

Building Android UIs with
Custom Views

Build amazing custom user interfaces with Android custom
views

Raimon Ràfols Montané

BIRMINGHAM - MUMBAI

Building Android UIs with Custom Views
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2017

Production reference: 1241017

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78588-286-9

www.packtpub.com

http://www.packtpub.com

Credits

Author
Raimon Ràfols Montané

Copy Editor
Safis Editing

Reviewer
Basil Miller

Project Coordinator
Sheejal Shah

Commissioning Editor
Amarabha Banerjee

Proofreader
Safis Editing

Acquisition Editor
Reshma Raman

Indexer
Rekha Nair

Content Development Editor
Sreeja Nair

Graphics
Jason Monteiro

Technical Editor
Leena Patil

Production Coordinator
Melwyn D'sa

About the Author
Raimon Ràfols Montané is a software engineer currently living in the Barcelona area. He
has been working on mobile devices since their early stages, ranging from monochrome
devices to the current smartphones. During this time, he has worked in several areas:
B2C/B2E/B2B apps, portals, and mobile gaming. Due to this broad experience, he has
expertise in many technologies and, especially in UI, build systems, and client-server
communications.

He is currently working as an engineering manager at AXA Group Solutions in Barcelona,
taking care of all the engineering and development processes, mobile application quality,
and leading the R&D team. In the past, he has worked abroad for Imagination Technologies
near London and for Service2Media in the Netherlands.

In his spare time, he enjoys taking part in hackathons, photography, and speaking  at
conferences. Raimon has won more than 40 international awards, including AngelHack
Barcelona 2015, Facebook World Hack Barcelona. Also, he has secured the second place at
JS1k 2016. He was the chairman of the Transforming Industries Summit at the Mobile
World Congress Shanghai 2017, where he also spoke about Enterprise Transformation. In
addition, he has given talks speaking about Android and Java performance, bytecode,
custom views, and entrepreneurship in at several conferences around the world.

In addition, Raimon is the coauthor of Learning Android Application Development, also
published by Packt, and he has been the technical reviewer of several other titles, including
Mastering Android NDK and Android Things Projects, among others.

Acknowledgements
I'd really like to thank Laia Gomà; without your love, patience, and understanding, this
book wouldn't have been possible. Also, I'd like to thank Rafa Cosin and my parents, as
without their support and encouragement, I’d not be doing what I do today.
I’d also like to thank everyone who inspired my curiosity about real-time computer
graphics and performance. Without that inspiration, I wouldn't have started building
custom views and I definitely wouldn’t be speaking at conferences about low-level bytecode.
Last but not least, I'd like to thank everyone who challenged me and helped me grow in my
professional career; people like Enric Agut, Diego Morales, Alfred Ferrer, Carlos Carrasco,
Pau Vivancos, Miquel Barceló, David Domingo, Marcel Roorda, Alberto Chamorro, Teun
van Run, Tom van Wietmarschen, Josep Cedó, Yves Caseau, Joanne Pupo, Jordi Valldaura,
Mathieu Sivade, Chris Jakob, Tomas Kustrzynski, Ramon Salla, Bartłomiej Żarnowski,
Radosław Holewa, Inigo Quilez, and all those who I have forgotten to mention here.

About the Reviewer
Basil Miller is the cofounder of Devlight. An Ivano-Frankivsk based leading Android
developer, Basil has over 4 years' experience of being a developer, which has endowed him
with the opportunity to hold his current position.

His educational background includes a bachelor's degree in computer science, which he
enhanced by attending Java SE courses for 1 year. Besides the status of cofounder,
organizer, and speaker of GDG Ivano-Frankivsk, Basil is a part of the core team of Devlight.
This technical background has enabled him to develop and train some personal skills, such
as team organizing, self-employment, and communication.

Since 2014, Android developers all over the world have been watching his progress and
using his free products developed in the role of open source Android UI widgets provider.
His products are focused on project architecture, adhering to guidelines, code glance, long-
lasting integration, and much more. Another significant achievement are his third-party
libraries, which have reached the top of the popular trend charts and stayed there for a long
time.

During his time working as a part of Devlight, a lot of products for business solutions were
projected and organized by Basil. Projects that he usually works on relate to fintech,
currency exchange, delivery services, social networks, and payment system SDKs. His
personal duties on the afore mentioned projects are UI implementation, structure creation,
team leading, and technical support. Therefore, he has gained the following key skills and
competencies: a master's degree in UI realization (canvas, animations, and layout
framework), mentoring new developers, and strong knowledge of custom views.

Being a cofounder of Devlight, Basil is able and willing to collaborate on work on the new
business projects and start-ups. Also, it is easy to contact Basil in order to involve him into
projects as a mobile development consultant.

Basil has garnered recognition among coworkers, partners, and developers abroad. So, the
business of Devlight and its achievements are associated with the name Basil Miller.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

https://www.packtpub. com/ mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at https://www.amazon. com/ dp/ 1785882864.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1785882864
https://www.amazon.com/dp/1785882864
https://www.amazon.com/dp/1785882864
https://www.amazon.com/dp/1785882864
https://www.amazon.com/dp/1785882864
https://www.amazon.com/dp/1785882864
https://www.amazon.com/dp/1785882864
https://www.amazon.com/dp/1785882864
https://www.amazon.com/dp/1785882864
https://www.amazon.com/dp/1785882864
https://www.amazon.com/dp/1785882864
https://www.amazon.com/dp/1785882864
https://www.amazon.com/dp/1785882864

Table of Contents
Preface 1

Chapter 1: Getting Started 7

What's a custom view 7
The need for custom views 8
Examples on the market 9

Setting up the environment 11
Installing development tools 12
How to set up an emulator 16
How to set up a real device for developing 20

Creating our own first custom view 21
Extending a view 21
Creating a simple view from scratch 25

Summary 27

Chapter 2: Implementing Your First Custom View 28

Measuring and parameterizing our custom view 28
Measuring our custom view 29
Parameterizing our custom view 34

Instantiating custom views 37
Instantiating custom views from code 37
Builder pattern 39

Creating a custom layout 44
Extending ViewGroup 44

Basic rendering 48
Creating the basic circular activity indicator 48

Summary 56

Chapter 3: Handling Events 57

Basic event handling 57
Reacting to touch events 57
Drag events 62
Complex layouts 64

Advanced event handling 68
Detecting gestures 68

Summary 71

[ii]

Chapter 4: Advanced 2D Rendering 72

Drawing operations 72
Bitmaps 73
Using the Paint class 77
Drawing more primitives 82
Drawing text 93
Transformations and operations 97
Putting it all together 101

Summary 102

Chapter 5: Introducing 3D Custom Views 103

Introduction to OpenGL ES 103
Getting started with OpenGL ES in Android 104
Drawing basic geometry 107

Drawing geometry 114
Adding volume 115
Adding textures 123
Loading external geometry 127

Summary 136

Chapter 6: Animations 137

Custom-made animations 137
Timed frame animations 138
Fixed timestep 143

Using Android SDK Classes 152
ValueAnimator 152
ObjectAnimator 155

Summary 157

Chapter 7: Performance Considerations 158

Performance impact and recommendations 158
The impact of not following the best practices 159
Code optimization 163
Mocking up the preview window 173

Summary 174

Chapter 8: Sharing Our Custom View 175

Best practices for sharing our custom view 176
Considerations and recommendations 176
Configurable 179

Publishing our custom view 180

[iii]

Open sourcing our custom view 180
Creating a binary artifact 184

Summary 193

Chapter 9: Implementing Your Own EPG 194

Building an EPG 194
EPG basics and animation setup 195
Interaction 205
Zooming 207

Configurations and Extensions 209
Making it configurable 209
Implementing callbacks 212

Summary 214

Chapter 10: Building a Charts Component 216

Building a basic chart custom view 216
Margins and padding 217
Basic implementation 218
Optimizations and improvements with Paths 220
Background lines and details 223
Customizations 232

Adding advanced features 233
Real-time updates 234
Multiple data sets 235
Zooming and scrolling 239

Summary 243

Chapter 11: Creating a 3D Spinning Wheel Menu 244

Creating an interactive 3D custom view 244
Adding interactions 245
Improving interactions and animations 248
Adding actionable callbacks 251
Customizations 253

Beyond the basic implementation 258
Rendering text 258
Multiple faces 266

Summary 270

Index 271

Preface
Many years ago, before the launch of Android and the iPhone, one of the major concerns
was having a central place to purchase and download mobile applications. Nowadays, we
manage to solve this issue with widely available centralized application stores such as
Google Play, at the expense of application discoverability.

Google Play, like any other mobile application store, is highly saturated. Unless an
application does something unique or has something special, it's extremely hard to stand
out from the dozens of applications doing approximately the same, or even if they’re
completely unrelated.

Increasing marketing spending might temporarily alleviate the issue but, in the long term,
applications still need to figure out that unique functionality or that detail that makes them
different.

One way to make a distinctive application is to slightly diverge from the Android standard
widgets and UI components and include a specific custom view custom menu, or, at the
end of the day, anything that makes it exceptional. We should be aware that this doesn't
mean we should completely ignore the Android standard widgets and rewrite the whole UI
of the application. As with almost everything, do user tests and discover what works and
what doesn’t work for them. Explore new options and solve the pains they have, but don't
overdo it. Sometimes, creating a particular menu on top of your application might solve
navigation problems, or a well-defined animation might communicate the right transition
for the application's users.

In this book, we will see how to start building custom views for Android and integrate
them into our applications. We’ll see in detail how to interact with them and add
animations and comprehensive examples, both using 2D and 3D rendering capabilities.
Finally, we will also see how to share our custom views so they can be reused in our
enterprise environment, and also how to open source them and make them available to the
Android development community.

Preface

[2]

What this book covers
Chapter 1, Getting Started, explains what custom views are and when we need them, and
shows you how to build your first custom view.

Chapter 2, Implementing Your First Custom View, covers in more details about measurement,
instantiating, parameterizing, and some basic rendering to start getting a feeling for what
we can do with custom views.

Chapter 3, Handling Events, shows the reader how to make a custom view interactive and
react to user interactions.

Chapter 4, Advanced 2D Rendering, adds additional rendering primitives and operations
and how to combine them to build more complex custom views.

Chapter 5, Introducing 3D Custom Views, as we are not only limited to 2D rendering, this
chapter introduces how we can use OpenGL ES to render custom Views in 3D.

Chapter 6, Animations, covers how to add animations to custom views, both by using
standard Android components and by doing it ourselves.

Chapter 7, Performance Considerations, exposes some recommendations and best practices
when building a custom view and what the impact of not following them could be.

Chapter 8, Sharing Our Custom View, covers how to package and share our custom view
and make it publicly available.

Chapter 9, Implementing Your Own EPG, shows how to build a more complex example of a
custom view by combining many of the things we’ve seen in the book.

Chapter 10, Building a Charts Component, shows in detail how to build a chart custom view
and make it customizable step by step.

Chapter 11, Creating a 3D Spinning Wheel Menu, covers how to build a more complex 3D
custom view that can be used as a selection menu.

Preface

[3]

What you need for this book
In order to follow the examples in this book, you’ll need Android Studio installed. We’ll
briefly cover how to install and set up a device emulator in the first chapter. It’s highly
recommended to get at least Android Studio 3.0. At the time of writing this book, Android
Studio 3.0 is still beta, but stable enough to develop, run, and test all the examples. In
addition, our recommendation is to have an Android device to better experience user
interactions in the custom views we’ll create, but they will also work in an Android
emulator.

