Hands-On
Game Development

with WebAssembly

Rick Battagline

Hands-On Game Development
with WebAssembly

Learn WebAssembly C++ programming by building a retro
space game

Rick Battagline

BIRMINGHAM - MUMBAI

Hands-On Game Development with
WebAssembly

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Acquisition Editor: Ashitosh Gupta

Content Development Editor: Smit Carvalho
Technical Editor: Ralph Rosario, Jane D'souza
Copy Editor: Safis Editing

Project Coordinator: Kinjal Bari

Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Graphics: Alishon Mendonsa

Production Coordinator: Jayalaxmi Raja

First published: May 2019
Production reference: 1300519

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-83864-465-9

www.packtpub.com

http://www.packtpub.com

To Kate, Luke, Lilly, and Cora —you are my world.

— Rick Battagline

A Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt .com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author

Rick Battagline is a game developer who has been working with web- and browser-based
technologies since 1997. He wrote his first computer game in 1996 and, in 2006, he founded
BattleLine Games LLC., an independent game studio where he works to this day. That
same year, his game, Epoch Star, was nominated for an award at the Slamdance Guerrilla
Games Competition, and was listed in Game Informer Magazine issue 156 as one of "The
top ten games you've never heard of."

Since then, Rick has written hundreds of games for platforms including the web, Windows
PC, iOS, Android, Wii U, and Nintendo Entertainment System emulators. He has
developed games in web technologies including WebAssembly, HTML5, WebGL,
JavaScript, TypeScript, Flash, and PHP.

I want to thank Prasad Annadata and Steve Tack for their tremendous contributions to
this book. Without your help, I would have never finished this. Special thanks to my
editors, Ashitosh Gupta, Ralph Rosario, and Smit Carvalho, for all of their hard work. I
would also like to thank my father, Richard, and my brother, John, who are there for me
when I need them.

Finally, I want to thank my wife, Kate, and my children, Luke, Lilly, and Cora. You mean
everything to me.

About the reviewers

Prasad Annadata is a senior technologist with experience ranging from mainframes to
cloud computing. His foray into game development started when he adopted classic
minesweeper game to Unix. Recruited right out of college into a major consulting firm his
career spawned consulting and major financial institutions. Prasad Annadata has been an
author of several peer-reviewed papers on privacy and security, a professional technology
reviewer for a chapter on Cyber Law in the book Chitty on Contracts: Hong Kong and a
sole inventor of a B2B technology patent.

He has a bachelors and masters degrees in Computer Science and currently serves as an
SVP in a major financial institution and his interests include cloud computing and cloud
security.

[wish to thank the author, Rick Battagline, for thinking of me when it came to providing a
technical review of this book. Also, I thank Packt Publishing for the opportunity.

Steve Tack is a software developer with 28 years of experience. Since the 1980s, he's
enjoyed making computers do fun things, from programming simple games in BASIC on a
Sinclair ZX8]1 to creating real-time 3D graphics on modern hardware.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface 1
Chapter 1: Introduction to WebAssembly and Emscripten 8
What is WebAssembly? 9
Why do we need WebAssembly? 10

Why is WebAssembly faster than JavaScript? 11

Will WebAssembly replace JavaScript? 15

What is asm.js? 16

A brief introduction to LLVM 17

A brief introduction to WebAssembly text 18
Emscripten 19
Installing Emscripten on Windows 19
Installing Emscripten on Ubuntu 21

Using Emscripten 22
Additional installation resources 24
Summary 24
Chapter 2: HTML5 and WebAssembly 26
The Emscripten minimal shell file 27
Creating a new HTML shell and C file 34
Defining the CSS 42
HTML5 and game development 48
Immediate mode versus retained mode 48
Adding a canvas to the Emscripten template 49
Summary 57
Chapter 3: Introduction to WebGL 58
WebGL and canvas contexts 59
An introduction to WebGL shaders 60
WebGL and JavaScript 63
WebGL coordinate system versus 2D canvas 64
Vertex and UV data 65

2D canvas to WebGL 67

Minor tweaks to the head tag 67

Major JavaScript changes 68
WebGL global variables 68

The return of vertex and texture data 69

Buffer constants 70
Defining the shaders 71

The ModuleLoaded function 72

Table of Contents

The ShipPosition function
The MoveShip function
Summary

Chapter 4: Sprite Animations in WebAssembly with SDL
Using SDL in WebAssembly
Initializing SDL
Clearing the SDL renderer
Using the WebAssembly virtual filesystem
Rendering a texture to the HTMLS canvas
Cleaning up SDL
Compiling hello_sdl.html
Render a sprite to the canvas
Animating a sprite
Moving the sprite
Compiling sprite.html
Summary

Chapter 5: Keyboard Input
JavaScript keyboard input
Adding SDL keyboard input to WebAssembly
Using keyboard input to move a sprite
Summary

Chapter 6: Game Objects and the Game Loop
Understanding the game loop
Writing a basic game loop
Compiling gameloop.html
Game objects
The player's spaceship game object
Object pooling
Pooling the player's projectiles
Creating an enemy
Compiling game_objects.html
Summary

Chapter 7: Collision Detection
Types of 2D collision detection
Circle collision detection
Rectangle collision detection
A short refresher on trigpnometry
Line collision detection
Compound colliders
Implementing circle collision detection
Destroying a spaceship on collision
Pointers in memory

78
78
81

82
83
85
86
87
88
89
89
91
93
98
101
102

103
104
112
118
126

127
128
129
140
141
142
145
148
153
159
161

162
162
163
164
164
166
168
169
178
189

[ii]

Table of Contents

Implementing compound circle colliders
Compiling collider.html
Summary

Chapter 8: Basic Particle System
Adding to the virtual file system
A brief introduction to SVG

Vector versus raster graphics
Trigonometry again?
Adding the JavaScript
The simple particle emitter tool
The Point class
The Particle class
The Emitter class
WebAssembly interface functions
C++ name mangling
Dead code elimination
Updating the emitter
The looping function
Initialization
Compiling and testing the particle emitter
Summary

Chapter 9: Improved Particle Systems
Modifying our HTML shell file
Scaling values
Color-blending values
Particle burst
Looping the emitter
Aligning particle rotation
Emission time
Animation frames
Modifying the JavaScript
The JavaScript UpdateClick function
Coercing color values
Additional variable coercions
Modifying the handleFiles function
Modifying the Particle class
New attributes
Aligning rotation attributes
Color attributes
Animation attributes
Size and scale attributes
The source rectangle attribute
Additional constructor parameters

190
198
199

201
202
213
214
215
217
220
230
231
234
238
242
242
242
243
244
245
247

248
249
250
251
252
252
253
253
254
254
254
256
257
258
261
262
263
263
264
264
265
265

[iii]

Table of Contents

The Update function's parameters
The Spawn function's parameters
Changes to particle.cpp
Particle constructor logic
Particle Update logic
Particle Spawn function
Particle Move function
Particle Render function
Modifying the Emitter class
The Emitter constructor function
Emitter update logic
Emitter Move function
External functions
Random floating-point numbers
Adding an emitter
Updating an emitter
Configuring the particle emitter
HTML shell and WebAssembly module interaction
Compiling and running the new tool
Creating a particle emitter
Changes to game.hpp
Adding the Particle class definition
Emitter class definition
Changes to emitter.cpp
Changes to the constructor function
Changes to the Update function
Adding a Run function
Changes to the Move function
Changes to ship.cpp
The Ship class' constructor function
The Ship class' Acceleration function
The Ship class' Render function
Changes to projectile_pool.cpp
Changes to main.cpp
Taking it further
Summary

Chapter 10: Al and Steering Behaviors
What is Game Al?
Autonomous agents versus top-down Al
What is an FSM?
Introducing steering behaviors
The seek behavior
The flee behavior
The arrival behavior
The pursuit behavior

265
266
266
266
270
271
272
276
277
277
280
282
287
287
289
290
291
291
292
294
294
294
296
208
299
301
301
302
305
305
309
309
310
311
312
313

314
315
317
317
318
319
319
321
321

[iv]

Table of Contents

The evade behavior

Obstacle avoidance

The wander behavior

Combining forces
Modifying game.hpp
Adding obstacles to our game
Adding force fields
More collision detection

Circle-line collision detection

Vector projection

The Vector2D class
Writing an FSM

The AvoidForce function

Compiling the ai.html file
Summary

Chapter 11: Designing a 2D Camera
Creating a camera for our game
Camera for tracking player movement
Projected focus and camera attractors
Modifying our code

Modifying the game.hpp file
The Vector2D class definition
The Locator class definition
The Camera class definition
The RenderManager class definition

The camera.cpp file

The render_manager.cpp file

Modifying main.cpp
New global variables
Modifying the move function
Modifying the render function
Modifying the main function

Modifying asteroid.cpp

Modifying collider.cpp

Modifying enemy_ship.cpp

Modifying finite_state _machine.cpp

Modifying particle.cpp

Modifying player_ship.cpp

Modifying projectile.cpp

Modifying shield.cpp

Modifying ship.cpp

Modifying star.cpp

Modifying vector.cpp

Compiling and playing with a locked-on camera

A more advanced camera

322
323
324
325
325
336
347
351
353
353
358
363
368
380
381

382
383
384
384
385
385
386
387
388
388
389
390
394
394
394
395
396
397
398
399
400
402
403
404
404
405
406
407
407
408

[v]

Table of Contents

Changes to games.hpp
Changes to camera.cpp

Compiling and playing with the advanced camera

Summary

Chapter 12: Sound FX

Where to get sound effects
Simple audio with Emscripten
Adding sound to our game

Updating game.hpp

Updating main.cpp

Updating ship.cpp

The new audio.cpp file
Compiling and running
Summary

Chapter 13: Game Physics

Newton's third law

Adding gravity

Improving collisions

Modifying the code
Changing the game.hpp file
Changing collider.cpp
Changes to star.cpp
Changing the main.cpp file
Changes to asteroid.cpp and projectile.cpp
Changes to the ship.cpp file
Compiling the physics.html file

Summary

Chapter 14: Ul and Mouse Input
Ul requirements
Opening screen
Play screen
Game over screen
Mouse input
Creating a button
Screen states
Changes to games.hpp
Modifying the RenderManager class
New external variables
Changes to main.cpp
Adding global variables
Input functions
The end_input function
The render functions

408
409
412
414

415
416
416
423
423
425
430
430
432
432

433
434
435
435
435
436
440
441
443
451
453
454
456

457
458
459
460
460
461
463
466
466
467
468
468
469
470
473
474

[vil

Table of Contents

The collisions function

The transition state

The game loop

Play and play again callbacks

Changes to the main function
ui_button.cpp

The MouseMove function

The MouseClick function

The MouseUp function

The KeyDown function

The RenderUl function
ui_sprite.cpp

Defining the constructor

The RenderUl function

Compile ui.html
Summary

Chapter 15: Shaders and 2D Lighting
Using OpenGL with WebAssembly
More about shaders

GLSLES 1.0 and 3.0
WebGL app redux
Shader code
OpenGL global variables
SDL global variables
The main function
The game loop
Compiling and running our code
Mixing textures for a glow effect
Fragment shader changes
OpenGL global variable changes
Other global variable changes
Changes to main()
Updating game_loop()
Compiling and running our code
3D lighting
Ambient light
Diffuse light
Specular light
Normal maps
Creating a 2D lighting demo app
Fragment shader updates
OpenGL global variables
SDL global variables
Function prototypes

474
478
479
481
481
484
487
487
488
488
489
489
489
490
491
492

493
494
494
495
496
497
498
499
500
507
508
509
510
511
511
512
517
518
519
520
520
521
522
522
523
526
527
527

[vii]

Table of Contents

The main function 528

The game_loop function 534

The input function 536

The draw_light_icon function 538
Compiling and running our lighting app 538
Summary 540
Chapter 16: Debugging and Optimization 541
Debug macro and stack trace 542
Source maps 546
Browser debugging 546
Compiling your code for debugging 547

Using asm.js as an alternative for debugging 547
Debugging using Chrome 548
Debugging using Firefox 550
Firefox Developer Edition 553
Optimizing for WebAssembly 554
Optimization flags 554
Optimizing for performance 554

Optimizing for size 555

Unsafe flags 555

Profiling 555
Problems with try/catch blocks 561
Optimizing OpenGL for WebAssembly 561
Using WebGL 2.0 if possible 562
Minimizing the number of OpenGL calls 562
Emscripten OpenGL flags 562
Summary 563
This is the end 563
Other Books You May Enjoy 564
Index 567

[viii]

Preface

WebAssembly is a technology that will change the web as we know it within the next few
years. WebAssembly promises a world where web-based applications run at near-native
speeds. It is a world where you can write an application for the web in any language you
like, and compile it for native platforms as well as the web. It is early days for
WebAssembly, but this technology is already taking off like a rocket. If you are interested in
where the web is going, as much as where it is today, read on!

