allow for smaller downloads
Vector graphics can easily be modified at runtime

One of the sweet spots for using vector graphics on the web is for data visualization. This
book is not about SVG or data visualization, and SVG is not currently fast enough to be
used for game rendering for most applications. It is, however, a useful tool when you want
to render graphical aids to go along with data on a website. We will be adding a little SVG
into our particle emitter configuration tool as a visual aid to help the user see the direction
the emitter is configured to emit particles. Because we are using this as a visual aid, it is not
strictly necessary to have it inside of our app.

The first thing we will do is add a few tags to our HTML. We need an SVG tag to set up an
area we can use to draw our vector circle graphic. We also need a couple of input values
that allow us to enter two angles with values in degrees. These two input fields will take
the minimum and maximum angles to emit a particle. When we have this working, it will
give some direction to our particle emission. Here is the HTML code we need to add to our
body tag:

<svg id="pie" width="200" height="200" viewBox="-1 -1 2 2"></svg>

 <div style="margin-left: auto; margin-right: auto">
 min angle:
 <input type="number" id="min_angle" max="359" min="-90" step="1"
 value="-20" class="em_input">

 max angle:
 <input type="number" id="max_angle" max="360" min="0" step="1"
 value="20" class="em_input">

 </div>

We have set the id to pie in the svg tag. That will allow us to modify the values inside of
this tag with lines and arcs later. We have given it a height and width of 200 pixels.

Basic Particle System Chapter 8

[215]

The viewbox is set to -1 -1 2 2. This says that the top-left coordinate of our SVG
drawing area is set to coordinate -1, -1. The second two numbers, 2 2, are the width and
height in the drawing space of the SVG drawing area. That means that our drawing space
will go from coordinates -1, -1 in the top-left corner to 1, 1 in the bottom right. That will
make it easy to deal with sine and cosine values when we need to calculate our angles.

Trigonometry again?
OMG yes, there is more trigonometry. I have already covered basic trigonometry in, Chapter
7, Collision Detection, but believe it or not, trigonometry is really useful in game
development. Trigonometry happens to be very useful for particle systems and we will be
using SVG and some trig to build a little pie chart we can use to visualize the direction of
our particle emitter. So, let's take a second to quickly review things one more time:

Sine = Opposite/Hypotenuse (SOH)
Cosine = Adjacent/Hypotenuse (CAH)
Tangent = Opposite/Adjacent (TOA)

Remember the word SOHCAHTOA?

If we are using a 2D Cartesian coordinate system (spoiler alert, we are) the opposite edge in
our scenario is just the Y coordinate, and the adjacent edge is the X coordinate. So, in terms
of a 2D Cartesian coordinate system, our ratios look like this:

Sine = Y/Circle Radius
Cosine = X/Circle Radius
Tangent = Y/X

If you are calling a function in the JavaScript math library such as cos (for cosine) or sin
(for sine), you usually pass in an angle measured in radians. You would get back the ratio,
which if you are dealing with a unit circle (circle with a radius of 1), gives you the X value
for cosine and the Y value for sine. So most of the time, all you need to remember is this:

If you want the Y coordinate, use sine
If you want the X coordinate, use cosine

We used this earlier to figure out the direction and velocity of our ship. We will use it later
to get the direction and velocity of our particles given an angle. And, we are going to use it
right now to figure out how to draw the SVG chart that shows us at what angle we will
emit our particles.

Basic Particle System Chapter 8

[216]

We are taking in two different angles to get a range of angles to emit particles. Because we
want our angles to overlap the angle 0 degrees, we have to allow the min_angle to go
negative. Our minimum angle can go from -90 degrees to 359 degrees, and the max angle
can go from 0 degrees to 360 degrees.

I prefer to measure angles in degrees instead of radians. Math functions typically use
radians, so if you are more comfortable in using radians in your interface, you can save
yourself the trouble of running the conversion. Radians is a measurement of angle based on
a unit circle. A unit circle has a circumference of 2π. If you measure an angle in radians, you
are determining your angle based on how far around the unit circle you would have to walk
to get to that point. So, if you walked from one side of your unit circle to the opposite side,
you would have to walk a distance of π. Therefore π (in radians) = 180 degrees. If you
wanted an angle one-quarter of the circle, you would have to walk a distance of π / 2
around your circle, so π / 2 = 90 degrees. I still find a 360-degree circle more intuitive because
we spent a lot more time learning about degrees when I was in school. Radians were
mentioned as an afterthought. If this had not been the case, I am sure I would find
measuring my angle in terms of a unit circle to make a lot more sense.

The idea of a 360-degree circle is only intuitive because they drilled it into
us when we were in school. The only reason we have this model of a circle
is that we inherited it from the ancient Babylonians who used a base 60
mathematical system, which is also the reason we have 60 seconds in a
minute and 60 minutes in an hour.

Later, we will be using SVG and some trig to draw a little pie chart that represents the
direction particles will be emitted from our particle system. We need this directionality to
create our engine exhaust particle emitter:

Figure 8.1: Our SVG pie chart

In the next section, we will be implementing our SVG pie chart using JavaScript.

Basic Particle System Chapter 8

[217]

Adding the JavaScript
Now that we have discussed a little of the trigonometry necessary to draw our SVG chart,
let me step through the JavaScript we need to add to make our code work:

<script>
 document.getElementById("min_angle").onchange = function() {
 var min_angle = Number(this.value);
 var max_angle = Number(document.getElementById
 ("max_angle").value);

 if(min_angle >= max_angle) {
 max_angle = min_angle + 1;
 document.getElementById("max_angle").value = max_angle;
 }

 if(min_angle < this.min) {
 min_angle = this.min;
 this.value = min_angle;
 }
 SetPie(min_angle / 180 * Math.PI, max_angle / 180 * Math.PI);
 }

 document.getElementById("max_angle").onchange = function() {
 var min_angle = Number(document.getElementById
 ("min_angle").value);
 var max_angle = Number(this.value);

 if(min_angle >= max_angle) {
 min_angle = max_angle - 1;
 document.getElementById("min_angle").value = min_angle;
 }

 if(max_angle > this.max) {
 max_angle = this.max;
 this.value = max_angle;
 }

 SetPie(min_angle / 180 * Math.PI, max_angle / 180 * Math.PI);
 }

 function SetPie(start_angle, end_angle) {
 const svg = document.getElementById('pie');
 const start_x = Math.cos(start_angle);
 const start_y = Math.sin(start_angle);

 const end_x = Math.cos(end_angle);

Basic Particle System Chapter 8

[218]

 const end_y = Math.sin(end_angle);
 var arc_flag_1 = 0;
 var arc_flag_2 = 0;

 if(end_angle - start_angle <= 3.14) {
 arc_flag_1 = 0;
 arc_flag_2 = 1;
 }
 else {
 arc_flag_1 = 1;
 arc_flag_2 = 0;
 }

 const path_data_1 =
 `M 0 0 L ${start_x} ${start_y} A 1 1 0 ${arc_flag_1} 1
 ${end_x} ${end_y} L 0 0`;

 const path_1 = document.createElementNS
 ('http://www.w3.org/2000/svg', 'path');
 path_1.setAttribute('d', path_data_1);
 path_1.setAttribute('fill', 'red');
 svg.appendChild(path_1);

 const path_data_2 =
 `M 0 0 L ${end_x} ${end_y} A 1 1 0 ${arc_flag_2} 1
 ${start_x} ${start_y} L 0 0`;

 const path_2 =
 document.createElementNS('http://www.w3.org/2000/svg', 'path');
 path_2.setAttribute('d', path_data_2);
 path_2.setAttribute('fill', 'blue');
 svg.appendChild(path_2);
 }

 SetPie(Number(document.getElementById("min_angle").value) / 180 *
 Math.PI,
 Number(document.getElementById("max_angle").value) / 180 * Math.PI);
</script>

Even though it is the last function in this code, I would like to begin by explaining the
SetPie function, which is used to set the SVG pie chart that shows the emission angle
range in red that the user has entered. Way back when we set up the SVG tag, we set
the viewport to go from x and y values of -1 to 1. That is great, because using
Math.cos and Math.sin will give us the values of the X and Y coordinates for the unit
circle, which has a radius of 1 and so those values will also run from -1 to 1.

Basic Particle System Chapter 8

[219]

We use document.getElementById('pie') to grab the svg element from the DOM so
we can modify it based on a change to the angle values. Next, we get the x and y
coordinates on a unit circle with the Math.cos and Math.sin functions, respectively. We
then do the same thing to get the ending x and y coordinates using the end_angle:

const end_x = Math.cos(end_angle);
const end_y = Math.sin(end_angle);

What we need to do in SVG is draw two paths. The first path will be drawn in red and will
represent the angle where the particle system emitter will emit particles. The second path
will be drawn in blue and will represent the part of our emission circle where we will not
emit particles. When we draw an SVG arc, we give the arc two points and tell it with a flag
if we need to take the long way (obtuse angle) or the short way (acute angle) around the
circle. We do this by checking to see if the emission angle is less than π and set a flag that
will go into our SVG based on this:

if(end_angle - start_angle <= 3.14) {
 arc_flag_1 = 0;
 arc_flag_2 = 1;
}
else {
 arc_flag_1 = 1;
 arc_flag_2 = 0;
}

Now, we need to define the path data and put it into the SVG path object. The following
code sets the path data for the portion of our emitter in which we emit our particles:

const path_data_1 = `M 0 0 L ${start_x} ${start_y} A 1 1 0 ${arc_flag_1} 1
${end_x} ${end_y} L 0 0`;

const path_1 = document.createElementNS('http://www.w3.org/2000/svg',
 'path');
path_1.setAttribute('d', path_data_1);
path_1.setAttribute('fill', 'red');
svg.appendChild(path_1);

A series of commands define path data in SVG. If you look at the definition of
path_data_1, it begins with M 0 0, which tells SVG to move the cursor to position 0,
0 without drawing. The next command is L ${start_x} ${start_y}. Because we are
using a string template literal, ${start_x} and ${start_y} are replaced with the values
in the start_x and start_y variables. This command draws a line from the current
location we have moved to in the previous step (0,0) to the coordinates
start_x and start_y. The next command in our path is the Arc command and begins
with A: A 1 1 0 ${arc_flag_1} 1 ${end_x} ${end_y}.

Basic Particle System Chapter 8

[220]

The first two parameters, 1 1, are the x and y radius of an ellipse. Because we want a unit
circle, both of these values are 1. The 0 that follows is an X-axis rotation that SVG uses
when drawing an ellipse. Because we are drawing a circle, we set this to 0. The value after
that is ${arc_flag_1}. That is used to set the large arc flag, which tells SVG if we are
drawing the obtuse arc (we set the value to 1) or the acute arc (we set the value to 0). The
value after this is the sweep flag. This flag determines if we are drawing in the clockwise
(value is 1) or counter-clockwise (value is 0) direction. We always want to draw in the
clockwise direction, so this value is going to be 1. The last two parameters in our arc
command are ${end_x} ${end_y}. These values are the end position of our arc, which we
had determined earlier by getting the cosine and sine of our ending angle. After we have
completed our arc, we finish our shape by drawing a line back to the 0,0 coordinate using
the L 0 0 line command.

After we have drawn the emission angle in red, we cover the remainder of the circle in blue
with a second path by drawing from the ending position to the starting position.

In the next section, we are going to build a simple particle emitter configuration tool.

The simple particle emitter tool
Now that we have created a simple web app that can upload a PNG image file to the
WebAssembly virtual file system, and an SVG chart to display the emission direction of the
particles, we are going to add a simple particle system configuration tool. For this first
version of our particle system configuration tool, we are going to keep the number of
configurable values small. Later, we will add more features to our particle system tool, but
for the moment this is the list of parameters we will be able to use to configure a particle
emitter:

Image file
Minimum emission angle
Maximum emission angle
Maximum particles
Particle lifetime in milliseconds
Particle acceleration (or deceleration)
Alpha fade (will the particles fade out over time?)
Emission rate (number of particles to emit per second)
X position (emitter x coordinate)

Basic Particle System Chapter 8

[221]

Y position (emitter y coordinate)
Radius (how far from the emitter's position can we create a particle?)
Minimum starting velocity
Maximum starting velocity

That will let us create a very basic particle emitter. We will improve this emitter in the next
section, but we need to start somewhere. I do not plan on discussing any of the CSS we
have added to enhance the look of this tool. The first thing I want to do is cover the HTML
that will go into the new shell file, which we are calling basic_particle_shell.html.
We need to add some HTML input fields to take in all of the configurable values we
discussed previously. We will also need a button to update the emitter once we have
written in our changes.

Add the following code into the <body> tag in our new shell file:

<div class="container">
 <svg id="pie" width="200" height="200" viewBox="-1 -1 2 2"></svg>

 <div style="margin-left: auto; margin-right: auto">
 min angle:
 <input type="number" id="min_angle" max="359" min="-90"
 step="1" value="-20" class="em_input">

 max angle:
 <input type="number" id="max_angle" max="360" min="0" step="1"
 value="20" class="em_input">

 </div>
 max particles:
 <input type="number" id="max_particles" max="10000" min="10"
 step="10" value="100" class="em_input">

 life time:
 <input type="number" id="lifetime" max="10000" min="10"
 step="10" value="1000" class="em_input">

 acceleration:

 <input type="number" id="acceleration" max="2.0" min="0.0"
 step="0.1" value="1.0" class="em_input">

 <label class="ccontainer">alpha fade:
 <input type="checkbox" checked="checked">

 </label>

 emission rate:
 <input type="number" id="emission_rate" max="100" min="1" step="1"

Basic Particle System Chapter 8

[222]

 value="20" class="em_input">

 x position:
 <input type="number" id="x_pos" max="800" min="0" step="1"
 value="400" class="em_input">

 y position:
 <input type="number" id="y_pos" max="600" min="0" step="1"
 value="300" class="em_input">

 radius:
 <input type="number" id="radius" max="500" min="0" step="1"
 value="20" class="em_input">

 min start vel:
 <input type="number" id="min_starting_vel" max="9.9" min="0.0"
 step="0.1" value="1.0" class="em_input">

 max start vel:
 <input type="number" id="max_starting_vel" max="10.0" min="0.0"
 step="0.1" value="2.0" class="em_input">

 <div class="input_box">
 <button id="update_btn" class="em_button"
 onclick="UpdateClick()">Update Emitter</button>
 </div>
 </div>

The CSS file styles this container to appear on the left side of the web page. The user can
load an image into the virtual file system as they could previously, but this time all of the
values in these input fields are used to create a particle emitter. The user can modify these
settings and click the Update Emitter button to update the values used by the emitter. That
will allow the user to test some basic emitter settings.

The code inside of the main function will need to be added to prevent the
SDL Event handler from intercepting the keyboard events and preventing
the default behavior inside of these input elements. We will cover that
code a little later.

Basic Particle System Chapter 8

[223]

Now that I have shown you the HTML elements that must be added to allow us to
configure a particle system, let's step through the JavaScript code that will enable us to pass
these values into the WebAssembly module. Here is what that JavaScript code looks like:

<script type='text/javascript'>
 var canvas = null;
 var ctx = null;
 var ready = false;
 var image_added = false;
 function ShowFileInput() {
 document.getElementById("file_input_label").style.display =
 "block";
 ready = true;
 }
 function UpdateClick() {
 if(ready == false || image_added == false) { return; }
 var max_particles = Number(document.getElementById
 ("max_particles").value);
 var min_angle = Number(document.getElementById
 ("min_angle").value) / 180 * Math.PI;
 var max_angle = Number(document.getElementById
 ("max_angle").value) / 180 * Math.PI
 var particle_lifetime = Number(document.getElementById
 ("lifetime").value);
 var acceleration = Number(document.getElementById
 ("acceleration").value);
 var alpha_fade = Boolean(document.getElementById
 ("alpha_fade").checked);
 var emission_rate = Number(document.getElementById
 ("emission_rate").value);
 var x_pos = Number(document.getElementById("x_pos").value);
 var y_pos = Number(document.getElementById("y_pos").value);
 var radius = Number(document.getElementById("radius").value);
 var min_starting_velocity = Number(document.getElementById
 ("min_starting_vel").value);
 var max_starting_velocity = Number(document.getElementById
 ("max_starting_vel").value);
 Module.ccall('update_emitter', 'undefined',
 ["number","number","number","number", "number","bool",
 "number","number","number","number","number","number"],

 [max_particles,min_angle,max_angle,particle_lifetime,
 acceleration,alpha_fade,min_starting_velocity,
 max_starting_velocity,emission_rate,x_pos ,y_pos,radius]);
 }
 var Module = {
 preRun: [],
 postRun: [ShowFileInput],

Basic Particle System Chapter 8

[224]

 print: (function() {
 var element = document.getElementById('output');
 if (element) element.value = '';
 return function(text) {
 if (arguments.length > 1) text =
 Array.prototype.slice.call(arguments).join(' ');
 console.log(text);
 if (element) {
 element.value += text + "\n";
 element.scrollTop = element.scrollHeight;
 }
 }; })(),
 printErr: function(text) {
 if (arguments.length > 1) text =
 Array.prototype.slice.call(arguments).join(' ');
 if (0) { dump(text + '\n'); }
 else { console.error(text); }
 },
 canvas: (function() {
 var canvas = document.getElementById('canvas');
 canvas.addEventListener("webglcontextlost", function(e) {
 alert('WebGL context lost. You will need to reload the
 page.');
 e.preventDefault();},false);
 return canvas; })(),
 setStatus: function(text) {
 if (!Module.setStatus.last) Module.setStatus.last={ time:
 Date.now(), text: '' };
 if (text === Module.setStatus.last.text) return;
 var m = text.match(/([^(]+)\((\d+(\.\d+)?)\/(\d+)\)/);
 var now = Date.now();
 if (m && now - Module.setStatus.last.time < 30) return;
 Module.setStatus.last.time = now;
 Module.setStatus.last.text = text;
 if(m) { text = m[1]; }
 console.log("status: " + text); },
 totalDependencies: 0,
 monitorRunDependencies: function(left) {
 this.totalDependencies = Math.max(this.totalDependencies,
 left);
 Module.setStatus(left?'Preparing... (' +
 (this.totalDependencies-left) +
 '/' + this.totalDependencies + ')' :
 'All downloads complete.');
 } };
 Module.setStatus('Downloading...');
 window.onerror = function() {
 Module.setStatus('Exception thrown, see JavaScript console');

Basic Particle System Chapter 8

[225]

 Module.setStatus = function(text) {
 if (text) Module.printErr('[post-exception status] ' +
 text);
 }; };
 function handleFiles(files) {
 var file_count = 0;
 for (var i = 0; i < files.length; i++) {
 if (files[i].type.match(/image.png/)) {
 var file = files[i];
 var file_name = file.name;
 var fr = new FileReader();
 fr.onload = function(file) {
 var data = new Uint8Array(fr.result);
 Module.FS_createDataFile('/', file_name, data,
 true, true, true);
 var max_particles = Number(document.getElementById
 ("max_particles").value);
 var min_angle = Number(document.getElementById
 ("min_angle").value) / 180 *
 Math.PI;
 var max_angle = Number(document.getElementById
 ("max_angle").value) / 180 *
 Math.PI
 var particle_lifetime = Number(document.getElementById
 ("lifetime").value);
 var acceleration = Number(document.getElementById
 ("acceleration").value);
 var alpha_fade = Boolean(document.getElementById
 ("alpha_fade").checked);
 var emission_rate = Number(document.getElementById
 ("emission_rate").value);
 var x_pos = Number(document.getElementById
 ("x_pos").value);
 var y_pos = Number(document.getElementById
 ("y_pos").value);
 var radius = Number(document.getElementById
 ("radius").value);
 var min_starting_velocity = Number(document.getElementById
 ("min_starting_vel").value);
 var max_starting_velocity = Number(document.getElementById
 ("max_starting_vel").value);
 Module.ccall('add_emitter','undefined',
 ["string","number", "number", "number", "number",
 "number", "bool", "number", "number","number",
 "number", "number", "number"],
 [file_name, max_particles, min_angle, max_angle,
 particle_lifetime, acceleration, alpha_fade,
 min_starting_velocity, max_starting_velocity,

Basic Particle System Chapter 8

[226]

 emission_rate, x_pos, y_pos, radius]);
 image_added = true; };
 fr.readAsArrayBuffer(files[i]);
} } }
</script>

Most of the Module code is unmodified, but we have added several functions and some
new variables. We have added a global ready variable that is set to false when initialized.
This flag will be set to true when the Module is loaded. As it was in the previous
section, ShowFileInput runs after the Module is loaded using the postRun array. We
have tweaked this code to set the ready flag that we mentioned earlier:

function ShowFileInput() {
 document.getElementById("file_input_label").style.display = "block";
 ready = true;
}

In an earlier section, we created a handleFiles function that loaded a file into our
WebAssembly virtual file system. We now need to modify that function to call a function,
add_emitter, that we will need to define inside of our C++ code. We will call this function,
passing in all of the values we have defined in the HTML input elements. Here is what that
function looks like:

function handleFiles(files) {
 var file_count = 0;
 for (var i = 0; i < files.length; i++) {
 if (files[i].type.match(/image.png/)) {
 var file = files[i];
 var file_name = file.name;
 var fr = new FileReader();
 fr.onload = function (file) {
 var data = new Uint8Array(fr.result);
 Module.FS_createDataFile('/', file_name, data, true,
 true, true);
 var max_particles = Number(document.getElementById(
 "max_particles").value);
 var min_angle = Number(document.getElementById
 ("min_angle").value) / 180 * Math.PI;
 var max_angle = Number(document.getElementById
 ("max_angle").value) / 180 * Math.PI
 var particle_lifetime = Number(document.getElementById
 ("lifetime").value);
 var acceleration = Number(document.getElementById
 ("acceleration").value);
 var alpha_fade = Boolean(document.getElementById
 ("alpha_fade").checked);
 var emission_rate = Number(document.getElementById

Basic Particle System Chapter 8

[227]

 ("emission_rate").value);
 var x_pos = Number(document.getElementById
 ("x_pos").value);
 var y_pos = Number(document.getElementById
 ("y_pos").value);
 var radius = Number(document.getElementById
 ("radius").value);
 var min_starting_velocity = Number(document.getElementById
 ("min_starting_vel").value);
 var max_starting_velocity = Number(document.getElementById
 ("max_starting_vel").value);
 Module.ccall('add_emitter', 'undefined', ["string",
 "number", "number", "number",
 "number", "number", "bool",
 "number", "number",
 "number", "number", "number", "number"],
 [file_name, max_particles,
 min_angle, max_angle,
 particle_lifetime, acceleration, alpha_fade,
 min_starting_velocity, max_starting_velocity,
 emission_rate, x_pos, y_pos, radius]);
 image_added = true;
 };
 fr.readAsArrayBuffer(files[i]);
 }
 }
}

The FileReader code, and the call to Module.FS_createDataFile from the previous
iteration of this function, is still here. In addition to that, we use
document.getElementById to grab the HTML elements and store the value of those
elements into a set of variables:

var max_particles = Number(document.getElementById
 ("max_particles").value);
var min_angle = Number(document.getElementById("min_angle").value) /
 180 * Math.PI;
var max_angle = Number(document.getElementById("max_angle").value) /
 180 * Math.PI
var particle_lifetime = Number(document.getElementById
 ("lifetime").value);
var acceleration = Number(document.getElementById
 ("acceleration").value);
var alpha_fade = Boolean(document.getElementById
 ("alpha_fade").checked);
var emission_rate = Number(document.getElementById
 ("emission_rate").value);
var x_pos = Number(document.getElementById("x_pos").value);

Basic Particle System Chapter 8

[228]

var y_pos = Number(document.getElementById("y_pos").value);
var radius = Number(document.getElementById("radius").value);
var min_starting_velocity = Number(document.getElementById
 ("min_starting_vel").value);
var max_starting_velocity = Number(document.getElementById
 ("max_starting_vel").value);

Many of these values need to be explicitly coerced into numbers using the Number coercion
function. The alpha_fade variable must be coerced into a Boolean value. Now that we
have all of these values inside of variables, we can use Module.ccall to call the C++
function, add_emitter, passing in all of these values:

Module.ccall('add_emitter', 'undefined', ["string", "number", "number",
 "number",
 "number", "number", "bool",
 "number", "number",
 "number", "number", "number", "number"],
 [file_name, max_particles, min_angle, max_angle,
 particle_lifetime, acceleration, alpha_fade,
 min_starting_velocity, max_starting_velocity,
 emission_rate, x_pos, y_pos, radius]);

At the very end of this, we set the image_added flag to true. We will not allow the user to
update an emitter unless a call to add_emitter has created it. We have also added a new
function, UpdateClick, that we will call whenever someone clicks the Update Emitter
button, assuming that they have already created an emitter. Here is what the code in that
function looks like:

function UpdateClick() {
 if(ready == false || image_added == false) {
 return;
 }
 var max_particles = Number(document.getElementById
 ("max_particles").value);
 var min_angle = Number(document.getElementById("min_angle").value)
 / 180 * Math.PI;
 var max_angle = Number(document.getElementById("max_angle").value)
 / 180 * Math.PI
 var particle_lifetime = Number(document.getElementById
 ("lifetime").value);
 var acceleration = Number(document.getElementById
 ("acceleration").value);
 var alpha_fade = Boolean(document.getElementById
 ("alpha_fade").checked);
 var emission_rate = Number(document.getElementById
 ("emission_rate").value);
 var x_pos = Number(document.getElementById("x_pos").value);

Basic Particle System Chapter 8

[229]

 var y_pos = Number(document.getElementById("y_pos").value);
 var radius = Number(document.getElementById("radius").value);
 var min_starting_velocity = Number(document.getElementById
 ("min_starting_vel").value);
 var max_starting_velocity = Number(document.getElementById
 ("max_starting_vel").value);

 Module.ccall('update_emitter', 'undefined', ["number", "number",
 "number",
 "number", "number", "bool",
 "number", "number",
 "number", "number", "number", "number"],
 [max_particles, min_angle, max_angle,
 particle_lifetime, acceleration, alpha_fade,
 min_starting_velocity, max_starting_velocity,
 emission_rate, x_pos, y_pos, radius]);
}

The first thing we do is make sure that the Module object is loaded, and that we created the
emitter. If either of these has not happened, we do not want to run this code, so we must
return:

if(ready == false || image_added == false) {
 return;
}

The remainder of this code is similar to the code we added to handleFiles. First, we grab
all of the HTML elements and coerce the values in them into the appropriate data types to
pass into our call to the C++ function:

var max_particles = Number(document.getElementById
 ("max_particles").value);
var min_angle = Number(document.getElementById("min_angle").value) /
 180 * Math.PI;
var max_angle = Number(document.getElementById("max_angle").value) /
 180 * Math.PI
var particle_lifetime = Number(document.getElementById
 ("lifetime").value);
var acceleration = Number(document.getElementById
 ("acceleration").value);
var alpha_fade = Boolean(document.getElementById
 ("alpha_fade").checked);
var emission_rate = Number(document.getElementById
 ("emission_rate").value);
var x_pos = Number(document.getElementById("x_pos").value);
var y_pos = Number(document.getElementById("y_pos").value);
var radius = Number(document.getElementById("radius").value);
var min_starting_velocity = Number(document.getElementById

Basic Particle System Chapter 8

[230]

 ("min_starting_vel").value);
var max_starting_velocity = Number(document.getElementById
 ("max_starting_vel").value);

After getting all of the values from the input elements, we use those values to call the
update_emitter C++ function, passing in those values:

Module.ccall('update_emitter', 'undefined', ["number", "number",
 "number",
 "number", "number", "bool",
 "number", "number",
 "number", "number", "number", "number"],
 [max_particles, min_angle, max_angle,
 particle_lifetime, acceleration, alpha_fade,
 min_starting_velocity, max_starting_velocity,
 emission_rate, x_pos, y_pos, radius]);

In the next section, we will be implementing a Point class to track game object positions.

The Point class
In previous chapters, we have dealt with the 2D X and Y coordinates directly in our classes.
I want to add a little bit of functionality that deals with our X and Y coordinates. For this,
we are going to need to define a new class called Point. Eventually, Point will do more
than what we are using it for here. But for right now, I would like to be able to create
a Point object and be able to Rotate that point by an angle. Here is the class definition
for Point that we have added to the game.hpp file:

class Point {
 public:
 float x;
 float y;
 Point();
 Point(float X, float Y);
 Point operator=(const Point& p);
 void Rotate(float radians);
};

Basic Particle System Chapter 8

[231]

The first several functions and the operator= are pretty straightforward. They set the x
and y attributes either through a constructor or by using a line of code such as point_1 =
point_2;. The last function, Rotate, is the entire reason we created this class. Its job is to
take the X and Y coordinates and rotate them around the point 0,0. Here is the code that
gets that done:

void Point::Rotate(float radians) {
 float sine = sin(radians);
 float cosine = cos(radians);
 float rx = x * cosine - y * sine;
 float ry = x * sine + y * cosine;
 x = rx;
 y = ry;
}

This Rotate function will eventually be used all over the game. For right now, we will use
it to define the velocities of our particles based on the emission angles.

The Particle class
The Particle class is the class we will use to represent the individual particles that are
emitted by our particle system. The Particles class will need to be created with a
constructor and later updated with an Update function used to modify the defining
attributes of the particle. There will be a Spawn function used to activate the Particle,
a Move function to move the particle through its life cycle eventually deactivating it, and
a Render function that will perform the SDL rendering tasks required to draw the particle
to the canvas. Here is what the Particle class looks like in our game.hpp file:

class Particle {
 public:
 bool m_active;
 bool m_alpha_fade;
 SDL_Texture *m_sprite_texture;
 int m_ttl;
 Uint32 m_life_time;
 float m_acceleration;
 float m_alpha;
 Point m_position;
 Point m_velocity;
 SDL_Rect m_dest = {.x = 0, .y = 0, .w = 0, .h = 0 };
 Particle(SDL_Texture *sprite, Uint32 life_time, float
 acceleration, bool alpha_fade, int width, int height);
 void Update(Uint32 life_time, float acceleration,

Basic Particle System Chapter 8

[232]

 bool alpha_fade);
 void Spawn(float x, float y, float velocity_x, float
 velocity_y, float alpha);
 void Move();
 void Render();
};

We will define the functions associated with the Particle class inside of the
particle.cpp file. At the top of this file, we have defined a constructor and
an Update function. We call the Update function whenever the user clicks the Update
Emitter button on the web page. That will update all of the particles to use the new values
for their lifetime, acceleration, and alpha fade. Here is what the code to these first two
functions looks like:

Particle::Particle(SDL_Texture *sprite_texture, Uint32 life_time,
 float acceleration, bool alpha_fade,
 int width, int height) {
 m_sprite_texture = sprite_texture;
 m_life_time = life_time;
 m_acceleration = acceleration;
 m_alpha_fade = alpha_fade;
 m_dest.w = width;
 m_dest.h = height;
 m_active = false;
}
void Particle::Update(Uint32 life_time, float acceleration, bool
 alpha_fade) {
 m_life_time = life_time;
 m_acceleration = acceleration;
 m_alpha_fade = alpha_fade;
 m_active = false;
}

The Spawn function is called by the Emitter whenever it needs to emit a particle.
The Emitter checks that the particle it is emitting has an active flag set to false. The
values passed into Spawn, such as the X and Y coordinates, the velocity x and y values, and
the starting alpha value, are all calculated by the Emitter when it emits a new particle.
Here is what the code looks like:

void Particle::Spawn(float x, float y, float velocity_x,
 float velocity_y, float alpha) {
 m_position.x = x;
 m_dest.x = (int)m_position.x;
 m_position.y = y;
 m_dest.y = (int)m_position.y;
 m_velocity.x = velocity_x;

Basic Particle System Chapter 8

[233]

 m_velocity.y = velocity_y;
 m_alpha = alpha;
 m_active = true;
 m_ttl = m_life_time;
}

The Move function of every active particle is called once per frame by the emitter, and is
where the particle calculates its new position, alpha, and determines if it is still active based
on how long it has been alive. Here is what the code looks like:

void Particle::Move() {
 float acc_adjusted = 1.0f;
 if(m_acceleration < 1.0f) {
 acc_adjusted = 1.0f - m_acceleration;
 acc_adjusted *= delta_time;
 acc_adjusted = 1.0f - acc_adjusted;
 }
 else if(m_acceleration > 1.0f) {
 acc_adjusted = m_acceleration - 1.0f;
 acc_adjusted *= delta_time;
 acc_adjusted += 1.0f;
 }
 m_velocity.x *= acc_adjusted;
 m_velocity.y *= acc_adjusted;
 m_position.x += m_velocity.x;
 m_position.y += m_velocity.y;
 m_dest.x = (int)m_position.x;
 m_dest.y = (int)m_position.y;

 if(m_alpha_fade == true) {
 m_alpha = 255.0 * (float)m_ttl / (float)m_life_time;
 if(m_alpha < 0) {
 m_alpha = 0;
 }
 }
 else {
 m_alpha = 255.0;
 }
 m_ttl -= diff_time;
 if(m_ttl <= 0) {
 m_active = false;
 }
}

Basic Particle System Chapter 8

[234]

Finally, the Render function makes calls to the SDL functions that set the alpha value for
the particle and then copies that particle to the renderer:

void Particle::Render() {
 SDL_SetTextureAlphaMod(m_sprite_texture, (Uint8)m_alpha);
 SDL_RenderCopy(renderer, m_sprite_texture, NULL, &m_dest);
}

In the next section, we will discuss the Emitter class and the code we will need to make
that class work.

The Emitter class
The Emitter class manages a pool of particles and is where the loaded sprite texture that
the particles use to render themselves resides. Our emitters will only be circular. It is
possible to define emitters with many different possible shapes, but for our game, a circle-
shaped emitter will work fine. Right now, our Emitter class is going to be pretty basic. In
later sections, we will add some new features, but right now I want to create a very basic
particle system. Here is what the class definition looks like in the game.hpp file:

class Emitter {
 public:
 SDL_Texture *m_sprite_texture;
 std::vector<Particle*> m_particle_pool;
 int m_sprite_width;
 int m_sprite_height;
 Uint32 m_max_particles;
 Uint32 m_emission_rate;
 Uint32 m_emission_time_ms;
 int m_next_emission;
 float m_max_angle;
 float m_min_angle;
 float m_radius;
 float m_min_starting_velocity;
 float m_max_starting_velocity;
 Point m_position;
 Emitter(char* sprite_file, int max_particles, float min_angle,
 float max_angle,
 Uint32 particle_lifetime, float acceleration, bool
 alpha_fade,
 float min_starting_velocity, float
 max_starting_velocity,
 Uint32 emission_rate, int x_pos, int y_pos, float
 radius);
 void Update(int max_particles, float min_angle, float

Basic Particle System Chapter 8

[235]

 max_angle,
 Uint32 particle_lifetime, float acceleration, bool
 alpha_fade,
 float min_starting_velocity, float
 max_starting_velocity,
 Uint32 emission_rate, int x_pos, int y_pos, float
 radius);
 void Move();
 Particle* GetFreeParticle();
};

The attributes inside this class mirror the HTML input elements we created earlier in this
chapter. These values get set either when the Emitter is created using the constructor, or
when the user clicks the update button, which calls the Update function. The Move function
will be called once per frame, and will move then render all of the particles that are active
inside the particle pool. It will also determine if a new particle should be emitted by calling
the Spawn function on a free particle.

We will define all of these functions within the emitter.cpp file. Here is what
the Emitter constructor and Update functions look like inside of the emitter.cpp file:

Emitter::Emitter(char* sprite_file, int max_particles, float min_angle,
float max_angle, Uint32 particle_lifetime, float acceleration, bool
alpha_fade, float min_starting_velocity, float max_starting_velocity,
Uint32 emission_rate, int x_pos, int y_pos, float radius) {

 if(min_starting_velocity > max_starting_velocity) {
 m_min_starting_velocity = max_starting_velocity;
 m_max_starting_velocity = min_starting_velocity;
 }
 else {
 m_min_starting_velocity = min_starting_velocity;
 m_max_starting_velocity = max_starting_velocity;
 }
 SDL_Surface *temp_surface = IMG_Load(sprite_file);

 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;
 }
 m_sprite_texture = SDL_CreateTextureFromSurface(renderer,
 temp_surface);
 SDL_FreeSurface(temp_surface);
 SDL_QueryTexture(m_sprite_texture,
 NULL, NULL, &m_sprite_width, &m_sprite_height);
 m_max_particles = max_particles;

Basic Particle System Chapter 8

[236]

 for(int i = 0; i < m_max_particles; i++) {
 m_particle_pool.push_back(
 new Particle(m_sprite_texture, particle_lifetime,
 acceleration, alpha_fade, m_sprite_width, m_sprite_height)
);
 }
 m_max_angle = max_angle;
 m_min_angle = min_angle;
 m_radius = radius;
 m_position.x = (float)x_pos;
 m_position.y = (float)y_pos;
 m_emission_rate = emission_rate;
 m_emission_time_ms = 1000 / m_emission_rate;
 m_next_emission = 0;
}

void Emitter::Update(int max_particles, float min_angle, float
 max_angle, Uint32 particle_lifetime, float
 acceleration, bool alpha_fade,
 float min_starting_velocity, float
 max_starting_velocity, Uint32 emission_rate, int
 x_pos, int y_pos, float radius) {
 if(min_starting_velocity > max_starting_velocity) {
 m_min_starting_velocity = max_starting_velocity;
 m_max_starting_velocity = min_starting_velocity;
 }
 else {
 m_min_starting_velocity = min_starting_velocity;
 m_max_starting_velocity = max_starting_velocity;
 }
 m_max_particles = max_particles;
 m_min_angle = min_angle;
 m_max_angle = max_angle;
 m_emission_rate = emission_rate;
 m_position.x = (float)x_pos;
 m_position.y = (float)y_pos;
 m_radius = radius;

 if(m_particle_pool.size() > m_max_particles) {
 m_particle_pool.resize(m_max_particles);
 }
 else if(m_max_particles > m_particle_pool.size()) {
 while(m_max_particles > m_particle_pool.size()) {
 m_particle_pool.push_back(
 new Particle(m_sprite_texture, particle_lifetime,
 acceleration, alpha_fade, m_sprite_width,
 m_sprite_height)
);

Basic Particle System Chapter 8

[237]

 }
 }

 Particle* particle;
 std::vector<Particle*>::iterator it;
 for(it = m_particle_pool.begin(); it != m_particle_pool.end();
 it++) {
 particle = *it;
 particle->Update(particle_lifetime, acceleration, alpha_fade);
 }
}

Both of these functions set the attributes of the Emitter class and set up the particle pool
based on the max_particles value passed into these functions. The GetFreeParticle
function is called by the Move function to get a particle from the particle pool that is not
currently active. The Move function first figures out if it needs to emit a new particle, and if
it does, calls the GetFreeParticle function to grab an inactive particle, and then uses the
attributes of the Emitter to set the values to use when spawning a particle. It will loop
over all of the particles in the pool, and if the particle is active, it will Move and
then Render that particle:

Particle* Emitter::GetFreeParticle() {
 Particle* particle;
 std::vector<Particle*>::iterator it;
 for(it = m_particle_pool.begin(); it != m_particle_pool.end();
 it++) {
 particle = *it;
 if(particle->m_active == false) {
 return particle;
 }
 }
 return NULL;
}

void Emitter::Move() {
 Particle* particle;
 std::vector<Particle*>::iterator it;
 static int count = 0;
 m_next_emission -= diff_time;
 if(m_next_emission <= 0) {
 m_next_emission = m_emission_time_ms;
 particle = GetFreeParticle();
 if(particle != NULL) {
 float rand_vel = (rand() %
 (int)((m_max_starting_velocity -
 m_min_starting_velocity) * 1000)) / 1000.0f;
 Point spawn_point;

Basic Particle System Chapter 8

[238]

 spawn_point.x = (float)(rand() % (int)(m_radius * 1000)) /
 1000.0;
 Point velocity_point;
 velocity_point.x = (float)(rand() %
 (int)((m_max_starting_velocity + rand_vel) * 1000)) /
 1000.0;
 int angle_int = (int)((m_max_angle - m_min_angle) *
 1000.0);
 float add_angle = (float)(rand() % angle_int) /1000.0f;
 float angle = m_min_angle + add_angle;
 velocity_point.Rotate(angle);
 angle = (float)(rand() % 62832) / 10000.0;
 spawn_point.Rotate(angle);
 spawn_point.x += m_position.x;
 spawn_point.y += m_position.y;
 particle->Spawn(spawn_point.x, spawn_point.y,
 velocity_point.x, velocity_point.y, 255.0f);
 }
 }
 for(it = m_particle_pool.begin(); it != m_particle_pool.end();
 it++) {
 particle = *it;
 if(particle->m_active) {
 particle->Move();
 particle->Render();
 }
 }
}

We will compile these classes into our WebAssembly module, but they will not be used to
interact directly with the JavaScript we defined earlier. For that, we are going to need to
define some functions in a new file that we will discuss in the next section.

WebAssembly interface functions
We need to define the functions that will interact with our JavaScript. We also need to
define some global variables that will be used by several of our classes. Here is the code
from the new basic_particle.cpp file:

#include "game.hpp"
#include <emscripten/bind.h>
SDL_Window *window;
SDL_Renderer *renderer;
char* fileName;
Emitter* emitter = NULL;

Basic Particle System Chapter 8

[239]

Uint32 last_time = 0;
Uint32 current_time = 0;
Uint32 diff_time = 0;
float delta_time = 0.0f;
extern "C"
 EMSCRIPTEN_KEEPALIVE
 void add_emitter(char* file_name, int max_particles, float
 min_angle, float max_angle, Uint32 particle_lifetime, float
 acceleration, bool alpha_fade, float min_starting_velocity, float
 kmax_starting_velocity, Uint32 emission_rate, float x_pos, float
 y_pos, float radius) {
 if(emitter != NULL) {
 delete emitter;
 }
 emitter = new Emitter(file_name, max_particles, min_angle,
 max_angle, particle_lifetime,
 acceleration, alpha_fade,
 min_starting_velocity,
 max_starting_velocity,
 emission_rate, x_pos, y_pos, radius);
 }
extern "C"
 EMSCRIPTEN_KEEPALIVE
 void update_emitter(int max_particles, float min_angle, float
 max_angle, Uint32 particle_lifetime, float acceleration, bool
 alpha_fade, float min_starting_velocity, float
 max_starting_velocity, Uint32 emission_rate, float x_pos, float
 y_pos, float radius) {
 if(emitter == NULL) {
 return;
 }
 emitter->Update(max_particles, min_angle, max_angle,
 particle_lifetime, acceleration, alpha_fade,
 min_starting_velocity, max_starting_velocity,
 emission_rate, x_pos, y_pos, radius);
 }
 void show_emission() {
 current_time = SDL_GetTicks();
 delta_time = (double)(current_time - last_time) / 1000.0;
 diff_time = current_time - last_time;
 last_time = current_time;
 if(emitter == NULL) {
 return;
 }
 SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
 SDL_RenderClear(renderer);
 emitter->Move();
 SDL_RenderPresent(renderer);

Basic Particle System Chapter 8

[240]

 }
 int main() {
 printf("Enter Main\n");
 SDL_Init(SDL_INIT_VIDEO);
 int return_val = SDL_CreateWindowAndRenderer(800, 600, 0,
 &window, &renderer);
 SDL_EventState(SDL_TEXTINPUT, SDL_DISABLE);
 SDL_EventState(SDL_KEYDOWN, SDL_DISABLE);
 SDL_EventState(SDL_KEYUP, SDL_DISABLE);
 if(return_val != 0) {
 printf("Error creating renderer %d: %s\n", return_val,
 IMG_GetError());
 return 0;
 }
 last_time = SDL_GetTicks();
 emscripten_set_main_loop(show_emission, 0, 0);
 printf("Exit Main\n");
 return 1;
 }

The first two global variables are SDL_Window and SDL_Renderer. We need these as global
objects (particularly the renderer) so that they can be used to render our textures to the
canvas:

SDL_Window *window;
SDL_Renderer *renderer;

After that, we have our emitter. Right now, we are only supporting a single emitter. In later
versions, we will want to have several emitters that we have configured:

Emitter* emitter = NULL;

The remaining global variables are all related to keeping track of time between frames in
both milliseconds (diff_time) and terms of fractions of a second (delta_time). The
last_time and current_time variables are primarily used to calculate those other two
time-related variables. Here is what the definitions look like in the code:

Uint32 last_time = 0;
Uint32 current_time = 0;
Uint32 diff_time = 0;
float delta_time = 0.0f;

Basic Particle System Chapter 8

[241]

After we define our global variables, it is time to define the functions that will interact with
our JavaScript. The first one of these functions is add_emitter. That is a simple function
that looks to see if an emitter has been defined and, if it has, delete it. Then, it creates a new
emitter with the values that were passed into this function from the JavaScript using the
values that were inside of the HTML input elements at the time. Here is what the function
looks like:

extern "C"
 EMSCRIPTEN_KEEPALIVE
 void add_emitter(char* file_name, int max_particles, float
 min_angle, float max_angle, Uint32 particle_lifetime, float
 acceleration, bool alpha_fade, float min_starting_velocity, float
 max_starting_velocity, Uint32 emission_rate, float x_pos, float
 y_pos, float radius) {
 if(emitter != NULL) {
 delete emitter;
 }
 emitter = new Emitter(file_name, max_particles, min_angle,
 max_angle, particle_lifetime, acceleration, alpha_fade,
 min_starting_velocity, max_starting_velocity,
 emission_rate, x_pos, y_pos, radius);
 }

You may have noticed these two lines that precede the definition of
the add_emitter function:

extern "C"
 EMSCRIPTEN_KEEPALIVE

We need those lines to prevent name mangling and dead code elimination. If you've never
heard those terms before, let me explain.

Basic Particle System Chapter 8

[242]

C++ name mangling
The first of these lines, extern "C", tells the compiler that this is a C function and instructs
it not to use C++ name mangling on that function. If you are not familiar with C++ name
mangling, the basics of it are this: C++ supports function overloading. In other words, you
can have multiple functions with the same name that have different parameters. C++ will
call the correct function based on the parameters that are getting passed into that function.
Because of this functionality, C++ will mangle the names as it compiles them, giving each
function a different name during the compilation process. Because I am now using C++ and
I am no longer using C, these functions I would like to be called from JavaScript are subject
to this name mangling process. The extern "C" directive tells the C++ compiler that these
are C functions, and to please not mangle the names so that I can call them externally from
my JavaScript.

Dead code elimination
By default, Emscripten uses dead code elimination to remove any function that you are not
calling from somewhere inside of your C++ code. In most instances, this is a good thing.
You do not want unused code taking up space inside of your WebAssembly module. That
creates a problem when there is a function that exists to be called from the JavaScript, but
not from inside of the C++ code. The Emscripten compiler sees that nothing is calling this
function, and eliminates it. EMSCRIPTEN_KEEPALIVE tells the Emscripten compiler not to
remove this code because you would like to call it from an external source.

Updating the emitter
After the add_emitter code, the next function that is set up for an external call is
update_emitter. This function first checks to see if there is a defined emitter, and if so,
calls an update function that updates all of the attributes on the emitter to the values passed
in from the HTML input elements. Here is what the code looks like:

extern "C"
 EMSCRIPTEN_KEEPALIVE
 void update_emitter(int max_particles, float min_angle, float
 max_angle, Uint32 particle_lifetime, float acceleration, bool
 alpha_fade, float min_starting_velocity, float
 max_starting_velocity, Uint32 emission_rate, float x_pos, float
 y_pos, float radius) {
 if(emitter == NULL) {
 return;
 }

Basic Particle System Chapter 8

[243]

 emitter->Update(max_particles, min_angle, max_angle,
 particle_lifetime, acceleration, alpha_fade,
 min_starting_velocity, max_starting_velocity,
 emission_rate, x_pos, y_pos, radius);
 }

The looping function
The next function, show_emission, is the function that would be our game loop if this app
were a game. This function gets called for every frame rendered and is responsible for the
setting of timer values, preparing our SDL to render, and calling the emitter Move function,
which will move and render all of the particles in our particle system:

void show_emission() {
 current_time = SDL_GetTicks();
 delta_time = (double)(current_time - last_time) / 1000.0;
 diff_time = current_time - last_time;
 last_time = current_time;

 if(emitter == NULL) {
 return;
 }
 SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
 SDL_RenderClear(renderer);
 emitter->Move();
 SDL_RenderPresent(renderer);
}

The first few lines calculate the delta_time and diff_time global variables, which are
used by the particles to adjust the movement of the particles based on the frame rate:

current_time = SDL_GetTicks();
delta_time = (double)(current_time - last_time) / 1000.0;
diff_time = current_time - last_time;
last_time = current_time;

If the emitter has not been set, we do not want to render anything, so we return:

if(emitter == NULL) {
 return;
}

Basic Particle System Chapter 8

[244]

If the emitter exists, we need to clear out the renderer using a black color:

SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
SDL_RenderClear(renderer);

After that, we call the emitter Move function, which both moves all the particles and copies
the sprite texture to the appropriate position in the renderer. Then, we call
the SDL_RenderPresent function, to render to the HTML canvas element:

emitter->Move();
SDL_RenderPresent(renderer);

Initialization
The final function is the main function, which is called automatically when the
WebAssembly module is loaded:

int main() {
 SDL_Init(SDL_INIT_VIDEO);
 int return_val = SDL_CreateWindowAndRenderer(800, 600, 0, &window,
 &renderer);
 if(return_val != 0) {
 printf("Error creating renderer %d: %s\n", return_val,
 IMG_GetError());
 return 0;
 }
 SDL_EventState(SDL_TEXTINPUT, SDL_DISABLE);
 SDL_EventState(SDL_KEYDOWN, SDL_DISABLE);
 SDL_EventState(SDL_KEYUP, SDL_DISABLE);
 last_time = SDL_GetTicks();
 emscripten_set_main_loop(show_emission, 0, 0);
 return 1;
}

The first couple of lines initialize our SDL:

SDL_Init(SDL_INIT_VIDEO);
int return_val = SDL_CreateWindowAndRenderer(800, 600, 0, &window,
 &renderer);

Basic Particle System Chapter 8

[245]

After that, the next several lines are used to disable the SDL text input and keyboard
events. These lines prevent SDL from capturing the keyboard input we need to set the
input values inside of our HTML elements. In most games, we would not want these lines,
because we would prefer these events to be captured so that we could manage our game
input from within our WebAssembly module. But, if we want our app to work, and we
want our users to be able to change our HTML input, we must have these lines in our code:

SDL_EventState(SDL_TEXTINPUT, SDL_DISABLE);
SDL_EventState(SDL_KEYDOWN, SDL_DISABLE);
SDL_EventState(SDL_KEYUP, SDL_DISABLE);

The next line gets the starting clock value for the last_time global variable:

last_time = SDL_GetTicks();

The last line in this function prior to the return is used to set up our loop function. Our loop
function will be called every time a frame is rendered:

emscripten_set_main_loop(show_emission, 0, 0);

In the next section, we will compile and test an early version of our emitter configuration
tool.

Compiling and testing the particle emitter
Wow, that was a lot of code. Okay, now that we have everything that we need in our
particle emitter config tool, we need to take the time to compile and test it. After we test this
version, we can use this same call to em++ to test the advanced version we will start
building in the next section.

Run this command at the command line:

em++ emitter.cpp particle.cpp point.cpp basic_particle.cpp -o particle.html
-std=c++17 --shell-file basic_particle_shell.html -s NO_EXIT_RUNTIME=1 -s
USE_WEBGL2=1 -s USE_SDL=2 -s USE_SDL_IMAGE=2 -s SDL2_IMAGE_FORMATS=["png"]
-s NO_EXIT_RUNTIME=1 -s EXPORTED_FUNCTIONS="['_add_emitter',
'_update_emitter', '_main']" -s EXTRA_EXPORTED_RUNTIME_METHODS="['cwrap',
'ccall']" -s FORCE_FILESYSTEM=1

Basic Particle System Chapter 8

[246]

Your particle emitter configuration tool should look like this:

Figure 8.2: Screenshot of the particle system configuration tool

Do not forget that you must run WebAssembly apps using a web server,
or with emrun. If you would like to run your WebAssembly app using
emrun, you must compile it with the --emrun flag. The web browser
requires a web server to stream the We1bAssembly module. If you
attempt to open an HTML page that uses WebAssembly in a browser
directly from your hard drive, that WebAssembly module will not load.

Use this interface to upload a .png image file and play around with the numbers we have
in the fields on the left. We do not yet have enough values to make an excellent particle
emitter, but you can get a feel for the basics with what we currently have.

Basic Particle System Chapter 8

[247]

Summary
In this chapter, we learned how to create a basic particle emitter configuration tool. We
covered how to force Emscripten to create a virtual file system when there are no files
loaded into it at application startup. We learned how we could load an image from our
user's computer into the browser's virtual file system, and added functionality to allow us
to upload a .png image file. We covered some basics of SVG, discussed the differences
between vector and raster graphics, and learned how we would use SVG to draw pie charts
for our configuration tool. We covered some basic trigonometry that was useful in this
chapter, and will only become more useful in later chapters. We created a new HTML shell
file that interacts with our WebAssembly, to help us configure a new particle system for our
game. We created a Point, Particle, and Emitter class in a WebAssembly module that
we are using for the emitter, which we will eventually use inside of our game. Finally, we
learned about C++ name mangling, dead code elimination, and the circumstances where we
must avoid them when writing Emscripten code.

In the next chapter, we will improve our particle emitter configuration tool. By the end of the
chapter, we will use it to configure effects in our game such as explosions, solar flares, and
spaceship exhaust plumes. The tool can be used to play around with different effects, and
get a feeling for how they look before we add that effect into our game. Finally, we will take
the values we used in our configuration tool and use them as a starting point for
configuring the particle effects in our game.

9
Improved Particle Systems

The particle system we developed in the previous chapter was a good start, but the effects
you can create with it are rather bland. Our particles do not rotate or scale, they are not
animated, and they are relatively consistent in the way they look over time.

For this chapter, you will need to include several images in your build to
make this project work. Make sure that you include the
/Chapter09/sprites/ folder from this project's GitHub repository. If
you would like to build the particle system tool from GitHub, the source
for the tool is located in the /Chapter09/advanced-particle-tool/
folder. If you haven't downloaded the GitHub project yet, you can get it
online here: https:/ ​/​github. ​com/​PacktPublishing/ ​Hands- ​On-​Game-
Develop.

If we want the most out of our particle system, we are going to need to add more features
to it. In this chapter, we will be adding the following additional features:

Particle scale over its lifetime
Particle rotation
Animated particles
Color change over time
Support for particle bursts
Support for looping and non-looping emitters

https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly

Improved Particle Systems Chapter 9

[249]

Modifying our HTML shell file
The first thing we need to do is add some new inputs into the HTML shell file. We are
going to copy the basic_particle_shell.html file to a new shell file that we will call
advanced_particle_shell.html. We will be adding a second container class div
element and a lot of new inputs to the HTML portion of the shell file between the original
container and the canvas element. Here is what that new container element looks like:

<div class="container">
<div class="empty_box"> </div>

min start scale:
<input type="number" id="min_starting_scale" max="9.9" min="0.1" step="0.1"
value="1.0" class="em_input">

max start scale:
<input type="number" id="max_starting_scale" max="10.0" min="0.2"
step="0.1" value="2.0" class="em_input">

min end scale:
<input type="number" id="min_end_scale" max="9.9" min="0.1" step="0.1"
value="1.0" class="em_input">

max end scale:
<input type="number" id="max_end_scale" max="10.0" min="0.2" step="0.1"
value="2.0" class="em_input">

start color:
<input type="color" id="start_color" value="#ffffff"
class="color_input">

end color:
<input type="color" id="end_color" value="#ffffff"
class="color_input">

burst time pct:
<input type="number" id="burst_time" max="1.0" min="0.0" step="0.05"
value="0.0" class="em_input">

burst particles:
<input type="number" id="burst_particles" max="100" min="0" step="1"
value="0" class="em_input">

<label class="ccontainer">loop:
 <input type="checkbox" id="loop" checked="checked">

</label>

<label class="ccontainer">align rotation:
 <input type="checkbox" id="align_rotation" checked="checked">

</label>

Improved Particle Systems Chapter 9

[250]

emit time ms:
<input type="number" id="emit_time" max="10000" min="100" step="100"
value="1000" class="em_input">

animation frames:
<input type="number" id="animation_frames" max="64" min="1" step="1"
value="1" class="em_input">

<div class="input_box">
<button id="update_btn" class="em_button" onclick="UpdateClick()">Update
Emitter</button>
</div>
</div>

Scaling values
Scaling a sprite means modifying that sprite's size by some multiple of its original size. For
example, if we scale a 16 x 16 sprite by a scaling value of 2.0, the sprite will render to the
canvas as a 32 x 32 image. This new container starts with four input elements, as well as
their labels, which tell the particle system how to scale the particles over their lifetimes. The
min_starting_scale and max_starting_scale elements are the starting range scale of
the particles. If you want the particle to always start with a scale of 1.0 (1 to 1 scale with
the .png image size), you should put 1.0 in both of these fields. The actual starting scale
value will be a randomly chosen value that falls between the two values you put in those
fields. We haven't added any checks in this interface to verify that max is larger than min, so
make sure that max is the same value or larger than the min value or this will break the
emitter. The next two input elements are min_end_scale and max_end_scale. Like the
starting scale values, the actual ending scale will be a randomly chosen value that falls
between the two values we put in these fields. At any given point in a particle's lifetime, it
will have a scale that is a value interpolated between the scale value assigned to the start of
that particle's lifetime and the scale value at the end. So, if I start with a scale value of 1.0
and end with a scale value of 3.0, when the lifetime of the particle is half over, the scale
value of the particle will be 2.0.

Improved Particle Systems Chapter 9

[251]

Here is what those elements look like in the HTML file:

min start scale:
<input type="number" id="min_starting_scale" max="9.9" min="0.1" step="0.1"
value="1.0" class="em_input">

max start scale:
<input type="number" id="max_starting_scale" max="10.0" min="0.2"
step="0.1" value="2.0" class="em_input">

min end scale:
<input type="number" id="min_end_scale" max="9.9" min="0.1" step="0.1"
value="1.0" class="em_input">

max end scale:
<input type="number" id="max_end_scale" max="10.0" min="0.2" step="0.1"
value="2.0" class="em_input">

Color-blending values
SDL has a function called SDL_SetTextureColorMod that is capable of modifying the red,
green, and blue color channels of a texture. This function can only reduce color channel
values, so using these values works best on grayscale images. The next two inputs in the
HTML are start_color and end_color. These values will be used to modify the color
channels of the particle over its lifetime. Each color channel (red, green, and blue)
interpolated over the lifetime of the particle.

Here is what those elements look like in the HTML file:

start color:
<input type="color" id="start_color" value="#ffffff"
class="color_input">

end color:
<input type="color" id="end_color" value="#ffffff"
class="color_input">

Improved Particle Systems Chapter 9

[252]

Particle burst
Up until this point, the particle systems we have worked with have emitted a consistent
stream of particles. We may want a point in time within the lifetime of our particle system
when a burst of particles is emitted all at once. The next two input elements are
burst_time and burst_particles. The burst_time element allows values from
0.0 to 1.0. This number represents the portion of the way through the particle emitter's
lifetime at which the burst will occur. A value of 0.0 would mean that the burst would
happen at the very beginning of the emitter's life cycle, 1.0 would occur at the very end,
and 0.5 would occur halfway between. After the burst_time element is the
burst_particles element. This element contains the number of particles that are emitted
in the burst. Before adjusting this so that it's a large number, make sure that you set the
max_particles input element to a value that can accommodate the burst. For instance, if
you have a particle emitter that emits 20 particles per second and you have a maximum
number of particles that is also 20 particles, adding a burst of any size will not be noticeable
because there will not be enough inactive particles left in the particle pool for the burst to
use.

Here is what those elements look like in the HTML file:

burst time pct:
<input type="number" id="burst_time" max="1.0" min="0.0" step="0.05"
value="0.0" class="em_input">

burst particles:
<input type="number" id="burst_particles" max="100" min="0" step="1"
value="0" class="em_input">

Looping the emitter
Some emitters execute for a fixed time and then stop when that time has expired. An
example of this kind of emitter is an explosion. Once an explosion effect has finished, we
want it to end. A different type of emitter might loop, it would continue to execute until
some other code stops the emitter. An example of this kind of emitter is our spaceship's
engine exhaust. As long as our spaceship is accelerating, we would like to see a trail of
particles being emitted out of the back of it. The next element in the HTML is a loop
checkbox element. If clicked, the emitter will continue emitting, even after its lifetime is
over. If there is a burst associated with this emitter, that burst will occur each time the
emitter passes through that part of its loop.

Improved Particle Systems Chapter 9

[253]

Here is what the input element will look like in the HTML:

<label class="ccontainer">loop:
<input type="checkbox" id="loop" checked="checked">

</label>

Aligning particle rotation
Rotation can improve many particle effects. We are forced to pick and choose the values we
want to use for the particle system in our project because, frankly, I could write an entire
book on particle systems. Instead of having rotation value ranges, like we did earlier for the
particle's scale, we are going to have a single flag that allows the user to choose whether the
particle system is going to align its rotation with the emission velocity vector. I find this to
be a pleasant effect. The user will make this decision with an id="align_rotation"
checkbox.

Here is what the HTML code looks like:

<label class="ccontainer">align rotation:
 <input type="checkbox" id="align_rotation" checked="checked">

 </label>

Emission time
The emission time is the amount of time in milliseconds that our particle emitter will run for
before it stops running, or loops if the user has ticked the loop checkbox. If the particle
system loops, this value will only be noticeable for particle systems with a burst. This will
cause the burst to happen each time the particle system goes through the loop.

The HTML code is as follows:

emit time ms:
<input type="number" id="emit_time" max="10000" min="100" step="100"
value="1000" class="em_input">

Improved Particle Systems Chapter 9

[254]

Animation frames
If we want to create a particle with a multi-frame animation, we can add the number of
frames here. This feature assumes a horizontal strip sprite sheet and will divide the loaded
image file evenly on the x axis. When this value is 1, there is no animation because there is
only a single frame. The frame time for the animation will be evenly divided across the
individual particle's time to live. In other words, if you have a ten-frame animation and the
particle lifetime is 1,000 milliseconds, each frame of the animation will display for 100
milliseconds (1,000/10).

Here are the HTML elements:

animation frames:
<input type="number" id="animation_frames" max="64" min="1" step="1"
value="1" class="em_input">

Now that we have defined our HTML, let's take a look at the JavaScript portion of our code.

Modifying the JavaScript
The tool we are creating operates outside of the game we have been working on for several
chapters now. Because of this, we are working on a new HTML shell file, and we will be
writing a lot of JavaScript to integrate our user interface with the WebAssembly classes we
will drop into our game later. Let's take the time to walk through all of the JavaScript
functions we will need to add to our new HTML shell file.

The JavaScript UpdateClick function
After we have modified the HTML, the next thing we need to do is modify the
UpdateClick() JavaScript function to allow it to grab the new values out of the HTML
elements and pass those values into the Module.ccall function call to update_emitter.

Here is the new version of the UpdateClick function in its entirety:

function UpdateClick() {
 if(ready == false || image_added == false) {
 return;
 }
 var max_particles = Number(document.getElementById
 ("max_particles").value);
 var min_angle = Number(document.getElementById
 ("min_angle").value) / 180 * Math.PI;

Improved Particle Systems Chapter 9

[255]

 var max_angle = Number(document.getElementById
 ("max_angle").value) / 180 * Math.PI
 var particle_lifetime = Number(document.getElementById
 ("lifetime").value);
 var acceleration = Number(document.getElementById
 ("acceleration").value);
 var alpha_fade = Boolean(document.getElementById
 ("alpha_fade").checked);
 var emission_rate = Number(document.getElementById
 ("emission_rate").value);
 var x_pos = Number(document.getElementById
 ("x_pos").value);
 var y_pos = Number(document.getElementById
 ("y_pos").value);
 var radius = Number(document.getElementById
 ("radius").value);
 var min_starting_velocity = Number(document.getElementById
 ("min_starting_vel").value);
 var max_starting_velocity = Number(document.getElementById
 ("max_starting_vel").value);

 /* NEW INPUT PARAMETERS */
 var min_start_scale = Number(document.getElementById
 ("min_starting_scale").value);
 var max_start_scale = Number(document.getElementById
 ("max_starting_scale").value);
 var min_end_scale = Number(document.getElementById
 ("min_end_scale").value);
 var max_end_scale = Number(document.getElementById
 ("max_end_scale").value);
 var start_color_str = document.getElementById
 ("start_color").value.substr(1, 7);
 var start_color = parseInt(start_color_str, 16);
 var end_color_str = document.getElementById
 ("end_color").value.substr(1, 7);
 var end_color = parseInt(end_color_str, 16);
 var burst_time = Number(document.getElementById
 ("burst_time").value);
 var burst_particles = Number(document.getElementById
 ("burst_particles").value);
 var loop = Boolean(document.getElementById
 ("loop").checked);
 var align_rotation = Boolean(document.getElementById
 ("align_rotation").checked);
 var emit_time = Number(document.getElementById
 ("emit_time").value);
 var animation_frames = Number(document.getElementById
 ("animation_frames").value);

Improved Particle Systems Chapter 9

[256]

 Module.ccall('update_emitter', 'undefined', ["number", "number",
 "number", "number", "number", "bool", "number", "number",
 "number", "number", "number", "number",
 /* new parameters */
 "number", "number", "number", "number", "number", "number",
 "number", "number", "bool", "bool", "number"],
 [max_particles, min_angle, max_angle, particle_lifetime,
 acceleration, alpha_fade, min_starting_velocity,
 max_starting_velocity, emission_rate, x_pos, y_pos, radius,
 /* new parameters */
 min_start_scale, max_start_scale, min_end_scale, max_end_scale,
 start_color, end_color, burst_time, burst_particles,
 loop, align_rotation, emit_time, animation_frames]);
 }

As you can see, we have added new local variables into this JavaScript function that will
store the values that we take from our new HTML elements. Retrieving the scaling values
and coercing them into numbers to pass into update_emitter should look pretty familiar
by now. Here is that code:

var min_start_scale = Number(document.getElementById
 ("min_starting_scale").value);
var max_start_scale = Number(document.getElementById
 ("max_starting_scale").value);
var min_end_scale = Number(document.getElementById
 ("min_end_scale").value);
var max_end_scale = Number(document.getElementById
 ("max_end_scale").value);

Coercing color values
In JavaScript, variable coercion is the process of turning one variable type into a different
variable type. Because JavaScript is a weakly typed language, coercion is a little different
from typecasting, which is analogous to variable coercion in strongly typed languages such
as C and C++.

The process of coercing our color values into Integer values is a two-step process. The
values in these elements are strings that start with the # character, followed by a six-digit
hexadecimal number. The first thing we need to do is remove that starting # character, as it
will prevent us from parsing that string into an integer. We do this with a simple substr to
get a substring (part of a string) of the value inside of the element.

Improved Particle Systems Chapter 9

[257]

Here is what that looks like for start_color:

var start_color_str = document.getElementById
 ("start_color").value.substr(1, 7);

We know that the string will always be seven characters long, but we only want the last six
characters. We now have a hexadecimal representation of the starting color, but it is still a
string variable. Now, we need to coerce this into an Integer value, and we have to tell
the parseInt function to use base 16 (hexadecimal), so we will pass the value 16 into
parseInt as a second parameter:

var start_color = parseInt(start_color_str, 16);

Now that we have coerced start_color into an integer, we will do the same
for end_color:

var end_color_str = document.getElementById
 ("end_color").value.substr(1, 7);
var end_color = parseInt(end_color_str, 16);

Additional variable coercions
After the start_color and end_color coercions, the remaining coercions we must
perform should feel familiar. We coerce the values in burst_time, burst_particles,
emit_time, and animation_frames into Number variables. We coerce the checked values
from loop and align_rotation into Boolean variables.