Who this book is for
This book is for developers who want to improve their Android application development
skills and build an Android application using custom views.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:

"We can use the getWidth() and getHeight() methods to get the width and height,
respectively, of the view."

A block of code is set as follows:

<com.packt.rrafols.customview.OwnTextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!" />

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

float maxLabelWidth = 0.f;
if (regenerate) {
 for (int i = 0; i<= 10; i++) {
 float step;
 if (!invertVerticalAxis) {
 step = ((float) i / 10.f);

Preface

[4]

 } else {
 step = ((float) (10 - i)) / 10.f;
}

New terms and important words are shown in bold, for example, they appear in the text
like this: "The layouts are usually known as ViewGroup."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http:/ /www.
packtpub.com. If you purchased this book elsewhere, you can visit http:/ /www. packtpub.
com/support and register to have the files e-mailed directly to you.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Building- Android- UIs- with- Custom- Views. We also have other code
bundles from our rich catalog of books and videos available at https:/ / github. com/
PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http:/ /www. packtpub. com/ submit- errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https:/ /www. packtpub. com/ books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

https://github.com/PacktPublishing/Building-Android-UIs-with-Custom-Views
https://github.com/PacktPublishing/Building-Android-UIs-with-Custom-Views
https://github.com/PacktPublishing/Building-Android-UIs-with-Custom-Views
https://github.com/PacktPublishing/Building-Android-UIs-with-Custom-Views
https://github.com/PacktPublishing/Building-Android-UIs-with-Custom-Views
https://github.com/PacktPublishing/Building-Android-UIs-with-Custom-Views
https://github.com/PacktPublishing/Building-Android-UIs-with-Custom-Views
https://github.com/PacktPublishing/Building-Android-UIs-with-Custom-Views
https://github.com/PacktPublishing/Building-Android-UIs-with-Custom-Views
https://github.com/PacktPublishing/Building-Android-UIs-with-Custom-Views
https://github.com/PacktPublishing/Building-Android-UIs-with-Custom-Views
https://github.com/PacktPublishing/Building-Android-UIs-with-Custom-Views
https://github.com/PacktPublishing/Building-Android-UIs-with-Custom-Views
https://github.com/PacktPublishing/Building-Android-UIs-with-Custom-Views
https://github.com/PacktPublishing/Building-Android-UIs-with-Custom-Views
https://github.com/PacktPublishing/Building-Android-UIs-with-Custom-Views
https://github.com/PacktPublishing/Building-Android-UIs-with-Custom-Views
https://github.com/PacktPublishing/Building-Android-UIs-with-Custom-Views
https://github.com/PacktPublishing/Building-Android-UIs-with-Custom-Views
https://github.com/PacktPublishing/Building-Android-UIs-with-Custom-Views
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[6]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

1
Getting Started

You might be wondering what a custom view is; that's alright, we'll cover that and way
more in this book. If you've been developing Android applications for a while, you've most
probably used the standard Android views or widgets tons of times. These are, for example:
TextView, ImageView, Button, ListView, and so on. A custom view is slightly different. To
summarize it quickly, a custom view is a view or a widget where we've implemented its
behavior ourselves. In this chapter, we'll cover the very basics steps we'll need to get
ourselves started building Android custom views and understand where we should use
them and where we should simply rely on the Android standard widgets. More specifically,
we will talk about the following topics:

What's a custom view and why do we need them?
How to set up and configure our environment to develop custom views
Creating our very own first custom view

What's a custom view
As we have just mentioned, a custom view is a view where we've implemented its behavior
ourselves. That was an oversimplification, but it was a good way to start. We don't really
have to implement its complete behavior ourselves. Sometimes, it can just be a simple
detail, or a more complex feature or even the whole functionality and behavior such as
interaction, drawing, resizing, and so on. For example, tweaking the background color of a
button as a custom view implementation, it's a simple change, but creating a bitmap-based
menu that rotates in 3D is a complete different story in development time and complexity.
We'll show how to build both of them in this book but, in this chapter, we'll only focus on
the very simple example and we'll add more features in the chapters to come.

Getting Started

[8]

Throughout the book, we'll be referring both to custom view and to custom layouts. The
same definition of custom view can also be applied to layouts, but with the main difference
that a custom layout will help us to lay out the items it contains with the logic we create and
position them the precise way we would like. Stay tuned, as later on we'll learn how to do
so as well!

The layouts are usually known as ViewGroup. The most typical examples and those you
probably have heard of and most probably in your applications are: LinearLayout,
RelativeLayout, and ConstraintLayout.

To get more information about Android views and Android layouts, we can always refer to
the official Android developer documentation:
https://developer.android.com/develop/index.html.

The need for custom views
There are lovely Android applications on Google Play and in other markets: Amazon, built
only using the standard Android UI widgets and layouts. There are also many other
applications that have that small additional feature that makes our interaction with them
easier or simply more pleasing. There is no magic formula, but maybe by just adding
something different, something that the user feels like "hey it's not just another app for..."
might increase our user retention. It might not be the deal breaker, but it can definitely
make the difference sometimes.

Some custom views can cause so much impact that can cause other applications wanting to
imitate it or to build something similar. This effect produces a viral marketing of the
application and it also gets the developer community involved as many similar components
might appear in the form of tutorials or open source libraries. Obviously, this effect only
lasts a limited period of time, but if that happens it's definitely worth it for your application
as it'll get more popular and well-known between developers because it'll be something
special, not just another Android application.

One of the main reasons to create our own custom views for our mobile application is,
precisely, to have something special. It might be a menu, a component, a screen, something
that might be really needed or even the main functionality for our application or just as an
additional feature.

In addition, by creating our custom view we can actually optimize the performance of our
application. We can create a specific way of laying out widgets that otherwise will need
many hierarchy layers by just using standard Android layouts or a custom view that
simplifies rendering or user interaction.

https://developer.android.com/develop/index.html

Getting Started

[9]

On the other hand, we can easily fall in the error of trying to custom build everything.
Android provides an awesome list of widget and layout components that manages a lot of
things for ourselves. If we ignore the basic Android framework and try to build everything
by ourselves it would be a lot of work. We would potentially struggle with a lot of issues
and errors that the Android OS developers already faced or, at least, very similar ones and,
to put it up in one sentence, we would be reinventing the wheel.

Examples on the market
We all probably use great apps that are built only using the standard Android UI widgets
and layouts, but there are many others that have some custom views that we don't know or
we haven't really noticed. The custom views or layouts can sometimes be very subtle and
hard to spot.

We'd not be the first ones to have a custom view or layout in our application. In fact, many
popular apps have some custom elements in them. Let's show some examples:

The first example will be the Etsy application. The Etsy application had a custom layout
called StaggeredGridView. It was even published as open source in GitHub. It has been
deprecated since 2015 in favor of Google's own StaggeredGridLayoutManager used
together with RecyclerView.

You can check it yourself by downloading the Etsy application from Google Play, but just to
have a quick preview, the following screenshot is actually from the Etsy application
showing the StaggeredGrid layout:

Getting Started

[10]

There are many other potential examples, but a second good example might be the
electronic programming guide of Ziggo, one of the largest cable operators in the
Netherlands. The electronic programming guide is a custom view rendering different boxes
for the TV shows and changing color for what's ahead and behind current time.

It can be downloaded from the Dutch Google Play only, but anyway, the following
screenshot shows how the application is rendering the electronic programming guide:

Finally, a third example and a more recently published application is Lottie from Airbnb.
Lottie is a sample application that renders Adobe After Effects animations in real time.

Lottie can be downloaded directly from Google Play, but the following screenshot shows a
quick preview of the application:

Getting Started

[11]

The rendering view and the custom font are examples of custom rendering. For more
information about Lottie refer to:
http://airbnb.design/introducing-lottie/.

We've just seen some examples, but there are many more available. A good site to discover
them or to see what is available is Android Arsenal:
https://android-arsenal.com/.

Setting up the environment
Now that we have had a brief introduction to custom views, why we need them, and some
examples on the market, let's get ourselves started building our own. Our first natural step,
if we haven't already done so, is to install Android development tools. If you've got
Android Studio already installed, you can skip this section and go directly to the action.
Most examples in this book will work perfectly with Android Studio 2.3.3, but later
chapters will require Android Studio 3.0. At the time of writing, Android Studio 3.0 is still
in beta, but it is highly recommended for testing all the examples provided.

http://airbnb.design/introducing-lottie/
https://android-arsenal.com/

Getting Started

[12]

Installing development tools
In order to get started creating your own custom views, you only need what you'll normally
need to develop Android mobile applications. In this book, we will be using Android
Studio, as it's the tool recommended by Google.

We can get the latest version of Android Studio from its official site:
https://developer. android. com/ studio/ index. html.

Once we've downloaded the package for our computer, we can proceed with the
installation:

https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html

Getting Started

[13]

Now, we can create a new project that we'll use to take our first baby steps on custom
views.

Getting Started

[14]

After selecting the Application name, the Company Domain, which will be reversed into
the application Package name and the Project location, Android Studio will ask us what
type of project we want to create:

Getting Started

[15]

For this example, we don't need anything too fancy, just phone and tablet and API 21
support is more than enough. Once we've done that, we can add an Empty Activity:

In the case you need help installing Android Studio, there is a step by step guide on the
Learning Android Application Development, Packt Publishing or there is always plenty of
information on the Android developer documentation site. For more information, refer to:
https://www.packtpub.com/application-development/learning-android-application-d
evelopment

Now, we are ready to run this app on a device emulator or on a real device.

https://www.packtpub.com/application-development/learning-android-application-development
https://www.packtpub.com/application-development/learning-android-application-development

Getting Started

[16]

How to set up an emulator
To set up an emulator we need to run the Android Virtual Device Manager (AVD
Manager). We can find its icon on the top bar, just next to the play/stop application icons.

Once we've executed the Android Device Manager, we can add or manage our virtual
devices from there, as shown in the following screenshot:

Getting Started

[17]

Clicking on Create Virtual Device will give us the opportunity to use one of the Android
device definitions or even create our own hardware profile, as shown in the following
screenshot:

Getting Started

[18]

Once we've selected the hardware, we've got to choose the software, or the system image,
that will run on it. Later on, we can add all the combinations we need for testing: multiple
different devices, or the same device with different Android version images, or even a
combination of both.

Getting Started

[19]

The last step is to name our AVD, review our hardware and software selection, and we're
set!

Getting Started

[20]

How to set up a real device for developing
It is fine to use an emulator for testing and debugging, but sometimes we really want to test
or put the application on a real device. There are a few steps we have to do in order to
enable development on our device. First, we need to enable our device for development. We
can easily do that by just clicking seven times on the Settings -> About menu -> Build
Number since Android 4.2. Once we've done this, there will be a new menu option called
Developer options. We have multiple options there that we can explore, but what we need
right now is to enable USB debugging.

Getting Started

[21]

If USB debugging is enabled, we'll see our device and running emulators on the device
selection:

Creating our own first custom view
Now that we have set up our environment and we can run and debug Android applications
on both an emulator and a real device, we can start creating our own first custom view. To
keep it simple, we will first easily modify an existing view and we will proceed, later on, to
create our own view from scratch.

Extending a view
Using the example from the previous section, or just creating a new project with an Empty
Activity if you've skipped it, we will change the TextView with our own implementation.