I wrote this book to reflect the way I like to learn new skills. I will walk you through the
development of a game using WebAssembly and all of its related technologies. I am a long-
time game and web developer, and I have always enjoyed learning new programming
languages by writing games. In this book, we will be covering a lot of ground on a lot of
topics using both web and game development tools that go hand in hand with
WebAssembly. We will learn how to write games that target WebAssembly utilizing a
plethora of programming languages and tools, including Emscripten, C/C++, WebGL,
OpenGL, JavaScript, HTMLS5, and CSS. As a long-time owner of an independent game
development studio that specializes in the development of web-based games, I have found
that it is essential to have a broad understanding of web- and game-based technologies and
I'have stuffed this book full of them. You will be learning a sample platter of skills with a
focus on getting your apps up and running with WebAssembly. If you want to learn how to
develop games with WebAssembly, or if you would like to create web-based applications
that are lightning fast, this book is for you.

Who this book is for

This book is not an introduction to programming. It is intended for people who know how
to code in at least one programming language. It would be helpful, but is not strictly
necessary, to have at least a rudimentary understanding of some web-based technologies,
such as HTML. This book contains instructions on how to install the required tools on
Windows or Ubuntu Linux, and, out of the two, I would recommend using Ubuntu, as its
installation process is much simpler.

Preface

What this book covers

Chapter 1, Introduction to WebAssembly and Emscripten, introduces WebAssembly, why the
web needs it, and why it is so much faster than JavaScript. We will introduce Emscripten,
why we need it for WebAssembly development, and how to install it. We will also discuss
technologies related to WebAssembly, such as asm.js, LLVM, and WebAssembly Text.

Chapter 2, HTML5 and WebAssembly, discusses how WebAssembly modules integrate with
HTML using the JavaScript "glue code". We will learn how to create our own Emscripten
HTML shell file, and we will learn how to make calls to and from our WebAssembly
module, which we will write in C. Finally, we will learn how to compile and run an HTML
page that interacts with our WebAssembly module, and we will learn how to build a
simple HTML5 Canvas app with Emscripten.

Chapter 3, Introduction to WebGL, introduces WebGL and the new canvas contexts that
support it. We will learn about shaders, what they are, and how WebGL uses them to
render geometry to the canvas. We will learn how to use WebGL and JavaScript to draw a
sprite to the canvas. And finally, we will write an app that integrates WebAssembly,
JavaScript, and WebGL that displays a sprite and moves it across the canvas.

Chapter 4, Sprite Animations in WebAssembly with SDL, teaches you about the SDL library
and how we use it to simplify calls to WebGL from WebAssembly. We will learn how to
use SDL to render, animate, and move sprites on the HTML5 canvas.

Chapter 5, Keyboard Input, looks at how to take input from the keyboard from JavaScript
and make calls to the WebAssembly module. We will also learn how to accept keyboard
input using SDL inside our WebAssembly module, and use the input to move a sprite
around the HTMLS5 canvas.

Chapter 6, Game Objects and the Game Loop, explores some basic game design. We will learn
about the game loop, and how a game loop in WebAssembly is different than in other
games. We will also learn about game objects and how to create an object pool from within
our game. We will end the chapter by coding the beginning of our game, with two
spaceships that move about the canvas and shoot projectiles at each other.

chapter 7, Collision Detection, introduces collision detection into our game. We will explore
the types of 2D collision detection, implement a basic collision detection system, and learn a
little about the trigonometry that makes it work. We will modify our game so that
projectiles destroy the spaceships when they collide.

[2]

Preface

Chapter 8, Basic Particle System, introduces particle systems and discusses how they can
visually improve our game. We will talk about the virtual filesystem, and we learn how to
add files to it through a web page. We will briefly introduce SVG and Vector graphics, and
how to use them for data visualization. We will further discuss trigonometry and how we
will be using it in our particle systems. We will build a new HTML5 WebAssembly app that
will help us to configure and test particle systems that we will later add to our game.

Chapter 9, Improved Particle Systems, goes into improving our particle system configuration
tool by adding particle scaling, rotation, animation, and color transitions. We will modify
the tool to allow the particle systems to loop, and add a burst effect. We will then update
our game to support particle systems and add in particle system effects for our engine
exhaust and explosions.

Chapter 10, Al and Steering Behaviors, introduces the concept of Al and game Al and
discusses the difference between them. We will discuss the Al concepts of finite state
machines, autonomous agents, and steering behaviors, and we will implement these
behaviors in an enemy Al that will avoid obstacles and combat the player.

Chapter 11, Designing a 2D Camera, brings in the concept of 2D camera design. We

will begin by adding a render manager to our game and creating a camera that locks on to
the player's spaceship, following it around an expanded gameplay area. We will then add
the advanced 2D camera features of projected focus and camera attractors.

Chapter 12, Sound FX, covers the use of SDL Audio in our game. We will discuss where we
can get our sound effects online, and how to include those sounds in our WebAssembly
module. We will then add sound effects to our game.

Chapter 13, Game Physics, introduces the concept of physics in computer games. We will be
adding elastic collisions between our game objects. We will add Newton's third law to the
physics of our game in the form of recoil when the spaceships launch projectiles. We will
add a gravitational field to our star that will attract the spaceships.

Chapter 14, Ul and Mouse Input, discusses adding a user interface to be managed and
rendered within our WebAssembly module. We will gather requirements and translate
them into new screens for our game. We will add a new button object and learn how we
can manage mouse input from within our WebAssembly module using SDL.

Chapter 15, Shaders and 2D lighting, dives into how to create a new app that mixes OpenGL
and SDL. We will create a new shader that loads and renders multiple textures to a quad.
We will learn about normal maps, and how we can use normal maps to approximate the
Phong lighting model in 2D, using OpenGL in our WebAssembly module.

[3]

Preface

Chapter 16, Debugging and Optimization, introduces the basic methods for debugging and
optimizing WebAssembly modules. We will start with debug macros and stack traces from
WebAssembly. We will introduce the concepts of source maps and how web browsers use
them to debug WebAssembly modules. We will learn about optimizing WebAssembly code
using optimization flags. We will discuss using a profiler to optimize our WebAssembly
code.

To get the most out of this book

You must understand the basics of computer programming.

It is helpful to have a basic understanding of web technologies such as HTML and CSS.

Download the example code files

You can download the code bundle for this book from
here: https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssem
bly.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https://www.packtpub.com/sites/default/files/
downloads/9781838644659_ColorImages.pdf.

Conventions used

You can download the example code files for this book from your account at
www .packt . com. If you purchased this book elsewhere, you can visit
www.packt . com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packt . com.
2. Select the SUPPORT tab.

[4]

https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781838644659_ColorImages.pdf
http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

3. Click on Code Downloads & Errata.

4. Enter the name of the book in the Search box and follow the onscreen
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub

at https://github.com/PacktPublishing/Hands-On—-Game-Development-with-WebAssembl
y- In case there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "We are going to copy the basic_particle_shell.html file to a new shell file
that we will call advanced_particle_shell.html."

A block of code is set as follows:

<label class="ccontainer">loop:
<input type="checkbox" id="loop" checked="checked">

</label>

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<label class="ccontainer">loop:
<input type="checkbox" id="loop" checked="checked">

</label>

[5]

https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

Any command-line input or output is written as follows:

emrun —-list_browsers

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt .com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

[6]

http://www.packt.com/submit-errata
http://authors.packtpub.com/

Preface

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[7]

http://www.packt.com/

Introduction to WebAssembly
and Emscripten

Welcome to the exciting new world of WebAssembly! These are early days for
WebAssembly, but the technology is currently taking off like a rocket, and by reading this
book, you are in a position to get in on the ground floor. If you are interested in game
development on the web, or you are interested in learning as much about this new
technology as you can to position yourself for when it does reach maturity, you are in the
right place. Even though WebAssembly is in its infancy, all major browser vendors have
adopted it. These are early days and use cases are limited, but lucky for us, game
development is one of them. So, if you want to be early to the party for the next generation
of application development on the web, read on, adventurer!

In this chapter, I will introduce you to WebAssembly, Emscripten, and some of the
underlying technologies around WebAssembly. I will teach you the basics of the
Emscripten toolchain, and how you can use Emscripten to compile C++ code into
WebAssembly. We will discuss what LLVM is and how it fits into the Emscripten toolchain.
We will talk about WebAssembly's Minimum Viable Product (MVP), the best use cases for
WebAssembly in its current MVP form, and what will soon be coming to WebAssembly. I
will introduce WebAssembly text (.wat), how we can use it to understand the design of
WebAssembly bytecode, and how it differs from other machine bytecodes. We will also
briefly discuss asm.js, and its historical significance in the design of WebAssembly. Finally,
I will show you how to install and run Emscripten on Windows and Linux.

Introduction to WebAssembly and Emscripten Chapter 1

In this chapter, we will cover the following topics:

e What is WebAssembly?

e Why do we need WebAssembly?

e Why is WebAssembly faster than JavaScript?
e Will WebAssembly replace JavaScript?

e What is asm.js?

¢ A brief introduction to LLVM

e A brief introduction to WebAssembly text

e What is Emscripten and how do we use it?

What is WebAssembly?

WebAssembly is not a high-level programming language like JavaScript, but a compiled
binary format that all major browsers are currently able to execute. WebAssembly is a kind
of machine bytecode that was not designed to run directly on any real machine hardware,
but runs in the JavaScript engine built into every browser. In some ways, it is similar to the
old Java Virtual Machine (JVM); for example, it is a platform-independent compiled
bytecode. One major problem with JavaScript bytecode is its requirement for a plugin to be
downloaded and installed in the browser for the bytecode to run. Not only is
WebAssembly designed to be run directly in a browser without a plugin, but it is also
intended to produce a compact binary format that executes efficiently inside a web
browser. The MVP version of the specification leverages existing work by the browser
makers designing their JavaScript just-in-time (JIT) compiler. WebAssembly is currently a
young technology and many improvements are planned. However, developers using the
current version of WebAssembly have already seen performance improvements over
JavaScript of 10-800%.

An MVP is the smallest set of features that can be given to a product to

allow it to appeal to early adopters. Because the current version is an
MVP, the feature set is small. For more information, see this excellent

article discussing the "post-MVP future" of WebAssembly: https://
hacks.mozilla.org/2018/10/webassemblys—-post-mvp-future/.

[9]

https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/
https://hacks.mozilla.org/2018/10/webassemblys-post-mvp-future/

Introduction to WebAssembly and Emscripten Chapter 1

Why do we need WebAssembly?

JavaScript has been around for a long time. It has evolved from a little scripting language
that allowed bells and whistles to be added to a web page, to a sprawling JIT compiled
language with a massive ecosystem that can be used to write fully fledged applications.
Today, JavaScript is doing a lot of things that were probably never imagined when it was
created by Netscape in 1995. JavaScript is an interpreted language, meaning that it must be
parsed, compiled, and optimized on the fly. JavaScript is also a dynamically typed
language, which creates headaches for an optimizer.

Franziska Hinkelmann, a member of the Chrome V8 team, gave a great
talk at the Web Rebels 2017 conference where she discusses all the
performance improvements made to JavaScript over the past 20 years, as
well as the difficulties they had in squeezing every bit of performance
imaginable out of the JavaScript V8 engine: https://youtu.be/
ihANrJ1PoOw.

WebAssembly solves a lot of the problems created by JavaScript and its long history in the
browser. Because the JavaScript engine is already in bytecode format, it does not need to
run a parser, which removes a significant bottleneck in the execution of our application.
This design also allows the JavaScript engine to know what data types it is dealing with at
all times. The bytecode makes optimization a lot easier. The format allows multiple threads
in the browsers to work on compiling and optimizing different parts of the code at the same
time.