Here is the remainder of the coercion code:

var burst_time = Number(document.getElementById
 ("burst_time").value);
var burst_particles = Number(document.getElementById
 ("burst_particles").value);
var loop = Boolean(document.getElementById
 ("loop").checked);
var align_rotation = Boolean(document.getElementById
 ("align_rotation").checked);
var emit_time = Number(document.getElementById
 ("emit_time").value);
var animation_frames = Number(document.getElementById
 ("animation_frames").value);

Improved Particle Systems Chapter 9

[258]

Finally, we need to add the variable types and the new variables into our Module.ccall
call to update_emitter in our WebAssembly module:

Module.ccall('update_emitter', 'undefined', ["number", "number",
"number", "number", "number", "bool",
 "number", "number", "number",
"number", "number","number",
 /* new parameters */
 "number", "number",
 "number", "number",
 "number", "number",
 "number", "number",
 "bool", "bool", "number"],
 [max_particles, min_angle,
 max_angle,
 particle_lifetime,
 acceleration, alpha_fade,
 min_starting_velocity,
 max_starting_velocity,
 emission_rate, x_pos,
 y_pos, radius,
 /* new parameters */
 min_start_scale,
 max_start_scale,
 min_end_scale,
 max_end_scale,
 start_color, end_color,
 burst_time,
 burst_particles,
 loop, align_rotation,
 emit_time,
 animation_frames
]);

Modifying the handleFiles function
The last changes we need to make to our HTML shell file are modifications to
the handleFiles function. These modifications effectively mirror the changes to
the UpdateClick function. As you step through the code, you will see the same coercion
replicated inside of handleFiles, and the Module.ccall to add_emitter will be
updated with the same new parameter types and parameters. Here is the code for the latest
version of the handleFiles function:

function handleFiles(files) {
 var file_count = 0;

Improved Particle Systems Chapter 9

[259]

 for (var i = 0; i < files.length; i++) {
 if (files[i].type.match(/image.png/)) {
 var file = files[i];
 var file_name = file.name;
 var fr = new FileReader();
 fr.onload = function (file) {
 var data = new Uint8Array(fr.result);
 Module.FS_createDataFile('/', file_name, data, true, true,
 true);
 var max_particles = Number(document.getElementById
 ("max_particles").value);
 var min_angle = Number(document.getElementById
 ("min_angle").value) / 180 * Math.PI;
 var max_angle = Number(document.getElementById
 ("max_angle").value) / 180 * Math.PI
 var particle_lifetime = Number(document.getElementById
 ("lifetime").value);
 var acceleration = Number(document.getElementById
 ("acceleration").value);
 var alpha_fade = Boolean(document.getElementById
 ("alpha_fade").checked);
 var emission_rate = Number(document.getElementById
 ("emission_rate").value);
 var x_pos = Number(document.getElementById
 ("x_pos").value);
 var y_pos = Number(document.getElementById
 ("y_pos").value);
 var radius = Number(document.getElementById
 ("radius").value);
 var min_starting_velocity = Number(document.getElementById
 ("min_starting_vel").value);
 var max_starting_velocity = Number(document.getElementById
 ("max_starting_vel").value);

 /* NEW INPUT PARAMETERS */
 var min_start_scale = Number(document.getElementById
 ("min_starting_scale").value);
 var max_start_scale = Number(document.getElementById
 ("max_starting_scale").value);
 var min_end_scale = Number(document.getElementById
 ("min_end_scale").value);
 var max_end_scale = Number(document.getElementById
 ("max_end_scale").value);
 var start_color_str = document.getElementById
 ("start_color").value.substr(1, 7);
 var start_color = parseInt(start_color_str, 16);
 var end_color_str = document.getElementById
 ("end_color").value.substr(1, 7);

Improved Particle Systems Chapter 9

[260]

 var end_color = parseInt(end_color_str, 16);
 var burst_time = Number(document.getElementById
 ("burst_time").value);
 var burst_particles = Number(document.getElementById
 ("burst_particles").value);
 var loop = Boolean(document.getElementById
 ("loop").checked);
 var align_rotation = Boolean(document.getElementById
 ("align_rotation").checked);
 var emit_time = Number(document.getElementById
 ("emit_time").value);
 var animation_frames = Number(document.getElementById
 ("animation_frames").value);

 Module.ccall('add_emitter', 'undefined',
 ["string","number", "number", "number",
 "number","number","bool","number","number",
 "number", "number", "number","number",
 /* new parameters */
 "number", "number", "number",
 "number", "number", "number", "number",
 "number","bool", "bool", "number"],
 file_name,max_particles,min_angle,max_angle,
 particle_lifetime,acceleration,alpha_fade,
 min_starting_velocity,max_starting_velocity,
 emission_rate, x_pos,y_pos,radius,
 /* new parameters */
 min_start_scale,max_start_scale,min_end_scale,
 max_end_scale,start_color,end_color,
 burst_time,burst_particles,loop,
 align_rotation,emit_time,animation_frames]);
 image_added = true;
 };
 fr.readAsArrayBuffer(files[i]); }}}

Now that we have our JavaScript code, we can begin making our changes to the
WebAssembly module.

Improved Particle Systems Chapter 9

[261]

Modifying the Particle class
Now that we have added the changes to our HTML shell file, we need to make some
changes to our WebAssembly module to support these new parameters. We are going to
work our way from the bottom up, starting with the Particle class. This class is not only
useful for the tool we are building to design particle systems, but it is one of a few classes
that, once we have completed it, we will be able to pull into our game, allowing us to add
some beautiful looking effects.

Here is what the particle class definition looks like inside the game.hpp file:

class Particle {
 public:
 bool m_active;
 bool m_alpha_fade;
 bool m_color_mod;
 bool m_align_rotation;
 float m_rotation;

 Uint8 m_start_red;
 Uint8 m_start_green;
 Uint8 m_start_blue;

 Uint8 m_end_red;
 Uint8 m_end_green;
 Uint8 m_end_blue;

 Uint8 m_current_red;
 Uint8 m_current_green;
 Uint8 m_current_blue;

 SDL_Texture *m_sprite_texture;
 int m_ttl;

 Uint32 m_life_time;
 Uint32 m_animation_frames;
 Uint32 m_current_frame;
 Uint32 m_next_frame_ms;

 float m_acceleration;
 float m_alpha;
 float m_width;
 float m_height;
 float m_start_scale;
 float m_end_scale;
 float m_current_scale;

Improved Particle Systems Chapter 9

[262]

 Point m_position;
 Point m_velocity;

 SDL_Rect m_dest = {.x = 0, .y = 0, .w = 0, .h = 0 };
 SDL_Rect m_src = {.x = 0, .y = 0, .w = 0, .h = 0 };

 Particle(SDL_Texture *sprite, Uint32 life_time, float
 acceleration,
 bool alpha_fade, int width, int height, bool
 align_rotation,
 Uint32 start_color,
 Uint32 end_color,
 Uint32 animation_frames);
 void Update(Uint32 life_time, float acceleration,
 bool alpha_fade, bool align_rotation,
 Uint32 start_color, Uint32 end_color,
 Uint32 animation_frames);

 void Spawn(float x, float y, float velocity_x, float
 velocity_y,
 float start_scale, float end_scale, float rotation);

 void Move();
 void Render();
};

New attributes
We are going to walk through the new attributes that were added to the Particle class
definition and briefly discuss what each new attribute does. The first attribute that we
added was bool m_color_mod. In our HTML, we don't have a checkbox for this value, so
you may be wondering why there is one here. The reason is performance. If the user doesn't
want a color modification, a call to SDL_SetTextureColorMod is a waste. If we have two
white values passed into the Particle object, no interpolation or call to modify the value
is necessary. We could check the start and end color each time to see if their values
are 0xffffff, but I felt that adding this flag would make the check clearer.

Improved Particle Systems Chapter 9

[263]

Aligning rotation attributes
The m_align_rotation flag that follows is simply the flag we passed in from the
checkbox. If this value is true, the particle will rotate itself to point in the direction it is
moving. The m_rotation floating-point variable follows that. The attribute variable that
holds the angle of the particle will be rotated based on the direction in which the particle is
moving. Here is what these values look like in our code:

bool m_align_rotation;
float m_rotation;

Color attributes
The color mod flag I mentioned earlier makes the check on the next set of values a lot
easier. Our hexadecimal color value that represented the red, green, and blue values in our
HTML needed to be passed in as an integer so that it could be broken down into three 8-bit
channels. Here is what those 8-bit color variables look like in the code:

Uint8 m_start_red;
Uint8 m_start_green;
Uint8 m_start_blue;

Uint8 m_end_red;
Uint8 m_end_green;
Uint8 m_end_blue;

Uint8 m_current_red;
Uint8 m_current_green;
Uint8 m_current_blue;

You will notice that these are all 8-bit unsigned integer variables that are declared
with Uint8. When SDL performs color modification, it doesn't take in RGB values as a
single variable; instead, it takes the values broken down into three 8-bit variables
representing each of the individual channels. The m_start_(color) variable and
the m_end_(color) variable will be interpolated based on the particle lifetime to get
the m_current_(color) variable, which will be passed in as the channels to SDL when we
do the color modification. Because we will be passing these values in as a single color
variable from the JavaScript, the Particle constructor and the Update functions will need
to perform bitwise operations to set these individual channel variables.

Improved Particle Systems Chapter 9

[264]

Animation attributes
The next set of new attributes are all related to the new frame animation functionality in
our Particle. Here are those attributes in the code:

Uint32 m_animation_frames;
Uint32 m_current_frame;
Uint32 m_next_frame_ms;

The first attribute, m_animation_frames, is the value that's passed indirectly from the
JavaScript. It tells the Particle class how many frames are in the sprite texture when it
renders that texture to the canvas. The second attribute, m_current_frame, is used by
the Particle class to keep track of which frame it should currently be rendering. The final
attribute variable, m_next_frame_ms, tells the particle how many milliseconds are left
before it must increment its current frame to display the next frame in the sequence.

Size and scale attributes
The next batch of attributes have to do with the size and scale of our particle. In the
previous version of this code, we handled width and height in the m_dest rectangle. That is
no longer practical, because the width and height (w and h) attributes of this rectangle will
need to be modified to account for our current scale. Here are the new variables as they
appear in the code:

float m_width;
float m_height;

float m_start_scale;
float m_end_scale;
float m_current_scale;

The m_width and m_height attributes are now required to keep track of the original width
and height of the particle, which haven been adjusted by the scale.

The m_start_scale and m_end_scale attributes are values that are randomly picked
between the max and min values we defined in the JavaScript.

The m_current_scale attribute is the current scale that's used when calculating the
m_dest.w and m_dest.h values when we render the particle. The current scale will be a
value interpolated between the m_start_scale and m_end_scale attributes.

Improved Particle Systems Chapter 9

[265]

The source rectangle attribute
In the previous version of the code, we didn't have frame-animated particles. Because of
this, we didn't need to declare a source rectangle. If you want to render the entire texture to
the canvas, you can pass in NULL in place of a source rectangle in the call to
SDL_RenderCopy, which was what we were doing. Now that we have frame animations,
we will pass in the location and the dimension of the part of the texture we render to the
canvas. Because of this, we need to define a source rectangle attribute:

SDL_Rect m_src = {.x = 0, .y = 0, .w = 0, .h = 0 };

Additional constructor parameters
Now that we have walked through all the new attributes, we will briefly discuss the
changes that are required by the signatures of our functions. The Particle class
constructor must add some new parameters that will support our align rotation, color
modification, and frame animation functionality. Here is what the new signature for the
constructor looks like:

Particle(SDL_Texture *sprite, Uint32 life_time, float acceleration,
 bool alpha_fade, int width, int height, bool align_rotation,
 Uint32 start_color,
 Uint32 end_color,
 Uint32 animation_frames);

The boolean value called align_rotation tells the constructor to align the particle's
rotation with the direction it is moving in. The start_color and end_color parameters
are the color modification values if we are using the new color modification feature of our
particle system. The last parameter, animation_frames, tells the particle system whether
or not it is using a frame animation system, and if so, how many frames it will use.

The Update function's parameters
The modifications to the signature for the Update function mirrors the changes we need to
make to the constructor. There are a total of four new parameters that are used to influence
the align rotation, the color modification system, and the frame animation system.

Improved Particle Systems Chapter 9

[266]

Here is what the new Update function signature looks like:

void Update(Uint32 life_time, float acceleration,
 bool alpha_fade, bool align_rotation,
 Uint32 start_color, Uint32 end_color,
 Uint32 m_animation_frames);

The Spawn function's parameters
The last function signature that will need to be modified is the Spawn function. New values
will be required to allow the Emitter to set the scale and rotation values when we spawn
an individual particle. The float start_scale and float end_scale parameters are
used to set the starting and ending scale multipliers when we generate the particle. The last
parameter that's added is float rotation, which represents the angle the particle is
moving based on the x and y velocities of this particular particle. The following is the new
version of the function:

void Spawn(float x, float y, float velocity_x, float velocity_y,
 float start_scale, float end_scale, float rotation);

Changes to particle.cpp
The next set of changes we need to make to our Particle class are all changes to the
functions we defined in the particle.cpp file. It is challenging to keep track of the
changes made to these functions, so rather than discuss these changes, I will walk you
through everything that is happening in each of the functions we discuss.

Particle constructor logic
The logic in the new Particle constructor adds a lot of code to set the stage for our new
features. Here is what the latest version of the function looks like:

Particle::Particle(SDL_Texture *sprite_texture, Uint32 life_time,
 float acceleration, bool alpha_fade, int width,
 int height, bool align_rotation,
 Uint32 start_color, Uint32 end_color,
 Uint32 animation_frames) {

 if(start_color != 0xffffff || end_color != 0xffffff) {
 m_color_mod = true;
 m_start_red = (Uint8)(start_color >> 16);

Improved Particle Systems Chapter 9

[267]

 m_start_green = (Uint8)(start_color >> 8);
 m_start_blue = (Uint8)(start_color);

 m_end_red = (Uint8)(end_color >> 16);
 m_end_green = (Uint8)(end_color >> 8);
 m_end_blue = (Uint8)(end_color);

 m_current_red = m_start_red;
 m_current_green = m_start_green;
 m_current_blue = m_start_blue;
 }
 else {
 m_color_mod = false;

 m_start_red = (Uint8)255;
 m_start_green = (Uint8)255;
 m_start_blue = (Uint8)255;

 m_end_red = (Uint8)255;
 m_end_green = (Uint8)255;
 m_end_blue = (Uint8)255;

 m_current_red = m_start_red;
 m_current_green = m_start_green;
 m_current_blue = m_start_blue;
 }
 m_align_rotation = align_rotation;
 m_animation_frames = animation_frames;
 m_sprite_texture = sprite_texture;
 m_life_time = life_time;
 m_acceleration = acceleration;
 m_alpha_fade = alpha_fade;
 m_width = (float)width;
 m_height = (float)height;

 m_src.w = m_dest.w = (int)((float)width / (float)m_animation_frames);
 m_src.h = m_dest.h = height;

 m_next_frame_ms = m_life_time / m_animation_frames;
 m_current_frame = 0;
 m_active = false;
}

Improved Particle Systems Chapter 9

[268]

The first large batch of this code is used to set up the 8-bit color channels at the beginning
and the end of our particle's lifetime. If either the starting color or the ending color is
not 0xffffff (white), we will set up the starting and ending color channels using
the >> operator (bit shift). Here is the code that sets the starting channels:

m_start_red = (Uint8)(start_color >> 16);
m_start_green = (Uint8)(start_color >> 8);
m_start_blue = (Uint8)(start_color);

If you aren't familiar with the right bit shift operator >>, it takes an integer on the left-hand
side of the operator and shifts the number of bits on the right-hand side of the operator. For
example, a binary value of 15 (0000 1111) that's shifted to the right by two bits will return a
new value of 3 (0000 0011). When we shift to the right, any bits shifted to the right-hand
side are lost, and bits with a value of 0 are moved in from the left-hand side:

Figure 9.1: Example of a right bit shift

If we have an RGB integer that comes in, each channel takes up 1 byte or 8 bits. So, if R = 9,
G = 8, and B = 7, our integer value in hexadecimal would look like this: ff090807. If we want
to get to the R-value, we need to shift off the two bytes on the right-hand side of this 4 byte
integer. Each byte is 8 bits, so we would take our RGB and use the >> operator to shift it by
16 bits. We would then have the value 09, which we could use to set our 8 bit red channel.
When we do the green channel, we want the second byte from the right so that we can shift
off 8 bits. Now, in our 4 byte integer, we would have 00000908. Because we are moving this
into an 8 bit integer, all the data not in the rightmost byte is lost in the assignment, so we
end up with 08 in our green channel. Finally, the blue channel value is already in the
rightmost byte. All we need to do with that is cast it to an 8 bit integer, so we lose all of the
data that is not in the blue channel. The following is a diagram of the 32 bit color:

Figure 9.2: Color bits in a 32-bit integer

Improved Particle Systems Chapter 9

[269]

We have to perform this same bit of magic on the end color channels:

m_end_red = (Uint8)(end_color >> 16);
m_end_green = (Uint8)(end_color >> 8);
m_end_blue = (Uint8)(end_color);

The last thing we will do is set the current color channels to the starting color channels. We
do this to create our particles with the colors' starting values.

If both the starting and ending colors are white, we want to set the color mod flag to false,
so we will not attempt to modify the color on this particle. We will initialize all the color
channels to 255. Here is the code that does this:

else {
 m_color_mod = false;
 m_start_red = (Uint8)255;
 m_start_green = (Uint8)255;
 m_start_blue = (Uint8)255;

 m_end_red = (Uint8)255;
 m_end_green = (Uint8)255;
 m_end_blue = (Uint8)255;

 m_current_red = m_start_red;
 m_current_green = m_start_green;
 m_current_blue = m_start_blue;
}

After the code for managing the color modification is some initialization code, which sets
the attribute variables in this object from the parameters passed into the constructor:

m_align_rotation = align_rotation;
m_animation_frames = animation_frames;
m_sprite_texture = sprite_texture;
m_life_time = life_time;
m_acceleration = acceleration;
m_alpha_fade = alpha_fade;

m_width = (float)width;
m_height = (float)height;

Then, we set the source and destination rectangles based on the height and width passed in,
as well as the number of animation frames for the particle:

m_src.w = m_dest.w = (int)((float)width / (float)m_animation_frames);
m_src.h = m_dest.h = height;

Improved Particle Systems Chapter 9

[270]

The last two lines of code initialize the current frame to 0 and our active flag to false. All
animations start on frame 0, and a new particle is not active until it's spawned.

Here are the last few lines of code:

m_current_frame = 0;
m_active = false;

Particle Update logic
The Particle class' Update function is run on each of the particles that were created by a
previous PNG file upload. This function updates most of the values set in the constructor.
The only exception is that the width and height dimensions of the particle must stay the
same. This is because the constructor set these values based on the dimensions of the image
file that was uploaded. I don't feel the need to step through each part of this function,
because of how similar it is to the constructor that we just walked through. Take a moment
to look over the code to see how similar it is:

void Particle::Update(Uint32 life_time, float acceleration,
 bool alpha_fade, bool align_rotation,
 Uint32 start_color, Uint32 end_color,
 Uint32 animation_frames) {
 if(start_color != 0xffffff || end_color != 0xffffff) {
 m_color_mod = true;

 m_start_red = (Uint8)(start_color >> 16);
 m_start_green = (Uint8)(start_color >> 8);
 m_start_blue = (Uint8)(start_color);

 m_end_red = (Uint8)(end_color >> 16);
 m_end_green = (Uint8)(end_color >> 8);
 m_end_blue = (Uint8)(end_color);

 m_current_red = m_start_red;
 m_current_green = m_start_green;
 m_current_blue = m_start_blue;
 }
 else {
 m_color_mod = false;

 m_start_red = (Uint8)255;
 m_start_green = (Uint8)255;
 m_start_blue = (Uint8)255;

 m_end_red = (Uint8)255;

Improved Particle Systems Chapter 9

[271]

 m_end_green = (Uint8)255;
 m_end_blue = (Uint8)255;

 m_current_red = m_start_red;
 m_current_green = m_start_green;
 m_current_blue = m_start_blue;
 }

 m_align_rotation = align_rotation;
 m_life_time = life_time;
 m_acceleration = acceleration;
 m_alpha_fade = alpha_fade;
 m_active = false;

 m_current_frame = 0;
 m_animation_frames = animation_frames;
 m_next_frame_ms = m_life_time / m_animation_frames;;

 m_src.w = m_dest.w = (int)((float)m_width / (float)m_animation_frames);
 m_src.h = m_dest.h = m_height;
}

Particle Spawn function
The Particle class' Spawn function is run by the Emitter whenever it needs to emit a
new particle. When the emitter hits its next particle emission time, it searches through the
particle pool, looking for a particle that is marked as not active. If it finds a particle, it calls
the Spawn function on that particle, which activates the particle and sets several values
specific to its run. All of the values that are passed into Spawn are changed by
the Emitter every time the particle is emitted. Here is what the code for this function looks
like:

void Particle::Spawn(float x, float y,
 float velocity_x, float velocity_y,
 float start_scale, float end_scale,
 float rotation) {
 m_position.x = x;
 m_dest.x = (int)m_position.x;
 m_position.y = y;
 m_dest.y = (int)m_position.y;

 m_velocity.x = velocity_x;
 m_velocity.y = velocity_y;
 m_alpha = 255.0;
 m_active = true;

Improved Particle Systems Chapter 9

[272]

 m_ttl = m_life_time;
 m_rotation = rotation;

 m_current_red = m_start_red;
 m_current_green = m_start_green;
 m_current_blue = m_start_blue;

 m_current_scale = m_start_scale = start_scale;
 m_end_scale = end_scale;

 m_current_frame = 0;
 m_next_frame_ms = m_life_time / m_animation_frames;
}

Almost everything that's done in this function is initialization and is pretty straightforward.
The first four lines initialize the position attribute (m_position), as well as the position
with the destination rectangle (m_dest). Then, the velocity is set. The alpha always begins
at 255. The particle is activated, the time to live variable is activated, and the rotation is set.
Color channels are reinitialized, the scale is initialized, and the current frame and the time
to the next frame are set.

Particle Move function
The Particle class' Move function is the function that not only changes the render position
of the particle, but also adjusts all of the interpolated values between the beginning and the
end of the particle's life. Let's step through the code:

void Particle::Move() {
 float time_pct = 1.0 - (float)m_ttl / (float)m_life_time;
 m_current_frame = (int)(time_pct * (float)m_animation_frames);
 float acc_adjusted = 1.0f;

 if(m_acceleration < 1.0f) {
 acc_adjusted = 1.0f - m_acceleration;
 acc_adjusted *= delta_time;
 acc_adjusted = 1.0f - acc_adjusted;
 }
 else if(m_acceleration > 1.0f) {
 acc_adjusted = m_acceleration - 1.0f;
 acc_adjusted *= delta_time;
 acc_adjusted += 1.0f;
 }
 m_velocity.x *= acc_adjusted;
 m_velocity.y *= acc_adjusted;

Improved Particle Systems Chapter 9

[273]

 m_position.x += m_velocity.x * delta_time;
 m_position.y += m_velocity.y * delta_time;

 m_dest.x = (int)m_position.x;
 m_dest.y = (int)m_position.y;

 if(m_alpha_fade == true) {
 m_alpha = 255.0 * (1.0 - time_pct);
 if(m_alpha < 0) {
 m_alpha = 0;
 }
 }
 else {
 m_alpha = 255.0;
 }
 if(m_color_mod == true) {
 m_current_red = m_start_red + (Uint8)((m_end_red - m_start_red
) *
 time_pct);
 m_current_green = m_start_green + (Uint8)((m_end_green -
 m_start_green) *
 time_pct);
 m_current_blue = m_start_blue + (Uint8)((m_end_blue -
 m_start_blue) *
 time_pct);
 }

 m_current_scale = m_start_scale + (m_end_scale - m_start_scale) *
 time_pct;
 m_dest.w = (int)(m_src.w * m_current_scale);
 m_dest.h = (int)(m_src.h * m_current_scale);
 m_ttl -= diff_time;

 if(m_ttl <= 0) {
 m_active = false;
 }
 else {
 m_src.x = (int)(m_src.w * m_current_frame);
 }
}

The first line of the Move function calculates time_pct. That is a floating-point value that
ranges from 0.0 - 1.0. This variable starts with a value of 0.0 when the particle has just
been spawned and hits 1.0 when the particle is ready to be deactivated. It gives us a
floating-point value indicating where we are in the lifespan of this particle:

float time_pct = 1.0 - (float)m_ttl / (float)m_life_time;

Improved Particle Systems Chapter 9

[274]

The m_ttl attribute is the time to live for this particle in milliseconds, and m_life_time is
the total lifespan of the particle. This value is useful for doing all of our interpolated value
calculations inside of this Move function.

The following line returns the current frame, based on the value that is in time_pct:

m_current_frame = (int)(time_pct * (float)m_animation_frames);

After that, several lines adjust the x and y velocity of the particle based on the acceleration
value:

float acc_adjusted = 1.0f;

if(m_acceleration < 1.0f) {
 acc_adjusted = 1.0f - m_acceleration;
 acc_adjusted *= delta_time;
 acc_adjusted = 1.0f - acc_adjusted;
}
else if(m_acceleration > 1.0f) {
 acc_adjusted = m_acceleration - 1.0f;
 acc_adjusted *= delta_time;
 acc_adjusted += 1.0f;
}

m_velocity.x *= acc_adjusted;
m_velocity.y *= acc_adjusted;

We need to set the acc_adjusted variable to a modified version of the m_acceleration
variable based on the fraction of a second (delta_time) that has elapsed. After changing
the m_velocity values, we need to use those velocity values to modify the position of the
particle:

m_position.x += m_velocity.x * delta_time;
m_position.y += m_velocity.y * delta_time;

m_dest.x = (int)m_position.x;
m_dest.y = (int)m_position.y;

If the m_alpha_fade variable is true, the code will modify the alpha value, interpolating it
to 0 by the time the time_pct value becomes 1.0. If the m_alpha_fade flag is not set, the
alpha value is set to 255 (full opacity). Here is the code:

if(m_alpha_fade == true) {
 m_alpha = 255.0 * (1.0 - time_pct);
 if(m_alpha < 0) {
 m_alpha = 0;
 }

Improved Particle Systems Chapter 9

[275]

}
else {
 m_alpha = 255.0;
}

If the m_color_mod flag is true, we need to use time_pct to interpolate between the
starting channel color value and the ending channel color value in order to find the current
channel color value:

if(m_color_mod == true) {
 m_current_red = m_start_red + (Uint8)((m_end_red - m_start_red) *
 time_pct);
 m_current_green = m_start_green + (Uint8)((m_end_green -
 m_start_green) * time_pct);
 m_current_blue = m_start_blue + (Uint8)((m_end_blue - m_start_blue
) * time_pct);
}

After finding the interpolated value for each of the color channels, we need to use
time_pct to interpolate the current scale. Then, we set our destination width and
destination height based on that current scale value, and the dimensions of the source
rectangle:

m_current_scale = m_start_scale + (m_end_scale - m_start_scale) * time_pct;
m_dest.w = (int)(m_src.w * m_current_scale);
m_dest.h = (int)(m_src.h * m_current_scale);

The last thing we will do is decrease the m_ttl variable (time to live) by diff_time (time
since the previous frame render). If the time to live drops to or below 0, we deactivate the
particle, make it available in the particle pool, and stop it from rendering. If there is still
some time to live, we set the m_src.x (source rectangle x value) to the proper location for
the frame we want to render:

m_ttl -= diff_time;
if(m_ttl <= 0) {
 m_active = false;
}
else {
 m_src.x = (int)(m_src.w * m_current_frame);
}

Improved Particle Systems Chapter 9

[276]

Particle Render function
The final function in our Particle class is the Render function. The Emitter class calls
this function for every active particle in the particle pool. The function sets the alpha and
color channel values on the sprite texture used by the particle. It then checks
the m_align_rotation flag to see if the texture needs to be copied to the back buffer using
SDL_RenderCopy or SDL_RederCopyEx. The difference between these two render calls is
that SDL_RenderCopyEx allows the copy to be rotated or flipped. Both of these functions
use the m_src rectangle to determine a rectangle inside of the texture to copy. Both use
the m_dest rectangle to determine the destination in the back buffer, where we copy our
texture data:

void Particle::Render() {

 SDL_SetTextureAlphaMod(m_sprite_texture,
 (Uint8)m_alpha);

 if(m_color_mod == true) {
 SDL_SetTextureColorMod(m_sprite_texture,
 m_current_red,
 m_current_green,
 m_current_blue);
 }

 if(m_align_rotation == true) {
 SDL_RenderCopyEx(renderer, m_sprite_texture, &m_src, &m_dest,
 m_rotation, NULL, SDL_FLIP_NONE);
 }
 else {
 SDL_RenderCopy(renderer, m_sprite_texture, &m_src, &m_dest);
 }
}

In the next section, we will discuss how to modify our Emitter class to accommodate our
improvements.

Improved Particle Systems Chapter 9

[277]

Modifying the Emitter class
As I mentioned earlier, when we discussed the Emitter class, it manages and emits
particles. In a typical particle system, you may have many emitters. In our game, we will
eventually allow for multiple emitters, but in this tool, we will keep to a single emitter for
simplicity. We have four functions defined in the Emitter class, and we will be changing
three of them. The only function that will not require a change is
the GetFreeParticle function. If you don't remember, GetFreeParticle loops through
m_particle_pool (the particle pool attribute) looking for particles that are not marked as
active (particle->m_active == false). If it finds one, it returns that particle. If not, it
returns null.

The Emitter constructor function
The code for the Emitter constructor will need to change to allow us to set the attributes
that are required to support the new particle system functionality. The following is the code
for the new Emitter constructor:

Emitter::Emitter(char* sprite_file, int max_particles, float min_angle,
 float max_angle, Uint32 particle_lifetime,
 float acceleration, bool alpha_fade,
 float min_starting_velocity, float max_starting_velocity,
 Uint32 emission_rate, int x_pos, int y_pos, float radius,
 float min_start_scale, float max_start_scale,
 float min_end_scale, float max_end_scale,
 Uint32 start_color, Uint32 end_color,
 float burst_time_pct, Uint32 burst_particles,
 bool loop, bool align_rotation, Uint32 emit_time_ms,
 Uint32 animation_frames) {
 m_start_color = start_color;
 m_end_color = end_color;
 m_active = true;
 if(min_starting_velocity > max_starting_velocity) {
 m_min_starting_velocity = max_starting_velocity;
 m_max_starting_velocity = min_starting_velocity;
 }
 else {
 m_min_starting_velocity = min_starting_velocity;
 m_max_starting_velocity = max_starting_velocity;
 }
 SDL_Surface *temp_surface = IMG_Load(sprite_file);
 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;

Improved Particle Systems Chapter 9

[278]

 }
 m_sprite_texture = SDL_CreateTextureFromSurface(renderer, temp_surface
);
 SDL_FreeSurface(temp_surface);
 SDL_QueryTexture(m_sprite_texture,
 NULL, NULL,
 &m_sprite_width, &m_sprite_height);
 m_max_particles = max_particles;
 for(int i = 0; i < m_max_particles; i++) {
 m_particle_pool.push_back(
 new Particle(m_sprite_texture, particle_lifetime,
 acceleration, alpha_fade, m_sprite_width,
 m_sprite_height, align_rotation,
 m_start_color, m_end_color,
 animation_frames)
);
 }
 m_max_angle = max_angle;
 m_min_angle = min_angle;
 m_radius = radius;
 m_position.x = (float)x_pos;
 m_position.y = (float)y_pos;
 m_emission_rate = emission_rate;
 m_emission_time_ms = 1000 / m_emission_rate;
 m_next_emission = 0;
 /* new values */
 m_min_start_scale = min_start_scale;
 m_max_start_scale = max_start_scale;
 m_min_end_scale = min_end_scale;
 m_max_end_scale = max_end_scale;

 m_loop = loop;
 m_align_rotation = align_rotation;
 m_emit_loop_ms = emit_time_ms;
 m_ttl = m_emit_loop_ms;
 m_animation_frames = animation_frames;
 m_burst_time_pct = burst_time_pct;
 m_burst_particles = burst_particles;
 m_has_burst = false;
}

Enough of this code has changed that I feel it makes sense to walk through the entire
function. The first two lines set the color attribute, and then activate the emitter by
setting m_active to true. We set this active flag to true when an emitter is created or
updated. If it is a looping emitter, the active flag will remain on indefinitely. If
Emitter does not loop, the emitter will stop emitting when it reaches the end of its emit
time, as set by the emit_time_ms parameter.

Improved Particle Systems Chapter 9

[279]

The next thing we do is set the minimum and maximum starting velocities. We have a little
code in Emitter that makes sure that max_starting_velocity is greater than
min_starting_velocity, but when we move this code into the game, we may choose to
just set the values to whatever works well. Here is the code:

if(min_starting_velocity > max_starting_velocity) {
 m_min_starting_velocity = max_starting_velocity;
 m_max_starting_velocity = min_starting_velocity;
}
else {
 m_min_starting_velocity = min_starting_velocity;
 m_max_starting_velocity = max_starting_velocity;
}

After we set the velocities, an SDL surface is created using a sprite_file string, which is
the location of the file we have loaded into the WebAssembly virtual filesystem. If that file
is not in the virtual filesystem, we print out an error message and exit the constructor:

SDL_Surface *temp_surface = IMG_Load(sprite_file);

if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;
}

After creating the surface from the image file, we use that surface to create an SDL texture
called m_sprite_texture, and then we use SDL_FreeSurface to destroy the memory
that was used by the surface because it is no longer needed now that we have a texture.
Then, we call SDL_QueryTexture to retrieve the width and the height of the sprite texture
and use them to set the Emitter attributes m_sprite_width and m_sprite_height. Here
is the code:

m_sprite_texture = SDL_CreateTextureFromSurface(renderer, temp_surface);
SDL_FreeSurface(temp_surface);
SDL_QueryTexture(m_sprite_texture,
 NULL, NULL,
 &m_sprite_width, &m_sprite_height);

The next thing we need to do is set the m_max_particles attribute and use that variable to
initialize the particle pool. A for loop is used to push new particles to the back of
the std::vector variable, m_particle_pool:

m_max_particles = max_particles;
for(int i = 0; i < m_max_particles; i++) {
 m_particle_pool.push_back(
 new Particle(m_sprite_texture, particle_lifetime, acceleration,

Improved Particle Systems Chapter 9

[280]

 alpha_fade, m_sprite_width, m_sprite_height,
 align_rotation,
 m_start_color, m_end_color, animation_frames)
);
}

After setting up the particle pool, we use the parameters to set the emitter's attributes for
the old and the new particle system values:

m_max_angle = max_angle;
m_min_angle = min_angle;
m_radius = radius;
m_position.x = (float)x_pos;
m_position.y = (float)y_pos;
m_emission_rate = emission_rate;
m_emission_time_ms = 1000 / m_emission_rate;
m_next_emission = 0;

/* new values */
m_min_start_scale = min_start_scale;
m_max_start_scale = max_start_scale;
m_min_end_scale = min_end_scale;
m_max_end_scale = max_end_scale;

m_loop = loop;
m_align_rotation = align_rotation;
m_emit_loop_ms = emit_time_ms;
m_ttl = m_emit_loop_ms;
m_animation_frames = animation_frames;
m_burst_time_pct = burst_time_pct;
m_burst_particles = burst_particles;
m_has_burst = false;

Emitter update logic
The Update function of Emitter is similar to the constructor, but runs
when Emitter already exists and needs to be updated. This function begins by setting all
of the attribute variables on our Emitter:

if(min_starting_velocity > max_starting_velocity) {
 m_min_starting_velocity = max_starting_velocity;
 m_max_starting_velocity = min_starting_velocity;
}
else {
 m_min_starting_velocity = min_starting_velocity;
 m_max_starting_velocity = max_starting_velocity;

Improved Particle Systems Chapter 9

[281]

}
m_active = true;
m_has_burst = false;
m_max_particles = max_particles;
m_min_angle = min_angle;
m_max_angle = max_angle;
m_emission_rate = emission_rate;
m_emission_time_ms = 1000 / m_emission_rate;
m_position.x = (float)x_pos;
m_position.y = (float)y_pos;
m_radius = radius;
/* new values */
m_min_start_scale = min_start_scale;
m_max_start_scale = max_start_scale;
m_min_end_scale = min_end_scale;
m_max_end_scale = max_end_scale;
m_start_color = start_color;
m_end_color = end_color;
m_burst_time_pct = burst_time_pct;
m_burst_particles = burst_particles;
m_loop = loop;
m_align_rotation = align_rotation;
m_emit_loop_ms = emit_time_ms;
m_ttl = m_emit_loop_ms;
m_animation_frames = animation_frames;

After we set the attribute variables, we may need to either increase or decrease the size of
the m_particle_pool vector (the particle pool). If the number of particles in our pool is
greater than the new maximum number of particles, we can shrink the particle pool with a
simple resize. If the particle pool is too small, we will need to loop over the code that
creates new particles and adds those particles to the pool. We do this until the size of the
pool matches the new maximum number of particles. Here is the code that does that:

if(m_particle_pool.size() > m_max_particles) {
 m_particle_pool.resize(m_max_particles);
}
else if(m_max_particles > m_particle_pool.size()) {
 while(m_max_particles > m_particle_pool.size()) {
 m_particle_pool.push_back(
 new Particle(m_sprite_texture, particle_lifetime,
 acceleration, alpha_fade, m_sprite_width,
 m_sprite_height, m_align_rotation,
 m_start_color, m_end_color,
 m_animation_frames)
);
 }
}

Improved Particle Systems Chapter 9

[282]

Now that we have resized the particle pool, we need to loop over every particle inside of
that pool and run the Update function on each particle to make sure that every particle
updates with the new attribute values. Here is the code:

Particle* particle;
std::vector<Particle*>::iterator it;
for(it = m_particle_pool.begin(); it != m_particle_pool.end(); it++) {
 particle = *it;
 particle->Update(particle_lifetime, acceleration, alpha_fade,
 m_align_rotation, m_start_color, m_end_color, m_animation_frames);
}

Emitter Move function
The final emitter function we need to update is the Emitter::Move function. This function
determines whether it emits any new particles this frame, and if so, how many. It also uses
randomization to pick many of the starting values of these particles, within the ranges
passed in from our HTML. After spawning any new particles, the function will loop over
the particle pool, moving and rendering any particles that are currently active. Here is the
full code for this function:

void Emitter::Move() {
 Particle* particle;
 std::vector<Particle*>::iterator it;
 if(m_active == true) {
 m_next_emission -= diff_time;
 m_ttl -= diff_time;
 if(m_ttl <= 0) {
 if(m_loop) {
 m_ttl = m_emit_loop_ms;
 m_has_burst = false;
 }
 else {
 m_active = false;
 }
 }
 if(m_burst_particles > 0 && m_has_burst == false) {
 if((float)m_ttl / (float)m_emit_loop_ms <= 1.0 -
 m_burst_time_pct) {
 m_has_burst = true;
 m_next_emission -= m_burst_particles * m_emission_time_ms;
 }
 }
 while(m_next_emission <= 0) {
 m_next_emission += m_emission_time_ms;

Improved Particle Systems Chapter 9

[283]

 particle = GetFreeParticle();
 if(particle != NULL) {
 Point spawn_point;
 spawn_point.x = get_random_float(0.0, m_radius);
 Point velocity_point;
 velocity_point.x = get_random_float(
 m_min_starting_velocity, m_max_starting_velocity);
 float angle = get_random_float(m_min_angle, m_max_angle);
 float start_scale = get_random_float(m_min_start_scale,
 m_max_start_scale);
 float end_scale = get_random_float(m_min_end_scale,
 m_max_end_scale);
 spawn_point.x += m_position.x;
 spawn_point.y += m_position.y;
 particle->Spawn(spawn_point.x, spawn_point.y,
 velocity_point.x, velocity_point.y,
 start_scale, end_scale,
 (int)(angle / 3.14159 * 180.0 + 360.0)
 % 360);
 }
 else {
 m_next_emission = m_emission_time_ms;
 }
 }
 }
 for(it = m_particle_pool.begin(); it != m_particle_pool.end(); it++)
{
 particle = *it;
 if(particle->m_active) {
 particle->Move();
 particle->Render();
 }
 }
}

We will break this code into two parts to make it easier to understand. The first part of
the Move function is responsible for spawning new particles when necessary. The second
portion is responsible for moving and rendering any existing active particles. The particle
spawning portion of this code is only run if m_active (the active flag) is true. The second
part will run either way. When an emitter is deactivated, we don't want all of the particles
that have been spawned by the emitter to disappear suddenly. Instead, we would like all
the particles to continue to be moved and rendered until they have all been deactivated.

We are now going to walk through the code in smaller chunks to explain everything:

if(m_active == true) {
 m_next_emission -= diff_time;

Improved Particle Systems Chapter 9

[284]

 m_ttl -= diff_time;
 if(m_ttl <= 0) {
 if(m_loop) {
 m_ttl = m_emit_loop_ms;
 m_has_burst = false;
 }
 else {
 m_active = false;
 }
 }

This first chunk of code checks the m_active attribute variable to make sure that the
emitter is currently active. If it isn't, we can skip over the part of this function that spawns
new particles. The next thing we do is subtract diff_time from
the m_next_emission attribute. When the m_next_emission attribute hits or goes below
0, another particle will spawn. We also subtract diff_time from m_ttl, which is the time
to live attribute. Immediately after subtracting from m_ttl, we check the value in m_ttl to
see if it is less than or equal to 0. If time to live drops below 0, we need to check to see
whether this is a looping emitter by looking at the m_loop attribute. If it is a looping
emitter, we reset the time to live variable, and we set the m_has_burst flag to false. If
this is not a looping emitter, we deactivate the emitter by setting m_active to false.

The following chunk of code has to do with emitting bursts of particles using the new burst
feature:

if(m_burst_particles > 0 && m_has_burst == false) {
 if((float)m_ttl / (float)m_emit_loop_ms <= 1.0 - m_burst_time_pct) {
 m_has_burst = true;
 m_next_emission -= m_burst_particles * m_emission_time_ms;
 }
}

The burst particle feature is new to our advanced particle system. We are using a nested if
statement here. We could have put && on the end of the first if and done this with one if
statement, but I wanted to separate conditions to make it easier to understand. The outer if
statement first checks to see if the m_burst_particles attribute (the number of burst
particles) is greater than 0. If it is, then this emitter uses the burst system and will need to
create a burst of particles at the proper burst time. The next check in this outer if statement
is to check if the burst has already run in this emitter. Because of the way we have designed
this burst system, there can only be one burst per emission loop. So, if the
m_has_burst attribute is true, then a burst will not run.

Improved Particle Systems Chapter 9

[285]

Moving on to the inner loop, we need to check to see whether we have passed the burst
time for our emission. The m_burst_time_pct attribute holds a value
between 0.0 and 1.0 that represents the decimal percentage of time through the emission
at which the particle burst happens. The m_ttl variable holds the time to live in
milliseconds for the emitter. If we divide m_ttl by m_emit_loop_ms (the emit time in
milliseconds), we get an emit time countdown from 1.0 to 0.0, where 0.0 means the
emission is complete. The m_burst_time_pct variable goes in the other direction. A value
of 0.6 means that the burst happens 60% of the way through our emission. Because the
other side of this if statement is a countdown and the burst time counts up, we need to
subtract m_burst_time_pct from 1.0 to make a proper comparison. If (float)m_ttl /
(float)m_emit_loop_ms is less than 1.0 - m_burst_time_pct, then we are ready for
the burst. To make the burst happen, we first set m_has_burst = true. This will prevent
the burst from happening multiple times in the same emission. We then subtract the
number of burst particles, multiplied by the emission time in milliseconds,
from m_next_emission.

The following few lines of code enter a while loop that emits particles as long as the next
emission time is less than 0. In the previous version of this code, we had an if statement
here instead of a loop. This limited our particle system to emit no more than one particle
per frame. That may work for some simple particle systems without a burst mode, but once
you add a burst, you need to be able to emit many particles in a single frame. Let's take a
look at this:

while(m_next_emission <= 0) {
 m_next_emission += m_emission_time_ms;
 particle = GetFreeParticle();
 if(particle != NULL) {

The while loop checks to see whether m_next_emission is less than or equal to 0. The
line immediately after that adds m_emission_time_ms to the next emission. The effect of
this is that if we had subtracted a large number from m_next_emission (like we did in our
burst), this loop would allow us to emit multiple particles in a single run of
our Move function. This means we can emit numerous particles in a single frame. What we
do immediately after the addition to m_next_emission is get a free particle from our
particle pool by making a call to GetFreeParticle. If we make the maximum number of
particles too small, GetFreeParticle might run out of particles we can use and
return NULL. If this is the case, we need to skip all of the steps that emit a new particle,
which is why there is the if statement, which checks for a NULL particle.

Improved Particle Systems Chapter 9

[286]

Once we know that we can spawn a particle, we need to grab a bunch of random values
inside of the ranges we set in the HTML file. The C/C++ rand() function returns a random
integer number. Most of the values we need are floating points. We will need to write a
simple function called get_random_float. This function gets a random floating-point
number with three decimal precision that falls between a min and a max value passed into
it. We chose three-decimal precision based on our needs for this game. The function can be
modified for higher precision if that is necessary later.

Here is the code that gets random values for use with the newly spawned particle:

Point spawn_point;
spawn_point.x = get_random_float(0.0, m_radius);
Point velocity_point;
velocity_point.x = get_random_float(m_min_starting_velocity,
m_max_starting_velocity);
float angle = get_random_float(m_min_angle, m_max_angle);
float start_scale = get_random_float(m_min_start_scale, m_max_start_scale
);
float end_scale = get_random_float(m_min_end_scale, m_max_end_scale);

The random values we get here are the distance from our emitter at which we will generate
the particle, the velocity of the particle, the particle directional angle, and the starting and
ending scale values. Because we would like the particle that is spawned at a given angle
from the center of our emitter to also have the same directional velocity, we have assigned a
random number to only the x values of spawn_point and velocity_point. We are going
to use the same angle we generated randomly earlier to rotate both of those points. Here is
the rotation code for those points:

velocity_point.Rotate(angle);
spawn_point.Rotate(angle);

We generate the spawn points with a position relative to an origin of 0,0. Because our
emitter is probably not at 0,0, we need to adjust the position of the spawn point by the
values in the m_position point. Here is the code we use to do that:

spawn_point.x += m_position.x;
spawn_point.y += m_position.y;

The last thing we do is spawn the particle with the values we randomly generated:

particle->Spawn(spawn_point.x, spawn_point.y, velocity_point.x,
 velocity_point.y,
 start_scale, end_scale,
 (int)(angle / 3.14159 * 180.0 + 360.0) % 360);

Improved Particle Systems Chapter 9

[287]

Now that the function has completed spawning the particles for the current frame, the
function will need to loop over the particle pool looking for active particles to move and
render:

for(it = m_particle_pool.begin(); it != m_particle_pool.end(); it++) {
 particle = *it;
 if(particle->m_active) {
 particle->Move();
 particle->Render();
 }
}

In the next section, we will update the C++/WebAssembly functions we are calling from our
JavaScript.

External functions
The advanced particle system we are writing has two external functions that can be called
from the JavaScript in our app. These functions, add_emitter, and update_emitter, are
called to either insert or modify the particle system in the WebAssembly module. The
advanced_particle.cpp file contains these functions, as well as the main function, which
is called when the Module is loaded, and the show_emission function, which is called
once per frame render. We will not need to modify the main and
the show_emission functions from what we created for the basic particle system earlier in
this chapter. We will, however, need to add the additional parameters we put into our
JavaScript code to add_emitter and update_emitter. Also, we have created a utility
function called get_random_float, which we use when spawning particles. Because this
file contains all of our other C-style functions, I feel that advanced_particle.cpp is the
best place to put this function as well.

Random floating-point numbers
Let's start by discussing the new get_random_float function. Here is the code:

float get_random_float(float min, float max) {
 int int_min = (int)(min * 1000);
 int int_max = (int)(max * 1000);
 if(int_min > int_max) {
 int temp = int_max;
 int_max = int_min;
 int_min = temp;

Improved Particle Systems Chapter 9

[288]

 }
 int int_diff = int_max - int_min;
 int int_rand = (int_diff == 0) ? 0 : rand() % int_diff;
 int_rand += int_min;
 return (float)int_rand / 1000.0;
}

The % (modulo operator) is used to make the random integer value between 0 and whatever
value you use after %. The modulo operator is a remainder operator. It returns the
remainder of a division operation. For example, 13 % 10 would return 3, as would 23 %
10. Taking % 10 of any number will always result in a number between 0 and 9. Modulo is
useful in conjunction with rand() because it will result in a random number between 0
and the value after %. So, rand() % 10 will result in a random number between 0 and 9.

The get_random_float function takes in a minimum and maximum float value and
generates a random number within that range. The first two lines take those float values,
multiply them by 1,000, and cast them to an integer. Because rand() only works with
integers, we need to simulate a precision value. Multiplying by 1,000 gives us three-decimal
precision. If, for instance, we want to generate a random number between 1.125 and 1.725,
both of those values would be multiplied by 1,000, and we would use rand() to generate a
random value between 1,125 and 1,175:

int int_min = (int)(min * 1000);
int int_max = (int)(max * 1000);

Once again, rand() only generates random integers, and using the % (modulo operator)
alongside rand() will give you a number between 0 and the number that follows %.
Because of this, we want to know the difference between our
int_min and int_max values. If we subtract int_min from int_max, we will get a
number that is this difference. We could potentially be thrown off if the calling code
accidentally passes in a value for max that is smaller than the value for int_min, so we
need a little bit of code to check whether max is smaller than min, and if it is, we need to
switch those two values. Here is that if statement code:

if(int_min > int_max) {
 int temp = int_max;
 int_max = int_min;
 int_min = temp;
}

Now, we can go ahead and get the difference between the two:

int int_diff = int_max - int_min;

Improved Particle Systems Chapter 9

[289]

In the following line of code, we get a random value between 0 and the value in int_diff.
We are using the ?: (ternary operator) to make sure that int_diff is not 0 before we
execute rand() % int_diff. The reason for this is that % is a division remainder operator,
so, like dividing by 0, executing % 0 results in an exception. If there is no difference
between our minimum and maximum values, we will return the minimum value. So, by
using the ternary operator, we can set int_rand to 0 if int_diff is 0. Here's the code:

int int_rand = (int_diff == 0) ? 0 : rand() % int_diff;

Then, we add int_min to int_rand, and we have a random value between
the int_min and int_max values:

int_rand += int_min;

The last thing we need to do is cast int_rand to a float and divide it by 1000.0. This will
return a floating-point value that falls between the min and max floating-point values that
are passed into the function:

return (float)int_rand / 1000.0;

Adding an emitter
The add_emitter function is a pass-through that checks to see if there is an existing
emitter and deletes it if there is. It then creates a new Emitter object, passing in all of the
values we set in our HTML and passed through in JavaScript. The changes we need to
make include adding the new parameters into the signature of the add_emitter function,
and adding those same new parameters into the call to the Emitter constructor. In both the
function signature and the constructor call, we will add a /* new parameters
*/ comment that shows where old parameters end and the new ones begin. Here is the new
code:

extern "C"
 EMSCRIPTEN_KEEPALIVE
 void add_emitter(char* file_name, int max_particles, float min_angle,
 float max_angle,
 Uint32 particle_lifetime, float acceleration, bool alpha_fade,
 float min_starting_velocity, float max_starting_velocity,
 Uint32 emission_rate, float x_pos, float y_pos, float radius,
 /* new parameters */
 float min_start_scale, float max_start_scale,
 float min_end_scale, float max_end_scale,
 Uint32 start_color, Uint32 end_color,
 float burst_time_pct, Uint32 burst_particles,

Improved Particle Systems Chapter 9

[290]

 bool loop, bool align_rotation, Uint32 emit_time_ms,
 Uint32 animation_frames) {
 if(emitter != NULL) {
 delete emitter;
 }

 emitter = new Emitter(file_name, max_particles, min_angle,
 max_angle,
 particle_lifetime, acceleration, alpha_fade,
 min_starting_velocity, max_starting_velocity,
 emission_rate, x_pos, y_pos, radius,
 /* new parameters */
 min_start_scale, max_start_scale,
 min_end_scale, max_end_scale,
 start_color, end_color,
 burst_time_pct, burst_particles,
 loop, align_rotation, emit_time_ms,
 animation_frames
);
 }

Updating an emitter
The changes we made to the update_emitter function mirror those made in
the add_emitter function. The primary differences between add_emitter and
update_emitter are that update_emitter will not run if there is not an existing emitter,
and instead of calling the Emitter constructor to create a new Emitter, it calls an existing
emitter's Update function. The Update function passes in all of the new values and most of
the old ones (except for char* file_name). Just like with the changes we made to
the add_emitter function, we have placed a /* new parameters */ comment in the
function signature and the call to the emitter Update function to show where the new
parameters have been added. Here is the code:

extern "C"
 EMSCRIPTEN_KEEPALIVE
 void update_emitter(int max_particles, float min_angle,
 float max_angle,
 Uint32 particle_lifetime, float acceleration, bool alpha_fade,
 float min_starting_velocity, float max_starting_velocity,
 Uint32 emission_rate, float x_pos, float y_pos, float radius,
 /* new parameters */
 float min_start_scale, float max_start_scale,
 float min_end_scale, float max_end_scale,
 Uint32 start_color, Uint32 end_color,
 float burst_time_pct, Uint32 burst_particles,

Improved Particle Systems Chapter 9

[291]

 bool loop, bool align_rotation, Uint32 emit_time_ms,
 Uint32 animation_frames) {
 if(emitter == NULL) {
 return;
 }
 emitter->Update(max_particles, min_angle, max_angle,
 particle_lifetime, acceleration, alpha_fade,
 min_starting_velocity, max_starting_velocity,
 emission_rate, x_pos, y_pos, radius,
 /* new parameters */
 min_start_scale, max_start_scale,
 min_end_scale, max_end_scale,
 start_color, end_color,
 burst_time_pct, burst_particles,
 loop, align_rotation, emit_time_ms,
 animation_frames
);
 }

In the next section, we will configure our advance particle system tool to create a new particle
emitter.

Configuring the particle emitter
At this point, you may be wondering when we are going to get back to writing the game.
We built this particle emitter configuration tool for a few reasons. First of all, it is difficult to
configure a particle system in compiled code. If we wanted to test a configuration for an
emitter, we would need to recompile our values with every test, or we would need to write
a data loader, and rerun the game after making configuration changes. Creating a tool that
allows us to test different emitter configurations allows for faster (and more interesting)
particle system creation.

HTML shell and WebAssembly module
interaction
I also had an ulterior motive for creating a particle system configuration tool. It is possible
that some of you may not be reading this book to learn game programming, per se. You
may have purchased this book as a fun way to learn more about WebAssembly. Writing
this tool was a fun way to learn more about the interaction between a WebAssembly
module and the HTML and JavaScript that drives that module.

Improved Particle Systems Chapter 9

[292]

Compiling and running the new tool
Now that we have all the parameters we would like, it is time to recompile the updated
version of the configuration tool and start designing some particle systems.

If you are building this from the GitHub project, you will need to run this
compile command from the /Chapter09/advanced-particle-tool/
directory.

First, run the following on the command line to compile the new configuration tool:

em++ emitter.cpp particle.cpp point.cpp advanced_particle.cpp -o
particle.html -std=c++17 --shell-file advanced_particle_shell.html -s
NO_EXIT_RUNTIME=1 -s USE_WEBGL2=1 -s USE_SDL=2 -s USE_SDL_IMAGE=2 -s
SDL2_IMAGE_FORMATS=["png"] -s NO_EXIT_RUNTIME=1 -s
EXPORTED_FUNCTIONS="['_add_emitter', '_update_emitter', '_main']" -s
EXTRA_EXPORTED_RUNTIME_METHODS="['cwrap', 'ccall']" -s FORCE_FILESYSTEM=1

Open the web page in emrun or a web browser (if you are running a web server). It will
look something like this:

Figure 9.3: Screenshot of our particle system configuration tool

Improved Particle Systems Chapter 9

[293]

We are going to start with a simple exhaust emitter. Make the following changes to the
HTML values and click the Upload .png button:

min angle: -10
max angle: 10
max particles: 500
emission rate: 50
radius: 0.5
min start vel: 100.0
max start vel: 150.0
burst time: 0.7
burst particles: 40
animation frames: 6

When you have clicked the Upload .png button, navigate to the
ProjectileExpOrange.png file in the image directory and open it.

Here is a screenshot of what the config tool looks like with our exhaust particle emitter:

Figure 9.4: Engine exhaust configuration

Improved Particle Systems Chapter 9

[294]

I would encourage you to play around with the values until you get something you like.
Whenever you change the values on the left-hand side of the page, you will need to click
the Update Emitter button to see that new value reflected in the particle system on the
right-hand side of the web page.

Creating a particle emitter
Now that we have an exhaust particle system, we are going to start adding the particle
system code into the game to add some nice particle effects. I would like to have a particle
system for the player and enemy ship exhaust. I would also like to add a particle system
effect on top of the animated explosion we have to make it stand out.

The first thing we are going to do is copy the particle.cpp and emitter.cpp files into
the main Chapter09 directory. After that, we will need to add those class definitions to the
game.hpp file, as well as to the get_random_float function prototype.

Changes to game.hpp
The first set of changes we need to make are to the game.hpp file. We need to add
an Emitter class definition, a Particle class definition, and an external function
prototype for get_random_float. We also need to add some new attributes to
the Ship class. Here is the line we must add for the get_random_float prototype:

extern float get_random_float(float min, float max);

Adding the Particle class definition
The definition for the Particle class that we must add to game.hpp is the same definition
that we have for our advanced configuration tool. Because it is the same, we will not walk
through what everything in the class does. If you don't remember, please feel free to go
back to the previous chapter as a reference. Here is the class definition code for
Particle that we'll be adding to game.hpp:

class Particle {
 public:
 bool m_active;
 bool m_alpha_fade;
 bool m_color_mod;
 bool m_align_rotation;

Improved Particle Systems Chapter 9

[295]

 Uint8 m_start_red;
 Uint8 m_start_green;
 Uint8 m_start_blue;

 Uint8 m_end_red;
 Uint8 m_end_green;
 Uint8 m_end_blue;

 Uint8 m_current_red;
 Uint8 m_current_green;
 Uint8 m_current_blue;

 SDL_Texture *m_sprite_texture;
 int m_ttl;

 Uint32 m_life_time;
 Uint32 m_animation_frames;
 Uint32 m_current_frame;

 Uint32 m_next_frame_ms;
 float m_rotation;
 float m_acceleration;
 float m_alpha;

 float m_width;
 float m_height;

 float m_start_scale;
 float m_end_scale;
 float m_current_scale;

 Point m_position;
 Point m_velocity;
 SDL_Rect m_dest = {.x = 0, .y = 0, .w = 0, .h = 0 };
 SDL_Rect m_src = {.x = 0, .y = 0, .w = 0, .h = 0 };

 Particle(SDL_Texture *sprite, Uint32 life_time, float
 acceleration,
 bool alpha_fade, int width, int height, bool
 align_rotation,
 Uint32 start_color,
 Uint32 end_color,
 Uint32 animation_frames);

 void Update(Uint32 life_time, float acceleration,
 bool alpha_fade, bool align_rotation,
 Uint32 start_color, Uint32 end_color,
 Uint32 m_animation_frames);

Improved Particle Systems Chapter 9

[296]

 void Spawn(float x, float y, float velocity_x, float velocity_y,
 float start_scale, float end_scale, float rotation);
 void Move();
 void Render();
};

Emitter class definition
The Emitter class has a few additional attributes we have added that help
the Emitter position itself relative to the game objects. There is a Run function that we do
not need in the particle emitter configuration tool, but we will need it in the game code so
that we can trigger the Emitter at any time. The Update function inside of
Emitter and Particle are not necessary inside of the game, but we are going to leave
them in there in order to not complicate the changes. The Emscripten dead code elimination
logic should remove that code when it compiles the game anyway. Here is the new code for
the Emitter class definition that we need to add to games.hpp:

class Emitter {
 public:
 bool m_loop;
 bool m_align_rotation;
 bool m_active;
 bool m_has_burst;

 SDL_Texture *m_sprite_texture;
 std::vector<Particle*> m_particle_pool;
 int m_sprite_width;
 int m_sprite_height;
 int m_ttl;

 // added ----------------------------
 int m_x_adjustment = 0;
 int m_y_adjustment = 0;
 // ----------------------------------

 Uint32 m_max_particles;
 Uint32 m_emission_rate;
 Uint32 m_emission_time_ms;

 Uint32 m_start_color;
 Uint32 m_end_color;

 Uint32 m_burst_particles;
 Uint32 m_emit_loop_ms;
 Uint32 m_animation_frames;

Improved Particle Systems Chapter 9

[297]

 int m_next_emission;

 float* m_parent_rotation;

 float m_max_angle;
 float m_min_angle;
 float m_radius;
 float m_min_starting_velocity;
 float m_max_starting_velocity;

 float m_min_start_scale;
 float m_max_start_scale;
 float m_min_end_scale;
 float m_max_end_scale;
 float m_min_start_rotation;
 float m_max_start_rotation;
 float m_burst_time_pct;

 // added ----------------------------
 float* m_parent_rotation_ptr;
 float* m_parent_x_ptr;
 float* m_parent_y_ptr;
 // -----------------------------------

 Point m_position;

 Emitter(char* sprite_file, int max_particles, float min_angle,
 float max_angle,
 Uint32 particle_lifetime, float acceleration,
 bool alpha_fade,
 float min_starting_velocity, float max_starting_velocity,
 Uint32 emission_rate, int x_pos, int y_pos, float radius,
 float min_start_scale, float max_start_scale,
 float min_end_scale, float max_end_scale,
 Uint32 start_color, Uint32 end_color,
 float burst_time_pct, Uint32 burst_particles,
 bool loop, bool align_rotation,
 Uint32 emit_time_ms, Uint32 animation_frames);

 void Update(int max_particles, float min_angle, float max_angle,
 Uint32 particle_lifetime, float acceleration, bool alpha_fade,
 float min_starting_velocity, float max_starting_velocity,
 Uint32 emission_rate, int x_pos, int y_pos, float radius,
 float min_start_scale, float max_start_scale,
 float min_end_scale, float max_end_scale,
 Uint32 start_color, Uint32 end_color,
 float burst_time_pct, Uint32 burst_particles,
 bool loop, bool align_rotation, Uint32 emit_time_ms,

Improved Particle Systems Chapter 9

[298]

 Uint32 animation_frames);

 void Move();
 Particle* GetFreeParticle();

 void Run(); // added
 };

The code we added to the particle system configuration tool is surrounded by comments
labeled added. Let me walk through what each of these new attributes and the new
function does. Here are the first two added attributes:

int m_x_adjustment = 0;
int m_y_adjustment = 0;

These two values are adjustments, and are used to modify the position at which the emitter
spawns particles. These variables are useful for small adjustments to particle positions
relative to the position of an object the emitter is following. Here are the following three
attributes that we have added:

float* m_parent_rotation_ptr;
float* m_parent_x_ptr;
float* m_parent_y_ptr;

These are pointers to the x, y, and rotational attributes of a parent object. If we set
Emitter->m_parent_rotation_ptr = &m_Rotation, for instance, that pointer will
point to the rotation of our parent object, and we will be able to access that value inside of
our Emitter to adjust the rotation. The same holds true
for m_parent_x_ptr and m_parent_y_ptr.

Finally, we have added a Run function:

void Run();

This function allows a particle emitter, that is not looping, to be restarted. We will be using
this for the Explosion emitter that we added to the Ship class.

Changes to emitter.cpp
Now that we have walked through the changes that we need to make to game.hpp, we are
going to walk through all of the changes that we will make to the emitter.cpp file,
function by function.

Improved Particle Systems Chapter 9

[299]

Changes to the constructor function
There are two changes to be made to the constructor function. First, we'll add some
initialization at the top that initializes all of the new pointers to NULL. We do not need these
pointers in every emitter, so we can check against NULL to see when they are or are not
used. Further down, we will modify the values that are passed into the constructors from
degrees to radians. Here is what the function looks like:

Emitter::Emitter(char* sprite_file, int max_particles, float min_angle,
 float max_angle,
 Uint32 particle_lifetime, float acceleration, bool
 alpha_fade,
 float min_starting_velocity, float max_starting_velocity,
 Uint32 emission_rate, int x_pos, int y_pos, float radius,
 float min_start_scale, float max_start_scale,
 float min_end_scale, float max_end_scale,
 Uint32 start_color, Uint32 end_color,
 float burst_time_pct, Uint32 burst_particles,
 bool loop, bool align_rotation, Uint32 emit_time_ms, Uint32
 animation_frames) {
 // added -----------------------------
 m_parent_rotation_ptr = NULL;
 m_parent_x_ptr = NULL;
 m_parent_y_ptr = NULL;
 // -----------------------------------
 m_start_color = start_color;
 m_end_color = end_color;
 m_active = true;

 if(min_starting_velocity > max_starting_velocity) {
 m_min_starting_velocity = max_starting_velocity;
 m_max_starting_velocity = min_starting_velocity;
 }
 else {
 m_min_starting_velocity = min_starting_velocity;
 m_max_starting_velocity = max_starting_velocity;
 }
 SDL_Surface *temp_surface = IMG_Load(sprite_file);

 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 printf("failed sprite file: %s\n", sprite_file);
 return;
 }
 m_sprite_texture = SDL_CreateTextureFromSurface(renderer, temp_surface
);
 SDL_FreeSurface(temp_surface);

Improved Particle Systems Chapter 9

[300]

 SDL_QueryTexture(m_sprite_texture,
 NULL, NULL,
 &m_sprite_width, &m_sprite_height);
 m_max_particles = max_particles;

 for(int i = 0; i < m_max_particles; i++) {
 m_particle_pool.push_back(
 new Particle(m_sprite_texture, particle_lifetime,
 acceleration,
 alpha_fade, m_sprite_width, m_sprite_height,
 align_rotation,
 m_start_color, m_end_color, animation_frames)
);
 }

 // modified -----------------------------
 m_min_angle = (min_angle+90) / 180 * 3.14159;
 m_max_angle = (max_angle+90) / 180 * 3.14159;
 // --------------------------------------

 m_radius = radius;
 m_position.x = (float)x_pos;
 m_position.y = (float)y_pos;
 m_emission_rate = emission_rate;
 m_emission_time_ms = 1000 / m_emission_rate;
 m_next_emission = 0;
 m_min_start_scale = min_start_scale;
 m_max_start_scale = max_start_scale;
 m_min_end_scale = min_end_scale;
 m_max_end_scale = max_end_scale;

 m_loop = loop;
 m_align_rotation = align_rotation;
 m_emit_loop_ms = emit_time_ms;
 m_ttl = m_emit_loop_ms;

 m_animation_frames = animation_frames;
 m_burst_time_pct = burst_time_pct;
 m_burst_particles = burst_particles;
 m_has_burst = false;
}

The first changes are at the very top of this function, and set our new pointer attributes
to NULL:

m_parent_rotation_ptr = NULL;
m_parent_x_ptr = NULL;
m_parent_y_ptr = NULL;

Improved Particle Systems Chapter 9

[301]

Later, we will check to see if these pointers are NULL, and if not, we will use
m_parent_rotation_ptr to adjust the rotation angle of this emitter. We will use
m_parent_x_ptr to change the x coordinate of the emitter, and we will use
m_parent_y_ptr to adjust the y coordinate of this emitter. After that, we have the code
that modifies the passed in minimum and maximum angles from degrees to radians:

m_min_angle = (min_angle+90) / 180 * 3.14159;
m_max_angle = (max_angle+90) / 180 * 3.14159;

The real reason we need to do this is that we are hardcoding the values we pass into the
emitter. If we created a data loader, we could have done this conversion when the data
loaded up. But, because we are taking these values straight out of our particle emitter
configuration tool and hardcoding the values right into the call to the new emitter, we will
either have to remember to do the conversion ourselves every time we change these values,
or we will have to do it from within the constructor and the Update function.

Changes to the Update function
The Update function is not likely to ever be called inside our game. Emscripten's dead code
removal process should eliminate it. However, we haven't removed it from
the Emitter class. If you think you may ever call this, you might want to change
the m_min_angle and m_max_angle initialization to convert from degrees into radians,
like we did in the constructor:

m_min_angle = (min_angle+90) / 180 * 3.14159;
m_max_angle = (max_angle+90) / 180 * 3.14159;

Adding a Run function
In the particle system configuration tool, we didn't need a Run function because calling
the Update function would run Emitter. The Update function is far too cumbersome to
use inside our game. It uses a large number of configuration variables that we may not
have access to when we call the function. All we want to do is set the emitter to active, reset
the time to live, and the burst flag. Instead of calling Update, we create a small Run
function to do what we need:

void Emitter::Run() {
 m_active = true;
 m_ttl = m_emit_loop_ms;
 m_has_burst = false;
}

Improved Particle Systems Chapter 9

[302]

Setting m_active to true makes the emitter active so that it can spawn new particles when
calling the Move function. Resetting m_ttl to m_emit_loop_ms makes sure that the time to
live does not automatically shut the emitter down the next time it calls the Move function.
Setting m_has_burst = false makes sure that, if there is a particle burst that must occur
somewhere in the emission, it will run.