Getting Started

[22]

If we take a look at the default layout XML file, usually called activity_main.xml if you
haven't changed it during project creation, we can see there is TextView inside a
RelativeLayout:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/activity_main"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 tools:context="com.packt.rrafols.customview.MainActivity">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!" />
</RelativeLayout>

Let's change that TextView to a custom class that we will implement just after this:

<com.packt.rrafols.customview.OwnTextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="Hello World!" />

We've used the com.packt.rrafols.customview package, but please change it
accordingly to the package name of your application.

To implement this class, we will first create our class that extends TextView:

package com.packt.rrafols.customview;

import android.content.Context;
import android.util.AttributeSet;
import android.widget.TextView;

public class OwnTextView extends TextView {

 public OwnTextView(Context context, AttributeSet attributeSet) {
 super(context, attributeSet);
 }
}

Getting Started

[23]

This class, or custom view, will behave like a standard TextView. Take into consideration
the constructor we've used. There are other constructors, but we'll focus only on this one for
now. It is important to create it as it'll receive the context and the parameters we defined on
the XML layout file.

At this point we're only passing through the parameters and not doing anything fancy with
them, but let's prepare our custom view to handle new functionality by overriding the
onDraw() method:

@Override
protected void onDraw(Canvas canvas) {
 super.onDraw(canvas);
}

By overriding the onDraw() method we're now in control of the drawing cycle of the
custom view. If we run the application, we'll not notice any difference from the original
example as we haven't added any new behavior or functionality yet. In order to fix this, let's
do a very simple change that will prove to us that it is actually working.

On the onDraw() method, we'll draw a red rectangle covering the whole area of the view as
follows:

@Override
 protected void onDraw(Canvas canvas) {
 canvas.drawRect(0, 0, getWidth(), getHeight(), backgroundPaint);
 super.onDraw(canvas);
 }

We can use the getWidth() and getHeight() methods to get the width and height
respectively of the view. To define the color and style we'll initialize a new Paint object,
but we'll do it on the constructor, as it is a bad practice to do it during the onDraw()
method. We'll cover more about performance later in this book:

private Paint backgroundPaint;

 public OwnTextView(Context context, AttributeSet attributeSet) {
 super(context, attributeSet);

 backgroundPaint= new Paint();
 backgroundPaint.setColor(0xffff0000);
 backgroundPaint.setStyle(Paint.Style.FILL);
 }

Getting Started

[24]

Here, we've initialized the Paint object to a red color using integer hexadecimal encoding
and set the style to Style.FILL so it will fill the whole area. By default, Paint style is set
to FILL, but it doesn't hurt to specifically set it for extra clarity.

If we run the application now, we'll see the TextView, which is our own class right now,
with a red background as follows:

The following code snippet is the whole implementation of the OwnTextView class. For
more details, check the Example01 folder in the GitHub repository for the full project:

package com.packt.rrafols.customview;

import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Paint;
import android.util.AttributeSet;
import android.widget.TextView;

public class OwnTextView extends TextView {

 private Paint backgroundPaint;

 public OwnTextView(Context context, AttributeSet attributeSet) {
 super(context, attributeSet);

 backgroundPaint = new Paint();
 backgroundPaint.setColor(0xffff0000);
 backgroundPaint.setStyle(Paint.Style.FILL);
 }

 @Override
 protected void onDraw(Canvas canvas) {
 canvas.drawRect(0, 0, getWidth(), getHeight(),
 backgroundPaint);
 super.onDraw(canvas);

Getting Started

[25]

 }
}

This example is only to show how we can extend a standard view and implement our own
behaviors; there are multiple other ways in Android to set a background color or to draw a
background color to a widget.

Creating a simple view from scratch
Now that we've seen how to modify an already existing View, we'll see a more complex
example: how to create our own custom view from scratch!

Let's start by creating an empty class that extends from View:

package com.packt.rrafols.customview;

import android.content.Context;
import android.util.AttributeSet;
import android.view.View;

public class OwnCustomView extends View {
 public OwnCustomView(Context context, AttributeSet attributeSet) {
 super(context, attributeSet);
 }
}

We will now add the same code as the previous example to draw a red background:

package com.packt.rrafols.customview;

import android.content.Context;
import android.graphics.Canvas;
import android.graphics.Paint;
import android.util.AttributeSet;
import android.view.View;

public class OwnCustomView extends View {

 private Paint backgroundPaint;

 public OwnCustomView(Context context, AttributeSet attributeSet) {
 super(context, attributeSet);

 backgroundPaint= new Paint();
 backgroundPaint.setColor(0xffff0000);
 backgroundPaint.setStyle(Paint.Style.FILL);

Getting Started

[26]

 }

 @Override
 protected void onDraw(Canvas canvas) {
 canvas.drawRect(0, 0, getWidth(), getHeight(),
 backgroundPaint);
 super.onDraw(canvas);
 }
}

If we run the application, as we can see in the following screenshot, we'll have a slightly
different result from the previous example. This is because in our previous example the
TextView widget was resizing to the size of the text. If we remember correctly, we had
android:layout_width="wrap_content" and
android:layout_height="wrap_content" in our layout XML file. This new custom
view we've just created doesn't know how to calculate its size.

Check the Example02 folder in the GitHub repository for the full implementation of this
simple example.

Getting Started

[27]

Summary
In this chapter, we have seen the reasoning behind why we might want to build custom
views and layouts, but also, that we have to apply common sense. Android provides a great
basic framework for creating UIs and not using it would be a mistake. Not every
component, button, or widget has to be completely custom developed, but by doing it so in
the right spot, we can add an extra feature that might make our application remembered.
Also, we've shown some examples of applications that are already in the market and they're
using custom views, so we know we are not alone out there! Finally, we've seen how to set
up the environment to get ourselves started and we began taking our own first baby steps
on custom views.

In the next chapter, we'll keep adding features; we'll see how to calculate the right size of
our custom view and learn more about custom rendering.

2
Implementing Your First

Custom View
In the previous chapter, we've seen how to create the foundations of a custom view, but
unless we add some more features and customizations it'll be pretty useless. In this chapter,
we'll continue building on top of these foundations, see how we can parameterize our
custom view to allow either ourselves or any other developer to customize them, and at the
end, cover some rendering that will enable us to build slightly more complex custom views.

In addition, as we've mentioned in the previous chapter, we can create custom layouts as
well. In this chapter, we'll see how to create a simple custom layout.

In more detail, we'll cover the following topics:

Measuring and parameterizing our custom view
Instantiating custom views
Creating custom layouts
Basic rendering

Measuring and parameterizing our custom
view
In order to have a good reusable custom view, it needs to be able to adapt to different sizes
and device resolutions, and to increase its reusability even more it should support
parameterization.

Implementing Your First Custom View

[29]

Measuring our custom view
In the quick example we built in the previous chapter, we delegated all sizes and
measurement to the parent view itself. To be honest, we haven't even delegated it; we just
didn't do anything specifically to take care of that. Being able to control the size and
dimensions of our custom view is something we definitely need to pay some attention to.
To start, we're going to override the onMeasure() method from view as follows:

@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
 super.onMeasure(widthMeasureSpec, heightMeasureSpec);
}

Reading the Android documentation about the onMeasure() method, we should see we
must call either setMeasuredDimension(int, int) or the superclass' onMeasure(int,
int). If we forget to do so, we'll get an IllegalStateException:

com.packt.rrafols.customview E/AndroidRuntime: FATAL EXCEPTION: main
Process: com.packt.rrafols.customview, PID: 13601
java.lang.IllegalStateException: View with id -1:
com.packt.rrafols.customview.OwnCustomView#onMeasure() did not set the
measured dimension by calling setMeasuredDimension() at
android.view.View.measure(View.java:18871)

There are three different modes in which our view's parent can indicate to our view how it
should calculate its size. We can get the mode by using the MeasureSpec.getMode(int)
method with each size spec widthMeasureSpec and heightMeasureSpec.

These modes are as follows:

MeasureSpec.EXACTLY

MeasureSpec.AT_MOST

MeasureSpec.UNSPECIFIED

We'll get MeasureSpec.EXACTLY when the size has been calculated or decided by the
parent. Our view will have that size even if it requires or returns a different size. If we get
MeasureSpec.AT_MOST we have more flexibility: we can be as big as we need but up to the
size we also have. Finally, if we received MeasureSpec.UNSPECIFIED, we can size our
view to whatever size we want or the view needs.

Using MeasureSpec.getSize(int), we can also get a size value from the size spec.

Implementing Your First Custom View

[30]

Now that we have all this, how do we know which values map to the width and height
parameters on our XML layout file? Easy to see, let's check. For example, if we specify
precise values as shown in the activity_main.xml file in the GitHub repository, we will
get the following code:

<com.packt.rrafols.customview.OwnCustomView
 android:layout_width="150dp"
 android:layout_height="150dp"/>

Code on our custom view, using MeasureSpec.toString(int) to get a string description
of the measure specification and the size looks like this:

@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
 Log.d(TAG, "width spec: " +
 MeasureSpec.toString(widthMeasureSpec));
 Log.d(TAG, "height spec: " +
 MeasureSpec.toString(heightMeasureSpec));
 super.onMeasure(widthMeasureSpec, heightMeasureSpec);
}

The result on the Android log is as follows:

D/com.packt.rrafols.customview.OwnCustomView: width : MeasureSpec: EXACTLY
394
D/com.packt.rrafols.customview.OwnCustomView: height: MeasureSpec: EXACTLY
394

Our view will be 394 by 394 pixels exactly. The 394 pixels comes from transforming the
150dp to pixels on the mobile device I was using for testing.

As there are many Android devices with different resolutions and screen
densities, we should always use density-independent pixel (dp) or (dip)
instead of pixels.

For more details about dp, refer to a video by Google available on YouTube: DesignBytes:
Density-independent Pixels.

If you would like to convert from dp to real pixels on a specific device, you can use the
following method:

public final int dpToPixels(int dp) {
 return (int) (dp * getResources().getDisplayMetrics().density +
 0.5);
}

Implementing Your First Custom View

[31]

We can see how the conversion is done using the density of the screen, so on different
devices the conversion can be different. The + 0.5 in the previous code is just to round up
the value when converting from a floating point number to an int.

To convert from pixels to density-independent points, we have to do the inverse operation,
as shown in the following code:

public final int pixelsToDp(int dp) {
 return (int) (dp / getResources().getDisplayMetrics().density +
 0.5);
}

Let's now see what we receive if we use different measure parameters, such as
match_parent or wrap_content, as shown in the activity_main.xml file in the GitHub
repository:

<com.packt.rrafols.customview.OwnCustomView
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>

Running the same code as before, we get the following on the Android log:

D/com.packt.rrafols.customview.OwnCustomView: width : MeasureSpec: EXACTLY
996
D/com.packt.rrafols.customview.OwnCustomView: height: MeasureSpec: EXACTLY
1500

So we are still getting a MeasureSpec.EXACTLY, but this time with the size of the parent
RelativeLayout; let's try changing one of the match_parents for a wrap_content in
activity_main.xml:

<com.packt.rrafols.customview.OwnCustomView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>

The result is as follows:

D/com.packt.rrafols.customview.OwnCustomView: width : MeasureSpec: EXACTLY
996
D/com.packt.rrafols.customview.OwnCustomView: height: MeasureSpec: AT_MOST
1500

Implementing Your First Custom View

[32]

We can spot an easy-to-follow pattern with MeasureSpec.EXACTLY and
MeasureSpec.AT_MOST, but what about MeasureSpec.UNSPECIFIED?