For a detailed explanation of what is happening when the Chrome V8
engine is parsing code, please refer to this video from the JSConf EU 2017,
0 in which Marja Holttd (who works on the Chrome V8 tool) goes into more
detail than you ever imagined you wanted to learn about parsing
JavaScript: https://www.youtube.com/watch?v=Fg7niTmNNLgt=123s.

WebAssembly is not a high-level programming language, but a binary file with opcodes for
a virtual machine. Currently, it is considered to be in an MVP stage of development. The
technology is still in its infancy, but even now it offers notable performance and file size
benefits for many use cases, such as game development. Because of the current limitations
of WebAssembly, we have only two choices for languages to use for its
development—C/C++ or Rust. The long-term plan for WebAssembly is to support a wide
selection of programming languages for its development. If I wanted to write at the lowest
level of abstraction, I could write everything in Web Assembly Text (WAT), but WAT was
developed as a language to support debugging and testing and was not intended to be used
by developers for writing applications.

[10]

https://youtu.be/ihANrJ1Po0w
https://youtu.be/ihANrJ1Po0w
https://youtu.be/ihANrJ1Po0w
https://youtu.be/ihANrJ1Po0w
https://youtu.be/ihANrJ1Po0w
https://youtu.be/ihANrJ1Po0w
https://youtu.be/ihANrJ1Po0w
https://youtu.be/ihANrJ1Po0w
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s
https://www.youtube.com/watch?v=Fg7niTmNNLg&t=123s

Introduction to WebAssembly and Emscripten Chapter 1

Why is WebAssembly faster than JavaScript?

As I have mentioned, WebAssembly is 10-800% faster than JavaScript, depending on the
application. To understand why, I need to talk a little about what a JavaScript engine does
when it runs JavaScript code versus what it has to do when it runs WebAssembly. I am
going to talk specifically about V8 (the Chrome JavaScript engine), although, to my
knowledge, the same general process exists within SpiderMonkey (Firefox) and the Chakra
(IE & Edge) JavaScript engines.

The first thing the JavaScript engine does is parse your source code into an Abstract Syntax
Tree (AST). The source is broken into branches and leaves based on the logic within your
application. At this point, an interpreter starts processing the language that you are
currently executing. For many years, JavaScript was just an interpreted language, so, if you
ran the same code in your JavaScript 100 times, the JavaScript engine had to take that code
and convert it to machine code 100 times. As you can imagine, this is wildly inefficient.

The Chrome browser introduced the first JavaScript JIT compiler in 2008. A JIT compiler
contrasts with an Ahead-of-Time (AOT) compiler in that it compiles your code as it is
running that code. A profiler sits and watches the JavaScript execution looking for code that
repeatedly executes. Whenever it sees code executed a few times, it marks that code as
"warm'" for JIT compilation. The compiler then compiles a bytecode representation of that
JavaScript "stub" code. This bytecode is typically an Intermediate Representation (IR), one
step removed from the machine-specific assembly language. Decoding the stub will be
significantly faster than running the same lines of code through our interpreter the next
time.

Here are the steps needed to run JavaScript code:

Source Code

Parser

AST
P]) A

JIT

‘ Interpreter ‘

Bytecode

Optimizer

i

Optimized
Machine Code

Figure 1.1: Steps required by a modern JavaScript engine

[11]

Introduction to WebAssembly and Emscripten Chapter 1

While all of this is going on, there is an optimizing compiler that is watching the profiler
for "hot" code branches. The optimizing compiler then takes these code branches and
optimizes the bytecode that was created by the JIT into highly optimized machine code. At
this point, the JavaScript engine has created some super fast running code, but there is a
catch (or maybe a few).

The JavaScript engine must make some assumptions about the data types to have an
optimized machine code. The problem is, JavaScript is a dynamically typed language.
Dynamic typing makes it easier for a programmer to learn how to program JavaScript, but
it is a terrible choice for code optimizers. The example I often see is what happens when
JavaScript sees the expression ¢ = a + b (although we could use this example for almost
any expression).

Just about any machine code that performs this operation does it in three steps:

1. Load the a value into a register.

2. Add the b value into a register.
3. Then store the register into c.

The following pseudo code was taken from section 12.8.3 of the ECMAScript® 2018
Language Specification and describes the code that must run whenever the addition operator
(+) is used within JavaScript:

. Let lref be the result of evaluating AdditiveExpression.

. Let 1lval be ? GetValue (lref).

. Let rref be the result of evaluating MultiplicativeExpression.
. Let rval be ? GetValue (rref).

. Let lprim be ? ToPrimitive(lval).

. Let rprim be ? ToPrimitive (rval).

If Type(lprim) is String or Type(rprim) is String, then

a. Let 1lstr be ? ToString(lprim).

b. Let rstr be ? ToString(rprim).

c. Return the string-concatenation of lstr and rstr.

8. Let lnum be ? ToNumber (lprim).

9. Let rnum be ? ToNumber (rprim) .

10.Return the result of applying the addition operation to lnum and
rnum.

~ o U W N

You can find the ECMAScript® 2018 Language Specification on the web
at https://www.ecma-international.org/ecma—-262/9.0/index.html.

[12]

https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html
https://www.ecma-international.org/ecma-262/9.0/index.html

Introduction to WebAssembly and Emscripten Chapter 1

This pseudo code is not the entirety of what we must evaluate. Several of these steps are
calling high-level functions, not running machine code commands. GetValue for example,
has 11 steps of its own that are, in turn, calling other steps. All of this could end up
resulting in hundreds of machine opcodes. The vast majority of what is happening here is
type checking. In JavaScript, when you execute a + b, each one of those variables could be
any one of the following types:

e Integer

Float

String

Object

e Any combination of these

To make matters worse, objects in JavaScript are also highly dynamic. For example, maybe
you have defined a function called Point and created two objects with that function using
the new operator:

function Point(x, y) {
this.x = x;
this.y = y;

}

var pl = new Point (1, 100);
var p2 = new Point(10, 20);

Now we have two points that share the same class. Say we added this line:

p2.z = 50;

This would mean that these two points would then no longer share the same class.
Effectively, p2 has become a brand new class, and this has consequences for where that
object exists in memory and available optimizations. JavaScript was designed to be a highly
flexible language, but this fact creates a lot of corner cases, and corner cases make
optimization difficult.

Another problem with optimization created by the dynamic nature of JavaScript is that no
optimization is definitive. All optimizations around typing have to use resources
continually checking to see whether their typing assumptions are still valid. Also, the
optimizer has to keep the non-optimized code just in case those assumptions turn out to be
false. The optimizer may determine that assumptions made initially turn out not to have
been correct assumptions. That results in a "bailout" where the optimizer will throw away
its optimized code and deoptimize, causing performance inconsistencies.

[13]

Introduction to WebAssembly and Emscripten Chapter 1

Finally, JavaScript is a language with Garbage Collection (GC), which allows the authors
of the JavaScript code to take on less of the burden of memory management while writing
their code. Although this is a convenience for the developer, it just pushes the work of
memory management on to the machine at run time. GC has become much more efficient
in JavaScript over the years, but it is still work that the JavaScript engine must do when
running JavaScript that it does not need to do when running WebAssembly.

Executing a WebAssembly module removes many of the steps required to run JavaScript
code. WebAssembly eliminates parsing because the AOT compiler completes that function.
An interpreter is unnecessary. Our JIT compiler is doing a near one-to-one translation from
bytecode to machine code, which is extremely fast. JavaScript requires the majority of its
optimizations because of dynamic typing that does not exist in WebAssembly. Hardware
agnostic optimizations can be done in the AOT compiler before the WebAssembly
compiles. The JIT optimizer need only perform hardware-specific optimizations that the
WebAssembly AOT compiler cannot.

Here are the steps performed by the JavaScript engine to run a WebAssembly binary:

WASM

v

Decoder

v

Machine Code

Figure 1.2: The steps required to execute WebAssembly

The last thing that I would like to mention is not a feature of the current MVP, but a
potential future enabled by WebAssembly. All the code that makes modern JavaScript fast
takes up memory. Keeping old copies of the nonoptimized code for bailout takes up
memory. Parsers, interpreters, and garbage collectors all take up memory. On my desktop,
Chrome frequently takes up about 1 GB of memory. By running a few tests on my website
using https://www.classicsolitaire.com, I can see that with the JavaScript engine turned
on, the Chrome browser takes up about 654 MB of memory.

Here is a Task Manager screenshot:

(o Google Chrome (14) 6.3% 654.4 MB 0.5 MB/s 0.1 Mbps

Figure 1.3: Chrome Task Manager process screenshot with JavaScript

[14]

https://www.classicsolitaire.com
https://www.classicsolitaire.com
https://www.classicsolitaire.com
https://www.classicsolitaire.com
https://www.classicsolitaire.com
https://www.classicsolitaire.com
https://www.classicsolitaire.com
https://www.classicsolitaire.com
https://www.classicsolitaire.com

Introduction to WebAssembly and Emscripten Chapter 1

With JavaScript turned off, the Chrome browser takes up about 295MB.

Here is a Task Manager screenshot:

¢ Google Chrome (9) 0.5% 295.0 MB 0.1 MB/s 0 Mbps

Figure 1.4: Chrome Task Manager process screenshot without JavaScript

Because this is one of my websites, I know there are only a few hundred kilobytes of
JavaScript code on that website. It's a little shocking to me that running that tiny amount of
JavaScript code can increase my browser footprint by about 350 MB. Currently,
WebAssembly runs on top of the existing JavaScript engines and still requires quite a bit of
JavaScript glue code to make everything work, but in the long run, WebAssembly will not
only allow us to speed up execution on the web but will also let us do it with a much
smaller memory footprint.

Will WebAssembly replace JavaScript?

The short answer to this question is not anytime soon. At present, WebAssembly is still in
its MVP stage. At this stage, the number of use cases is limited to applications where
WebAssembly has limited back and forth with the JavaScript and the Document Object
Model (DOM). WebAssembly is not currently able to directly interact with the DOM, and
Emscripten uses JavaScript "glue code" to make that interaction work. That interaction will
probably change soon, possibly by the time you are reading this, but in the next few years,
WebAssembly will need additional features to increase the number of possible use cases.

WebAssembly is not a "feature complete” platform. Currently, it cannot be used with any
languages that require GC. That will change and, eventually, almost all strongly typed
languages will target WebAssembly. In addition, WebAssembly will soon become tightly
integrated with JavaScript, allowing frameworks such as React, Vue, and Angular to begin
replacing significant amounts of their JavaScript code with WebAssembly without
impacting the application programming interface (API). The React team is currently
working on this to improve the performance of React.

In the long run, it is possible that JavaScript may compile into WebAssembly. For technical
reasons, this is a very long way off. Not only does JavaScript require a GC (not currently
supported), but because of its dynamic nature, JavaScript also requires a runtime profiler to
optimize. Therefore, JavaScript would produce very poorly optimized code, or significant
modifications would be needed to support strict typing. It is more likely that a language,
such as TypeScript, will add features that allow it to compile into WebAssembly.

[15]

Introduction to WebAssembly and Emscripten Chapter 1

The AssemblyScript project in development on GitHub is working on a
TypeScript-to-WebAssembly compiler. This project creates JavaScript and
uses Binaryen to compile that JavaScript into WebAssembly. How
AssemblyScript handles the problem of garbage collection is unclear. For
more information, refer to https://github.com/AssemblyScript/

assemblyscript.

JavaScript is currently ubiquitous on the web; there are a tremendous number of libraries
and frameworks developed in JavaScript. Even if there were an army of developers eager to
rewrite the entire web in C++ or Rust, WebAssembly is not yet ready to replace

these JavaScript libraries and frameworks. The browser makers have put immense efforts
into making JavaScript run (relatively) fast, so JavaScript will probably remain as the
standard scripting language for the web. The web will always need a scripting language,
and countless developers have already put in the work to make JavaScript that scripting
language, so it seems unlikely that JavaScript will ever go away.

There is, however, a need for a compiled format for the web that WebAssembly is likely to
fulfill. Compiled code may be a niche on the web at the moment, but it is a standard just
about everywhere else. As WebAssembly approaches feature-complete status, it will offer
more choices and better performance than JavaScript, and businesses, frameworks, and
libraries will gradually migrate toward it.

What is asm.js?