Changes to the Move function
The new version of the Move function will need to be able to modify its position based on a
parent position and rotate its defined position based on the parent's rotation. It will also
need to be able to make minor adjustments using m_x_adjustment and m_y_adjustment.
Here is the new version of Move in its entirety:

void Emitter::Move() {
 Particle* particle;
 std::vector<Particle*>::iterator it;
 if(m_active == true) {
 m_next_emission -= diff_time;
 m_ttl -= diff_time;
 if(m_ttl <= 0) {
 if(m_loop) {
 m_ttl = m_emit_loop_ms;
 m_has_burst = false;
 }
 else { m_active = false; }
 }
 if(m_burst_particles > 0 && m_has_burst == false) {
 if((float)m_ttl / (float)m_emit_loop_ms <= 1.0 -
 m_burst_time_pct) {
 m_has_burst = true;
 m_next_emission -= m_burst_particles * m_emission_time_ms;
 }
 }
 while(m_next_emission <= 0) {
 m_next_emission += m_emission_time_ms;
 particle = GetFreeParticle();
 if(particle != NULL) {
 Point spawn_point, velocity_point, rotated_position;
 spawn_point.x = get_random_float(0.0, m_radius);
 velocity_point.x =
 get_random_float(m_min_starting_velocity,
 m_max_starting_velocity);
 float angle = get_random_float(m_min_angle,m_max_angle);
 float start_scale = get_random_float(m_min_start_scale,
 m_max_start_scale);

Improved Particle Systems Chapter 9

[303]

 float end_scale = get_random_float(m_min_end_scale,
 m_max_end_scale);
 if(m_parent_rotation_ptr != NULL) {
 angle += *m_parent_rotation_ptr;
 rotated_position = m_position;
 rotated_position.Rotate(*m_parent_rotation_ptr);
 }
 velocity_point.Rotate(angle);
 spawn_point.Rotate(angle);

 if(m_parent_rotation_ptr == NULL) {
 spawn_point.x += m_position.x;
 spawn_point.y += m_position.y;
 if(m_parent_x_ptr != NULL) { spawn_point.x +=
 *m_parent_x_ptr; }
 if(m_parent_y_ptr != NULL) { spawn_point.y +=
 *m_parent_y_ptr; }
 }
 else {
 spawn_point.x += rotated_position.x;
 spawn_point.y += rotated_position.y;
 if(m_parent_x_ptr != NULL) { spawn_point.x +=
 *m_parent_x_ptr; }
 if(m_parent_y_ptr != NULL) { spawn_point.y +=
 *m_parent_y_ptr; }
 }
 spawn_point.x += m_x_adjustment;
 spawn_point.y += m_y_adjustment;
 particle->Spawn(spawn_point.x,
 spawn_point.y,velocity_point.x, velocity_point.y,
 start_scale, end_scale, (int)(angle / 3.14159 * 180.0 +
 360.0) % 360);
 }
 else {
 m_next_emission = m_emission_time_ms;
 }
 }
 }
 for(it = m_particle_pool.begin(); it != m_particle_pool.end(); it++)
 {
 particle = *it;
 if(particle->m_active) {
 particle->Move();
 particle->Render();
 }
 }
}

Improved Particle Systems Chapter 9

[304]

Most of this code is the same as it was in earlier versions. Let's walk through the
differences. First, we need to rotate this entire particle system if there is a rotated parent
object. We will use this for the exhaust particle system that we will be adding to the
spaceship objects. This exhaust has to be positioned relative to the spaceship. To do that, we
need to take the position and rotate it. We also need to add the parent's rotation to the
existing emission angle. Here is the new code:

Point rotated_position;

if(m_parent_rotation_ptr != NULL) {
 angle += *m_parent_rotation_ptr;
 rotated_position = m_position;
 rotated_position.Rotate(*m_parent_rotation_ptr);
}

At the top, we create a new Point object called rotated_position. If
the m_parent_rotation_ptr is not NULL, we add that value to the emission angle we
calculated earlier. We will copy the values of m_position into rotated_position and
Rotate that position by the parent's rotation. Later, we will check
whether m_parent_rotation_ptr is not NULL, and if not, we will
use rotated_position relative to the parent object's position to calculate the location of
the emitter. The following is an if statement that checks
whether m_parent_rotation_ptr == NULL. If it is null, the first part of this if block
does what would have been done earlier. Here is the code:

if(m_parent_rotation_ptr == NULL) {
 spawn_point.x += m_position.x;
 spawn_point.y += m_position.y;
}

Because the if statement was checking whether m_parent_rotation_ptr == NULL, we
don't want to use the rotated version of the particle system's position. That block defaulted
to using the m_position attribute unmodified. If m_parent_rotation_ptr is not NULL,
we will run the following else block:

else {
 spawn_point.x += rotated_position.x;
 spawn_point.y += rotated_position.y;
}

Improved Particle Systems Chapter 9

[305]

This code uses a rotated version of m_position. Next, we want to see
whether m_parent_x_ptr and m_parent_y_ptr are not NULL. If they aren't, then we need
to add the parent's position to the spawn_point using these values. Here is that piece of
code:

if(m_parent_x_ptr != NULL) {
 spawn_point.x += *m_parent_x_ptr;
}
if(m_parent_y_ptr != NULL) {
 spawn_point.y += *m_parent_y_ptr;
}

The final piece of code we will add to the Move function is the micro adjustment to the
spawn point. Sometimes, particle systems need a little bit of tweaking before rotation to
have them look just right. Therefore, we add the following:

spawn_point.x += m_x_adjustment;
spawn_point.y += m_y_adjustment;

The values of m_x_adjustment and m_y_adjustment default to 0, so if you want to use
these values, they will need to be set sometime after creating the emitter.

Changes to ship.cpp
The next thing we are going to do is modify the ship.cpp file to make use of two new
particle emitters. We want a particle emitter for the ship's exhaust, and one to improve the
ship's explosion. We are going to need to make changes to the Ship class' constructor,
the Ship class' Acceleration function, and the Ship class' Render function.

The Ship class' constructor function
The Ship class' constructor function has changed most of the functions inside of
the Ship class. We are not only initializing new attributes – we also need to set the parent
and adjustment values on the emitters. Here is the new code for the constructor:

Ship::Ship() : Collider(8.0) {
 m_Rotation = PI;
 m_DX = 0.0;
 m_DY = 1.0;
 m_VX = 0.0;
 m_VY = 0.0;
 m_LastLaunchTime = current_time;
 m_Accelerating = false;

Improved Particle Systems Chapter 9

[306]

 m_Exhaust = new Emitter((char*)"/sprites/ProjectileExpOrange.png", 200,
 -10, 10,
 400, 1.0, true,
 0.1, 0.1,
 30, 0, 12, 0.5,
 0.5, 1.0,
 0.5, 1.0,
 0xffffff, 0xffffff,
 0.7, 10,
 true, true,
 1000, 6);

 m_Exhaust->m_parent_rotation_ptr = &m_Rotation;
 m_Exhaust->m_parent_x_ptr = &m_X;
 m_Exhaust->m_parent_y_ptr = &m_Y;
 m_Exhaust->m_x_adjustment = 10;
 m_Exhaust->m_y_adjustment = 10;
 m_Exhaust->m_active = false;
 m_Explode = new Emitter((char*)"/sprites/Explode.png", 100,
 0, 360,
 1000, 0.3, false,
 20.0, 40.0,
 10, 0, 0, 5,
 1.0, 2.0,
 1.0, 2.0,
 0xffffff, 0xffffff,
 0.0, 10,
 false, false,
 800, 8);
 m_Explode->m_parent_rotation_ptr = &m_Rotation;
 m_Explode->m_parent_x_ptr = &m_X;
 m_Explode->m_parent_y_ptr = &m_Y;
 m_Explode->m_active = false;
}

The first several lines haven't changed from the old version. The new changes start when
we initialize m_Accelerating to false. After that, we set up the exhaust emitter, first
creating a new emitter, then setting the parent values and the adjustment values, and
finally, we set it to inactive:

m_Exhaust = new Emitter((char*)"/sprites/ProjectileExpOrange.png", 200,
 -10, 10,
 400, 1.0, true,
 0.1, 0.1,
 30, 0, 12, 0.5,
 0.5, 1.0,
 0.5, 1.0,
 0xffffff, 0xffffff,

Improved Particle Systems Chapter 9

[307]

 0.7, 10,
 true, true,
 1000, 6);

 m_Exhaust->m_parent_rotation_ptr = &m_Rotation;
 m_Exhaust->m_parent_x_ptr = &m_X;
 m_Exhaust->m_parent_y_ptr = &m_Y;
 m_Exhaust->m_x_adjustment = 10;
 m_Exhaust->m_y_adjustment = 10;
 m_Exhaust->m_active = false;

All of those values that are passed into the Emitter function come straight from the particle
system configuration tool. We have to add them manually into our function call. If we were
working on a large project, this would not be very scalable. We would probably have the
configuration tool create some sort of data file (for example, JSON or XML). But for
expediency, we have simply hardcoded these values based on what we had inside of the
configuration tool. Unfortunately, the values are not in the same order that they appear
inside of the tool. You will need to look at the signature of the Emitter constructor to make
sure that you put the values in the right place:

Emitter(char* sprite_file, int max_particles, float min_angle, float
max_angle,
 Uint32 particle_lifetime, float acceleration, bool alpha_fade,
 float min_starting_velocity, float max_starting_velocity,
 Uint32 emission_rate, int x_pos, int y_pos, float radius,
 float min_start_scale, float max_start_scale,
 float min_end_scale, float max_end_scale,
 Uint32 start_color, Uint32 end_color,
 float burst_time_pct, Uint32 burst_particles,
 bool loop, bool align_rotation, Uint32 emit_time_ms, Uint32
 animation_frames);

The first parameter, sprite_file, is the location of your file in the virtual filesystem. That
file is not automatically included in your project. You will need to make sure that it is in the
right location. We put the file in the sprites directory and use the following flag when we
run Emscripten:

 --preload-file sprites

After creating our Exhaust emitter, we create an Explosion emitter with the following
code:

m_Explode = new Emitter((char*)"/sprites/Explode.png", 100,
 0, 360,
 1000, 0.3, false,
 20.0, 40.0,

Improved Particle Systems Chapter 9

[308]

 10, 0, 0, 5,
 1.0, 2.0,
 1.0, 2.0,
 0xffffff, 0xffffff,
 0.0, 10,
 false, false,
 800, 8);

m_Explode->m_parent_rotation_ptr = &m_Rotation;
m_Explode->m_parent_x_ptr = &m_X;
m_Explode->m_parent_y_ptr = &m_Y;
m_Explode->m_active = false;

The creation of the m_Explode emitter is similar to the m_Exhaust emitter, but we have
different values that we pass into the emitter based on what we created in the particle
emitter configuration tool:

Figure 9.5: Explosion configuration

As with the m_Exhaust emitter, we will need to set all of the parent pointer variables and
deactivate the emitter. Unlike m_Exhaust, we won't need to make fine adjustments using
the m_x_adjustment and m_y_adjustment attributes.

Improved Particle Systems Chapter 9

[309]

The Ship class' Acceleration function
We want to run the exhaust emitter only when the ship is accelerating. To do this, we will
need to set a flag inside of our ship's Accelerate function. Here is the new version of the
acceleration function:

void Ship::Accelerate() {
 m_Accelerating = true; // added line
 m_VX += m_DX * delta_time;
 m_VY += m_DY * delta_time;
}

The only change is the addition of the line at the beginning, which
sets m_Accelerating to true. When we are rendering the ship, we can check this flag and
start or stop the emitter based on the value inside it.

The Ship class' Render function
The final changes to the Ship class are in the ship's Render function. Inside this function,
we will need to add code that moves and renders the two new particle systems, as well as
code that will turn the exhaust on if the ship is accelerating, and off if it isn't. Here is the
new version of the function:

void Ship::Render() {
 if(m_Alive == false) {
 return;
 }
 m_Exhaust->Move();
 m_Explode->Move();
 dest.x = (int)m_X;
 dest.y = (int)m_Y;
 dest.w = c_Width;
 dest.h = c_Height;
 src.x = 32 * m_CurrentFrame;
 float degrees = (m_Rotation / PI) * 180.0;
 int return_code = SDL_RenderCopyEx(renderer, m_SpriteTexture,
 &src, &dest,
 degrees, NULL, SDL_FLIP_NONE);
 if(return_code != 0) {
 printf("failed to render image: %s\n", IMG_GetError());
 }

 if(m_Accelerating == false) {
 m_Exhaust->m_active = false;
 }

Improved Particle Systems Chapter 9

[310]

 else {
 m_Exhaust->m_active = true;
 }
 m_Accelerating = false;
}

Take a look at the first block of added code, near the top:

m_Exhaust->Move();
m_Explode->Move();

The call to the Move function on an emitter both moves and renders all of the particles
inside of the particle system. It also spawns new particles if it is time for the emitter to do
that. At the very end of the function, there is code to handle the exhaust emitter:

if(m_Accelerating == false) {
 m_Exhaust->m_active = false;
}
else {
 m_Exhaust->m_active = true;
}
m_Accelerating = false;

This code checks to see if the m_Accelerating flag is false. If it is, we deactivate the
exhaust emitter. If the ship is accelerating, we set the m_active flag to true. We don't
make a call to the Run function, because we are doing this every frame, and we don't want
to start the time to live over on that emitter every time we loop. The last line sets
m_Accelerating to false. We do this because we don't have anywhere in our code that
detects when a ship stops accelerating. If the ship is accelerating, that flag will be set back to
true before we get to this point in the code. If not, it will stay set to false.

Changes to projectile_pool.cpp
We don't need to change a lot inside of the ProjectilePool class. In fact, we only need to
make two changes to one function. The MoveProjectiles function inside of the
ProjectilePool class performs all of the collision detection between projectiles and our
two ships. If a ship is destroyed, we run the m_Explode particle emitter on that ship. That
will require two new lines of code inside of the hit test condition for each of the ships. Here
is the new version of the MoveProjectiles function:

void ProjectilePool::MoveProjectiles() {
 Projectile* projectile;
 std::vector<Projectile*>::iterator it;
 for(it = m_ProjectileList.begin(); it != m_ProjectileList.end(); it++

Improved Particle Systems Chapter 9

[311]

) {
 projectile = *it;
 if(projectile->m_Active) {
 projectile->Move();
 if(projectile->m_CurrentFrame == 0 &&
 player->m_CurrentFrame == 0 &&
 (projectile->HitTest(player) ||
 player->CompoundHitTest(projectile))) {
 player->m_CurrentFrame = 1;
 player->m_NextFrameTime = ms_per_frame;
 player->m_Explode->Run(); // added
 projectile->m_CurrentFrame = 1;
 projectile->m_NextFrameTime = ms_per_frame;
 }
 if(projectile->m_CurrentFrame == 0 &&
 enemy->m_CurrentFrame == 0 &&
 (projectile->HitTest(enemy) ||
 enemy->CompoundHitTest(projectile))) {
 enemy->m_CurrentFrame = 1;
 enemy->m_NextFrameTime = ms_per_frame;
 enemy->m_Explode->Run(); // added
 projectile->m_CurrentFrame = 1;
 projectile->m_NextFrameTime = ms_per_frame;
 }
 }
 }
}

The two lines of code I have added are for the calls
to player->m_Explode->Run(); and enemy->m_Explode->Run();. These lines execute
when the player's ship or the enemy ship collides with one of the projectiles and is
destroyed.

Changes to main.cpp
The last change we need to make in order to add exhaust and explosion particle systems is
to the main.cpp file. This change requires the addition of a single
function, get_random_float. We discussed this function earlier. It is a way for our
particle emitter to get random floating-point values that fall between a minimum and a
maximum value. Here is the code:

float get_random_float(float min, float max) {
 int int_min = (int)(min * 1000);
 int int_max = (int)(max * 1000);
 if(int_min > int_max) {

Improved Particle Systems Chapter 9

[312]

 int temp = int_max;
 int_max = int_min;
 int_min = temp;
 }
 int int_diff = int_max - int_min;
 int int_rand = (int_diff == 0) ? 0 : rand() % int_diff;
 int_rand += int_min;
 return (float)int_rand / 1000.0;
}

Compiling the new particle_system.html file
Now that we have made all the necessary changes to our files, we can go ahead and use
Emscripten to compile and test the new version of the game.

If you are building this from the GitHub project, you will need to run this
compile command from the /Chapter09/ directory. The previous
compile was done from inside the /Chapter09/advanced-particle-
tool/ directory, so make sure that you are in the right place when you
run this command; otherwise, it won't have the files it needs to build the
game.

Execute the following command from the command line:

em++ collider.cpp emitter.cpp enemy_ship.cpp particle.cpp player_ship.cpp
point.cpp projectile_pool.cpp projectile.cpp ship.cpp main.cpp -o
particle_system.html --preload-file sprites -std=c++17 -s USE_WEBGL2=1 -s
USE_SDL=2 -s USE_SDL_IMAGE=2 -s SDL2_IMAGE_FORMATS=["png"] -s
USE_SDL_IMAGE=2 -s SDL2_IMAGE_FORMATS=["png"]

Taking it further
We will not be writing a data export tool for configuration. This chapter is too long as it is.
When you are creating particle systems, you can spend a near infinite amount of time
tweaking them to your liking. Particle systems can have a tremendous number of
configuration parameters. You can even have Bézier curves for movement, rotation, and
scaling. Some advanced particle systems have particles that emit other particles. There is no
limit to the complexity that we can add to a particle system, but there is a limit to the
number of pages I can have in this book, so I encourage you to take this system and add to
it until you get the results you want.

Improved Particle Systems Chapter 9

[313]

Summary
Congratulations! You have made it through a very long, information-packed chapter. In the
last two chapters, we discussed what particle systems are and why they are used. We
learned how to add files to, and how to access, the WebAssembly virtual filesystem. We
learned how to create more advanced interactions between the HTML shell file and the
WebAssembly module. We then constructed a more advanced particle emitter
configuration tool with a lot more functionality. After constructing some nice looking
particle systems in the tool, we took the data and code and used it to construct two new
particle emitters inside the game we have been building.

In the next chapter, we will be discussing and building AI for our enemy spaceship.

10
AI and Steering Behaviors

The game we have been writing is loosely based on the computer game Spacewar! If you are
not familiar with Spacewar!, it was the first computer game ever written. It originally ran on
a PDP-1 owned by MIT and was written by an MIT student named Steve Russel, in 1962.
Back then, just getting a computer to display graphical output was difficult enough.
Spacewar!, as well as many other early game systems such as Pong, were designed to be
played by more than one person. That was because programming a computer to behave
like a human was a very difficult thing. That is still somewhat true today, although more
processing power and data allows modern Artificial Intelligence (AI) algorithms to behave
much more intelligently than they have in the past.

Because our game is a single-player web game, we do not have the benefit of using a
second human intelligence to power our enemy spaceship. Before this chapter, we used an
AI stub to allow our enemy spaceship to move and shoot randomly around our gameplay
area. That might have worked for us up to this point, but now we want our player to feel
threatened by the enemy ship. It should be intelligent enough to fight and kill our player in
one-on-one combat.

You will need to include several images in your build to make this project
work. Make sure you include the /Chapter10/sprites/ folder from the
project's GitHub. If you haven't yet downloaded the GitHub project, you
can get it online at: https:/ ​/​github. ​com/​PacktPublishing/ ​Hands- ​On-
Game- ​Development- ​with- ​WebAssembly.

https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly

AI and Steering Behaviors Chapter 10

[315]

In this chapter, we will be doing the following:

Introducing the concept of AI and Game AI
Adding obstacles to the game for avoidance AI (and increasing the canvas size)
Adding new collision detection for a line of sight
Introducing the concept of a Finite State Machine (FSM)
Introducing the concept of autonomous agents
Introducing the concept of steering behaviors
Adding force fields to our game
Using FSMs and steering behaviors to create an AI
Tuning our AI to allow the enemy spaceship to navigate obstacles

What is Game AI?
Many early video games avoided AI because it was a very challenging problem with the
hardware available at the time. For example, Space Invaders, Galaga, and Galaxian all had
aliens that moved in specific non-intelligent patterns. Early Atari games were either two-
player games (Pong) or had the player interact with a non-intelligent environment
(Breakout). One early and successful attempt at a game with AI was PAC-MAN. Each ghost
in PAC-MAN had a different personality and would behave a little differently in the same
circumstances. PAC-MAN also used a simple Finite State Machine (FSM). That is a type of
AI where the AI behaves differently under different environmental circumstances. If the
player ate a power pellet in PAC-MAN, the ghosts would all turn blue and suddenly become
edible in a hunter-becomes-the-hunted reversal of fortune. While the ghosts could be eaten, it
would have been easier for the programmers to have those ghosts continue to hunt down
PAC-MAN, as they did before. That would make the ghosts look either stupid or suicidal,
which is the kind of behavior we would like to avoid when writing an AI.

In 1950, the mathematical and computer genius Alan Turing proposed a benchmark for AI
that he called "the imitation game," but it would later become known as the Turing test. He
proposed a game having human players interacting with humans and computers through a
text-based interface. If a computer could convince a human that they were interacting with
another human and not a computer, that computer should be considered to be intelligent.
Personally, I feel as if we passed this threshold a long time ago. But when machines
threaten human intelligence, humans like to move the goal posts.

AI and Steering Behaviors Chapter 10

[316]

In 1964, Joseph Weizenbaum of MIT wrote a chatbot named ELIZA. ELIZA pretended to be
a psychotherapist at the other end of a chat system. ELIZA managed to fool quite a few
people into believing it was a real psychotherapist, which is probably as much a
commentary on psychotherapy as it is on human intelligence. Anyone looking for a chatbot
would easily be able to tell ELIZA was not human, but Joesph Weizenbaum was quite
disturbed by the number of people willing to pour their heart out to ELIZA as if she were a
real person.

The Loebner prize is an annual Turing test competition, where a series of judges who are AI
experts have yet to be fooled by a chatbot. Today, many programs routinely fool people
into thinking they are humans. I would argue that needing a human expert to determine
whether an AI has passed the Turing test is moving the goalposts significantly from where
Alan Turing initially set them. I believe if we had a large sample of non-experts that were
fooled by a chatbot, we should consider that chatbot to be intelligent, but I digress.

My point in bringing up the Turing test is that a Game AI needs to pass a modified form of
the Turing test. When you write a Game AI, your goal is to convince the player that they
are not playing a game against a total loser. All Game AIs are, more or less, lame. For the
time being, we will not be able to create a Game AI version of IBM's Watson (the AI that
defeated Ken Jennings in Jeopardy). Like everything in a computer game, we need to learn
to work within the constraints of the system. And for a web-based game, those constraints
may be significant.

Remember, it is OK to cheat, but don't get caught. Many Game AIs cheat. An RTS may be
able to see through the fog of war. An AI poker player may be able to peak at the player's
cards. One way we are going to cheat is to allow our enemy spaceship to accelerate in
directions that are not allowed for the player. The key to cheating with a Game AI is to
make sure that the behavior or movement does not look unnatural. Many years ago, I wrote
an online version of the card game Spades, playable at https:/ ​/​www. ​icardgames. ​com/
spades.​html. The player's partner AI is allowed to peak at everyone's cards. One common
complaint I get is that the player's partner will frequently trump the player's high card.
That is because the AI is looking not at who is currently winning the trick, but whether the
player that will follow him can win the trick if he does not play a higher card than the one
the player lead with. Not realizing this behavior is helping them, I get many frustrated
complaints from players about the partner trumping their card. This is an example of a case
where the player is actually doing better because of the AI but leaves with the impression
that the AI is making stupid choices. My point is, Game AI is all about impression.
Remember what the AI host said in the HBO television show Westworld, when one of the
characters asked her if she was real: "If you can't tell, does it really matter?"

https://www.icardgames.com/spades.html
https://www.icardgames.com/spades.html
https://www.icardgames.com/spades.html
https://www.icardgames.com/spades.html
https://www.icardgames.com/spades.html
https://www.icardgames.com/spades.html
https://www.icardgames.com/spades.html
https://www.icardgames.com/spades.html
https://www.icardgames.com/spades.html
https://www.icardgames.com/spades.html
https://www.icardgames.com/spades.html
https://www.icardgames.com/spades.html

AI and Steering Behaviors Chapter 10

[317]

Autonomous agents versus top-down AI
In 1986, Craig Reynolds created a well-regarded AI program called Boids (a combination of
bird and droids). This program created a fascinating bird-like flocking behavior, where
little triangles moved around the screen in ways that remind the observer of flocking birds
or fish. When the environment had obstacles, the boids broke up to steer around the
obstacles and rejoin later. A collision between two flocks will usually end up in the flocks
joining up and moving on. The Boids algorithm is an implementation of autonomous
agents for AI. Each individual boid makes decisions based on a few simple rules and its
immediate environment. That results in what is called emergent behavior, which is
behavior that looks as if it was designed from the top down, but is not. The irony is that a
top-down-implemented AI frequently looks less intelligent than allowing the individual
agents to make their own decisions. It's a little like the old Soviet top-down command-and-
control economy, versus a capitalist economy where individuals make decisions based on
their immediate environment. In games, as in economics, you can also have a mixed
system, where a top-down AI can send messages to autonomous agents giving them new
goals or instructions. In the game we are writing, we have a single enemy spaceship, so the
decision to manage AI from the top down or through autonomous agents does not really
matter much, but because you may choose to expand the game in the future to support
multiple enemies and their AIs, our agent will manage itself autonomously.

What is an FSM?
FSMs are very common in games. As I mentioned before, PAC-MAN was an early game
that had an AI with more than one state. The ghosts could be in a hunt or a flee state based
on a global condition flipped when PAC-MAN would eat a large dot on the screen,
commonly known as a power pellet. A specific state in an FSM can be either a global
condition or, in the case of a finite state automaton, could be a state that is specific to any
autonomous agent within the game. Managing behaviors or state transitions could be as
simple as using a switch statement, or they could be more complicated systems that load
and unload AI modules when different states are triggered. A state may choose when a
transition to a different state occurs, or state transitions could be managed by the game
from the top down.

AI and Steering Behaviors Chapter 10

[318]

The FSM we will be writing for this game will be very basic. It will be a simple switch that
will perform different behaviors based on the current state. The enemy ship's position
relative to the player and whether there is an unobstructed line of sight between them will
be used to determine the transitions between states. Our FSM will have four basic states:

WANDER1.
APPROACH2.
ATTACK3.
FLEE4.

The conditions for entering these states are as follows: If the enemy ship does not have an
unobstructed path to the player ship, it enters a WANDER state where it wanders around the
gameplay area checking periodically for a line of sight path to the player. Once there is a
line-of-sight path to the player, the enemy ship will enter an APPROACH state, where it will
attempt to get close enough to the player ship to attack it. Once the player is close enough,
it enters the ATTACK state, where it fires on the player ship. If the player ship gets too close
to the enemy ship, the enemy will FLEE, attempting to increase the distance between itself
and the player ship.

Introducing steering behaviors
Steering behaviors are a force-based approach to navigation toward, or away from, specific
points while avoiding obstacles. It was originally discussed in a presentation by Craig
Reynolds (the Boids guy) at the Game Developer's Conference (GDC) in 1999, and the
original paper discussing steering behaviors can be found online at https:/ ​/​www. ​red3d.
com/​cwr/​steer/​gdc99/ ​. Unlike pathfinding algorithms such as the A* or Dijkstra's
algorithms, steering behaviors are tactical in nature. They involve a goal position and forces
drawing the autonomous agent toward its goal, while simultaneously pushing the agent
away from obstacles you would like it to avoid. In the case of our game, the enemy
spaceship is our autonomous agent that will be using the steering behaviors. It will be in
pursuit of the player spaceship while avoiding obstacles including asteroids, projectiles,
and the star in the center of the gameplay area. We will be discussing several steering
behaviors in detail in the next few sections.

https://www.red3d.com/cwr/steer/gdc99/
https://www.red3d.com/cwr/steer/gdc99/
https://www.red3d.com/cwr/steer/gdc99/
https://www.red3d.com/cwr/steer/gdc99/
https://www.red3d.com/cwr/steer/gdc99/
https://www.red3d.com/cwr/steer/gdc99/
https://www.red3d.com/cwr/steer/gdc99/
https://www.red3d.com/cwr/steer/gdc99/
https://www.red3d.com/cwr/steer/gdc99/
https://www.red3d.com/cwr/steer/gdc99/
https://www.red3d.com/cwr/steer/gdc99/
https://www.red3d.com/cwr/steer/gdc99/
https://www.red3d.com/cwr/steer/gdc99/
https://www.red3d.com/cwr/steer/gdc99/
https://www.red3d.com/cwr/steer/gdc99/

AI and Steering Behaviors Chapter 10

[319]

The seek behavior
The seek steering behavior is a force that points the agent (the enemy ship) at the desired
target and moves the agent in the direction of that target. This behavior attempts to hit a
maximum velocity and reach its target in the minimum amount of time. The seek behavior
assumes that the position it is seeking is static and is not subject to change over time. This
diagram shows what the seek behavior looks like:

The seek behavior

The flee behavior
Flee is a steering behavior that is the opposite of seek behavior. This behavior takes a
position or game object and attempts to get as far away from it as possible.

Fleeing is the behavior you demonstrate when chased by a bear. Your
only goal is to put as much distance between you and the current location
of that bear as you can. So, the next time a bear chases you, stop for a
moment and think, "Wow, my brain is currently implementing a version of the
autonomous agent steering behavior known as flee." Or you could keep
running. The choice is yours. Take a look at the next diagram:

AI and Steering Behaviors Chapter 10

[320]

An artist's rendering of a bear eating the reader

You can program the flee behavior by negating the direction of the seek behavior. In other
words, if the seek behavior produces a direction vector force of 1,1, the flee steering
behavior would produce a direction vector force of -1,-1. This diagram depicts flee
behavior:

The flee behavior

AI and Steering Behaviors Chapter 10

[321]

The arrival behavior
The problem with the seek steering behavior is that it won't be satisfied until the agent
reaches its target position. The other problem is that because it tries to reach that position at
maximum speed, it will almost always overshoot it, resulting in oscillation around the
desired destination. The arrival steering behavior allows the seek behavior to end
gracefully by beginning to decelerate when it is in an arrival range of the target. As long as
the target destination is within the desired range, the arrival behavior will reduce
movement toward the seek position. The following diagram depicts the arrival behavior:

The arrival behavior

The pursuit behavior
We build the pursuit behavior on top of the seek behavior. Where the seek behavior is
looking to reach a static point, the pursuit behavior assumes that the target is moving.
Because our agent (the enemy ship) wishes to track down and destroy the player, which is
usually moving, we will be using the pursuit steering behavior. The pursuit behavior looks
at the velocity of the target. Instead of heading directly for the target's current position, it
attempts to locate an intercept point where it predicts the target will be. Seek reminds me a
little of a children's soccer team. All the kids run to where the ball is, not where the ball will
be. Because of this, everyone on the soccer field runs as one large unit up and down the
field. Someday, they will grow up and incorporate the pursuit steering behavior into their
soccer strategy.

AI and Steering Behaviors Chapter 10

[322]

The next diagram depicts the pursuit behavior:

The pursuit behavior

The evade behavior
Evade is to pursuit as flee is to seek. Like pursuit, the evade steering behavior is attempting
to determine where the obstacle you are avoiding will be, and moves as far away from that
point as possible. In other words, it takes the same point we found in the pursuit behavior
and then runs away from that point. The next diagram depicts the evade behavior:

The evade behavior

AI and Steering Behaviors Chapter 10

[323]

Obstacle avoidance
Obstacle avoidance differs from the flee and evade behaviors in that an obstacle may
potentially be in the path of our agent as it attempts to seek out a new location. Flee and
evade cause us to try to move as far away as possible from the location of the object or the
position we are fleeing, whereas obstacle avoidance is more about avoiding a collision with
an obstacle on the way to a target. In the case of our game, obstacles to be avoided include
asteroids, projectiles, and the star in the center of the game screen. Obstacle avoidance
usually involves only seeking to avoid the most threatening (nearest) obstacle. Our agent
has a given lookahead distance that looks in the direction it is moving. If a line between its
current position and the maximum lookahead in the direction it is moving collides with an
object, obstacle avoidance requires we adjust our direction. The area we avoid should be
larger than the collision detection area for the obstacle to give us a buffer to avoid,
especially because the asteroids and projectiles are moving in the game.

The next diagram depicts obstacle avoidance:

Obstacle avoidance

AI and Steering Behaviors Chapter 10

[324]

The wander behavior
Wander is a state in which the agent is moving somewhat randomly around the game
screen. Causing the direction of the enemy spaceship to rotate every frame randomly
would result in very erratic behavior. Instead, there should be a random number of
milliseconds (200-2,000) where the spaceship maintains its current direction. When the ship
has gone the random number of milliseconds, it should randomly choose to turn left or turn
right, but should have a biased chance of turning in the same direction it did the previous
time, with that bias decreasing each time it chooses the same direction after the initial
choice. That will give the wandering behavior a little more consistency and appear a little
less jittery.

See how the wander behavior chooses a point at random and moves toward it:

Demonstrating the wander behavior

AI and Steering Behaviors Chapter 10

[325]

Combining forces
Our earlier discussion of the reader using the flee behavior to escape a bear was
oversimplified. It assumes you are fleeing that bear in a large open field. If you are running
from a bear in the woods, you will both need to avoid running into the trees and get
yourself as far away from that bear as you can. You have to blend these two activities
seamlessly, or get eaten by that bear. If we want the enemy ship to pursue or flee from the
player ship, and avoid obstacles at the same time, we are going to need to combine steering
forces. The highest priority always has to be avoiding obstacles. If you run into a tree while
fleeing that bear, he's still going to end up eating you. The general strategy our steering
behavior will implement is finding a line-of-sight vector with the player ship. There are
several opportunities we have to find a line of sight, because of the way our game level
wraps around on itself. If that line of sight is longer than a chosen distance, we will wander
until our distance is short enough that we can pursue the player while shooting at him.
While we are wandering, we will want to combine any wandering force with forces that
help the enemy ship avoid hitting asteroids or the star. Once we are in pursuit, we will
want to continue to avoid obstacles. There will be a large arrival area where our ship will
slow to a stop and fire in the direction of the player. Once the player closes in a specific
range, our ship will flee.

Modifying game.hpp
Before we get too far into our new code, I want to make some quick changes to the
game.hpp file to add some functionality we will be using later in this chapter. The first
thing I want to add near the top of the game.hpp file is a few macros that will let us quickly
convert from an angle in degrees to radians, and also from radians to degrees. I find myself
doing this a lot when using SDL because SDL, for some reason, wants rotations in degrees,
and every other library out there uses radians. So, let's go ahead and add the following two
lines of code somewhere near the top of the game.hpp file:

#define DEG_TO_RAD(deg) ((float)deg/180.0)*3.14159
#define RAD_TO_DEG(rad) ((float)rad*180.0)/3.14159

We will be changing the size of our canvas from 320 x 200 to 800 x 600. To make this easy to
switch later, let's go ahead and define a few macros we will use for the canvas width and
height and put those somewhere near the top of the game.hpp file:

#define CANVAS_WIDTH 800
#define CANVAS_HEIGHT 600

AI and Steering Behaviors Chapter 10

[326]

The rand() function, used in C and C++ to get a random number, can only be used to
return an integer. I will be adding a function to get a random number that falls between
minimum and maximum floating-point values, so I will need to add an external reference
to that function to our game.hpp file:

extern float get_random_float(float min, float max);

We are also starting to need circular references in our classes. The FiniteStateMachine
class will need a reference to the EnemyShip class, and the EnemyShip class will need a
reference to the FiniteStateMachine class. Unfortunately, we need to define one of these
classes before the other. In the past, we have been able to define our classes in a specific
order to avoid this problem, but now we will need a group of class declarations before any
of our class definitions. That will allow the compiler to know that a class will be defined
before the definition. Add this block of class declarations somewhere near the top of the
game.hpp file:

class Ship;
class Particle;
class Emitter;
class Collider;
class Asteroid;
class Star;
class PlayerShip;
class EnemyShip;
class Projectile;
class ProjectilePool;
class FiniteStateMachine;

We will add an enumeration to keep track of our FSM states. As I mentioned earlier, there
are four states in our FSM: APPROACH, ATTACK, FLEE, and WANDER. We will define these
states in an enumeration called FSM_STATE:

enum FSM_STATE {
 APPROACH = 0,
 ATTACK = 1,
 FLEE = 2,
 WANDER = 3
};

AI and Steering Behaviors Chapter 10

[327]

One of the first classes we defined in game.hpp was the Point class. This class has x and y
attributes and a few useful functions such as Rotate. We are going to need to greatly
expand the use of this class and what it can do. So much so, that calling it point is no longer
accurate. I would prefer to call this class vector, because we will be using it for vector
mathematics from now on. The only problem I have with this name is that it might be
confusing because we are using the std::vector to handle array-like data in our code.
Because of this, I have decided we will call this class Vector2D. We will be greatly
expanding the functionality of this class to include a function that will normalize the vector
(that is, change its magnitude to 1). We need two functions that will determine the
magnitude and the square magnitude of the vector. We will need a function that will
project the vector on to another vector (to help us in the line-of-sight collision detection).
We will need to be able to find the dot product of two vectors. We will also need to be able
to find the rotation of a given vector. In addition to these new functions, we will overload
operators on our vectors to allow us to add vectors, subtract vectors, and multiply and
divide vectors by a scalar value.

Go ahead and delete the Point class definition, and replace that code with the new
Vector2D class definition:

class Vector2D {
 public:
 float x;
 float y;

 Vector2D();
 Vector2D(float X, float Y);

 void Rotate(float radians);
 void Normalize();
 float MagSQ();
 float Magnitude();
 Vector2D Project(Vector2D &onto);
 float Dot(Vector2D &vec);
 float FindRotation();

 Vector2D operator=(const Vector2D &vec);
 Vector2D operator*(const float &scalar);
 void operator+=(const Vector2D &vec);
 void operator-=(const Vector2D &vec);
 void operator*=(const float &scalar);
 void operator/=(const float &scalar);
 };

AI and Steering Behaviors Chapter 10

[328]

Our new collision detection will also need a Range class. A range represents a range of
values between a minimum and a maximum. We can add two ranges together. We can find
the overlap between the two ranges. We can extend a range by a given scalar value, or we
can clamp a value to fall inside a given range. Here is what the new Range class definition
looks like:

class Range {
 public:
 float min;
 float max;

 Range();
 Range(float min_val, float max_val);

 void operator+=(const Range& range);
 Range operator+(const Range& range);
 Range operator=(const Range& range);

 bool Overlap(Range &other);
 void Sort();
 void Extend(float ex);
 float Clamp(float value);
 };

If you scroll down to the Collider class, we will be adding a few new functions and a few
new attributes. I want to use our Collider class to support new steering behaviors. So, we
will need some steering-specific attributes:

float m_SteeringRadius;
float m_SteeringRadiusSQ;

m_SteeringRadius is a new attribute that is a multiple of m_Radius. For steering
purposes, we want to make sure that the sizes of the objects we want to avoid is smaller
than the object's collision area. That creates an additional margin for our steering behavior
that will help us to avoid these objects. The m_SteeringRadiusSQ attribute is the square of
the steering radius. That will keep us from having to square the steering radius for collision
checks over and over again.

We will also need to add the declarations of the following functions:

bool SteeringLineTest(Vector2D &p1, Vector2D &p2);
bool SteeringRectTest(Vector2D &start_point, Vector2D &end_point);
void WrapPosition();

AI and Steering Behaviors Chapter 10

[329]

The SteeringLineTest and SteeringRecTest functions will differ from a real line and
rectangle collision test. The steering rectangle test (SterringRectTest) will be used to
limit the number of objects we must test for object avoidance purposes. We only want our
AI to worry about objects that are within a box around the enemy ship that is 200 x 200
pixels. That will be useful if we have a large number of objects to test. To keep this test fast,
we will be checking against the objects in that box as if they are points and will not take the
object's radius into account. The SteeringLineTest function will be testing to see
whether the steering radius of this collider hits a line defined by two points in the test.

In our game, we have not added a hit point system. A single collision with an asteroid or
projectile results in instant death. That makes the game really short. To increase the game
time, we will be adding shields to our ship. These shields will cause the player or enemy to
be invulnerable for as long as the shields are active. While you use the shields, they will
slowly turn from green to red, and at some point, they will stop working. That will all
depend on the amount of time that you have used the shields during the given game to
encourage the player to use the shields only when needed. Here is what the Shield class
definition will look like:

class Shield : public Collider {
 public:
 bool m_Active;
 int m_ttl;
 int m_NextFrame;
 Uint32 m_CurrentFrame;
 Ship* m_Ship;
 SDL_Texture *m_SpriteTexture;

 SDL_Rect m_src = {.x = 0, .y = 0, .w = 32, .h = 32 };
 SDL_Rect m_dest = {.x = 0, .y = 0, .w = 32, .h = 32 };

 Shield(Ship* ship, const char* sprite_file);

 void Move();
 void Render();
 bool Activate();
 void Deactivate();
};

AI and Steering Behaviors Chapter 10

[330]

After the Shield class definition, we will need to add a class definition for our Asteroid
class. Unlike the Atari game Asteroids, we cannot destroy these asteroids by shooting them.
They are meant to be obstacles, but we will (for the moment) allow the asteroids to be
destroyed if the player crashes into them with their shields active. They will move slowly
around the game screen and provide obstacles for the player and the enemy AI to navigate
during gameplay. Here is the code:

class Asteroid : public Collider {
 public:
 SDL_Texture *m_SpriteTexture;
 SDL_Rect m_src = {.x = 0, .y = 0, .w = 16, .h = 16 };
 SDL_Rect m_dest = {.x = 0, .y = 0, .w = 0, .h = 0 };

 bool m_Alive;
 Uint32 m_CurrentFrame = 0;
 int m_NextFrameTime;
 float m_Rotation;

 Vector2D m_Direction;
 Vector2D m_Velocity;

 Emitter* m_Explode;
 Emitter* m_Chunks;

 Asteroid(float x, float y,
 float velocity,
 float rotation);

 void Move();
 void Render();
 void Explode();
};

We will also be adding a big star to the center of the gameplay area. That is similar to the
black hole that was in the center of the game Spacewar!, which we are loosely basing our
game on. This star will eventually provide gravitational attraction to make the game a bit
more challenging. We will be animating a star image and adding some solar flares using
particle emitters:

class Star : public Collider {
 public:
 SDL_Texture *m_SpriteTexture;
 SDL_Rect m_src = {.x = 0, .y = 0, .w = 64, .h = 64 };
 SDL_Rect m_dest = {.x = 0, .y = 0, .w = 64, .h = 64 };

 std::vector<Emitter*> m_FlareList;
 Uint32 m_CurrentFrame = 0;

AI and Steering Behaviors Chapter 10

[331]

 int m_NextFrameTime;

 Star();

 void Move();
 void Render();
};

Now we can make a few modifications to our Ship class. Here is what it will look like once
we finish:

class Ship : public Collider {
 public:
 const float c_Acceleration = 10.0f;
 const float c_MaxVelocity = 50.0f;
 const int c_AliveTime = 2000;
 const Uint32 c_MinLaunchTime = 300;
 const int c_Width = 32;
 const int c_Height = 32;

 bool m_Accelerating = false;
 Uint32 m_LastLaunchTime;
 SDL_Texture *m_SpriteTexture;
 SDL_Rect src = {.x = 0, .y = 0, .w = 32, .h = 32 };

 Emitter* m_Explode;
 Emitter* m_Exhaust;
 Shield* m_Shield;
 std::vector<Collider*> m_Colliders;

 bool m_Alive = true;
 Uint32 m_CurrentFrame = 0;
 int m_NextFrameTime;
 float m_Rotation;

 Vector2D m_Direction;
 Vector2D m_Velocity;

 void RotateLeft();
 void RotateRight();
 void Accelerate();
 void Decelerate();
 void CapVelocity();
 void Shoot();
 virtual void Move() = 0;
 Ship();
 void Render();

AI and Steering Behaviors Chapter 10

[332]

 bool CompoundHitTest(Collider* collider);
};

The first thing we will do is add the m_Shield attribute, which is a pointer to a Shield
object:

Shield* m_Shield;

After that, we use separate variables for the x direction and y direction, as well as different
variables for the x velocity and y velocity, like this:

double m_DX; // x-direction variable
double m_DY; // y-direction variable
double m_VX; // x-velocity variable
double m_VY; // y-velocity variable

Let's remove all of that code and swap it for some Vector2D objects, representing the
direction vector and the velocity vector, like this:

Vector2D m_Direction;
Vector2D m_Velocity;

Finally, to prevent code duplication between our enemy ship and our player ship, we will
add a Shoot() function that will fire a projectile from the ship:

void Shoot();

The next class we need to modify is our EnemyShip class. We need to add a string with the
filename of our Shield sprite. We also need to remove our old AIStub() function and
replace it with a pointer to our FSM. Here is what the new version of the EnemyShip class
looks like:

class EnemyShip: public Ship {
 public:
 const char* c_SpriteFile = "/sprites/BirdOfAngerExp.png";
 const char* c_ShieldSpriteFile = "/sprites/shield-bird.png";
 const int c_AIStateTime = 2000;
 int m_AIStateTTL;
 FiniteStateMachine* m_FSM;

 EnemyShip();
 void Move();
};

AI and Steering Behaviors Chapter 10

[333]

A significant new class we will be adding is the FiniteStateMachine class. This class will
be doing all of the AI's heavy lifting. Here is the class definition that you must add to
game.hpp:

class FiniteStateMachine {
 public:
 const float c_AttackDistSq = 40000.0;
 const float c_FleeDistSq = 2500.0;
 const int c_MinRandomTurnMS = 100;
 const int c_RandTurnMS = 3000;
 const int c_ShieldDist = 20;
 const int c_AvoidDist = 80;
 const int c_StarAvoidDistSQ = 20000;
 const int c_ObstacleAvoidForce = 150;
 const int c_StarAvoidForce = 120;

 FSM_STATE m_CurrentState;
 EnemyShip* m_Ship;
 bool m_HasLOS;
 bool m_LastTurnLeft;
 int m_SameTurnPct;
 int m_NextTurnMS;
 int m_CheckCycle;
 float m_DesiredRotation;
 float m_PlayerDistSQ;

 FiniteStateMachine(EnemyShip* ship);

 void SeekState(Vector2D &seek_point);
 void FleeState(Vector2D &flee_point);
 void WanderState();
 void AttackState();
 void AvoidForce();
 bool ShieldCheck();
 bool LOSCheck();
 Vector2D PredictPosition();
 float GetPlayerDistSq();
 void Move();
};

AI and Steering Behaviors Chapter 10

[334]

At the top of this class definition are nine constants:

 const float c_AttackDistSq = 40000.0;
 const float c_FleeDistSq = 2500.0;
 const int c_MinRandomTurnMS = 100;
 const int c_RandTurnMS = 3000;
 const int c_ShieldDist = 20;
 const int c_AvoidDist = 80;
 const int c_StarAvoidDistSQ = 20000;
 const int c_ObstacleAvoidForce = 150;
 const int c_StarAvoidForce = 120;

The first two constants, c_AttackDistSq and c_FleeDistSq, are the values used by the
FSM to determine whether it will change states into either the ATTACK or FLEE
states; c_MinRandomTurnMS and c_RandTurnMS are both constants used by the WANDER
state to determine when the AI will next decide to change directions randomly.
The c_ShieldDist constant is the distance at which an obstacle will cause the AI to turn
on its shields. The c_AvoidDist constant gives us the range at which an AI makes
corrective adjustments to avoid an object. The c_StarAvoidDistSQ function is the
distance at which the AI will make course adjustments to avoid the star in the center of the
play area. The c_ObstacleAvoidForce constant is a steering force added to the velocity of
an object to help it avoid obstacles, and c_StarAvoidForce is a similar force used to avoid
the star.

After the constants, we have a block of attributes that are used by the FSM to make state-
based decisions:

 FSM_STATE m_CurrentState;
 EnemyShip* m_Ship;
 bool m_HasLOS;
 bool m_LastTurnLeft;
 int m_SameTurnPct;
 int m_NextTurnMS;
 int m_CheckCycle;
 float m_DesiredRotation;
 float m_PlayerDistSQ;

AI and Steering Behaviors Chapter 10

[335]

The m_CurrentState attribute holds the current state of our FSM. The m_Ship
attribute contains a pointer to the ship. Right now, this is always the single enemy ship that
is in our game, but in the future, you may want to add multiple enemy ships.
The m_HasLOS attribute is a boolean that keeps track of whether our ship currently has an
unobstructed line of sight with the player. The m_LastTurnLeft attribute is a boolean
that keeps track of the direction, in which the ship last turned while in the WANDER state.
The m_SameTurnPct attribute is the percentage chance that the ship will continue turning
in the same direction while in the WANDER state. The m_NextTurnMS attribute is the number
of milliseconds a ship in the WANDER state will continue before making a directional
heading change. The m_CheckCycle variable is used to break up the AI into performing
different checks during different frame rendering cycles. If you have your AI do all the
work between each frame render each time, you could potentially bog the system down. It
is usually better practice to break the AI into multiple parts and only do part of the logic
with each frame render. The m_DesiredRotation attribute is the desired heading of the
AI, and, finally, m_PlayerDistSQ is the squared distance between the enemy ship and the
player ship.

We need to modify the Projectile class to use a Vector2D to keep track of the velocity
instead of two floating-point variables, m_VX and m_VY. Here is the new version of the
Projectile class after the modifications:

class Projectile: public Collider {
 public:
 const char* c_SpriteFile = "sprites/ProjectileExp.png";
 const int c_Width = 16;
 const int c_Height = 16;
 const double velocity = 6.0;
 const double alive_time = 2000;

 SDL_Texture *m_SpriteTexture;
 SDL_Rect src = {.x = 0, .y = 0, .w = 16, .h = 16 };

 Uint32 m_CurrentFrame = 0;
 int m_NextFrameTime;
 bool m_Active;
 float m_TTL;
 float m_VX;
 float m_VY;

 Projectile();
 void Move();
 void Render();
 void Launch(double x, double y, double dx, double dy);
};

AI and Steering Behaviors Chapter 10

[336]

At the end of the game.hpp file, we should add a few external references to our new list of
asteroids, and the star that will be going in the center of the gameplay area:

extern std::vector<Asteroid*> asteroid_list;
extern Star* star;

Now that we have taken care of the modifications we need to make to our game.hpp file,
let's get into the obstacles we are adding.

Adding obstacles to our game
Right now, we do not have anything in our game for an AI to steer around. We need to add
some obstacles that can get in the way of our enemy ship. We want our enemy ship to do
what it can to avoid these obstacles while attempting to approach and attack our player's
spaceship. The first thing we will add is a big star right in the middle of our gameplay area.
We can animate this star and add some nice particle effects for the star's corona. In the last
section, we created the class definition of this star in the game.hpp file and it looked like
this:

class Star : public Collider {
 public:
 SDL_Texture *m_SpriteTexture;
 SDL_Rect m_src = {.x = 0, .y = 0, .w = 64, .h = 64 };
 SDL_Rect m_dest = {.x = 0, .y = 0, .w = 64, .h = 64 };

 std::vector<Emitter*> m_FlareList;

 Uint32 m_CurrentFrame = 0;
 int m_NextFrameTime;

 Star();

 void Move();
 void Render();
};

We will need to create a new file called star.cpp to accompany this class definition. In it,
we should define our constructor and the Move and Render functions. As with all of our
CPP files, the first thing we do is include the game.hpp file:

#include "game.hpp"

AI and Steering Behaviors Chapter 10

[337]

After that, we have a few #define directives that we use to define the sprite files we will
be using to render our star and the flare particle systems:

#define STAR_SPRITE_FILE "/sprites/rotating-star.png"
#define FLARE_FILE (char*)"/sprites/flare.png"

The constructor is fairly long, but a lot of it should look pretty familiar:

Star::Star() : Collider(32.0) {
 SDL_Surface *temp_surface = IMG_Load(STAR_SPRITE_FILE);

 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;
 }
 else {
 printf("success creating enemy ship surface\n");
 }
 m_SpriteTexture = SDL_CreateTextureFromSurface(renderer,
 temp_surface);

 if(!m_SpriteTexture) {
 printf("failed to create texture: %s\n", IMG_GetError());
 return;
 }
 else {
 printf("success creating enemy ship texture\n");
 }
 SDL_FreeSurface(temp_surface);

 m_Radius = 36;

 m_Position.x = CANVAS_WIDTH / 2;
 m_Position.y = CANVAS_HEIGHT / 2;

 m_dest.x = m_Position.x - m_Radius / 2;
 m_dest.y = m_Position.y - m_Radius / 2;

 m_FlareList.push_back(new
 Emitter(FLARE_FILE,100,160,220,1500,0.05,true,30,40, 1,
 m_Position.x+8, m_Position.y+8, 10,0.1, 0.2,0.5, 1.0,0xffffff,
 0xffffff, 0.1, 50,true, true, 4409, 1));

 m_FlareList.push_back(new
 Emitter(FLARE_FILE,100,220,280,1500,0.05,true,30,40, 1, m_Position.x+8,
 m_Position.y+8,10,0.1,0.2,0.5,1.0,0xffffff, 0xffffff, 0.0,
 50,true,true,3571, 1));

AI and Steering Behaviors Chapter 10

[338]

 m_FlareList.push_back(new
 Emitter(FLARE_FILE,100,280,360,1500,0.05,true,30,40, 1,
 m_Position.x+8, m_Position.y+8, 10, 0.1, 0.2, 0.5, 1.0, 0xffffff,
 0xffffff, 0.2, 50, true, true, 3989, 1));

 m_FlareList.push_back(new
 Emitter(FLARE_FILE,100,0,60,1500,0.05,true,30,40, 1, m_Position.x+8,
 m_Position.y+8, 10, 0.1, 0.2, 0.5, 1.0, 0xffffff, 0xffffff, 0.1, 50,
 true, true, 3371, 1));

 m_FlareList.push_back(new
 Emitter(FLARE_FILE,100,60,100,1500,0.05,true,30,40, 1, m_Position.x+8,
 m_Position.y+8, 10, 0.1, 0.2, 0.5, 1.0, 0xffffff, 0xffffff, 0.3, 50,
 true, true, 4637, 1));
}

This constructor starts by inheriting the Collider constructor passing it a radius of 32:

Star::Star() : Collider(32.0) {

It then creates a sprite texture to use when rendering the star. This part of the code should
look pretty familiar:

SDL_Surface *temp_surface = IMG_Load(STAR_SPRITE_FILE);

if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;
}
else {
 printf("success creating enemy ship surface\n");
}
m_SpriteTexture = SDL_CreateTextureFromSurface(renderer, temp_surface);
if(!m_SpriteTexture) {
 printf("failed to create texture: %s\n", IMG_GetError());
 return;
}
else {
 printf("success creating enemy ship texture\n");
}
SDL_FreeSurface(temp_surface);

AI and Steering Behaviors Chapter 10

[339]

After setting up the sprite texture, the constructor sets some of the attributes, including
radius and position:

m_Radius = 36;
m_Position.x = CANVAS_WIDTH / 2;
m_Position.y = CANVAS_HEIGHT / 2;
m_dest.x = m_Position.x - m_Radius / 2;
m_dest.y = m_Position.y - m_Radius / 2;

Finally, it adds emitters to the m_FlareList vector. These will be some solar flare particle
systems. I used the particle system configuration tool to come up with the values we are
creating in these emitters. You can play with the values if you like, but I felt that these
values created a nice-looking flare effect:

m_FlareList.push_back(new
Emitter(FLARE_FILE,100,160,220,1500,0.05,true,30,40, 1, m_Position.x+8,
m_Position.y+8, 10,0.1, 0.2,0.5, 1.0,0xffffff, 0xffffff, 0.1, 50,true,
true,4409, 1));

m_FlareList.push_back(new
Emitter(FLARE_FILE,100,220,280,1500,0.05,true,30,40, 1, m_Position.x+8,
m_Position.y+8,10,0.1,0.2,0.5,1.0,0xffffff, 0xffffff, 0.0,
50,true,true,3571, 1));

m_FlareList.push_back(new
Emitter(FLARE_FILE,100,280,360,1500,0.05,true,30,40, 1, m_Position.x+8,
m_Position.y+8, 10, 0.1, 0.2, 0.5, 1.0, 0xffffff, 0xffffff, 0.2, 50, true,
true, 3989, 1));

m_FlareList.push_back(new Emitter(FLARE_FILE,100,0,60,1500,0.05,true,30,40,
1, m_Position.x+8, m_Position.y+8, 10, 0.1, 0.2, 0.5, 1.0, 0xffffff,
0xffffff, 0.1, 50, true, true, 3371, 1));

m_FlareList.push_back(new
Emitter(FLARE_FILE,100,60,100,1500,0.05,true,30,40, 1, m_Position.x+8,
m_Position.y+8, 10, 0.1, 0.2, 0.5, 1.0, 0xffffff, 0xffffff, 0.3, 50, true,
true, 4637, 1));

AI and Steering Behaviors Chapter 10

[340]

The star's Move function is pretty simple. It cycles through the eight frames of the star's
animation sequence:

void Star::Move() {
 m_NextFrameTime -= diff_time;
 if(m_NextFrameTime <= 0) {
 ++m_CurrentFrame;
 m_NextFrameTime = ms_per_frame;
 if(m_CurrentFrame >= 8) {
 m_CurrentFrame = 0;
 }
 }
}

The star's Render function is a little bit more complicated because it needs to loop over the
flare emitters, and move them before it renders the star's sprite texture:

void Star::Render() {
 Emitter* flare;
 std::vector<Emitter*>::iterator it;

 for(it = m_FlareList.begin(); it != m_FlareList.end(); it++) {
 flare = *it;
 flare->Move();
 }
 m_src.x = m_dest.w * m_CurrentFrame;

 SDL_RenderCopy(renderer, m_SpriteTexture,
 &m_src, &m_dest);
}

Next, we need to define the asteroid.cpp file. That will hold the function definitions for
our Asteroid class. Here is our class definition for Asteroid in the games.hpp file:

class Asteroid : public Collider {
 public:
 SDL_Texture *m_SpriteTexture;
 SDL_Rect m_src = {.x = 0, .y = 0, .w = 16, .h = 16 };
 SDL_Rect m_dest = {.x = 0, .y = 0, .w = 0, .h = 0 };

 bool m_Alive;
 Uint32 m_CurrentFrame = 0;
 int m_NextFrameTime;
 float m_Rotation;
 Vector2D m_Direction;
 Vector2D m_Velocity;

 Emitter* m_Explode;

AI and Steering Behaviors Chapter 10

[341]

 Emitter* m_Chunks;

 Asteroid(float x, float y,
 float velocity,
 float rotation);

 void Move();
 void Render();
 void Explode();
};

Inside our asteroid.cpp file, we will need to define the Asteroid constructor, the Move
function, the Render function, and the Explode function. At the top of the asteroid.cpp
file, we will need to #include the game.hpp file and define the location of our asteroid
sprite file in the virtual filesystem. Here are what those first few lines of code look like:

#include "game.hpp"
#define ASTEROID_SPRITE_FILE (char*)"/sprites/asteroid.png"

The first function we will define is our constructor. Here is the constructor function in its
entirety:

Asteroid::Asteroid(float x, float y,
 float velocity,
 float rotation): Collider(8.0) {
 SDL_Surface *temp_surface = IMG_Load(ADSTEROID_SPRITE_FILE);

 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;
 }
 else {
 printf("success creating asteroid surface\n");
 }

 m_SpriteTexture = SDL_CreateTextureFromSurface(renderer, temp_surface
);

 if(!m_SpriteTexture) {
 printf("failed to create texture: %s\n", IMG_GetError());
 return;
 }
 else {
 printf("success creating asteroid texture\n");
 }
 SDL_FreeSurface(temp_surface);

 m_Explode = new Emitter((char*)"/sprites/Explode.png",

AI and Steering Behaviors Chapter 10

[342]

 100, 0, 360, // int max_particles, float min_angle, float
 max_angle,
 1000, 0.3, false, // Uint32 particle_lifetime, float acceleration,
 bool alpha_fade,
 20.0, 40.0, // float min_starting_velocity, float
 max_starting_velocity,
 10, 0, 0, 5, // Uint32 emission_rate, int x_pos, int y_pos,
 float radius,
 1.0, 2.0, // float min_start_scale, float max_start_scale,
 1.0, 2.0, // float min_end_scale, float max_end_scale,
 0xffffff, 0xffffff,
 0.01, 10, // float burst_time_pct, Uint32 burst_particles,
 false, false, // bool loop, bool align_rotation,
 800, 8); // Uint32 emit_time_ms, Uint32 animation_frames
 m_Explode->m_parent_rotation_ptr = &m_Rotation;
 m_Explode->m_parent_x_ptr = &(m_Position.x);
 m_Explode->m_parent_y_ptr = &(m_Position.y);
 m_Explode->m_active = false;

 m_Chunks = new Emitter((char*)"/sprites/small-asteroid.png",
 40, 0, 360, // int max_particles, float min_angle, float
 max_angle,
 1000, 0.05, false, // Uint32 particle_lifetime, float
 acceleration,
 bool alpha_fade,
 80.0, 150.0, // float min_starting_velocity, float
 max_starting_velocity,
 5, 0, 0, 10, // Uint32 emission_rate, int x_pos, int y_pos,
 float radius,
 2.0, 2.0, // float min_start_scale, float max_start_scale,
 0.25, 0.5, // float min_end_scale, float max_end_scale,
 0xffffff, 0xffffff,
 0.1, 10, // float burst_time_pct, Uint32 burst_particles,
 false, true, // bool loop, bool align_rotation,
 1000, 8); // Uint32 emit_time_ms, Uint32 animation_frames

 m_Chunks->m_parent_rotation_ptr = &m_Rotation;
 m_Chunks->m_parent_x_ptr = &m_Position.x;
 m_Chunks->m_parent_y_ptr = &m_Position.
 m_Chunks->m_active = false;

 m_Position.x = x;
 m_Position.y = y;

 Vector2D direction;
 direction.x = 1;
 direction.Rotate(rotation);

AI and Steering Behaviors Chapter 10

[343]

 m_Direction = direction;
 m_Velocity = m_Direction * velocity;

 m_dest.h = m_src.h = m_dest.w = m_src.w = 16;

 m_Rotation = rotation;
 m_Alive = true;
 m_CurrentFrame = 0;
 m_NextFrameTime = ms_per_frame;
}

The definition of the constructor calls the parent constructor in the Collider class, passing
in a radius for the Collider of 8.0:

Asteroid::Asteroid(float x, float y,
 float velocity,
 float rotation): Collider(8.0) {

After that, the constructor loads and initializes the sprite texture using SDL, a process we
should all be pretty familiar with by now:

SDL_Surface *temp_surface = IMG_Load(ADSTEROID_SPRITE_FILE);

if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;
}
else {
 printf("success creating asteroid surface\n");
}

m_SpriteTexture = SDL_CreateTextureFromSurface(renderer, temp_surface);

if(!m_SpriteTexture) {
 printf("failed to create texture: %s\n", IMG_GetError());
 return;
}
else {
 printf("success creating asteroid texture\n");
}

SDL_FreeSurface(temp_surface);

AI and Steering Behaviors Chapter 10

[344]

We then define our explosion emitter. This emitter will be activated if our asteroid is
destroyed:

m_Explode = new Emitter((char*)"/sprites/Explode.png",
 100, 0, 360, // int max_particles, float min_angle, float max_angle,
 1000, 0.3, false, // Uint32 particle_lifetime, float acceleration,
 bool alpha_fade,
 20.0, 40.0, // float min_starting_velocity, float
 max_starting_velocity,
 10, 0, 0, 5, // Uint32 emission_rate, int x_pos, int y_pos,
 float radius,
 1.0, 2.0, // float min_start_scale, float max_start_scale,
 1.0, 2.0, // float min_end_scale, float max_end_scale,
 0xffffff, 0xffffff,
 0.01, 10, // float burst_time_pct, Uint32 burst_particles,
 false, false, // bool loop, bool align_rotation,
 800, 8); // Uint32 emit_time_ms, Uint32 animation_frames

m_Explode->m_parent_rotation_ptr = &m_Rotation;
m_Explode->m_parent_x_ptr = &(m_Position.x);
m_Explode->m_parent_y_ptr = &(m_Position.y);
m_Explode->m_active = false;

After that, we create a second emitter that will shoot out little chunks of rock when our
asteroid is destroyed. That is meant to compliment the m_Explosion emitter, and it will
run at the same time as the asteroid explodes:

m_Chunks = new Emitter((char*)"/sprites/small-asteroid.png",
 40, 0, 360, // int max_particles, float min_angle, float max_angle,
 1000, 0.05, false, // Uint32 particle_lifetime, float acceleration,
 bool alpha_fade,
 80.0, 150.0, // float min_starting_velocity, float
 max_starting_velocity,
 5, 0, 0, 10, // Uint32 emission_rate, int x_pos, int y_pos,
 float radius,
 2.0, 2.0, // float min_start_scale, float max_start_scale,
 0.25, 0.5, // float min_end_scale, float max_end_scale,
 0xffffff, 0xffffff,
 0.1, 10, // float burst_time_pct, Uint32 burst_particles,
 false, true, // bool loop, bool align_rotation,
 1000, 8); // Uint32 emit_time_ms, Uint32 animation_frames

m_Chunks->m_parent_rotation_ptr = &m_Rotation;
m_Chunks->m_parent_x_ptr = &m_Position.x;
m_Chunks->m_parent_y_ptr = &m_Position.y;
m_Chunks->m_active = false;

AI and Steering Behaviors Chapter 10

[345]

The last several lines set the starting values for our asteroid's attributes:

m_Position.x = x;
m_Position.y = y;

Vector2D direction;
direction.x = 1;
direction.Rotate(rotation);

m_Direction = direction;
m_Velocity = m_Direction * velocity;
m_dest.h = m_src.h = m_dest.w = m_src.w = 16;

m_Rotation = rotation;
m_Alive = true;
m_CurrentFrame = 0;
m_NextFrameTime = ms_per_frame;

The next function we will be defining is the Move function. Here is what it looks like:

void Asteroid::Move() {
m_NextFrameTime -= diff_time;
if(m_NextFrameTime <= 0) {
 m_NextFrameTime = ms_per_frame;
 m_CurrentFrame++;
 if(m_CurrentFrame >= 8) {
 m_CurrentFrame = 0;
 }
}
m_Position += m_Velocity * delta_time;
WrapPosition();
}

The first batch of code dealing with m_NextFrameTime and m_CurrentFrame simply
alternates between the sprite frames based on the amount of time that has passed:

m_NextFrameTime -= diff_time;
if(m_NextFrameTime <= 0) {
 m_NextFrameTime = ms_per_frame;
 m_CurrentFrame++;

 if(m_CurrentFrame >= 8) {
 m_CurrentFrame = 0;
 }
}

AI and Steering Behaviors Chapter 10

[346]

After that, we update the position based on the time delta and current velocity:

m_Position += m_Velocity * delta_time;

Finally, the WrapPosition function is called. This function moves our asteroid back to the
right side of the screen if it went off the screen to the left, and moves it to the top if it goes
off the bottom. Whenever an asteroid moves off the screen in a given direction, its position
will be wrapped around to the other side of the gameplay area.

After the Move function, we define the Asteroid Render function. The complete function
is shown here:

void Asteroid::Render() {
 m_Explode->Move();
 m_Chunks->Move();
 if(m_Alive == false) {
 return;
 }
 m_src.x = m_dest.w * m_CurrentFrame;
 m_dest.x = m_Position.x + m_Radius / 2;
 m_dest.y = m_Position.y + m_Radius / 2;
 SDL_RenderCopyEx(renderer, m_SpriteTexture,
 &m_src, &m_dest,
 RAD_TO_DEG(m_Rotation), NULL, SDL_FLIP_NONE);
}

The first two lines move the explosion emitter and the chunks emitter. If the asteroid has
not been destroyed, these functions will not do anything. If the asteroid has been destroyed,
the functions will run the particle emitter. These emitters do not loop, so when their
emission time is up, they will stop:

m_Explode->Move();
m_Chunks->Move();

After that, we check to see whether the asteroid is alive, and if it is not, we exit this
function. The reason we do this after moving our emitters is that we must continue to run
the emitter after an asteroid is destroyed:

if(m_Alive == false) {
 return;
}

AI and Steering Behaviors Chapter 10

[347]

The final thing we do in this function is to render our asteroid sprite texture, a process that
should look pretty familiar by now:

m_src.x = m_dest.w * m_CurrentFrame;
m_dest.x = m_Position.x + m_Radius / 2;
m_dest.y = m_Position.y + m_Radius / 2;
SDL_RenderCopyEx(renderer, m_SpriteTexture,
 &m_src, &m_dest,
 RAD_TO_DEG(m_Rotation), NULL, SDL_FLIP_NONE);

The last function in our asteroid.cpp file is the Explode function. This function will run
when an asteroid is destroyed. The function will run our two emitters, which were
designed to create an explosion effect. It will also set the asteroid's alive flag to false. Here
is the code:

void Asteroid::Explode() {
 m_Explode->Run();
 m_Chunks->Run();
 m_Alive = false;
}

Now that we have defined our game obstacles, let's look into what it will take to create
some shields for our spaceships.