We'll get a MeasureSpec.UNSPECIFIED if our parent is not bounded; for example, if we
have a vertical LinearLayout inside a ScrollView, as shown in the
scrollview_layout.xml file in the GitHub repository:

<?xml version="1.0" encoding="utf-8"?>
<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical"
 android:padding="@dimen/activity_vertical_margin">
 <com.packt.rrafols.customview.OwnCustomView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"/>
 </LinearLayout>
</ScrollView>

Then we'll get the following on the Android log:

D/com.packt.rrafols.customview.OwnCustomView: width : MeasureSpec: EXACTLY
996
D/com.packt.rrafols.customview.OwnCustomView: height: MeasureSpec:
UNSPECIFIED 1500

Implementing Your First Custom View

[33]

That seems alright, but what happens if we now run this code? We'll get an empty screen;
our red background we've previously implemented is gone:

That is because we're not managing the size of our custom view. Let's fix that, as shown in
the following code:

private static int getMeasurementSize(int measureSpec, int defaultSize) {
 int mode = MeasureSpec.getMode(measureSpec);
 int size = MeasureSpec.getSize(measureSpec);
 switch(mode) {
 case MeasureSpec.EXACTLY:
 return size;

 case MeasureSpec.AT_MOST:
 return Math.min(defaultSize, size);

 case MeasureSpec.UNSPECIFIED:
 default:
 return defaultSize;
 }
 }

 @Override

Implementing Your First Custom View

[34]

 protected void onMeasure(int widthMeasureSpec, int
 heightMeasureSpec) {
 int width = getMeasurementSize(widthMeasureSpec, DEFAULT_SIZE);
 int height = getMeasurementSize(heightMeasureSpec,
 DEFAULT_SIZE);
 setMeasuredDimension(width, height);
 }

Now, depending on the measurement specs, we'll set the size of our view by calling the
setMeasuredDimension(int, int) method.

For the full example, check the source code in the Example03-Measurement folder in the
GitHub repository.

Parameterizing our custom view
We have our custom view that adapts to multiple sizes now; that's good, but what happens
if we need another custom view that paints the background blue instead of red? And
yellow? We shouldn't have to copy the custom view class for each customization. Luckily,
we can set parameters on the XML layout and read them from our custom view:

First, we need to define the type of parameters we will use on our custom view.1.
We've got to create a file called attrs.xml in the res folder:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <declare-styleable name="OwnCustomView">
 <attr name="fillColor" format="color"/>
 </declare-styleable>
</resources>

Then, we add a different namespace on our layout file where we want to use this2.
new parameter we've just created:

<?xml version="1.0" encoding="utf-8"?>
<ScrollView
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"

Implementing Your First Custom View

[35]

 android:orientation="vertical"
 android:padding="@dimen/activity_vertical_margin">

 <com.packt.rrafols.customview.OwnCustomView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 app:fillColor="@android:color/holo_blue_dark"/>
 </LinearLayout>
</ScrollView>

Now that we have this defined, let's see how we can read it from our custom3.
view class:

int fillColor;
TypedArray ta =
 context.getTheme().obtainStyledAttributes(attributeSet,
 R.styleable.OwnCustomView, 0, 0);
try {
 fillColor =
 ta.getColor(R.styleable.OwnCustomView_ocv_fillColor,
 DEFAULT_FILL_COLOR);
} finally {
 ta.recycle();
}

By getting a TypedArray using the styled attribute ID Android tools created for us after
saving the attrs.xml file, we'll be able to query for the value of those parameters set on
the XML layout file.

In this example, we created an attribute named fillColor that will be formatted as a color.
This format, or basically, the type of the attribute, is very important to limit the kind of
values we can set, and how these values can be retrieved afterwards from our custom view.

Also, for each parameter we define, we'll get a R.styleable.<name>_<parameter_name>
index in the TypedArray. In the preceding code, we're querying for the fillColor using
the R.styleable.OwnCustomView_fillColor index.

We shouldn't forget to recycle the TypedArray after using it so it can be
reused later on, but once recycled, we can't use it again.

Implementing Your First Custom View

[36]

Let's see the results of this little customization:

We've used color in this specific case, but we can use many other types of parameters; for
example:

Boolean
Int
Float
Color
Dimension
Drawable
String
Resource

Each one has its own getter method: getBoolean(int index, boolean defValue) or
getFloat(int index, float defValue).

Implementing Your First Custom View

[37]

In addition, to know if a parameter is set we can use the hasValue(int) method before
querying or we can simply use the default values of the getters. If the attribute is not set at
that index, the getter will return the default value.

For the full example, check the Example04-Parameters folder in the GitHub repository.

Instantiating custom views
Now that we've seen how to set parameters on the XML layout and parse them on our
custom view class, we'll see how to instantiate custom views from code as well and reuse
then as much as possible from both instantiation mechanisms.

Instantiating custom views from code
On our custom view, we've created a single constructor with two parameters, a Context
and an AttributeSet. Now, if we're creating our UI programmatically, or if by any other
reason we need to instantiate our custom view by code, we need to create an additional
constructor.

As we want to keep using our custom view in our XML layouts, we have to keep both
constructors. To code avoid duplication, we will create some helper methods to initialize it
and use them from both constructors:

 public OwnCustomView(Context context) {
 super(context);
 init(DEFAULT_FILL_COLOR);
 }

 public OwnCustomView(Context context, AttributeSet attributeSet) {
 super(context, attributeSet);

 int fillColor;

 TypedArray ta =
 context.getTheme().obtainStyledAttributes(attributeSet,
 R.styleable.OwnCustomView, 0, 0);
 try {
 fillColor = ta.getColor(R.styleable.OwnCustomView_fillColor,
 DEFAULT_FILL_COLOR);
 } finally {
 ta.recycle();
 }

Implementing Your First Custom View

[38]

 init(fillColor);
 }

 private void init(int fillColor) {
 backgroundPaint = new Paint();
 backgroundPaint.setStyle(Paint.Style.FILL);

 setFillColor(fillColor);
 }

 public void setFillColor(int fillColor) {
 backgroundPaint.setColor(fillColor);
 }

We also created a public method, setFillColor(int), so we can set the fill color by code
as well. For example, let's modify our Activity to create the view hierarchy
programmatically instead of inflating it from an XML layout file:

public class MainActivity extends AppCompatActivity {
 private static final int BRIGHT_GREEN = 0xff00ff00;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 LinearLayout linearLayout = new LinearLayout(this);
 linearLayout.setLayoutParams(
 new LinearLayout.LayoutParams(ViewGroup.
 LayoutParams.MATCH_PARENT,
 ViewGroup.LayoutParams.MATCH_PARENT));

 OwnCustomView customView = new OwnCustomView(this);
 customView.setFillColor(BRIGHT_GREEN);
 linearLayout.addView(customView);

 setContentView(linearLayout);
 }
}

Here, we're just creating a LinearLayout with vertical orientation and adding a custom
view as a child. Then we're setting the LinearLayout as the content view of the Activity.
Also, we've used a hexadecimal color directly. If we're not used to specifying colors in
hexadecimal format, we could use Color.argb() or Color.rgb() to convert color
components to an integer value.

The full source code can be found in the Example05-Code folder in the GitHub repository.

Implementing Your First Custom View

[39]

Builder pattern
In the previous example, we used the setFillColor() method to set the fill color of the
custom view, but suppose we will have many other parameters, the code might get a bit
messy with all the setters.

Let's create a simple example: instead of having one single background color, we'll have
four different colors and we'll draw a gradient on our view:

Let's start by defining the four different colors and their setters as follows:

private int topLeftColor = DEFAULT_FILL_COLOR;
private int bottomLeftColor = DEFAULT_FILL_COLOR;
private int topRightColor = DEFAULT_FILL_COLOR;
private int bottomRightColor = DEFAULT_FILL_COLOR;
private boolean needsUpdate = false;

public void setTopLeftColor(int topLeftColor) {
 this.topLeftColor = topLeftColor;
 needsUpdate = true;
}

public void setBottomLeftColor(int bottomLeftColor) {
 this.bottomLeftColor = bottomLeftColor;
 needsUpdate = true;
}

public void setTopRightColor(int topRightColor) {
 this.topRightColor = topRightColor;
 needsUpdate = true;
}

public void setBottomRightColor(int bottomRightColor) {
 this.bottomRightColor = bottomRightColor;
 needsUpdate = true;
}

We also added a boolean to check if we have to update the gradient. Let's ignore thread
synchronization here as it's not the main purpose of this example.

Then, we've added a check for this boolean on the onDraw() method and, in the case it's
needed, it'll regenerate the gradient:

@Override
protected void onDraw(Canvas canvas) {
 if (needsUpdate) {
 int[] colors = new int[] {topLeftColor, topRightColor,

Implementing Your First Custom View

[40]

 bottomRightColor, bottomLeftColor};

 LinearGradient lg = new LinearGradient(0, 0, getWidth(),
 getHeight(), colors, null, Shader.TileMode.CLAMP);
 backgroundPaint.setShader(lg);
 needsUpdate = false;
 }

 canvas.drawRect(0, 0, getWidth(), getHeight(), backgroundPaint);
 super.onDraw(canvas);
}

It's a bad practice to create new object instances on the onDraw() method. Here it is only
done once, or every time we're changing the colors. If we were changing the color
constantly, this would be a bad example as it'll be constantly creating new objects, polluting
the memory, and triggering the Garbage Collector (GC). There will be more on
performance and memory in Chapter 7, Performance Considerations.

We have to update the code of our Activity to set these new colors:

public class MainActivity extends AppCompatActivity {
 private static final int BRIGHT_GREEN = 0xff00ff00;
 private static final int BRIGHT_RED = 0xffff0000;
 private static final int BRIGHT_YELLOW = 0xffffff00;
 private static final int BRIGHT_BLUE = 0xff0000ff;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 LinearLayout linearLayout = new LinearLayout(this);
 linearLayout.setLayoutParams(
 new LinearLayout.LayoutParams(ViewGroup.
 LayoutParams.MATCH_PARENT,
 ViewGroup.LayoutParams.MATCH_PARENT));

 OwnCustomView customView = new OwnCustomView(this);
 customView.setTopLeftColor(BRIGHT_RED);
 customView.setTopRightColor(BRIGHT_GREEN);
 customView.setBottomLeftColor(BRIGHT_YELLOW);
 customView.setBottomRightColor(BRIGHT_BLUE);
 linearLayout.addView(customView);
 setContentView(linearLayout);
 }
}

Implementing Your First Custom View

[41]

As we can see, we've used four setters to set the colors. If we've got more parameters, we
could use more setters, but one of the issues of this approach is that we have to take care of
thread synchronization and the object might be in an unstable state until all calls are done.

Another option is to add all the parameters to the constructor, but that is not a good
solution either. It'd make our job more complex, as it'll be hard to remember the order of the
parameters or, in the case where we had optional, to create many different constructors or
passing null references that make our code harder to read and maintain.

Check the full source code of this example in the Example06-BuilderPattern-
NoBuilder folder of the GitHub repository.