One early attempt to achieve native-like speed in the web browser using JavaScript was
asm.js. Although that goal was reached and asm.js was adopted by all the major browser
vendors, it never achieved widespread adoption by developers. The beauty of asm.js is that
it still runs in most browsers, even in those that do not optimize for it. The idea behind
asm.js was that typed arrays could be used in JavaScript to fake a C++ memory heap. The
browser simulates pointers and memory allocation in C++, as well as types. A well-
designed JavaScript engine can avoid dynamic type checking. Using asm.js, browser
makers could get around many of the optimization problems created by the dynamic
nature of JavaScript, by just pretending that this version of JavaScript is not dynamically
typed. Emscripten, designed as a C++-to-JavaScript compiler, quickly adopted asm.js as the
subset of JavaScript that it would compile to because of its improved performance in most
browsers. The performance improvements driven by asm.js lead the way to WebAssembly.
The same engine modifications used to make asm.js perform well could be used to
bootstrap the WebAssembly MVP. Only the addition of a bytecode-to-bytecode compiler
was required to take the WebAssembly bytecode and directly convert it into the IR
bytecode used by the browser.

[16]

https://github.com/AssemblyScript/assemblyscript
https://github.com/AssemblyScript/assemblyscript
https://github.com/AssemblyScript/assemblyscript
https://github.com/AssemblyScript/assemblyscript
https://github.com/AssemblyScript/assemblyscript
https://github.com/AssemblyScript/assemblyscript
https://github.com/AssemblyScript/assemblyscript
https://github.com/AssemblyScript/assemblyscript
https://github.com/AssemblyScript/assemblyscript
https://github.com/AssemblyScript/assemblyscript

Introduction to WebAssembly and Emscripten Chapter 1

At the time of writing, Emscripten does not compile directly from LLVM
to WebAssembly. Instead, it compiles to asm.js and uses a tool called
Binaryen to convert the asm.js output from Emscripten into
WebAssembly.

A brief introduction to LLVM

Emscripten is the tool we will be using to compile C++ into WebAssembly. Before I discuss
Emscripten, I need to explain a technology called LLVM and its relationship to Emscripten.

First, take a moment to think of airlines (stay with me here). Airlines want to get passengers
from one airport to another airport. But it's challenging to offer a direct flight from every
single airport to every other airport on Earth. That would mean that airlines would have to
provide a vast number of direct flights, such as Akron, Ohio to Mumbai, India. Let's travel
back in time to the 1990s—that was the state of the compiler world. If you wanted to
compile from C++ to ARM, you needed a compiler capable of compiling C++ to ARM. If you
needed to compile from Pascal to x86, you needed a compiler that could compile from
Pascal to x86. These are like having only direct flights between any two cities: a compiler
for every combination of language and hardware. The result is either that you have to limit
the number of languages you write compilers for, limit the number of platforms you can
support with that language, or more likely, both.

In 2003, a student at the University of Illinois named Chris Lattner wondered, "What if we
created a hub-and-spoke model for programming languages?" His idea led to LLVM, which
originally stood for "Low-Level Virtual Machine." The idea was that, instead of compiling
your source code for any possible distribution, you compile it for LLVM. There are then
compilers between the intermediate language and your final output language. In theory,
this means that if you develop a new target platform on the right side of the following
diagram, you get all languages on the left side right away:

ClC++ | 4 X86
Rust 4 MIPS
. LLVM F
Kotlin ’ IR '\ ARM
Swift / \ WASM?

Figure 1.5: LLVM as a hub between programming languages and the hardware

[17]

Introduction to WebAssembly and Emscripten Chapter 1

/1lvm.org or read the LLVM Cookbook, Mayur Padney, and Suyog Sarda,
Packt Publishing: https://www.packtpub.com/application-development/
1lvm-cookbook.

0 To learn more about LLVM, visit the LLVM project home page at https:/

A brief introduction to WebAssembly text

WebAssembly binary is not a language, but a build target similar to building for ARM or
x86. The bytecode, however, is structured differently than other hardware-specific build
targets. The designers of the WebAssembly bytecode had the web in mind. The aim was to
create a bytecode that was compact and streamable. Another goal was that the user should
be able to do a "view/source" on the WebAssembly binary to see what is going on.
WebAssembly text is a companion code to the WebAssembly binary that allows the user to
view the bytecode instructions in a human-readable form, similar to the way an assembly
language would let you see what opcodes execute in a machine-readable form.

WebAssembly text may initially look unfamiliar to someone used to writing assembly for
hardware such as ARM, x86, or 6502 (if you're old school). You write WebAssembly text in
S-expressions, which has a parentheses-heavy tree structure. Some of the operations are
also strikingly high level for an assembly language, such as if/else and loop opcodes. That
makes a lot more sense if you remember that WebAssembly was not designed to run
directly on computer hardware, but to download and translate into machine code quickly.

Another thing that will seem a little alien at first when you are dealing with WebAssembly
text is the lack of registers. WebAssembly is designed to be a virtual stack machine, which is
an alternative to a register machine, such as x86 and ARM, with which you might be familiar.
A stack machine has the advantage of producing significantly smaller bytecode than a
register machine, which is one good reason to choose a stack machine for WebAssembly.
Instead of using a series of registers to store and manipulate numbers, every opcode in a
stack machine pushes values on or off a stack (and sometimes does both). For example, a
call to 132.add in WebAssembly pulls two 32-bit integers off the stack, adds them together,
then pushes their value back on to the stack. The computer hardware can make the best use
of whichever registers are available to perform this operation.

[18]

https://llvm.org
https://llvm.org
https://llvm.org
https://llvm.org
https://llvm.org
https://llvm.org
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook
https://www.packtpub.com/application-development/llvm-cookbook

Introduction to WebAssembly and Emscripten Chapter 1

Emscripten

Now that we know what LLVM is, we can discuss Emscripten. Emscripten was developed
to compile LLVM IR into JavaScript, but has recently been updated to compile LLVM into
WebAssembly. The idea is that, when you get the LLVM compiler working, you can have
the benefit of all the languages that compile to LLVM IR. In practice, the WebAssembly
specification is still in its early days and does not support common language features such
as GC. Therefore, only non-GC languages such as C/C++ and Rust are currently supported.
WebAssembly is still in the early MVP phase of its development, but the addition of GC
and other common language features are coming soon. When that happens, there should be
an explosion of programming languages that will compile to WebAssembly.

When Emscripten was released in 2012, it was intended to be an LLVM-to-JavaScript
compiler. In 2013, support was added for asm.js, which is a faster, easily optimized subset
of the JavaScript language. In 2015, Emscripten began to add support for LLVM-to-
WebAssembly compiling. Emscripten also provides a Software Development Kit (SDK)
for both C++ and JavaScript that provides glue code to give users better tools for interaction
between JavaScript and WebAssembly than those currently offered by the WebAssembly
MVP alone. Emscripten also integrates with a C/C++-to-LLVM compiler called Clang, so
that you can compile your C++ into WebAssembly. In addition, Emscripten will generate
the HTML and JavaScript glue code you need to get your project started.

frequently. To stay up to date with the latest changes in Emscripten, visit
the project home page at https://emscripten.org.

0 Emscripten is a very dynamic project and changes to the toolchain happen

Installing Emscripten on Windows

I am going to keep this section brief because these instructions are subject to change. You
can supplement these instructions with the official Emscripten download and install
instructions found on the Emscripten website: https://emscripten.org/docs/getting_
started/downloads.html.

We will need to download and build Emscripten from the emsdk source files on
GitHub. First, we will walk through what to do on Windows.

Python 2.7.12 or higher is a prerequisite. If you do not have a version of Python higher than
2.7.12 installed, you will need to get the windows installer from python.org and install that
first: nttps://www.python.org/downloads/windows/.

[19]

https://emscripten.org
https://emscripten.org
https://emscripten.org
https://emscripten.org
https://emscripten.org
https://emscripten.org
https://emscripten.org
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
http://python.org
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/
https://www.python.org/downloads/windows/

Introduction to WebAssembly and Emscripten Chapter 1

If you have installed Python and you are still getting errors telling you
that Python is not found, you may need to add Python to your Windows

PATH variable. For more information, refer to this tutorial: https://www.
pythoncentral.io/add-python-to-path-python-is-not-recognized-as-

an-internal-or-external-command/.
If you have Git installed already, cloning the repository is relatively simple:
1. Run the following command to clone the repository:
git clone https://github.com/emscripten—-core/emsdk.git

2. Wherever you run this command, it will create an emsdk directory. Enter that
directory using the following:

cd emsdk

You may not have Git installed, in which case, the following steps will bring you up to
speed:

1. Go to the following URL in a web browser: https://github.com/emscripten-

core/emsdk.

2. You will see a green button on the right-hand side that says Clone or download.

Download the ZIP file:
O Pull requests Issues Marketplace Explore A 4+~ .v
O emscripten-core / emsdk | @watch~ | 37 | | Hestar | 691 | | YFork | 143
<> Code @ Issues 65 17 Pull requests 13 [Projects ‘0 EE Wiki lilt Insights

Emscripten SDK http://emscripten.org

D 419 commits ¥ 2 branches © 0 releases 48 22 contributors &% View license
-
Mz ||| Wommiem=: | HERE IS THE BUTTON .
E kripken Deduplicate activated configs in the .emscripten file (#198) - Latest commit ea5d631 22 days ago
B bin Have 'emsdk activate' always globally activate the Windows environmen... 5 years ago
| upstream Revert "Commit update-tags results" (#203) amonth ago
B .gitignore Add upstream waterfall tools and sdk 7 months ago

[20]

https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://www.pythoncentral.io/add-python-to-path-python-is-not-recognized-as-an-internal-or-external-command/
https://github.com/juj/emsdk
https://github.com/juj/emsdk
https://github.com/juj/emsdk
https://github.com/juj/emsdk
https://github.com/juj/emsdk
https://github.com/juj/emsdk
https://github.com/juj/emsdk
https://github.com/juj/emsdk
https://github.com/juj/emsdk
https://github.com/juj/emsdk
https://github.com/juj/emsdk
https://github.com/juj/emsdk

Introduction to WebAssembly and Emscripten Chapter 1

3. Unzip the downloaded file to the c: \emsdk directory.

4. Open up a Windows Command Prompt by typing cmd into the start menu and
pressing Enter.

5. From there, you can change to the c: \emsdk\emsdk-master directory by
typing the following:

cd \emsdk\emsdk-master
At this point, it does not matter whether you had Git installed or not. Let's move forward:

1. Install emsdk from the source code running the following command:

emsdk install latest
2. Then activate the latest emsdk:

emsdk activate latest
3. Finally, set up our path and environment variables:

emsdk_env.bat

This last step will need to be rerun from your install directory every time
you open a new command-line window. Unfortunately, it does not
permanently set the Windows environment variables. Hopefully, that will
change in the future.

Installing Emscripten on Ubuntu

If you are installing on Ubuntu, you should be able to use the apt ~get package manager
and git for the complete install. Let's move forward:

1. Python is required, so if you do not have Python installed, be sure to run the
following;:

sudo apt—get install python
2. If you do not already have Git installed, run the following:

sudo apt—get install git

[21]

Introduction to WebAssembly and Emscripten Chapter 1

3. Now you will need to clone the Git repository for emsdk:

git clone https://github.com/emscripten-core/emsdk.git
4. Change your directory to move into the emsdk directory:

cd emsdk

5. From here, you need to install the latest version of the SDK tools, activate it, and
set your environment variables:

./emsdk install latest
./emsdk activate latest
source ./emsdk_env.sh

6. To make sure everything was installed correctly, run the following command:

emcc —--version

Using Emscripten

We run Emscripten from the command line; therefore, you can use any text editor you
choose to write your C/C++ code. Personally, I am partial to Visual Studio Code, which you
can download here: https://code.visualstudio.com/download.

One beautiful thing about Visual Studio Code is that it has a built-in command-line
terminal, which lets you compile your code without switching windows. It also has an
excellent C/C++ extension that you can install. Just search for C/C++ from the extensions
menu and install the Microsoft C/C++ Intellisense extension.

Whatever you choose for your text editor or integrated development environment, you
need a simple piece of C code to test out the emcc compiler.