Adding force fields
Currently, in our game, our spaceships are destroyed with a single collision. This ends up
creating a game that is over very quickly. It would be nice to have a force field to prevent
the ship's destruction when a collision is about to occur. This will also give our AI
something else it can do in its bag of tricks. When the shields are up, there will be a little
force-field animation surrounding the spaceship that is using it. There is a time limit to
shield use. That will prevent the player or the AI from keeping the shield up for the entire
game. While the shield is active, the color of the shields will transition from green to red.
The closer the color gets to red, the closer the shields are to running out of power. Every
time the shields get hit, the player or AI's shields will have additional time taken off them.
We have already created the class definition inside of the game.hpp file. Here is what it
looks like:

class Shield : public Collider {
 public:
 bool m_Active;
 int m_ttl;
 int m_NextFrame;
 Uint32 m_CurrentFrame;

AI and Steering Behaviors Chapter 10

[348]

 Ship* m_Ship;
 SDL_Texture *m_SpriteTexture;

 SDL_Rect m_src = {.x = 0, .y = 0, .w = 32, .h = 32 };
 SDL_Rect m_dest = {.x = 0, .y = 0, .w = 32, .h = 32 };

 Shield(Ship* ship, const char* sprite_file);

 void Move();
 void Render();
 bool Activate();
 void Deactivate();
};

To accompany this class definition, we will need a shield.cpp file, where we can define
all of the functions used by this class. The first function we will define inside our
shield.cpp file is the Shield constructor function:

Shield::Shield(Ship* ship, const char* sprite_string) : Collider(12.0) {
 m_Active = false;
 m_ttl = 25500;
 m_Ship = ship;
 m_CurrentFrame = 0;
 m_NextFrame = ms_per_frame;
 SDL_Surface *temp_surface = IMG_Load(sprite_string);

 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;
 }

 m_SpriteTexture = SDL_CreateTextureFromSurface(renderer,
 temp_surface);

 if(!m_SpriteTexture) {
 printf("failed to create texture: %s\n", IMG_GetError());
 return;
 }
 SDL_FreeSurface(temp_surface);
}

AI and Steering Behaviors Chapter 10

[349]

The Shield constructor function will call the Collider constructor function, with a radius
of 12.0. That is a larger radius than the ship's radius. We will want this Collider to be hit
instead of the ship, if the shields are active. The first block of code in this constructor
function sets the starting values for the attributes of this class:

m_Active = false;
m_ttl = 25500;
m_Ship = ship;
m_CurrentFrame = 0;
m_NextFrame = ms_per_frame;

Notice that we set m_ttl to 25500. That is the time you can use the shield in milliseconds.
That amounts to 25.5 seconds. I wanted it to be a multiple of 255, so that the green color will
transition from 255 to 0, based on the time left.

Conversely, the red color will transition from 0 to 255, also based on the time left. After
that, we create the shield's sprite texture in the standard way:

SDL_Surface *temp_surface = IMG_Load(sprite_string);

if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;
}

m_SpriteTexture = SDL_CreateTextureFromSurface(renderer, temp_surface);

if(!m_SpriteTexture) {
 printf("failed to create texture: %s\n", IMG_GetError());
return;
}

SDL_FreeSurface(temp_surface);

After the constructor, we need to define our Move function:

void Shield::Move() {
 if(m_Active) {
 m_NextFrame -= diff_time;
 m_ttl -= diff_time;

 if(m_NextFrame <= 0) {
 m_NextFrame = ms_per_frame;
 m_CurrentFrame++;

 if(m_CurrentFrame >= 6) {
 m_CurrentFrame = 0;

AI and Steering Behaviors Chapter 10

[350]

 }
 }
 if(m_ttl <= 0) {
 m_Active = false;
 }
 }
}

If the shield is not active, this function does not do anything. If it is active, the m_ttl
parameter is decremented based on the number of milliseconds passed since the last frame.
Then, we increment the current frame if the proper number of milliseconds has elapsed. If
the shield's time left drops below 0, the shields are deactivated.

After we have defined our Move function, we will define our Render function:

void Shield::Render() {
 if(m_Active) {
 int color_green = m_ttl / 100 + 1;
 int color_red = 255 - color_green;
 m_src.x = m_CurrentFrame * m_dest.w;
 m_dest.x = m_Ship->m_Position.x;
 m_dest.y = m_Ship->m_Position.y;

 SDL_SetTextureColorMod(m_SpriteTexture,
 color_red,
 color_green,
 0);

 SDL_RenderCopyEx(renderer, m_SpriteTexture,
 &m_src, &m_dest,
 RAD_TO_DEG(m_Ship->m_Rotation),
 NULL, SDL_FLIP_NONE);
 }
}

Like the Move function, the Render function does not do anything if the active flag is false.
We calculate the colors based on the time left using the following formulas:

int color_green = m_ttl / 100 + 1;
int color_red = 255 - color_green;

AI and Steering Behaviors Chapter 10

[351]

That will smoothly transition the color of our shields from green to red. We use a call to
SDL_SetTextureColorMod to set the sprite texture's color:

SDL_SetTextureColorMod(m_SpriteTexture,
 color_red,
 color_green,
 0);

Everything else in the Shield::Render function is pretty standard and should look very
familiar by now.

More collision detection
Let's take a look at the modifications we need to make to our Collider class. As we
discussed earlier, our AI will be implementing steering behaviors. These steering behaviors
will require some new attributes and functions in our Collider class. Here is what the
new Collider class is going to look like:

class Collider {
 public:
 float* m_ParentRotation;
 float* m_ParentX;
 float* m_ParentY;
 Vector2D m_TempPoint;
 bool CCHitTest(Collider* collider);

 Vector2D m_Position;
 float m_Radius;
 float m_SteeringRadius;
 float m_SteeringRadiusSQ;

 void SetParentInformation(float* rotation, float* x, float* y);
 Collider(float radius);
 bool HitTest(Collider *collider);
 bool SteeringLineTest(Vector2D &p1, Vector2D &p2);
 bool SteeringRectTest(Vector2D &start_point, Vector2D &end_point
);
 void WrapPosition();
 };

AI and Steering Behaviors Chapter 10

[352]

We have three new functions, two of them are for steering. One of the functions,
WrapPosition(), will be used to wrap objects moving off the screen in one direction so
that they reappear on the other side of the game screen. Let's open up collider.cpp and
take a look. The first thing we need to change is the constructor function. Here is what the
new version of the constructor looks like:

Collider::Collider(float radius) {
 m_ParentRotation = NULL;
 m_ParentX = NULL;
 m_ParentY = NULL;

 m_Radius = radius;
 m_SteeringRadius = m_Radius * 1.5;
 m_SteeringRadiusSQ = m_SteeringRadius * m_SteeringRadius;
}

The last two lines are the only modifications. You will notice that we set the
m_SteeringRadius attribute to 1.5 times the m_Radius value. This additional buffer
space is to prevent our enemy ship from getting too close to the asteroids, especially if they
are moving. This factor effectively makes the steering behavior more wary of collisions with
asteroids. The multiple of 1.5 was chosen somewhat arbitrarily because it worked well
when I tested it. If you would like your AI to be less concerned with asteroid collisions and
more likely to pursue the player by putting itself in danger, you could reduce this value,
maybe to something like 1.1. You could also increase this value to make the AI even more
wary of asteroids. Setting the value too high will result in an AI that is too timid. Setting it
too low will have it pursue the player under almost any circumstance, mimicking the
infamous words of Admiral David Farragut during the Battle of Mobile Bay, "Damn the
torpedoes—full speed ahead!"

Next, we will need to add the new function, SteeringLineText, to collider.cpp. This
new function will do circle-line collision detection between a line connecting our enemy
ship and our player, and detect all of the asteroids and projectiles our ship could hit along
that path. It is a line-of-sight test to determine whether there is a clear path to the player
from our position. Circle-line collision detection is somewhat complicated, compared to
circle-circle or rectangle-rectangle collision detection. I borrowed heavily from a solution I
created on embed.com at the following address: https:/ ​/​www. ​embed. ​com/ ​typescript-
games/​multiple-​type- ​collision- ​detection. ​html.

https://www.embed.com
https://www.embed.com/typescript-games/multiple-type-collision-detection.html
https://www.embed.com/typescript-games/multiple-type-collision-detection.html
https://www.embed.com/typescript-games/multiple-type-collision-detection.html
https://www.embed.com/typescript-games/multiple-type-collision-detection.html
https://www.embed.com/typescript-games/multiple-type-collision-detection.html
https://www.embed.com/typescript-games/multiple-type-collision-detection.html
https://www.embed.com/typescript-games/multiple-type-collision-detection.html
https://www.embed.com/typescript-games/multiple-type-collision-detection.html
https://www.embed.com/typescript-games/multiple-type-collision-detection.html
https://www.embed.com/typescript-games/multiple-type-collision-detection.html
https://www.embed.com/typescript-games/multiple-type-collision-detection.html
https://www.embed.com/typescript-games/multiple-type-collision-detection.html
https://www.embed.com/typescript-games/multiple-type-collision-detection.html
https://www.embed.com/typescript-games/multiple-type-collision-detection.html
https://www.embed.com/typescript-games/multiple-type-collision-detection.html
https://www.embed.com/typescript-games/multiple-type-collision-detection.html
https://www.embed.com/typescript-games/multiple-type-collision-detection.html
https://www.embed.com/typescript-games/multiple-type-collision-detection.html
https://www.embed.com/typescript-games/multiple-type-collision-detection.html
https://www.embed.com/typescript-games/multiple-type-collision-detection.html
https://www.embed.com/typescript-games/multiple-type-collision-detection.html
https://www.embed.com/typescript-games/multiple-type-collision-detection.html

AI and Steering Behaviors Chapter 10

[353]

Circle-line collision detection
The first step in determining whether a circle and line collide is the simplest: Check
whether either of the endpoints of your line falls within the circle's radius. That is done by a
simple distance check using the Pythagorean theorem. If the distance between one of the
points and the center of our circle is less than the radius, the line is inside the circle. Here is
a diagram of a point falling inside the radius of the circle:

The line's p2 point falls inside the circle radius

If either point falls within the radius of the circle, we know that the line and the circle
collide. If neither point falls within the radius of the circle, we are not done. Then what we
will need to do is find the closest point on the line to the center of the circle. Let me digress
for a moment to get a little more technical. Technically, all lines are infinite. When we have
two points and draw a “line” in between those points, it is a line segment. To find the
closest point between a line and our circle, we are going to need to talk about something
called vector projection.

Vector projection
Vector projection is a little bit complicated. If you project a given vector b on to vector a,
you get a scalar multiple of vector a (we will call this scalar multiple c), where you can add
a vector perpendicular to vector ca to get vector b.

AI and Steering Behaviors Chapter 10

[354]

The following diagram is an example of projecting vector b onto vector a:

An example of projecting vector b onto vector a

Another way to look at this is that a projection of vector b on to vector a gives us the closest
point to the end point of vector b that is on a line segment, as defined by any scalar
multiple of vector a. You may be wondering what this has to do with detecting a collision
between a circle and a line. Well, if we assume that vector b represents the position of the
center point of our circle, we can figure out what the closest point on our line is to the
center point of that circle. We then test for a collision between the point we found with our
projection and the center of the circle. See how vector projection can be used to determine
the closest point on a line to a circle in the following diagram:

Notice that projecting the vector onto our line gives us the closest point on the line to the circle

AI and Steering Behaviors Chapter 10

[355]

There is another potential problem you have to look at. The projection onto vector a might
give you a value for c (the scalar multiple) that is greater than 1. If this is the case, it might
be that our line collides with the circle beyond our ending point. Because of this, we will
also need to do some range checks to see whether we are past the end of our line:

Projecting the circle's vector on to our line gives us the closest point that is passed the range of our line segment

Now that I have explained what vector projection is, let's take a look at the code:

bool Collider::SteeringLineTest(Vector2D &start, Vector2D &end) {
 if(m_Active == false) {
 return false;
 }
 Vector2D dist = start;
 dist -= m_Position;
 if(m_SteeringRadiusSQ > dist.MagSQ()) {
 return true;
 }
 dist = end;
 dist -= m_Position;

 if(m_SteeringRadiusSQ > dist.MagSQ()) {
 return true;
 }
 dist = end;
 dist -= start;

 Vector2D circle_vec = m_Position;
 circle_vec -= start;

 Vector2D near_point = circle_vec.Project(dist);
 near_point += start;

 Vector2D temp_vector = near_point;
 circle_vec += start;

AI and Steering Behaviors Chapter 10

[356]

 temp_vector -= circle_vec;

 Range x_range;
 x_range.min = start.x;
 x_range.max = end.x;
 x_range.Sort();
 Range y_range;
 y_range.min = start.y;
 y_range.max = end.y;
 y_range.Sort();

 if ((x_range.min <= near_point.x && near_point.x <= x_range.max &&
 y_range.min <= near_point.y && near_point.y <= y_range.max) ==
 false) {
 return false;
 }
 if(temp_vector.MagSQ() < m_SteeringRadiusSQ) {
 return true;
 }
 return false;
}

As we discussed earlier, the first thing we do is test the start and end point distance to the
location of this Collider object. If the distance squared is less than the steering radius
squared for either of the points, we know that the line collides with our steering radius:

if(m_Active == false) {
 return false;
}

Vector2D dist = start;
dist -= m_Position;

if(m_SteeringRadiusSQ > dist.MagSQ()) {
 return true;
}

dist = end;
dist -= m_Position;
if(m_SteeringRadiusSQ > dist.MagSQ()) {
 return true;
}

AI and Steering Behaviors Chapter 10

[357]

If neither point falls inside the circle, we will need to test against the projection. We will
need to turn the line segment into a vector that goes through the origin. To do this, we will
need to subtract the starting point from the ending point, and we will also need to adjust
the position of the circle by the same amount:

dist = end;
dist -= start;

Vector2D circle_vec = m_Position;
circle_vec -= start;

Vector2D near_point = circle_vec.Project(dist);
near_point += start;

Vector2D temp_vector = near_point;
circle_vec += start;
temp_vector -= circle_vec;

We need to make sure that the point closest to the collider is still on the line segment. That
can be done with a simple range test against the starting and ending x and y values. If both
the x and y coordinates fall into our range, we know that the point must lie somewhere on
the line segment. If it does not, we know that the line does not collide with the circle:

Range x_range;
x_range.min = start.x;
x_range.max = end.x;
x_range.Sort();

Range y_range;
y_range.min = start.y;
y_range.max = end.y;
y_range.Sort();

if ((x_range.min <= near_point.x && near_point.x <= x_range.max &&
 y_range.min <= near_point.y && near_point.y <= y_range.max) == false)
{
 return false;
}

If we have not returned with a false value at this point, we know what the nearest point
to the collider is on our line segment. Now we can test the distance from that point to our
collider to see whether it is close enough to collide with our steering radius; if it is, we
return true, and if it is not, we return false:

if(m_SteeringRadiusSQ > dist.MagSQ()) {
 return true;

AI and Steering Behaviors Chapter 10

[358]

}
return false;

The Vector2D class
I mentioned earlier that we needed to scrap our old Point class in favor of something that
has a lot more functionality. The new Vector2D class will add several new functions to the
Point class we were using earlier. Let's take another look at the function definition we
have inside our game.hpp file:

class Vector2D {
 public:
 float x;
 float y;

 Vector2D();
 Vector2D(float X, float Y);

 void Rotate(float radians);
 void Normalize();
 float MagSQ();
 float Magnitude();

 Vector2D Project(Vector2D &onto);
 float Dot(Vector2D &vec);
 float FindAngle();

 Vector2D operator=(const Vector2D &vec);
 Vector2D operator*(const float &scalar);
 void operator+=(const Vector2D &vec);
 void operator-=(const Vector2D &vec);
 void operator*=(const float &scalar);
 void operator/=(const float &scalar);
};

Unlike points, vectors have a magnitude. Because it is faster to calculate, we will also add a
squared magnitude, MagSQ, function. Vectors can be normalized, which means they can be
modified to have a magnitude of 1. We discussed vector projection earlier, and we have
created a Project function to allow us to do that. Finding the dot product of two vectors is
a very useful operation in games. The dot product of two normalized vectors is a scalar
value that ranges between 1 and -1, depending on the angle between those two vectors. The
value is 1 if the vectors point in the same direction, -1 if they point in the opposite direction,
and 0 if the two vectors are perpendicular to each other.

AI and Steering Behaviors Chapter 10

[359]

The dot product of two normalized vectors is the same as the cosine of the
angle between those two normalized vectors. Getting the dot product of
any two vectors, a and b, gives you the (magnitude of a) * (magnitude of b)
* cosine (angle between a and b). The reason we normalize these vectors
first is to set the magnitude of a and the magnitude of b to 1, which causes
our normalized dot product to return the cosine of the angle between
vectors a and b.

We will also add a FindAngle function that will tell us the directional angle of this
function. We will overload many operators to allow for easier vector manipulation.

Let's take a look at vector.cpp in its entirety:

#include "game.hpp"

Vector2D::Vector2D(float X, float Y) {
 x = X;
 y = Y;
}
Vector2D::Vector2D() {
 y = x = 0.0;
}
Vector2D Vector2D::operator=(const Vector2D& p) {
 x = p.x;
 y = p.y;
 return *this;
}
void Vector2D::operator+=(const Vector2D& p) {
 x += p.x;
 y += p.y;
}
void Vector2D::operator-=(const Vector2D& p) {
 x -= p.x;
 y -= p.y;
}
void Vector2D::operator*=(const float& scalar) {
 x *= scalar;
 y *= scalar;
}
void Vector2D::operator/=(const float& scalar) {
 x /= scalar;
 y /= scalar;
}
Vector2D Vector2D::operator*(const float& scalar) {
 Vector2D vec = *this;
 vec *= scalar;
 return vec;

AI and Steering Behaviors Chapter 10

[360]

}
void Vector2D::Rotate(float radians) {
 float sine = sin(radians);
 float cosine = cos(radians);
 float rx = x * cosine - y * sine;
 float ry = x * sine + y * cosine;
 x = rx;
 y = ry;
}
void Vector2D::Normalize() {
 float mag = Magnitude();
 x /= mag;
 y /= mag;
}
Vector2D Vector2D::Project(Vector2D &onto) {
 Vector2D proj = *this;
 float proj_dot_onto = proj.Dot(onto);
 proj *= proj_dot_onto;
 return proj;
}
float Vector2D::Dot(Vector2D &vec) {
 Vector2D this_norm;
 this_norm = *this;
 this_norm.Normalize();
 Vector2D vec_norm;
 vec_norm = vec;
 vec_norm.Normalize();

 return this_norm.x * vec_norm.x + this_norm.y * vec_norm.y;
}
float Vector2D::FindAngle() {
 if(x == 0.0 && y == 0.0) {
 return 0.0;
 }
 Vector2D this_norm;
 this_norm = *this;
 this_norm.Normalize();
 return atan2(this_norm.y, this_norm.x) + PI / 2;
}
float Vector2D::MagSQ() {
 return x * x + y * y;
}
float Vector2D::Magnitude() {
 return sqrt(MagSQ());
}

AI and Steering Behaviors Chapter 10

[361]

The first two functions are constructors, and they are essentially the same as the
constructors that were in the Point class:

Vector2D::Vector2D(float X, float Y) {
 x = X;
 y = Y;
}
Vector2D::Vector2D() {
 y = x = 0.0;
}

After that, we have our overloaded operators. That allows us to add, subtract, multiply,
and divide vectors easily:

Vector2D Vector2D::operator=(const Vector2D& p) {
 x = p.x;
 y = p.y;
 return *this;
}
void Vector2D::operator+=(const Vector2D& p) {
 x += p.x;
 y += p.y;
}
void Vector2D::operator-=(const Vector2D& p) {
 x -= p.x;
 y -= p.y;
}
void Vector2D::operator*=(const float& scalar) {
 x *= scalar;
 y *= scalar;
}
void Vector2D::operator/=(const float& scalar) {
 x /= scalar;
 y /= scalar;
}
Vector2D Vector2D::operator*(const float& scalar) {
 Vector2D vec = *this;
 vec *= scalar;
 return vec;
}

The Rotate function is one of the few functions that existed on the Point class. It has not
changed from the Point class version:

void Vector2D::Rotate(float radians) {
 float sine = sin(radians);
 float cosine = cos(radians);
 float rx = x * cosine - y * sine;

AI and Steering Behaviors Chapter 10

[362]

 float ry = x * sine + y * cosine;
 x = rx;
 y = ry;
}

The Normalize function changes the magnitude of the vector to a value of 1. It does this by
determining the magnitude of the vector and dividing the x and y value by that magnitude:

void Vector2D::Normalize() {
 float mag = Magnitude();
 x /= mag;
 y /= mag;
}

The Project function uses the dot product of the normalized angles and multiplies that
scalar value by the vector to determine the new projected vector:

Vector2D Vector2D::Project(Vector2D &onto) {
 Vector2D proj = *this;
 float proj_dot_onto = proj.Dot(onto);
 proj *= proj_dot_onto;
 return proj;
}

Our Dot product function is actually a dot product of the normalized vectors. That gives us
information on the angle between the two vectors. We are normalizing first because we are
using this dot product only in our vector projection:

float Vector2D::Dot(Vector2D &vec) {
 Vector2D this_norm;
 this_norm = *this;
 this_norm.Normalize();

 Vector2D vec_norm;
 vec_norm = vec;
 vec_norm.Normalize();

 return this_norm.x * vec_norm.x + this_norm.y * vec_norm.y;
}

The FindAngle function uses the inverse tangent to find the angle in radians between two
vectors:

float Vector2D::FindAngle() {
 if(x == 0.0 && y == 0.0) {
 return 0.0;

AI and Steering Behaviors Chapter 10

[363]

 }
 Vector2D this_norm;
 this_norm = *this;
 this_norm.Normalize();
 return atan2(this_norm.y, this_norm.x) + PI / 2;
}

The final two functions get the vector's magnitude and squared magnitude:

float Vector2D::MagSQ() {
 return x * x + y * y;
}

float Vector2D::Magnitude() {
 return sqrt(MagSQ());
}

Writing an FSM
Now that we have the tools we need in our Collider and Vector2D classes, we can build
our FSM. The FiniteStateMachine class will manage our AI. Our FSM will have four
states: SEEK, FLEE, ATTACK, and WANDER. It will implement steering behaviors and add an
avoid force whenever it is trying to navigate through obstacles such as asteroids. The AI
will also need to check whether the enemy ship should raise or lower its shields. Let's take a
second look at the definition of the FiniteStateMachine class as we have defined it in
our game.hpp file:

class FiniteStateMachine {
 public:
 const float c_AttackDistSq = 40000.0;
 const float c_FleeDistSq = 2500.0;
 const int c_MinRandomTurnMS = 100;
 const int c_RandTurnMS = 3000;
 const int c_ShieldDist = 20;
 const int c_AvoidDist = 80;
 const int c_StarAvoidDistSQ = 20000;
 const int c_ObstacleAvoidForce = 150;
 const int c_StarAvoidForce = 120;

 FSM_STATE m_CurrentState;
 EnemyShip* m_Ship;

 bool m_HasLOS;
 bool m_LastTurnLeft;
 int m_SameTurnPct;

AI and Steering Behaviors Chapter 10

[364]

 int m_NextTurnMS;
 int m_CheckCycle;
 float m_DesiredRotation;
 float m_PlayerDistSQ;

 FiniteStateMachine(EnemyShip* ship);

 void SeekState(Vector2D &seek_point);
 void FleeState(Vector2D &flee_point);
 void WanderState();
 void AttackState();

 void AvoidForce();
 bool ShieldCheck();
 bool LOSCheck();

 Vector2D PredictPosition();

 float GetPlayerDistSq();
 void Move();
};

Now let's spend a little time going through all of the functions that we will define in our
finite_state_machine.cpp file. The constructor function at the beginning of this file
does not do anything complicated. It does some basic initialization:

FiniteStateMachine::FiniteStateMachine(EnemyShip* ship) {
 m_Ship = ship;
 m_CurrentState = APPROACH;
 m_HasLOS = false;
 m_DesiredRotation = 0.0;
 m_CheckCycle = 0;
 m_PlayerDistSQ = 0;
}

After the constructor, we have four state functions defined: SeekState, FleeState,
WanderState, and AttackState. The first of these four states causes our enemy ship to
seek out a specific point in our gameplay area. That point will either be calculated in our
Move function or inside our AttackState function. Here is what the code looks like:

void FiniteStateMachine::SeekState(Vector2D &seek_point) {
 Vector2D direction = seek_point;
 direction -= m_Ship->m_Position;
 m_DesiredRotation = direction.FindAngle();
 float rotate_direction = m_Ship->m_Rotation - m_DesiredRotation;

 if(rotate_direction > PI) {

AI and Steering Behaviors Chapter 10

[365]

 rotate_direction -= 2 * PI;
 }
 else if(rotate_direction < -PI) {
 rotate_direction += 2 * PI;
 }

 if(rotate_direction < -0.05) {
 m_Ship->RotateRight();
 m_Ship->RotateRight();
 }
 else if(rotate_direction > 0.05) {
 m_Ship->RotateLeft();
 m_Ship->RotateLeft();
 }
 m_Ship->Accelerate();
 m_Ship->Accelerate();
 m_Ship->Accelerate();
 m_Ship->Accelerate();
}

The first thing the function does is determine what angle the ship should point at to seek
out the destination point:

Vector2D direction = seek_point;
direction -= m_Ship->m_Position;
m_DesiredRotation = direction.FindAngle();
float rotate_direction = m_Ship->m_Rotation - m_DesiredRotation;

if(rotate_direction > PI) {
 rotate_direction -= 2 * PI;
}
else if(rotate_direction < -PI) {
 rotate_direction += 2 * PI;
}

Based on the rotate_direction value we calculated, the AI makes a decision to rotate the
ship left or right:

if(rotate_direction < -0.05) {
 m_Ship->RotateRight();
 m_Ship->RotateRight();
}
else if(rotate_direction > 0.05) {
 m_Ship->RotateLeft();
 m_Ship->RotateLeft();
}

AI and Steering Behaviors Chapter 10

[366]

You may be wondering why there are two calls to RotateRight() and RotateLeft().
Well, that is a bit of AI cheating. I want the enemy spaceship to rotate and accelerate faster
than the player, so we call the Rotate functions twice and the Accelerate function four
times. The amount of cheating you do depends on personal preference, and how obvious
your cheating is. Generally speaking, you want your AI to be challenging, but not too
challenging. An AI that is obviously cheating will upset the player. Above all, if you cheat,
make sure you don't get caught!

After the rotations, we end the function with the four calls to Accelerate():

m_Ship->Accelerate();
m_Ship->Accelerate();
m_Ship->Accelerate();
m_Ship->Accelerate();

After our SEEK state, we need to define the function we run when we are in the FLEE state.
The FLEE state is the opposite of the SEEK state in that the AI is trying to get as far away
from the flee position as possible. We do a little less cheating in our version of the FLEE
state, but this can be changed based on personal taste:

void FiniteStateMachine::FleeState(Vector2D& flee_point) {
 Vector2D direction = flee_point;
 direction -= m_Ship->m_Position;
 m_DesiredRotation = direction.FindAngle();
 float rotate_direction = m_DesiredRotation - m_Ship->m_Rotation;
 rotate_direction -= PI;

 if(rotate_direction > 0) {
 m_Ship->RotateRight();
 }
 else {
 m_Ship->RotateLeft();
 }
 m_Ship->Accelerate();
 m_Ship->Accelerate();
}

The WANDER state is a state in which the AI wanders around the gameplay area. This state
runs if the enemy ship does not have an unobstructed line of sight to the player ship. The
AI will wander around the gameplay area looking for an unobstructed path to the player.
In the WANDER state, the ship is more likely to continue turning in the direction it turned the
last time than choose a new direction. Here is the code:

void FiniteStateMachine::WanderState() {
 m_NextTurnMS -= delta_time;
 if(m_NextTurnMS <= 0) {

AI and Steering Behaviors Chapter 10

[367]

 bool same_turn = (m_SameTurnPct >= rand() % 100);
 m_NextTurnMS = c_MinRandomTurnMS + rand() % c_RandTurnMS;

 if(m_LastTurnLeft) {
 if(same_turn) {
 m_SameTurnPct -= 10;
 m_Ship->RotateLeft();
 }
 else {
 m_SameTurnPct = 80;
 m_Ship->RotateRight();
 }
 }
 else {
 if(same_turn) {
 m_SameTurnPct -= 10;
 m_Ship->RotateRight();
 }
 else {
 m_SameTurnPct = 80;
 m_Ship->RotateLeft();
 }
 }
 }
 m_Ship->Accelerate();
}

The Attack state calls the Seek state while shooting at the player:

void FiniteStateMachine::AttackState() {
 Vector2D prediction = PredictPosition();
 SeekState(prediction);
 m_Ship->Shoot();
}

To know where to go when we seek and attack, we could point our enemy ship directly at
the player's current location. It would be better if we could predict where the player's ship
will be by the time we get there. We have a PredictPosition function that will predict
where the player will be, using its current velocity. Here is our PredictPosition
function:

Vector2D FiniteStateMachine::PredictPosition() {
 Vector2D dist = player->m_Position;
 dist -= m_Ship->m_Position;
 float mag = dist.Magnitude();
 Vector2D dir = player->m_Velocity;

 if(dir.MagSQ() > 0) {

AI and Steering Behaviors Chapter 10

[368]

 dir.Normalize();
 }
 dir *= (mag / 10);
 Vector2D prediction = player->m_Position;
 prediction += dir;
 return prediction;
}

That is only a guess, and it is imperfect. We use this function to predict both where we will
seek and where we will attack. If we were seeking the player, we would probably want to
predict the distance the player will move, which will be about the same as the current
distance between the enemy ship and the player ship. However, it is more important that
we predict where our projectiles will be when we fire them. The projectiles move quite a bit
faster than our ship, so we divide the distance between the enemy ship and the player ship
by a factor of 10 to make our prediction. The projectiles do not actually move 10 times as
fast, but, as with many of the constant values we choose for our AI, trial and error and what
looks right trump actual data. Dropping the multiple to a factor of 5 will double the
distance we will lead the player ship with each shot. Making the value 20 would cut that
lead in half. A value of 10 is what looked right to me when I was testing the AI, but you can
tweak this number to your taste. You could even add a random factor if you like.

The AvoidForce function
The AvoidForce function is also a bit of a cheat. Steering behaviors use an avoid force to
prevent autonomous agents from colliding with obstacles. If the avoid force value is set too
high, it will look as if the enemy ship is magically repelled from the obstacles. If it is too
low, it will crash right into them. Our AvoidForce function will look for the closest
obstacle to our enemy ship and will increase the velocity of the enemy ship to steer it
around any obstacles. Here is what that function looks like:

void FiniteStateMachine::AvoidForce() {
 Vector2D start_corner;
 Vector2D end_corner;
 Vector2D avoid_vec;
 Vector2D dist;

 float closest_square = 999999999999.0;
 float msq;
 Vector2D star_avoid;

 star_avoid.x = CANVAS_WIDTH / 2;
 star_avoid.y = CANVAS_HEIGHT / 2;
 star_avoid -= m_Ship->m_Position;

AI and Steering Behaviors Chapter 10

[369]

 msq = star_avoid.MagSQ();
 if(msq >= c_StarAvoidDistSQ) {
 start_corner = m_Ship->m_Position;
 start_corner.x -= c_AvoidDist;
 start_corner.y -= c_AvoidDist;
 end_corner = m_Ship->m_Position;
 end_corner.x += c_AvoidDist;
 end_corner.y += c_AvoidDist;
 Asteroid* asteroid;
 std::vector<Asteroid*>::iterator it;
 int i = 0;

 for(it = asteroid_list.begin(); it != asteroid_list.end();
 it++) {
 asteroid = *it;
 if(asteroid->m_Active == true &&
 asteroid->SteeringRectTest(start_corner, end_corner)) {
 dist = asteroid->m_Position;
 dist -= m_Ship->m_Position;
 msq = dist.MagSQ();

 if(msq <= closest_square) {
 closest_square = msq;
 avoid_vec = asteroid->m_Position;
 }
 }
 }

 // LOOP OVER PROJECTILES
 Projectile* projectile;
 std::vector<Projectile*>::iterator proj_it;

 for(proj_it = projectile_pool->m_ProjectileList.begin();
 proj_it != projectile_pool->m_ProjectileList.end();
 proj_it++) {

 projectile = *proj_it;

 if(projectile->m_Active == true &&
 projectile->SteeringRectTest(start_corner, end_corner)
) {

 dist = projectile->m_Position;
 dist -= m_Ship->m_Position;
 msq = dist.MagSQ();

 if(msq <= closest_square) {
 closest_square = msq;

AI and Steering Behaviors Chapter 10

[370]

 avoid_vec = projectile->m_Position;
 }
 }
 }
 if(closest_square != 999999999999.0) {
 avoid_vec -= m_Ship->m_Position;
 avoid_vec.Normalize();
 float rot_to_obj = avoid_vec.FindAngle();

 if(std::abs(rot_to_obj - m_Ship->m_Rotation) < 0.75) {
 if(rot_to_obj >= m_Ship->m_Rotation) {
 m_Ship->RotateLeft();
 }
 else {
 m_Ship->RotateRight();
 }
 }
 m_Ship->m_Velocity -= avoid_vec * delta_time *
 c_ObstacleAvoidForce;
 }
 }
 else {
 avoid_vec.x = CANVAS_WIDTH / 2;
 avoid_vec.y = CANVAS_HEIGHT / 2;
 avoid_vec -= m_Ship->m_Position;
 avoid_vec.Normalize();
 float rot_to_obj = avoid_vec.FindAngle();

 if(std::abs(rot_to_obj - m_Ship->m_Rotation) < 0.75) {
 if(rot_to_obj >= m_Ship->m_Rotation) {
 m_Ship->RotateLeft();
 }
 else {
 m_Ship->RotateRight();
 }
 }
 m_Ship->m_Velocity -= avoid_vec * delta_time * c_StarAvoidForce;
 }
}

AI and Steering Behaviors Chapter 10

[371]

Our first check in this function is how close we are to the star in the center of the gameplay
area. This star is the biggest thing we need to avoid. It is the only object that will destroy us
even if our shields are on, so the AI needs to be extra certain it does not hit the star. This
check involves finding the squared distance between the center of the play area and the
enemy spaceship, and checking that value against a constant we set in our class definition
call, c_StarAvoidDistSQ:

if(msq >= c_StarAvoidDistSQ) {

You can tweak the value of c_StarAvoidDistSQ to allow the enemy spaceship to get
closer to, or stay further away from, the center of the game screen. If our enemy ship is not
too close to the viewable game area, we look to see whether any obstacles are close to the
spaceship:

if(msq >= c_StarAvoidDistSQ) {
 start_corner = m_Ship->m_Position;
 start_corner.x -= c_AvoidDist;
 start_corner.y -= c_AvoidDist;

 end_corner = m_Ship->m_Position;
 end_corner.x += c_AvoidDist;
 end_corner.y += c_AvoidDist;

 Asteroid* asteroid;
 std::vector<Asteroid*>::iterator it;
 int i = 0;

 for(it = asteroid_list.begin(); it != asteroid_list.end(); it++) {
 asteroid = *it;
 if(asteroid->m_Active == true &&
 asteroid->SteeringRectTest(start_corner, end_corner)) {

 dist = asteroid->m_Position;
 dist -= m_Ship->m_Position;
 msq = dist.MagSQ();

 if(msq <= closest_square) {
 closest_square = msq;
 avoid_vec = asteroid->m_Position;
 }
 }
 }
 // LOOP OVER PROJECTILES
 Projectile* projectile;
 std::vector<Projectile*>::iterator proj_it;

 for(proj_it = projectile_pool->m_ProjectileList.begin();

AI and Steering Behaviors Chapter 10

[372]

 proj_it != projectile_pool->m_ProjectileList.end(); proj_it++
) {

 projectile = *proj_it;

 if(projectile->m_Active == true &&
 projectile->SteeringRectTest(start_corner, end_corner
)) {
 dist = projectile->m_Position;
 dist -= m_Ship->m_Position;
 msq = dist.MagSQ();

 if(msq <= closest_square) {
 closest_square = msq;
 avoid_vec = projectile->m_Position;
 }
 }
 }
 if(closest_square != 999999999999.0) {
 avoid_vec -= m_Ship->m_Position;
 avoid_vec.Normalize();
 float rot_to_obj = avoid_vec.FindAngle();
 if(std::abs(rot_to_obj - m_Ship->m_Rotation) < 0.75) {
 if(rot_to_obj >= m_Ship->m_Rotation) {
 m_Ship->RotateLeft();
 }
 else {
 m_Ship->RotateRight();
 }
 }
 m_Ship->m_Velocity -= avoid_vec * delta_time *
 c_ObstacleAvoidForce;
 }
}

We do a rectangle test against all of the asteroids and projectiles in our game. At the
beginning of the if block, we set up the corners of our rectangle test:

start_corner = m_Ship->m_Position;
start_corner.x -= c_AvoidDist;
start_corner.y -= c_AvoidDist;

end_corner = m_Ship->m_Position;
end_corner.x += c_AvoidDist;
end_corner.y += c_AvoidDist;

AI and Steering Behaviors Chapter 10

[373]

The c_AvoidDist constant is set in the FiniteStateMachine class definition and can be
changed based on your taste. Increasing the avoid distance makes the AI keep a greater
distance from all the projectiles. If you set this value too high, your AI will be rather timid.
Reduce the distance and the AI will tolerate flying much closer to the obstacles. If it's too
low, it will frequently crash into them. After determining the values to use for our rectangle
test, we loop over all of our asteroids, looking for an asteroid that is both active and within
the bounds of our rectangle test:

Asteroid* asteroid;
std::vector<Asteroid*>::iterator it;
int i = 0;

for(it = asteroid_list.begin(); it != asteroid_list.end(); it++)
{
 asteroid = *it;
 if(asteroid->m_Active == true &&
 asteroid->SteeringRectTest(start_corner, end_corner)) {

 dist = asteroid->m_Position;
 dist -= m_Ship->m_Position;
 msq = dist.MagSQ();

 if(msq <= closest_square) {
 closest_square = msq;
 avoid_vec = asteroid->m_Position;
 }
 }
}

When adding avoid forces, we are only avoiding the closest obstacle. You could write a
more complicated version of this, capable of adding an avoiding force for several objects
within our bounding box, but avoiding the closest obstacle works reasonably well. After
checking all of our asteroids, we check to see whether there is a projectile that is active and
closer than the closest asteroid:

 // LOOP OVER PROJECTILES
 Projectile* projectile;
 std::vector<Projectile*>::iterator proj_it;
 for(proj_it = projectile_pool->m_ProjectileList.begin();
 proj_it != projectile_pool->m_ProjectileList.end(); proj_it++) {
 projectile = *proj_it;
 if(projectile->m_Active == true &&
 projectile->SteeringRectTest(start_corner, end_corner)) {
 dist = projectile->m_Position;
 dist -= m_Ship->m_Position;
 msq = dist.MagSQ();

AI and Steering Behaviors Chapter 10

[374]

 if(msq <= closest_square) {
 closest_square = msq;
 avoid_vec = projectile->m_Position;
 }
 }
 }

If we find at least one object in our bounding box, we want to both rotate our spaceship so
that it moves to avoid it naturally as the player would, and we also add an avoid force,
which is a bit of a cheat. The avoid force pushes our enemy spaceship away from the object
based on a constant, c_ObstacleAvoidForce, that we set in our class definition. That
value can be tweaked up and down. In general, I like to keep this value high, risking the
player may realize that this is a cheat. You may modify the value of
c_ObstacleAvoidForce based on your preferences:

if(closest_square != 999999999999.0) {
 avoid_vec -= m_Ship->m_Position;
 avoid_vec.Normalize();
 float rot_to_obj = avoid_vec.FindAngle();
 if(std::abs(rot_to_obj - m_Ship->m_Rotation) < 0.75) {
 if(rot_to_obj >= m_Ship->m_Rotation) {
 m_Ship->RotateLeft();
 }
 else {
 m_Ship->RotateRight();
 }
 }
 m_Ship->m_Velocity -= avoid_vec * delta_time * c_ObstacleAvoidForce;
}

The obstacle branch runs if the enemy ship is not too close to the star. If the object is too
close to the star, the code jumps into the else block. This code creates an avoid force that
pushes and steers the ship away from the center of the play area. It has its own constant
avoid force that we set inside the class definition:

else {
 avoid_vec.x = CANVAS_WIDTH / 2;
 avoid_vec.y = CANVAS_HEIGHT / 2;
 avoid_vec -= m_Ship->m_Position;
 avoid_vec.Normalize();
 float rot_to_obj = avoid_vec.FindAngle();

 if(std::abs(rot_to_obj - m_Ship->m_Rotation) < 0.75) {
 if(rot_to_obj >= m_Ship->m_Rotation) {
 m_Ship->RotateLeft();
 }
 else {

AI and Steering Behaviors Chapter 10

[375]

 m_Ship->RotateRight();
 }
 }
 m_Ship->m_Velocity -= avoid_vec * delta_time * c_StarAvoidForce;
}

The ShieldCheck function is similar to the avoid force function, in that it checks a
bounding rectangle to see whether there is an obstacle close to our ship. It then determines
whether the ship is unlikely to avoid a collision. No matter how good our steering forces,
sometimes we are not able to avoid an asteroid or projectile. If this is the case, we want to
raise our shields. We do not need to check whether we are close to the star because the star
will kill us whether our shields are up or not, so there is no need to bother worrying about
that in the ShieldCheck function:

bool FiniteStateMachine::ShieldCheck() {
 Vector2D start_corner;
 Vector2D end_corner;

 start_corner = m_Ship->m_Position;
 start_corner.x -= c_ShieldDist;
 start_corner.y -= c_ShieldDist;

 end_corner = m_Ship->m_Position;
 end_corner.x += c_ShieldDist;
 end_corner.y += c_ShieldDist;

 Asteroid* asteroid;
 std::vector<Asteroid*>::iterator it;
 int i = 0;

 for(it = asteroid_list.begin(); it != asteroid_list.end(); it++) {
 asteroid = *it;
 if(asteroid->m_Active &&
 asteroid->SteeringRectTest(start_corner, end_corner)) {
 return true;
 }
 }
 // LOOP OVER PROJECTILES
 Projectile* projectile;
 std::vector<Projectile*>::iterator proj_it;

 for(proj_it = projectile_pool->m_ProjectileList.begin();
 proj_it != projectile_pool->m_ProjectileList.end(); proj_it++) {
 projectile = *proj_it;
 if(projectile->m_Active &&
 projectile->SteeringRectTest(start_corner, end_corner)) {
 return true;

AI and Steering Behaviors Chapter 10

[376]

 }
 }
 return false;
}

Like the avoid force check, we set up a bounding rectangle around our ship with the
c_ShieldDist constant. This value should be lower than the avoid force. If it is not, we
will raise our shields needlessly when we could avoid the object. Just like everything else in
our AI, if the value of c_ShieldDist is set too high, we will be raising our shields when
we do not need to. Our shields have limited use, so this would waste shield time that we
could otherwise use later. If we set the value too low, we risk hitting an obstacle that the
ship is accelerating toward before we have a chance to raise the shields.

The next function, LOSCheck, is a line-of-sight check. That means that it looks to see
whether a straight line could be drawn between the enemy ship and the player's ship
without intersecting any obstacles. If there is a clear line of sight, this function returns true.
If there is an obstacle blocking the line of sight, the function returns false:

bool FiniteStateMachine::LOSCheck() { // LINE OF SIGHT CHECK
 // LOOP OVER ASTEROIDS
 Asteroid* asteroid;
 std::vector<Asteroid*>::iterator it;
 int i = 0;
 for(it = asteroid_list.begin(); it != asteroid_list.end(); it++) {
 asteroid = *it;
 if(asteroid->SteeringLineTest(m_Ship->m_Position,
 player->m_Position)) {
 return false;
 }
 }

 // LOOP OVER PROJECTILES
 Projectile* projectile;
 std::vector<Projectile*>::iterator proj_it;
 for(proj_it = projectile_pool->m_ProjectileList.begin();
 proj_it != projectile_pool->m_ProjectileList.end(); proj_it++) {
 projectile = *proj_it;
 if(projectile->SteeringLineTest(m_Ship->m_Position,
 player->m_Position)) {
 return false;
 }
 }
 return true;
}

AI and Steering Behaviors Chapter 10

[377]

One thing we will frequently want to make checks against is the player's distance to the
enemy ship. Because the square root is a time-consuming operation, we eliminate it by
checking against a squared distance. We use the GetPlayerDistSq function to get the
squared distance between the enemy ship and the player ship:

float FiniteStateMachine::GetPlayerDistSq() {
 float x_diff = m_Ship->m_Position.x - player->m_Position.x;
 float y_diff = m_Ship->m_Position.y - player->m_Position.y;
 return x_diff * x_diff + y_diff * y_diff;
}

The FSM's Move function is the function that runs our AI every frame. It performs a series
of checks to determine what state the AI should be in and executes that state's function. It
also checks to see whether the AI should raise or lower the spaceship's shields. Here is the
function in its entirety:

void FiniteStateMachine::Move() {
 m_CheckCycle++;
 if(m_CheckCycle == 0) {
 m_HasLOS = LOSCheck();
 if(!m_HasLOS) {
 m_CurrentState = WANDER;
 }
 float player_dist_sq = 0.0f;
 }
 else if(m_CheckCycle == 1) {
 if(m_HasLOS) {
 m_PlayerDistSQ = GetPlayerDistSq();
 if(m_PlayerDistSQ <= c_FleeDistSq) {
 m_CurrentState = FLEE;
 }
 else if(m_PlayerDistSQ <= c_AttackDistSq) {
 m_CurrentState = ATTACK;
 }
 else {
 m_CurrentState = APPROACH;
 }
 }
 }
 else {
 AvoidForce();
 m_CheckCycle = -1;
 }
 if(ShieldCheck()) {
 m_Ship->m_Shield->Activate();
 }
 else {

AI and Steering Behaviors Chapter 10

[378]

 m_Ship->m_Shield->Deactivate();
 }
 if(m_CurrentState == APPROACH) {
 Vector2D predict = PredictPosition();
 SeekState(predict);
 }
 else if(m_CurrentState == ATTACK) {
 AttackState();
 }
 else if(m_CurrentState == FLEE) {
 Vector2D predict = PredictPosition();
 FleeState(predict);
 }
 else if(m_CurrentState == WANDER) {
 WanderState();
 }
}

We use the m_CheckCycle attribute to cycle through the different state checks we perform
to reduce the burden on the CPU. That is not really necessary for an AI as simple as this
one. There is only one agent in our game executing this AI, but if we ever expanded this to
use multiple agents, we might set up each of those agents starting on a different cycle check
number to spread out our computations. Right now, this cycle check is included for
demonstration purposes:

m_CheckCycle++;

if(m_CheckCycle == 0) {
 m_HasLOS = LOSCheck();
 if(!m_HasLOS) {
 m_CurrentState = WANDER;
 }
 float player_dist_sq = 0.0f;
}
else if(m_CheckCycle == 1) {
 if(m_HasLOS) {
 m_PlayerDistSQ = GetPlayerDistSq();
 if(m_PlayerDistSQ <= c_FleeDistSq) {
 m_CurrentState = FLEE;
 }
 else if(m_PlayerDistSQ <= c_AttackDistSq) {
 m_CurrentState = ATTACK;
 }
 else {
 m_CurrentState = APPROACH;
 }
 }

AI and Steering Behaviors Chapter 10

[379]

}
else {
 AvoidForce();
 m_CheckCycle = -1;
}

As you can see, if we are on cycle 0, we run the line-of-sight check, and if we do not have a
line of sight, we set the current state to WANDER. In cycle 1, we look to see whether we had a
line of sight on the last frame, and if we did, we figure out whether we want to approach,
flee, or attack, based on the distance between the enemy ship and the player ship. On cycle
2, we add any avoid forces and reset our check cycle attribute.

Then we perform a shield check every cycle. I initially had the shield check performed on
every fourth cycle, but the enemy ship was getting hit too often when it was struck by a
projectile head on. Because of this, I changed the code to perform the shield check on every
cycle. That is the kind of manual tweaking you end up doing in Game AI to make it work.
There is a lot of trial and error:

if(ShieldCheck()) {
 m_Ship->m_Shield->Activate();
}
else {
 m_Ship->m_Shield->Deactivate();
}

The last few blocks of code are just a series of if and else if statements that look to see
what the current state is, and calls the appropriate function based on that state:

if(m_CurrentState == APPROACH) {
 Vector2D predict = PredictPosition();
 SeekState(predict);
}
else if(m_CurrentState == ATTACK) {
 AttackState();
}
else if(m_CurrentState == FLEE) {
 Vector2D predict = PredictPosition();
 FleeState(predict);
}
else if(m_CurrentState == WANDER) {
 WanderState();
}

AI and Steering Behaviors Chapter 10

[380]

Compiling the ai.html file
We are now ready to compile and test our ai.html file. The screenshot for this version of
the game will look quite a bit different than our previous version:

em++ asteroid.cpp collider.cpp emitter.cpp enemy_ship.cpp
finite_state_machine.cpp main.cpp particle.cpp player_ship.cpp
projectile_pool.cpp projectile.cpp range.cpp shield.cpp ship.cpp star.cpp
vector.cpp -o ai.html --preload-file sprites -std=c++17 -s USE_WEBGL2=1 -s
USE_SDL=2 -s USE_SDL_IMAGE=2 -s SDL2_IMAGE_FORMATS=["png"] -s
USE_SDL_IMAGE=2 -s SDL2_IMAGE_FORMATS=["png"]

The new version of the game will have a much larger canvas, with asteroids and a star in
the middle. The enemy spaceship will seek out the player and attack. Here is a screenshot:

A screenshot of ai.html

AI and Steering Behaviors Chapter 10

[381]

Remember that you must run WebAssembly apps using a web server, or
with emrun. If you would like to run your WebAssembly app using
emrun, you must compile it with the --emrun flag. The web browser
requires a web server to stream the WebAssembly module. If you attempt
to open an HTML page that uses WebAssembly in a browser directly from
your hard drive, that WebAssembly module will not load.

Summary
In this chapter, we discussed Game AI, what it is, and how it is different than academic AI.
We talked about using autonomous agents versus a top-down AI, and the benefits of each
AI style, as well as how we can mix the two styles.

I introduced the concept of an FSM and mentioned early uses of FSMs in games such as
PAC-MAN, and we explored steering behaviors, and the kinds of steering behaviors we will
use to direct the agent in our game. We added asteroids and a star as obstacles to our game
and increased the size of our gameplay area. We added new forms of collision detection to
allow our AI to determine when it has a line of sight with our player. We also added
rectangle collision detection to determine whether there is an obstacle close enough for our
AI to use an avoid force. We expanded our Point class to a Vector2D class and added new
functionality including projection, magnitude, and dot product calculations. We wrote an
FSM and used it to determine what steering forces we will be using, and under what
circumstances.

In the next chapter, we will be greatly expanding the size of our level and adding a camera
so that we can move our spaceship around this larger version of the gameplay area.

11
Designing a 2D Camera

Camera design is one of those things that is frequently forgotten by novice game designers.
Up to this point, we have had what is called a fixed position camera. There is a single screen
with no change in perspective. In the 1970s, almost all of the early arcade games were
designed this way. The oldest game that I have found with any sort of camera was Atari's
Lunar Lander, which was released in August 1979. Lunar Lander was an early vector-based
game that would zoom the camera in as the lander neared the surface of the moon, and
would then pan the camera out to follow your lander as it approached the surface.

In the early 1980s, more games began experimenting with the idea of a game world that
was larger than a single game screen would allow. Rally X was a Pac-Man-like maze game
released in 1980 by Namco, where the maze was larger than a single display. Rally X used a
position snap camera (sometimes called a locked camera) that always kept the player's car in
the center of the game screen no matter what. That is the most straightforward form of 2D
scrolling camera that you can implement, and many novice game designers will create a 2D
position snap camera and then call it a day, but there are reasons why you may wish to
implement a more sophisticated camera in your game.

Designing a 2D Camera Chapter 11

[383]

Midway released the game Defender in 1981. It was a side-scrolling shooter that allowed the
player to move their spaceship in either direction. Realizing that the player needed to see
more of the level in the direction that the spaceship was facing, Defender used the first dual-
forward-focus camera. This camera shifts the viewing area so that two-thirds of the screen is
in front of the direction the player's spaceship is facing, and one third of the screen is
behind. That puts more of a focus on what is currently in front of the player. The camera
did not just snap back and forth between the two positions. That would have been very
jarring. Instead, when the player switched directions, the camera position would smoothly
transition to its new position (pretty cool for 1981).

During the 1980s, many new camera designs came into use. Konami began using an
autoscrolling camera in many of their shooter games, including Scramble, Gradius, and 1942.
In 1985, Atari released Gauntlet, which was an early multi-player game allowing four
players to be in the game at the same time. The camera in Gauntlet positioned itself at the
average of all of the player's positions. Platformer games, such as Super Mario Bros., would
allow the position of the user to push the camera forward.

You will need to include several images in your build to make this project
work. Make sure you include the /Chapter11/sprites/ folder from the
project's GitHub. If you haven't yet downloaded the GitHub project, you
can get it online at https:/ ​/​github. ​com/​PacktPublishing/ ​Hands- ​On-
Game- ​Development- ​with- ​WebAssembly.

There are many great examples of 2D cameras out there if you take the time to look. We are
going to focus (no pun intended) on a few 2D camera features that will be helpful for our
game.

Creating a camera for our game
We are going to build our camera in several different stages. We will start with a bare-
bones locked-on camera implementation. That will give us a good starting point from
where we can add new camera features. Later, we will modify this camera to be a projected
focus camera. A projected focus camera looks at the velocity of the player's ship and adjusts
the camera so that it shows more of the gameplay area in front of the player. This technique
works off the assumption that, in this game, the player is generally more focused on the
gameplay in the direction the player's ship is moving. For the final version of our camera,
we will add camera attractors to our projectiles. The idea behind this modification is that,
when there are shots fired in the game, the camera should draw attention to that area of the
game.

https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly

Designing a 2D Camera Chapter 11

[384]

Camera for tracking player movement
The first implementation of our camera will be a locked-on camera, which will lock onto
our player and follow them as they move through the area in the level. Right now, our level
is the same size as our fixed camera at that level. Not only will we need to make our level
larger, but we will also need to modify our object wrapping so that it works with our
camera. The first thing that we will need to do to implement our locked-on camera is to
modify our game.hpp file. We will be creating a Camera class as well as a RenderManager
class, where we will move all of our rendering-specific code. We will also need to add some
#define macros than define our level's height and width, because that will now be
different to the canvas height and width that we have already defined. We will also be
adding a few additional overloaded operators to our Vector2D class.

Projected focus and camera attractors
A locked-on camera is not a terrible thing, but a better camera shows more of what the
player needs to see. In our game, the player is more likely to be interested in what lies
ahead in the direction they are moving. A camera that looks ahead in the direction of
movement is sometimes called a projected focus camera. We can look at the velocity at
which our ship is currently moving, and offset our camera accordingly.

Another camera technique that we will employ is called camera attractors. Sometimes in
games, there are objects of interest that can be used to pull/attract the focus of the camera.
These create an attractive force that will pull our camera in that direction. One attractive
force for our camera is the enemy ship. Another attractive force is projectiles. The enemy
ship represents potential action, and projectiles represent a potential threat to our player. In
this section, we will combine a projected focus with camera attractors to improve our
camera positioning.

The last thing I would like to add is an arrow that points the way toward the enemy
spaceship. Because the play area is now larger than the canvas, we need a hint to help us
find the enemy. Without this, we may find ourselves wandering around aimlessly, which is
not very fun. Another way we could have done this is with a mini-map, but, because there
is only a single enemy, I felt an arrow would be easier to implement. Let's walk through the
code we need to add to improve our camera and add our locating arrow.

Designing a 2D Camera Chapter 11

[385]

Modifying our code
We are going to need to add several new classes for this chapter. Obviously, if we want a
camera in our game, we will need to add a Camera class. In previous versions of the code,
the rendering was done through direct calls to SDL. Because SDL does not have a camera as
a part of the API, we will need to add a RenderManager class that will act as an
intermediate step in our rendering process. This class will use the position of the camera to
determine where on our canvas we will be rendering our game object. We will be
increasing our gameplay area to four screens wide and four screens high. This creates a
gameplay problem, because now, we will need to be able to find the enemy spaceship when
we play. To solve this problem, we will need to create a locator user interface (UI) element
that points an arrow in the direction of the enemy spaceship.

Modifying the game.hpp file
Let's walk through the changes we will make to our game.hpp file. We begin by adding a
few #define macros:

#define LEVEL_WIDTH CANVAS_WIDTH*4
#define LEVEL_HEIGHT CANVAS_HEIGHT*4

This will define the width and height of our level to be four times as large as the width and
height of our canvas. At the end of our list of classes, we should add a Camera class, a
Locator class, and the RenderManager class, as follows:

class Ship;
class Particle;
class Emitter;
class Collider;
class Asteroid;
class Star;
class PlayerShip;
class EnemyShip;
class Projectile;
class ProjectilePool;
class FiniteStateMachine;
class Camera;
class RenderManager;
class Locator;

You will notice that the last three lines declare that a class called Camera, a class called
Locator, and a class called RenderManager will be defined later in the code.

Designing a 2D Camera Chapter 11

[386]

The Vector2D class definition
We will be expanding our Vector2D class definition to add an operator+ and operator-
overload for the + and - operators in our Vector2D class.

If you are not familiar with operator overloading, these are a convenient
way to allow classes to use C++ operators instead of functions. There is a
good tutorial that can help if you are looking for more information that is
available at https:/ ​/​www. ​tutorialspoint. ​com/ ​cplusplus/ ​cpp_
overloading. ​htm.

Here is what the new definition of the Vector2D class looks like:

class Vector2D {
 public:
 float x;
 float y;

 Vector2D();
 Vector2D(float X, float Y);

 void Rotate(float radians);
 void Normalize();
 float MagSQ();
 float Magnitude();
 Vector2D Project(Vector2D &onto);
 float Dot(Vector2D &vec);
 float FindAngle();

 Vector2D operator=(const Vector2D &vec);
 Vector2D operator*(const float &scalar);
 void operator+=(const Vector2D &vec);
 void operator-=(const Vector2D &vec);
 void operator*=(const float &scalar);
 void operator/=(const float &scalar);
 Vector2D operator-(const Vector2D &vec);
 Vector2D operator+(const Vector2D &vec);
};

You will notice that the last two lines of the definition are new:

Vector2D operator-(const Vector2D &vec);
Vector2D operator+(const Vector2D &vec);

https://www.tutorialspoint.com/cplusplus/cpp_overloading.htm
https://www.tutorialspoint.com/cplusplus/cpp_overloading.htm
https://www.tutorialspoint.com/cplusplus/cpp_overloading.htm
https://www.tutorialspoint.com/cplusplus/cpp_overloading.htm
https://www.tutorialspoint.com/cplusplus/cpp_overloading.htm
https://www.tutorialspoint.com/cplusplus/cpp_overloading.htm
https://www.tutorialspoint.com/cplusplus/cpp_overloading.htm
https://www.tutorialspoint.com/cplusplus/cpp_overloading.htm
https://www.tutorialspoint.com/cplusplus/cpp_overloading.htm
https://www.tutorialspoint.com/cplusplus/cpp_overloading.htm
https://www.tutorialspoint.com/cplusplus/cpp_overloading.htm
https://www.tutorialspoint.com/cplusplus/cpp_overloading.htm
https://www.tutorialspoint.com/cplusplus/cpp_overloading.htm
https://www.tutorialspoint.com/cplusplus/cpp_overloading.htm
https://www.tutorialspoint.com/cplusplus/cpp_overloading.htm
https://www.tutorialspoint.com/cplusplus/cpp_overloading.htm

Designing a 2D Camera Chapter 11

[387]

The Locator class definition
The Locator class is a new class for a UI element that will be an arrow pointing our player
in the direction of the enemy spaceship. We require a UI element to help the player find the
enemy spaceship when it does not appear on the canvas. Here is what the class definition
looks like:

class Locator {
 public:
 bool m_Active = false;
 bool m_LastActive = false;
 SDL_Texture *m_SpriteTexture;
 SDL_Rect m_dest = {.x = 0, .y = 0, .w = 32, .h = 32 };
 Vector2D m_Position;
 int m_ColorFlux;
 float m_Rotation;

 Locator();
 void SetActive();
 void Move();
 void Render();
};

The first two attributes are Boolean flags that have to do with the active state of the locator.
The m_Active attribute tells us whether the locator is currently active and should be
rendered. The m_LastActive attribute is a Boolean flag that tells us whether the locator
was active the last time a frame was rendered. The next two lines are the sprite texture and
the destination rectangle that will be used by the render manager to render this game
object:

 SDL_Texture *m_SpriteTexture;
 SDL_Rect m_dest = {.x = 0, .y = 0, .w = 32, .h = 32 };

After that, we have an x and y positional value in the m_Position attribute, an integer that
represents an RGB color value in m_ColorFlux, and a rotation value for the sprite in the
m_Rotation attribute. We will be using the m_ColorFlux attribute to cause the color of the
arrow to be redder when the enemy is close, and whiter when the enemy is further away.

The last four lines of this class definition are the class functions. There is a constructor, a
function that sets the status of the locator to active, and Move and Render functions:

 Locator();
 void SetActive();
 void Move();
 void Render();

Designing a 2D Camera Chapter 11

[388]

The Camera class definition
We now need to add the new Camera class definition. This class will be used to define our
viewport and the position of our camera. The Move function will be called for every frame.
Initially, Move will lock on to the position of our player and follow it around the level.
Later, we will change this functionality to create a more dynamic camera. This is what the
Camera class will look like:

class Camera {
 public:
 Vector2D m_Position;
 float m_HalfWidth;
 float m_HalfHeight;

 Camera(float width, float height);
 void Move();
};

The RenderManager class definition
All this time, we have been moving around our level without a background. This was fine
in previous chapters, where our level fitted exactly onto the canvas element. Now,
however, we are scrolling around our level with a camera. If nothing is moving in the
background, it can be hard to tell whether your spaceship is moving at all. To create the
illusion of movement in our game, we will need to add a background renderer. In addition
to that, we want all rendering in our game to be done using the camera we just created as
an offset. Because of this, we no longer want our game objects to call SDL_RenderCopy or
SDL_RenderCopyEx directly. Instead, we have created a RenderManager class that will
take responsibility for performing the rendering from within our game. We have a
RenderBackground function that will render a starfield as a background, and we have
created a Render function that will render our sprite textures using the camera as an offset.
This is what the RenderManager class definition looks like:

class RenderManager {
 public:
 const int c_BackgroundWidth = 800;
 const int c_BackgroundHeight = 600;
 SDL_Texture *m_BackgroundTexture;
 SDL_Rect m_BackgroundDest = {.x = 0, .y = 0, .w =
 c_BackgroundWidth, .h = c_BackgroundHeight };

 RenderManager();
 void RenderBackground();
 void Render(SDL_Texture *tex, SDL_Rect *src, SDL_Rect *dest, float

Designing a 2D Camera Chapter 11

[389]

 rad_rotation = 0.0, int alpha = 255, int red = 255, int green =
 255, int blue = 255);
};

The last thing we need to do in the game.hpp file is to create an external link to two new
object pointers of the Camera and RenderManager types. These will be the camera and
render manager objects that we will be using in this version of our game engine and are
external references to variables that we will define inside our main.cpp file:

extern Camera* camera;
extern RenderManager* render_manager;
extern Locator* locator;

The camera.cpp file
There are two functions we have defined in our Camera class; a constructor for our camera
object, and the Move function, which we will use to follow our player object. The following
is what we have in the camera.cpp file:

#include "game.hpp"
Camera::Camera(float width, float height) {
 m_HalfWidth = width / 2;
 m_HalfHeight = height / 2;
}

void Camera::Move() {
 m_Position = player->m_Position;
 m_Position.x -= CANVAS_WIDTH / 2;
 m_Position.y -= CANVAS_HEIGHT / 2;
}

The Camera constructor and Move functions are pretty bare bones in this implementation.
The constructor sets the half width and half height of the camera based on the width and
height that is passed in. The Move function sets the position of the camera to the position of
the player and then shifts the position of the camera by half of the canvas width and canvas
height to center the player. We have just built a starter camera and will add more
functionality to it later in this chapter.