Now that we've introduced the issue, let's solve it by implementing the Builder pattern on
our custom view. We start by creating a public static class inside our custom view
that will build it as follows:

public static class Builder {
 private Context context;
 private int topLeftColor = DEFAULT_FILL_COLOR;
 private int topRightColor = DEFAULT_FILL_COLOR;
 private int bottomLeftColor = DEFAULT_FILL_COLOR;
 private int bottomRightColor = DEFAULT_FILL_COLOR;

 public Builder(Context context) {
 this.context = context;
 }

 public Builder topLeftColor(int topLeftColor) {
 this.topLeftColor = topLeftColor;
 return this;
 }

 public Builder topRightColor(int topRightColor) {
 this.topRightColor = topRightColor;
 return this;
 }

 public Builder bottomLeftColor(int bottomLeftColor) {
 this.bottomLeftColor = bottomLeftColor;
 return this;
 }

 public Builder bottomRightColor(int bottomRightColor) {
 this.bottomRightColor = bottomRightColor;
 return this;
 }

Implementing Your First Custom View

[42]

 public OwnCustomView build() {
 return new OwnCustomView(this);
 }
}

We also create a new private constructor that only accepts an OwnCustomView.Builder
object:

private OwnCustomView(Builder builder) {
 super(builder.context);

 backgroundPaint = new Paint();
 backgroundPaint.setStyle(Paint.Style.FILL);

 colorArray = new int[] {
 builder.topLeftColor,
 builder.topRightColor,
 builder.bottomRightColor,
 builder.bottomLeftColor
 };

 firstDraw = true;
 }

We've removed other constructors for clarity. Also at this point, we create the array of
colors based on the colors that the builder object has and a boolean to know if it's the first
time it'll be drawn or not.

This will be useful to instantiate the LinearGradient object only once and avoid creating
many instances:

@Override
 protected void onDraw(Canvas canvas) {
 if (firstDraw) {
 LinearGradient lg = new LinearGradient(0, 0, getWidth(),
 getHeight(),
 colorArray, null, Shader.TileMode.CLAMP);

 backgroundPaint.setShader(lg);
 firstDraw = false;
 }

 canvas.drawRect(0, 0, getWidth(), getHeight(),
 backgroundPaint);
 super.onDraw(canvas);
 }

Implementing Your First Custom View

[43]

Now, once the object is created we can't change its colors, but we don't have to worry about
thread synchronization and the object's state.

To make it work, let's update the code on our Activity as well:

public class MainActivity extends AppCompatActivity {
 private static final int BRIGHT_GREEN = 0xff00ff00;
 private static final int BRIGHT_RED = 0xffff0000;
 private static final int BRIGHT_YELLOW = 0xffffff00;
 private static final int BRIGHT_BLUE = 0xff0000ff;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 LinearLayout linearLayout = new LinearLayout(this);
 linearLayout.setLayoutParams(
 new LinearLayout.LayoutParams(ViewGroup.
 LayoutParams.MATCH_PARENT,
 ViewGroup.LayoutParams.MATCH_PARENT));

 OwnCustomView customView = new OwnCustomView.Builder(this)
 .topLeftColor(BRIGHT_RED)
 .topRightColor(BRIGHT_GREEN)
 .bottomLeftColor(BRIGHT_YELLOW)
 .bottomRightColor(BRIGHT_BLUE)
 .build();

 linearLayout.addView(customView);

 setContentView(linearLayout);
 }
}

Using the Builder pattern, our code is cleaner and the object is constructed or built when
we've set all the properties and this will become even handier if the custom view has more
parameters.

The full example source code can be found in the Example07-BuilderPattern folder in
the GitHub repository.

Implementing Your First Custom View

[44]

Creating a custom layout
Android provides several layouts to position our views in many different ways, but if these
standard layouts aren't useful for our specific use case, we can create our own layouts.

Extending ViewGroup
The process to create a custom layout is quite similar to creating a custom view. We've got
to create a class that extends from ViewGroup instead of view, create the appropriate
constructors, implement the onMeasure() method, and override the onLayout() method
rather than the onDraw() method.

Let's create a very simple custom layout; it will add elements to the right of the previous
element until it doesn't fit on the screen, then it'll start a new row, using the higher element
to calculate where this new row will start and avoid any overlapping between views.

Adding random sized views, where each view has a red background, will look as follows:

Implementing Your First Custom View

[45]

First, let's create a class that extends from ViewGroup:

public class CustomLayout extends ViewGroup {

 public CustomLayout(Context context, AttributeSet attrs) {
 super(context, attrs);
 }

 @Override
 protected void onLayout(boolean changed, int l, int t, int r, int b) {

 }
}

We created the constructor and we implemented the onLayout() method as it's an abstract
method and we've got to implement it. Let's add some logic to it:

@Override
 protected void onLayout(boolean changed, int l, int t, int r, int b){
 int count = getChildCount();
 int left = l + getPaddingLeft();
 int top = t + getPaddingTop();

 // keeps track of maximum row height
 int rowHeight = 0;

 for (int i = 0; i < count; i++) {
 View child = getChildAt(i);

 int childWidth = child.getMeasuredWidth();
 int childHeight = child.getMeasuredHeight();

 // if child fits in this row put it there
 if (left + childWidth < r - getPaddingRight()) {
 child.layout(left, top, left + childWidth, top +
 childHeight);
 left += childWidth;
 } else {
 // otherwise put it on next row
 left = l + getPaddingLeft();
 top += rowHeight;
 rowHeight = 0;
 }

 // update maximum row height
 if (childHeight > rowHeight) rowHeight = childHeight;
 }
 }

Implementing Your First Custom View

[46]

This logic implements what we've described before; it tries to add a child to the right of the
previous child and if it doesn't fit on the layout width, checking the current left position
plus the measured child width, it starts a new row. The rowHeight variable measures the
higher view on that row.

Let's also implement the onMeasure() method:

@Override
protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
 int count = getChildCount();

 int rowHeight = 0;
 int maxWidth = 0;
 int maxHeight = 0;
 int left = 0;
 int top = 0;

 for (int i = 0; i < count; i++) {
 View child = getChildAt(i);
 measureChild(child, widthMeasureSpec, heightMeasureSpec);

 int childWidth = child.getMeasuredWidth();
 int childHeight = child.getMeasuredHeight();

 // if child fits in this row put it there
 if (left + childWidth < getWidth()) {
 left += childWidth;
 } else {
 // otherwise put it on next row
 if(left > maxWidth) maxWidth = left;
 left = 0;
 top += rowHeight;
 rowHeight = 0;
 }

 // update maximum row height
 if (childHeight > rowHeight) rowHeight = childHeight;
 }

 if(left > maxWidth) maxWidth = left;
 maxHeight = top + rowHeight;

 setMeasuredDimension(getMeasure(widthMeasureSpec, maxWidth),
 getMeasure(heightMeasureSpec, maxHeight));

}

Implementing Your First Custom View

[47]

The logic is the same as before, but it's not laying out its children. It calculates the maximum
width and height that will be needed, and then with the help of a helper method sets the
dimensions of this custom layout according to the width and height measurement specs:

private int getMeasure(int spec, int desired) {
 switch(MeasureSpec.getMode(spec)) {
 case MeasureSpec.EXACTLY:
 return MeasureSpec.getSize(spec);

 case MeasureSpec.AT_MOST:
 return Math.min(MeasureSpec.getSize(spec), desired);

 case MeasureSpec.UNSPECIFIED:
 default:
 return desired;
 }
 }

Now that we've got our custom layout, let's add it to our activity_main layout:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/activity_main"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:padding="@dimen/activity_vertical_margin"
 tools:context="com.packt.rrafols.customview.MainActivity">

 <com.packt.rrafols.customview.CustomLayout
 android:id="@+id/custom_layout"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 </com.packt.rrafols.customview.CustomLayout>
</RelativeLayout>

For the last step, let's add some random sized views to it:

public class MainActivity extends AppCompatActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 CustomLayout customLayout = (CustomLayout)
 findViewById(R.id.custom_layout);

Implementing Your First Custom View

[48]

 Random rnd = new Random();
 for(int i = 0; i < 50; i++) {
 OwnCustomView view = new OwnCustomView(this);

 int width = rnd.nextInt(200) + 50;
 int height = rnd.nextInt(100) + 100;
 view.setLayoutParams(new ViewGroup.LayoutParams(width,
 height));
 view.setPadding(2, 2, 2, 2);

 customLayout.addView(view);
 }
 }
}

Check the Example08-CustomLayout folder on GitHub for the full source code of this
example.

On this page, we can also find a quite complex example of a full-featured custom layout.

Basic rendering
So far we've only been drawing a solid background or a linear gradient. That's neither
exciting nor really useful. Let's see how we can draw more interesting shapes and
primitives. We'll do so by creating an example of a circular activity indicator that we'll be
adding more and more features to in the following chapters.

Creating the basic circular activity indicator
The Canvas class provides us with many drawing functions; for example:

drawArc()

drawBitmap()

drawOval()

drawPath()

Implementing Your First Custom View

[49]

To draw a circular activity indicator, we can use the drawArc() method. Let's create the
basic class and draw an arc:

public class CircularActivityIndicator extends View {
 private static final int DEFAULT_FG_COLOR = 0xffff0000;
 private static final int DEFAULT_BG_COLOR = 0xffa0a0a0;
 private Paint foregroundPaint;
 private int selectedAngle;

 public CircularActivityIndicator(Context context, AttributeSet
 attributeSet) {
 super(context, attributeSet);

 foregroundPaint = new Paint();
 foregroundPaint.setColor(DEFAULT_FG_COLOR);
 foregroundPaint.setStyle(Paint.Style.FILL);
 selectedAngle = 280;
 }

 @Override
 protected void onDraw(Canvas canvas) {
 canvas.drawArc(
 0,
 0,
 getWidth(),
 getHeight(),
 0, selectedAngle, true, foregroundPaint);
 }
}

The result is as shown in the following screenshot:

Implementing Your First Custom View

[50]

Let's fix the ratio, so the width of the arc will be the same as the height:

@Override
protected void onDraw(Canvas canvas) {
 int circleSize = getWidth();
 if (getHeight() < circleSize) circleSize = getHeight();

 int horMargin = (getWidth() - circleSize) / 2;
 int verMargin = (getHeight() - circleSize) / 2;

 canvas.drawArc(
 horMargin,
 verMargin,
 horMargin + circleSize,
 verMargin + circleSize,
 0, selectedAngle, true, foregroundPaint);
}

We'll use the smaller dimension, either width or height, and draw the arc centered with a
square ratio: with the same width and same height.

This doesn't look like an activity indicator; let's change it and draw only a thin band of the
arc. We can achieve this by using the clipping capabilities that canvas gives us. We can use
canvas.clipRect or canvas.clipPath, for example. When using clipping methods, we
can also specify a clipping operation. By default, if we don't specify it, it will intersect with
the current clipping.