1. Create a new text file and name it hello.c.
2. Type the following code into hello.c:

#include <emscripten.h>
#include <stdlib.h>
#include <stdio.h>

int main () {
printf ("hello wasm\n");

}

[22]

https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download

Introduction to WebAssembly and Emscripten Chapter 1

3. Now I can compile the hello.c file into WebAssembly and generate a
hello.html file:

emcc hello.c —-—emrun -o hello.html

4. The ——emrun flag is necessary if you want to run the HTML page from emrun.
This flag adds code that will capture stdout, stderr, and exit in the C code and
emrun will not work without it:

emrun —-browser firefox hello.html

Running emrun with the ~-browser flag will pick the browser where you would like to
run the script. The behavior of emrun seems to be different between browsers. Chrome will
close the window when the C program exits. That can be annoying because we are just
trying to display a simple print message. If you have Firefox, I would suggest running
emrun using the ——browser flag.

I do not want to imply that Chrome cannot run WebAssembly. Chrome
does have different behavior when a WebAssembly module exits. Because
I was trying to keep our WebAssembly module as simple as possible, it
exits when the main function completes. That is what is causing problems
in Chrome. These problems will go away later when we learn about game
loops.

To find out what browsers are available to you, run the following;:

emrun --list_browsers

emrun should open an Emscripten-templated HTML file in a browser.

Make sure you have a browser capable of running WebAssembly. The following versions of
the major browsers should work with WebAssembly:

e Edge 16
Firefox 52
Chrome 57
Safari 11
Opera 44

[23]

Introduction to WebAssembly and Emscripten Chapter 1

If you are familiar with setting up your own web server, you may want to
consider using it rather than emrun. After using emrun for the first few
chapters of this book, I returned to using my Node.js web server. I found
it easier to have a Node-based web server up and running at all times,
rather than restarting the emrun web server every time I wanted to test
my code. If you know how to set up an alternative web server (such as
one for Node, Apache, and IIS), you may use whatever web server you
prefer. Although IIS requires some additional configuration to handle
WebAssembly MIME types.

Additional installation resources

Creating an installation guide for Emscripten is going to be somewhat problematic. The
WebAssembly technology changes frequently and the installation process for Emscripten
may be different by the time you read this. I would recommend consulting the download
and install instructions on the Emscripten website if you have any problems: https://
emscripten.org/docs/getting_started/downloads.html.

You may also want to consult the Emscripten page on GitHub: https://github.com/

emscripten-core/emsdk.

Google Groups has an Emscripten discussion forum where you may ask questions if you
are having installation problems: https://groups.google.com/forum/?nomobile=

true#!forum/emscripten-discuss.

You can also contact me on Twitter (@battagline), and I will do my best to help you:
https://twitter.com/battagline.

Summary

In this chapter, we learned what WebAssembly is and why it will be the future of
application development on the web. We learned why we need WebAssembly, even
though we already have a robust language like JavaScript. We learned why WebAssembly
is so much faster than JavaScript, and how it has the potential to increase its performance
lead. We have also discussed the possibility of WebAssembly replacing JavaScript as the de
facto standard for application development on the web.

[24]

https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://emscripten.org/docs/getting_started/downloads.html
https://github.com/emscripten-core/emsdk
https://github.com/emscripten-core/emsdk
https://github.com/emscripten-core/emsdk
https://github.com/emscripten-core/emsdk
https://github.com/emscripten-core/emsdk
https://github.com/emscripten-core/emsdk
https://github.com/emscripten-core/emsdk
https://github.com/emscripten-core/emsdk
https://github.com/emscripten-core/emsdk
https://github.com/emscripten-core/emsdk
https://github.com/emscripten-core/emsdk
https://github.com/emscripten-core/emsdk
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://groups.google.com/forum/?nomobile=true#!forum/emscripten-discuss
https://twitter.com/battagline
https://twitter.com/battagline
https://twitter.com/battagline
https://twitter.com/battagline
https://twitter.com/battagline
https://twitter.com/battagline
https://twitter.com/battagline
https://twitter.com/battagline
https://twitter.com/battagline

Introduction to WebAssembly and Emscripten Chapter 1

We have discussed the practical side of creating a WebAssembly module as it is done today
using Emscripten and LLVM. We have talked about WebAssembly text and how it is
structured. We have also discussed using Emscripten to compile our first WebAssembly
module, as well as using it to create the HTML and JavaScript glue code to run that
module.

In the next chapter, we will go into further detail on how to use Emscripten to create our
WebAssembly module, as well as the HTML/CSS and JavaScript used to drive it.

[25]

HTMLS and WebAssembly

In this chapter, we will show you how the C code we write to target WebAssembly comes
together with HTML5, JavaScript, and CSS to create a web page. We will teach you how to
create a new HTML shell file to be used by Emscripten in the creation of our WebAssembly
app. We will discuss the Module object and how Emscripten uses it as an interface between
our JavaScript and the WebAssembly module. We will show you how to call WebAssembly
functions written in C from within JavaScript on our HTML page. We will also show you
how to call JavaScript functions from our C code. We will discuss how to use CSS to
improve the look of our web page. We will introduce you to the HTML5 Canvas element
and show how it is possible to display images to the canvas from within JavaScript. We will
briefly discuss moving those images around the canvas from our WebAssembly

module. This chapter will give you an understanding of how everything works together
and lays the foundation for other features we are developing for our WebAssembly
applications.

Beginning with this chapter and continuing through the remainder of the
book, you will need image and font files from the GitHub project to
compile the examples. For this chapter, you will need

the /Chapter02/spaceship.png image file from the project directory.
Please download the project from the following URL: https://github.
com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly.

I highly recommend working along as you read each section of this
chapter. You may use your favorite code editor and the command line to
follow along. Even though we have provided links to download the code
directly, it cannot be emphasized enough how much you will learn by
actually following edits suggested in this chapter. You are going to make
mistakes and learn a lot from them. If you decide to work along, another
suggestion is the following: do not proceed to the next section unless your
edit/steps in the current section are successful. If you need help, contact
me on twitter (@battagline).

https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly

HTMLS5 and WebAssembly Chapter 2

In this chapter, we will cover the following topics:

¢ The Emscripten minimal shell file
¢ Creating a new HTML shell and C file
Defining our CSS

HTMLS5 and game development

Adding a canvas to the Emscripten template

The Emscripten minimal shell file

The first build we created with Emscripten used a default HTML shell file. If you have a
website, this is probably not the way you would prefer your web page to look. You would
probably prefer to design your look and feel using CSS and HTML5 specific to your design
or business needs. For instance, the templates I use for my websites typically include
advertisements to the left and right of the game's canvas. That is how traffic to these sites is
monetized. You may choose to add a logo for your website above your game's canvas.
There is also a text area where Emscripten logs output from print £ or other standard 10
calls. You may choose to remove this textarea element altogether, or you may keep it, but
keep it hidden because it is useful for debugging later.

To build the HTML file based on a new shell file that is not the default Emscripten shell, we
must use the ——shell-file parameter, passing it the new HTML template file we would
like to use, instead of Emscripten's default. The new emcc command will look like this:

emcc hello.c —--shell-file new_shell.html --emrun -o hello2.html

Do not execute this command just yet. We do not currently have a new_shell.html file in
our project directory, so running the command before that file exists will result in an error
message. We need to create the new_shell.html file and use it as the HTML shell instead
of Emscripten's default HTML shell. This shell file must follow a specific format. To
construct it, we have to start with Emscripten's minimum HTML shell file, which you can
find at GitHub here:

https://github.com/emscripten—-core/emscripten/blob/master/src/shell_minimal.
html

[27]

https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html
https://github.com/emscripten-core/emscripten/blob/master/src/shell_minimal.html

HTMLS5 and WebAssembly Chapter 2

We will be writing our own HTML shell, using the shell_minimal.html file as a starting
point. Much of what is in the minimal shell is not required, so we will make some
significant edits to it. We will remove much of the code to suit our purpose. When you
open shell_minimal.html in your text editor, you will see that it starts with a standard
HTML header and a style tag:

<style>
.emscripten { padding-right: 0; margin-left: auto; margin-right: auto;
display: block; }
textarea.emscripten { font-family: monospace; width: 80%; }
div.emscripten { text-align: center; }
div.emscripten_border { border: lpx solid black; }
/* the canvas *must not* have any border or padding, or mouse coords
will be wrong */
canvas.emscripten { border: Opx none; background-color: black; }
.spinner {
height: 50px;
width: 50px;
margin: Opx auto;
-webkit—-animation: rotation .8s linear infinite;
-moz—-animation: rotation .8s linear infinite;
-o—animation: rotation .8s linear infinite;
animation: rotation 0.8s linear infinite;
border-left: 10px solid rgb(0,150,240);
border-right: 10px solid rgb(0,150,240);
border-bottom: 10px solid rgb(0,150,240);
border-top: 10px solid rgb(100,0,200);
border-radius: 100%;
background-color: rgb(200,100,250);
}
@-webkit-keyframes rotation {
from {-webkit-transform: rotate (0deqg);}
to {-webkit-transform: rotate(360deq);}
}
@-moz-keyframes rotation {
from {-moz-transform: rotate (0deg);}
to {-moz-transform: rotate (360deqg);}
3
@-o-keyframes rotation {
from {-o-transform: rotate (0deg);}
to {-o-transform: rotate (360deqg);}
3
@keyframes rotation {
from {transform: rotate (0deqg);}
to {transform: rotate(360deqg);}
3
</style>

[28]

HTMLS5 and WebAssembly Chapter 2

This code is based on the version of shell_minimal.html available at
the time of writing. No changes to this file are anticipated. However,
WebAssembly is evolving quickly. Unfortunately, we cannot say with
complete certainty that this file will remain unchanged by the time you
read this. As mentioned earlier, if you run into problems, please feel free
to contact me on Twitter (@battagline).

We remove this style tag so you can style your code any way you like. It is necessary if you
like their spinner loading image and want to keep it, but it is preferable to yank all of this
out and replace it with CSS loaded externally from a CSS file with the link tag, as follows:

<link href="shell.css" rel="stylesheet" type="text/css">

Scroll down a little further, and you will see the loading indicators they use. We are going
to replace that with our own eventually, but for now, we are testing all of this locally, and
our files are all tiny, so we would remove this code as well:

<figure style="overflow:visible;" id="spinner">

<div class="spinner"></div>

<center style="margin-top:0.5em">emscripten</center>
</figure>
<div class="emscripten" id="status">Downloading...</div>

<div class="emscripten">

<progress value="0" max="100" id="progress" hidden=1></progress>
</div>

After that, there is an HTML5 canvas element and some other tags related to it. We will
eventually need to add a canvas element back in, but for now, we will not be using
the canvas, so that part of the code is not necessary either:

<div class="emscripten">
<input type="checkbox" id="resize">Resize canvas
<input type="checkbox" id="pointerLock" checked>Lock/hide mouse
pointer &énbsp;
<input type="button" value="Fullscreen" onclick=
"Module.requestFullscreen (document.getElementById
('pointerLock') .checked,

document .getElementById('resize') .checked) ">
</div>

[29]

HTMLS5 and WebAssembly Chapter 2

After the canvas, there is a textarea element. That is also not necessary, but it would be
good to use it as the location where any print f commands executed from my C code are
printed. The shell has surrounded it with two <hr/> tags, used for formatting, so we can
remove those as well:

<hr/>
<textarea class="emscripten" id="output" rows="8"></textarea>
<hr/>

The next thing we have is our JavaScript. That starts with three variables that represent
HTML elements that we removed earlier, so we are going to need to remove all of those
JavaScript variables as well:

var statusElement = document.getElementById('status');
var progressElement = document.getElementById('progress');
var spinnerElement = document.getElementById('spinner');

The Module object inside JavaScript is the interface that the Emscripten-generated
JavaScript glue code uses to interact with our WebAssembly module. It is the most crucial
part of a shell HTML file, and it is essential to understand what it is doing. The Module
object begins with two arrays, preRun, and postRun. These are arrays of functions that will
run before and after the module is loaded, respectively.

var Module = {
preRun: [],
postRun: [],

For demonstration purposes, we could add functions to these arrays like this:

preRun: [function() {console.log("pre run 1")},
function() {console.log("pre run 2")}],

postRun: [function() {console.log("post run 1")},
function() {console.log("post run 2")}],

This would produce the following output from our hello WASM app that we created in
Chapterl, Introduction to WebAssembly and Emscripten:

pre run 2

pre run 1

status: Running...
Hello wasm

post run 2

post run 1

[30]

HTMLS5 and WebAssembly Chapter 2

Notice that the preRun and postRun functions run in the reverse order in
which they are placed in the array. We could use the postRun array to call
a function that would initialize our WebAssembly wrappers, but, for
demonstration purposes, we will instead call a JavaScript function from
within our C main () function.