Designing a 2D Camera Chapter 11

[390]

The render_manager.cpp file
We will be moving all of the calls we were making to render sprites inside our objects to the
RenderManager class. We need to do this because we will be using the position of our
camera to decide where on our canvas we will be rendering the sprites. We also need a
function that will render our background starfield. The first few lines of our
render_manager.cpp file will be including the game.hpp file and defining the virtual
filesystem location of our background image:

#include "game.hpp"
#define BACKGROUND_SPRITE_FILE (char*)"/sprites/starfield.png"

After that, we will define our constructor. The constructor will be used to load our
starfield.png file as an SDL_Surface object, and will then use that surface to create an
SDL_Texture object that we will use to render our background:

RenderManager::RenderManager() {
 SDL_Surface *temp_surface = IMG_Load(BACKGROUND_SPRITE_FILE);

 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;
 }

 m_BackgroundTexture = SDL_CreateTextureFromSurface(renderer,
 temp_surface);

 if(!m_BackgroundTexture) {
 printf("failed to create texture: %s\n", IMG_GetError());
 return;
 }
 SDL_FreeSurface(temp_surface);
}

The RenderBackground function will need to be called at the beginning of our render()
function that we have defined in the main loop. Because of this, the first two lines of
RenderBackground will have two functions that we will use to clear the renderer that was
previously called from the render() function in main.cpp to black:

SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
SDL_RenderClear(renderer);

Designing a 2D Camera Chapter 11

[391]

After that, we will set up a background rectangle that will be our rendering destination.
The size of starfield.png matches our canvas size (800 x 600), so we will need to render
it four times based on the camera's position. Because this is a repeating texture, we can use
a modulo operator (%) on the position of our camera to figure out how we want to offset the
starfield. As an example, if we had positioned our camera at x = 100, y = 200, we would
want to render the first copy of our starfield background at -100, -200. If we stopped
there, we would have 100 pixels of black space on the right, and 200 pixels of black space on
the bottom of our canvas. Because we would like a background in those areas, we will need
three additional renders of our background. If we render our background a second time at
700, -200 (adding canvas width to the previous render's x value), we would now have a
200-pixel strip of black at the bottom of the canvas. We could then render our starfield at
-100, 400 (adding canvas height to the original render's y value). That would leave us with
a 100 x 200 pixel of black in the bottom corner. The fourth render would need to add the
canvas width and canvas height to the original render's x and y value to fill in that corner.
That is what is going on in the RenderBackground function that we use to render the
repeating background to the canvas based on the position of the camera:

void RenderManager::RenderBackground() {
 SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
 SDL_RenderClear(renderer);
 SDL_Rect background_rect = {.x = 0, .y=0, .w=CANVAS_WIDTH,
 .h=CANVAS_HEIGHT};
 int start_x = (int)(camera->m_Position.x) % CANVAS_WIDTH;
 int start_y = (int)(camera->m_Position.y) % CANVAS_HEIGHT;
 background_rect.x -= start_x;
 background_rect.y -= start_y;
 SDL_RenderCopy(renderer, m_BackgroundTexture, NULL,
 &background_rect);
 background_rect.x += CANVAS_WIDTH;
 SDL_RenderCopy(renderer, m_BackgroundTexture, NULL,
 &background_rect);
 background_rect.x -= CANVAS_WIDTH;
 background_rect.y += CANVAS_HEIGHT;
 SDL_RenderCopy(renderer, m_BackgroundTexture, NULL,
 &background_rect);
 background_rect.x += CANVAS_WIDTH;
 SDL_RenderCopy(renderer, m_BackgroundTexture, NULL,
 &background_rect);
 }

Designing a 2D Camera Chapter 11

[392]

The last function we define in render_manager.cpp is our Render function. After
defining this function, we will need to find every place where we have previously called
SDL_RenderCopy and SDL_RenderCopyEx in our code, and replace those calls with calls to
our render manager's Render function. This function will not only render our sprite based
on the position of our camera, but it will also be used to set color and alpha channel
modifications. Here is the code from the Render function in its entirety:

void RenderManager::Render(SDL_Texture *tex, SDL_Rect *src, SDL_Rect
*dest, float rad_rotation,int alpha, int red, int green, int blue) {

 SDL_Rect camera_dest = *dest;
 if(camera_dest.x <= CANVAS_WIDTH &&
 camera->m_Position.x >= LEVEL_WIDTH - CANVAS_WIDTH) {
 camera_dest.x += (float)LEVEL_WIDTH;
 }
 else if(camera_dest.x >= LEVEL_WIDTH - CANVAS_WIDTH &&
 camera->m_Position.x <= CANVAS_WIDTH) {
 camera_dest.x -= (float)LEVEL_WIDTH;
 }
 if(camera_dest.y <= CANVAS_HEIGHT &&
 camera->m_Position.y >= LEVEL_HEIGHT - CANVAS_HEIGHT) {
 camera_dest.y += (float)LEVEL_HEIGHT;
 }
 else if(camera_dest.y >= LEVEL_HEIGHT - CANVAS_HEIGHT &&
 camera->m_Position.y <= CANVAS_HEIGHT) {
 camera_dest.y -= (float)LEVEL_HEIGHT;
 }
 camera_dest.x -= (int)camera->m_Position.x;
 camera_dest.y -= (int)camera->m_Position.y;

 SDL_SetTextureAlphaMod(tex,
 (Uint8)alpha);

 SDL_SetTextureColorMod(tex,
 (Uint8)red,
 (Uint8)green,
 (Uint8)blue);

 if(rad_rotation != 0.0) {
 float degree_rotation = RAD_TO_DEG(rad_rotation);
 SDL_RenderCopyEx(renderer, tex, src, &camera_dest,
 degree_rotation, NULL, SDL_FLIP_NONE);
 }
 else {
 SDL_RenderCopy(renderer, tex, src, &camera_dest);
 }
}

Designing a 2D Camera Chapter 11

[393]

The first thing this function does is create a new SDL_Rect object, which we will use to
modify the values in the dest variable passed into the Render function. Because we have a
level that wraps the x and y coordinates, we will want to render objects on the far left of our
level to the right if we are on the right edge of our level. Likewise, if we are on the far-left
side of our level, we will want to render objects positioned on the far-right side of our level
to our right. This allows our spaceship to loop around from the left side of our level back to
the right side of our level, and vice versa. The following is the code that adjusts the camera
position for wrapping objects to the left and right of the level:

if(camera_dest.x <= CANVAS_WIDTH &&
 camera->m_Position.x >= LEVEL_WIDTH - CANVAS_WIDTH) {
 camera_dest.x += (float)LEVEL_WIDTH;
}
else if(camera_dest.x >= LEVEL_WIDTH - CANVAS_WIDTH &&
 camera->m_Position.x <= CANVAS_WIDTH) {
 camera_dest.x -= (float)LEVEL_WIDTH;
}

After this has been done, we will do something similar to allow for wrapping the position
of objects at the top and the bottom of our level:

if(camera_dest.y <= CANVAS_HEIGHT &&
 camera->m_Position.y >= LEVEL_HEIGHT - CANVAS_HEIGHT) {
 camera_dest.y += (float)LEVEL_HEIGHT;
}
else if(camera_dest.y >= LEVEL_HEIGHT - CANVAS_HEIGHT &&
 camera->m_Position.y <= CANVAS_HEIGHT) {
 camera_dest.y -= (float)LEVEL_HEIGHT;
}

Next, we need to subtract the camera's position from the camera_dest x and y coordinates,
and set the values for our alpha and color mod:

camera_dest.x -= (int)camera->m_Position.x;
camera_dest.y -= (int)camera->m_Position.y;
SDL_SetTextureAlphaMod(tex,
 (Uint8)alpha);

SDL_SetTextureColorMod(tex,
 (Uint8)red,
 (Uint8)green,
 (Uint8)blue);

Designing a 2D Camera Chapter 11

[394]

At the end of the function, we will call SDL_RenderCopyEx if our sprite is rotated, and
SDL_RenderCopy if it is not:

if(rad_rotation != 0.0) {
 float degree_rotation = RAD_TO_DEG(rad_rotation);
 SDL_RenderCopyEx(renderer, tex, src, &camera_dest,
 degree_rotation, NULL, SDL_FLIP_NONE);
}
else {
 SDL_RenderCopy(renderer, tex, src, &camera_dest);
}

Modifying main.cpp
To implement our camera, we will need to make several modifications to our main.cpp
file. We will need to add some new global variables for our camera, render manager, and
locator. We will need to modify our move function to include calls to move our camera and
our locator. We will modify our render function to render our background and locator.
Finally, we will need to add more initialization code to our main function.

New global variables
We need to create three new global variables near the beginning of our main.cpp file. We
will need object pointers to RenderManager, Camera, and Locator. This is what those
declarations look like:

Camera* camera;
RenderManager* render_manager;
Locator* locator;

Modifying the move function
We will need to modify our move function to move our camera and our locator object. We
will need to add the following two lines at the end of our move function:

 camera->Move();
 locator->Move();

Designing a 2D Camera Chapter 11

[395]

The following is the move function in its entirety:

void move() {
 player->Move();
 enemy->Move();
 projectile_pool->MoveProjectiles();
 Asteroid* asteroid;
 std::vector<Asteroid*>::iterator it;
 int i = 0;
 for(it = asteroid_list.begin(); it != asteroid_list.end(); it++) {
 asteroid = *it;
 if(asteroid->m_Active) {
 asteroid->Move();
 }
 }
 star->Move();
 camera->Move();
 locator->Move();
}

Modifying the render function
We will add a new line to the very beginning of the render function. This line will render
the background starfield and move it based on the camera position:

 render_manager->RenderBackground();

After that, we will need to add a line to the end of the render function. This line will need
to come immediately before the SDL_RenderPresent call, which will still need to be the
last line in this function:

 locator->Render();

This is what the render() function looks like in its entirety:

void render() {
 render_manager->RenderBackground();
 player->Render();
 enemy->Render();
 projectile_pool->RenderProjectiles();

 Asteroid* asteroid;
 std::vector<Asteroid*>::iterator it;
 for(it = asteroid_list.begin(); it != asteroid_list.end(); it++) {
 asteroid = *it;
 asteroid->Render();

Designing a 2D Camera Chapter 11

[396]

 }
 star->Render();
 locator->Render();

 SDL_RenderPresent(renderer);
}

Modifying the main function
The final modifications will be to initialization that happens in the main function. We will
need to create new objects for the camera, render_manager, and locator pointers we
defined earlier:

camera = new Camera(CANVAS_WIDTH, CANVAS_HEIGHT);
render_manager = new RenderManager();
locator = new Locator();

In the previous version of our code, we had seven calls to new Asteroid and used
asteroid_list.push_back to push those seven new asteroids into our list of asteroids.
We will now need to create far more asteroids than seven, so, instead of doing them as
individual calls, we will be using a double for loop to create and spread out our asteroids
all over the gameplay area. To do this, we will first need to remove all of those earlier calls
to create and push asteroids:

asteroid_list.push_back(new Asteroid(
 200, 50, 0.05,
 DEG_TO_RAD(10)));
asteroid_list.push_back(new Asteroid(
 600, 150, 0.03,
 DEG_TO_RAD(350)));
asteroid_list.push_back(new Asteroid(
 150, 500, 0.05,
 DEG_TO_RAD(260)));
asteroid_list.push_back(new Asteroid(
 450, 350, 0.01,
 DEG_TO_RAD(295)));
asteroid_list.push_back(new Asteroid(
 350, 300, 0.08,
 DEG_TO_RAD(245)));
asteroid_list.push_back(new Asteroid(
 700, 300, 0.09,
 DEG_TO_RAD(280)));
asteroid_list.push_back(new Asteroid(
 200, 450, 0.03,
 DEG_TO_RAD(40)));

Designing a 2D Camera Chapter 11

[397]

Once you have removed all of the preceding code, we will add the following code to create
our new asteroids and space them semi-randomly throughout the gameplay area:

int asteroid_x = 0;
int asteroid_y = 0;
int angle = 0;

// SCREEN 1
for(int i_y = 0; i_y < 8; i_y++) {
 asteroid_y += 100;
 asteroid_y += rand() % 400;
 asteroid_x = 0;

 for(int i_x = 0; i_x < 12; i_x++) {
 asteroid_x += 66;
 asteroid_x += rand() % 400;
 int y_save = asteroid_y;
 asteroid_y += rand() % 400 - 200;
 angle = rand() % 359;
 asteroid_list.push_back(new Asteroid(
 asteroid_x, asteroid_y,
 get_random_float(0.5, 1.0),
 DEG_TO_RAD(angle)));
 asteroid_y = y_save;
 }
}

Modifying asteroid.cpp
Now that we are using a render manager to render all of our game objects, we will need to
go through our various game objects and modify them to render through the render
manager instead of directly. The first file we will modify is asteroid.cpp.
Inside asteroid.cpp, we have the Asteroid::Render() function. In previous chapters,
this function would render the asteroid sprite directly through SDL using a call to
SDL_RenderCopyEx. Now that we have the render_manager object that we defined in our
main.cpp file, we will be using that render manager to render our sprite indirectly. The
RenderManager::Render function will use the camera to adjust the location on the canvas
where the sprite will be rendered. The first modification we need to make to the
Asteroid::Render() function is to remove the following lines:

 SDL_RenderCopyEx(renderer, m_SpriteTexture,
 &m_src, &m_dest,
 RAD_TO_DEG(m_Rotation), NULL, SDL_FLIP_NONE);

Designing a 2D Camera Chapter 11

[398]

After removing the call to SDL_RenderCopyEX, we need to add the following call to the
Render function within the render_manager object:

 render_manager->Render(m_SpriteTexture, &m_src, &m_dest, m_Rotation);

The new version of the Asteroid::Render function will now look like this:

void Asteroid::Render() {
 m_Explode->Move();
 m_Chunks->Move();
 if(m_Active == false) {
 return;
 }
 m_src.x = m_dest.w * m_CurrentFrame;
 m_dest.x = m_Position.x + m_Radius / 2;
 m_dest.y = m_Position.y + m_Radius / 2;
 render_manager->Render(m_SpriteTexture, &m_src, &m_dest, m_Rotation);
}

Modifying collider.cpp
We will need to modify one function inside the collider.cpp file. The previous version of
the WrapPosition function checked to see whether a Collider object moved off the
canvas to one side or another, and, if it did, the function would move the collider to the
opposite side. This mimicked the behavior of the classic Atari arcade game, Asteroids. In
Atari Asteroids, if an asteroid or the player's spaceship moved off the screen on one side,
that asteroid (or spaceship) would appear on the opposite side of the game screen. Here is
the previous version of our wrap code:

void Collider::WrapPosition() {
 if(m_Position.x > CANVAS_WIDTH + m_Radius) {
 m_Position.x = -m_Radius;
 }
 else if(m_Position.x < -m_Radius) {
 m_Position.x = CANVAS_WIDTH;
 }

 if(m_Position.y > CANVAS_HEIGHT + m_Radius) {
 m_Position.y = -m_Radius;
 }
 else if(m_Position.y < -m_Radius) {
 m_Position.y = CANVAS_HEIGHT;
 }
}

Designing a 2D Camera Chapter 11

[399]

Because our game now extends beyond a single canvas, we no longer want to wrap if an
object moves off the canvas. Instead, we want to wrap the object around if it falls outside
the bounds of the level. Here is the new version of the WrapPosition function:

void Collider::WrapPosition() {
 if(m_Position.x > LEVEL_WIDTH) {
 m_Position.x -= LEVEL_WIDTH;
 }
 else if(m_Position.x < 0) {
 m_Position.x += LEVEL_WIDTH;
 }

 if(m_Position.y > LEVEL_HEIGHT) {
 m_Position.y -= LEVEL_HEIGHT;
 }
 else if(m_Position.y < 0) {
 m_Position.y += LEVEL_HEIGHT;
 }
}

Modifying enemy_ship.cpp
A small modification to the enemy_ship.cpp file is necessary. The EnemyShip constructor
function will now be setting the x and y values on the m_Position attribute. We need to
set the position to 810 and 800, because the level is now much larger than the canvas size.
We will set the m_Position attribute at the very top of the EnemyShip constructor. This is
what the beginning of the constructor will look like after the changes:

EnemyShip::EnemyShip() {
 m_Position.x = 810.0;
 m_Position.y = 800.0;

Designing a 2D Camera Chapter 11

[400]

Modifying finite_state_machine.cpp
We will need to make a small change to the finite_state_machine.cpp file. Inside the
FiniteStateMachine::AvoidForce() function, there are several references to the
canvas dimensions that must be changed to reference the level dimensions now that the
size of our level and the size of our canvas are different. Previously, we had set the x and y
attributes of the star_avoid variable to the following canvas-based values:

star_avoid.x = CANVAS_WIDTH / 2;
star_avoid.y = CANVAS_HEIGHT / 2;

These lines must be changed to reference LEVEL_WIDTH and LEVEL_HEIGHT:

star_avoid.x = LEVEL_WIDTH / 2;
star_avoid.y = LEVEL_HEIGHT / 2;

We must do the same thing to the avoid_vec variable. Here is what we had previously:

avoid_vec.x = CANVAS_WIDTH / 2;
avoid_vec.y = CANVAS_HEIGHT / 2;

That must also be changed to reference LEVEL_WIDTH and LEVEL_HEIGHT:

avoid_vec.x = LEVEL_WIDTH / 2;
avoid_vec.y = LEVEL_HEIGHT / 2;

The new version of the FiniteState::AvoidForce function in its entirety is as follows:

void FiniteStateMachine::AvoidForce() {
 Vector2D start_corner;
 Vector2D end_corner;
 Vector2D avoid_vec;
 Vector2D dist;
 float closest_square = 999999999999.0;
 float msq;
 Vector2D star_avoid;
 star_avoid.x = LEVEL_WIDTH / 2;
 star_avoid.y = LEVEL_HEIGHT / 2;
 star_avoid -= m_Ship->m_Position;
 msq = star_avoid.MagSQ();

 if(msq >= c_StarAvoidDistSQ) {
 start_corner = m_Ship->m_Position;
 start_corner.x -= c_AvoidDist;
 start_corner.y -= c_AvoidDist;
 end_corner = m_Ship->m_Position;
 end_corner.x += c_AvoidDist;

Designing a 2D Camera Chapter 11

[401]

 end_corner.y += c_AvoidDist;

 Asteroid* asteroid;
 std::vector<Asteroid*>::iterator it;

 int i = 0;
 for(it = asteroid_list.begin(); it != asteroid_list.end(); it++)
{
 asteroid = *it;
 if(asteroid->m_Active == true &&
 asteroid->SteeringRectTest(start_corner, end_corner)) {
 dist = asteroid->m_Position;
 dist -= m_Ship->m_Position;
 msq = dist.MagSQ();

 if(msq <= closest_square) {
 closest_square = msq;
 avoid_vec = asteroid->m_Position;
 }
 }
 }
 // LOOP OVER PROJECTILES
 Projectile* projectile;
 std::vector<Projectile*>::iterator proj_it;

 for(proj_it = projectile_pool->m_ProjectileList.begin();
 proj_it != projectile_pool->m_ProjectileList.end(); proj_it++
) {
 projectile = *proj_it;
 if(projectile->m_Active == true &&
 projectile->SteeringRectTest(start_corner, end_corner))
{
 dist = projectile->m_Position;
 dist -= m_Ship->m_Position;
 msq = dist.MagSQ();

 if(msq <= closest_square) {
 closest_square = msq;
 avoid_vec = projectile->m_Position;
 }
 }
 }
 if(closest_square != 999999999999.0) {
 avoid_vec -= m_Ship->m_Position;
 avoid_vec.Normalize();
 float rot_to_obj = avoid_vec.FindAngle();
 if(std::abs(rot_to_obj - m_Ship->m_Rotation) < 0.75) {
 if(rot_to_obj >= m_Ship->m_Rotation) {

Designing a 2D Camera Chapter 11

[402]

 m_Ship->RotateLeft();
 }
 else {
 m_Ship->RotateRight();
 }
 }
 m_Ship->m_Velocity -= avoid_vec * delta_time *
 c_ObstacleAvoidForce;
 }
 }
 else {
 avoid_vec.x = LEVEL_WIDTH / 2;
 avoid_vec.y = LEVEL_HEIGHT / 2;
 avoid_vec -= m_Ship->m_Position;
 avoid_vec.Normalize();
 float rot_to_obj = avoid_vec.FindAngle();
 if(std::abs(rot_to_obj - m_Ship->m_Rotation) < 0.75) {
 if(rot_to_obj >= m_Ship->m_Rotation) {
 m_Ship->RotateLeft();
 }
 else {
 m_Ship->RotateRight();
 }
 }
 m_Ship->m_Velocity -= avoid_vec * delta_time * c_StarAvoidForce;
 }
}

Modifying particle.cpp
We will need to modify the Render function inside the particle.cpp file to render the
particle through render_manager instead of directly through calls to SDL. The old version
of the Particle::Render function is as follows:

void Particle::Render() {
 SDL_SetTextureAlphaMod(m_sprite_texture,
 (Uint8)m_alpha);

 if(m_color_mod == true) {
 SDL_SetTextureColorMod(m_sprite_texture,
 m_current_red,
 m_current_green,
 m_current_blue);
 }

 if(m_align_rotation == true) {

Designing a 2D Camera Chapter 11

[403]

 SDL_RenderCopyEx(renderer, m_sprite_texture, &m_src, &m_dest,
 m_rotation, NULL, SDL_FLIP_NONE);
 }
 else {
 SDL_RenderCopy(renderer, m_sprite_texture, &m_src, &m_dest);
 }
}

The new Particle::Render function will make a single call to the Render function
through the render_manager object:

void Particle::Render() {
 render_manager->Render(m_sprite_texture, &m_src, &m_dest, m_rotation,
 m_alpha, m_current_red, m_current_green,
m_current_blue);
}

Modifying player_ship.cpp
We will need to make one small modification to the player_ship.cpp file. Like the
change that we made to the enemy_ship.cpp file, we will need to add two lines to set the
x and y values in the m_Position attribute.

We will need to remove the first two lines of the PlayerShip::PlayerShip() constructor
function:

m_Position.x = CANVAS_WIDTH - 210.0;
m_Position.y = CANVAS_HEIGHT - 200.0;

These are the changes we will need to make to the PlayerShip::PlayerShip()
constructor function:

PlayerShip::PlayerShip() {
 m_Position.x = LEVEL_WIDTH - 810.0;
 m_Position.y = LEVEL_HEIGHT - 800.0;

Designing a 2D Camera Chapter 11

[404]

Modifying projectile.cpp
We will need to make a small change to the projectile.cpp file. As in other game
objects, the Render function previously made calls directly to the SDL function to render
the game object. Instead of making those calls to SDL, we will need to make a call through
the render_manager object. We will need to remove the following lines from the
Projectile::Render() function:

int return_val = SDL_RenderCopy(renderer, m_SpriteTexture,
 &src, &dest);
if(return_val != 0) {
 printf("SDL_Init failed: %s\n", SDL_GetError());
}

In place of these lines, we will need to add a call to the Render function on the
render_manager object:

 render_manager->Render(m_SpriteTexture, &src, &dest);

This is what the new version of the Projectile::Render() function will look like:

void Projectile::Render() {
 dest.x = m_Position.x + 8;
 dest.y = m_Position.y + 8;
 dest.w = c_Width;
 dest.h = c_Height;

 src.x = 16 * m_CurrentFrame;

 render_manager->Render(m_SpriteTexture, &src, &dest);
}

Modifying shield.cpp
As with many other game objects, the Shield::Render() function will need to be
modified so that it no longer calls SDL directly and instead calls the Render function from
the render_manager object. Inside the Shield::Render() function, we will need to
remove the following calls to SDL:

SDL_SetTextureColorMod(m_SpriteTexture,
 color_red,
 color_green,
 0);

SDL_RenderCopyEx(renderer, m_SpriteTexture,

Designing a 2D Camera Chapter 11

[405]

 &m_src, &m_dest,
 RAD_TO_DEG(m_Ship->m_Rotation),
 NULL, SDL_FLIP_NONE);

We will be replacing these lines with a single call to Render:

render_manager->Render(m_SpriteTexture, &m_src, &m_dest,
m_Ship->m_Rotation,
 255, color_red, color_green, 0);

This is what the new version of the Shield::Render function looks like in its entirety:

void Shield::Render() {
 if(m_Active) {
 int color_green = m_ttl / 100 + 1;
 int color_red = 255 - color_green;

 m_src.x = m_CurrentFrame * m_dest.w;

 m_dest.x = m_Ship->m_Position.x;
 m_dest.y = m_Ship->m_Position.y;
 render_manager->Render(m_SpriteTexture, &m_src, &m_dest,
m_Ship->m_Rotation,
 255, color_red, color_green, 0);
 }
}

Modifying ship.cpp
Modifying the Render functions within our game objects is becoming pretty routine. As in
other objects where we have modified the Render function, we will need to remove all
direct calls to SDL. Here is the code that we will need to remove from the Render function:

float degrees = (m_Rotation / PI) * 180.0;
int return_code = SDL_RenderCopyEx(renderer, m_SpriteTexture,
 &src, &dest,
 degrees, NULL, SDL_FLIP_NONE);
if(return_code != 0) {
 printf("failed to render image: %s\n", IMG_GetError());
}

Designing a 2D Camera Chapter 11

[406]

After removing these lines, we will need to add a line to call the
render_manager->Render function:

 render_manager->Render(m_SpriteTexture, &src, &dest, m_Rotation);

Modifying star.cpp
We will need to modify two functions inside the star.cpp file. First, we will need to
modify the position of the star in the Star::Star() constructor function. In the version of
the Star constructor from the previous chapter, we set the position of the star to the middle
of the canvas. Now, it must be set to the middle of the level. Here are the lines that were in
the original version of the constructor:

m_Position.x = CANVAS_WIDTH / 2;
m_Position.y = CANVAS_HEIGHT / 2;

We will now change these to positions relative to LEVEL_WIDTH and LEVEL_HEIGHT
instead of CANVAS_WIDTH and CANVAS_HEIGHT:

m_Position.x = LEVEL_WIDTH / 2;
m_Position.y = LEVEL_HEIGHT / 2;

After making the preceding change to the Star::Star constructor function, we will need
to make a change to the Star::Render function. We will need to remove the call to
SDL_RenderCopy and replace it with a call to the Render function on the
render_manager object. This is what the previous version of the Render function looked
like:

void Star::Render() {
 Emitter* flare;
 std::vector<Emitter*>::iterator it;
 for(it = m_FlareList.begin(); it != m_FlareList.end(); it++) {
 flare = *it;
 flare->Move();
 }
 m_src.x = m_dest.w * m_CurrentFrame;
 SDL_RenderCopy(renderer, m_SpriteTexture,
 &m_src, &m_dest);
}

We will modify it to the following:

void Star::Render() {
 Emitter* flare;
 std::vector<Emitter*>::iterator it;

Designing a 2D Camera Chapter 11

[407]

 for(it = m_FlareList.begin(); it != m_FlareList.end(); it++) {
 flare = *it;
 flare->Move();
 }
 m_src.x = m_dest.w * m_CurrentFrame;
 render_manager->Render(m_SpriteTexture, &m_src, &m_dest);
}

Modifying vector.cpp
We will need to add two new overloaded operators to our Vector2D class. We will need to
override operator- and operator+. This code is pretty straightforward. It will use the
already overloaded operator-= and operator+= to allow us to add and subtract vectors
from each other. Here is the new code for those overloaded operators:

Vector2D Vector2D::operator-(const Vector2D &vec) {
 Vector2D return_vec = *this;
 return_vec -= vec;
 return return_vec;
}

Vector2D Vector2D::operator+(const Vector2D &vec) {
 Vector2D return_vec = *this;
 return_vec += vec;
 return return_vec;
}

Compiling and playing with a locked-on camera
If we compile and test what we have right now, we should be able to move around our
level and see a camera that directly tracks the player's position. We should have a locator
arrow that helps us to find the enemy spaceship. Here is the command-line call to
Emscripten that we can use to build our project:

em++ asteroid.cpp camera.cpp collider.cpp emitter.cpp enemy_ship.cpp
finite_state_machine.cpp locator.cpp main.cpp particle.cpp player_ship.cpp
projectile_pool.cpp projectile.cpp range.cpp render_manager.cpp shield.cpp
ship.cpp star.cpp vector.cpp -o index.html --preload-file sprites -
std=c++17 -s USE_WEBGL2=1 -s USE_SDL=2 -s USE_SDL_IMAGE=2 -s
SDL2_IMAGE_FORMATS=["png"] -s USE_SDL_IMAGE=2 -s SDL2_IMAGE_FORMATS=["png"]

Designing a 2D Camera Chapter 11

[408]

Run the preceding line on the Windows or Linux command prompt. After running this,
serve the index.html file from a web server and open it in a browser such as Chrome or
Firefox.

A more advanced camera
Our current camera is functional, but a little boring. It focuses exclusively on the player,
which works all right, but could be significantly improved. For starters, as the designers of
Defender realized, it is more important to put the focus of the camera in the direction the
player is moving, instead of directly on the player. To accomplish this, we will add projected
focus to our camera. That will look at the current velocity of the player's ship, and will move
the camera forward in the direction of that velocity. There are times, however, when you
may still want the focus of your camera behind the player. To help with this, we will add
some camera attractors. Camera attractors are objects that draw the camera's attention
toward them. If the enemy appears behind the player, it may be more important to move
the camera back somewhat to help keep the enemy on screen. If the enemy is shooting at
you, it may be more important to draw the cameras toward the projectiles that are heading
your way.

Changes to games.hpp
The first change we need to make is to our games.hpp file. Having a camera follow our
player is easy. There is not any snapping or jarring movement of the camera because the
player's ship does not move that way. If we are going to use more advanced features, such
as attractors and forward focus, we will need to calculate the desired position of our
camera, and then transition smoothly to that position. To support this, we will need to add
a m_DesiredPosition attribute to our Camera class. The following is the new line we
must add:

 Vector2D m_DesiredPosition;

This is what the Camera class in our games.hpp file will look like after we add it:

class Camera {
 public:
 Vector2D m_Position;
 Vector2D m_DesiredPosition;

 float m_HalfWidth;
 float m_HalfHeight;

Designing a 2D Camera Chapter 11

[409]

 Camera(float width, float height);
 void Move();
};

Changes to camera.cpp
Now that we have added a desired position attribute to the class definition, we need to
change our camera.cpp file. We need to modify the constructor to set the position of the
camera to the position of the player's ship. Here are the lines we will need to add to our
constructor:

m_Position = player->m_Position;
m_Position.x -= CANVAS_WIDTH / 2;
m_Position.y -= CANVAS_HEIGHT / 2;

The following is the constructor after we have added those lines:

Camera::Camera(float width, float height) {
 m_HalfWidth = width / 2;
 m_HalfHeight = height / 2;

 m_Position = player->m_Position;
 m_Position.x -= CANVAS_WIDTH / 2;
 m_Position.y -= CANVAS_HEIGHT / 2;
}

Our Camera::Move function will be entirely different. You might as well remove all of the
lines of code that are in the current version of Camera::Move, because none of them are
useful anymore. Our new desired position attribute will be set at the beginning of the Move
function, the way that the position was set previously. To do this, add the following lines to
the empty version of Camera::Move that you created by deleting everything from that
function:

m_DesiredPosition = player->m_Position;
m_DesiredPosition.x -= CANVAS_WIDTH / 2;
m_DesiredPosition.y -= CANVAS_HEIGHT / 2;

If the player is not alive, we will want our camera to settle down on this position. After the
player is dead, we will not want any attractors to affect the position of the camera. Moving
the player camera too much after the player dies looks a little strange, so add the following
lines of code that check whether the player's ship is active and, if not, moves the position of
the camera toward the desired position and, then returns from the Move function:

if(player->m_Active == false) {
 m_Position.x = m_Position.x + (m_DesiredPosition.x - m_Position.x)

Designing a 2D Camera Chapter 11

[410]

 * delta_time;
 m_Position.y = m_Position.y + (m_DesiredPosition.y - m_Position.y)
 * delta_time;
 return;
}

We are going to make all of the active projectiles in our game attractors. If an enemy is
shooting at us, it is a threat to our ship and should therefore draw the camera's attention. If
we shoot projectiles, that also indicates the direction where we are focused. We are going to
use a for loop to loop over all of the projectiles in our game, and, if that projectile is active,
we will use its position to shift the desired position of our camera. Here is the code:

Projectile* projectile;
std::vector<Projectile*>::iterator it;
Vector2D attractor;
for(it = projectile_pool->m_ProjectileList.begin(); it !=
projectile_pool->m_ProjectileList.end(); it++) {
 projectile = *it;
 if(projectile->m_Active) {
 attractor = projectile->m_Position;
 attractor -= player->m_Position;
 attractor.Normalize();
 attractor *= 5;
 m_DesiredPosition += attractor;
 }
}

After using our attractors to shift the desired position of the camera, we will modify the
m_DesiredPosition variable based on the velocity of the player's ship with the following
line of code:

m_DesiredPosition += player->m_Velocity * 2;

Because our level wraps around, and if you exit from one side of the level you reappear on
the opposite side, we will need to adjust the desired position of our camera to account for
this. Without the following lines of code, the camera makes a sudden jarring transition
when the player moves outside the level bounds on one side and reappears on the other:

if(abs(m_DesiredPosition.x - m_Position.x) > CANVAS_WIDTH) {
 if(m_DesiredPosition.x > m_Position.x) {
 m_Position.x += LEVEL_WIDTH;
 }
 else {
 m_Position.x -= LEVEL_WIDTH;
 }
}

Designing a 2D Camera Chapter 11

[411]

if(abs(m_DesiredPosition.y - m_Position.y) > CANVAS_HEIGHT) {
 if(m_DesiredPosition.y > m_Position.y) {
 m_Position.y += LEVEL_HEIGHT;
 }
 else {
 m_Position.y -= LEVEL_HEIGHT;
 }
}

Finally, we will add a few lines of code to smoothly transition the camera's current position
to the desired position. We use delta_time to make this transition take about a second.
Setting our camera position directly instead of using the desired position and transitioning
results in jerky movements when new attractors enter the game. Here is the transition code:

m_Position.x = m_Position.x + (m_DesiredPosition.x - m_Position.x) *
delta_time;
m_Position.y = m_Position.y + (m_DesiredPosition.y - m_Position.y) *
delta_time;

Now that we have seen all of the lines of our Move function separately, let's take a look at
the completed new version of the function:

void Camera::Move() {
 m_DesiredPosition = player->m_Position;
 m_DesiredPosition.x -= CANVAS_WIDTH / 2;
 m_DesiredPosition.y -= CANVAS_HEIGHT / 2;

 if(player->m_Active == false) {
 m_Position.x = m_Position.x + (m_DesiredPosition.x - m_Position.x)
 * delta_time;
 m_Position.y = m_Position.y + (m_DesiredPosition.y - m_Position.y)
 * delta_time;
 return;
 }

 Projectile* projectile;
 std::vector<Projectile*>::iterator it;
 Vector2D attractor;

 for(it = projectile_pool->m_ProjectileList.begin();
 it != projectile_pool->m_ProjectileList.end(); it++) {
 projectile = *it;
 if(projectile->m_Active) {
 attractor = projectile->m_Position;
 attractor -= player->m_Position;
 attractor.Normalize();
 attractor *= 5;
 m_DesiredPosition += attractor;

Designing a 2D Camera Chapter 11

[412]

 }
 }
 m_DesiredPosition += player->m_Velocity * 2;

 if(abs(m_DesiredPosition.x - m_Position.x) > CANVAS_WIDTH) {
 if(m_DesiredPosition.x > m_Position.x) {
 m_Position.x += LEVEL_WIDTH;
 }
 else {
 m_Position.x -= LEVEL_WIDTH;
 }
 }

 if(abs(m_DesiredPosition.y - m_Position.y) > CANVAS_HEIGHT) {
 if(m_DesiredPosition.y > m_Position.y) {
 m_Position.y += LEVEL_HEIGHT;
 }
 else {
 m_Position.y -= LEVEL_HEIGHT;
 }
 }

 m_Position.x = m_Position.x + (m_DesiredPosition.x - m_Position.x) *
 delta_time;
 m_Position.y = m_Position.y + (m_DesiredPosition.y - m_Position.y) *
 delta_time;
}

Compiling and playing with the advanced camera
When you have built this version, you will notice that the camera moves ahead in the
direction your ship is moving. If you start shooting, it will move even further ahead. When
the enemy spaceship approaches, and it shoots at you, the camera should also drift in the
direction of those projectiles. As before, you can compile and test the code by entering the
following line on the Windows or Linux command prompt:

em++ asteroid.cpp camera.cpp collider.cpp emitter.cpp enemy_ship.cpp
finite_state_machine.cpp locator.cpp main.cpp particle.cpp player_ship.cpp
projectile_pool.cpp projectile.cpp range.cpp render_manager.cpp shield.cpp
ship.cpp star.cpp vector.cpp -o camera.html --preload-file sprites -
std=c++17 -s USE_WEBGL2=1 -s USE_SDL=2 -s USE_SDL_IMAGE=2 -s
SDL2_IMAGE_FORMATS=["png"] -s USE_SDL_IMAGE=2 -s SDL2_IMAGE_FORMATS=["png"]

Designing a 2D Camera Chapter 11

[413]

Now that we have a compiled version of our app, we should run it. The new version
should look something like this:

Figure 11.1: New camera version with lines added to divide the screen

As you can see, the camera is not centering the player's spaceship. The focus of the camera
is primarily projected in the direction of the player ship's velocity, dragged slightly to the
right and up because of the enemy ship and the projectile.

Do not forget that you must run WebAssembly apps using a web server,
or with emrun. If you would like to run your WebAssembly app using
emrun, you must compile it with the --emrun flag. The web browser
requires a web server to stream the WebAssembly module. If you attempt
to open an HTML page that uses WebAssembly in a browser directly from
your hard drive, that WebAssembly module will not load.

Designing a 2D Camera Chapter 11

[414]

Summary
We began this chapter by learning about the history of cameras in video games. The first
camera we discussed is the simplest type of camera, sometimes called a locked-on camera.
That is the kind of camera that tracks the location of the player exactly. After that, we
learned about alternatives to a locked-on camera in 2D space, including cameras that lead
the player. We talked about projected focus cameras, and how they predict the movement
of the player and project the position of the camera forward based on the direction in which
the player is moving. We then discussed camera attractors, and how they can draw the
focus of the camera toward objects of interest. After discussing the types of cameras, we
created a camera object and designed it to implement projected focus and camera attractors.
We implemented a render manager and modified all of our game objects to render through
the RenderManager class. We then created a locator object to help us find the enemy
spaceship when it no longer appears on the canvas.

In the next chapter, we will learn how to add sound effects to our game.

12
Sound FX

The current state of sound on the web is a bit of a mess and has been for quite a while. For a
long time, there were issues with loading MP3 versus OGG files based on which browser
you were using. Recently, there have been issues with browsers blocking sounds that play
automatically to prevent annoying audio spam. This feature in Chrome sometimes seems to
create problems when playing audio in our game. I have noticed that, if Chrome does not
initially play the audio, it will usually play if you reload the page. I have not had this
problem on Firefox.

You will need to include several images and audio files in your build to
make this project work. Make sure that you include the
/Chapter12/sprites/ folder as well as the /Chapter12/audio/ folder
from the project's GitHub. If you haven't yet downloaded the GitHub
project, you can get it online at https:/ ​/​github. ​com/ ​PacktPublishing/
Hands- ​On- ​Game- ​Development- ​with- ​WebAssembly.

Emscripten’s support for audio playback is not as good as I would like it to be. On the
message boards, Emscripten's defenders are quick to blame the state of audio on the web as
opposed to Emscripten itself, and there is some truth to that assessment. Emscripten's FAQ
claims that Emscripten supports the use of SDL1 Audio, SDL2 Audio, and OpenAL, but, in
my experience, I have found that using a very limited set of SDL2 Audio provides the best
outcomes. I am going to keep our use of SDL2 Audio to a minimum, using the audio queue
instead of mixing sound effects. You may wish to expand on or modify what I have done
here. OpenAL, in theory, should work with Emscripten, although I have not had much luck
with it. Also, you may wish to look into SDL_MixAudio (https:/ ​/​wiki. ​libsdl. ​org/ ​SDL_
MixAudio) and SDL_AudioStream (https:/ ​/​wiki. ​libsdl. ​org/ ​Tutorials/ ​AudioStream) to
improve the audio system in your game, but be aware that performance and support for
streaming and mixing audio on the web may not be ready for prime time.

https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://wiki.libsdl.org/SDL_MixAudio
https://wiki.libsdl.org/SDL_MixAudio
https://wiki.libsdl.org/SDL_MixAudio
https://wiki.libsdl.org/SDL_MixAudio
https://wiki.libsdl.org/SDL_MixAudio
https://wiki.libsdl.org/SDL_MixAudio
https://wiki.libsdl.org/SDL_MixAudio
https://wiki.libsdl.org/SDL_MixAudio
https://wiki.libsdl.org/SDL_MixAudio
https://wiki.libsdl.org/SDL_MixAudio
https://wiki.libsdl.org/SDL_MixAudio
https://wiki.libsdl.org/SDL_MixAudio
https://wiki.libsdl.org/Tutorials/AudioStream
https://wiki.libsdl.org/Tutorials/AudioStream
https://wiki.libsdl.org/Tutorials/AudioStream
https://wiki.libsdl.org/Tutorials/AudioStream
https://wiki.libsdl.org/Tutorials/AudioStream
https://wiki.libsdl.org/Tutorials/AudioStream
https://wiki.libsdl.org/Tutorials/AudioStream
https://wiki.libsdl.org/Tutorials/AudioStream
https://wiki.libsdl.org/Tutorials/AudioStream
https://wiki.libsdl.org/Tutorials/AudioStream
https://wiki.libsdl.org/Tutorials/AudioStream
https://wiki.libsdl.org/Tutorials/AudioStream
https://wiki.libsdl.org/Tutorials/AudioStream

Sound FX Chapter 12

[416]

We will cover the following topics in this chapter:

Where to get sound effects
Simple audio with Emscripten
Adding sound to our game
Compiling and running

Where to get sound effects
There are a lot of great places to get music and sound effects online. I generated the sound
effects we use in this chapter with SFXR (http:/ ​/​www. ​drpetter. ​se/​project_ ​sfxr. ​html),
which is a tool used to generate old school 8-bit sound effects that sound like something
you would hear in an NES game. These kinds of sound effects may not be to your taste.
OpenGameArt.org also has a large collection of sound effects (https:/ ​/​opengameart. ​org/
art-​search-​advanced? ​keys= ​​field_ ​art_ ​type_ ​tid%5B%5D= ​13 ​sort_ ​by=​count ​sort_ ​order=
DESC) and music (https:/ ​/ ​opengameart. ​org/​art- ​search- ​advanced? ​keys= ​​field_ ​art_
type_​tid%5B%5D=​12 ​sort_ ​by= ​count ​sort_ ​order= ​DESC) with a variety of open licenses, so
make sure that you look over the license of any sounds or art on that website before you
use it.

Simple audio with Emscripten
Before we add sound effects to our main game, I will show you how to make an audio
player in the audio.c file to demonstrate how SDL Audio can be used to play sound
effects in a WebAssembly application. This application will take five sound effects that we
will use in our game and allow the user to press number keys one to five to play all of the
chosen sound effects. I will first show you the code broken into two sections, and then I will
walk you through what everything does. Here is all of the code in audio.c with the
exception of the main function:

#include <SDL2/SDL.h>
#include <emscripten.h>
#include <stdio.h>
#include <stdbool.h>

#define ENEMY_LASER "/audio/enemy-laser.wav"
#define PLAYER_LASER "/audio/player-laser.wav"
#define LARGE_EXPLOSION "/audio/large-explosion.wav"
#define SMALL_EXPLOSION "/audio/small-explosion.wav"
#define HIT "/audio/hit.wav"

http://www.drpetter.se/project_sfxr.html
http://www.drpetter.se/project_sfxr.html
http://www.drpetter.se/project_sfxr.html
http://www.drpetter.se/project_sfxr.html
http://www.drpetter.se/project_sfxr.html
http://www.drpetter.se/project_sfxr.html
http://www.drpetter.se/project_sfxr.html
http://www.drpetter.se/project_sfxr.html
http://www.drpetter.se/project_sfxr.html
http://www.drpetter.se/project_sfxr.html
http://www.drpetter.se/project_sfxr.html
http://www.drpetter.se/project_sfxr.html
http://www.drpetter.se/project_sfxr.html
http://www.drpetter.se/project_sfxr.html
http://www.drpetter.se/project_sfxr.html
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=13&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC
https://opengameart.org/art-search-advanced?keys=&field_art_type_tid%5B%5D=12&sort_by=count&sort_order=DESC

Sound FX Chapter 12

[417]

SDL_AudioDeviceID device_id;
SDL_Window *window;
SDL_Renderer *renderer;
SDL_Event event;

struct audio_clip {
 char file_name[100];
 SDL_AudioSpec spec;
 Uint32 len;
 Uint8 *buf;
} enemy_laser_snd, player_laser_snd, small_explosion_snd,
large_explosion_snd, hit_snd;

void play_audio(struct audio_clip* clip) {
 int success = SDL_QueueAudio(device_id, clip->buf, clip->len);
 if(success < 0) {
 printf("SDL_QueueAudio %s failed: %s\n", clip->file_name,
 SDL_GetError());
 }
}

void init_audio(char* file_name, struct audio_clip* clip) {
 strcpy(clip->file_name, file_name);

 if(SDL_LoadWAV(file_name, &(clip->spec), &(clip->buf), &(clip->len))
 == NULL) {
 printf("Failed to load wave file: %s\n", SDL_GetError());
 }
}

void input_loop() {
 if(SDL_PollEvent(&event)){
 if(event.type == SDL_KEYUP) {
 switch(event.key.keysym.sym){
 case SDLK_1:
 printf("one key release\n");
 play_audio(&enemy_laser_snd);
 break;
 case SDLK_2:
 printf("two key release\n");
 play_audio(&player_laser_snd);
 break;
 case SDLK_3:
 printf("three key release\n");
 play_audio(&small_explosion_snd);
 break;
 case SDLK_4:
 printf("four key release\n");

Sound FX Chapter 12

[418]

 play_audio(&large_explosion_snd);
 break;
 case SDLK_5:
 printf("five key release\n");
 play_audio(&hit_snd);
 break;
 default:
 printf("unknown key release\n");
 break;
 }
 }
 }
}

At the end of the audio.c file we have our main function:

int main() {
 if((SDL_Init(SDL_INIT_VIDEO|SDL_INIT_AUDIO)==-1)) {
 printf("Could not initialize SDL: %s.\n", SDL_GetError());
 return 0;
 }

 SDL_CreateWindowAndRenderer(320, 200, 0, &window, &renderer);

 init_audio(ENEMY_LASER, &enemy_laser_snd);
 init_audio(PLAYER_LASER, &player_laser_snd);
 init_audio(SMALL_EXPLOSION, &small_explosion_snd);
 init_audio(LARGE_EXPLOSION, &large_explosion_snd);
 init_audio(HIT, &hit_snd);

 device_id = SDL_OpenAudioDevice(NULL, 0, &(enemy_laser_snd.spec),
 NULL, 0);

 if (device_id == 0) {
 printf("Failed to open audio: %s\n", SDL_GetError());
 }

 SDL_PauseAudioDevice(device_id, 0);

 emscripten_set_main_loop(input_loop, 0, 0);

 return 1;
}

Sound FX Chapter 12

[419]

Now that you have seen the entire audio.c file, let's take a look at all of its parts. At the top
of this file, we have our #include and #define macros:

#include <SDL2/SDL.h>
#include <emscripten.h>
#include <stdio.h>
#include <stdbool.h>

#define ENEMY_LASER "/audio/enemy-laser.wav"
#define PLAYER_LASER "/audio/player-laser.wav"
#define LARGE_EXPLOSION "/audio/large-explosion.wav"
#define SMALL_EXPLOSION "/audio/small-explosion.wav"
#define HIT "/audio/hit.wav"

After that, we have our SDL specific-global variables. We need an SDL_AudioDeviceID for
our audio output. SDL_Window, SDL_Renderer and SDL_Event have been used in most of
the earlier chapters and should be familiar by now:

SDL_AudioDeviceID device_id;
SDL_Window *window;
SDL_Renderer *renderer;
SDL_Event event;

We are working on a C program, not a C++ program, so we will be using a structure to hold
our audio data instead of a class. We will create a C structure called audio_clip that will
hold all of the information for the audio we will be playing in our application. This
information includes a string holding the filename. It contains an SDL_AudioSpec object
that holds the audio specification. It also contains the length of the audio clip and a pointer
to an 8-bit data buffer, which holds the waveform data of the audio clip. After the
audio_clip structure is defined, five instances of that structure are created that we will
later be able to use to play these sounds:

struct audio_clip {
 char file_name[100];
 SDL_AudioSpec spec;
 Uint32 len;
 Uint8 *buf;
} enemy_laser_snd, player_laser_snd, small_explosion_snd,
large_explosion_snd, hit_snd;

Sound FX Chapter 12

[420]

After we define the audio_clip structure, we need to create a function to play the audio in
that structure. This function calls SDL_QueueAudio passing in the global device_id, a
pointer to the waveform buffer, and the length of the clip. The device_id is a reference to
the audio device (sound card). The clip->buf variable is a pointer to a buffer that contains
the waveform data of the .wav file we will be loading. The clip->len variable contains
the length of time that the clip plays:

void play_audio(struct audio_clip* clip) {
 int success = SDL_QueueAudio(device_id, clip->buf, clip->len);
 if(success < 0) {
 printf("SDL_QueueAudio %s failed: %s\n", clip->file_name,
 SDL_GetError());
 }
}

The next function we need is the function that initializes our audio_clip so that we can
pass it into the play_audio function. This function sets the filename of our audio_clip
and loads a wave file setting the spec, buf, and len values in our audio_clip. If the call
to SDL_LoadWAV fails, we print out an error message:

void init_audio(char* file_name, struct audio_clip* clip) {
 strcpy(clip->file_name, file_name);

 if(SDL_LoadWAV(file_name, &(clip->spec), &(clip->buf), &(clip-
 >len))
 == NULL) {
 printf("Failed to load wave file: %s\n", SDL_GetError());
 }
}

The input_loop should look pretty familiar by now. The function calls the
SDL_PollEvent and uses the event it returns to check for a keyboard key release. It checks
to see which key is released. If that key is one of the number keys from one to five, a switch
statement is used to call the play_audio function, passing in a specific audio_clip. The
reason we are using the key release instead of the key press is to prevent the key repeat
when the user holds the key down. We could easily prevent this, but I am trying to keep the
code for this application as short as possible. Here is the input_loop code:

void input_loop() {
 if(SDL_PollEvent(&event)){
 if(event.type == SDL_KEYUP) {
 switch(event.key.keysym.sym){
 case SDLK_1:
 printf("one key release\n");
 play_audio(&enemy_laser_snd);

Sound FX Chapter 12

[421]

 break;
 case SDLK_2:
 printf("two key release\n");
 play_audio(&player_laser_snd);
 break;
 case SDLK_3:
 printf("three key release\n");
 play_audio(&small_explosion_snd);
 break;
 case SDLK_4:
 printf("four key release\n");
 play_audio(&large_explosion_snd);
 break;
 case SDLK_5:
 printf("five key release\n");
 play_audio(&hit_snd);
 break;
 default:
 printf("unknown key release\n");
 break;
 }
 }
 }
}

As always, the main function does all of the initialization for our application. In addition to
the initialization that we executed in previous applications, we need a new initialization for
our audio. This is what the new version of the main function looks like:

int main() {
 if((SDL_Init(SDL_INIT_VIDEO|SDL_INIT_AUDIO)==-1)) {
 printf("Could not initialize SDL: %s.\n", SDL_GetError());
 return 0;
 }
 SDL_CreateWindowAndRenderer(320, 200, 0, &window, &renderer);
 init_audio(ENEMY_LASER, &enemy_laser_snd);
 init_audio(PLAYER_LASER, &player_laser_snd);
 init_audio(SMALL_EXPLOSION, &small_explosion_snd);
 init_audio(LARGE_EXPLOSION, &large_explosion_snd);
 init_audio(HIT, &hit_snd);

 device_id = SDL_OpenAudioDevice(NULL, 0, &(enemy_laser_snd.spec), NULL,
 0);

 if (device_id == 0) {
 printf("Failed to open audio: %s\n", SDL_GetError());
 }
 SDL_PauseAudioDevice(device_id, 0);

Sound FX Chapter 12

[422]

 emscripten_set_main_loop(input_loop, 0, 0);
 return 1;
}

The first thing we changed was our call to SDL_Init. We needed to add a flag telling SDL
to initialize the audio subsystem. We did this by adding |SLD_INIT_AUDIO to the
parameter we passed in, which performs a bitwise operation on the parameter with the
SDL_INIT_AUDIO flag. Following the new version of SDL_Init, we will create the window
and renderer, which we have done many times at this point.

The init_audio calls are all new and initialize our audio_clip structures:

init_audio(ENEMY_LASER, &enemy_laser_snd);
init_audio(PLAYER_LASER, &player_laser_snd);
init_audio(SMALL_EXPLOSION, &small_explosion_snd);
init_audio(LARGE_EXPLOSION, &large_explosion_snd);
init_audio(HIT, &hit_snd);

Next, we need to call SDL_OpenAudioDevice and retrieve a device ID. Opening an audio
device requires a default spec, which informs the audio device of the quality of sound clip
that you would like to play. Make sure that you pick a sound file with a quality level that is
a good example of what you would like to play in your game. In our code, we
chose enemy_laser_snd. We also need to call SDL_PauseAudioDevice. Whenever you
create a new audio device, it is paused by default. Calling SDL_PauseAudioDevice and
passing in 0 as the second parameter unpauses the audio device we just created. I found
this a little confusing at first, but keep in mind that the following call to
SDL_PauseAudioDevice is actually unpausing the audio clip:

device_id = SDL_OpenAudioDevice(NULL, 0, &(enemy_laser_snd.spec), NULL, 0);

if (device_id == 0) {
 printf("Failed to open audio: %s\n", SDL_GetError());
}

SDL_PauseAudioDevice(device_id, 0);

The last thing we will do before returning is set our loop to be the input_loop function we
created earlier:

emscripten_set_main_loop(input_loop, 0, 0);

Now that we have our code, we should compile and test our audio.c file:

emcc audio.c --preload-file audio -s USE_SDL=2 -o audio.html

Sound FX Chapter 12

[423]

We need to preload the audio folder so that we have access to the .wav files in our virtual
filesystem. Then, load audio.html in a web browser, serving the file with emrun, or with
an alternative web server. When you load the application in Chrome, you may run into
some minor difficulties. New versions of Chrome have added checks to prevent
unrequested audio from playing to prevent some of the irritating spam that has been going
around. Sometimes, this check is a little too sensitive, and this can prevent the audio in our
game from running. If this happens to you, try reloading the page in the Chrome browser.
Sometimes, this fixes the problem. Another way to prevent this from happening is to switch
over to Firefox.

Adding sound to our game
Now that we have an understanding of how to get SDL Audio to work on the web, we can
start adding sound effects to our game. We will not be using a mixer in our game, so only
one sound effect will play at a time. Because of this, we will need to classify some sounds as
priority sound effects. If a priority sound effect is triggered, the sound queue will clear, and
that sound effect will run. We also want to prevent our sound queue from becoming too
long, so we will clear our sound queue if there are more than two items in it. Do not fear! I
will repeat all of this when we get to that part of our code.

Updating game.hpp
The first thing we will need to change is our game.hpp file. We need to add a new Audio
class, as well as other new code to support audio in our game. Near the top of the
game.hpp file, we will add a series of #define macros to define the location of our sound
effect .wav files:

#define ENEMY_LASER (char*)"/audio/enemy-laser.wav"
#define PLAYER_LASER (char*)"/audio/player-laser.wav"
#define LARGE_EXPLOSION (char*)"/audio/large-explosion.wav"
#define SMALL_EXPLOSION (char*)"/audio/small-explosion.wav"
#define HIT (char*)"/audio/hit.wav"

At the top of our list of class declarations, we should add a new declaration of a class called
Audio:

class Audio;
class Ship;
class Particle;
class Emitter;
class Collider;

Sound FX Chapter 12

[424]

class Asteroid;
class Star;
class PlayerShip;
class EnemyShip;
class Projectile;
class ProjectilePool;
class FiniteStateMachine;
class Camera;
class RenderManager;
class Locator;

We will then define the new Audio class, which will be very similar to the audio_clip
structure that we used in our audio.c file. This class will have a filename, a spec, a length
(in runtime), and a buffer. It will also have a priority flag that, when set, will give it priority
over everything else that is currently in our audio queue. Finally, we will have two
functions in this class; a constructor that will initialize the sound, and a Play function that
will actually play the sound. This is what the class definition looks like:

class Audio {
 public:
 char FileName[100];
 SDL_AudioSpec spec;
 Uint32 len;
 Uint8 *buf;
 bool priority = false;

 Audio(char* file_name, bool priority_value);
 void Play();
};

Finally, we need to define some external audio related to global variables. These global
variables will be references to the variables that will appear in our main.cpp file. Most of
these are instances of the Audio class, which will be used in our game to play audio files.
The last of these variables is a reference to our audio device:

extern Audio* enemy_laser_snd;
extern Audio* player_laser_snd;
extern Audio* small_explosion_snd;
extern Audio* large_explosion_snd;
extern Audio* hit_snd;
extern SDL_AudioDeviceID device_id;

Sound FX Chapter 12

[425]

Updating main.cpp
The first thing we need to do in our main.cpp file is define the audio-related global
variables that we defined as external variables at the end of the game.hpp file:

SDL_AudioDeviceID device_id;

Audio* enemy_laser_snd;
Audio* player_laser_snd;
Audio* small_explosion_snd;
Audio* large_explosion_snd;
Audio* hit_snd;

Most of these sound effects are related to explosions that occur when there is a collision in
our game. Because of this, we will be adding calls to play these sound effects throughout
our collisions function. This is what the new version of our collisions function looks
like:

void collisions() {
 Asteroid* asteroid;
 std::vector<Asteroid*>::iterator ita;
 if(player->m_CurrentFrame == 0 && player->CompoundHitTest(star)) {
 player->m_CurrentFrame = 1;
 player->m_NextFrameTime = ms_per_frame;
 player->m_Explode->Run(); // added
 large_explosion_snd->Play();
 }
 if(enemy->m_CurrentFrame == 0 && enemy->CompoundHitTest(star)) {
 enemy->m_CurrentFrame = 1;
 enemy->m_NextFrameTime = ms_per_frame;
 enemy->m_Explode->Run(); // added
 large_explosion_snd->Play();
 }
 Projectile* projectile;
 std::vector<Projectile*>::iterator it;
 for(it=projectile_pool->m_ProjectileList.begin();
 it!=projectile_pool->m_ProjectileList.end();
 it++){
 projectile = *it;
 if(projectile->m_CurrentFrame == 0 && projectile->m_Active) {
 for(ita = asteroid_list.begin(); ita !=
 asteroid_list.end();
 ita++) {
 asteroid = *ita;
 if(asteroid->m_Active) {
 if(asteroid->HitTest(projectile)) {
 projectile->m_CurrentFrame = 1;

Sound FX Chapter 12

[426]

 projectile->m_NextFrameTime = ms_per_frame;
 small_explosion_snd->Play();
 }
 }
 }
 if(projectile->HitTest(star)){
 projectile->m_CurrentFrame = 1;
 projectile->m_NextFrameTime = ms_per_frame;
 small_explosion_snd->Play();
 }
 else if(player->m_CurrentFrame == 0 && (projectile-
 >HitTest(player) ||
 player->CompoundHitTest(projectile))) {
 if(player->m_Shield->m_Active == false) {
 player->m_CurrentFrame = 1;
 player->m_NextFrameTime = ms_per_frame;
 player->m_Explode->Run();
 large_explosion_snd->Play();
 }
 else { hit_snd->Play(); }
 projectile->m_CurrentFrame = 1;
 projectile->m_NextFrameTime = ms_per_frame;
 }
 else if(enemy->m_CurrentFrame == 0 && (projectile-
 >HitTest(enemy) ||
 enemy->CompoundHitTest(projectile))) {
 if(enemy->m_Shield->m_Active == false) {
 enemy->m_CurrentFrame = 1;
 enemy->m_NextFrameTime = ms_per_frame;
 enemy->m_Explode->Run();
 large_explosion_snd->Play();
 }
 else { hit_snd->Play(); }
 projectile->m_CurrentFrame = 1;
 projectile->m_NextFrameTime = ms_per_frame;
 }
 }
 }
 for(ita = asteroid_list.begin(); ita != asteroid_list.end();
 ita++) {
 asteroid = *ita;
 if(asteroid->m_Active) {
 if(asteroid->HitTest(star)) {
 asteroid->Explode();
 small_explosion_snd->Play();
 }
 }
 else { continue; }

Sound FX Chapter 12

[427]

 if(player->m_CurrentFrame == 0 && asteroid->m_Active &&
 (asteroid->HitTest(player) || player->CompoundHitTest(
 asteroid))) {
 if(player->m_Shield->m_Active == false) {
 player->m_CurrentFrame = 1;
 player->m_NextFrameTime = ms_per_frame;
 player->m_Explode->Run();
 large_explosion_snd->Play();
 }
 else {
 asteroid->Explode();
 small_explosion_snd->Play();
 }
 }
 if(enemy->m_CurrentFrame == 0 && asteroid->m_Active &&
 (asteroid->HitTest(enemy) || enemy->CompoundHitTest(
 asteroid))) {
 if(enemy->m_Shield->m_Active == false) {
 enemy->m_CurrentFrame = 1;
 enemy->m_NextFrameTime = ms_per_frame;
 enemy->m_Explode->Run();
 large_explosion_snd->Play();
 }
 else {
 asteroid->Explode();
 small_explosion_snd->Play();
 }
 }
 }
}

Sounds will now play after several explosions and collisions; for example, after the player
explodes:

player->m_Explode->Run();
large_explosion_snd->Play();

Sound will also play when the enemy ship explodes:

enemy->m_Explode->Run();
large_explosion_snd->Play();

After an asteroid explodes, we will want the same effect:

asteroid->Explode();
small_explosion_snd->Play();

Sound FX Chapter 12

[428]

If an enemy shield is hit, we want to play the hit sound:

if(enemy->m_Shield->m_Active == false) {
 enemy->m_CurrentFrame = 1;
 enemy->m_NextFrameTime = ms_per_frame;
 enemy->m_Explode->Run();
 large_explosion_snd->Play();
}
else {
 hit_snd->Play();
}

Similarly, if the player's shield is hit, we will, again, want to play the hit sound:

if(player->m_Shield->m_Active == false) {
 player->m_CurrentFrame = 1;
 player->m_NextFrameTime = ms_per_frame;

 player->m_Explode->Run();
 large_explosion_snd->Play();
}
else {
 hit_snd->Play();
}

Finally, we need to change the main function to initialize our audio. Here is the entire main
function code:

int main() {
 SDL_Init(SDL_INIT_VIDEO | SDL_INIT_AUDIO);
 int return_val = SDL_CreateWindowAndRenderer(CANVAS_WIDTH,
 CANVAS_HEIGHT, 0, &window, &renderer);

 if(return_val != 0) {
 printf("Error creating renderer %d: %s\n", return_val,
 IMG_GetError());
 return 0;
 }

 SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
 SDL_RenderClear(renderer);
 last_frame_time = last_time = SDL_GetTicks();

 player = new PlayerShip();
 enemy = new EnemyShip();
 star = new Star();
 camera = new Camera(CANVAS_WIDTH, CANVAS_HEIGHT);
 render_manager = new RenderManager();

Sound FX Chapter 12

[429]

 locator = new Locator();
 enemy_laser_snd = new Audio(ENEMY_LASER, false);
 player_laser_snd = new Audio(PLAYER_LASER, false);
 small_explosion_snd = new Audio(SMALL_EXPLOSION, true);
 large_explosion_snd = new Audio(LARGE_EXPLOSION, true);
 hit_snd = new Audio(HIT, false);
 device_id = SDL_OpenAudioDevice(NULL, 0, &(enemy_laser_snd->spec),
 NULL, 0);

 if (device_id == 0) {
 printf("Failed to open audio: %s\n", SDL_GetError());
 }
 int asteroid_x = 0;
 int asteroid_y = 0;
 int angle = 0;

 // SCREEN 1
 for(int i_y = 0; i_y < 8; i_y++) {
 asteroid_y += 100;
 asteroid_y += rand() % 400;
 asteroid_x = 0;
 for(int i_x = 0; i_x < 12; i_x++) {
 asteroid_x += 66;
 asteroid_x += rand() % 400;
 int y_save = asteroid_y;
 asteroid_y += rand() % 400 - 200;
 angle = rand() % 359;
 asteroid_list.push_back(
 new Asteroid(asteroid_x, asteroid_y,
 get_random_float(0.5, 1.0),
 DEG_TO_RAD(angle)));
 asteroid_y = y_save;
 }
 }
 projectile_pool = new ProjectilePool();
 emscripten_set_main_loop(game_loop, 0, 0);
 return 1;
}

The first change we need to make to the main function is to the SDL_Init call to include
the initialization of the audio subsystem:

SDL_Init(SDL_INIT_VIDEO | SDL_INIT_AUDIO);

Sound FX Chapter 12

[430]

The other change we need to make is the addition of the new Audio objects and the call to
SDL_OpenAudioDevice:

enemy_laser_snd = new Audio(ENEMY_LASER, false);
player_laser_snd = new Audio(PLAYER_LASER, false);
small_explosion_snd = new Audio(SMALL_EXPLOSION, true);
large_explosion_snd = new Audio(LARGE_EXPLOSION, true);
hit_snd = new Audio(HIT, false);

device_id = SDL_OpenAudioDevice(NULL, 0, &(enemy_laser_snd->spec),
NULL, 0);

if (device_id == 0) {
 printf("Failed to open audio: %s\n", SDL_GetError());
}

Updating ship.cpp
The ship.cpp file has one minor change to it. We are adding a call to play a sound when
the ship launches a projectile. That happens in the Ship::Shoot() function. You will
notice that the call to player_laser_snd->Play() occurs after the call to
projectile->Launch:

void Ship::Shoot() {
 Projectile* projectile;
 if(current_time - m_LastLaunchTime >= c_MinLaunchTime) {
 m_LastLaunchTime = current_time;
 projectile = projectile_pool->GetFreeProjectile();
 if(projectile != NULL) {
 projectile->Launch(m_Position, m_Direction);
 player_laser_snd->Play();
 }
 }
 }

The new audio.cpp file
We are adding a new audio.cpp file to implement the Audio class constructor function
and the Audio class Play function. Here is the audio.cpp file in its entirety:

#include "game.hpp"

Audio::Audio(char* file_name, bool priority_value) {
 strcpy(FileName, file_name);

Sound FX Chapter 12

[431]

 priority = priority_value;

 if(SDL_LoadWAV(FileName, &spec, &buf, &len) == NULL) {
 printf("Failed to load wave file: %s\n", SDL_GetError());
 }
}

void Audio::Play() {
 if(priority || SDL_GetQueuedAudioSize(device_id) > 2) {
 SDL_ClearQueuedAudio(device_id);
 }

 int success = SDL_QueueAudio(device_id, buf, len);
 if(success < 0) {
 printf("SDL_QueueAudio %s failed: %s\n", FileName, SDL_GetError());
 }
}

The first function in this file is the constructor for the Audio class. This function sets the
FileName attribute to the value passed and sets the priority value. It also loads the wave
file from the filename passed in and uses the SDL_LoadWAV file to set the spec, buf, and
len attributes.

The Audio::Play() function first looks to see whether this is high-priority audio, or
whether the size of the audio queue is greater than two sounds. If either of these is the case,
we clear out the audio queue:

if(priority || SDL_GetQueuedAudioSize(device_id) > 2) {
 SDL_ClearQueuedAudio(device_id);
}

We are doing this because we do not want to mix the audio. We are playing the audio
sequentially in a queue. If we have a priority audio clip, we want to clear out the queue so
that the audio plays immediately. We also want to do this if the queue is too long. We will
then call SDL_QueueAudio to queue up this sound to play as soon as possible:

int success = SDL_QueueAudio(device_id, buf, len);
if(success < 0) {
 printf("SDL_QueueAudio %s failed: %s\n", FileName, SDL_GetError());
}

Now, we should be ready to compile and run our code.

Sound FX Chapter 12

[432]

Compiling and running
Now that we have made all the necessary changes to our code, we can compile and run our
new code with Emscripten:

em++ asteroid.cpp audio.cpp camera.cpp collider.cpp emitter.cpp
enemy_ship.cpp finite_state_machine.cpp locator.cpp main.cpp particle.cpp
player_ship.cpp projectile_pool.cpp projectile.cpp range.cpp
render_manager.cpp shield.cpp ship.cpp star.cpp vector.cpp -o sound_fx.html
--preload-file audio --preload-file sprites -std=c++17 -s USE_WEBGL2=1 -s
USE_SDL=2 -s USE_SDL_IMAGE=2 -s SDL2_IMAGE_FORMATS=["png"] -s
USE_SDL_IMAGE=2 -s SDL2_IMAGE_FORMATS=["png"]

There are no new flags added to allow us to use the SDL Audio library. However, we need
to add a new --preload-file audio flag to load the new audio directory into our
virtual filesystem. Once you have compiled the new version of the game, you can run it
using emrun (assuming that you included the necessary emrun flag when you compiled). If
you prefer, you can choose a different web server to serve these files.

Summary
We have discussed the current (messy) state of audio on the web and have looked at the
audio libraries available to Emscripten. I mentioned a few places where you can get free
sound effects. We created a simple audio application using C and Emscripten that allowed
us to play a series of audio files. We then added sound effects to our game, which included
explosion and laser sounds. We modified our initialization code inside the main() function
to initialize the SDL Audio subsystem. We added a new Shoot function to be used by our
spaceships when they shoot projectiles. We also created a new Audio class to help us play
our audio files.

In the next chapter, we will learn how we can add some physics to our game.

13
Game Physics

We already have some physics in our game. Each of our ships has a velocity and an
acceleration. They also obey at least some of Newton's laws and conserve momentum. All
of this was added earlier without much fanfare. Physics in computer games dates back to
the original computer game, Space War!, which is the game that inspired the one we are
currently writing. In the original version of Space War!, the spaceships conserved
momentum, as we currently do in our game. A black hole gravitationally attracted the
ships to the center of the play area. Before creating the classic game Pong, Nolan Bushnell
created an arcade clone of Space War!, called Computer Space. Computer Space was not a hit
like Pong, and Nolan Bushnell blamed Newton's laws and the public's lack of
understanding of basic physics as some of the reasons for the game's commercial failure.

According to The Ultimate History of Video Games: from Pong to Pokemon and Beyond,
by Steven Kent, "Computer Space obeys the first law—maintenance of momentum.
(Bushnell is probably referring to Sir Isaac Newton's first law—objects maintain constant
velocity unless acted upon by an external force.) And so that was really hard for people
who didn't understand that."
 – Nolan Bushnell

Game Physics Chapter 13

[434]

Physics is common in games, but far from universal. The kind of physics required by a
game is highly dependent on the kind of game it is. There is a 3D physics library called
Bullet Physics that has been ported, but, because it is 3D, Bullet is a rather large library for
the kinds of physics we will be using in this game. Instead, we will integrate some simple
Newtonian physics into our game for some extra flavor. We already have a simple
implementation of Newton's first law in our game. When we accelerate our spaceship, it
moves in the same direction until we either decelerate it by using the down arrow, or we
flip and burn by turning our ship around and accelerating in the opposite direction of our
current velocity.

You will need to include several images and audio files in your build to
make this project work. Make sure that you include the
/Chapter13/sprites/ folder as well as the /Chapter13/audio/ folder
from the project's GitHub. If you haven't yet downloaded the GitHub
project, you can get it online at https:/ ​/​github. ​com/ ​PacktPublishing/
Hands- ​On- ​Game- ​Development- ​with- ​WebAssembly.

In this chapter, we will be applying the following aspects of physics:

Elastic collisions between asteroids, projectiles, and spaceships.
When our spaceships shoot, there should be a recoil (Newton's third law).
Gravity from the star should attract the player's spaceship.