Implementing Your First Custom View

[51]

To draw only a thin band, we'll create a smaller arc in a path, around 75% of the size of the
arc we'd like to draw. Then, we'll subtract it from the clipping rectangle of the whole view:

private Path clipPath;

@Override
protected void onDraw(Canvas canvas) {
 int circleSize = getWidth();
 if (getHeight() < circleSize) circleSize = getHeight();

 int horMargin = (getWidth() - circleSize) / 2;
 int verMargin = (getHeight() - circleSize) / 2;

 // create a clipPath the first time
 if(clipPath == null) {
 int clipWidth = (int) (circleSize * 0.75);

 int clipX = (getWidth() - clipWidth) / 2;
 int clipY = (getHeight() - clipWidth) / 2;
 clipPath = new Path();
 clipPath.addArc(
 clipX,
 clipY,
 clipX + clipWidth,
 clipY + clipWidth,
 0, 360);
 }

 canvas.clipRect(0, 0, getWidth(), getHeight());
 canvas.clipPath(clipPath, Region.Op.DIFFERENCE);

 canvas.drawArc(
 horMargin,
 verMargin,
 horMargin + circleSize,
 verMargin + circleSize,
 0, selectedAngle, true, foregroundPaint);
}

Implementing Your First Custom View

[52]

In the following screenshot, we can see the difference:

As finishing touches, let's add a background color to the arc and change the starting
position to the top of the view.

To draw the background, we'll add the following code to create a background Paint to our
constructor:

backgroundPaint = new Paint();
backgroundPaint.setColor(DEFAULT_BG_COLOR);
backgroundPaint.setStyle(Paint.Style.FILL);

Then modify the onDraw() method to actually draw it, just before drawing the other arc:

canvas.drawArc(
 horMargin,
 verMargin,
 horMargin + circleSize,
 verMargin + circleSize,
 0, 360, true, backgroundPaint);

Implementing Your First Custom View

[53]

As a small difference, we're drawing the whole 360 degrees so it will cover the whole circle.

To change the starting position of the arc, we'll rotate our drawing operations. Canvas
supports rotation, translation, and matrix transformations as well. In this case, we only need
to rotate 90 degrees anti-clockwise to get our starting point at the top of the arc:

@Override
protected void onDraw(Canvas canvas) {
 int circleSize = getWidth();
 if (getHeight() < circleSize) circleSize = getHeight();

 int horMargin = (getWidth() - circleSize) / 2;
 int verMargin = (getHeight() - circleSize) / 2;

 // create a clipPath the first time
 if(clipPath == null) {
 int clipWidth = (int) (circleSize * 0.75);

 int clipX = (getWidth() - clipWidth) / 2;
 int clipY = (getHeight() - clipWidth) / 2;
 clipPath = new Path();
 clipPath.addArc(
 clipX,
 clipY,
 clipX + clipWidth,
 clipY + clipWidth,
 0, 360);
 }

 canvas.clipRect(0, 0, getWidth(), getHeight());
 canvas.clipPath(clipPath, Region.Op.DIFFERENCE);

 canvas.save();
 canvas.rotate(-90, getWidth() / 2, getHeight() / 2);

 canvas.drawArc(
 horMargin,
 verMargin,
 horMargin + circleSize,
 verMargin + circleSize,
 0, 360, true, backgroundPaint);

 canvas.drawArc(
 horMargin,
 verMargin,
 horMargin + circleSize,
 verMargin + circleSize,

Implementing Your First Custom View

[54]

 0, selectedAngle, true, foregroundPaint);

 canvas.restore();
}

We also used canvas.save() and canvas.restore() to preserve the state of our
canvas; otherwise, it will be rotating -90 degrees each time it is drawn. When calling the
canvas.rotate() method, we also specified the center point of the rotation, which
matches with the center point of the screen and the center point of the arc.

Whenever we're using a canvas function as rotate, scale, or translate, for example,
we're actually applying a transformation to all the successive canvas drawing operations.

The final result is shown in the following screenshot:

Something we need to be aware of is that not all canvas operations are supported by
hardware on all Android versions. Please check if the operations you have to do are
supported or provide a runtime workaround for them. Find more information about what
operations are hardware accelerated at:
https://developer.android.com/guide/topics/graphics/hardware-accel.html.

https://developer.android.com/guide/topics/graphics/hardware-accel.html

Implementing Your First Custom View

[55]

Here is the final implementation of the class:

public class CircularActivityIndicator extends View {
 private static final int DEFAULT_FG_COLOR = 0xffff0000;
 private static final int DEFAULT_BG_COLOR = 0xffa0a0a0;
 private Paint backgroundPaint;
 private Paint foregroundPaint;
 private int selectedAngle;
 private Path clipPath;

 public CircularActivityIndicator(Context context, AttributeSet
 attributeSet) {
 super(context, attributeSet);

 backgroundPaint = new Paint();
 backgroundPaint.setColor(DEFAULT_BG_COLOR);
 backgroundPaint.setStyle(Paint.Style.FILL);

 foregroundPaint = new Paint();
 foregroundPaint.setColor(DEFAULT_FG_COLOR);
 foregroundPaint.setStyle(Paint.Style.FILL);

 selectedAngle = 280;
 }

 @Override
 protected void onDraw(Canvas canvas) {
 int circleSize = getWidth();
 if (getHeight() < circleSize) circleSize = getHeight();

 int horMargin = (getWidth() - circleSize) / 2;
 int verMargin = (getHeight() - circleSize) / 2;

 // create a clipPath the first time
 if(clipPath == null) {
 int clipWidth = (int) (circleSize * 0.75);

 int clipX = (getWidth() - clipWidth) / 2;
 int clipY = (getHeight() - clipWidth) / 2;
 clipPath = new Path();
 clipPath.addArc(
 clipX,
 clipY,
 clipX + clipWidth,
 clipY + clipWidth,
 0, 360);
 }

Implementing Your First Custom View

[56]

 canvas.clipPath(clipPath, Region.Op.DIFFERENCE);

 canvas.save();
 canvas.rotate(-90, getWidth() / 2, getHeight() / 2);

 canvas.drawArc(
 horMargin,
 verMargin,
 horMargin + circleSize,
 verMargin + circleSize,
 0, 360, true, backgroundPaint);

 canvas.drawArc(
 horMargin,
 verMargin,
 horMargin + circleSize,
 verMargin + circleSize,
 0, selectedAngle, true, foregroundPaint);

 canvas.restore();
 }
}

The whole example source code can be found in the Example09-BasicRendering folder
in the GitHub repository.

Furthermore, I gave a talk about this at the Android Developer's Backstage in Krakow in
January 2015; here is a link to the presentation:

https://www.slideshare.net/RaimonRls/android-custom-views-72600098.

Summary
In this chapter, we have seen how to measure and how to add parameters to our custom
view. We also saw how to instantiate a custom view from code and use a Builder pattern
to simplify all the parameters and keep our code cleaner. In addition, we went through a
quick example of a custom layout and we started building a circular activity indicator. In
the next chapter, we will see how to handle events and add some interactions to the circular
activity indicator we've just started to build.

https://www.slideshare.net/RaimonRls/android-custom-views-72600098

3
Handling Events

Now that we've seen the basics of canvas drawing and we've our custom view adapted to
its size, it's time to interact with it. Many custom views will only need to draw something in
a special way; that's the reason we created them as custom views, but many others will
need to react to user events. For example, how our custom view will behave when the user
clicks or drags on top of it?

To answer these questions, we'll cover with more detail the following points in this chapter:

Basic event handling
Advanced event handling

Basic event handling
Let's start by adding some basic event handling to our custom views. We'll go through the
basics, and we'll add more complex events later on.

Reacting to touch events
In order to make our custom view interactive, one of the first things we will implement is to
process and react to touch events, or basically, when the user touches or drags on top of our
custom view.

Handling Events

[58]

Android provides us with the onTouchEvent() method that we can override in our
custom view. By overriding this method, we'll get any touch event happening on top of it.
To see how it works, let's add it to the custom view we built in the last chapter:

@Override
public boolean onTouchEvent(MotionEvent event) {
 Log.d(TAG, "touch: " + event);
 return super.onTouchEvent(event);
}

Lets also add a log call to see the events we receive. If we run this code and touch on top of
our view, we'll get the following:

D/com.packt.rrafols.customview.CircularActivityIndicator: touch:
MotionEvent { action=ACTION_DOWN, actionButton=0, id[0]=0, x[0]=644.3645,
y[0]=596.55804, toolType[0]=TOOL_TYPE_FINGER, buttonState=0, metaState=0,
flags=0x0, edgeFlags=0x0, pointerCount=1, historySize=0,
eventTime=30656461, downTime=30656461, deviceId=9, source=0x1002 }

As we can see, there is a lot of information on the event, coordinates, action type, and time,
but even if we perform more actions on it, we'll only get ACTION_DOWN events. That's
because the default implementation of view is not clickable. By default, if we don't enable
the clickable flag on the view, the default implementation of onTouchEvent() will return
false and ignore further events.

The onTouchEvent() method has to return true if the event has been processed or false if
it hasn't. If we receive an event in our custom view and we don't know what to do or we're
not interested in such events, we should return false, so it can be processed by our view's
parent or by any other component or the system.

To receive more types of events, we can do two things:

Set the view as clickable using setClickable(true)
Implement our own logic and process the events in our custom class

Later on, we'll implement more complex events; we'll go for the second option.

Lets carry out a quick test and change the method to return simply true instead of calling
the parent method:

@Override
public boolean onTouchEvent(MotionEvent event) {
 Log.d(TAG, "touch: " + event);
 return true;
}

Handling Events

[59]

Now, we should receive many other types of events, as follows:

...CircularActivityIndicator: touch: MotionEvent { action=ACTION_DOWN,

...CircularActivityIndicator: touch: MotionEvent { action=ACTION_UP,

...CircularActivityIndicator: touch: MotionEvent { action=ACTION_DOWN,

...CircularActivityIndicator: touch: MotionEvent { action=ACTION_MOVE,

...CircularActivityIndicator: touch: MotionEvent { action=ACTION_MOVE,

...CircularActivityIndicator: touch: MotionEvent { action=ACTION_MOVE,

...CircularActivityIndicator: touch: MotionEvent { action=ACTION_UP,

...CircularActivityIndicator: touch: MotionEvent { action=ACTION_DOWN,

As seen in the preceding example, we can see that in the previous log we not only have both
ACTION_DOWN and ACTION_UP but also ACTION_MOVE to indicate that we're performing an
action of drag on top of our view.

We'll focus on handling the ACTION_UP and ACTION_DOWN events first. Let's add a boolean
variable name that will keep track whether we're currently pressing or touching our view or
not:

private boolean pressed;

public CircularActivityIndicator(Context context, AttributeSet
attributeSet) {
 ...
 ...
 pressed = false;
}

We've added the variable and set its default state to false, as the view will not be pressed
when created. Now, lets add the code to handle this on our onTouchEvent()
implementation:

@Override
public boolean onTouchEvent(MotionEvent event) {
 Log.d(TAG, "touch: " + event);
 switch(event.getAction()) {
 case MotionEvent.ACTION_DOWN:
 pressed = true;
 return true;

 case MotionEvent.ACTION_UP:
 pressed = false;
 return true;

 default:
 return false;

Handling Events

[60]

 }
}

We're processed the MotionEvent. The ACTION_DOWN and MotionEvent.ACTION_UP
events; any other action we receive here, we ignore and return false, since we haven't
handled it.