The next two functions inside the Module object are the print and printErr functions.
The print function is used to print out the output of the print £ calls to both the console
and to the textarea that we have named output. You can change this output to print out
to any HTML tag, but, if your output is raw HTML, there are several commented-out text
replace calls that must run. Here is what the print function looks like:

print: (function() {
var element = document.getElementById('output');
if (element) element.value = ''; // clear browser cache

return function (text) {
if (arguments.length > 1) text =
Array.prototype.slice.call (arguments) .join (' ');
// These replacements are necessary if you render to raw HTML
//text = text.replace(/&/g, "&");
//text = text.replace(/</g, "<");
(
(

//text text.replace(/>/g, ">");
//text = text.replace('\n', '
', 'g');
console.log(text);
if (element) {
element .value += text + "\n";
element.scrollTop = element.scrollHeight; // focus on
bottom

bi
PO,

The printErr function is run by the glue code when an error or warning occurs in either
our WebAssembly module or the glue code itself. The output of printErr is only the

console, although, in principle, if you wanted to add code that would write to an HTML
element, you could do that as well. Here is the printErr code:

printErr: function (text) {
if (arguments.length > 1) text =

Array.prototype.slice.call (arguments) .join ("' ");

if (0) { // XXX disabled for safety typeof dump == 'function') {
dump (text + '\n'); // fast, straight to the real console

} else {

console.error (text);

by

[31]

HTMLS5 and WebAssembly Chapter 2

After the print functions, there is a canvas function. This function is set up to alert the
user to a lost WebGL context. We do not need that code right now, because we have
removed the HTML Canvas. When we add the canvas element back in, we will need to
restore this function. It also makes sense to update it to handle a lost context event, instead
of just alerting the user.

canvas: (function() {

var canvas = document.getElementById('canvas');

// As a default initial behavior, pop up an alert when webgl
context is lost. To make your

// application robust, you may want to override this behavior
before shipping!

// See http://www.khronos.org/registry/webgl/specs/latest/1.0/#5.15.2

canvas.addEventListener ("webglcontextlost", function(e) {
alert ('WebGL context lost. You will need to reload the page.');
e.preventDefault (); }, false);

return canvas;

1Oy

There are several different situations when your web page could lose its
WebGL context. The context is your portal into the GPU, and your app's
access to the GPU is managed by both the browser and the operating
system. Let's take a trip to The Land of Metaphor, where we imagine the
GPU is a bus, the web browser is the bus driver, and the apps using their
context are a bunch of rowdy middle school kids. If the bus driver
(browser) feels that the kids (apps) are getting too rowdy, he can stop the
bus (GPU), throw all the kids off the bus (make the apps lose their
context), and let them come back one at a time if they promise to behave.

After that, the minimal shell has some code that keeps track of the module's status and
dependencies. In this code, we can remove references to

the spinnerElement, progressElement, and statusElement. Later, if we choose, we
can replace these with elements to keep track of the state of loaded modules, but, for the
moment, they are not needed. Here is the status and run dependency monitoring code in
the minimal shell:

setStatus: function (text) {
if (!Module.setStatus.last) Module.setStatus.last = { time:

Date.now (), text: '' };
if (text === Module.setStatus.last.text) return;
var m = text.match (/ ([(1+)\ ((\d+ (\.\d+)2)\/ (\d+)\)/);
var now = Date.now();

// if this is a progress update, skip it if too soon
if (m && now - Module.setStatus.last.time < 30) return;

[32]

HTMLS5 and WebAssembly Chapter 2

Module.setStatus.last.time = now;
Module.setStatus.last.text = text;
if (m) |

text = m[1];
t
console.log("status: " + text);
s
totalDependencies: 0,
monitorRunDependencies: function(left) {
this.totalDependencies = Math.max (this.totalDependencies, left);

Module.setStatus (left ? 'Preparing... (' + (this.totalDependencies-
left) + '/' + this.totalDependencies + ')' : 'All
downloads complete.');

t
i
Module.setStatus ('Downloading...");

The final piece of JavaScript code inside the minimal shell file determines what JavaScript
will do in the event of a browser error:

window.onerror = function() {
Module.setStatus ('Exception thrown, see JavaScript console');
Module.setStatus = function (text) {
if (text) Module.printErr (' [post-exception status] ' + text);

bi
After our JavaScript, there is one more important line:

{{{ SCRIPT }}}

This tag tells Emscripten to place the link to the JavaScript glue code here. Here is an
example of what gets compiled into the final HTML file:

<script async type="text/javascript" src="shell-min.js"></script>

shell-min. js is the JavaScript glue code that is built by Emscripten. In the next section,
we will learn how to create our own HTML shell file.

[33]

HTMLS5 and WebAssembly Chapter 2

Creating a new HTML shell and C file

In this section, we are going to create a new shell.c file that exposes several functions
called from our JavaScript. We will also use EM_ASM to call the InitWrappers function that
we will define inside the new HTML shell file that we will be creating. This function will
create wrappers inside JavaScript that can call functions defined in the WebAssembly
module. Before creating the new HTML shell file, we need to create the C code that will be
called by the JavaScript wrappers inside the HTML shell:

1. Create the new shell.c file as follows:

#include <emscripten.h>
#include <stdlib.h>
#include <stdio.h>

int main () {
printf ("Hello World\n");
EM_ASM(InitWrappers());

printf("Initialization Complete\n");
}

void test () {
printf ("button test\n");
}

void int_test (int num) {
printf ("int test=%d\n", num);

}

void float_test(float num) {
printf ("float test=%f\n", num);
}

void string_test (char* str) {
printf ("string test=%s\n", str);

}

The main function runs when the WebAssembly module is loaded. At this point,

the Module object can use cwrap to create a JavaScript version of that function that we can
tie to onclick events on the HTML elements. Inside the main function, the EM_ASM (
InitWrappers ()); codecallsan InitWrappers () function that is defined inside
JavaScript in the HTML shell file. The DOM uses events to call the next four functions.

[34]

HTMLS5 and WebAssembly Chapter 2

Another way we could have initialized the wrappers is by calling
the InitWrappers () function from the Module object postRun:
[] array.

We will tie a call to the test () function to a button click in the DOM. The int_test
function will be passed as a value from an input field in the DOM and will print a message
to the console and textarea element that includes that integer, by using

a printf statement. The float_test function will be passed a number as a floating point,
printed to the console and textarea element. The string_test function will print out a
string that is passed in from JavaScript.

Now, we are going to add the following code to an HTML shell file and call it
new_shell.html. The code is based on the Emscripten minimal shell file created by the
Emscripten team and explained in the previous section. We will present the entire HTML
page divided into four parts.

To begin with, there is the beginning of the HTML file and the head element:

<!doctype html>
<html lang="en-us">
<head>
<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>New Emscripten Shell</title>
<link href="shell.css" rel="stylesheet" type="text/css">
</head>

Next, is the beginning of the body tag. After that, we have several HTML input elements
as well as the textarea element:

<body>
<div class="input_box"> </div>
<div class="input_box">
<button id="click_me" class="em_button">Click Me!</button>
</div>
<div class="input_box">
<input type="number" id="int_num" max="9999" min="0" step="1"
value="1" class="em_input">
<button id="int_button" class="em_button">Int Click!</button>
</div>
<div class="input_box">
<input type="number" id="float_num" max="99" min="0"
step="0.01" value="0.0" class="em_input">
<button id="float_button" class="em_button">Float Click!</button>
</div>

[35]

HTMLS5 and WebAssembly Chapter 2

<div class="input_box"> </div>

<textarea class="em_textarea" id="output" rows="8"></textarea>

<div id="string_box">
<button id="string_button" class="em_button">String Click!</button>
<input id="string_input">

</div>

After our HTML, we have the beginning of our script tag, and some JavaScript code we
have added to the default shell file:

<script type='text/javascript'>

function InitWrappers() A
var test = Module.cwrap('test', 'undefined');
var int_test = Module.cwrap('int_test', 'undefined', ['int']);
var float_test = Module.cwrap('float_test', 'undefined',
["float']);
var string_test = Module.cwrap('string_test', 'undefined',
['string']);
document .getElementById ("int_button") .onclick = function() {
if(int_test != null) {
int_test (document.getElementById('int_num') .value);
}
}
document .getElementById ("string_button") .onclick = function() {
if(string_test != null) {
string_test (document.getElementById('string_input') .value);
}
}

document .getElementById ("float_button") .onclick = function() {
if(float_test != null) {
float_test (document.getElementById('float_num') .value);

document .getElementById("click_me") .onclick = function() {
if(test != null) {
test ();

function runbefore () {
console.log("before module load");

[36]

HTMLS5 and WebAssembly Chapter 2

function runafter () {
console.log("after module load");

}

Next, we have the Module object that we brought in from the default shell file. After
the Module object, we have the end to the script tag, the {{{ SCRIPT }}} tag, whichis
replaced by Emscripten when compiled, and the ending tags in our file:

var Module = {
preRun: [runbefore],
postRun: [runafter],
print: (function() {
var element = document.getElementById('output');
if (element) element.value = ''; // clear browser cache

return function (text) {

if (arguments.length > 1) text =
Array.prototype.slice.call (arguments) .join ("' ');

/*

// The printf statement in C is currently writing to a
textarea. If we want to write

// to an HTML tag, we would need to run these lines of
codes to make our text HTML safe

text = text.replace(/&/g, "&");

text = text.replace(/</g, "<");

text = text.replace(/>/g, ">");

text = text.replace('\n', '
', 'g');
*/

console.log(text);
if (element) {
element.value += text + "\n";
element.scrollTop = element.scrollHeight;
// focus on bottom

bi
POy
printErr: function (text) {
if (arguments.length > 1) text =

Array.prototype.slice.call (arguments) .join(' ");
if (0) { // XXX disabled for safety typeof dump ==
'function') {

dump (text + '\n'); // fast, straight to the real
console
} else {
console.error (text);

b
setStatus: function (text) |
if (!Module.setStatus.last) Module.setStatus.last = { time:

[371]

HTMLS5 and WebAssembly Chapter 2

Date.now(), text: '' };
if (text === Module.setStatus.last.text) return;
var m = text.match (/ ([~ (1+)\ ((\d+(\.\d+)2)\/ (\d+)\)/);
var now = Date.now();

// if this is a progress update, skip it if too soon
if (m && now — Module.setStatus.last.time < 30) return;
Module.setStatus.last.time = now;

Module.setStatus.last.text = text;
if (m) |
text = m[1];
}
console.log("status: " + text);

}I

totalDependencies: 0,

monitorRunDependencies: function(left) {
this.totalDependencies = Math.max (this.totalDependencies,

left);
Module.setStatus (left ? 'Preparing... (' +
(this.totalDependencies-left) + '/' +
this.totalDependencies + ')' : 'All downloads complete.');
}
bi
Module.setStatus ('Downloading...");
window.onerror = function() {
Module.setStatus ('Exception thrown, see JavaScript console');
Module.setStatus = function (text) |
if (text) Module.printErr (' [post-exception status] ' + text);
bi
bi
</script>
{{{ SCRIPT }}}
</body>
</html>

These previous four sections all make up a single shell file called new_shell.html. You
can create this code by typing out the last four parts into a file you name new_shell.html,

or you can download the file from our GitHub page at https://github.com/
PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/

Chapter02/new_shell.html.