Newton's third law
Newton's third law is commonly stated as, For every action, there is an equal and opposite
reaction. What this means is that, when object A exerts a force on object B, object B exerts
that same force right back on object A. An example of this is firing a bullet from a gun.
When a human holding a gun fires a bullet, the gun recoils with the same force of the bullet
leaving the gun. That may sound counter-intuitive, because the bullet can kill a human, but
the gun's recoil does not kill the human firing the gun. That is because the gun is
significantly larger than the bullet, and Newton's first law states that F = ma, or force equals
mass times acceleration. In other words, if the gun is 50 times larger than the bullet, then
the same force will only make it accelerate to 1/50 the speed. We will be modifying our
spaceship so that, whenever it shoots a projectile, it accelerates in the opposite direction of
the shot based on the relative masses of the spaceship and the projectile. This will give our
ship's cannon a recoil.

https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly

Game Physics Chapter 13

[435]

Adding gravity
After we add the recoil to our spaceship's cannon, I would also like to add a gravitational
effect on the spaceships in our game that will draw the ships toward the star when they are
within a certain distance of that star. The gravitational force decreases with the square of
the distance between the two objects. That is convenient because it means that we can
calculate the gravitational effect with the MagSQ function, which runs quite a bit faster than
the Magnitude function. I have chosen not to add a gravitational effect on the projectiles
and asteroids out of personal preference. It will not be hard to add that effect if you choose
to do so.

Improving collisions
We are going to improve the collisions between our spaceship and the asteroids and
projectiles in the game. To simplify things, we will use elastic collisions. An elastic collision
is a collision that preserves all of the kinetic energy. In reality, collisions always lose some
energy to heat or friction, even ones that are close to elastic collisions, such as billiard balls.
However, making our collisions perfectly elastic simplifies the math. In games, simpler
math usually means faster algorithms.

For more information on elastic collisions, Wikipedia has an excellent article (https:/​/​en.
wikipedia.​org/​wiki/ ​Elastic_ ​collision) that discusses the math we will use to
implement our elastic collision function.

Modifying the code
In this section, we are going to make some changes to our game objects. We will need to
add mass and elastic collisions to our collider class. Our star should be able to generate
gravity and attract the player and enemy spaceship with a force that decreases based on the
square of the distance. We will need to modify our collisions function to add elastic
collisions between our spaceships, asteroids, and the projectiles.

https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/Elastic_collision

Game Physics Chapter 13

[436]

Changing the game.hpp file
To get physics into our game, we will need to modify several class definitions and add
new #define macros. Let's start by updating our game.hpp file. The first thing we need to
add is #define in order to set up a constant value for our star's mass. I want to have a large
constant value for the star mass that we will check against in our ElasticCollision
function. If the mass of either object in our elastic collision is the same value as STAR_MASS,
we do not want to accelerate that object. In reality, if you were to throw a rock into the sun,
you would accelerate the sun a tiny, tiny amount in the direction you threw the rock. This
amount would be so small relative to the sun that it would be undetectable. We will have a
fixed value for the star's mass where any objects with a mass that size will not accelerate
when hit by any objects in our game. To do this, we will need to add the following
#define:

#define STAR_MASS 9999999

After adding the #define, we will need to modify our Collider class, giving it a new
ElasticCollision function. This function will take in a second Collider object and use
the velocity and masses of those two objects to determine what their new velocities will be.
We will also need to add a mass attribute that we will name m_Mass. Finally, we need to
move two attributes into our Collider class that was previously in the child classes of
Collider. These variables are the 2D m_Direction and m_Velocity vectors because our
elastic collision function will need this data to calculate the new velocities. This is what the
new version of the Collider class looks like:

class Collider {
 public:
 bool m_Active;
 float* m_ParentRotation;
 float* m_ParentX;
 float* m_ParentY;
 Vector2D m_TempPoint;

 bool CCHitTest(Collider* collider);

 void ElasticCollision(Collider* collider);
 float m_Mass;
 Vector2D m_Direction;
 Vector2D m_Velocity;
 Vector2D m_Position;

 float m_Radius;
 float m_SteeringRadius;
 float m_SteeringRadiusSQ;

Game Physics Chapter 13

[437]

 void SetParentInformation(float* rotation, float* x, float* y);

 Collider(float radius);
 bool HitTest(Collider *collider);
 bool SteeringLineTest(Vector2D &p1, Vector2D &p2);
 bool SteeringRectTest(Vector2D &start_point, Vector2D
 &end_point);
 void WrapPosition();
};

The four lines we added are near the center of this new version of the class:

void ElasticCollision(Collider* collider);
float m_Mass;
Vector2D m_Direction;
Vector2D m_Velocity;

After adding m_Direction and m_Velocity to our Collider class, we need to remove
m_Velocity from three of the child classes where we had that code in previous versions of
our game. We need to remove those attributes from the Asteroid, Ship, and Projectile
classes. Here are the two lines we need to remove:

Vector2D m_Direction;
Vector2D m_Velocity;

In the following code snippet, we have the Asteroid class after you have removed those
two lines:

class Asteroid : public Collider {
 public:
 SDL_Texture *m_SpriteTexture;
 SDL_Rect m_src = {.x = 0, .y = 0, .w = 16, .h = 16 };
 SDL_Rect m_dest = {.x = 0, .y = 0, .w = 0, .h = 0 };

 Uint32 m_CurrentFrame = 0;
 int m_NextFrameTime;
 float m_Rotation;

 Emitter* m_Explode;
 Emitter* m_Chunks;

 Asteroid(float x, float y,
 float velocity,
 float rotation);
 void Move();
 void Render();
 void Explode();
};

Game Physics Chapter 13

[438]

This is what the Ship class will look like after you have removed those two lines:

class Ship : public Collider {
 public:
 const float c_Acceleration = 10.0f;
 const float c_MaxVelocity = 100.0f;
 const int c_AliveTime = 2000;
 const Uint32 c_MinLaunchTime = 300;

 bool m_Accelerating = false;
 Uint32 m_LastLaunchTime;
 const int c_Width = 32;
 const int c_Height = 32;
 SDL_Texture *m_SpriteTexture;
 SDL_Rect src = {.x = 0, .y = 0, .w = 32, .h = 32 };

 Emitter* m_Explode;
 Emitter* m_Exhaust;
 Shield* m_Shield;
 std::vector<Collider*> m_Colliders;

 Uint32 m_CurrentFrame = 0;
 int m_NextFrameTime;
 float m_Rotation;

 void RotateLeft();
 void RotateRight();
 void Accelerate();
 void Decelerate();
 void CapVelocity();
 void Shoot();
 virtual void Move() = 0;
 Ship();
 void Render();
 bool CompoundHitTest(Collider* collider);
};

Finally, here is what the Projectile class will look like after you have removed those two
lines:

class Projectile: public Collider {
 public:
 const char* c_SpriteFile = "sprites/ProjectileExp.png";
 const int c_Width = 16;
 const int c_Height = 16;
 SDL_Texture *m_SpriteTexture;
 SDL_Rect src = {.x = 0, .y = 0, .w = 16, .h = 16 };

Game Physics Chapter 13

[439]

 Uint32 m_CurrentFrame = 0;
 int m_NextFrameTime;
 const float c_Velocity = 300.0;
 const float c_AliveTime = 2000;
 float m_TTL;

 Projectile();
 void Move();
 void Render();
 void Launch(Vector2D &position, Vector2D &direction);
};

The last class we must change is our Star class. The Star class is now going to be able to
attract the spaceships in our game gravitationally. To do this, we will be adding a constant
attribute that defines the maximum range of our gravitational force. In reality, gravity
extends on forever, but for our game, we do not want the gravity to affect our spaceships
when the star is off-screen (or at least very far off-screen). Because of this, we are going to
limit the distance of the gravitational effect to 500 pixels. We will also add a new function to
our class called ShipGravity. We will be passing a Ship object into this function, and the
function will modify the velocity of the ship based on the squared distance to the
Star object. This is what the new version of the Star class definition will look like:

class Star : public Collider {
 public:
 const float c_MaxGravityDistSQ = 250000.0; // 300 squared

 SDL_Texture *m_SpriteTexture;
 SDL_Rect m_src = {.x = 0, .y = 0, .w = 64, .h = 64 };
 SDL_Rect m_dest = {.x = 0, .y = 0, .w = 64, .h = 64 };

 std::vector<Emitter*> m_FlareList;

 Uint32 m_CurrentFrame = 0;
 int m_NextFrameTime;

 Star();

 void Move();
 void Render();

 void ShipGravity(Ship* s);
};

Game Physics Chapter 13

[440]

Changing collider.cpp
The next file we will change is the collider.cpp file, which holds the functions we
declared in our Collider class definition. The only change will be the addition of a single
function, ElasticCollision. This function modifies the position and velocity of our two
colliders based on the mass and the starting velocities of those objects. This is what the
ElasticCollision function looks like:

void Collider::ElasticCollision(Collider* collider) {
 if(collider->m_Mass == STAR_MASS || m_Mass == STAR_MASS) {
 return;
 }

 Vector2D separation_vec = collider->m_Position - m_Position;

 separation_vec.Normalize();
 separation_vec *= collider->m_Radius + m_Radius;

 collider->m_Position = m_Position + separation_vec;

 Vector2D old_v1 = m_Velocity;
 Vector2D old_v2 = collider->m_Velocity;

 m_Velocity = old_v1 * ((m_Mass - collider->m_Mass)/(m_Mass +
 collider->m_Mass)) +
 old_v2 * ((2 * collider->m_Mass) / (m_Mass + collider->m_Mass));

 collider->m_Velocity = old_v1 * ((2 * collider->m_Mass)/(m_Mass +
 collider->m_Mass)) +
 old_v2 * ((collider->m_Mass - m_Mass)/(m_Mass + collider->m_Mass));
}

The first thing the function does is check to see whether either collider has the mass of a
star. If either is a star, we do not change their velocities. The star's velocity does not change,
because it is too massive to move, and the object colliding with the star does not change its
mass because it is destroyed in the collision:

if(collider->m_Mass == STAR_MASS || m_Mass == STAR_MASS) {
 return;
}

Game Physics Chapter 13

[441]

After the mass check, we need to adjust the position of the colliders so that they are not
overlapping. Overlap can happen because the position of our objects changes every frame
and is not continuous. Because of this, we need to move the position of one of our objects so
that it is barely touching the other object. A more accurate way to do this would have been
to modify the position of both objects by half the amount we modify the one object, but in
different directions. For simplicity, we will only be changing the position of one of the
colliders:

separation_vec.Normalize();
separation_vec *= collider->m_Radius + m_Radius;

collider->m_Position = m_Position + separation_vec;

After that, we will modify the velocities of the two collider objects using the masses and the
starting velocities of those two objects:

Vector2D old_v1 = m_Velocity;
Vector2D old_v2 = collider->m_Velocity;

m_Velocity = old_v1 * ((m_Mass - collider->m_Mass)/(m_Mass +
collider->m_Mass)) +
old_v2 * ((2 * collider->m_Mass) / (m_Mass + collider->m_Mass));

collider->m_Velocity = old_v1 * ((2 * collider->m_Mass)/(m_Mass +
collider->m_Mass)) +
old_v2 * ((collider->m_Mass - m_Mass)/(m_Mass + collider->m_Mass));

If you want to learn more about the formula we used to calculate the new velocities, check
out the Wikipedia article regarding elastic collisions at https:/ ​/​en. ​wikipedia. ​org/​wiki/
Elastic_​collision.

Changes to star.cpp
In our star.cpp file, we will need to modify our Star class's constructor function, as well
as its Move function. We will also need to add a new function called ShipGravity. The first
thing we will do is add the following line somewhere in our Star class constructor:

m_Mass = STAR_MASS;

https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/Elastic_collision
https://en.wikipedia.org/wiki/Elastic_collision

Game Physics Chapter 13

[442]

After that, we will need to define our ShipGravity function. The following code defines
that function:

void Star::ShipGravity(Ship* s) {
 Vector2D dist_vec = m_Position - s->m_Position;
 float dist_sq = dist_vec.MagSQ();

 if(dist_sq < c_MaxGravityDistSQ) {
 float force = (c_MaxGravityDistSQ / dist_sq) * delta_time;
 dist_vec.Normalize();
 dist_vec *= force;
 s->m_Velocity += dist_vec;
 }
}

The first line creates a dist_vec vector, which is a vector representing the distance
between the star's position and the ship's position. The second line gets the squared
distance between the star and the ship. After that, we have an if block that looks like this:

if(dist_sq < c_MaxGravityDistSQ) {
 float force = (c_MaxGravityDistSQ / dist_sq) * delta_time;
 dist_vec.Normalize();
 dist_vec *= force;
 s->m_Velocity += dist_vec;
}

This if block is checking the square distance against the maximum distance where gravity
affects the ship, which we defined in the c_MaxGravityDistSQ constant. Because gravity
decreases with the square of the distance between the star and our ship, we compute the
scalar force by dividing the maximum gravitation distance by 50 times the distance squared
to our spaceship. The value of 50 was picked rather arbitrarily and was the result of me
playing around with the numbers until the force of gravity felt right to me. You may choose
a different value if you would prefer your gravitational force to be different. You may also
choose to modify the maximum gravitational distance by changing the value of
c_MaxGravityDistSQ that we defined in game.hpp. The following lines are used to turn
our scalar force value into a vector force value that is pointing from our ship to our star:

dist_vec.Normalize();
dist_vec *= force;

Now that we have converted dist_vec into a force vector that points in the direction of
our star, we can add that force vector to our ship's velocity to create the gravitational effect
on our ship:

s->m_Velocity += dist_vec;

Game Physics Chapter 13

[443]

The final change we need to make is to the Move function. We will need to add two calls to
the ShipGravity function; one call to create the gravitational effect on the player, and a
second call to create the gravitational effect on the enemy spaceship. Here is the new
version of the Move function:

void Star::Move() {
 m_NextFrameTime -= diff_time;

 if(m_NextFrameTime <= 0) {
 ++m_CurrentFrame;
 m_NextFrameTime = ms_per_frame;
 if(m_CurrentFrame >= 8) {
 m_CurrentFrame = 0;
 }
 }

 ShipGravity(player);
 ShipGravity(enemy);
}

The last two lines are new. Make sure you add these two lines to the Move function:

ShipGravity(player);
ShipGravity(enemy);

Changing the main.cpp file
After updating our star.cpp file, we need to change the main.cpp file to incorporate our
elastic collisions. We need to make all of these changes to the collisions() function.
Here is the new version of collisions in its entirety:

void collisions() {
 Asteroid* asteroid;
 std::vector<Asteroid*>::iterator ita;
 if(player->m_CurrentFrame == 0 && player->CompoundHitTest(star)) {
 player->m_CurrentFrame = 1;
 player->m_NextFrameTime = ms_per_frame;
 player->m_Explode->Run();
 large_explosion_snd->Play();
 }
 if(enemy->m_CurrentFrame == 0 && enemy->CompoundHitTest(star)) {
 enemy->m_CurrentFrame = 1;
 enemy->m_NextFrameTime = ms_per_frame;
 enemy->m_Explode->Run();
 large_explosion_snd->Play();

Game Physics Chapter 13

[444]

 }
 Projectile* projectile;
 std::vector<Projectile*>::iterator it;
 for(it=projectile_pool->m_ProjectileList.begin();
 it!=projectile_pool->m_ProjectileList.end();
 it++) {
 projectile = *it;
 if(projectile->m_CurrentFrame == 0 && projectile->m_Active) {
 for(ita = asteroid_list.begin(); ita != asteroid_list.end();
 ita++
) {
 asteroid = *ita;
 if(asteroid->m_Active) {
 if(asteroid->HitTest(projectile)) {
 asteroid->ElasticCollision(projectile);
 projectile->m_CurrentFrame = 1;
 projectile->m_NextFrameTime = ms_per_frame;
 small_explosion_snd->Play();
 }
 }
 }
 if(projectile->HitTest(star)){
 projectile->m_CurrentFrame = 1;
 projectile->m_NextFrameTime = ms_per_frame;
 small_explosion_snd->Play();
 }
 else if(player->m_CurrentFrame == 0 && (projectile->HitTest(
 player) ||
 player->CompoundHitTest(projectile))) {
 if(player->m_Shield->m_Active == false) {
 player->m_CurrentFrame = 1;
 player->m_NextFrameTime = ms_per_frame;
 player->m_Explode->Run();
 large_explosion_snd->Play();
 }
 else {
 hit_snd->Play();
 player->ElasticCollision(projectile);
 }
 projectile->m_CurrentFrame = 1;
 projectile->m_NextFrameTime = ms_per_frame;
 }
 else if(enemy->m_CurrentFrame == 0 && (projectile-
 >HitTest(enemy) || enemy->CompoundHitTest(projectile))
) {
 if(enemy->m_Shield->m_Active == false) {
 enemy->m_CurrentFrame = 1;
 enemy->m_NextFrameTime = ms_per_frame;

Game Physics Chapter 13

[445]

 enemy->m_Explode->Run();
 large_explosion_snd->Play();
 }
 else {
 enemy->ElasticCollision(projectile);
 hit_snd->Play();
 }
 projectile->m_CurrentFrame = 1;
 projectile->m_NextFrameTime = ms_per_frame;
 }
 }
 }
 for(ita = asteroid_list.begin(); ita != asteroid_list.end(); ita++) {
 asteroid = *ita;
 if(asteroid->m_Active) {
 if(asteroid->HitTest(star)) {
 asteroid->Explode();
 small_explosion_snd->Play();
 }
 }
 else { continue; }
 if(player->m_CurrentFrame == 0 && asteroid->m_Active &&
 (asteroid->HitTest(player) || player->CompoundHitTest(
 asteroid))) {
 if(player->m_Shield->m_Active == false) {
 player->m_CurrentFrame = 1;
 player->m_NextFrameTime = ms_per_frame;
 player->m_Explode->Run();
 large_explosion_snd->Play();
 }
 else {
 player->ElasticCollision(asteroid);
 small_explosion_snd->Play();
 }
 }
 if(enemy->m_CurrentFrame == 0 && asteroid->m_Active &&
 (asteroid->HitTest(enemy) || enemy->CompoundHitTest(
 asteroid))) {
 if(enemy->m_Shield->m_Active == false) {
 enemy->m_CurrentFrame = 1;
 enemy->m_NextFrameTime = ms_per_frame;
 enemy->m_Explode->Run();
 large_explosion_snd->Play();
 }
 else {
 enemy->ElasticCollision(asteroid);
 small_explosion_snd->Play();
 }

Game Physics Chapter 13

[446]

 }
 }
 Asteroid* asteroid_1;
 Asteroid* asteroid_2;
 std::vector<Asteroid*>::iterator ita_1;
 std::vector<Asteroid*>::iterator ita_2;
 for(ita_1 = asteroid_list.begin(); ita_1 != asteroid_list.end();
 ita_1++) {
 asteroid_1 = *ita_1;
 if(!asteroid_1->m_Active) { continue; }
 for(ita_2 = ita_1+1; ita_2 != asteroid_list.end(); ita_2++) {
 asteroid_2 = *ita_2;
 if(!asteroid_2->m_Active) { continue; }
 if(asteroid_1->HitTest(asteroid_2)) {
 asteroid_1->ElasticCollision(asteroid_2);
 }
 }
 }
}

In the first part of this function, we loop over the projectiles and check to see whether they
hit an asteroid or a ship. If the projectile hits an asteroid or a ship when that ship has its
shields up, we want to create an elastic collision with the projectile. The projectile will still
be destroyed, but the ship or asteroid will have a modified velocity based on the collision.
Here is the code for the projectile loop:

for(it = projectile_pool->m_ProjectileList.begin(); it !=
projectile_pool->m_ProjectileList.end(); it++) {
 projectile = *it;
 if(projectile->m_CurrentFrame == 0 && projectile->m_Active) {
 for(ita = asteroid_list.begin(); ita != asteroid_list.end();
 ita++) {
 asteroid = *ita;
 if(asteroid->m_Active) {
 if(asteroid->HitTest(projectile)) {
 asteroid->ElasticCollision(projectile);
 projectile->m_CurrentFrame = 1;
 projectile->m_NextFrameTime = ms_per_frame;
 small_explosion_snd->Play();
 }
 }
 }
 if(projectile->HitTest(star)){
 projectile->m_CurrentFrame = 1;
 projectile->m_NextFrameTime = ms_per_frame;
 small_explosion_snd->Play();
 }

Game Physics Chapter 13

[447]

 else if(player->m_CurrentFrame == 0 &&
 (projectile->HitTest(player) ||
 player->CompoundHitTest(projectile))) {
 if(player->m_Shield->m_Active == false) {
 player->m_CurrentFrame = 1;
 player->m_NextFrameTime = ms_per_frame;

 player->m_Explode->Run();
 large_explosion_snd->Play();
 }
 else {
 hit_snd->Play();
 player->ElasticCollision(projectile);
 }
 projectile->m_CurrentFrame = 1;
 projectile->m_NextFrameTime = ms_per_frame;
 }
 else if(enemy->m_CurrentFrame == 0 &&
 (projectile->HitTest(enemy) ||
 enemy->CompoundHitTest(projectile))) {
 if(enemy->m_Shield->m_Active == false) {
 enemy->m_CurrentFrame = 1;
 enemy->m_NextFrameTime = ms_per_frame;
 enemy->m_Explode->Run();
 large_explosion_snd->Play();
 }
 else {
 enemy->ElasticCollision(projectile);
 hit_snd->Play();
 }
 projectile->m_CurrentFrame = 1;
 projectile->m_NextFrameTime = ms_per_frame;
 }
 }
}

The first series of checks this loop performs is against every asteroid. It looks for an active
asteroid with which it currently collides. If those conditions are true, the first thing it does
is call the ElasticCollision function on the asteroid, passing in the projectile:

for(ita = asteroid_list.begin(); ita != asteroid_list.end(); ita++) {
 asteroid = *ita;
 if(asteroid->m_Active) {
 if(asteroid->HitTest(projectile)) {
 asteroid->ElasticCollision(projectile);
 projectile->m_CurrentFrame = 1;
 projectile->m_NextFrameTime = ms_per_frame;
 small_explosion_snd->Play();

Game Physics Chapter 13

[448]

 }
 }

This code is the same as the earlier version, but with the addition of this call to
ElasticCollision:

asteroid->ElasticCollision(projectile);

Later in our loop through each active projectile, we will add a call to the
ElasticCollision function if a projectile strikes your player's spaceship while its shields
are up:

else if(player->m_CurrentFrame == 0 &&
 (projectile->HitTest(player) ||
 player->CompoundHitTest(projectile))) {
 if(player->m_Shield->m_Active == false) {
 player->m_CurrentFrame = 1;
 player->m_NextFrameTime = ms_per_frame;
 player->m_Explode->Run();
 large_explosion_snd->Play();
 }
 else {
 hit_snd->Play();
 player->ElasticCollision(projectile);
 }
 projectile->m_CurrentFrame = 1;
 projectile->m_NextFrameTime = ms_per_frame;
}

We will do the same for an enemy spaceship struck by a projectile while its shields are up:

 else if(enemy->m_CurrentFrame == 0 &&
 (projectile->HitTest(enemy) ||
 enemy->CompoundHitTest(projectile))) {
 if(enemy->m_Shield->m_Active == false) {
 enemy->m_CurrentFrame = 1;
 enemy->m_NextFrameTime = ms_per_frame;
 enemy->m_Explode->Run();
 large_explosion_snd->Play();
 }
 else {
 enemy->ElasticCollision(projectile);
 hit_snd->Play();
 }
 projectile->m_CurrentFrame = 1;
 projectile->m_NextFrameTime = ms_per_frame;
 }
}

Game Physics Chapter 13

[449]

After looping over all of the active projectiles, the collisions function loops over all of
the asteroids looking for a collision between an asteroid and one of the ships. If the ship
does not have its shields activated, the ship is destroyed. We do not make any
modifications to this part of the code. In previous versions of our code, if the ship did have
its shields up, we destroyed the asteroid. Now, we will have an elastic collision, which will
cause the spaceship and the asteroid to bounce off one another. This is what this asteroid
loop looks like:

for(ita = asteroid_list.begin(); ita != asteroid_list.end(); ita++) {
 asteroid = *ita;
 if(asteroid->m_Active) {
 if(asteroid->HitTest(star)) {
 asteroid->Explode();
 small_explosion_snd->Play();
 }
 }
 else {
 continue;
 }

 if(player->m_CurrentFrame == 0 &&
 asteroid->m_Active &&
 (asteroid->HitTest(player) ||
 player->CompoundHitTest(asteroid))) {
 if(player->m_Shield->m_Active == false) {
 player->m_CurrentFrame = 1;
 player->m_NextFrameTime = ms_per_frame;

 player->m_Explode->Run();
 large_explosion_snd->Play();
 }
 else {
 player->ElasticCollision(asteroid);
 small_explosion_snd->Play();
 }
 }
 if(enemy->m_CurrentFrame == 0 &&
 asteroid->m_Active &&
 (asteroid->HitTest(enemy) ||
 enemy->CompoundHitTest(asteroid))) {
 if(enemy->m_Shield->m_Active == false) {
 enemy->m_CurrentFrame = 1;
 enemy->m_NextFrameTime = ms_per_frame;

 enemy->m_Explode->Run();
 large_explosion_snd->Play();
 }

Game Physics Chapter 13

[450]

 else {
 enemy->ElasticCollision(asteroid);
 small_explosion_snd->Play();
 }
 }
}

There are now two calls to ElasticCollision. One of the calls occurs when the player
ship collides with an asteroid and the player ship has its shields up. The other occurs when
the enemy ship collides with an asteroid, and the enemy ship has its shields up.

The last change we must make to our collisions() function is the addition of a new
double asteroid loop that will loop through all our asteroids looking for collisions
between two of them. That creates a fun effect where asteroids bounce off one another like
billiard balls. If there is a collision detected between two of the asteroids, we call
ElasticCollision:

Asteroid* asteroid_1;
Asteroid* asteroid_2;

std::vector<Asteroid*>::iterator ita_1;
std::vector<Asteroid*>::iterator ita_2;

for(ita_1 = asteroid_list.begin(); ita_1 != asteroid_list.end(); ita_1++)
{
 asteroid_1 = *ita_1;
 if(!asteroid_1->m_Active) {
 continue;
 }

 for(ita_2 = ita_1+1; ita_2 != asteroid_list.end(); ita_2++) {
 asteroid_2 = *ita_2;
 if(!asteroid_2->m_Active) {
 continue;
 }

 if(asteroid_1->HitTest(asteroid_2)) {
 asteroid_1->ElasticCollision(asteroid_2);
 }
 }
}

Game Physics Chapter 13

[451]

Changes to asteroid.cpp and projectile.cpp
We have to make a small addition to both asteroid.cpp and projectile.cpp. We have
added a new attribute called m_Mass to the Collider class, so all classes derived from
Collider inherit this attribute. The m_Mass attribute is used by our ElasticCollision
function to determine how these objects will move after an elastic collision. The ratio
between the mass of a spaceship and the mass of a projectile will be used to calculate the
amount of recoil that occurs when the spaceship shoots a projectile. The first modification is
to the Projectile class constructor. Here is the new version of that constructor:

Projectile::Projectile(): Collider(4.0) {
 m_Active = false;

 SDL_Surface *temp_surface = IMG_Load(c_SpriteFile);

 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;
 }
 m_SpriteTexture = SDL_CreateTextureFromSurface(renderer, temp_surface
);

 if(!m_SpriteTexture) {
 printf("failed to create texture: %s\n", IMG_GetError());
 return;
 }

 SDL_FreeSurface(temp_surface);

 m_Mass = 1.0;
}

The only modification is the final line, where we set m_Mass to 1.0:

m_Mass = 1.0;

The next constructor that needs to be modified is in the asteroid.cpp file. We need to
modify the Asteroid class constructor. Here is the new version of the Asteroid
constructor:

Asteroid::Asteroid(float x, float y, float velocity, float rotation):
Collider(8.0) {
 SDL_Surface *temp_surface = IMG_Load(ADSTEROID_SPRITE_FILE);
 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;

Game Physics Chapter 13

[452]

 }
 else { printf("success creating asteroid surface\n"); }
 m_SpriteTexture = SDL_CreateTextureFromSurface(renderer, temp_surface
);
 if(!m_SpriteTexture) {
 printf("failed to create texture: %s\n", IMG_GetError());
 return;
 }
 else { printf("success creating asteroid texture\n"); }
 SDL_FreeSurface(temp_surface);
 m_Explode = new Emitter((char*)"/sprites/Explode.png", 100, 0, 360,
 1000, 0.3, false, 20.0, 40.0, 10, 0, 0, 5, 1.0, 2.0, 1.0, 2.0,
 0xffffff, 0xffffff, 0.01, 10, false, false, 800, 8);
 m_Explode->m_parent_rotation_ptr = &m_Rotation;
 m_Explode->m_parent_x_ptr = &(m_Position.x);
 m_Explode->m_parent_y_ptr = &(m_Position.y);
 m_Explode->m_Active = false;
 m_Chunks = new Emitter((char*)"/sprites/small-asteroid.png",40,0,360,
 1000, 0.05, false, 80.0, 150.0, 5,0,0,10,2.0,2.0,0.25, 0.5, 0xffffff,
 0xffffff, 0.1, 10, false, true, 1000, 8);
 m_Chunks->m_parent_rotation_ptr = &m_Rotation;
 m_Chunks->m_parent_x_ptr = &m_Position.x;
 m_Chunks->m_parent_y_ptr = &m_Position.y;
 m_Chunks->m_Active = false;
 m_Position.x = x;
 m_Position.y = y;
 Vector2D direction;
 direction.x = 1;
 direction.Rotate(rotation);
 m_Direction = direction;
 m_Velocity = m_Direction * velocity;
 m_dest.h = m_src.h = m_dest.w = m_src.w = 16;
 m_Rotation = rotation;
 m_Active = true;
 m_CurrentFrame = 0;
 m_NextFrameTime = ms_per_frame;

 m_Mass = 100.0;
}

Once again, the only line we will add is the final line where we set m_Mass to 100.0:

m_Mass = 100.0;

Game Physics Chapter 13

[453]

Changes to the ship.cpp file
The first change to the ship.cpp file will be to the Ship constructor. This is a simple
change that we need to make to the end of the constructor function, where we will be
setting the mass of the ship to 50.0. Here is the new version of the Ship class constructor:

Ship::Ship() : Collider(8.0) {
 m_Rotation = PI;

 m_LastLaunchTime = current_time;

 m_Accelerating = false;

 m_Exhaust = new Emitter((char*)"/sprites/ProjectileExpOrange.png", 200,
 -10, 10,
 400, 1.0, true,
 0.1, 0.1,
 30, 0, 12, 0.5,
 0.5, 1.0,
 0.5, 1.0,
 0xffffff, 0xffffff,
 0.7, 10,
 true, true,
 1000, 6);

 m_Exhaust->m_parent_rotation_ptr = &m_Rotation;
 m_Exhaust->m_parent_x_ptr = &(m_Position.x);
 m_Exhaust->m_parent_y_ptr = &(m_Position.y);
 m_Exhaust->m_x_adjustment = 10;
 m_Exhaust->m_y_adjustment = 10;
 m_Exhaust->m_Active = false;

 m_Explode = new Emitter((char*)"/sprites/Explode.png", 100,
 0, 360,
 1000, 0.3, false,
 20.0, 40.0,
 10, 0, 0, 5,
 1.0, 2.0,
 1.0, 2.0,
 0xffffff, 0xffffff,
 0.0, 10,
 false, false,
 800, 8);

 m_Explode->m_parent_rotation_ptr = &m_Rotation;
 m_Explode->m_parent_x_ptr = &(m_Position.x);
 m_Explode->m_parent_y_ptr = &(m_Position.y);

Game Physics Chapter 13

[454]

 m_Explode->m_Active = false;

 m_Direction.y = 1.0;

 m_Active = true;
 m_Mass = 50.0;
}

The only line that was changed was the very last line:

m_Mass = 50.0;

We will also need to change the Shoot function to add a recoil. A few lines will be added to
modify the velocity of the ship by adding a vector that is in the opposite direction to where
the ship is facing, and has a magnitude based on the velocity and relative mass of the
projectile fired. Here is the new Shoot function:

void Ship::Shoot() {
 Projectile* projectile;
 if(current_time - m_LastLaunchTime >= c_MinLaunchTime) {
 m_LastLaunchTime = current_time;
 projectile = projectile_pool->GetFreeProjectile();
 if(projectile != NULL) {
 projectile->Launch(m_Position, m_Direction);
 player_laser_snd->Play();
 m_Velocity -= m_Direction * (projectile->c_Velocity *
projectile->m_Mass /
m_Mass);
 CapVelocity();
 }
 }
}

These are the two lines that we are adding to the function:

m_Velocity -= m_Direction * (projectile->c_Velocity * projectile->m_Mass /
m_Mass);
CapVelocity();

Compiling the physics.html file
Now that we have added physics, it is time to compile our code. We can build the
physics.html file with the following em++ command:

em++ asteroid.cpp audio.cpp camera.cpp collider.cpp emitter.cpp
enemy_ship.cpp finite_state_machine.cpp locator.cpp main.cpp particle.cpp

Game Physics Chapter 13

[455]

player_ship.cpp projectile_pool.cpp projectile.cpp range.cpp
render_manager.cpp shield.cpp ship.cpp star.cpp vector.cpp -o physics.html
--preload-file audio --preload-file sprites -std=c++17 -s USE_WEBGL2=1 -s
USE_SDL=2 -s USE_SDL_IMAGE=2 -s SDL2_IMAGE_FORMATS=["png"] -s
USE_SDL_IMAGE=2 -s SDL2_IMAGE_FORMATS=["png"]

The following screenshot may look similar to earlier versions, but when you fire your
projectiles, the ship will accelerate backward. If you collide with an asteroid when your
shields are on, you will bounce off them like a billiard ball. Get too close to the sun, and the
gravity will begin to attract your ship:

Figure 13.1: physics.html screenshot

Game Physics Chapter 13

[456]

Summary
In this chapter, we discussed the history of physics in computer games, and how that
history dates back to the very first computer game, SpaceWar!. We talked about the physics
that we already have in our game, which includes the conservation of momentum. We
briefly discussed Newton's third law and how it applies to games, and we then added more
Newtonian physics to our game by using the third law. We added a gravitational field to
our star and had it attract the spaceships in our game with a force that decreases with the
square of the distance between the two objects. Finally, we added elastic collisions between
our spaceships, projectiles, and asteroids.

In the next chapter, we will add a user interface (UI) to our game. We will also break the
game up into multiple screens and add a mouse interface.

14
UI and Mouse Input

A user interface (UI) defines the interaction between a computer program and the user. In
our game, our interaction so far has been limited to a keyboard interface that controls our
player's spaceship. When we wrote our particle system configuration apps, we used HTML
to define a more robust user interface, which allowed us to input values to configure our
particle system. From that user interface, our code had to interact with the WebAssembly
code indirectly. That is a technique you could continue to use for games if you wanted to
leverage HTML to define your user interface, but it has a few disadvantages. First of all, we
may want user interface elements that overlay the content of our game. Going through the
DOM for this kind of effect is not very efficient. It is also easier to have interactions between
our UI and objects from within the game if the UI elements are rendered inside of the game
engine. In addition, you may be developing your C/C++ code to be used for a platform as
well as a web release. If this is the case, you may not want HTML to have much of a role in
your user interface.

In this chapter, we will be implementing a few UI features inside our game. We will need to
implement a Button class, which is one of the simplest and most common UI elements. We
will also need to implement a separate screen and game state so that we can have a starting
and an ending game screen.

You will need to include several images and audio files in your build to
make this project work. Make sure that you include the
/Chapter14/sprites/ and /Chapter14/audio/ folders from this
project's GitHub repository. If you haven't downloaded the GitHub
project yet, you can get it online here: https:/ ​/​github. ​com/
PacktPublishing/ ​Hands- ​On-​Game- ​Development.

https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly

UI and Mouse Input Chapter 14

[458]

In this chapter, we will be covering the following topics:

UI requirements
Getting mouse input
Creating a button
The start game screen
The game over screen

UI requirements
The first thing we will need to do when implementing our UI is to decide on some
requirements. What exactly do we need for our user interface? The first part of that is
deciding what game screens we need for our game. This is usually the kind of thing you do
early in the game design process, but because I am writing a book about WebAssembly, I
have saved this step for a later chapter. Deciding what screens your game needs usually
involves a storyboard and a process by which you either talk through (if more than one
person is working on the game) or think through the way a user will interact with your web
page, as well as the game that is on that page:

Figure 14.1: Storyboard example for our user interface

You don't have to draw a storyboard, but I find it useful when thinking through what I
need for a game's UI. It is even more useful when you need to relay that information to
another team member or an artist. When thinking through what we need in this game for
the preceding storyboard, I came up with the following list of requirements:

Opening screen
Instructions

UI and Mouse Input Chapter 14

[459]

Play button
Game play screen
Score text
Game over screen
You win message
You lose message
Play again button

Opening screen
Our game needs an opening screen for a few reasons. First of all, we don't want the game to
start as soon as the user loads up the web page. There are a lot of reasons the user may load
up the web page and not start playing the instant the web page has completely loaded. If
they are on a slow connection, they may turn away from the computer while the game is
loading up and may not notice the second it loads. If they reached this page by clicking a
link, they might not be prepared to start playing the instant the game loads. It is also good
practice in general to have something the player must do to acknowledge they are ready
before throwing them into gameplay. The opening screen should also include some
instructions for basic gameplay. Arcade games have a long history of putting simple
instructions on the cabinet to tell the player what they must do to play the game. Famously,
the game Pong came with the instructions Avoid missing ball for high score printed on the
cabinet. Unfortunately, we do not have an arcade cabinet to print our instructions on, so
using the opening game screen is the next best thing. We will also need a button that will
allow the user to begin playing the game when they click it, as follows:

Figure 14.2: Opening screen image

UI and Mouse Input Chapter 14

[460]

Play screen
The play screen is the screen we have always had. It is the screen where the player moves
their spaceship around, trying to destroy the enemy spaceship. We may not need to change
how this screen works, but we will need to add transitions to and from this screen based on
the game state. The game will need to transition to our play screen from the opening screen
when the player clicks a button. The player will also need to transition from the screen to
the game over screen if either of the ships are destroyed. This is shown here:

Figure 14.3: The original screen is now the play screen

Game over screen
If one of the spaceships is destroyed, the game is over. If the player's ship is destroyed, then
the player loses the game. If the enemy ship is destroyed, then the player wins the game.
The game over screen lets us know that the game is over and tells us if the player has won or
lost. It also needs to provide a button that allows our player to play the game again if they
would like to. The game over screen is shown here:

UI and Mouse Input Chapter 14

[461]

Figure 14.4: Game over screen

Mouse input
Before we can implement a button, we need to learn how to use mouse input in SDL. The
code we used to get the keyboard input is in our main.cpp file. Inside the input function,
you will find a call to SDL_PollEvent, followed by a few different switch statements. The
first switch statements check the event.type for SDL_KEYDOWN. The second switch checks
event.key.keysym.sym to see which key we pressed:

if(SDL_PollEvent(&event)){
 switch(event.type){
 case SDL_KEYDOWN:
 switch(event.key.keysym.sym){
 case SDLK_LEFT:
 left_key_down = true;
 break;
 case SDLK_RIGHT:
 right_key_down = true;
 break;
 case SDLK_UP:

UI and Mouse Input Chapter 14

[462]

 up_key_down = true;
 break;
 case SDLK_DOWN:
 down_key_down = true;
 break;
 case SDLK_f:
 f_key_down = true;
 break;
 case SDLK_SPACE:
 space_key_down = true;
 break;
 default:
 break;
 }
 break;

When we are looking for mouse input, we need to use the same SDL_PollEvent function
to retrieve our mouse events. The three mouse events we are concerned with are
SDL_MOUSEMOTION, SDL_MOUSEBUTTONDOWN, and SDL_MOUSEBUTTONUP. Once we know
the kind of mouse event we are dealing with, we can use SDL_GetMouseState to find the
x and y coordinates of our mouse when the event occurs:

if(SDL_PollEvent(&event))
{
 switch (event.type)
 {
 case SDL_MOUSEMOTION:
 {
 int x_val = 0;
 int y_val = 0;
 SDL_GetMouseState(&x_val, &y_val);
 printf(”mouse move x=%d y=%d\n”, x_val, y_val);
 }
 case SDL_MOUSEBUTTONDOWN:
 {
 switch (event.button.button)
 {
 case SDL_BUTTON_LEFT:
 {
 int x_val = 0;
 int y_val = 0;
 SDL_GetMouseState(&x_val, &y_val);
 printf(”mouse down x=%d y=%d\n”, x_val, y_val);
 break;
 }
 default:
 {

UI and Mouse Input Chapter 14

[463]

 break;
 }
 }
 break;
 }
 case SDL_MOUSEBUTTONUP:
 {
 switch (event.button.button)
 {
 case SDL_BUTTON_LEFT:
 {
 int x_val = 0;
 int y_val = 0;
 SDL_GetMouseState(&x_val, &y_val);
 printf(”mouse up x=%d y=%d\n”, x_val, y_val);
 break;
 }
 default:
 {
 break;
 }
 }
 break;
 }

Now that we can receive mouse input, let's create a simple user interface button.

Creating a button
Now that we know how to capture mouse input in WebAssembly using SDL, we can use
this knowledge to create a button that can be clicked by a mouse. The first thing we will
need to do is create a UIButton class definition inside of the game.hpp file. Our button will
have more than one sprite texture associated with it. Buttons usually have a hover state and
a clicked state, so we will want to display an alternative version of our sprite if the user is
hovering the mouse cursor over the button, or has clicked the button:

Figure 14.5: Button states

UI and Mouse Input Chapter 14

[464]

To capture these events, we will need functions to detect whether the mouse has clicked on
our button or hovered over it. Here is what our class definition looks like:

class UIButton {
 public:
 bool m_Hover;
 bool m_Click;
 bool m_Active;
 void (*m_Callback)();

 SDL_Rect m_dest = {.x = 0, .y = 0, .w = 128, .h = 32 };
 SDL_Texture *m_SpriteTexture;
 SDL_Texture *m_ClickTexture;
 SDL_Texture *m_HoverTexture;

 UIButton(int x, int y,
 char* file_name, char* hover_file_name, char* click_file_name,
 void (*callback)());

 void MouseClick(int x, int y);
 void MouseUp(int x, int y);
 void MouseMove(int x, int y);
 void KeyDown(SDL_Keycode key);
 void RenderUI();
};

The first three attributes are button state attributes that tell our render function what sprite
to draw, or if the button is inactive, not to draw anything. The m_Hover attribute will cause
our renderer to draw m_HoverTexture if it is true. The m_Click attribute will cause our
renderer to draw m_ClickTexture if it is true. Finally, m_Active, if set to false, will
cause our renderer not to draw anything.

The following line is a function pointer to our callback:

void (*m_Callback)();

This function pointer is set in our constructor and is the function that we call whenever
someone clicks on the button. After the function pointer, we have our destination rectangle,
which will have the location, width, and height of the button image file after the
constructor runs:

SDL_Rect m_dest = {.x = 0, .y = 0, .w = 128, .h = 32 };

UI and Mouse Input Chapter 14

[465]

Then, we have three textures. These textures are used to draw an image to our canvas and
chosen during the render, based on the state flags we discussed earlier:

SDL_Texture *m_SpriteTexture;
SDL_Texture *m_ClickTexture;
SDL_Texture *m_HoverTexture;

Next, we have the constructor function. This function takes in the x and y screen
coordinates of our button. After that, there are three strings, which are the locations of the
three PNG files we will use to load our textures. The last parameter is a pointer to the
callback function:

UIButton(int x, int y,
 char* file_name, char* hover_file_name, char* click_file_name,
 void (*callback)());

Then, there are the three functions we will need to call after we call SDL_PollEvent, based
on the current state of the mouse:

void MouseClick(int x, int y);
void MouseUp(int x, int y);
void MouseMove(int x, int y);

The KeyDown function will take a key code if a key is pressed, and if the key code matches
our hotkey, we would like to use it as an alternative to clicking the button with the mouse:

void KeyDown(SDL_Keycode key);

The RenderUI function is similar to the Render functions we've created for other objects.
The difference between RenderUI and Render is that the Render function will take the
camera position into account when rendering a sprite to the screen. The RenderUI function
will always render in canvas space:

void RenderUI();

In the next section, we will create user interface state information to track the current
screen.

UI and Mouse Input Chapter 14

[466]

Screen states
Before we begin adding new screens to our game, we will need to create some screen states.
We will do most of the management of these states from within the main.cpp file. Different
screen states will require different input, will run different logic, and different render
functions. We will manage all of this at the highest level of our code as functions called by
our game loop. We will define a list of possible states from within the game.hpp file as an
enumeration:

enum SCREEN_STATE {
 START_SCREEN = 0,
 PLAY_SCREEN = 1,
 PLAY_TRANSITION = 2,
 GAME_OVER_SCREEN = 3,
 YOU_WIN_SCREEN = 4
};

You may notice that even though there will only be three different screens, we have a total
of five different screen states. START_SCREEN and PLAY_SCREEN are the start screen and
play screen respectively. The PLAY_TRANSITION state transitions the screens between
START_SCREEN and PLAY_SCREEN by fading in the gameplay instead of having an abrupt
switch to play. We will use two different states for our game over screen. These states are
GAME_OVER_SCREEN and YOU_WIN_SCREEN. The only difference between these two states is
the message that's displayed when the game is over.

Changes to games.hpp
There are a few additional changes we will need to make to our game.hpp file. In addition
to our UIButton class, we will need to add a UISprite class definition file. The UISprite
is just a plain, ordinary image drawn in canvas space. It will not have any functionality on
top of just being a sprite rendered as a UI element. Here is what the definition looks like:

class UISprite {
 public:
 bool m_Active;
 SDL_Texture *m_SpriteTexture;
 SDL_Rect m_dest = {.x = 0, .y = 0, .w = 128, .h = 32 };
 UISprite(int x, int y, char* file_name);
 void RenderUI();
};

UI and Mouse Input Chapter 14

[467]

Like the button, it has an active state that's represented by the m_Active attribute. If this
value is false, the sprite will not render. It also has a sprite texture and a destination
attribute that tells the renderer what to draw and where to draw it:

SDL_Texture *m_SpriteTexture;
SDL_Rect m_dest = {.x = 0, .y = 0, .w = 128, .h = 32 };

It has a simple constructor that takes in the x and y coordinates where we will render the
sprite on the canvas, and the file name of the image in the virtual filesystem from which we
will load the sprite:

UISprite(int x, int y, char* file_name);

Finally, it has a render function called RenderUI that will render the sprite to the canvas:

void RenderUI();

Modifying the RenderManager class
The RenderManager class will need a new attribute and a new function. In previous
versions of our game, we had one type of background that we could render, and that was
our scrolling starfield. When we render our start screen, I would like to use a new custom
background that includes some instructions for how to play the game.

Here is the new version of the RenderManager class definition:

class RenderManager {
 public:
 const int c_BackgroundWidth = 800;
 const int c_BackgroundHeight = 600;
 SDL_Texture *m_BackgroundTexture;
 SDL_Rect m_BackgroundDest = {.x = 0, .y = 0, .w =
 c_BackgroundWidth, .h = c_BackgroundHeight };
 SDL_Texture *m_StartBackgroundTexture;

 RenderManager();
 void RenderBackground();
 void RenderStartBackground(int alpha = 255);
 void Render(SDL_Texture *tex, SDL_Rect *src, SDL_Rect *dest,
 float rad_rotation = 0.0,
 int alpha = 255, int red = 255, int green = 255,
 int blue = 255);
 void RenderUI(SDL_Texture *tex, SDL_Rect *src, SDL_Rect *dest,
 float rad_rotation = 0.0,
 int alpha = 255, int red = 255, int green = 255,

UI and Mouse Input Chapter 14

[468]

 int blue = 255);
};

We have added a new SDL_Texture, which we will use to render the background image in
the start screen:

SDL_Texture *m_StartBackgroundTexture;

In addition to the new attribute, we have added a new function to render that image when
the start screen is active:

void RenderStartBackground(int alpha = 255);

The alpha value that's passed into this function will be used to fade out the start screen
during the PLAY_TRANSITION screen state. That transition state will begin when the player
clicks the "Play" button and will last for about a second.

New external variables
We need to add three new extern variable definitions that will reference variables we
declare in the main.cpp file. Two of these variables are pointers to UISprite objects, and
one of these variables is a pointer to a UIButton. Here are the three extern definitions:

extern UISprite *you_win_sprite;
extern UISprite *game_over_sprite;
extern UIButton* play_btn;

We use these two UISprite pointers in the game over screen. The first, you_win_sprite,
is the sprite that will be displayed when the player wins the game. The second sprite,
game_over_sprite, is the sprite that will be displayed when the player loses. The final
variable, play_btn, is the play button that will be displayed on the start screen.

Changes to main.cpp
We manage the new screen states from within our game loop. Because of this, we will make
most of the changes in the main.cpp file. We will need to break the input function up into
three new functions, one for each of our game screens. We will need to break our
render function into start_render and play_render functions. We don't need an
end_render function because we will continue to use the play_render function when the
end screen is displayed.

UI and Mouse Input Chapter 14

[469]

We will also need a function to display the transition between the start screen and the play
screen. Inside of the game loop, we will need to add logic to perform different loop logic
based on the current screen.

Adding global variables
The first change we need to make to our main.cpp file is to add new global variables. We
will need new global variables for our user interface sprites and buttons. We will need a
new global variable to represent the current screen state, the transition time between states,
and a flag telling us if the player has won the game. Here are the new global variables we
need in the main.cpp file:

UIButton* play_btn;
UIButton* play_again_btn;
UISprite *you_win_sprite;
UISprite *game_over_sprite;
SCREEN_STATE current_screen = START_SCREEN;
int transition_time = 0;
bool you_win = false;

The first two variables are UIButton object pointers. The first is play_btn, which is the
start screen button that the user will click to begin playing the game. The second is
play_again_btn, which is a button on the end game screen the player can click to restart
the game. After the UIButtons, we have two UISprite objects:

UISprite *you_win_sprite;
UISprite *game_over_sprite;

These are the sprites that are displayed on the end game screen. Which sprite is displayed
depends on whether or not the player destroyed the enemy ship or vice versa. After those
sprites, we have a SCREEN_STATE variable, which is used to track the current screen state:

SCREEN_STATE current_screen = START_SCREEN;

The transition_time variable is used to keep track of the amount of time left in the
transition state between the start screen and the play screen. The you_win flag is set when
the game is over and is used to keep track of who won the game.

UI and Mouse Input Chapter 14

[470]

Input functions
The previous version of our game had a single input function that used SDL_PollEvent
to poll for key presses. In this version, we want an input function for each of the three
screen states. The first thing we should do is rename the original input function
play_input. This will no longer be a universal input function, – it will only perform the
input functionality for the play screen. Now that we have renamed our original input
function, let's define the input function for our start screen and call it start_input:

void start_input() {
 if(SDL_PollEvent(&event))
 {
 switch (event.type)
 {
 case SDL_MOUSEMOTION:
 {
 int x_val = 0;
 int y_val = 0;
 SDL_GetMouseState(&x_val, &y_val);
 play_btn->MouseMove(x_val, y_val);
 }
 case SDL_MOUSEBUTTONDOWN:
 {
 switch (event.button.button)
 {
 case SDL_BUTTON_LEFT:
 {
 int x_val = 0;
 int y_val = 0;
 SDL_GetMouseState(&x_val, &y_val);
 play_btn->MouseClick(x_val, y_val);
 break;
 }
 default:
 {
 break;
 }
 }
 break;
 }
 case SDL_MOUSEBUTTONUP:
 {
 switch (event.button.button)
 {
 case SDL_BUTTON_LEFT:
 {
 int x_val = 0;

UI and Mouse Input Chapter 14

[471]

 int y_val = 0;
 SDL_GetMouseState(&x_val, &y_val);
 play_btn->MouseUp(x_val, y_val);
 break;
 }
 default:
 {
 break;
 }
 }
 break;
 }
 case SDL_KEYDOWN:
 {
 play_btn->KeyDown(event.key.keysym.sym);
 }
 }
 }
}

Like our play_input function, the start_input function will be making a call to
SDL_PollEvent. In addition to checking SDL_KEYDOWN to determine whether a key was
pressed, we will also be checking three mouse events: SDL_MOUSEMOTION,
SDL_MOUSEBUTTONDOWN, and SDL_MOUSEBUTTONUP. When checking for those mouse
events, we will call the play_btn functions based on the SDL_GetMouseState values we
retrieve. A mouse event will trigger the following code:

case SDL_MOUSEMOTION:
{
 int x_val = 0;
 int y_val = 0;
 SDL_GetMouseState(&x_val, &y_val);
 play_btn->MouseMove(x_val, y_val);
}

If event.type was SDL_MOUSEMOTION, we create x_val and y_val integer variables and
use a call to SDL_GetMouseState to retrieve the x and y coordinates of our mouse cursor.
We then call play_btn->MouseMove(x_val, y_val). This passes the mouse x and y
coordinates to the play button, which uses those values to determine whether the button is
in a hover state. We do something similar if event.type is SDL_MOUSEBUTTONDOWN:

case SDL_MOUSEBUTTONDOWN:
{
 switch (event.button.button)
 {
 case SDL_BUTTON_LEFT:

UI and Mouse Input Chapter 14

[472]

 {
 int x_val = 0;
 int y_val = 0;

 SDL_GetMouseState(&x_val, &y_val);
 play_btn->MouseClick(x_val, y_val);
 break;
 }
 default:
 {
 break;
 }
 }
 break;
}

If the mouse button is pressed, we look inside of event.button.button to see if the
button that was clicked was the left mouse button. If it is, we use x_val and y_val in
combination with SDL_GetMouseState to find the mouse cursor position. We use those
values to call play_btn->MouseClick(x_val, y_val). The MouseClick function will
determine whether the button click fell within the button and if so, it will call the button's
callback function.

The code that executes when the event is SDL_MOUSEBUTTONUP is very similar to
SDL_MOUSEBUTTONDOWN, with the exception that it calls play_btn->MouseUp instead of
play_btn->MouseClick:

case SDL_MOUSEBUTTONUP:
{
 switch (event.button.button)
 {
 case SDL_BUTTON_LEFT:
 {
 int x_val = 0;
 int y_val = 0;

 SDL_GetMouseState(&x_val, &y_val);
 play_btn->MouseUp(x_val, y_val);
 break;
 }
 default:
 {
 break;
 }
 }
 break;
}

UI and Mouse Input Chapter 14

[473]

In addition to the mouse events, we will be passing keyboard events to our button. This is
done so that we can create a hotkey that will trigger the callback:

case SDL_KEYDOWN:
{
 play_btn->KeyDown(event.key.keysym.sym);
}

The end_input function
After the start_input function, we will define the end_input function. The end_input
function is very similar to the start_input function. The only significant difference is that
the play_btn object is replaced by the play_again_btn object, which will have a different
callback and SDL texture associated with it:

void end_input() {
 if(SDL_PollEvent(&event))
 {
 switch(event.type)
 {
 case SDL_MOUSEMOTION:
 {
 int x_val = 0;
 int y_val = 0;
 SDL_GetMouseState(&x_val, &y_val);
 play_again_btn->MouseMove(x_val, y_val);
 }
 case SDL_MOUSEBUTTONDOWN:
 {
 switch(event.button.button)
 {
 case SDL_BUTTON_LEFT:
 {
 int x_val = 0;
 int y_val = 0;
 SDL_GetMouseState(&x_val, &y_val);
 play_again_btn->MouseClick(x_val, y_val);
 break;
 }
 default:
 {
 break;
 }
 }
 break;
 }

UI and Mouse Input Chapter 14

[474]

 case SDL_MOUSEBUTTONUP:
 {
 switch(event.button.button)
 {
 case SDL_BUTTON_LEFT:
 {
 int x_val = 0;
 int y_val = 0;
 SDL_GetMouseState(&x_val, &y_val);
 play_again_btn->MouseUp(x_val, y_val);
 break;
 }
 default:
 {
 break;
 }
 }
 break;
 }
 case SDL_KEYDOWN:
 {
 printf("SDL_KEYDOWN\n");
 play_again_btn->KeyDown(event.key.keysym.sym);
 }
 }
 }
}

The render functions
In previous versions of our game, we had a single render function. Now, we must have a
render function for both our start screen and our play screen. The existing renderer will
become our new play screen renderer, so we must rename the render function
play_render. We also need to add a rendering function for our start screen called
start_render. This function will render our new background and play_btn. Here is the
code for start_render:

void start_render() {
 render_manager->RenderStartBackground();
 play_btn->RenderUI();
}

UI and Mouse Input Chapter 14

[475]

The collisions function
There will need to be some minor modifications to the collisions() function. When a
player ship or an enemy ship gets destroyed, we will need to change the current screen to
the game over screen. Depending on which ship gets destroyed, we will either need to
change it to the win screen or the lose screen. Here is the new version of our collisions
function:

void collisions() {
 Asteroid* asteroid;
 std::vector<Asteroid*>::iterator ita;
 if(player->m_CurrentFrame == 0 && player->CompoundHitTest(star)) {
 player->m_CurrentFrame = 1;
 player->m_NextFrameTime = ms_per_frame;
 player->m_Explode->Run();
 current_screen = GAME_OVER_SCREEN;
 large_explosion_snd->Play();
 }
 if(enemy->m_CurrentFrame == 0 && enemy->CompoundHitTest(star)) {
 enemy->m_CurrentFrame = 1;
 enemy->m_NextFrameTime = ms_per_frame;
 current_screen = YOU_WIN_SCREEN;
 enemy->m_Explode->Run();
 large_explosion_snd->Play();
 }
 Projectile* projectile;
 std::vector<Projectile*>::iterator it;
 for(it=projectile_pool->m_ProjectileList.begin();
 it!=projectile_pool->m_ProjectileList.end();it++){
 projectile = *it;
 if(projectile->m_CurrentFrame == 0 && projectile->m_Active) {
 for(ita = asteroid_list.begin(); ita!=asteroid_list.end();
 ita++) {
 asteroid = *ita;
 if(asteroid->m_Active) {
 if(asteroid->HitTest(projectile)) {
 asteroid->ElasticCollision(projectile);
 projectile->m_CurrentFrame = 1;
 projectile->m_NextFrameTime = ms_per_frame;
 small_explosion_snd->Play();
 }
 }
 }
 if(projectile->HitTest(star)){
 projectile->m_CurrentFrame = 1;
 projectile->m_NextFrameTime = ms_per_frame;
 small_explosion_snd->Play();

UI and Mouse Input Chapter 14

[476]

 }
 else if(player->m_CurrentFrame == 0 &&
 (projectile->HitTest(player) || player->CompoundHitTest(
 projectile))) {
 if(player->m_Shield->m_Active == false) {
 player->m_CurrentFrame = 1;
 player->m_NextFrameTime = ms_per_frame;
 current_screen = GAME_OVER_SCREEN;
 player->m_Explode->Run();
 large_explosion_snd->Play();
 }
 else {
 hit_snd->Play();
 player->ElasticCollision(projectile);
 }
 projectile->m_CurrentFrame = 1;
 projectile->m_NextFrameTime = ms_per_frame;
 }
 else if(enemy->m_CurrentFrame == 0 &&
 (projectile->HitTest(enemy) || enemy->CompoundHitTest(
 projectile))) {
 if(enemy->m_Shield->m_Active == false) {
 enemy->m_CurrentFrame = 1;
 enemy->m_NextFrameTime = ms_per_frame;
 current_screen = YOU_WIN_SCREEN;
 enemy->m_Explode->Run();
 large_explosion_snd->Play();
 enemy->m_Shield->m_ttl -= 1000;
 }
 else {
 enemy->ElasticCollision(projectile);
 hit_snd->Play();
 }
 projectile->m_CurrentFrame = 1;
 projectile->m_NextFrameTime = ms_per_frame;
 }
 }
 }
 for(ita = asteroid_list.begin(); ita != asteroid_list.end(); ita++) {
 asteroid = *ita;
 if(asteroid->m_Active) {
 if(asteroid->HitTest(star)) {
 asteroid->Explode();
 small_explosion_snd->Play();
 }
 }
 else { continue; }
 if(player->m_CurrentFrame == 0 && asteroid->m_Active &&

UI and Mouse Input Chapter 14

[477]

 (asteroid->HitTest(player) || player->CompoundHitTest(
 asteroid))) {
 if(player->m_Shield->m_Active == false) {
 player->m_CurrentFrame = 1;
 player->m_NextFrameTime = ms_per_frame;

 player->m_Explode->Run();
 current_screen = GAME_OVER_SCREEN;
 large_explosion_snd->Play();
 }
 else {
 player->ElasticCollision(asteroid);
 small_explosion_snd->Play();
 }
 }
 if(enemy->m_CurrentFrame == 0 && asteroid->m_Active &&
 (asteroid->HitTest(enemy) || enemy->CompoundHitTest(asteroid
))) {
 if(enemy->m_Shield->m_Active == false) {
 enemy->m_CurrentFrame = 1;
 enemy->m_NextFrameTime = ms_per_frame;

 enemy->m_Explode->Run();
 current_screen = YOU_WIN_SCREEN;
 large_explosion_snd->Play();
 }
 else {
 enemy->ElasticCollision(asteroid);
 small_explosion_snd->Play();
 }
 }
 }
 Asteroid* asteroid_1;
 Asteroid* asteroid_2;
 std::vector<Asteroid*>::iterator ita_1;
 std::vector<Asteroid*>::iterator ita_2;
 for(ita_1 = asteroid_list.begin(); ita_1 != asteroid_list.end();
 ita_1++) {
 asteroid_1 = *ita_1;
 if(!asteroid_1->m_Active) { continue; }
 for(ita_2 = ita_1+1; ita_2 != asteroid_list.end(); ita_2++) {
 asteroid_2 = *ita_2;
 if(!asteroid_2->m_Active) { continue; }
 if(asteroid_1->HitTest(asteroid_2)) {
 asteroid_1->ElasticCollision(asteroid_2); }
 }
 }
}

UI and Mouse Input Chapter 14

[478]

You will notice that every line where the player is destroyed, there is a call to
player->m_Explode->Run(). We now follow that line with a call to current_screen =
GAME_OVER_SCREEN to set the screen to the player lose screen. Another way we could have
done this is by adding a function to the Ship class, which runs both the explosion
animation and sets the game screen, but I chose to modify fewer files by making the change
inside of the main function. If we were using this project for more than demonstration
purposes, I probably would have done it the other way.

The other changes we have made to collisions are similar. Whenever an enemy was
destroyed by running the enemy->m_Explode->Run() function, we followed it with a line
that set the current screen to the "you win" screen, like this:

current_screen = YOU_WIN_SCREEN;

The transition state
A sudden transition from the start screen into gameplay can be a little jarring. To make the
transition smoother, we will create a transition function called draw_play_transition,
which will use an alpha fade to transition our screen from the start screen to the gameplay
screen. Here is what that function looks like:

void draw_play_transition() {
 transition_time -= diff_time;
 if(transition_time <= 0) {
 current_screen = PLAY_SCREEN;
 return;
 }
 render_manager->RenderStartBackground(transition_time/4);
}

This function uses the transition_time global variable we created earlier and subtracts
the time in milliseconds since the last frame. It uses that value divided by 4 as the alpha
value when drawing the start screen background to fade it out as it transitions to the
gameplay. When the transition time drops below 0, we set the current screen to the play
screen. When the transition begins, we set transition_time to 1,020 milliseconds, which
is a bit more than a second. Dividing that value by 4 gives us a value that transitions from
255 (full opacity) to 0 (full transparency).

UI and Mouse Input Chapter 14

[479]

The game loop
The game_loop function will need to be modified to perform different logic for each screen.
Here is what the new version of the game loop will look like:

void game_loop() {
 current_time = SDL_GetTicks();
 diff_time = current_time - last_time;
 delta_time = diff_time / 1000.0;
 last_time = current_time;
 if(current_screen == START_SCREEN) {
 start_input();
 start_render();
 }
 else if(current_screen == PLAY_SCREEN || current_screen ==
 PLAY_TRANSITION) {
 play_input();
 move();
 collisions();
 play_render();
 if(current_screen == PLAY_TRANSITION) {
 draw_play_transition();
 }
 }
 else if(current_screen == YOU_WIN_SCREEN || current_screen ==
 GAME_OVER_SCREEN) {
 end_input();
 move();
 collisions();
 play_render();
 play_again_btn->RenderUI();
 if(current_screen == YOU_WIN_SCREEN) {
 you_win_sprite->RenderUI();
 }
 else {
 game_over_sprite->RenderUI();
 }
 }
}

UI and Mouse Input Chapter 14

[480]

We have new branching logic that branches based on the current screen. The first if block
runs if the current screen is the start screen. It runs the start_input and start_render
functions:

if(current_screen == START_SCREEN) {
 start_input();
 start_render();
}

The play screen and the play transition have the same logic as the original game loop,
except for the if block around PLAY_TRANSITION at the end of this block of code. This
draws the play transition by calling the draw_play_transition() function that we
defined earlier:

else if(current_screen == PLAY_SCREEN || current_screen == PLAY_TRANSITION
) {
 play_input();
 move();
 collisions();
 play_render();
 if(current_screen == PLAY_TRANSITION) {
 draw_play_transition();
 }
}

The final block of code in the function is for the game over screen. It will render
you_win_sprite if the current screen is YOU_WIN_SCREEN and will render
game_over_sprite if the current screen is GAME_OVER_SCREEN:

else if(current_screen == YOU_WIN_SCREEN || current_screen ==
 GAME_OVER_SCREEN) {
 end_input();
 move();
 collisions();
 play_render();
 play_again_btn->RenderUI();
 if(current_screen == YOU_WIN_SCREEN) {
 you_win_sprite->RenderUI();
 }
 else {
 game_over_sprite->RenderUI();
 }
}

UI and Mouse Input Chapter 14

[481]

Play and play again callbacks
After our changes to the game loop, we need to add some callback functions for our
buttons. The first of these functions is the play_click function. This is the callback that
runs when the player clicks the play button on the start screen. This function will set the
current screen to the play transition and set the transition time to 1,020 milliseconds:

void play_click() {
 current_screen = PLAY_TRANSITION;
 transition_time = 1020;
}

After that, we will define the play_again_click callback. This function runs when the
player clicks the play again button on the game over screen. Because this is a web game, we
will use a little trick to simplify this logic. In a game written for almost any other platform,
you would need to create some reinitialization logic that would have to go back through
your game and reset the state of everything. We are going to cheat by simply reloading the
web page using JavaScript:

void play_again_click() {
 EM_ASM(
 location.reload();
);
}

This cheat won't work for all games. Reloading some games would cause unacceptable
delays. For some games, there may be too much state information that we need to keep.
However, for this game, reloading the page is a quick and easy way to get the job done.

Changes to the main function
We use the main function in our application to perform all of the game initialization. This is
where we will need to add some code to initialize the sprites we will use on our game over
screen and our new buttons.