OK, now we've a variable that keeps track if we're pressing our view or not, but we should
do something else or otherwise this won't be of that much use. Let's modify the onDraw()
method to paint the circle in a different color when the view is pressed:

private static final int DEFAULT_FG_COLOR = 0xffff0000;
private static final int PRESSED_FG_COLOR = 0xff0000ff;
@Override
protected void onDraw(Canvas canvas) {
 if (pressed) {
 foregroundPaint.setColor(PRESSED_FG_COLOR);
 } else {
 foregroundPaint.setColor(DEFAULT_FG_COLOR);
 }

If we run this example and we touch our view, we'll see that nothing happens! What is the
issue? We're not triggering any repaint or redraw event and the view it's not drawn again.
We can see this code is working if we manage to keep pressing the view and put the app in
the background and return it to the foreground, for example. However, to do it properly,
we should trigger a repaint event when we change something that requires our view to be
redrawn, as follows:

@Override
public boolean onTouchEvent(MotionEvent event) {
 Log.d(TAG, "touch: " + event);
 switch(event.getAction()) {
 case MotionEvent.ACTION_DOWN:
 pressed = true;
 invalidate();
 return true;

 case MotionEvent.ACTION_UP:
 pressed = false;
 invalidate();
 return true;

 default:
 pressed = false;
 invalidate();

Handling Events

[61]

 return false;
 }
}

OK, that should do the trick! Calling the invalidate method will trigger an onDraw()
method call in the future:
https://developer. android. com/ reference/ android/ view/ View. html#invalidate().

We can now refactor this code and move it into a method:

private void changePressedState(boolean pressed) {
 this.pressed = pressed;
 invalidate();
}

@Override
public boolean onTouchEvent(MotionEvent event) {
 Log.d(TAG, "touch: " + event);
 switch(event.getAction()) {
 case MotionEvent.ACTION_DOWN:
 changePressedState(true);
 return true;

 case MotionEvent.ACTION_UP:
 changePressedState(false);
 return true;

 default:
 changePressedState(false);
 return false;
 }
}

We need to be aware that invalidate has to be called from the UI thread and will throw an
exception if called from another thread. If we've to call it from another thread, for example,
we've to update a view after receiving some data from a web service, we've to call
postInvalidate().

https://developer.android.com/reference/android/view/View.html#invalidate()
https://developer.android.com/reference/android/view/View.html#invalidate()
https://developer.android.com/reference/android/view/View.html#invalidate()
https://developer.android.com/reference/android/view/View.html#invalidate()
https://developer.android.com/reference/android/view/View.html#invalidate()
https://developer.android.com/reference/android/view/View.html#invalidate()
https://developer.android.com/reference/android/view/View.html#invalidate()
https://developer.android.com/reference/android/view/View.html#invalidate()
https://developer.android.com/reference/android/view/View.html#invalidate()
https://developer.android.com/reference/android/view/View.html#invalidate()
https://developer.android.com/reference/android/view/View.html#invalidate()
https://developer.android.com/reference/android/view/View.html#invalidate()
https://developer.android.com/reference/android/view/View.html#invalidate()
https://developer.android.com/reference/android/view/View.html#invalidate()
https://developer.android.com/reference/android/view/View.html#invalidate()
https://developer.android.com/reference/android/view/View.html#invalidate()
https://developer.android.com/reference/android/view/View.html#invalidate()
https://developer.android.com/reference/android/view/View.html#invalidate()
https://developer.android.com/reference/android/view/View.html#invalidate()

Handling Events

[62]

Here is the result:

Drag events
Now that we're already reacting to ACTION_DOWN and ACTION_UP events, we will add a bit
more complexity by reacting to ACTION_MOVE as well.

Let's update the angle, based on the amount of dragging in both directions. To do so, we
need to store where the user pressed in the first place, so we'll store the variables lastX and
lastY with the X and Y coordinates on the ACTION_DOWN event.

When we receive an ACTION_MOVE event, we calculate the difference between the lastX
and lastY coordinates and the current values we received with the event. We update
selectedAngle with the average of the X and Y difference, and we finally update the
lastX and lastY coordinates. We have to remember to call invalidate or otherwise our
view will not be redrawn:

private float lastX, lastY;

@Override
public boolean onTouchEvent(MotionEvent event) {
 switch(event.getAction()) {
 case MotionEvent.ACTION_DOWN:

Handling Events

[63]

 changePressedState(true);

 lastX = event.getX();
 lastY = event.getY();
 return true;

 case MotionEvent.ACTION_UP:
 changePressedState(false);
 return true;

 case MotionEvent.ACTION_MOVE:
 float dragX = event.getX();
 float dragY = event.getY();

 float dx = dragX - lastX;
 float dy = dragY - lastY;

 selectedAngle += (dx + dy) / 2;

 lastX = dragX;
 lastY = dragY;

 invalidate();
 return true;

 default:
 return false;
 }
}

That movement might feel a bit unnatural, so if we want the angle of the circle to follow
where we actually pressed, we should change from Cartesian coordinates to polar
coordinates:
https://en.wikipedia.org/wiki/List_of_common_coordinate_transformations.

With this change, there is no need to track the previous coordinates, so we can replace our
code with the following:

private int computeAngle(float x, float y) {
 x -= getWidth() / 2;
 y -= getHeight() / 2;

 int angle = (int) (180.0 * Math.atan2(y, x) / Math.PI) + 90;
 return (angle > 0) ? angle : 360 + angle;
}

@Override
public boolean onTouchEvent(MotionEvent event) {

https://en.wikipedia.org/wiki/List_of_common_coordinate_transformations

Handling Events

[64]

 switch(event.getAction()) {
 case MotionEvent.ACTION_DOWN:
 selectedAngle = computeAngle(event.getX(), event.getY());
 changePressedState(true);
 return true;

 case MotionEvent.ACTION_UP:
 changePressedState(false);
 return true;

 case MotionEvent.ACTION_MOVE:
 selectedAngle = computeAngle(event.getX(), event.getY());
 invalidate();
 return true;

 default:
 return false;
 }
}

Complex layouts
So far, we've seen how to manage onTouchEvent() events on our custom view, but that
was on a view occupying the whole screen size, so it was a bit of a simple approach. If we
want to include or view inside a ViewGroup that also handles touch events, for example, a
ScrollView, what do we've to change?

Let's change the layout for this one:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/activity_main"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:padding="@dimen/activity_vertical_margin"
 tools:context="com.packt.rrafols.customview.MainActivity">

 <ScrollView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:layout_alignParentStart="true"
 android:layout_marginTop="13dp">

 <LinearLayout

Handling Events

[65]

 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical">

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:paddingTop="100dp"
 android:paddingBottom="100dp"
 android:text="Top"
 android:background="@color/colorPrimaryDark"
 android:textColor="@android:color/white"
 android:gravity="center"/>

 <com.packt.rrafols.customview.CircularActivityIndicator
 android:layout_width="match_parent"
 android:layout_height="300dp"/>

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:paddingTop="100dp"
 android:paddingBottom="100dp"
 android:text="Bottom"
 android:background="@color/colorPrimaryDark"
 android:textColor="@android:color/white"
 android:gravity="center"/>
 </LinearLayout>
 </ScrollView>
</RelativeLayout>

Basically, we've put our custom view inside ScrollView, so both can process events. We
should be selective in which events have to be processed by our view and have to be
processed by which the ScrollView.

To do so, the view provides us with the getParent() method, to get its parent:
https://developer. android. com/ reference/ android/ view/ ViewParent. html.

Once we've the parent, we can call requestDisallowInterceptTouchEvent to disallow
the parent and its parents to intercept touch events. In addition, to only consume the events
we're interested in, we added a check to see if the location where the user touched is inside
the radius of the circle or outside. If the touch is outside, we'll ignore the event and won't
process it.

private boolean computeAndSetAngle(float x, float y) {
 x -= getWidth() / 2;
 y -= getHeight() / 2;

https://developer.android.com/reference/android/view/ViewParent.html
https://developer.android.com/reference/android/view/ViewParent.html
https://developer.android.com/reference/android/view/ViewParent.html
https://developer.android.com/reference/android/view/ViewParent.html
https://developer.android.com/reference/android/view/ViewParent.html
https://developer.android.com/reference/android/view/ViewParent.html
https://developer.android.com/reference/android/view/ViewParent.html
https://developer.android.com/reference/android/view/ViewParent.html
https://developer.android.com/reference/android/view/ViewParent.html
https://developer.android.com/reference/android/view/ViewParent.html
https://developer.android.com/reference/android/view/ViewParent.html
https://developer.android.com/reference/android/view/ViewParent.html
https://developer.android.com/reference/android/view/ViewParent.html
https://developer.android.com/reference/android/view/ViewParent.html
https://developer.android.com/reference/android/view/ViewParent.html
https://developer.android.com/reference/android/view/ViewParent.html
https://developer.android.com/reference/android/view/ViewParent.html
https://developer.android.com/reference/android/view/ViewParent.html
https://developer.android.com/reference/android/view/ViewParent.html

Handling Events

[66]

 double radius = Math.sqrt(x * x + y * y);
 if(radius > circleSize/2) return false;

 int angle = (int) (180.0 * Math.atan2(y, x) / Math.PI) + 90;
 selectedAngle = ((angle > 0) ? angle : 360 + angle);
 return true;
}

@Override
public boolean onTouchEvent(MotionEvent event) {
 boolean processed;

 switch(event.getAction()) {
 case MotionEvent.ACTION_DOWN:
 processed = computeAndSetAngle(event.getX(), event.getY());
 if(processed) {
 getParent().requestDisallowInterceptTouchEvent(true);
 changePressedState(true);
 }
 return processed;

 case MotionEvent.ACTION_UP:
 getParent().requestDisallowInterceptTouchEvent(false);
 changePressedState(false);
 return true;

 case MotionEvent.ACTION_MOVE:
 processed = computeAndSetAngle(event.getX(), event.getY());
 invalidate();
 return processed;

 default:
 return false;
 }
}

We compute the radius applying the same Cartesian to the polar transformation we used
before. We also changed the code, so if the touch is inside the radius of the circle, we call
getParent().requestDisallowInterceptTouchEvent(true) on the ACTION_DOWN
event, telling the ViewParent to not intercept the touch events. We need to undo this action
by calling the opposite getParent().requestDisallowInterceptTouchEvent(false)
on the ACTION_UP event.

Handling Events

[67]

This is the result of this change, and we can see that there is a TextView view on top and
another one at the bottom of our custom view:

Now if we touch on the circle, our custom view will only process the event and change the
circle angle. On the other hand, touching just outside the circle we'll let the ScrollView
process the events.

There aren't that many changes, but when building a custom view that can potentially be
reused in multiple places, we should definitely test it on multiple layout configurations to
see how it behaves.

Find the full source code of this example in the Example10-Events folder in the GitHub
repository.

Handling Events

[68]

Advanced event handling
We've seen how to process onTouchEvent(), but we can also detect some gestures or more
complex interactions. Android provides us with the GestureDetector to help us detect
some gestures. There is even a GestureDetectorCompat on the support library to provide
this support to older versions of Android.

For more information on the GestureDetector, please check the Android documentation.