[38]

https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/new_shell.html

HTMLS5 and WebAssembly Chapter 2

Now that we have seen the entire new_shell.html file in large chunks, we can spend a
little time breaking down the essential parts and going over it at a granular level. You will
notice that we removed all of the CSS style code and have created a new shell.css file
included with the following line:

<link href="shell.css" rel="stylesheet" type="text/css">

Next, we have reworked the HTML code inside this file to create elements that will interact
with the WebAssembly module. First, we are going to add a button that will call
the test () function inside the WebAssembly module:

<div class="input_box">
<button id="click_me" class="em_button">Click Me!</button>
</div>

We will style the button and its included div element inside the shell.css file that we
have created. We will need to define the function that will be called by the onclick event
of this button element inside the JavaScript code we will write later. We will do something
similar for the two input/button pairs we will define in the HTML, as demonstrated in the
following code block:

<div class="input_box">
<input type="number" id="int_num" max="9999" min="0" step="1"
value="1" class="em_input">
<button id="int_button" class="em_button">Int Click!</button>
</div>
<div class="input_box">
<input type="number" id="float_num" max="99" min="0" step="0.01"
value="0.0" class="em_input">
<button id="float_button" class="em_button">Float Click!</button>
</div>

Like we did with the first button element, we will tie these next two buttons to functions
that will make calls into the WebAssembly module. These function calls will also pass the
values defined in the input elements into the WebAssembly functions. We have left

the textarea element as an output for the print £ calls that happen within the
WebAssembly module. We have styled it differently in the CSS file, but we will leave the
functionality unchanged:

<textarea class="em_textarea" id="output" rows="8"></textarea>

<div id="string_box">
<button id="string_button" class="em_button">String Click!</button>
<input id="string_input">

</div>

[39]

HTMLS5 and WebAssembly Chapter 2

Underneath the textarea element, we have added one more button and a
string input element. This button will call the string_test function inside the
WebAssembly module, passing it the value inside the string_input element as a
C char* parameter.

Now that we have defined all of the elements we need in the HTML, we will go through
and add some JavaScript code to tie the JavaScript and WebAssembly module together. The
first thing we need to do is define the InitWrappers function. InitWrappers will be
called from within the main function in the C code:

function InitWrappers() {

var test = Module.cwrap('test', 'undefined');

var int_test = Module.cwrap('int_test', 'undefined', ['int']);

var float_test = Module.cwrap('float_test', 'undefined',

["float']);

var string_test = Module.cwrap('string_test', 'undefined',
['string']);

document .getElementById ("int_button") .onclick = function() {

if(int_test != null) {

int_test (document.getElementById('int_num') .value);

document .getElementById ("string_button") .onclick = function() {
if(string_test != null) {
string_test (document.getElementById('string_input') .value);

document .getElementById ("float_button").onclick = function() {
if(float_test != null) {
float_test (document .getElementById('float_num') .value);

document .getElementById ("click_me") .onclick = function() {
if(test !'= null) {
test ();

[40]

HTMLS5 and WebAssembly Chapter 2

This function uses Module.cwrap to create JavaScript function wrappers around the
exported functions inside the WebAssembly module. The first parameter we pass

to cwrap is the name of the C function we are wrapping. All of these JavaScript functions
will return unde fined. JavaScript does not have a void type like C, so when we declare
the return type in JavaScript, we need to use the unde fined type instead. If the function
were to return an int or a float, we would need to put the 'number' value here. The
final parameter passed into cwrap is an array of strings that represent the C type of the
parameters passed into the WebAssembly module.

After we have defined the JavaScript wrappers around the functions, we need to call them
from the buttons. The first one of these calls is to the WebAssembly int_test function.
Here is how we set the onclick event for the int_button:

document .getElementById ("int_button") .onclick = function() {
if(int_test != null) {
int_test (document .getElementById('int_num') .value);
}
}

The first thing we will do is check to see whether int_test is defined. If so, we call
the int_test wrapper we explained earlier, passing it the value from the int_num input.
We then do something similar for all of the other buttons.

The next thing we do is create a runbefore and runafter function that we place in
the preRun and postRun arrays on the Module object:

function runbefore() {
console.log("before module load");

}

function runafter () {
console.log("after module load");

}

var Module = {
preRun: [runbefore],
postRun: [runafter],

That will cause "before module load" to be printed to the console before the module is
loaded, and "after module load" is printed after the module is loaded. These functions are
not required; they are designed to show how you might run code before and after a
WebAssembly module is loaded. If you do not want to call the InitWrappers function
from the main function in the WebAssembly module, you could instead put that function
inside the postRun array.

[41]

HTMLS5 and WebAssembly Chapter 2

The remainder of the JavaScript code is similar to what you would find inside the
shell_minimal.html file created by Emscripten. We have removed code that is
superfluous for this demonstration, such as code related to the spinnerElement,
progressElement, and statusElement, as well as code having to do with the

HTMLS5 canvas. It is not that there is anything wrong with leaving that code in JavaScript,

but it is not truly necessary for our demonstration, so we have removed it to reduce this
shell to the minimum required.

Defining the CSS

Now that we have some basic HTML, we need to create a new shell.css file. Without
any CSS styling, our page looks pretty terrible.

A page without styling will be similar to the one shown as follows:

Click Me!
1 || Int Click! |
0.0 || Float Click! |
Helle World
Initialization
Complete

4
String Click! ||

Figure 2.1: The Hello WebAssembly app without a CSS style

Luckily for us, a little bit of CSS goes a long way to make our web page look presentable.
Here is what the new shell.css file we are creating looks like:

body {
margin-top: 20px;
}

.input_box {
width: 20%;
display: inline-block;

}

.em_button {
width: 45%;
height: 40px;
background-color: orangered;
color: white;

[42]

HTML5 and WebAssembly

Chapter 2

border: 2px solid white;
font-size: 20px;
border-radius: 8px;
transition-duration: 0.5s;

.em_button:hover {
background-color: orange;
color: white;
border: 2px solid white;

.em_input {
width: 45%;
height: 20px;
font-size: 20px;

background-color: darkslategray;

color: white;
padding: 6px;

#output {

background-color: darkslategray;

color: white;
font-size: 16px;
padding: 10px;
padding-right: 0;
margin-left: auto;
margin-right: auto;
display: block;
width: 60%;

#string_box {
padding-top: 10px;
margin-left: auto;
margin-right: auto;
display: block;
width: 60%;

#string_input {
font-size: 20px;

background-color: darkslategray;

color: white;
padding: 6px;
margin-left: 5px;
width: 45%;

[43]

HTMLS5 and WebAssembly Chapter 2

float: right;
}

Let me quickly walk through what we need to do to style this page. This book is not a book
on CSS, but it does not hurt to cover the topic in a cursory fashion.

1. The first thing we will do is put a little 20-pixel margin on the page body to put a
little bit of space between the browser toolbar and the content on our page:

body {
margin-top: 20px;
}

2. We have created five input boxes that take up 20% of the browser width each.
The boxes on the left and the right have nothing in them, so that the content takes
up 60% of the browser width. They are displayed as an inline-block, so that they
line up horizontally across the screen. Here is the CSS that makes it happen:

.input_box {

width: 20%;

display: inline-block;
}

3. We then have a few classes to style our buttons using a class called em_button:

.em_button {
width: 45%;
height: 40px;
background-color: orangered;
color: white;
border: 0px;
font-size: 20px;
border-radius: 8px;
transition—-duration: 0.2s;

}

.em_button:hover {
background-color: orange;

}

We have set the button width to take up 45% of the containing element. We set the button
height to 40 pixels. We have set the button's color to orangered, and the text color to
white. We remove the border by setting its width to 0 pixels. We have set the font size to 20
pixels and given it an 8 pixel border-radius, which provides the button with a rounded
look. The last line sets the amount of time it takes to transition to a new color when the user
hovers over the button.

[44]

HTMLS5 and WebAssembly Chapter 2

After we finish the definition of the em_button class, we define
the em_button:hover class, which changes the color of the button when the user hovers
over it.

Some versions of Safari require the line ~webkit-transition-
duration: 0.2s; inside the em button class definition to have a
transition to the hover state. Without this line, the button would instantly
change from orangered to orange in some versions of Safari, rather than
transitioning over 200 milliseconds.

The next class we define is for the input elements:

.em_input {
width: 45%;
height: 20px;
font-size: 20px;
background-color: darkslategray;
color: white;
padding: 6px;

}

We have set its height, width, and font-size at the beginning. We set the background
color to a darkslategray with white text. We have added 6 pixels of padding so that
there is a small space between the font and the edge of the input element.

The # in front of the name of a CSS element styles an ID instead of a class. An ID defines a
specific element where a class (preceded by a . in CSS) can be assigned to multiple
elements in your HTML. The next bit of CSS styles the textarea that has the ID of output:

#output {
background-color: darkslategray;
color: white;
font-size: 16px;
padding: 10px;
margin-left: auto;
margin-right: auto;
display: block;
width: 60%;

[45]

HTMLS5 and WebAssembly Chapter 2

The first two lines set the background and text color. We set the font size to 16 pixels and
add 10 pixels of padding. The next two lines use the left and right margin to center
the textarea:

margin-left: auto;
margin-right: auto;

Setting display: block; puts this element on a line by itself. Setting the width to 60%
makes the element take up 60% of the containing element, which, in this case, is the
browser's body tag.

Finally, we style the string_box and string_input elements:

#string_box {
padding-top: 10px;
margin-left: auto;
margin-right: auto;
display: block;
width: 60%;

}

#string_input {
font-size: 20px;
background-color: darkslategray;
color: white;
padding: 6px;
margin-left: 5px;
width: 45%;
float: right;
}

The string_box is the box that contains the string button and the string input elements.
We pad the top of the box to add some space between the string_box and

the textarea aboveit. margin-left: auto and margin-right: auto center the box.
Then, we use display:block and width: 60% to have it take up 60% of the web browser.

For the string_input element, we set the font size and the colors and pad it by 6 pixels.
We set a left margin of 5 pixels to put some space on the left between the element and its
button. We set it to take up 45% of the width of the containing element, while the float :
right style pushes the element to the right side of the containing element.

[46]

HTML5 and WebAssembly Chapter 2

To build our app, we need to run emcc:

emcc shell.c -o shell-test.html --shell-file new_shell.html -s
NO_EXIT_ RUNTIME=1 —-s EXPORTED_FUNCTIONS="['_test', '_string test',
'_int_test', '_float_test', '_main']" -s
EXTRA_EXPORTED_RUNTIME_METHODS="['cwrap',6 'ccall']"

EXPORTED_FUNCTIONS is used to define all of the functions called from JavaScript. They are
listed with a preceding _ character. EXTRA_EXPORTED_RUNTIME_METHODS is used to make
the cwrap and ccall methods available to the JavaScript inside our shell file. We are not
currently using ccall, which is an alternative to cwrap, which we may choose to use in the
future.

It is important to remember that you must run WebAssembly apps using
a web server, or with emrun. If you would like to run your WebAssembly
app using emrun, you must compile it with the ——emrun flag. The web
browser requires a web server to stream the WebAssembly module. If you
attempt to open an HTML page that uses WebAssembly in a browser
directly from your hard drive, that WebAssembly module will not load.

Now that we have added some CSS styling, we have a much nicer looking app:

Click Me! Int Click! oo | FioatcCiick!

Hello World
Initialization Complete

Figure 2.2: The Hello WebAssembly app with a CSS style

In the next section, we will discuss HTML5 web game development.

[47]

HTMLS5 and WebAssembly Chapter 2

HTMLS5 and game development

Most HTML rendering is done through the HTML Document Object Model (DOM). The
DOM is what is known as a retained mode graphical library. Retained mode graphics retain a
tree known as a scene graph. This scene graph keeps track of all the graphical elements in
our model and how to render them. The nice thing about retained mode graphics is that
they are straightforward for a developer to manage. The graphical library does all the
heavy lifting and keeps track of our objects for us as well as where they render. The
downside is that a retained mode system takes up a lot more memory and provides a lot
less control to the developer. When we write HTML5 games, we could take images
rendered in the DOM using HTML elements and move those elements around using
JavaScript or CSS animations to manipulate the positions of those images within the DOM
directly.

However, this would, in most circumstances, make the game painfully slow. Every time we
move an object in our DOV, it forces our browser to recalculate the position of all other
objects within our DOM. Because of this, manipulating objects from within our DOM to
make web games is usually a non-starter.

Immediate mode versus retained mode

Immediate mode is frequently thought of as the opposite of retained mode, but, in practice,
when we write code for an immediate mode system, we may build on top of an API that
gives us some of the functionality of a retained mode library. Inmediate mode forces the
developer to do all or most of the heavy lifting done by a retained mode library. We, as
developers, are forced to manage our scene graph, and understand what graphical objects
we need to render and how and when those objects must render. In short, it is a lot more
work, but if done well, the payoff is a game that will render much faster than what is
possible to render using the DOM.

You might be asking yourself right now: How do I go about using this Immediate Mode thingy?
Enter the HTML5 Canvas! In 2004, Apple Inc. developed the canvas element as an
immediate mode display tag for Apple's proprietary browser technology. The canvas
partitions off a section of our web page, which allows us to render to that area using
immediate mode rendering. That will enable us to render to a part of the DOM (the canvas)
without requiring the browser to recalculate the position of all the elements from within the
DOM. That allows the browser to optimize the rendering of the canvas further, using the
computer's Graphical Processing Unit (GPU).