In the following code snippet, we have our new sprite initialization lines:

game_over_sprite = new UISprite(400, 300, (char*)"/sprites/GameOver.png"
);
game_over_sprite->m_Active = true;
you_win_sprite = new UISprite(400, 300, (char*)"/sprites/YouWin.png");
you_win_sprite->m_Active = true;

UI and Mouse Input Chapter 14

[482]

You can see that we are setting the game_over_sprite coordinates and the
you_win_sprite coordinates to 400, 300. That will place these sprites in the center of the
screen. We are setting both sprites to be active because they will only be rendered on the
end game screen anyway. Later in the code, we will call the constructors for our UIButton
objects:

play_btn = new UIButton(400, 500,
 (char*)"/sprites/play_button.png",
 (char*)"/sprites/play_button_hover.png",
 (char*)"/sprites/play_button_click.png",
 play_click);

play_again_btn = new UIButton(400, 500,
 (char*)"/sprites/play_again_button.png",
 (char*)"/sprites/play_again_button_hover.png",
 (char*)"/sprites/play_again_button_click.png",
 play_again_click);

This places both of these buttons at 400, 500, centered on the x-axis, but near the bottom
of the game screen on the y-axis. The callbacks are set to play_click and
play_again_click, which we defined earlier. Here is what the entire main function looks
like:

int main() {
 SDL_Init(SDL_INIT_VIDEO | SDL_INIT_AUDIO);
 int return_val = SDL_CreateWindowAndRenderer(CANVAS_WIDTH,
 CANVAS_HEIGHT, 0, &window, &renderer);
 if(return_val != 0) {
 printf("Error creating renderer %d: %s\n", return_val,
 IMG_GetError());
 return 0;
 }
 SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
 SDL_RenderClear(renderer);
 game_over_sprite = new UISprite(400, 300,
 (char*)"/sprites/GameOver.png");
 game_over_sprite->m_Active = true;
 you_win_sprite = new UISprite(400, 300,
 (char*)"/sprites/YouWin.png");
 you_win_sprite->m_Active = true;
 last_frame_time = last_time = SDL_GetTicks();
 player = new PlayerShip();
 enemy = new EnemyShip();
 star = new Star();
 camera = new Camera(CANVAS_WIDTH, CANVAS_HEIGHT);
 render_manager = new RenderManager();
 locator = new Locator();

UI and Mouse Input Chapter 14

[483]

 enemy_laser_snd = new Audio(ENEMY_LASER, false);
 player_laser_snd = new Audio(PLAYER_LASER, false);
 small_explosion_snd = new Audio(SMALL_EXPLOSION, true);
 large_explosion_snd = new Audio(LARGE_EXPLOSION, true);
 hit_snd = new Audio(HIT, false);
 device_id = SDL_OpenAudioDevice(NULL, 0, &(enemy_laser_snd->spec),
 NULL, 0);
 if (device_id == 0) {
 printf("Failed to open audio: %s\n", SDL_GetError());
 }
 SDL_PauseAudioDevice(device_id, 0);
 int asteroid_x = 0;
 int asteroid_y = 0;
 int angle = 0;
 // SCREEN 1
 for(int i_y = 0; i_y < 8; i_y++) {
 asteroid_y += 100;
 asteroid_y += rand() % 400;
 asteroid_x = 0;
 for(int i_x = 0; i_x < 12; i_x++) {
 asteroid_x += 66;
 asteroid_x += rand() % 400;
 int y_save = asteroid_y;
 asteroid_y += rand() % 400 - 200;
 angle = rand() % 359;
 asteroid_list.push_back(
 new Asteroid(asteroid_x, asteroid_y,
 get_random_float(0.5, 1.0),
 DEG_TO_RAD(angle)));
 asteroid_y = y_save;
 }
 }
 projectile_pool = new ProjectilePool();
 play_btn = new UIButton(400, 500,
 (char*)"/sprites/play_button.png",
 (char*)"/sprites/play_button_hover.png",
 (char*)"/sprites/play_button_click.png",
 play_click);
 play_again_btn = new UIButton(400, 500,
 (char*)"/sprites/play_again_button.png",
 (char*)"/sprites/play_again_button_hover.png",
 (char*)"/sprites/play_again_button_click.png",
 play_again_click);
 emscripten_set_main_loop(game_loop, 0, 0);
 return 1;
}

In the next section, we will define functions in our ui_button.cpp file.

UI and Mouse Input Chapter 14

[484]

ui_button.cpp
The UIButton object has several functions that must be defined. We have created a new
ui_button.cpp file that will hold all of these new functions. We will need to define a
constructor, as well as MouseMove, MouseClick, MouseUp, KeyDown, and RenderUI.

First, we will include our game.hpp file:

#include "game.hpp"

Now, we will define our constructor function:

UIButton::UIButton(int x, int y, char* file_name, char*
hover_file_name, char* click_file_name, void (*callback)()) {
 m_Callback = callback;
 m_dest.x = x;
 m_dest.y = y;
 SDL_Surface *temp_surface = IMG_Load(file_name);

 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;
 }
 else {
 printf("success creating ui button surface\n");
 }
 m_SpriteTexture = SDL_CreateTextureFromSurface(renderer,
 temp_surface);
 if(!m_SpriteTexture) {
 return;
 }
 SDL_QueryTexture(m_SpriteTexture,
 NULL, NULL,
 &m_dest.w, &m_dest.h);
 SDL_FreeSurface(temp_surface);

 temp_surface = IMG_Load(click_file_name);
 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;
 }
 else {
 printf("success creating ui button click surface\n");
 }
 m_ClickTexture = SDL_CreateTextureFromSurface(renderer,
 temp_surface);

UI and Mouse Input Chapter 14

[485]

 if(!m_ClickTexture) {
 return;
 }
 SDL_FreeSurface(temp_surface);

 temp_surface = IMG_Load(hover_file_name);
 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;
 }
 else {
 printf("success creating ui button hover surface\n");
 }
 m_HoverTexture = SDL_CreateTextureFromSurface(renderer,
 temp_surface);

 if(!m_HoverTexture) {
 return;
 }
 SDL_FreeSurface(temp_surface);

 m_dest.x -= m_dest.w / 2;
 m_dest.y -= m_dest.h / 2;

 m_Hover = false;
 m_Click = false;
 m_Active = true;
}

The constructor function starts by setting the callback function from the passed in
parameter:

m_Callback = callback;

Then, it sets the m_dest rectangle's x and y coordinates from the parameters we passed in:

m_dest.x = x;
m_dest.y = y;

After that, it loads three different image files into three different textures for the button, the
button's hover state, and the button's clicked state:

SDL_Surface *temp_surface = IMG_Load(file_name);

if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;
}

UI and Mouse Input Chapter 14

[486]

else {
 printf("success creating ui button surface\n");
}
m_SpriteTexture = SDL_CreateTextureFromSurface(renderer, temp_surface
);

if(!m_SpriteTexture) {
 return;
}
SDL_QueryTexture(m_SpriteTexture,
 NULL, NULL,
 &m_dest.w, &m_dest.h);
SDL_FreeSurface(temp_surface);

temp_surface = IMG_Load(click_file_name);

if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;
}
else {
 printf("success creating ui button click surface\n");
}
m_ClickTexture = SDL_CreateTextureFromSurface(renderer, temp_surface
);

if(!m_ClickTexture) {
 return;
}
SDL_FreeSurface(temp_surface);

temp_surface = IMG_Load(hover_file_name);
if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;
}
else {
 printf("success creating ui button hover surface\n");
}
m_HoverTexture = SDL_CreateTextureFromSurface(renderer, temp_surface
);

if(!m_HoverTexture) {
 return;
}
SDL_FreeSurface(temp_surface);

UI and Mouse Input Chapter 14

[487]

The preceding code should look pretty familiar because loading an image file into an
SDL_Texture object is something we have done a lot at this point. After that, we use the
width and height values we queried earlier to center the destination rectangle:

m_dest.x -= m_dest.w / 2;
m_dest.y -= m_dest.h / 2;

Then, we set our hover, click, and active state flags:

m_Hover = false;
m_Click = false;
m_Active = true;

The MouseMove function
We need a function to determine whether the mouse cursor has been moved to hover over
our button. We call the MouseMove function from our input function, and we pass in the
current mouse cursor x and y coordinates. We check these coordinates against our m_dest
rectangle to see if they overlap. If so, we set our hover flag to true. If not, we set the hover
flag to false:

void UIButton::MouseMove(int x, int y) {
 if(x >= m_dest.x && x <= m_dest.x + m_dest.w &&
 y >= m_dest.y && y <= m_dest.y + m_dest.h) {
 m_Hover = true;
 }
 else {
 m_Hover = false;
 }
}

The MouseClick function
The MouseClick function is very similar to the MouseMove function. It is also called from
our input function when the user presses the left mouse button. The x and y coordinates of
the mouse cursor are passed in, and the function uses the m_dest rectangle to see if the
mouse cursor was over the button when it was clicked. If it was, we set the click flag to
true. If not, we set the click flag to false:

void UIButton::MouseClick(int x, int y) {
 if(x >= m_dest.x && x <= m_dest.x + m_dest.w &&
 y >= m_dest.y && y <= m_dest.y + m_dest.h) {
 m_Click = true;

UI and Mouse Input Chapter 14

[488]

 }
 else {
 m_Click = false;
 }
}

The MouseUp function
When the left mouse button is released, we call this function. No matter what the mouse
cursor coordinates are, we want to set the click flag to false. If the mouse was over the
button at the time the button was released, and the button is clicked, we need to make a call
to our callback function:

void UIButton::MouseUp(int x, int y) {
 if(m_Click == true &&
 x >= m_dest.x && x <= m_dest.x + m_dest.w &&
 y >= m_dest.y && y <= m_dest.y + m_dest.h) {
 if(m_Callback != NULL) {
 m_Callback();
 }
 }
 m_Click = false;
}

The KeyDown function
I could have made the key down function a little more flexible. It would have been better to
have the hotkey set to a value that's set in the object. That would have supported more than
a single button on a screen. As it is, if someone hits the Enter key, all the buttons on the
screen will be clicked. This is not a problem for our game because we aren't going to have
more than one button on a screen, but if you want to improve the hotkey functionality, this
shouldn't be too difficult. As the function is, it hard codes the key it is checking against to
SDLK_RETURN. Here is the version of the function we have:

void UIButton::KeyDown(SDL_Keycode key) {
 if(key == SDLK_RETURN) {
 if(m_Callback != NULL) {
 m_Callback();
 }
 }
}

UI and Mouse Input Chapter 14

[489]

The RenderUI function
The RenderUI function checks the various state flags in the button and renders the correct
sprite based on those values. If the m_Active flag is false, the function doesn't render
anything. Here is the function:

void UIButton::RenderUI() {
 if(m_Active == false) {
 return;
 }
 if(m_Click == true) {
 render_manager->RenderUI(m_ClickTexture, NULL, &m_dest, 0.0,
 0xff, 0xff, 0xff, 0xff);
 }
 else if(m_Hover == true) {
 render_manager->RenderUI(m_HoverTexture, NULL, &m_dest, 0.0,
 0xff, 0xff, 0xff, 0xff);
 }
 else {
 render_manager->RenderUI(m_SpriteTexture, NULL, &m_dest, 0.0,
 0xff, 0xff, 0xff, 0xff);
 }
}

In the next section, we will define functions in our ui_sprite.cpp file.

ui_sprite.cpp
The UISprite class is pretty simple. It has only two functions: a constructor and a
rendering function. Like with every other CPP file in our project, the first thing we must do
is include the game.hpp file:

#include "game.hpp"

Defining the constructor
The constructor is very familiar. It sets the m_dest rectangle's x and y values to the values
that were passed into the constructor. It loads the texture from the virtual filesystem using
the file_name variable that we passed in as a parameter. Finally, it centers the m_dest
rectangle using the width and height values that were retrieved using the
SDL_QueryTexture function. Here is the code for the constructor:

UI and Mouse Input Chapter 14

[490]

UISprite::UISprite(int x, int y, char* file_name) {
 m_dest.x = x;
 m_dest.y = y;
 SDL_Surface *temp_surface = IMG_Load(file_name);

 if(!temp_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return;
 }
 else {
 printf("success creating ui button surface\n");
 }

 m_SpriteTexture = SDL_CreateTextureFromSurface(renderer,
 temp_surface);

 if(!m_SpriteTexture) {
 return;
 }
 SDL_QueryTexture(m_SpriteTexture,
 NULL, NULL,
 &m_dest.w, &m_dest.h);
 SDL_FreeSurface(temp_surface);
 m_dest.x -= m_dest.w / 2;
 m_dest.y -= m_dest.h / 2;
}

The RenderUI function
The RenderUI function for our sprite is also straightforward. It checks to see if the sprite is
active, and if it is, calls the render manager's RenderUI function. Here is the code:

void UISprite::RenderUI() {
 if(m_Active == false) {
 return;
 }
 render_manager->RenderUI(m_SpriteTexture, NULL, &m_dest, 0.0,
 0xff, 0xff, 0xff, 0xff);
}

UI and Mouse Input Chapter 14

[491]

Compile ui.html
Now that we have added a user interface to our game, let's compile it, serve it from our
web server or emrun, and open it up in a web browser. Here is the em++ command we need
to compile our ui.html file:

em++ asteroid.cpp audio.cpp camera.cpp collider.cpp emitter.cpp
enemy_ship.cpp finite_state_machine.cpp locator.cpp main.cpp particle.cpp
player_ship.cpp projectile_pool.cpp projectile.cpp range.cpp
render_manager.cpp shield.cpp ship.cpp star.cpp ui_button.cpp ui_sprite.cpp
vector.cpp -o ui.html --preload-file audio --preload-file sprites -
std=c++17 -s USE_WEBGL2=1 -s USE_SDL=2 -s USE_SDL_IMAGE=2 -s
SDL2_IMAGE_FORMATS=["png"] -s USE_SDL_IMAGE=2 -s SDL2_IMAGE_FORMATS=["png"]

The new version will open to our start screen. If you want to play the game, you will now
need to click the Play button. Here is a screenshot:

Figure 14.6: Opening screen

UI and Mouse Input Chapter 14

[492]

You will notice that the opening screen has instructions on how to play the game. It is
usually good to have an opening screen in an action-oriented web game because the player
isn't always ready to play when the page loads. Not all web games need an opening screen.
My website, classicsolitaire.com, doesn't have a single one. This is because solitaire is a
turn-based game where the player isn't thrown into the action right away. The user
interface needs of your game are likely to be different than the game we are writing for this
book. So, sketch up a storyboard and take the time to gather requirements. You'll be glad
you did.

Summary
In this chapter, we spent some time gathering requirements for our user interface. We
created a storyboard to help us think through what screens we require for our game and
how they might look. We discussed the layout for our opening screen, and why we need it.
We then broke out the screen that had been our entire game into the play screen. Then, we
discussed the layout of the game over screen and what UI elements we required for it and
learned how to use SDL to retrieve mouse input. We also created a button class as a part of
our user interface, as well as an enumeration for our screen states and discussed transitions
between those states. We then added a sprite user interface object, before modifying our
render manager to allow us to render our start screen's background image. Finally, we
made changes to our code to support multiple game screens.

In the next chapter, we will learn how to write new shaders and implement them using
WebAssembly's OpenGL API.

https://www.classicsolitaire.com/

15
Shaders and 2D Lighting

We have already touched on shaders in Chapter 3, Introduction to WebGL. SDL,
unfortunately, doesn't allow the user to customize its shaders without digging into the
source code of the library and modifying them there. Those kinds of modifications are
beyond the

scope of this book. It is not uncommon to use SDL in combination with OpenGL. SDL can
be used to render the user interface for the game while OpenGL renders the game objects.
This chapter will deviate from many of the earlier chapters in that we will not be mixing
SDL and OpenGL directly in the game we have been writing. Updating the game to
support an OpenGL 2D rendering engine would require a complete redesign of the game
up to this point. However, I would like to provide a chapter for those interested in creating
a more advanced 2D rendering engine to get their feet wet with combining OpenGL and
SDL and writing shaders for that engine.

You will need to include several images in your build to make this project
work. Make sure that you include the /Chapter15/sprites/ folder
from this project's GitHub repository. If you haven't downloaded the
GitHub project yet, you can get it online here: https:/ ​/​github. ​com/
PacktPublishing/ ​Hands- ​On-​Game- ​Development- ​with- ​WebAssembly.

In this chapter, we will do the following:

Recreate the app we made in Chapter 3, Introduction to WebGL, using a
combination of SDL and OpenGL for WebAssembly
Learn how to create a new shader that loads and renders multiple textures to a
quad
Learn about normal maps and how they can be used to create the illusion of
depth on a 2D game object
Learn how to approximate the Phong lighting model in 2D using normal maps in
OpenGL and WebAssembly

https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://cdp.packtpub.com/hands_on_game_development_with_webassembly/wp-admin/post.php?post=38&action=edit#post_26

Shaders and 2D Lighting Chapter 15

[494]

Using OpenGL with WebAssembly
Emscripten is capable of compiling C/C++ code that uses either OpenGL ES 2.0 or OpenGL
ES 3.0 by mapping those calls to WebGL or WebGL 2 calls, respectively. Because of this,
Emscripten only supports a subset of the OpenGL ES commands that correspond to the
commands available inside of the WebGL library you use. For instance, if you would like to
use OpenGL ES 3.0, you will need to include WebGL 2 when compiling by passing the -s
USE_WEBGL2=1 parameter to the Emscripten compiler. In this chapter, we will be using
OpenGL ES 2.0 in combination with SDL to render sprites using shaders, and later we will
be using SDL to render an icon that represents the location of a light source in our
application. SDL provides many features that are absent from OpenGL, such as an audio
library, an image loading library, and mouse and keyboard input libraries. In many ways,
SDL is better suited to rendering the game's user interface as it renders objects to screen
coordinates instead of to the OpenGL clip space. Behind the scenes, the WebAssembly
version of SDL is also using the Emscripten OpenGL ES implementation, which relies on
WebGL. So, having a better understanding of WebAssembly's OpenGL implementation can
help us to take our game development skills to the next level, even if we will not be using
those skills in the game we have developed for this book.

More about shaders
We briefly introduced the concept of shaders back in Chapter 2, HTML5 and WebAssembly.
Shaders are a critical part of modern 3D graphics rendering. Back in the early days of
computer and video games, graphics were all 2D, and how fast graphics could render was a
function of how fast the system could move pixels from one data buffer to another. This
process is called blitting. One significant advance in these early days came when Nintendo
added a Picture Processing Unit (PPU) to their Nintendo Entertainment System. This was
an early piece of hardware that was designed to speed up graphics processing by moving
pixels without using the game system's CPU. The Commodore Amiga was also a pioneer in
these early 2D graphics coprocessors, and by the mid-1990s, hardware for blitting became a
standard in the computer industry. In 1996, games such as Quake began to create a demand
for consumer 3D graphics processing, and early graphics cards began to provide GPUs that
had fixed function pipelines. This allowed applications to load geometry data and execute
non-programmable texturing and lighting functions on that geometry. In the early 2000s,
Nvidia introduced the GeForce 3. This was the first GPU that supported a programmable
pipeline. Eventually, these programmable pipeline GPUs began to standardize around a
unified shader model, which allows programmers to write in a shading language such as
GLSL for all graphics cards that support that language.

Shaders and 2D Lighting Chapter 15

[495]

GLSL ES 1.0 and 3.0
The language we will be using to write our shaders is a subset of the GLSL shader language
called GLSL ES. This shader language happens to work with WebGL and so is supported
by the version of OpenGL ES that has been ported to WebAssembly. The code we are
writing will run on both GLSL ES 1.0 and 3.0, which are the two versions of GLSL ES
supported by WebAssembly.

If you are wondering why there is no support for GLSL ES 2.0, it's because
it doesn't exist. OpenGL ES 1.0 used a fixed function pipeline and so it had
no shader language associated with it. When the Khronos Group created
OpenGL ES 2.0, they created GLSL ES 1.0 as the shader language to go
with it. When they released OpenGL ES 3.0, they decided that they
wanted the version number of the shader language to be the same number
as the API. Therefore, all the new versions of OpenGL ES will come with a
version of GLSL that bears the same version number.

GLSL is a language that is very similar to C. Each shader has a main function that is its
entry point. GLSL ES 2.0 only supports two shader types: vertex shaders and fragment
shaders. The execution of these shaders is highly parallel. If you are used to thinking along
single—threaded lines, you will need to reorder your brain. Shaders are frequently
processing thousands of vertices and pixels at the same time.

I briefly discussed the definition of a vertex and a fragment in Chapter 3,
Introduction to WebGL. A vertex is a point in space, and a collection of
vertices define the geometry that our graphics card uses to render to the
screen. A fragment is a pixel candidate. Multiple fragments usually go
into determining the pixel output.

Each vertex of the geometry that's passed to a vertex shader is processed by that shader.
Values are then passed using a varying variable to a large number of threads that are
processing individual pixels through a fragment shader. The fragment shader receives a
value that is interpolated between the output of more than one of the vertex shaders. A
fragment shader's output is a fragment, which is a pixel candidate. Not all fragments
become pixels. Some fragments are dropped, which means they won't render at all. Other
fragments are blended to form a completely different pixel color. We created one vertex
and one fragment shader in Chapter 3, Introduction to WebGL, for our WebGL application.
Let's walk through converting that application into an OpenGL/WebAssembly app. Once
we have a working application, we can further discuss shaders and new ways we can write
those shaders to improve our 2D WebAssembly game.

Shaders and 2D Lighting Chapter 15

[496]

WebGL app redux
We will now walk through what it takes to rewrite the WebGL app we made in Chapter 3,
Introduction to WebGL, using SDL and OpenGL. If you don't remember, this was a very
simple app that drew a spaceship to our canvas and moved it 2 pixels to the left and one
pixel up every frame. The reason we made this app was that it was about the simplest thing
I could think to do in WebGL that was more interesting than drawing a triangle. For this
same reason, it will be the first thing we will do with OpenGL for WebAssembly. Go ahead
and create a new file called webgl-redux.c and open it up. Now, let's go ahead and start
adding some code. The first chunk of code we need is our #include commands to pull in
all of the libraries we will need for this app:

#include <SDL2/SDL.h>
#include <SDL2/SDL_image.h>
#include <SDL_opengl.h>
#include <GLES2/gl2.h>
#include <stdlib.h>
#include <emscripten.h>

The first line includes the standard SDL2 library. The second library, SDL_image.h, is the
library we are using to load our image files. The third line in this file that includes
SDL_opengl.h, and is the library that will allow us to mix our SDL and OpenGL calls.
Including GLES2/gl2.h gives us access to all of the OpenGL commands that we can use
with OpenGL ES 2.0. As always, we include stdlib.h to let us use the printf command,
and emscripten.h provides us with the functions we need for compiling to target
WebAssembly using the Emscripten compiler.

After our #include commands, we have a series of #define macros that define the
constants we need for our game:

#define CANVAS_WIDTH 800
#define CANVAS_HEIGHT 600
#define FLOAT32_BYTE_SIZE 4
#define STRIDE FLOAT32_BYTE_SIZE*4

The first two define our canvas width and canvas height. The remaining #define calls are
used to set up values we will be using when we define our vertex buffers. After
these #define macros, we define the code for our shaders.

Shaders and 2D Lighting Chapter 15

[497]

Shader code
The following few blocks of code I am about to show you will define the shaders we need
to create our 2D lighting effect. Here is the vertex shader code:

const GLchar* vertex_shader_code[] = {
 "precision mediump float; \n"
 "attribute vec4 a_position; \n"
 "attribute vec2 a_texcoord; \n"

 "uniform vec4 u_translate; \n"

 "varying vec2 v_texcoord; \n"

 "void main() { \n"
 "gl_Position = u_translate + a_position; \n"
 "v_texcoord = a_texcoord; \n"
 "} \n"
};

This is the same shader code that we used when we created the WebGL version of this app.
It looks a little different in C because JavaScript can use a multiline string that makes
reading the code a little more clear. Like in the WebGL version, we use the precision call to
set the floating-point precision to medium. We set up attributes to receive the position and
UV texture coordinate data as vectors. We will pass in these vectors using a vertex buffer
object. We define a uniform translate variable that will be the same value used for all
vertices, which in general is not the way we would do this for a game, but will work just
fine for this app. Finally, we define a varying v_texcoord variable. This variable will
represent the texture coordinate value we pass from the vertex shader into the fragment
shader. The main() function in this vertex shader is very simple. It adds
the u_translate uniform variable translation value that's passed into the vertex shader to
the attribute position of the vertex passed in via a_position, to get the final vertex
position we set using the gl_Position variable. After that, we pass the texture coordinate
of the vertex to the fragment shader by setting the v_texcoord varying variable
to a_texcoord.

After defining our vertex shader, we create the string that defines our fragment shader. The
fragment shader receives an interpolated version of v_texcoord, which is the varying
variable that's passed out of our vertex shader. You will need to put on your parallel
processing hat for a moment to understand how this works. When the GPU is processing
our vertex shader and fragment shader, it is not doing this one at a time, but is likely
processing thousands of vertices and fragments at once. The fragment shader is also not
receiving the output from a single one of these threads, but a value that is mixed from more
than one of the vertices that are currently being processed.

Shaders and 2D Lighting Chapter 15

[498]

For example, if your vertex shader has a varying variable as output called X, and your
fragment is halfway between a vertex where X is 0 and a vertex where X is 10, then the
value in the varying variable coming into your fragment will be 5. This is because 5 is
halfway between the two vertex values of 0 and 10. Likewise, if the fragment is 30% of the
way between your two points, the value in X will be 3.

Here is the definition of our fragment shader code:

const GLchar* fragment_shader_code[] = {
 "precision mediump float; \n"
 "varying vec2 v_texcoord; \n"

 "uniform sampler2D u_texture; \n"

 "void main() { \n"
 "gl_FragColor = texture2D(u_texture, v_texcoord); \n"
 "} \n"
 };

As with our vertex shader, we start out by setting the precision. After that, we have a
varying variable, which is an interpolated value for our texture coordinate. This value is
stored in v_texcoord and will be used to map our texture to a pixel color. The last variable
is a uniform variable of type sampler2D. This is a block of memory where we have loaded
our texture. The only thing that the main function of this fragment shader does is use the
built-in texture2D function to grab a pixel color out of our texture using the texture
coordinates we passed into the fragment shader.

OpenGL global variables
After defining our shaders, we need to define several variables in C that we will use to
interact with them:

GLuint program = 0;
GLuint texture;

GLint a_texcoord_location = -1;
GLint a_position_location = -1;

GLint u_texture_location = -1;
GLint u_translate_location = -1;

GLuint vertex_texture_buffer;

Shaders and 2D Lighting Chapter 15

[499]

OpenGL uses reference variables to interact with the GPU. The first two of these variables
are of type GLuint. A GLuint is an unsigned integer, and using the GLuint type is just
an OpenGL type. Seeing GLuint instead of unsigned int is a nice way to give someone
reading your code a hint that you are using this variable to interact with OpenGL. The
program variable will eventually hold a reference to a program that will be defined by your
shaders, and the texture variable will hold a reference to a texture that's been loaded into
the GPU. After the references to program and texture, we have two variables that will be
used to reference shader program attributes. The a_texcoord_location variable will be a
reference to the a_texcoord shader attribute, and the a_position_location variable
will be a reference to the a_position shader attribute value. The attribute references are
followed up by two uniform variable references. If you are wondering what the difference
between a uniform and attribute variable is, a uniform variable remains the same value for
all vertices, whereas an attribute variable is vertex-specific. Finally, we have a reference to
our vertex texture buffer in the vertex_texture_buffer variable.

After we define these values, we need to define our quad. As you may remember, our quad
is made up of six vertices. This is because it is made up of two triangles. I talked about why
we set the vertex data this way in Chapter 3, Introduction to WebGL. If you find this
confusing, you may want to go back to that chapter for a little review. Here is the definition
of the vertex_texture_data array:

float vertex_texture_data[] = {
 // x, y, u, v
 0.167, 0.213, 1.0, 1.0,
 -0.167, 0.213, 0.0, 1.0,
 0.167, -0.213, 1.0, 0.0,
 -0.167, -0.213, 0.0, 0.0,
 -0.167, 0.213, 0.0, 1.0,
 0.167, -0.213, 1.0, 0.0
};

SDL global variables
We are still going to be using SDL to initialize our canvas for OpenGL rendering. We will
also be using SDL to load our image data from the virtual filesystem. Because of this, we
have the following SDL related global variables we need to define:

SDL_Window *window;
SDL_Renderer *renderer;
SDL_Texture* sprite_texture;
SDL_Surface* sprite_surface;

Shaders and 2D Lighting Chapter 15

[500]

After that, we need variables to hold our sprite width and height values when we load an
image using SDL:

int sprite_width;
int sprite_height;

When we draw the ship to the canvas, we will need x and y coordinates for that ship, so we
will create a few global variables to hold those values:

float ship_x = 0.0;
float ship_y = 0.0;

Finally, we are going to create a function prototype for our game loop. I want to define our
game loop after we define our main function because I would like to step through our
initialization first. Here is the function prototype for our game loop:

void game_loop();

The main function
Now, we have come to our main function. There is quite a bit of initialization that we will
need to do. We are not only initializing SDL, like we did when we were creating our game.
We will also need to do several initialization steps for OpenGL. Here is the main function in
its entirety:

int main() {
 SDL_Init(SDL_INIT_VIDEO);
 SDL_CreateWindowAndRenderer(CANVAS_WIDTH, CANVAS_HEIGHT, 0, &window,
&renderer);
 SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
 SDL_RenderClear(renderer);
 GLuint vertex_shader = glCreateShader(GL_VERTEX_SHADER);
 glShaderSource(vertex_shader,1,vertex_shader_code,0);
 glCompileShader(vertex_shader);
 GLint compile_success = 0;
 glGetShaderiv(vertex_shader, GL_COMPILE_STATUS, &compile_success);
 if(compile_success == GL_FALSE)
 {
 printf("failed to compile vertex shader\n");
 glDeleteShader(vertex_shader);
 return 0;
 }
 GLuint fragment_shader = glCreateShader(GL_FRAGMENT_SHADER);
 glShaderSource(fragment_shader,1,fragment_shader_code,0);
 glCompileShader(fragment_shader);

Shaders and 2D Lighting Chapter 15

[501]

 glGetShaderiv(fragment_shader, GL_COMPILE_STATUS,&compile_success);
 if(compile_success == GL_FALSE)
 {
 printf("failed to compile fragment shader\n");
 glDeleteShader(fragment_shader);
 return 0;
 }
 program = glCreateProgram();
 glAttachShader(program,vertex_shader);
 glAttachShader(program,fragment_shader);
 glLinkProgram(program);
 GLint link_success = 0;
 glGetProgramiv(program, GL_LINK_STATUS, &link_success);
 if (link_success == GL_FALSE)
 {
 printf("failed to link program\n");
 glDeleteProgram(program);
 return 0;
 }
 glUseProgram(program);
 u_texture_location = glGetUniformLocation(program, "u_texture");
 u_translate_location = glGetUniformLocation(program,"u_translate");
 a_position_location = glGetAttribLocation(program, "a_position");
 a_texcoord_location = glGetAttribLocation(program, "a_texcoord");
 glGenBuffers(1, &vertex_texture_buffer);
 glBindBuffer(GL_ARRAY_BUFFER, vertex_texture_buffer);
 glBufferData(GL_ARRAY_BUFFER,
 sizeof(vertex_texture_data),vertex_texture_data, GL_STATIC_DRAW);
 sprite_surface = IMG_Load("/sprites/spaceship.png");
 if(!sprite_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return 0;
 }
 sprite_texture = SDL_CreateTextureFromSurface(renderer,
 sprite_surface);
 if(!sprite_texture) {
 printf("failed to create texture: %s\n", IMG_GetError());
 return 0;
 }
 SDL_QueryTexture(sprite_texture,NULL, NULL,&sprite_width,
&sprite_height);
 glTexImage2D(GL_TEXTURE_2D,0,GL_RGBA,sprite_width,sprite_height,
 0,GL_RGBA,GL_UNSIGNED_BYTE,sprite_surface);
 SDL_FreeSurface(sprite_surface);
 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
 glEnable(GL_BLEND);
 glEnableVertexAttribArray(a_position_location);
 glEnableVertexAttribArray(a_texcoord_location);

Shaders and 2D Lighting Chapter 15

[502]

 glVertexAttribPointer(a_position_location,2,GL_FLOAT,GL_FALSE,4 *
 sizeof(float),(void*)0);
 glVertexAttribPointer(a_texcoord_location,2,GL_FLOAT,GL_FALSE,
 4 * sizeof(float),(void*)(2 * sizeof(float)));
 emscripten_set_main_loop(game_loop, 0, 0);
}

Let me break this into some more digestible pieces. The first thing we need to do in our
main function is the standard SDL initialization stuff. We need to initialize the video
module, create a renderer, and set the draw and clear colors. By now, this code should look
pretty familiar to you:

SDL_Init(SDL_INIT_VIDEO);
SDL_CreateWindowAndRenderer(CANVAS_WIDTH, CANVAS_HEIGHT, 0, &window,
&renderer);
SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
SDL_RenderClear(renderer);

Next, we need to create and compile our vertex shader. This requires several steps. We
need to create our shader, load the source code into the shader, compile the shader, then
check to make sure there weren't any errors when compiling. Basically, these steps take
your code, compile it, and then load the compiled code into the video card to execute it
later. Here are all the steps you need to perform to compile your vertex shader:

GLuint vertex_shader = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(vertex_shader,
 1,
 vertex_shader_code,
 0);

glCompileShader(vertex_shader);

GLint compile_success = 0;1
glGetShaderiv(vertex_shader, GL_COMPILE_STATUS, &compile_success);
if(compile_success == GL_FALSE)
{
 printf("failed to compile vertex shader\n");
 glDeleteShader(vertex_shader);
 return 0;
}

Shaders and 2D Lighting Chapter 15

[503]

After compiling the vertex shader, we need to compile the fragment shader. This is the
same process. We start by calling glCreateShader to create a fragment shader. We then
load our fragment shader source code using glShaderSource. After that, we
call glCompileShader to compile our fragment shader. Finally, we call glGetShaderiv to
see whether a compiler error occurred when we attempted to compile our fragment shader:

GLuint fragment_shader = glCreateShader(GL_FRAGMENT_SHADER);
glShaderSource(fragment_shader,
 1,
 fragment_shader_code,
 0);

glCompileShader(fragment_shader);
glGetShaderiv(fragment_shader, GL_COMPILE_STATUS, &compile_success);

if(compile_success == GL_FALSE)
{
 printf("failed to compile fragment shader\n");
 glDeleteShader(fragment_shader);
 return 0;
}

For simplicity, I kept the error message vague for when of the shaders failed to compile. It
only tells you which shader failed to compile. Later in this chapter, I will show you how to
get a more detailed error message from the shader compiler.

Now that we have our shaders compiled, we need to link our shaders into a program, and
then tell OpenGL that this is the program we want to use. If you are writing a game using
OpenGL, there is a good chance you will be using more than one program. For
example, you may want to have lighting effects on some objects in your game, but not
others. Some game objects may require rotation and scaling, while others may not.

As you will learn in the next chapter, using multiple programs with
WebGL has a significantly higher CPU hit than it does in a native OpenGL
app. This has to do with the web browser's security checks.

For this application, we will be using a single program, and we will use the following code
to attach our shaders and link them to the program:

program = glCreateProgram();
glAttachShader(program,
 vertex_shader);

glAttachShader(program,
 fragment_shader);

Shaders and 2D Lighting Chapter 15

[504]

glLinkProgram(program);

GLint link_success = 0;

glGetProgramiv(program, GL_LINK_STATUS, &link_success);

if (link_success == GL_FALSE)
{
 printf("failed to link program\n");
 glDeleteProgram(program);
 return 0;
}
glUseProgram(program);

The glCreateProgram function creates a new program and returns a reference ID for it.
We will store that reference ID in our program variable. We make two calls
to glAttachShader that will attach our vertex and fragment shader to the program we just
created. We then call glLinkProgram to link the program shaders together. We
call glGetProgramiv to verify that the program linked successfully. Finally, we
call glUseProgram to tell OpenGL that this is the program we would like to use.

Now that we are using a specific program, we can retrieve the references to the attribute
and uniform variables inside of that program with the following lines of code:

u_texture_location = glGetUniformLocation(program, "u_texture");
u_translate_location = glGetUniformLocation(program, "u_translate");

a_position_location = glGetAttribLocation(program, "a_position");
a_texcoord_location = glGetAttribLocation(program, "a_texcoord");

The first line retrieves a reference to the u_texture uniform variable, and the second line
retrieves a reference to the u_translate uniform variable. We can use these references
later to set these values inside of our shader. The two lines after that are used to retrieve
references to the a_position position attribute and the a_texcoord texture coordinate
attribute inside of our shaders. Like the uniform variables, we will be using these references
to set the values in our shaders later on.

Now, we will need to create and load data into a vertex buffer. The vertex buffer holds all
of the attribute data for each vertex we will render. If we were rendering a 3D model, we
would need to load it with model data that we retrieved externally. Luckily for us, all we
need to render are some two-dimensional quads. Quads are simple enough that we were
able to define them in an array earlier.

Shaders and 2D Lighting Chapter 15

[505]

Before we can load that data into a buffer, we will need to generate that buffer with a call
to glGenBuffers. We will then need to bind the buffer using glBindBuffer. Binding a
buffer is just the way you tell OpenGL which buffers you are currently working on. Here is
the code to generate and then bind our vertex buffer:

glGenBuffers(1, &vertex_texture_buffer);
glBindBuffer(GL_ARRAY_BUFFER, vertex_texture_buffer);

Now that we have a buffer selected, we can put data into that buffer using a call
to glBufferData. We will pass in vertex_texture_data that we defined earlier. It
defines both the x and y coordinates of our quad's vertices and the UV mapping data for
those vertices:

glBufferData(GL_ARRAY_BUFFER, sizeof(vertex_texture_data),
 vertex_texture_data, GL_STATIC_DRAW);

After buffering our data, we will use SDL to load a sprite surface. Then, we will create a
texture from that surface, which we can use to find the width and height of the image we
just loaded. After that, we call glTexImage2D to create an OpenGL texture from that SDL
surface. Here is the code:

sprite_surface = IMG_Load("/sprites/spaceship.png");

if(!sprite_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return 0;
}

sprite_texture = SDL_CreateTextureFromSurface(renderer, sprite_surface);

if(!sprite_texture) {
 printf("failed to create texture: %s\n", IMG_GetError());
 return 0;
}

SDL_QueryTexture(sprite_texture,
 NULL, NULL,
 &sprite_width, &sprite_height);

glTexImage2D(GL_TEXTURE_2D,
 0,
 GL_RGBA,
 sprite_width,
 sprite_height,
 0,
 GL_RGBA,
 GL_UNSIGNED_BYTE,

Shaders and 2D Lighting Chapter 15

[506]

 sprite_surface);

SDL_FreeSurface(sprite_surface);

Most of the previous code should have looked pretty familiar. We have been
using IMG_Load to load an SDL surface from the virtual filesystem for a while now. We
then used SDL_CreateTextureFromSurface to create an SDL texture. Once we had the
texture, we used SDL_QueryTexture to figure out what the image width and height are,
and we stored those values in sprite_width and sprite_height. The next function call
is new. The GlTexImage2D function is used to create a new OpenGL texture image. We
pass in sprite_surface as our image data, which we had loaded a few lines earlier. The
last line frees the surface using SDL_FreeSurface.

We then add two lines that enable alpha blending in our game:

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_BLEND);

After enabling alpha blending, we have several lines that set up the attributes in our
shaders:

glEnableVertexAttribArray(a_position_location);
glEnableVertexAttribArray(a_texcoord_location);

glVertexAttribPointer(
 a_position_location, // set up the a_position attribute
 2, // how many attributes in the position
 GL_FLOAT, // data type of float
 GL_FALSE, // the data is not normalized
 4 * sizeof(float), // stride (how many array items until
 //the next position)
 (void*)0 // starting point for attribute
);

glVertexAttribPointer(
 a_texcoord_location, // set up the a_texcoord attribute
 2, // how many attributes in the
 //texture coordinates
 GL_FLOAT, // data type of float
 GL_FALSE, // the data is not normalized
 4 * sizeof(float), // stride (how many array items
 //until the next position)
 (void*)(2 * sizeof(float)) // starting point for attribute
);

Shaders and 2D Lighting Chapter 15

[507]

The first two lines enable the a_position and a_texcoord attributes in our shaders. After
that, we have two calls to glVertexAttribPointer. The calls
to glVertexAttribPointer are used to tell our shader where the data that's assigned to
each specific attribute is located in our vertex buffer. We filled our vertex buffer with 32-bit
floating point variables. The first call to glVertexAttribPointer sets the location of the
values assigned to the a_position attribute using the reference variable we created
in a_position_location. We then pass in the number of values we use for this attribute.
In the case of position, we pass in an x and a y coordinate, so this value is 2. We pass in the
data type for our buffer array, which is a floating-point data type. We tell the function we
are not normalizing the data. The stride value is the second to last parameter. This is the
number of bytes that are used for a vertex in this buffer. Because each vertex in the buffer is
using four floating-point values, we pass in 4 * sizeof(float) for our stride. Finally,
the last value we pass in is the offset in bytes to the data we are using to populate this
attribute. For the a_position attribute, this value is 0 because the position comes at the
beginning. For the a_texcoord attribute, this value is 2 * sizeof(float) because there
are two floating-point values that we used for a_position that precede
our a_texcoord data.

The final line in the main function sets the game loop callback:

emscripten_set_main_loop(game_loop, 0, 0);

The game loop
Our game loop is pretty simple. In our game loop, we will use OpenGL to clear the canvas,
move our ship, and render our ship to the canvas. Here is the code:

void game_loop() {
 glClearColor(0, 0, 0, 1);
 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

 ship_x += 0.002;
 ship_y += 0.001;

 if(ship_x >= 1.16) {
 ship_x = -1.16;
 }

 if(ship_y >= 1.21) {
 ship_y = -1.21;
 }

 glUniform4f(u_translate_location,

Shaders and 2D Lighting Chapter 15

[508]

 ship_x, ship_y, 0, 0);

 glDrawArrays(GL_TRIANGLES, 0, 6);
}

The first two lines of the game loop clear the canvas:

glClearColor(0, 0, 0, 1);
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

After that, we have several lines that update the ship's x and y coordinates, and then set the
new coordinates in the shader:

ship_x += 0.002;
ship_y += 0.001;

if(ship_x >= 1.16) {
 ship_x = -1.16;
}

if(ship_y >= 1.21) {
 ship_y = -1.21;
}

glUniform4f(u_translate_location,
 ship_x, ship_y, 0, 0);

Finally, the game loop uses glDrawArrays to draw our spaceship to the canvas:

glDrawArrays(GL_TRIANGLES, 0, 6);

Compiling and running our code
You will want to download the sprites folder from the GitHub project so that you can
include the image files that we need to compile and run this project. Once you have those
images and have saved the code we just wrote into the webgl-redux.c file, we can
compile and test this new application. If it is successful, it should look just like the Chapter
3, Introduction to WebGL, WebGL version. Run the following emcc command to compile the
app:

emcc webgl-redux.c -o redux.html --preload-file sprites -s USE_WEBGL2=1 -s
USE_SDL=2 -s USE_SDL_IMAGE=2 -s SDL2_IMAGE_FORMATS=["png"]

If the app runs successfully, you should have a spaceship that is moving from left to right
and up the HTML canvas. Here is a screenshot of a working version of the app:

Shaders and 2D Lighting Chapter 15

[509]

Figure 15.1: Screenshot of the OpenGL and SDL app

In the next section, we will learn how to blend textures from within a shader.

Mixing textures for a glow effect
Now, we will spend some time learning how to load more than one texture into our
program. We will add the colors of those two textures to create a pulsing glow effect. To do
this, we will need to modify our fragment shader to receive a second texture and a time
uniform variable. We will pass that variable into a sine wave function, which will use it to
calculate the strength of our glowing engines. We will need to add some code to keep track
of the time that has passed, as well as some new initialization code to load the second
texture. We can begin by copying webgl-redux.c to a new file called glow.c. Now that
we have the new glow.c file, we can walk through the changes we will need to make our
glowing engine effect. The first code change is the addition of a new #define macro to
define a value for 2π.

Shaders and 2D Lighting Chapter 15

[510]

We will use a value that cycles from 0 to 2π and feeds it into a sine wave function to create
the pulsing effect on our engine glow. Here is the #define we should add near the
beginning of our glow.c file:

#define TWOPI 6.2831853 // 2π

Fragment shader changes
After that new macro, we will need to make some changes to our fragment shader code.
Our vertex shader code will remain the same because the process of determining the
position of our vertex will not be any different than it was in the previous version of the
app. Here is the updated version of the fragment shader:

const GLchar* fragment_shader_code[] = {
 "precision mediump float; \n"
 "varying vec2 v_texcoord; \n"

 "uniform float u_time; \n"
 "uniform sampler2D u_texture; \n"
 "uniform sampler2D u_glow; \n"

 "void main() { \n"
 "float cycle = (sin(u_time) + 1.0) / 2.0; \n"
 "vec4 tex = texture2D(u_texture, v_texcoord); \n"
 "vec4 glow = texture2D(u_glow, v_texcoord); \n"
 "glow.rgb *= glow.aaa; \n"
 "glow *= cycle; \n"
 "gl_FragColor = tex + glow; \n"
 "} \n"
};

We have added a new uniform variable called u_time that will be used to pass in a time-
based variable that will cycle between 0 and 2π. We have also added a
second sampler2D uniform variable called u_glow that will hold our new glow texture.
The first line of our main function calculates a value between 0.0 and 1.0 based on the
value in u_time. We retrieve the sampled values out of u_texture and u_glow using
the built-in texture2D function. This time, instead of storing a value from the texture
directly into gl_FragColor, we save those two values into vec4 variables
called tex and glow. We are going to be adding those two values together, so to keep
things from getting too bright everywhere, we multiply the rgb (red green and blue) values
in our glow sample color by the alpha channel. After that, we multiply all the values in
our glow color by the cycle value we computed earlier.

Shaders and 2D Lighting Chapter 15

[511]

The value in cycle will follow a sine wave oscillating between the values 0.0 and 1.0.
That will cause our glow value to cycle up and down over time. We then compute our
fragment color by adding the tex color to the glow color. Then, we store the output value
in gl_FragColor.

OpenGL global variable changes
Next, we will need to update our OpenGL-related variables so that we can add three new
global variables. We will need a new variable called glow_tex, which we will use to store a
reference to the glow texture. We also need two new reference variables for our two new
uniform variables in our shader, called u_time_location and u_glow_location. Here is
what the new block of OpenGL variables will look like once we have added those three
new lines:

GLuint program = 0;
GLuint texture;
GLuint glow_tex;

GLint a_texcoord_location = -1;
GLint a_position_location = -1;
GLint u_texture_location = -1;
GLint u_glow_location = -1;
GLint u_time_location = -1;

GLint u_translate_location = -1;
GLuint vertex_texture_buffer;

Other global variable changes
After our OpenGL global variables, we will need to add a new block of time-related global
variables. We need them to have our shader cycle through values for our engine glow.
These time-related variables should look pretty familiar. We have used techniques similar
to the one we are about to use in the game we have been developing. Here are those global
time variables:

float time_cycle = 0;
float delta_time = 0.0;
int diff_time = 0;

Uint32 last_time;
Uint32 last_frame_time;
Uint32 current_time;

Shaders and 2D Lighting Chapter 15

[512]

We need to add one more SDL-related global surface variable, which we will use to load
our glow texture. Add the following line near the block of global variables that precedes the
main function:

SDL_Surface* glow_surface;

Changes to main()
We will be making some significant modifications to the initialization we are doing in
our main function. Let me start by showing you the entire function. Then, we will walk
through all of the changes, one at a time:

int main() {
 last_frame_time = last_time = SDL_GetTicks();

 SDL_Init(SDL_INIT_VIDEO);

 SDL_CreateWindowAndRenderer(CANVAS_WIDTH, CANVAS_HEIGHT, 0,
 &window, &renderer);

 SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
 SDL_RenderClear(renderer);

 GLuint vertex_shader = glCreateShader(GL_VERTEX_SHADER);

 glShaderSource(vertex_shader,
 1,
 vertex_shader_code,
 0);

 glCompileShader(vertex_shader);

 GLint compile_success = 0;
 glGetShaderiv(vertex_shader, GL_COMPILE_STATUS, &compile_success);

 if(compile_success == GL_FALSE)
 {
 printf("failed to compile vertex shader\n");
 glDeleteShader(vertex_shader);
 return 0;
 }

 GLuint fragment_shader = glCreateShader(GL_FRAGMENT_SHADER);

 glShaderSource(fragment_shader,
 1,

Shaders and 2D Lighting Chapter 15

[513]

 fragment_shader_code,
 0);

 glCompileShader(fragment_shader);
 glGetShaderiv(fragment_shader, GL_COMPILE_STATUS,
 &compile_success);

 if(compile_success == GL_FALSE)
 {
 printf("failed to compile fragment shader\n");
 glDeleteShader(fragment_shader);
 return 0;
 }

 program = glCreateProgram();
 glAttachShader(program,
 vertex_shader);

 glAttachShader(program,
 fragment_shader);

 glLinkProgram(program);

 GLint link_success = 0;

 glGetProgramiv(program, GL_LINK_STATUS, &link_success);

 if (link_success == GL_FALSE)
 {
 printf("failed to link program\n");
 glDeleteProgram(program);
 return 0;
 }

 glUseProgram(program);

 u_glow_location = glGetUniformLocation(program, "u_glow");
 u_time_location = glGetUniformLocation(program, "u_time");

 u_texture_location = glGetUniformLocation(program, "u_texture");
 u_translate_location = glGetUniformLocation(program,
 "u_translate");

 a_position_location = glGetAttribLocation(program, "a_position");
 a_texcoord_location = glGetAttribLocation(program, "a_texcoord");

 glGenBuffers(1, &vertex_texture_buffer);

Shaders and 2D Lighting Chapter 15

[514]

glBindBuffer(GL_ARRAY_BUFFER, vertex_texture_buffer);
 glBufferData(GL_ARRAY_BUFFER, sizeof(vertex_texture_data),
 vertex_texture_data, GL_STATIC_DRAW);

sprite_surface = IMG_Load("/sprites/spaceship.png");

 if(!sprite_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return 0;
 }

 sprite_texture = SDL_CreateTextureFromSurface(renderer,
 sprite_surface);

 if(!sprite_texture) {
 printf("failed to create texture: %s\n", IMG_GetError());
 return 0;
 }

 SDL_QueryTexture(sprite_texture,
 NULL, NULL,
 &sprite_width, &sprite_height);

 glTexImage2D(GL_TEXTURE_2D,
 0,
 GL_RGBA,
 sprite_width,
 sprite_height,
 0,
 GL_RGBA,
 GL_UNSIGNED_BYTE,
 sprite_surface);

 SDL_FreeSurface(sprite_surface);

 glGenTextures(1,
 &glow_tex);

 glActiveTexture(GL_TEXTURE1);
 glEnable(GL_TEXTURE_2D);
 glBindTexture(GL_TEXTURE_2D, glow_tex);

 glow_surface = IMG_Load("/sprites/glow.png");

 if(!glow_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return 0;
 }

Shaders and 2D Lighting Chapter 15

[515]

 glTexImage2D(GL_TEXTURE_2D,
 0,
 GL_RGBA,
 sprite_width,
 sprite_height,
 0,
 GL_RGBA,
 GL_UNSIGNED_BYTE,
 glow_surface);

 glGenerateMipmap(GL_TEXTURE_2D);

 SDL_FreeSurface(glow_surface);

 glUniform1i(u_texture_location, 0);
 glUniform1i(u_glow_location, 1);

 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
 glEnable(GL_BLEND);

 glEnableVertexAttribArray(a_position_location);
 glEnableVertexAttribArray(a_texcoord_location);

 glVertexAttribPointer(
 a_position_location, // set up the a_position attribute
 2, // how many attributes in the position
 GL_FLOAT, // data type of float
 GL_FALSE, // the data is not normalized
 4 * sizeof(float), // stride (how many array items until
 //the next position)
 (void*)0 // starting point for attribute
);

 glVertexAttribPointer(
 a_texcoord_location, // set up the a_texcoord attribute
 2, // how many attributes in the
 //texture coordinates
 GL_FLOAT, // data type of float
 GL_FALSE, // the data is not normalized
 4 * sizeof(float), // stride (how many array items
 //until the next position)
 (void*)(2 * sizeof(float)) // starting point for attribute
);

 emscripten_set_main_loop(game_loop, 0, 0);
}

Shaders and 2D Lighting Chapter 15

[516]

The first line in our main function is new. We use that line to set last_frame_time and
last_time to the system time, which we retrieve using SDL_GetTicks():

last_frame_time = last_time = SDL_GetTicks();

After that, we will not make any changes until we get to the section of code where we
retrieve our uniform locations. We will need to retrieve two more uniform locations from
our program, so right under our call to glUseProgram, we should make the following calls
to get the uniform locations for u_glow and u_time:

u_glow_location = glGetUniformLocation(program, "u_glow");
u_time_location = glGetUniformLocation(program, "u_time");

The following block of code must come after we call SDL_FreeSurface to free
the sprite_surface variable. This code block will generate a new texture, activate it, bind
it, and load the glow.png image into that texture. It will then free the SDL surface and
generate mipmaps for our texture. Finally, we set the uniform locations for our textures
using glUniform1i. Here is the code we use to load our new texture:

glGenTextures(1,
 &glow_tex);

glActiveTexture(GL_TEXTURE1);
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, glow_tex);

glow_surface = IMG_Load("/sprites/glow.png");

if(!glow_surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return 0;
}

glTexImage2D(GL_TEXTURE_2D,
 0,
 GL_RGBA,
 sprite_width,
 sprite_height,
 0,
 GL_RGBA,
 GL_UNSIGNED_BYTE,
 glow_surface);

SDL_FreeSurface(glow_surface);

glGenerateMipmap(GL_TEXTURE_2D);

Shaders and 2D Lighting Chapter 15

[517]

glUniform1i(u_texture_location, 0);
glUniform1i(u_glow_location, 1);

If you are not familiar with Mipmaps, you may be wondering what the
glGenerateMipmap(GL_TEXTURE_2D); line does. When you scale
textures using OpenGL, those textures take time to generate. Mipmaps are
a way to speed up scaling by performing some power of two scaled
versions of your images while the game is initializing. This will reduce the
amount of time it will take to scale these images at runtime.

Updating game_loop()
To cycle the glow effect on our spaceship's engines, we will need to add some code to our
game loop that will cycle from 0.0 through 2π. We will then pass this value into the shader
as the u_time uniform variable. We need to add this new block of code to the beginning of
the game loop function:

current_time = SDL_GetTicks();

diff_time = current_time - last_time;

delta_time = diff_time / 1000.0;
last_time = current_time;

time_cycle += delta_time * 4;

if(time_cycle >= TWOPI) {
 time_cycle -= TWOPI;
}

glUniform1f(u_time_location, time_cycle);

The first line uses SDL_GetTicks() to retrieve the current clock time. We then subtract the
last time from the current time to get a value for the diff_time variable. This will tell us
the number of milliseconds between this frame and the previous frame generated. After
that, we calculate delta_time, which will be the fraction of a second between this frame
and the previous frame. After we have calculated diff_time and delta_time, we set
the last_time variable to current_time.

Shaders and 2D Lighting Chapter 15

[518]

We do this so that the next time we go through the game loop, we will have the time this
frame ran. All of those lines have been in previous iterations of our code. Now, let's get a
value for time_cycle, which we will pass into the u_time uniform variable in our
fragment shader. First, add delta-time * 4 to time cycle with the following line:

time_cycle += delta_time * 4;

You may be wondering why I multiply it by 4. Initially, I hadn't added a multiple, which
meant the engine glow cycled roughly every 6 seconds. This felt like the cycle was taking
too long. Playing with the number, a multiple of 4 just felt right to me, but there is no
reason you need to stick with this specific multiple if you would prefer your engines to
cycle either faster or slower.

Because we are using a sine function to cycle our glow level, we need to make sure that
when our time cycle hits TWOPI, we subtract TWOPI from our time_cycle variable:

if(time_cycle >= TWOPI) {
 time_cycle -= TWOPI;
}

Now that we have calculated the value for our cycle, we set that value using
the u_time_location reference variable using a call to glUniform1f:

glUniform1f(u_time_location, time_cycle);

Compiling and running our code
Now that we have made all of the code changes we need, we can go ahead and compile and
run the new version of our app. Compile the glow.c file by running the following emcc
command:

emcc glow.c -o glow.html --preload-file sprites -s USE_WEBGL2=1 -s
USE_SDL=2 -s USE_SDL_IMAGE=2 -s SDL2_IMAGE_FORMATS=["png"]

If the build is successful, running glow.html in your web browser should show the
spaceship moving as it was before. However, now, there will be a glow effect on the
engines. This glow will cycle up and down and look as follows when the engine is at
maximum glow:

Shaders and 2D Lighting Chapter 15

[519]

Figure 15.2: Screenshot of the glow shader app

In the next section, we will discuss the Phong 3D lighting model.

3D lighting
I would like to briefly discuss 3D lighting because we will be approximating it with 2D
lighting effects. The Phong lighting model is the standard for three-dimensional lighting
models in computer graphics. It was a model for lighting created by Bui Tuong Phong at
the University of Utah in 1975, but it was not until the late 1990s that desktop computers
became fast enough to implement the model in games. Since then, the lighting model has
become the standard for 3D game development. It combines ambient, diffuse, and specular
lighting to render geometry. We won't be able to implement a proper version of the lighting
model because we aren't writing a 3D game. However, we can implement an
approximation of the model by using 2D sprites and normal maps to go along with those
sprites.

Shaders and 2D Lighting Chapter 15

[520]

Ambient light
In the real world, there is a certain amount of light that's randomly reflected off of the
surrounding surfaces. This creates lighting that will illuminate everything evenly. If it
weren't for ambient lighting, an object in the shadow of another object would be completely
black. The amount of ambient lighting varies based on the environment. In a game, the
amount of ambient lighting is usually decided based on the mood and look a game
designer is attempting to achieve. For 2D games, ambient lighting may be effectively the
only kind of lighting we have. In 3D games, relying entirely on ambient light produces
models that look flat:

Figure 15.3: A sphere with only ambient lighting

Diffuse light
Diffuse lighting is light that comes from a specific direction. If you look at a three-
dimensional object in the real world, the side facing a light source will look brighter than
the side facing away from that light source. This gives objects in a 3D environment an
actual 3D appearance. In many 2D games, diffuse lighting is not created with a shader, but
is included in the sprite by the artist that created it. In a platformer game, for instance, the
artist may assume that there is a light source that comes from above the game objects. The
artist would design the game objects to have a kind of diffuse lighting by changing the
colors of the pixels in the artwork. For many 2D games, this will work perfectly fine. If you
would, however, like to have a torch in your game that changes the look of the game
objects as they move by, you need to design shaders that are capable of doing that work:

Shaders and 2D Lighting Chapter 15

[521]

Figure 15.4: Sphere with diffuse lighting

Specular light
Some objects are shiny and have reflective patches that create bright highlights. When light
hits a surface, it has a reflective vector based on the angle that the light hits the surface,
relative to the normal of the surface it is hitting. The intensity of specular highlights is
based on the reflectivity of the surface, combined with the angle of view, relative to the
reflected light angle. A specular highlight on a game object can make it appear smooth or
polished. Not all game objects require this kind of lighting, but it looks great on objects you
want to shine:

Figure 15.5: Sphere with specular lighting

In the next section, we will discuss normal maps and how they are used in modern games.

Shaders and 2D Lighting Chapter 15

[522]

Normal maps
Normal mapping is a method that's used for creating very detailed models using relatively
low polygon counts in 3D games. The idea is that rather than creating a surface with a huge
number of polygons, a game engine could use a low polygon model that had a normal map
where each pixel in the normal map would contain the x, y, and z values of a normal using
the red, green, and blue colors of the image. Inside of a shader, we could then sample the
normal map texture in the same way we sample other texture maps. However, we could
use the normal data to help us calculate the lighting effects on our sprites. If, in our game,
we wanted our spaceships to always be lit relative to the star in the center of the gameplay
area, we could create a normal map for our spaceships and create a light source in the
center of our game. We will now create an app to demonstrate the use of normal maps for
2D lighting.

Creating a 2D lighting demo app
We can start our lighting app by creating a new C file called lighting.c. The macros at
the beginning of lighting.c are the same macros we used in glow.c, but we can remove
the #define TWOPI macro because it is no longer needed. Here are the macros we will
have in our lighting.c file:

#include <SDL2/SDL.h>
#include <SDL2/SDL_image.h>
#include <SDL_opengl.h>

#include <GLES3/gl3.h>
#include <stdlib.h>
#include <emscripten.h>

#define CANVAS_WIDTH 800
#define CANVAS_HEIGHT 600
#define FLOAT32_BYTE_SIZE 4
#define STRIDE FLOAT32_BYTE_SIZE*4

The vertex shader code in this file will be very similar to the vertex shader code we had in
our glow.c file. The one change we will make is done by removing
the u_translate uniform variable. We are doing this because we will be centering our
shaded sprite image, and we will allow the user to move the light around the canvas. Here
is the new version of the vertex shader:

const GLchar* vertex_shader_code[] = {
 "precision mediump float; \n"

Shaders and 2D Lighting Chapter 15

[523]

 "attribute vec4 a_position; \n"
 "attribute vec2 a_texcoord; \n"
 "varying vec2 v_texcoord; \n"

 "void main() { \n"
 "gl_Position = a_position; \n"
 "v_texcoord = a_texcoord; \n"
 "} \n"
};

Fragment shader updates
Now, we will need to create a new version of our fragment shader. This shader will load a
normal map in addition to the original texture loaded. This normal map will be used to
calculate lighting normals on our game object. This version of the shader will use a 2D form
of the Phong lighting model, in that we will be calculating ambient, diffuse, and normal
lighting for the sprite we are rendering. Here is the code for our new fragment shader:

const GLchar* fragment_shader_code[] = {
 "precision mediump float; \n"

 "varying vec2 v_texcoord; \n"

 "uniform sampler2D u_texture; \n"
 "uniform sampler2D u_normal; \n"
 "uniform vec3 u_light_pos; \n"

 "const float ambient = 0.6; \n"
 "const float specular = 32.0; \n"
 "const vec3 view_pos = vec3(400, 300,-100); \n"
 "const vec4 light_color = vec4(0.6, 0.6, 0.6, 0.0); \n"

 "void main() { \n"
 "vec4 tex = texture2D(u_texture, v_texcoord); \n"

 "vec4 ambient_frag = tex * ambient; \n"
 "ambient_frag.rgb *= light_color.rgb; \n"

 "vec3 norm = vec3(texture2D(u_normal, v_texcoord)); \n"
 "norm.xyz *= 2.0; \n"
 "norm.xyz -= 1.0; \n"

 "vec3 light_dir = normalize(gl_FragCoord.xyz - u_light_pos); \n"

 "vec3 view_dir = normalize(view_pos - gl_FragCoord.xyz); \n"
 "vec3 reflect_dir = reflect(light_dir, norm); \n"

Shaders and 2D Lighting Chapter 15

[524]

 "float reflect_dot = max(dot(view_dir, reflect_dir), 0.0); \n"
 "float spec = pow(reflect_dot, specular); \n"
 "vec4 specular_frag = spec * light_color; \n"

 "float diffuse = max(dot(norm, light_dir), 0.0); \n"
 "vec4 diffuse_frag = vec4(diffuse*light_color.r,
 diffuse*light_color.g, "
 "diffuse*light_color.b, 0.0); \n"
 "gl_FragColor = ambient_frag + diffuse_frag + specular_frag; \n"
 "} \n"
};

Let's break down what is going on inside of the new version of the fragment shader. The
first thing you will notice is that we have two sampler2D uniform variables; the second
one is called u_normal and is used to sample the normal map for our image:

"uniform sampler2D u_texture; \n"
"uniform sampler2D u_normal; \n"

After our samplers, we need a uniform vec3 variable that holds the position of our light.
We we call this u_light_pos:

"uniform vec3 u_light_pos; \n"

We will be using several constants in our new fragment shader. We will need factors for
ambient and specular lighting, as well as the view position and the light color. We will be
defining those constants in the following four lines of code:

"const float ambient = 0.6; \n"
"const float specular = 0.8; \n"
"const vec3 view_pos = vec3(400, 300,-100); \n"
"const vec4 light_color = vec4(0.6, 0.6, 0.6, 0.0); \n"

Inside of our main function, the first thing we will need to do is get the ambient fragment
color. Determining the ambient color is pretty easy. All you need to do is multiply the
texture color by the ambient factor, then multiply it again by the light color. Here is the
code that computes the value for the ambient component of the fragment:

"vec4 tex = texture2D(u_texture, v_texcoord); \n"
"vec4 ambient_frag = tex * ambient; \n"

"ambient_frag.rgb *= light_color.rgb; \n"

Shaders and 2D Lighting Chapter 15

[525]

After calculating our ambient color component, we need to calculate the normal of our
fragment from the normal map texture that we passed into the shader. The texture uses the
red color to represent the normal's x value. The green represents the y value. Finally, blue
represents the z value. The colors are all floating points that go from 0.0 to 1.0, so we will
need to modify the normal's x, y, and z components to go from -1.0 to +1.0. Here is the
code we use to define the normals:

"vec3 norm = vec3(texture2D(u_normal, v_texcoord)); \n"
"norm.xyz *= 2.0; \n"
"norm.xyz -= 1.0; \n"

To convert the values in the norm vector from 0.0 into 1.0, -1.0, and +1.0, we need to
multiply the values in the normal vector by 2, and then subtract one. After calculating the
value of the normal, we need to find the direction of our light source:

"vec3 light_dir = normalize(gl_FragCoord.xyz - u_light_pos); \n"

We are normalizing the value with the normalize GLSL function because we won't have
any light falloff in this app. If you had a game with a torch, you might want a sharp falloff
based on the square of the distance from the light source. For this app, we are assuming
that the light source has an infinite range. For our specular lighting, we will need to
calculate our view direction:

"vec3 view_dir = normalize(view_pos - gl_FragCoord.xyz); \n"

We set the view_pos vector to the center of our canvas, so our specular lighting should be
the greatest when our light source is in the center of our canvas as well. You will be able to
test this out when you compile the app. After calculating the view direction, we will need
to calculate the reflection vector, which we will also use in our specular lighting calculation:

"vec3 reflect_dir = reflect(light_dir, norm); \n"

We can then calculate the dot product of these two vectors, and raise them to the power of
our specular factor (defined as 32 earlier) to calculate the amount of specular lighting we
will need for this fragment:

"float reflect_dot = max(dot(view_dir, reflect_dir), 0.0); \n"
"float spec = pow(reflect_dot, specular); \n"
"vec4 specular_frag = spec * light_color; \n"

Shaders and 2D Lighting Chapter 15

[526]

After that, we calculate the diffuse component for the fragment using the dot product of the
normal and the light direction. We combine that with the light color to get our diffuse
component value:

"float diffuse = max(dot(norm, light_dir), 0.0); \n"
"vec4 diffuse_frag = vec4(diffuse*light_color.r, diffuse*light_color.g,
diffuse*light_color.b, 0.0); \n"

Finally, we add all of those values together to find our fragment value:

"gl_FragColor = ambient_frag + diffuse_frag + specular_frag; \n"

OpenGL global variables
After defining our fragment shader, we need to define a series of OpenGL-related global
variables. These variables should be familiar to you from the previous two versions of this
app. There are a few new variables that we should take note of. We will no longer have just
one program ID. SDL uses its own program, and we will need an ID for that program as
well. We will call this variable sdl_program. We will also need new references for our
textures. In addition, we will need new references for the uniform variables that we pass
into our shader. Here is the new version of our OpenGL global variable code:

GLuint program = 0;
GLint sdl_program = 0;
GLuint circle_tex, normal_tex, light_tex;
GLuint normal_map;

GLint a_texcoord_location = -1;
GLint a_position_location = -1;
GLint u_texture_location = -1;
GLint u_normal_location = -1;
GLint u_light_pos_location = -1;

GLint u_translate_location = -1;
GLuint vertex_texture_buffer;

float vertex_texture_data[] = {
 // x, y, u, v
 0.167, 0.213, 1.0, 1.0,
 -0.167, 0.213, 0.0, 1.0,
 0.167, -0.213, 1.0, 0.0,
 -0.167, -0.213, 0.0, 0.0,
 -0.167, 0.213, 0.0, 1.0,
 0.167, -0.213, 1.0, 0.0
};

Shaders and 2D Lighting Chapter 15

[527]

SDL global variables
Some of the SDL variables were the same as the ones we used in the previous apps we
created for this chapter. The other variables for lighting and normals are new to this section.
Here are the SDL-related global variables we will need for this app:

SDL_Window *window;
SDL_Renderer *renderer;

SDL_Texture* light_texture;

SDL_Surface* surface;

int light_width;
int light_height;

int light_x = 600;
int light_y = 200;
int light_z = -300;

We need to declare an SDL_Texture variable called light_texture, which we will use to
hold the SDL texture for our light icon. We will be using SDL to draw our light icon instead
of drawing it using OpenGL. We will use one surface pointer variable to load all of our
textures, freeing that surface immediately after we create the texture. We need the width
and height value to keep track of the width and height of our light icon. We will also need
values to keep track of the x, y, and z coordinates of our light source.

Function prototypes
Because I would like to put the code for the main function before the code for our other
functions, we will need a few function prototypes. In this app, we will have a game loop
function, a function to retrieve mouse input through SDL, and a function to draw our light
icon using SDL. Here is what those function prototypes look like:

void game_loop();
void input();
void draw_light_icon();

Shaders and 2D Lighting Chapter 15

[528]

The main function
Like in the other apps we have created in this chapter, our main function will need to
initialize both SDL and OpenGL variables. The beginning of the main function is the same
as it was at the beginning of our glow app. It initializes SDL, then compiles and links the
OpenGL shaders and creates a new OpenGL program:

int main() {
 SDL_Init(SDL_INIT_VIDEO);
 SDL_CreateWindowAndRenderer(CANVAS_WIDTH, CANVAS_HEIGHT, 0,
 &window, &renderer);
 SDL_SetRenderDrawColor(renderer, 0, 0, 0, 255);
 SDL_RenderClear(renderer);

 GLuint vertex_shader = glCreateShader(GL_VERTEX_SHADER);

 glShaderSource(vertex_shader,
 1,
 vertex_shader_code,
 0);

 glCompileShader(vertex_shader);

 GLint compile_success = 0;
 glGetShaderiv(vertex_shader, GL_COMPILE_STATUS, &compile_success);

 if(compile_success == GL_FALSE)
 {
 printf("failed to compile vertex shader\n");
 glDeleteShader(vertex_shader);
 return 0;
 }

 GLuint fragment_shader = glCreateShader(GL_FRAGMENT_SHADER);

 glShaderSource(fragment_shader,
 1,
 fragment_shader_code,
 0);

 glCompileShader(fragment_shader);
 glGetShaderiv(fragment_shader, GL_COMPILE_STATUS,
 &compile_success);

 if(compile_success == GL_FALSE)
 {
 printf("failed to compile fragment shader\n");

Shaders and 2D Lighting Chapter 15

[529]

 GLint maxLength = 0;
 glGetShaderiv(fragment_shader, GL_INFO_LOG_LENGTH, &maxLength);

 GLchar* errorLog = malloc(maxLength);
 glGetShaderInfoLog(fragment_shader, maxLength, &maxLength,
 &errorLog[0]);
 printf("error: %s\n", errorLog);

 glDeleteShader(fragment_shader);
 return 0;
 }

 program = glCreateProgram();
 glAttachShader(program,
 vertex_shader);

 glAttachShader(program,
 fragment_shader);

 glLinkProgram(program);

 GLint link_success = 0;

 glGetProgramiv(program, GL_LINK_STATUS, &link_success);

 if (link_success == GL_FALSE)
 {
 printf("failed to link program\n");
 glDeleteProgram(program);
 return 0;
 }

 glDeleteShader(vertex_shader);
 glDeleteShader(fragment_shader);
 glUseProgram(program);

After initializing SDL and creating the OpenGL shader program, we need to get uniform
variable references for our OpenGL shader program. Two of these references are new to
this version of the program. The u_normal_location variable will be a reference to
the u_normal sampler uniform variable, and the u_light_pos_location variable will
be a reference to the u_light_pos uniform variable. Here is the new version of our
references:

u_texture_location = glGetUniformLocation(program, "u_texture");
u_normal_location = glGetUniformLocation(program, "u_normal");
u_light_pos_location = glGetUniformLocation(program, "u_light_pos");
u_translate_location = glGetUniformLocation(program, "u_translate");

Shaders and 2D Lighting Chapter 15

[530]

After grabbing the references to our uniform variables, we need to do the same for our
attributes:

a_position_location = glGetAttribLocation(program, "a_position");
a_texcoord_location = glGetAttribLocation(program, "a_texcoord");

We then need to generate the vertex buffer, bind it, and buffer the data from the array we
created earlier. This should be the same code that we had in the glow.c file:

glGenBuffers(1, &vertex_texture_buffer);

glBindBuffer(GL_ARRAY_BUFFER, vertex_texture_buffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertex_texture_data),
 vertex_texture_data, GL_STATIC_DRAW);

Next, we will need to set up all of our textures. Two of them will be rendered using
OpenGL, while the other will be rendered using SDL. Here is the initialization code for all
three of the textures:

glGenTextures(1,
 &circle_tex);

glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, circle_tex);

surface = IMG_Load("/sprites/circle.png");
if(!surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return 0;
}

glTexImage2D(GL_TEXTURE_2D,
 0,
 GL_RGBA,
 128, // sprite width
 128, // sprite height
 0,
 GL_RGBA,
 GL_UNSIGNED_BYTE,
 surface);

glUniform1i(u_texture_location, 1);
glGenerateMipmap(GL_TEXTURE_2D);

SDL_FreeSurface(surface);

glGenTextures(1,
 &normal_tex);

Shaders and 2D Lighting Chapter 15

[531]

glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, normal_tex);

surface = IMG_Load("/sprites/ball-normal.png");

if(!surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return 0;
}

glTexImage2D(GL_TEXTURE_2D,
 0,
 GL_RGBA,
 128, // sprite width
 128, // sprite height
 0,
 GL_RGBA,
 GL_UNSIGNED_BYTE,
 surface);

glUniform1i(u_normal_location, 1);
glGenerateMipmap(GL_TEXTURE_2D);

SDL_FreeSurface(surface);

surface = IMG_Load("/sprites/light.png");

if(!surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return 0;
}

light_texture = SDL_CreateTextureFromSurface(renderer, surface);

if(!light_texture) {
 printf("failed to create light texture: %s\n", IMG_GetError());
 return 0;
}

SDL_QueryTexture(light_texture,
 NULL, NULL,
 &light_width, &light_height);

SDL_FreeSurface(surface);

Shaders and 2D Lighting Chapter 15

[532]

This is a fairly large block of code, so let me walk through it a piece at a time. The first three
lines generate, activate, and bind the circle texture so that we can begin to update it:

glGenTextures(1,
 &circle_tex);

glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, circle_tex);

Now that we have the circle texture ready to update, we can load the image file using SDL:

surface = IMG_Load("/sprites/circle.png");

if(!surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return 0;
}

Next, we need to load that data into our bound texture:

glTexImage2D(GL_TEXTURE_2D,
 0,
 GL_RGBA,
 128, // sprite width
 128, // sprite height
 0,
 GL_RGBA,
 GL_UNSIGNED_BYTE,
 surface);

Then, we can activate that texture, generate mipmaps, and free the surface:

glUniform1i(u_texture_location, 1);
glGenerateMipmap(GL_TEXTURE_2D);

SDL_FreeSurface(surface);

After doing this for our circle texture, we need to do the same series of steps for our normal
map:

glGenTextures(1,
 &normal_tex);

glActiveTexture(GL_TEXTURE1);
glBindTexture(GL_TEXTURE_2D, normal_tex);
surface = IMG_Load("/sprites/ball-normal.png");

if(!surface) {

Shaders and 2D Lighting Chapter 15

[533]

 printf("failed to load image: %s\n", IMG_GetError());
 return 0;
}

glTexImage2D(GL_TEXTURE_2D,
 0,
 GL_RGBA,
 128, // sprite width
 128, // sprite height
 0,
 GL_RGBA,
 GL_UNSIGNED_BYTE,
 surface);

glUniform1i(u_normal_location, 1);
glGenerateMipmap(GL_TEXTURE_2D);

SDL_FreeSurface(surface);

We will handle the final texture differently because it will only be rendered using SDL. This
should be pretty familiar to you by now. We need to load the surface from the image file,
create a texture from the surface, query the size of that texture, and then free the original
surface:

surface = IMG_Load("/sprites/light.png");

if(!surface) {
 printf("failed to load image: %s\n", IMG_GetError());
 return 0;
}

light_texture = SDL_CreateTextureFromSurface(renderer, surface);

if(!light_texture) {
 printf("failed to create light texture: %s\n", IMG_GetError());
 return 0;
}

SDL_QueryTexture(light_texture,
 NULL, NULL,
 &light_width, &light_height);

SDL_FreeSurface(surface);

Now that we have created our textures, we should set up our alpha blending:

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_BLEND);

Shaders and 2D Lighting Chapter 15

[534]

The last line of our main function uses Emscripten to call the game loop:

emscripten_set_main_loop(game_loop, 0, 0);

The game_loop function
Now that we have our main function defined, we need to define our game_loop. Because
the game_loop function is rendering using both SDL and OpenGL, we need to set our
vertex attribute pointers each time through the loop before we render in OpenGL. We will
also need to switch between more than one OpenGL program because SDL uses a different
program for shading than the one we are using for OpenGL. Let me begin by showing you
the entire function, and then we can walk through it one piece at a time:

void game_loop() {
 input();

 glGetIntegerv(GL_CURRENT_PROGRAM,&sdl_program);
 glUseProgram(program);

 glClearColor(0, 0, 0, 1);
 glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

 glBindBuffer(GL_ARRAY_BUFFER, vertex_texture_buffer);
 glVertexAttribPointer(
 a_position_location, // set up the a_position attribute
 2, // how many attributes in the
 //position
 GL_FLOAT, // data type of float
 GL_FALSE, // the data is not normalized
 4 * sizeof(float), // stride (how many array items
 //until the next position)
 (void*)0 // starting point for attribute
);

 glEnableVertexAttribArray(a_texcoord_location);
 glBindBuffer(GL_ARRAY_BUFFER, vertex_texture_buffer);
 glVertexAttribPointer(
 a_texcoord_location, // set up the a_texcoord attribute
 2, // how many attributes in the texture
 //coordinates
 GL_FLOAT, // data type of float
 GL_FALSE, // the data is not normalized
 4 * sizeof(float), // stride (how many array items until
 //the next position)
 (void*)(2 * sizeof(float)) // starting point for attribute

Shaders and 2D Lighting Chapter 15

[535]

);

 glUniform3f(u_light_pos_location,
 (float)(light_x), (float)(600-light_y), (float)(light_z));

 glDrawArrays(GL_TRIANGLES, 0, 6);

 glUseProgram(sdl_program);
 draw_light_icon();
}

The first line of the game loop calls the input function. This function will use input from
the mouse to set the light position. The second and third lines retrieve the SDL shader
program and save it to the sdl_program variable. Then, it switches to the custom OpenGL
shaders with a call to glUseProgram. Here are the two lines of code we call to save the
current program and set a new one:

glGetIntegerv(GL_CURRENT_PROGRAM,&sdl_program);
glUseProgram(program);

After that, we call OpenGL to clear the canvas:

glClearColor(0, 0, 0, 1);
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

Next, we need to set our geometry:

glBindBuffer(GL_ARRAY_BUFFER, vertex_texture_buffer);
glVertexAttribPointer(
 a_position_location, // set up the a_position attribute
 2, // how many attributes in the
 //position
 GL_FLOAT, // data type of float
 GL_FALSE, // the data is not normalized
 4 * sizeof(float), // stride (how many array items
 //until the next position)
 (void*)0 // starting point for attribute
);

glEnableVertexAttribArray(a_texcoord_location);
glBindBuffer(GL_ARRAY_BUFFER, vertex_texture_buffer);
glVertexAttribPointer(
 a_texcoord_location, // set up the a_texcoord attribute
 2, // how many attributes in the texture
 //coordinates
 GL_FLOAT, // data type of float
 GL_FALSE, // the data is not normalized
 4 * sizeof(float), // stride (how many array items until

Shaders and 2D Lighting Chapter 15

[536]

 //the next position)
 (void*)(2 * sizeof(float)) // starting point for attribute
);

We then use a call to glUniform3f to set the vec3 uniform u_light_pos variable to
the light_x, light_y, and light_z global variables we defined earlier. These light
positions can be moved using the mouse. The code that allows the user to move the light
will be defined later when we write the input function. After we set the values for our
light positions, we can draw our triangles using OpenGL:

glDrawArrays(GL_TRIANGLES, 0, 6);

Finally, we need to switch back to our SDL program and call the
draw_light_icon function, which will draw our light icon using SDL:

glUseProgram(sdl_program);
draw_light_icon();

The input function
Now that we have defined our game loop, we will need to write a function to capture our
mouse input. I want to be able to click our canvas and have the light icon and light source
move to the location I just clicked. I would also like to be able to hold the mouse button
down and drag the light icon around the canvas to see how the shading works when the
light is in different locations on the canvas. Most of this code will look very familiar. We
use SDL_PollEvent to retrieve an event and look to see if the left mouse button is down,
or if the user has moved the scroll wheel. If the user has turned the scroll wheel,
the light_z variable is changed, which will, in turn, change the z position of our light
source. We use the static int mouse_down variable to track whether or not the user
pressed the mouse button. If the user pressed the mouse button, we would
call SDL_GetMouseState to retrieve the light_x and light_y variables, which will
modify the x and y positions of our light source. Here is the code for the input function in
its entirety:

void input() {
 SDL_Event event;
 static int mouse_down = 0;

 if(SDL_PollEvent(&event))
 {
 if(event.type == SDL_MOUSEWHEEL)
 {
 if(event.wheel.y > 0) {

Shaders and 2D Lighting Chapter 15

[537]

 light_z+= 100;
 }
 else {
 light_z-=100;
 }

 if(light_z > 10000) {
 light_z = 10000;
 }
 else if(light_z < -10000) {
 light_z = -10000;
 }
 }
 else if(event.type == SDL_MOUSEMOTION)
 {
 if(mouse_down == 1) {
 SDL_GetMouseState(&light_x, &light_y);
 }
 }
 else if(event.type == SDL_MOUSEBUTTONDOWN)
 {
 if(event.button.button == SDL_BUTTON_LEFT)
 {
 SDL_GetMouseState(&light_x, &light_y);
 mouse_down = 1;
 }
 }
 else if(event.type == SDL_MOUSEBUTTONUP)
 {
 if(event.button.button == SDL_BUTTON_LEFT)
 {
 mouse_down = 0;
 }
 }
 }
}

Shaders and 2D Lighting Chapter 15

[538]

The draw_light_icon function
The last function we need to define in our lighting.c file is
the draw_light_icon function. This function will use SDL to draw our light icon based on
the values in the light_x and light_y variables. We create an SDL_Rect variable called
dest and set the x, y, w, and h attributes of that structure. We then call SDL_RenderCopy to
render our light icon in the proper location. Here is the code for that function:

void draw_light_icon() {
 SDL_Rect dest;
 dest.x = light_x - light_width / 2 - 32;
 dest.y = light_y - light_height / 2;
 dest.w = light_width;
 dest.h = light_height;

 SDL_RenderCopy(renderer, light_texture, NULL, &dest);
}

Compiling and running our lighting app
When we compile and run our lighting app, we should be able to click and drag our light
around the canvas. We have a small circle that is associated with a normal map. Together
with our shading and lighting, it should make that circle look more like a shiny button.
Execute the following command on the command line to compile the lighting.html file:

emcc lighting.c -o lighting.html --preload-file sprites -s USE_SDL=2 -s
USE_SDL_IMAGE=2 -s SDL2_IMAGE_FORMATS=["png"]

Shaders and 2D Lighting Chapter 15

[539]

Now, you should be able to serve the lighting.html file from a web server, or emrun.
Here is what the app should look like if everything went well:

Figure 15.6: Screenshot of the 2D lighting app

Shaders and 2D Lighting Chapter 15

[540]

Summary
In this chapter, we took a closer look at shaders after introducing the concept back in
Chapter 3, Introduction to WebGL, when we built a WebGL app. It is helpful to have an
understanding of WebGL when you are using OpenGL for WebAssembly because each call
to OpenGL from WebAssembly is internally calling the corresponding WebGL functions.
We started by rebuilding that WebGL app using a combination of OpenGL ES and SDL in
C++ and compiled it to WebAssembly. We then learned how we could use OpenGL and
shaders to mix different textures in interesting ways. We used this knowledge to create a
pulsing glow around the spaceship's engines. Finally, we discussed 3D lighting and normal
maps, and then developed a 2D lighting model and created an app that allows us to light a
simple circle with that lighting model. This app demonstrates the possibilities in 2D
lighting by allowing us to move our light around a 2D circle with a normal map, which is
used to give that 2D surface the appearance of depth.

In the next chapter, we will discuss debugging our WebAssembly application and the tools
we can use for performance testing.

16
Debugging and Optimization

In this final chapter, we are going to discuss two topics that will be helpful as you go on to
create games using Emscripten and build in WebAssembly. We are going to discuss the
topics of debugging and optimization. We will debug before optimizing, because building
your code to output more debuging information prevents optimization. We will start by
using some basic debugging techniques, such as printing a stack trace and defining debug
macros that we can remove by changing a compile flag. We will then move on to some
more advanced debugging techniques, such as compiling with Emscripten flags, which
allow us to trace through our code in Firefox and Chrome. We will also discuss some of the
differences between debugging using the Firefox and Chrome developer tools.

You will need to include several images in your build to make this project
work. Make sure that you include the /Chapter16/sprites/ folder
from this project's GitHub repository. If you haven't downloaded the
GitHub project yet, you can get it online here: https:/ ​/​github. ​com/
PacktPublishing/ ​Hands- ​On-​Game- ​Development- ​with- ​WebAssembly.

After we have finished discussing debugging, we will move on to optimization. We will
discuss the optimization flags you can use with Emscripten, as well as the use of profilers to
determine where your game or app may be having performance issues. We will discuss
general techniques for optimizing your code for WebAssembly deployment. Finally, we
will discuss optimizations related to web games and WebGL calls made by the
WebAssembly module.

https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly

Debugging and Optimization Chapter 16

[542]

Debug macro and stack trace
One way you can start debugging your code is by using #define to create a debugging
macro, which we can activate by passing a flag into the Emscripten compiler. However, this
will resolve to nothing if we don't pass that flag. Macros are easy to add, and we can create
a call that prints a line if we are running with our debug flag, but will not slow down
performance if we aren't. If you are not familiar with preprocessor commands, they are
commands that are issued to the compiler that evaluate while the code is compiled instead
of at runtime. For instance, if I used a #ifdef PRINT_ME command, the line of code would
only be compiled into our source code if the PRINT_ME macro is defined either with
a #define PRINT_ME macro on a line earlier in the code, or if we compiled the source with
the -DPRINT_ME flag passed into the compiler when we ran the compiler. Let's say we had
the following block of code in our main function:

#ifdef PRINT_ME
 printf("PRINT_ME was defined\n");
#else
 printf("nothing was defined\n");
#endif

If we did, we would have compiled and ran that code. The web browser's console prints the
following:

"nothing was defined"

If we compiled it with the -DPRINT_ME flag and then ran the code at the command line, we
would see the following printed:

"PRINT_ME was defined"

If you disassembled the code into WebAssembly text, then you wouldn't see any hint of the
original printf statement that printed "nothing was defined". At compile time, the code is
removed. This makes preprocessor macros very useful when creating code that we want to
include during the development phase.

If you are using the -D flag to include debug macros in your code, make
sure that you don't include that flag when you are compiling for release,
as that will continue to include all of your debug macros when you don't
want them. You may want to consider having a -DRELEASE flag that
overrides your -DDEBUG flag when you compile your code for general
release.

Debugging and Optimization Chapter 16

[543]

Keeping all of your printf calls confined to a macro is a good way to make sure you
removed all the calls to printf that will slow down your app when you publish it. Let's try
this out by starting with the webgl-redux.c file as a baseline. From the code we created in
the previous chapter, copy and paste webgl-redux.c into a file called debug.cpp. We will
add our debug macro at the beginning of this file. Immediately after the line that
includes emscripten.h, but before the line of code that defines the canvas width, add the
following block of code:

#ifdef DEBUG
 void run_debug(const char* str) {
 EM_ASM (
 console.log(new Error().stack);
);
 printf("%s\n", str);
 }

 #define DBG(str) run_debug(str)
#else
 #define DBG(str)
#endif

This code will only compile the run_debug function if we pass the -DDEBUG flag to the
compiler. The user shouldn't run the run_debug function directly, because it will not exist
if we don't use the -DDEBUG flag. Instead, we should use the DBG macro function. This
macro exists regardless of whether we use the -DDEBUG flag. If we use this flag, the function
calls the run_debug function. If we don't use this flag, the calls to DBG magically disappear.
The run_debug function not only uses printf to print out a string, but also uses EM_ASM
to dump a stack trace to the JavaScript console. A stack trace logs out every function that is
currently on the JavaScript stack. Let's add a few function calls that will eventually call
our DBG macro. These should be added immediately before the main function:

extern "C" {
 void inner_call_1() {
 DBG("check console log for stack trace");
 }
 void inner_call_2() {
 inner_call_1();
 }
 void inner_call_3() {
 inner_call_2();
 }
}

Debugging and Optimization Chapter 16

[544]

Inside our main function, we should add a call to inner_call_3(), as follows:

int main() {
 inner_call_3();

Now, let's compile our debug.cpp file with the following command:

emcc debug.cpp -o index.html -DDEBUG --preload-file sprites -s USE_SDL=2 -s
USE_SDL_IMAGE=2 -s SDL2_IMAGE_FORMATS=["png"]

This compiles the debug.cpp file into an index.html file. If we serve that file from a web
server and open it in a browser, we will see the following in our JavaScript console:

Error
 at Array.ASM_CONSTS (index.js:1901)
 at _emscripten_asm_const_i (index.js:1920)
 at :8080/wasm-function[737]:36
 at :8080/wasm-function[738]:11
 at :8080/wasm-function[739]:7
 at :8080/wasm-function[740]:7
 at :8080/wasm-function[741]:102
 at Object.Module._main (index.js:11708)
 at Object.callMain (index.js:12096)
 at doRun (index.js:12154)

(index):1237 check console log for stack trace

You will notice that we have a stack trace, followed by our message, check console log
for stack trace, which was the string we passed into the DBG macro. One thing you
may notice if you look carefully is that this stack trace is not very helpful. Most of the
functions in the stack trace are labeled wasm-function, which, from a debugging
perspective, is kind of useless. This is because we lose the function names in the
compilation process. To keep these names, we will need to pass the -g4 flag to Emscripten
when we compile. The -g flag, followed by a number, tells the compiler how much
debugging information to preserve in the compilation process, with -g0 being the least
amount of information and -g4 being the most. If we want to create source maps that map
our WebAssembly to the C/C++ source code it was created from, we will need to pass in
the -g4 command, and if we want to know the functions called by our stack trace, we are
going to need -g4 for that as well. Let's try recompiling with our -g4 flag. Here is the new
version of the emcc command:

emcc debug.cpp -o index.html -g4 -DDEBUG --preload-file sprites -s
USE_SDL=2 -s USE_SDL_IMAGE=2 -s SDL2_IMAGE_FORMATS=["png"]

Debugging and Optimization Chapter 16

[545]

Now, reload the page and check the console. In the following snippet, we have the new
stack trace:

Error
 at Array.ASM_CONSTS (index.js:1901)
 at _emscripten_asm_const_i (index.js:1920)
 at __Z9run_debugPKc (:8080/wasm-function[737]:36)
 at _inner_call_1 (:8080/wasm-function[738]:11)
 at _inner_call_2 (:8080/wasm-function[739]:7)
 at _inner_call_3 (:8080/wasm-function[740]:7)
 at _main (:8080/wasm-function[741]:102)
 at Object.Module._main (index.js:11708)
 at Object.callMain (index.js:12096)
 at doRun (index.js:12154)
 (index):1237 check console log for stack trace

This is much more readable. You can see all of the inner call functions we defined, as well
as the main function. But what happened to run_debug? It came out looking like this:

 __Z9run_debugPKc

What's happening here is called C++ name mangling, and we discussed it briefly in earlier
chapters. Because C++ allows for function overloading, the compiler mangles the names of
functions so that each version of the function has a different name. We were able to prevent
this in our calls to inner_call_1, inner_call_2, and inner_call_3 by placing them in
a block labeled extern "C". This tells the compiler not to mangle the names of these
functions. It isn't strictly necessary for debugging, but I wanted to demonstrate how adding
functions to this block can allow for easier recognition of our functions inside a stack trace.
Here is what that same stack trace looks like if I remove the extern "C" block:

Error
 at Array.ASM_CONSTS (index.js:1901)
 at _emscripten_asm_const_i (index.js:1920)
 at __Z9run_debugPKc (:8080/wasm-function[737]:36)
 at __Z12inner_call_1v (:8080/wasm-function[738]:11)
 at __Z12inner_call_2v (:8080/wasm-function[739]:7)
 at __Z12inner_call_3v (:8080/wasm-function[740]:7)
 at _main (:8080/wasm-function[741]:102)
 at Object.Module._main (index.js:11708)
 at Object.callMain (index.js:12096)
 at doRun (index.js:12154)
 (index):1237 check console log for stack trace

As you can see, all of our inner call functions are mangled. In the next section, we will be
discussing source maps.

Debugging and Optimization Chapter 16

[546]

Source maps
Now, let's briefly discuss source maps. Back in the early days of the web, it was decided
that users should be able to view all of the source code on every web page. Early on, this
was always HTML, but later, JavaScript was added and became something a user could
view in an attempt to understand the workings of a given web page. Today, this is not
possible in most cases. Some code today, such as TypeScript, is transpiled into JavaScript
from another language. If you are writing JavaScript, you may use Babel to convert the
latest JavaScript to run on older web browsers. Uglify or Minify may be used to remove
white space and shorten variable names. If you need to debug the original source code, a
source map is a tool you can use to map the JavaScript running in your browser back to the
original source.

A source map is a JSON file that contains data mapping for the machine-generated
JavaScript output code and points it back to either the handwritten JavaScript or in an
alternative language, such as TypeScript or CoffeeScript. There are two ways that an
application can tell the web browser that there is a source map file associated with a given
piece of code. We can include a comment with the sourceMappingURL directive in the
code, or we could include a SourceMap inside the HTTP header for that file. If we are using
the sourceMappingURL comment method, add the following line to the end of the output
JavaScript file:

//# sourceMappingURL=http://localhost:8080/debug.wasm.map

This is usually done programmatically during the build process. The alternative method
would add the following line to the HTTP header:

SourceMap: http://localhost:8080/debug.wasm.map

In the next section, we will discuss browser-based WebAssembly debugging tools.

Browser debugging
Debugging WebAssembly in a web browser is still pretty crude. For example, at the time of
writing, it is still not possible to directly watch a variable using the debugger. In both
Firefox and Chrome, you must occasionally refresh your browser to see the CPP source file.
Unlike debugging JavaScript, the WebAssembly debuggers feel (ironically) buggy. In
Chrome, you frequently have to click the step over button several times to advance the line
of code. In both browsers, breakpoints sometimes fail to work.

Debugging and Optimization Chapter 16

[547]

I frequently have to remove and then re-add a break point to get them to work again. It is
still early days for WebAssembly source maps and in-browser debugging, so the hope is
that the situation will improve soon. Until it does, try combining debugging in the browser
with the addition debug statements, as I advised earlier.

Compiling your code for debugging
As I mentioned earlier, we will need to compile our app to support source maps that we
can use for in-browser debugging in Firefox and Chrome. Currently, the only browsers that
support in-browser debugging are Firefox, Chrome, and Safari. I will only be covering
Firefox and Chrome in this book. You can compile the debug.cpp file for use with the
WebAssembly debugger using the following emcc command:

emcc -g4 debug.cpp -o debug.html --source-map-base http://localhost:8080/ -
-preload-file sprites -s USE_SDL=2 -s USE_SDL_IMAGE=2 -s
SDL2_IMAGE_FORMATS=["png"] -s MAIN_MODULE=1 -s WASM=1

The first new flag is -g4, which instructs the compiler to have the highest amount of
debugging data and create source map files for our WebAssembly. After that comes the --
source-map-base http://localhost:8080/ flag, which tells the compiler to add the
sourceMappingURL$http://localhost:8080/debug.wasm.map string to the end of the
debug.wasm file. This allows the browser to find the source map file that is associated with
the debug.wasm file. The last two new flags are -s MAIN_MODULE=1 and -s WASM=1. I'm
not sure why either of these flags are required to make the source mapping work. Both of
these flags are explicitly telling the compiler to run the default behavior. However, at the
time of writing, if you don't include these flags, browser debugging will not work. This
feels like a bug to me, so it is possible that by the time you are reading this, emcc will not
require those final two flags. Compiling with the preceding command will allow you to test
using the WebAssembly debugger on Chrome and Firefox. If you really want to debug on
Opera, Edge, or some other debugger that doesn't support WebAssembly debugging yet,
you do have an alternative.

Using asm.js as an alternative for debugging
For whatever reason, you may feel that debugging using Edge or Opera may be necessary.
If you feel that you must debug in a browser that doesn't have a WebAssembly debugger,
you could compile for asm.js as an alternative. If so, change the -s WASM=1 flag to -s
WASM=0, and you will be set. This will create a JavaScript file instead of a WASM file, but
the two files (in theory) should behave the same.

Debugging and Optimization Chapter 16

[548]

Debugging using Chrome
Chrome has some great tools for debugging JavaScript, but is still pretty raw when it comes
to debugging WebAssembly. After you have built the app, open it up in Chrome, and then
open up Chrome Developer Tools:

Figure 16.1: Screenshot of opening Chrome Developer Tools using the menu

You can open it up using the menu in the top left of the browser, as seen in the preceding
screenshot, or you can open the developer tools by pressing Ctrl + Shift + I on your
keyboard. When you load up your debug.html file in Chrome, you need to click on the
Sources tab in the developer window. This is what this should look like if you are on the
Sources tab:

Debugging and Optimization Chapter 16

[549]

Figure 16.2: Screenshot using the sources tab in Chrome Developer Tools

If you don't see debug.cpp in the Sources tab, you may need to click the browser's reload
button next to the URL at the top to reload the page. As I stated earlier, the interface feels a
little buggy, and sometimes the CPP file doesn't load on the first try. Hopefully, this will
have changed by the time you read this. Once you select the CPP file, you should be able to
see the C++ code from our debug.cpp file in the code window in the center of the
Developer Tools window. You can set breakpoints in the C++ code by clicking on the line
number next to the line of code where you would like a breakpoint. You can then step
through the code using the buttons above the Watch variables. Although the watch
variables don't work at the time of writing, you may want to try it anyway. WebAssembly
is improving on an almost daily basis, and bug fixes are constantly happening, so by the
time you read this, things may have changed. If not, you may use the Local variables to get
some idea of what values are changing.

Debugging and Optimization Chapter 16

[550]

You can watch these variables get populated as you step through the source code, and you
can frequently determine which variables are updated by watching these values
change. Take a look at the following screenshot:

Figure 16.3: Screenshot of the debug tools in the Chrome browser

At the time of writing, you need to click the step over button more than once to get the line
to advance in the C++ code window. In Chrome, the step over button is advancing one
WebAssembly instruction per click instead of one C++ instruction. This may have changed
by the time you read this, but don't be surprised if you need to click step over more than
once to advance through the code.

Debugging using Firefox
Firefox has a number of advantages and disadvantages compared to Chrome. On the
plus side, you can click the step over button once in Firefox per line in your C++ code. On
the minus side, this makes knowing which local variables are changing in response to the
line you are executing more difficult to track. These Local variables are a little like registers
in a register-based assembly language so that the same variable may get moved in and out
of a few of them. It can be a little easier to follow along with the values if you have to click
the button once per assembly instruction. However, if you are more interested in tracing
through the flow of your code than knowing what values change for each WebAssembly
instruction, Firefox is much better for that.

Debugging and Optimization Chapter 16

[551]

To open up your Firefox Developer Tools, click the menu button in the top right corner of
the browser window and select Web Developer:

Figure 16.4: Web Developer tools in the Firefox browser

Debugging and Optimization Chapter 16

[552]

Once on the Web Developer menu, click the Debugger menu item to open up the Debugger
window:

Figure 16.5: Screenshot of opening Debugger in Firefox

Debugging and Optimization Chapter 16

[553]

Instead of selecting the debugger through the menu system, you can use the shortcut
keys Ctrl + Shift + C to open up the Inspector, and then select the Debugger tab from the
Web Developer window. Here is what this looks like when you are in the Firefox
Debugger:

Figure 16.6: Screenshot of using Debugger in the Firefox browser

Right now, debugging will need to combine the use of debugging macros, as discussed in
the previous section, with the ability of the browser to fully understand what is going on.

Firefox Developer Edition
I am briefly going to mention the Firefox Developer Edition. If you prefer to use Firefox as
your primary WebAssembly development browser, you may want to consider using
Firefox Developer Edition. The Developer Edition pushes forward updates to the web
developer tools faster than the standard version of Firefox. Because WebAssembly is so
new, updates that improve the development experience are likely to show up in the
Developer Edition weeks or months earlier than they will become available in the standard
version. At the time of writing, there is no significant difference between the two versions,
but if you are interested in trying it out, it is available at the following web
address: https:/​/​www. ​mozilla. ​org/ ​en- ​US/ ​firefox/ ​developer/ ​.

https://www.mozilla.org/en-US/firefox/developer/
https://www.mozilla.org/en-US/firefox/developer/
https://www.mozilla.org/en-US/firefox/developer/
https://www.mozilla.org/en-US/firefox/developer/
https://www.mozilla.org/en-US/firefox/developer/
https://www.mozilla.org/en-US/firefox/developer/
https://www.mozilla.org/en-US/firefox/developer/
https://www.mozilla.org/en-US/firefox/developer/
https://www.mozilla.org/en-US/firefox/developer/
https://www.mozilla.org/en-US/firefox/developer/
https://www.mozilla.org/en-US/firefox/developer/
https://www.mozilla.org/en-US/firefox/developer/
https://www.mozilla.org/en-US/firefox/developer/
https://www.mozilla.org/en-US/firefox/developer/
https://www.mozilla.org/en-US/firefox/developer/
https://www.mozilla.org/en-US/firefox/developer/
https://www.mozilla.org/en-US/firefox/developer/
https://www.mozilla.org/en-US/firefox/developer/

Debugging and Optimization Chapter 16

[554]

Optimizing for WebAssembly
Optimizing your WebAssembly code is partially about decision making and
experimenting. It is about discovering what works for your particular game or app. When
WebAssembly was designed, for instance, a decision was made to have the WebAssembly
bytecode run on a virtual stack machine. The designers of WebAssembly made this choice
because they felt that they could justify the small loss of performance with a significantly
smaller bytecode download size. Every piece of code has a bottleneck somewhere. In
OpenGL applications that bottleneck will be interfacing with the GPU. The bottleneck for
your application may be the memory, or it may be CPU-bound. Optimizing code, in
general, is about determining what the holdup is and deciding what trade-off you would
like to make to improve things. If you optimize for download size, you may lose some
runtime performance. If you optimize for runtime performance, you may have to increase
your memory footprint.

Optimization flags
Emscripten provides us with a large selection of flags to optimize for different potential
bottlenecks. All of the optimization flags will result in varying degrees of longer compile
times, so using any of these flags should come late in the development cycle.

Optimizing for performance
We can use the -O flags for general optimization. -O0, -O1, -O2, and -O3 provide different
levels of trade-off between compile time and code performance. The -O0 and -O1 flags
provide minimal optimization. The -O2 flag offers most of the optimization you get from
the -O3 flag, but with significantly shorter compile times. Finally, -O3 provides the highest
level of optimization, but takes substantially longer than any other flag to compile, so it is a
good idea to wait until you are nearing the end of development to begin using it. In
addition to the -O flags, -s AGGRESSIVE_VARIABLE_ELIMINATION=1 can be used to
increase performance, but may result in larger bytecode download sizes.

Debugging and Optimization Chapter 16

[555]

Optimizing for size
There are two other -O flags that I didn't mention in the preceding section. Those flags are
used to optimize for bytecode download size instead of purely optimizing for performance.
The -Os flag takes about as long as -O3, and provides as much performance optimization
as it can, but sacrifices some of the -O3 optimizations in favor of smaller download sizes. -
Oz is like -Os, but prioritizes smaller download sizes even further by sacrificing even more
performance optimization, which results in smaller bytecode. Another way to optimize for
size is to include the -s ENVIRONMENT='web' flag. You should only use this flag if you are
compiling for the web. It removes any source code that is used to support other
environments, such as Node.js.

Unsafe flags
In addition to the safe optimization flags we have been using up until this point,
Emscripten also allows for two unsafe flags that can improve performance, but come at the
risk of potentially breaking your code. These flags are high risk/high reward optimizations
that you should only use before the bulk of testing is complete. Using the --closure
1 flag runs the Closure JavaScript compiler, which performs very aggressive optimization
on the JavaScript in our app. However, you shouldn't use the --closure 1 flag unless you
are already familiar with using the closure compiler and the effects that compiler could
have on JavaScript. The second unsafe flag is the --llvm-lto 1 flag, which enables Link
Time Optimization during the LLVM compile step. This process can break your code, so take
extreme care when using this flag.

Profiling
Profiling is the best way to determine what bottlenecks exist in your source code. When
you are profiling WebAssembly modules, I recommend that you use the --profiling flag
when compiling. You can profile without it, but all of the module functions you call will be
labeled wasm-function, which can make your life more difficult than it needs to be. After
compiling your code with the --profile flag, open up a new Incognito window in
Chrome.

Debugging and Optimization Chapter 16

[556]

You can do this by either pressing the CTRL + SHIFT + N keys, or through the menu in the
top right corner of the browser:

Figure 16.7: Opening an Incognito window in the Chrome browser

Opening an Incognito window will prevent any Chrome extensions from running when
profiling your app. This will prevent you from having to wade through the code in those
extensions to get to the code in your app. Once you have opened an Incognito window,
press Ctrl + Shift + I to inspect the page. This will open up Chrome Developer Tools at the
bottom of the browser window. Inside Chrome Developer Tools, select the Performance
tab, as you can see in the following screenshot:

Debugging and Optimization Chapter 16

[557]

Figure 16.8: The Performance tab in the Chrome browser

Debugging and Optimization Chapter 16

[558]

Now, click the Record button and let it run for a few seconds. After you have recorded for
five or six seconds, click the Stop button to stop profiling:

Figure 16.9: Screenshot of recording performance metrics in the Chrome browser

Debugging and Optimization Chapter 16

[559]

After you stop profiling, you will see data within the performance window. This is called
the Summary tab, and displays data in the form of a pie chart that breaks down the number
of milliseconds your app is spending on various tasks.

As you can see, the vast majority of the time, our app is idle:

Figure 16.10: Performance overview in the Chrome browser

Debugging and Optimization Chapter 16

[560]

The summary is interesting. It can tell you where your bottleneck is on a very high level,
but to evaluate our WebAssembly, we will need to look in the Call Tree tab. Click on the
Call Tree tab, and you will see the following window:￼

Figure 16.11: Screenshot of the Call Tree in the Chrome browser

Debugging and Optimization Chapter 16

[561]

Because our game_loop function is being called every frame, we can find the call inside the
Animation Frame Fired tree. Drill down, looking for game_loop. When we find the
function, it is mangled because it is a C++ function. So, instead of seeing _game_loop, we
see _Z9game_loopv, although you may see something mangled differently. If you would
like to prevent this mangling, you can wrap this function in an extern "C" block.

You can see that the execution of this function took a total of 3.2% of the browser's CPU
time. You can also look at each of the OpenGL calls from within this function. If you take a
look at our game loop, more than half of the CPU time is spent in _glClear. This is not a
problem for this application, because the vast majority of the browser CPU time is spent
idle. If, however, our game loop function was taking up a large percentage of the CPU time,
we would need to see where in that function we were spending it.

Problems with try/catch blocks
At the time of writing, try/catch blocks are known to cause significant performance issues
in WebAssembly modules, so only use them if they're absolutely necessary. You may want
to use them during the development phase, and remove them when building for release.
Some of the -O optimization flags will remove try/catch blocks, which you need to be aware
of if you plan on using them in production. If you want to use try/catch blocks in your
production build, you will need to compile using the -s
DISABLE_EXCEPTION_CATCHING=0 flag. This will tell the compiler not to remove the
try/catch blocks from the optimized version of your bytecode. If you would like to remove
your try/catch blocks from unoptimized development code, you can do so by using the -s
DISABLE_EXCEPTION_CATCHING=1 flag.

Optimizing OpenGL for WebAssembly
It is important to remember that any calls to OpenGL from WebAssembly are calling
WebGL using a function table. Part of the reason this is important is because any time you
use OpenGL ES and OpenGL functionality that is not available in WebGL, Emscripten must
perform some very slow software emulation on those functions. It is also important to
remember that WebGL calls are more expensive than OpenGL calls on a native platform
because WebGL is sandboxed, and various security checks are performed by the browser
when it calls WebGL. Emscripten provides you with several flags that allow you to emulate
OpenGL and OpenGL ES calls that are not available in WebGL. For performance reasons,
however do not use these functions unless you absolutely have to.

Debugging and Optimization Chapter 16

[562]

Using WebGL 2.0 if possible
WebGL 2.0 is faster than WebGL 1.0, but, at the time of writing, it is supported on far fewer
browsers. Just compiling your WebGL 1.0 code to WebGL 2.0 will give you about a 7%
performance improvement. However, before you choose to do this, you may want to
consult https:/​/​caniuse. ​com/ ​#search= ​webgl2 to see whether the browsers you are
targeting support WebGL 2.0.

Minimizing the number of OpenGL calls
Calls to OpenGL from WebAssembly are not as fast as those same calls from a natively
compiled application. A call to OpenGL from WebAssembly is making a call to a WebGL
analog. WebGL was built to execute inside a web browser and performs some security
checks to verify that we are not asking WebGL to do anything malicious. This means that
we must account for that additional overhead when writing OpenGL that's targeting
WebAssembly. There are cases where two or three calls to OpenGL for a native application
would be faster than combining those calls into a single OpenGL call. However, that same
code in WebAssembly might run faster if you condensed it into a single call to OpenGL.
When optimizing for WebAssembly, try doing what you can to minimize the number of
OpenGL calls, and use your profiler to verify that the new code is faster.

Emscripten OpenGL flags
Several Emscripten linker flags can have a significant effect on performance. Some of the
flags were created to ease porting of code to WebAssembly, but have the potential to create
performance problems. Others can improve performance under the right conditions.

The -s FULL_ES2=1 and -s FULL_ES3=1 linker flags emulate the entire OpenGL ES
2.0/3.0 API. As I mentioned earlier, by default, the OpenGL ES 2/3 implementations in
WebAssembly only support subsets of OpenGL ES 2/3 that are compatible with WebGL.
This is because WebGL is doing the rendering in WebAssembly. There may be a reason
why you absolutely need a feature of OpenGL ES 2/3 that is not available by default. If so,
you can use the -s FULL_ES2=1 or -s FULL_ES3=1 flags to emulate that feature in the
software. This will come at a price when it comes to performance, so take that into
consideration if you decide to use it.

https://caniuse.com/#search=webgl2
https://caniuse.com/#search=webgl2
https://caniuse.com/#search=webgl2
https://caniuse.com/#search=webgl2
https://caniuse.com/#search=webgl2
https://caniuse.com/#search=webgl2
https://caniuse.com/#search=webgl2
https://caniuse.com/#search=webgl2
https://caniuse.com/#search=webgl2
https://caniuse.com/#search=webgl2
https://caniuse.com/#search=webgl2

Debugging and Optimization Chapter 16

[563]

The -s LEGACY_GL_EMULATION=1 flag is used to emulate old versions of OpenGL that use
the fixed function pipeline. It is also not recommended that you use this flag because of the
poor performance that will result. This flag exists for people who are looking to port old
code to WebAssembly.

If you want to use WebGL 2 to gain the performance increase associated with it, use the -s
USE_WEBGL2=1 linker flag. If you have code that was written for WebGL 1.0, but would like
the performance gains of WebGL 2.0, you can try compiling to WebGL 2.0 to see whether
you used any code that was not backward compatible in WebGL 2.0. If it doesn't compile
with this flag, you can try the -s
WEBGL2_BACKWARDS_COMPATIBILITY_EMULATION=1 linker flag, which will allow you to
compile your WebGL 1.0 code so that you can use it in WebGL 2.0.

Summary
In this chapter, we talked about different strategies we can use to debug and optimize our
WebAssembly code. We discussed writing C macros, which allow us to easily remove calls
to print to the console when we move from development into production. We talked about
source maps, what they are, and how they can help us to debug our WebAssembly code
from within a browser. We discussed using the debugger in both Chrome and Firefox to
step through WebAssembly's source code. Finally, we discussed optimization in
WebAssembly, what compiler options are available in Emscripten, and how we can go
about improving our WebGL performance.

This is the end
Congratulations! You should be well on your way to developing your own games or apps
in WebAssembly. I hope that you enjoyed learning how we can use WebGL to build games
for the web. If you have any questions, comments, or would just like to say hi, you can find
me on the following platforms:

Twitter: https:/ ​/​twitter. ​com/ ​battagline

LinkedIn: https:/ ​/​www. ​linkedin. ​com/ ​in/​battagline/ ​

YouTube: https:/ ​/​www. ​youtube. ​com/ ​channel/ ​UCaJYTBKp0vM1rLT82PcXwKQ

https://twitter.com/battagline
https://twitter.com/battagline
https://twitter.com/battagline
https://twitter.com/battagline
https://twitter.com/battagline
https://twitter.com/battagline
https://twitter.com/battagline
https://twitter.com/battagline
https://twitter.com/battagline
https://www.linkedin.com/in/battagline/
https://www.linkedin.com/in/battagline/
https://www.linkedin.com/in/battagline/
https://www.linkedin.com/in/battagline/
https://www.linkedin.com/in/battagline/
https://www.linkedin.com/in/battagline/
https://www.linkedin.com/in/battagline/
https://www.linkedin.com/in/battagline/
https://www.linkedin.com/in/battagline/
https://www.linkedin.com/in/battagline/
https://www.linkedin.com/in/battagline/
https://www.linkedin.com/in/battagline/
https://www.linkedin.com/in/battagline/
https://www.linkedin.com/in/battagline/
https://www.youtube.com/channel/UCaJYTBKp0vM1rLT82PcXwKQ
https://www.youtube.com/channel/UCaJYTBKp0vM1rLT82PcXwKQ
https://www.youtube.com/channel/UCaJYTBKp0vM1rLT82PcXwKQ
https://www.youtube.com/channel/UCaJYTBKp0vM1rLT82PcXwKQ
https://www.youtube.com/channel/UCaJYTBKp0vM1rLT82PcXwKQ
https://www.youtube.com/channel/UCaJYTBKp0vM1rLT82PcXwKQ
https://www.youtube.com/channel/UCaJYTBKp0vM1rLT82PcXwKQ
https://www.youtube.com/channel/UCaJYTBKp0vM1rLT82PcXwKQ
https://www.youtube.com/channel/UCaJYTBKp0vM1rLT82PcXwKQ
https://www.youtube.com/channel/UCaJYTBKp0vM1rLT82PcXwKQ
https://www.youtube.com/channel/UCaJYTBKp0vM1rLT82PcXwKQ
https://www.youtube.com/channel/UCaJYTBKp0vM1rLT82PcXwKQ
https://www.youtube.com/channel/UCaJYTBKp0vM1rLT82PcXwKQ

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Deep Learning for Games
Micheal Lanham

ISBN: 978-1-78899-407-1

Learn the foundations of neural networks and deep learning.
Use advanced neural network architectures in applications to create music,
textures, self driving cars and chatbots.
Understand the basics of reinforcement and DRL and how to apply it to solve a
variety of problems.
Working with Unity ML-Agents toolkit and how to install, setup and run the kit.
Understand core concepts of DRL and the differences between discrete and
continuous action environments.
Use several advanced forms of learning in various scenarios from developing
agents to testing games.

https://www.packtpub.com/game-development/hands-deep-learning-games

Other Books You May Enjoy

[565]

Hands-On Game Development Patterns with Unity 2019
David Baron

ISBN: 978-1-78934-933-7

Discover the core architectural pillars of the Unity game engine.
Learn about software design patterns while building gameplay systems.
Acquire the skills to recognize anti-patterns and how to avoid their adverse effect
in your codebase.
Enrich your design vocabulary so you can better articulate your ideas on how to
better your game's architecture.
Gain some mastery over Unity's API by writing well-designed code.
Get some game industry insider tips and tricks that will help you in your career.

https://www.packtpub.com/game-development/hands-game-development-patterns-unity-2019

Other Books You May Enjoy

[566]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

2
2D collision detection, types
 about 162
 circle collision detection 163
 compound colliders 168, 169
 line collision detection 166, 167
 rectangle collision detection 164
2D lighting app
 compiling 538
 creating 522
 draw_light_icon function 538
 fragment shader updates 523, 526
 function prototypes 527
 game_loop function 534, 536
 input function 536
 main function 528, 530, 533
 OpenGL global variables 526
 running 538
 SDL global variables 527

3
3D lighting
 about 519
 ambient light 520
 diffuse light 520
 specular light 521

A
Abstract Syntax Tree (AST) 11
add_emitter function 289
address of operator 190
advanced camera
 about 408
 camera.cpp changes 409, 410
 compiling with 412
 games.hpp changes 408

 working with 412
Ahead-of-Time (AOT) compiler 11
ai.html file
 compiling 380
 testing 380
ambient light 520
animation frames 254
Application Programming Interface (API) 83
arrival behavior 321
Artificial Intelligence (AI) 315
asm.js
 about 16
 used, as alternative for debugging 547
asteroid.cpp
 modifying 397, 398
audio
 with Emscripten 416, 419, 420, 422, 423
autonomous agents
 versus top-down AI 317
AvoidForce function 368, 371, 373, 376, 378,

379

B
browser
 asm.js, used as alternative for debugging 547
 code, compiling for debugging 547
 debugging 546
 debugging, Chrome used 548, 549, 550
 debugging, Firefox used 550, 553
 Firefox Developer Edition 553
button
 creating 463, 464, 465

C
C file
 creating 34, 35, 37, 39, 40, 41
camera attractors 384

[568]

Camera class 388
camera.cpp changes 410
camera.cpp file
 about 389
 changes 409
camera
 creating, for game 383
 used, for tracking player movement 384
canvas contexts 59
canvas
 adding, to Emscripten template 49, 52, 55
Cartesian coordinate system 164
Chrome
 used, for debugging 548, 549, 550
circle collision detect 163
circle collision detection
 implementing 169, 171, 176, 178
circle-line collision detection 353
code
 collider.cpp, modifying 440, 441
 compiling, for debugging 547
 compiling, with Emscripten 432
 game.hpp file, modifying 436, 437, 438
 main.cpp file, modifying 443, 446, 447, 449,

450

 modifying 385, 435
 modifying, to asteroid.cpp 451, 452
 modifying, to projectile.cpp 451, 452
 modifying, to ship.cpp file 453, 454
 modifying, to star.cpp 441, 442, 443
 physics.html, modifying 454
 running, with Emscripten 432
collider.cpp
 modifying 398, 399
collider.html
 compiling 198
collision detection
 about 162, 351, 352
 circle-line collision detection 353
 vector projection 353, 355, 357
 Vector2D class 358, 361, 363
collision
 spaceship, destroying 189
collisions
 improving 435

 spaceship, destroying 178, 180, 183, 186
color blending values 251
color values
 coercing, into integer values 256
compound circle colliders
 collider.html, compiling 198
 implementing 190, 192, 195, 197, 198
compound colliders 168, 169
CSS
 defining 42, 44, 45, 46, 47

D
dereference operator 190
diffuse light 520
Document Object Model (DOM) 15, 48

E
emergent behavior 317
emission time 253
Emitter class
 about 234, 235, 237
 modifying 277
Emitter constructor function 277, 279
Emitter Move function 282, 284, 287
Emitter update logic 280, 282
emitter.cpp file, changes in particle emitter
 about 298
 constructor function, changes 299, 301
 Move function, changes 302, 305
 Run function, adding 301
 update function, changes 301
emitter
 looping 252
Emscripten minimum HTML shell file
 reference 27
Emscripten template
 canvas, adding to 49, 52, 55
Emscripten
 about 19
 audio with 416, 419, 420, 422, 423
 code, compiling with 432
 code, running with 432
 installation resources 24
 installing, on Ubuntu 21, 22
 installing, on Windows 19, 20, 21

[569]

 minimal shell file 27, 28, 29, 30, 31, 33
 reference 19
 using 22, 23
evade steering behavior 322

F
finite_state_machine.cpp
 modifying 400
Firefox Developer Edition 553
Firefox
 used, for debugging 553
flee behavior 319
force fields
 adding 347, 350
frames per second (FPS) 96
FSM, states
 APPROACH 318
 ATTACK 318
 FLEE 318
 WANDER 318
FSM
 about 317
 ai.html file, compiling 380
 ai.html file, testing 380
 AvoidForce function 368, 371, 373, 376, 378,

379

 writing 363, 366, 368

G
Game AI 315, 316
game development 48
game.hpp file
 Camera class 388
 Locator class 387
 modifying 325, 328, 330, 332, 385
 RenderManager class 388
 Vector2D class 386
game.hpp
 modifying 336
game
 camera, creating 383
 obstacles, adding 336, 338, 341, 344, 347
 sound, adding to 423
games.hpp
 changes 408

 external variables 468
 modifying 466
 RenderManager class, modifying 467, 468
Garbage Collection (GC) 14
get_random_float function 287, 289
glow effect
 textures, mixing for 509
GLSL ES 1.0 495
GLSL ES 3.0 495
Graphical Processing Unit (GPU) 48
gravity
 adding 435

H
handleFiles function
 modifying 258, 260
horizontal strip sprite sheets 180
HTML shell file
 animation frames 254
 color blending values 251
 creating 34, 35, 37, 39, 40, 41
 emission time 253
 emitter, looping 252
 modifying 249
 particle burst 252
 particle rotation, aligning 253
 scaling values 250
HTML5 48

I
immediate mode
 versus retained mode 48
Intermediate Representation (IR) 11

J
Java Virtual Machine (JVM) 9
JavaScript keyboard input 104, 106, 108, 111
JavaScript UpdateClick function
 modifying 254, 256
JavaScript
 about 16
 adding, to code 217
 and WebGL 63
 changes 68
 color values, coercing into integer values 256

[570]

 handleFiles function, modifying 258, 260
 modifying 254
 variable coercions 257
just-in-time (JIT) compiler 9

K
keyboard input
 used, for moving sprite 118, 121, 123, 126

L
line collision detection 166, 167
LLVM 17
Locator class 387
locked-on camera
 about 383
 compiling with 407
 working with 407

M
macro
 debugging 542, 543, 545
main.cpp
 callback functions, adding 481
 collisions function 475, 478
 end_input function 473
 game loop 479, 480
 global variables, adding 469
 global variables, creating 394
 input functions 470, 471, 473
 main function, modifying 396, 397, 481, 483
 modifying 394, 468
 move function, modifying 394
 render function, modifying 395
 render functions 474
 transition state 478
maps 522
mouse input
 using, in SDL 461, 463

N
new_shell.html
 reference 38
Newton's third law 434
Nintendo Entertainment System (NES) 97

O
Object-Oriented Programming (OOP) 171
obstacle avoidance 323
OpenGL Shader Language (GLSL) 60
OpenGL, optimizing for WebAssembly
 calls, minimizing 562
 Emscripten linker flags 562
 WebGL 2.0, using 562
OpenGL
 optimizing, for WebAssembly 561
 using, with WebAssembly 494
operator overloading
 reference link 386

P
particle burst 252
Particle class
 about 231, 232
 animation attributes 264
 attributes 262
 color attributes 263
 constructor parameters 265
 modifying 261
 Particle constructor logic 266, 269, 270
 Particle Move function 272, 275
 Particle Render function 276
 Particle Spawn function 271
 Particle Update logic 270
 particle.cpp, changes 266
 rotation attributes, aligning 263
 scale attributes 264
 size attributes 264
 source rectangle attribute 265
 spawn function parameters 266
 update function parameters 265
particle emitter configuration tool
 about 291
 compiling 292, 294
 HTML shell module interaction 291
 running 292, 294
 WebAssembly module interaction 291
particle emitter
 compiling 245
 creating 294

[571]

 Emitter class 296, 298
 game.hpp file, changes 294
 main.cpp, changes 311
 Particle class definition, adding 294
 particle_system.html file, compiling 312
 projectile_pool.cpp, changes 310
 testing 245, 246
particle rotation
 aligning 253
particle.cpp
 modifying 403
 Render function, modifying 402
Picture Processing Unit (PPU) 494
player movement
 tracking, with camera 384
Point class 230
pointers
 about 189
 reference 190
post-MVP future, WebAssembly
 reference 9
priority 423
projected focus camera 383, 384
projectile.cpp
 modifying 404
pursuit behavior 321

R
raster graphics
 versus vector graphics 214
rectangle collision detection 164
render_manager.cpp file 390, 392, 394
RenderManager class 388
retained mode
 versus immediate mode 48

S
scaling values 250
scene graph 48
screen states 466
SDL Audio
 using 416
SDL keyboard input
 adding, to WebAssembly 112, 117
SDL_Event structure

 reference 115
SDL_KeyboardEvent
 reference 115
seek steering behavior 319
shaders
 about 494
 GLSL ES 1.0 495
 GLSL ES 3.0 495
shield.cpp
 modifying 404
ship.cpp file, changes in particle emitter
 about 305
 Ship class Acceleration function 309
 Ship class constructor function 305, 308
 Ship class Render function 309, 310
ship.cpp
 modifying 405
Simple DirectMedia Layer (SDL)
 about 58, 82
 cleaning up 89
 hello_sdl.html, compiling 89
 initializing 85
 renderer, clearing 86
 texture, rendering to HTML5 Canvas 88
 using, in WebAssembly 83
simple particle emitter tool 220, 221, 222, 223,

226, 228, 230
sound effects
 obtaining 416
sound, adding to game
 about 423
 audio.cpp file 430, 431
 game.hpp, updating 423, 424
 main.cpp, updating 425, 427, 429
source maps 546
spaceship
 destroying, on collision 178, 180, 183, 186, 189
Spades card game
 reference 316
specular light 521
sprite sheets 179
sprite.html
 compiling 101
sprite
 animating 93

[572]

 moving 98, 100
 moving, keyboard input used 118, 121, 123,

126

 rendering, to canvas 91
stack trace
 debugging 542, 543, 545
star.cpp
 modifying 406
state automaton 317
Steering Behaviors 315
steering behaviors
 about 318
 arrival behavior 321
 evade steering behavior 322
 flee behavior 319
 obstacle avoidance 323
 pursuit behavior 321
 seek steering behavior 319
 steering forces, combining 325
 wander behavior 324
SVG 213

T
textures, mixing for a glow effect
 code, running 518
textures, mixing for glow effect
 about 509
 code, compiling 518
 fragment shader changes 510
 game_loop() function, updating 517, 518
 global variable changes 511
 main function changes 512, 516
 OpenGL global variable changes 511
top-down AI
 versus autonomous agents 317
trigonometry 164, 165, 215, 216

U
Ubuntu
 Emscripten, installing on 21, 22
UI requisites
 about 458
 game over screen 460
 opening screen 459
 play screen 460

ui_button.cpp
 about 484, 485, 487
 KeyDown function 488
 MouseClick function 487
 MouseMove function 487
 MouseUp function 488
 RenderUI function 489
ui_sprite.cpp
 about 489
 constructor, defining 489
 RenderUI function 490
 ui.html, compiling 491, 492
update_emitter function 290
user interface (UI) 385, 457

V
variable coercions 257
vector graphics
 versus raster graphics 214
vector projection 353, 355, 357
vector.cpp
 modifying 407
Vector2D class 358, 361, 363, 386
virtual file system
 files, adding to 202, 205, 208, 209, 210, 212

W
wander behavior 324
Web Assembly Text (WAT) 10
WebAssembly interface functions
 about 238, 241
 C++ name mangling 242
 dead code elimination 242
 emitter, updating 242
 initialization 244, 245
 looping function 243
WebAssembly text 18
WebAssembly, flags
 optimizing, for performance 554
 optimizing, for size 555
 unsafe flags 555
WebAssembly
 about 9
 flags, optimizing 554
 need for 10

 OpenGL, optimizing for 561
 OpenGL, using 494
 optimizing 554
 profiling 555, 556, 558, 559, 560, 561
 SDL keyboard input, adding 112, 117
 Simple DirectMedia Layer (SDL), used 83
 try/catch blocks, performance issues in 561
 versus JavaScript 11, 12, 13, 14, 15
 virtual file system, used 87
WebGL app redux
 about 496
 code, compiling 508
 code, running 508
 game loop 507
 main function 500, 502, 503, 504, 507
 OpenGL global variables 498, 499
 SDL global variables 499, 500
 shader code 497
WebGL clip space

 reference 70
WebGL shaders 60, 62
WebGL
 2D canvas 67
 about 63
 buffer constants 70
 coordinate system, versus 2D canvas 64, 65
 global variables 68
 minor tweaks, to head tag 67
 ModuleLoaded function 72, 75, 76
 MoveShip function 78, 80
 return of vertex 69
 shaders, defining 71
 ShipPosition function 78
 texture data 69
 UV data 65
 vertex 65
Windows
 Emscripten, installing on 19, 20, 21

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction to WebAssembly and Emscripten
	What is WebAssembly?
	Why do we need WebAssembly?
	Why is WebAssembly faster than JavaScript?
	Will WebAssembly replace JavaScript?

	What is asm.js?
	A brief introduction to LLVM
	A brief introduction to WebAssembly text
	Emscripten
	Installing Emscripten on Windows
	Installing Emscripten on Ubuntu
	Using Emscripten

	Additional installation resources
	Summary

	Chapter 2: HTML5 and WebAssembly
	The Emscripten minimal shell file
	Creating a new HTML shell and C file
	Defining the CSS
	HTML5 and game development
	Immediate mode versus retained mode

	Adding a canvas to the Emscripten template
	Summary

	Chapter 3: Introduction to WebGL
	WebGL and canvas contexts
	An introduction to WebGL shaders
	WebGL and JavaScript
	WebGL coordinate system versus 2D canvas
	Vertex and UV data
	2D canvas to WebGL
	Minor tweaks to the head tag
	Major JavaScript changes
	WebGL global variables
	The return of vertex and texture data
	Buffer constants
	Defining the shaders
	The ModuleLoaded function
	The ShipPosition function
	The MoveShip function

	Summary

	Chapter 4: Sprite Animations in WebAssembly with SDL
	Using SDL in WebAssembly
	Initializing SDL
	Clearing the SDL renderer
	Using the WebAssembly virtual filesystem
	Rendering a texture to the HTML5 canvas
	Cleaning up SDL
	Compiling hello_sdl.html

	Render a sprite to the canvas
	Animating a sprite
	Moving the sprite
	Compiling sprite.html

	Summary

	Chapter 5: Keyboard Input
	JavaScript keyboard input
	Adding SDL keyboard input to WebAssembly
	Using keyboard input to move a sprite
	Summary

	Chapter 6: Game Objects and the Game Loop
	Understanding the game loop
	Writing a basic game loop
	Compiling gameloop.html

	Game objects
	The player's spaceship game object

	Object pooling
	Pooling the player's projectiles
	Creating an enemy
	Compiling game_objects.html

	Summary

	Chapter 7: Collision Detection
	Types of 2D collision detection
	Circle collision detection
	Rectangle collision detection
	A short refresher on trigonometry
	Line collision detection
	Compound colliders

	Implementing circle collision detection
	Destroying a spaceship on collision
	Pointers in memory
	Implementing compound circle colliders
	Compiling collider.html

	Summary

	Chapter 8: Basic Particle System
	Adding to the virtual file system
	A brief introduction to SVG
	Vector versus raster graphics

	Trigonometry again?
	Adding the JavaScript
	The simple particle emitter tool
	The Point class
	The Particle class
	The Emitter class
	WebAssembly interface functions
	C++ name mangling
	Dead code elimination
	Updating the emitter
	The looping function
	Initialization

	Compiling and testing the particle emitter
	Summary

	Chapter 9: Improved Particle Systems
	Modifying our HTML shell file
	Scaling values
	Color-blending values
	Particle burst
	Looping the emitter
	Aligning particle rotation
	Emission time
	Animation frames

	Modifying the JavaScript
	The JavaScript UpdateClick function
	Coercing color values
	Additional variable coercions
	Modifying the handleFiles function

	Modifying the Particle class
	New attributes
	Aligning rotation attributes
	Color attributes
	Animation attributes
	Size and scale attributes
	The source rectangle attribute
	Additional constructor parameters
	The Update function's parameters
	The Spawn function's parameters
	Changes to particle.cpp
	Particle constructor logic
	Particle Update logic
	Particle Spawn function
	Particle Move function
	Particle Render function

	Modifying the Emitter class
	The Emitter constructor function
	Emitter update logic
	Emitter Move function

	External functions
	Random floating-point numbers
	Adding an emitter
	Updating an emitter

	Configuring the particle emitter
	HTML shell and WebAssembly module interaction
	Compiling and running the new tool

	Creating a particle emitter
	Changes to game.hpp
	Adding the Particle class definition
	Emitter class definition
	Changes to emitter.cpp
	Changes to the constructor function
	Changes to the Update function
	Adding a Run function
	Changes to the Move function

	Changes to ship.cpp
	The Ship class' constructor function
	The Ship class' Acceleration function
	The Ship class' Render function

	Changes to projectile_pool.cpp
	Changes to main.cpp
	Taking it further

	Summary

	Chapter 10: AI and Steering Behaviors
	What is Game AI?
	Autonomous agents versus top-down AI
	What is an FSM?
	Introducing steering behaviors
	The seek behavior
	The flee behavior
	The arrival behavior
	The pursuit behavior
	The evade behavior
	Obstacle avoidance
	The wander behavior
	Combining forces

	Modifying game.hpp
	Adding obstacles to our game
	Adding force fields
	More collision detection
	Circle-line collision detection
	Vector projection
	The Vector2D class

	Writing an FSM
	The AvoidForce function
	Compiling the ai.html file

	Summary

	Chapter 11: Designing a 2D Camera
	Creating a camera for our game
	Camera for tracking player movement
	Projected focus and camera attractors
	Modifying our code
	Modifying the game.hpp file
	The Vector2D class definition
	The Locator class definition
	The Camera class definition
	The RenderManager class definition

	The camera.cpp file
	The render_manager.cpp file
	Modifying main.cpp
	New global variables
	Modifying the move function
	Modifying the render function
	Modifying the main function

	Modifying asteroid.cpp
	Modifying collider.cpp
	Modifying enemy_ship.cpp
	Modifying finite_state_machine.cpp
	Modifying particle.cpp
	Modifying player_ship.cpp
	Modifying projectile.cpp
	Modifying shield.cpp
	Modifying ship.cpp
	Modifying star.cpp
	Modifying vector.cpp
	Compiling and playing with a locked-on camera

	A more advanced camera
	Changes to games.hpp
	Changes to camera.cpp
	Compiling and playing with the advanced camera

	Summary

	Chapter 12: Sound FX
	Where to get sound effects
	Simple audio with Emscripten
	Adding sound to our game
	Updating game.hpp
	Updating main.cpp
	Updating ship.cpp
	The new audio.cpp file

	Compiling and running
	Summary

	Chapter 13: Game Physics
	Newton's third law
	Adding gravity
	Improving collisions
	Modifying the code
	Changing the game.hpp file
	Changing collider.cpp
	Changes to star.cpp
	Changing the main.cpp file
	Changes to asteroid.cpp and projectile.cpp
	Changes to the ship.cpp file
	Compiling the physics.html file

	Summary

	Chapter 14: UI and Mouse Input
	UI requirements
	Opening screen
	Play screen
	Game over screen

	Mouse input
	Creating a button
	Screen states
	Changes to games.hpp
	Modifying the RenderManager class
	New external variables

	Changes to main.cpp
	Adding global variables
	Input functions
	The end_input function
	The render functions
	The collisions function
	The transition state
	The game loop
	Play and play again callbacks
	Changes to the main function

	ui_button.cpp
	The MouseMove function
	The MouseClick function
	The MouseUp function
	The KeyDown function
	The RenderUI function

	ui_sprite.cpp
	Defining the constructor
	The RenderUI function
	Compile ui.html

	Summary

	Chapter 15: Shaders and 2D Lighting
	Using OpenGL with WebAssembly
	More about shaders
	GLSL ES 1.0 and 3.0

	WebGL app redux
	Shader code
	OpenGL global variables
	SDL global variables
	The main function
	The game loop
	Compiling and running our code

	Mixing textures for a glow effect
	Fragment shader changes
	OpenGL global variable changes
	Other global variable changes
	Changes to main()
	Updating game_loop()
	Compiling and running our code

	3D lighting
	Ambient light
	Diffuse light
	Specular light

	Normal maps
	Creating a 2D lighting demo app
	Fragment shader updates
	OpenGL global variables
	SDL global variables
	Function prototypes
	The main function
	The game_loop function
	The input function
	The draw_light_icon function
	Compiling and running our lighting app

	Summary

	Chapter 16: Debugging and Optimization
	Debug macro and stack trace
	Source maps
	Browser debugging
	Compiling your code for debugging
	Using asm.js as an alternative for debugging
	Debugging using Chrome
	Debugging using Firefox
	Firefox Developer Edition

	Optimizing for WebAssembly
	Optimization flags
	Optimizing for performance
	Optimizing for size
	Unsafe flags

	Profiling
	Problems with try/catch blocks

	Optimizing OpenGL for WebAssembly
	Using WebGL 2.0 if possible
	Minimizing the number of OpenGL calls
	Emscripten OpenGL flags

	Summary
	This is the end

	Other Books You May Enjoy
	Index