[48]

HTMLS5 and WebAssembly Chapter 2

Adding a canvas to the Emscripten template

In an earlier part of this chapter, we discussed making calls to the Emscripten
WebAssembly app from a shell template. Now that you know how to make the interaction
work between JavaScript and WebAssembly, we can add a canvas element back into the
template and start to manipulate that canvas using the WebAssembly module. We are
going to create a new . c file that will call a JavaScript function passing it an x and y
coordinate. The JavaScript function will manipulate a spaceship image, moving it around
the canvas. We will also create a brand new shell file called canvas_shell.html.

As we did for the previous version of our shell, we will start by breaking this file down into
four sections to discuss it at a high level. We will then discuss the essential parts of this file
a piece at a time.

1. The beginning of the HTML file starts with the opening HTML tag and the head
element:

<!doctype html>
<html lang="en-us">
<head>

<meta charset="utf-8">

<meta http-equiv="Content-Type" content="text/html;
charset=utf-8">

<title>Canvas Shell</title>

<link href="canvas.css" rel="stylesheet" type="text/css">
</head>

2. After that, we have the opening body tag, and we have removed many of the
HTML elements that we had in the earlier version of this file:

<body>
<canvas id="canvas" width="800" height="600"
oncontextmenu="event .preventDefault () "></canvas>

<textarea class="em_textarea" id="output" rows="8"></textarea>

3. Next, there is the opening script tag, a few global JavaScript variables, and a
few new functions that we added:

<script type='text/javascript'>
var img = null;
var canvas = null;
var ctx = null;
function ShipPosition(ship_x, ship_y) {
if(img == null) {

[49]

HTMLS5 and WebAssembly Chapter 2

return;
}
ctx.fillStyle = "black";
ctx.fillRect (0, 0, 800, 600);
ctx.save () ;
ctx.translate (ship_x, ship_vy);
ctx.drawImage (img, 0, 0, img.width, img.height);
ctx.restore();
}
function ModuleLoaded() {
img = document.getElementById('spaceship');
canvas = document.getElementById('canvas');
ctx = canvas.getContext ("2d");

}
4. After the new JavaScript functions, we have the new definition of the Module
object:
var Module = {
preRun: [],
postRun: [ModuleLoaded],
print: (function() {
var element = document.getElementById('output');
if (element) element.value = ''; // clear browser cache

return function (text) {
if (arguments.length > 1) text =
Array.prototype.slice.call (arguments) .join(' ');
// uncomment block below if you want to write
to an html element
/*
text = text.replace(/&/g, "&");

(
text = text.replace(/</g, "<");
text = text.replace(/>/g, ">");
text = text.replace('\n', '
', 'g');
*/

console.log(text);
if (element) {
element.value += text + "\n";
element.scrollTop = element.scrollHeight;
// focus on bottom
}
}i
POy
printErr: function (text) {
if (arguments.length > 1) text =
Array.prototype.slice.call (arguments) .join ("' ');
console.error (text);
}I

[50]

HTML5 and WebAssembly Chapter 2

canvas: (function() {
var canvas = document.getElementById('canvas');
canvas.addEventListener ("webglcontextlost",
function(e) |
alert ('WebGL context lost. You will need to
reload the page.');
e.preventDefault (); 1},
false);
return canvas;
POy
setStatus: function (text) {
if (!Module.setStatus.last) Module.setStatus.last =
{ time: Date.now (), text: "' };
if (text === Module.setStatus.last.text) return;
var m = text.match (/ ([~ (]1+)\ ((\d+
(\o\Nd+) 2)\N/ (\d+)\) /) ;

var now Date.now () ;

// if this is a progress update, skip it if too
soon
if (m && now - Module.setStatus.last.time < 30)

return;
Module.setStatus.last.time = now;
Module.setStatus.last.text = text;
if (m) |
text = m[1];
}
console.log("status: " + text);

}I
totalDependencies: 0,
monitorRunDependencies: function(left) {
this.totalDependencies =
Math.max (this.totalDependencies, left);

Module.setStatus (left ? 'Preparing... (' +
(this.totalDependencies-left) +
'/'" + this.totalDependencies + ')' : 'All
downloads complete.');
}
bi
Module.setStatus ('Downloading...");
window.onerror = function() {

Module.setStatus ('Exception thrown, see JavaScript
console');

Module.setStatus = function (text) {
if (text) Module.printErr (' [post-exception status]
'+ text);

Fi
Fi

[51]

HTMLS5 and WebAssembly Chapter 2

The last few lines close out our tags and include the {{{ SCRIPT }}} Emscripten tag:

</script>
{{{ SCRIPT }}}
</body>
</html>

Those previous four blocks of code define our new canvas_shell.htnl file. If you would

like to download the file, you can find it on GitHub at the following address: https://
github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/

master/Chapter02/canvas.html.

Now that we have looked at the code at a high level, we can look at the source in more
detail. In the head section of the HTML, we are changing the title and the name of the
CSS file that we are linking. Here is the change in the HTML head:

<title>Canvas Shell</title>
<link href="canvas.css" rel="stylesheet" type="text/css">

We do not need most of the elements that were in the previous <body> tag. We need

a canvas, which we had removed from the shell_minimal.html file provided by
Emscripten, but now we need to add it back in. We are keeping the textarea that was
initially in the minimal shell, and we are adding a new img tag that has a spaceship image
taken from a TypeScript canvas tutorial on the embed.com website at https://www.embed.
com/typescript—games/draw—image.html.}{ENSarethEIQGVVI{TTAIJtagSiD

the body element:

<canvas id="canvas" width="800" height="600"
oncontextmenu="event .preventDefault () "></canvas>

<textarea class="em_textarea" id="output" rows="8"></textarea>

Finally, we need to change the JavaScript code. The first thing we are going to do is add
three variables at the beginning to hold a reference to the canvas element, the canvas
context, and the new spaceship img element:

var img = null;
var canvas = null;
var ctx = null;

The next thing we are adding to the JavaScript is a function that renders the spaceship
image to the canvas at a given x and y coordinate:

function ShipPosition(ship_x, ship_y) {
if(img == null) {
return;

[52]

https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://github.com/PacktPublishing/Hands-On-Game-Development-with-WebAssembly/blob/master/Chapter02/canvas.html
https://www.embed.com
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html
https://www.embed.com/typescript-games/draw-image.html

HTMLS5 and WebAssembly Chapter 2

t

ctx.fillStyle = "black";

ctx.fillRect (0, 0, 800, 600);

ctx.save () ;

ctx.translate (ship_x, ship_vy);
ctx.drawImage (img, 0, 0, img.width, img.height);
ctx.restore();

}

This function first checks to see whether the img variable is a value other than null. That
will let us know if the module has been loaded or not because the img variable starts set to
null. The next thing we do is clear the canvas with the color black using

the ctx.fillStyle = “black” line to set the context fill style to the color black, before
calling ctx.fillRect to draw a rectangle that fills the entire canvas with a black rectangle.
The next four lines save off the canvas context, translate the context position to the ship's x
and y coordinate value, and then draw the ship image to the canvas. The last one of these
four lines performs a context restore to set our translation back to (0,0) where it started.

After defining this function, the WebAssembly module can call it. We need to set up some
initialization code to initialize those three variables when the module is loaded. Here is that
code:

function ModuleLoaded () {
img = document.getElementById('spaceship');
canvas = document.getElementById('canvas');
ctx = canvas.getContext ("2d");

var Module = {
preRun: [],
[M

postRun: odulelLoaded],

The ModuleLoaded function uses getElementById to set img and canvas to the
spaceship and canvas HTML elements, respectively. We will then

call canvas.getContext ("2d”) to get the 2D canvas context and set the ctx variable to
that context. All of this gets called when the Module object finishes loading because we
added the ModuleLoaded function to the postRun array.

We have also added back the canvas function that was on the Module object in the
minimum shell file, which we had removed along with the canvas in an earlier tutorial.
That code watches the canvas context and alerts the user if that context is lost. Eventually,
we will want this code to fix the problem, but, for now, it is good to know when it happens.
Here is that code:

canvas: (function() {
var canvas = document.getElementById('canvas');

[53]

HTMLS5 and WebAssembly Chapter 2

// As a default initial behavior, pop up an alert when webgl
context is lost. To make your
// application robust, you may want to override this behavior
before shipping!
// See http://www.khronos.org/registry/webgl/specs/latest/1.0/#5.15.2
canvas.addEventListener ("webglcontextlost", function(e) {
alert ('WebGL context lost. You will need to reload the page.');
e.preventDefault (); }, false);
return canvas;

POy

To go along with this new HTML shell file, we have created a new canvas. c file to
compile into a WebAssembly module. Be aware that, in the long run, we will be doing a lot
less in our JavaScript and a lot more inside our WebAssembly C/C++ code. Here is the new
canvas. c file:

#include <emscripten.h>
#include <stdlib.h>
#include <stdio.h>

int ship_x = 0;
int ship_y 0;

void MoveShip () {
ship_x += 2;
ship_y++;

if(ship_x >= 800) {
ship_x = -128;

if(ship_y >= 600) {
ship_y -128;

}
EM_ASM(ShipPosition($0, $1), ship_x, ship_y);

int main () {
printf ("Begin main\n");
emscripten_set_main_loop (MoveShip, 0, 0);
return 1;

[54]

HTMLS5 and WebAssembly Chapter 2

To start, we create a ship_x and ship_y variable to track the ship's x and y coordinates.
After that, we create a Moveship function. This function increments the ship's x position by
2 and the ship's y position by 1 each time it is called. It also checks to see whether the ship's
x coordinates have left the canvas on the right side, which moves it back to the left side if it
has, and does something similar if the ship has moved off the canvas on the bottom. The
last thing this function does is call our JavaScript ShipPosition function, passing it the
ship's x and y coordinates. That final step is what will draw our spaceship to the new
coordinates on the HTML5 canvas element.

In the new version of our main function, we have the following line:

emscripten_set_main_loop (MoveShip, 0, 0);

This line turns the function passed in as the first parameter into a game loop. We will go
into more detail about how emscripten_set_main_loop works in a later chapter, but for
the moment, know that this causes the Moveship function to be called every time a new
frame is rendered to our canvas.

Finally, we will create a new canvas. css file that keeps the code for
the body and #output CSS and adds a new #canvas CSS class. Here are the contents of the
canvas.css file:

body {
margin-top: 20px;
}

#output {
background-color: darkslategray;
color: white;
font-size: 16px;
padding: 10px;
margin-left: auto;
margin-right: auto;
display: block;
width: 60%;
}

#canvas {
width: 800px;
height: 600px;
margin-left: auto;
margin-right: auto;
display: block;

[551]

HTMLS5 and WebAssembly Chapter 2

After everything is complete, we will use emcc to compile the new canvas.html file as

well as canvas.wasm and the canvas. js glue code. Here is what the call to emcc will look
like:

emcc canvas.c —o canvas.html —--shell-file canvas_shell.html

Immediately after emcc, we pass in the name of the . c file, canvas. ¢, which will be used
to compile our WASM module. The -o flag tells our compiler that the next argument will
be the output. Using an output file with a . html extension tells emcc to compile the
WASM, JavaScript, and HTML files. The next flag passed in is ~—shell-file, which tells
emcc that the argument to follow is the name of the HTML shell file, which will be used to
create the HTML file of our final output.

It is important to remember that you must run WebAssembly apps using
a web server, or with emrun. If you would like to run your WebAssembly
app using emrun, you must compile it with the ——emrun flag. The web
browser requires a web server to stream the WebAssembly module. If you
attempt to open an HTML page that uses WebAssembly in a browser
directly from your hard drive, that WebAssembly module will not load.

The following is a screenshot of canvas.html:

Hello World
Initialization Complete

Figure 2.3: Our first WebAssembly HTMLS5 canvas app

[561]

HTMLS5 and WebAssembly Chapter 2

Summary

In this chapter, we discussed the Emscripten minimal shell HTML file, what its various
components are, and how they work. We also wrote about what parts of the file we can do
without, if we are not using our shell to generate canvas code. You learned about the
Module object, and how it is the interface that uses the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>