Detecting gestures
Let's change the code we've been building to use GestureDetector. We'll also use a
Scroller implementation to scroll smoothly between values. We can modify the
constructor to create the Scroller object and the GestureDetector with an
implementation of a GestureDetector.OnGestureListener:

private GestureDetector gestureListener;
private Scroller angleScroller;

public CircularActivityIndicator(Context context, AttributeSet
attributeSet) {
 super(context, attributeSet);

 ...
 selectedAngle = 280;
 pressed = false;

 angleScroller = new Scroller(context, null, true);
 angleScroller.setFinalX(selectedAngle);

 gestureListener = new GestureDetector(context, new
 GestureDetector.OnGestureListener() {
 boolean processed;

 @Override
 public boolean onDown(MotionEvent event) {
 processed = computeAndSetAngle(event.getX(), event.getY());
 if (processed) {
 getParent().requestDisallowInterceptTouchEvent(true);
 changePressedState(true);
 postInvalidate();
 }
 return processed;
 }

Handling Events

[69]

 @Override
 public void onShowPress(MotionEvent e) {

 }

 @Override
 public boolean onSingleTapUp(MotionEvent e) {
 endGesture();
 return false;
 }

 @Override
 public boolean onScroll(MotionEvent e1, MotionEvent e2, float
 distanceX, float distanceY) {
 computeAndSetAngle(e2.getX(), e2.getY());
 postInvalidate();
 return true;
 }

 @Override
 public void onLongPress(MotionEvent e) {
 endGesture();
 }

 @Override
 public boolean onFling(MotionEvent e1, MotionEvent e2, float
 velocityX, float velocityY) {
 return false;
 }
 });
}

There are many callbacks in this interface, but first, in order to process the gestures, we
need to return true on the onDown() callback; otherwise, we're indicating that we will not
process the chain of events further.

We've simplified onTouchEvent() now, as it just simply forwards the event to the
gestureListener:

@Override
public boolean onTouchEvent(MotionEvent event) {
 return gestureListener.onTouchEvent(event);
}

Handling Events

[70]

As we may have different gestures, long press, flings, scrolls, we created a method to end
the gesture and restore the status:

private void endGesture() {
 getParent().requestDisallowInterceptTouchEvent(false);
 changePressedState(false);
 postInvalidate();
}

We've modified the computeAndSetAngle() method to use Scroller:

private boolean computeAndSetAngle(float x, float y) {
 x -= getWidth() / 2;
 y -= getHeight() / 2;

 double radius = Math.sqrt(x * x + y * y);
 if(radius > circleSize/2) return false;

 int angle = (int) (180.0 * Math.atan2(y, x) / Math.PI) + 90;
 angle = ((angle > 0) ? angle : 360 + angle);

 if(angleScroller.computeScrollOffset()) {
 angleScroller.forceFinished(true);
 }

 angleScroller.startScroll(angleScroller.getCurrX(), 0, angle -
 angleScroller.getCurrX(), 0);
 return true;
}

The Scroller instance will be animating the values; we need to keep checking the updated
values to perform the animation. One approach to do so will be to check on the onDraw()
method if the animation is finished and trigger an invalidate in order to redraw the view if
it isn't:

@Override
protected void onDraw(Canvas canvas) {
 boolean notFinished = angleScroller.computeScrollOffset();
 selectedAngle = angleScroller.getCurrX();

 ...
 if (notFinished) invalidate();
}

Handling Events

[71]

The computeScrollOffset() will return true if the Scroller hasn't reached the end; also
after calling it, we can query the value of the scroll using the getCurrX() method. In this
example, we're animating the value of the circle angle, but we're using the X coordinate of
the Scroller to animate it.

Using this GestureDetector, we can also detect long presses and flings, for example. As
flings involve more animations, we'll cover it in the following chapters of this book.

For more information about how to make views interactive refer to:
https://developer. android. com/ training/ custom- views/ making- interactive. html.

The source code of this example can be found in the Example11-Events folder, in the
GitHub repository.

Summary
In this chapter, we've seen how to interact with our custom views. A part of the power of
building custom views is the ability to interact with them and make them interactive. We
have also seen how to simply react to touch and release events, how to drag elements and
calculate the delta distance between drag events, and finally how to use GestureDetector.

As rendering has been kept quite simple until now, we'll focus on making our rendering
more complex and using more drawing primitives in the next chapter.

https://developer.android.com/training/custom-views/making-interactive.html
https://developer.android.com/training/custom-views/making-interactive.html
https://developer.android.com/training/custom-views/making-interactive.html
https://developer.android.com/training/custom-views/making-interactive.html
https://developer.android.com/training/custom-views/making-interactive.html
https://developer.android.com/training/custom-views/making-interactive.html
https://developer.android.com/training/custom-views/making-interactive.html
https://developer.android.com/training/custom-views/making-interactive.html
https://developer.android.com/training/custom-views/making-interactive.html
https://developer.android.com/training/custom-views/making-interactive.html
https://developer.android.com/training/custom-views/making-interactive.html
https://developer.android.com/training/custom-views/making-interactive.html
https://developer.android.com/training/custom-views/making-interactive.html
https://developer.android.com/training/custom-views/making-interactive.html
https://developer.android.com/training/custom-views/making-interactive.html
https://developer.android.com/training/custom-views/making-interactive.html
https://developer.android.com/training/custom-views/making-interactive.html
https://developer.android.com/training/custom-views/making-interactive.html
https://developer.android.com/training/custom-views/making-interactive.html
https://developer.android.com/training/custom-views/making-interactive.html
https://developer.android.com/training/custom-views/making-interactive.html

4
Advanced 2D Rendering

Being able to draw more complex primitives or use a composition of them is critical to
making the user experience of our custom view awesome, useful, and special. So far, we've
been using some drawing and rendering operations on our custom view, but if we check
the Android documentation closely, that's a much reduced set of what Android provides to
developers. We have drawn some primitives, saved and restored our canvas state, and
applied some clipping operations, but that's only the top thin layer. In this chapter, we'll see
these operations again, but we'll also see few new drawing operations and how we can use
everything together. We'll cover the following topics in more detail:

Drawing operations
Masking and clipping
Gradients
Putting it all together

Drawing operations
As we've just mentioned, we have already seen and used some drawing operations, but that
was only the envelope of what's inside. We'll see new drawing operations and how to
combine them.

Advanced 2D Rendering

[73]

Bitmaps
Let's start by drawing bitmaps or images. Instead of having a white background, we'll use
an image as background for our custom view. Using the source code from our previous
example, we could do some very simple modifications to draw an image:

First, let's define a Bitmap object that will hold a reference to the image:

private Bitmap backgroundBitmap;

To start, let's initialize it with the application icon we already have on our application:

public CircularActivityIndicator(Context context, AttributeSet
attributeSet) {
 super(context, attributeSet);
 backgroundBitmap = BitmapFactory.decodeResource(getResources(),
 R.mipmap.ic_launcher);

BitmapFactory provides us several ways to load and decode images.

Once we have the image loaded, we can draw it on our onDraw() method by calling the
drawBitmap(Bitmap bitmap, float left, float top, Paint paint) method:

@Override
protected void onDraw(Canvas canvas) {
 if (backgroundBitmap != null) {
 canvas.drawBitmap(backgroundBitmap, 0, 0, null);
 }

As we don't need anything special from our Paint object, we've set it to null; we'll use it
later in this book, but for the moment, just ignore it.

If backgroundBitmap is null, it means that it couldn't load the image; so, for safety, we
should always check. This code will just draw the icon on the top-left corner of our custom
view, although we could change its position by setting either different coordinates-here we
used 0,0-or applying a transformation to our canvas like we did before. For example, we
can rotate the image based on the angle selected by the user:

@Override
protected void onDraw(Canvas canvas) {
 // apply a rotation of the bitmap based on the selectedAngle
 if (backgroundBitmap != null) {
 canvas.save();
 canvas.rotate(selectedAngle, backgroundBitmap.getWidth() / 2,

Advanced 2D Rendering

[74]

 backgroundBitmap.getHeight() / 2);
 canvas.drawBitmap(backgroundBitmap, 0, 0, null);
 canvas.restore();
 }

Note that we've added the center of the image as the pivot point, or otherwise will rotate by
its top-left corner.

There are other ways to draw images; Android has another method for drawing an image
from a source Rect to a destination Rect. The Rect object allows us to store four
coordinates and use it as a rectangle.

The method drawBitmap(Bitmap bitmap, Rect source, Rect dest, Paint
paint) is very useful for drawing a portion of an image into any other size we want. This
method will take care of scaling the selected portion of the image to fill the destination
rectangle. For example, we could use the following code if we wanted to draw the right half
of the image scaled to the whole custom view size.

First, let's define the background Bitmap and two Rect; one to hold the source dimensions
and other for the destination:

private Bitmap backgroundBitmap;
private Rect bitmapSource;
private Rect bitmapDest;

Then, let's instantiate them on the class constructor. It's not a good practice to do it on the
onDraw() method, as we should avoid allocating memory to methods that are called on
every frame or every time we draw our custom view. Doing so will trigger additional
garbage collector cycles and affect performance.

public CircularActivityIndicator(Context context, AttributeSet
attributeSet) {
 super(context, attributeSet);

 backgroundBitmap = BitmapFactory.decodeResource(getResources(),
 R.mipmap.ic_launcher);
 bitmapSource = new Rect();

 bitmapSource.top = 0;
 bitmapSource.left = 0;
 if(backgroundBitmap != null) {
 bitmapSource.left = backgroundBitmap.getWidth() / 2;
 bitmapSource.right = backgroundBitmap.getWidth();
 bitmapSource.botto
 m = backgroundBitmap.getHeight();

Advanced 2D Rendering

[75]

 }
 bitmapDest = new Rect();

By default, Rect initializes the four coordinates to 0 but here, for clarity, we set the top and
the left coordinates to 0. If the image was loaded successfully, we set the right and bottom
to the width and height of the image, respectively. As we want to draw only the right half
of the image only, we update the left border to half the width of the image.

On the onDraw() method, we set the right and bottom coordinates of the destination Rect
to the width and height of the custom view and we draw the image:

@Override
protected void onDraw(Canvas canvas) {
 if (backgroundBitmap != null) {
 bitmapDest.right = getWidth();
 bitmapDest.bottom = getHeight();

 canvas.drawBitmap(backgroundBitmap, bitmapSource, bitmapDest,
 null);
 }

Let's check the result:

Advanced 2D Rendering

[76]

We can see it doesn't abide by the aspect ratio of the image, but let's solve it by computing
the ratio of the smaller dimension, either horizontal or vertical, and scale it by this ration.
Then, apply it to the other dimension. We will see the following code after calculating the
image ratio:

@Override
protected void onDraw(Canvas canvas) {
 if (backgroundBitmap != null) {
 if ((bitmapSource.width() > bitmapSource.height() && getHeight() >
 getWidth()) ||
 (bitmapSource.width() <= bitmapSource.height() && getWidth() >=
 getHeight())) {
 double ratio = ((double) getHeight()) / ((double)
 bitmapSource.height());
 int scaledWidth = (int) (bitmapSource.width() * ratio);
 bitmapDest.top = 0;
 bitmapDest.bottom = getHeight();
 bitmapDest.left = (getWidth() - scaledWidth) / 2;
 bitmapDest.right = bitmapDest.left + scaledWidth;
 } else {
 double ratio = ((double) getWidth()) / ((double)
 bitmapSource.width());
 int scaledHeight = (int) (bitmapSource.height() * ratio);
 bitmapDest.left = 0;
 bitmapDest.right = getWidth();
 bitmapDest.top = 0;
 bitmapDest.bottom = scaledHeight;
 }
 canvas.drawBitmap(backgroundBitmap, bitmapSource, bitmapDest,
 null);
 }

We can also draw a Bitmap using a transformation Matrix. To do so, we can create a new
instance of Matrix and apply a transformation:

private Matrix matrix;

Create an instance on the constructor. Do not create an instance on the onDraw() instance,
as it will pollute the memory and trigger unnecessary garbage collection, as mentioned
earlier:

matrix = new Matrix();
matrix.postScale(0.2f, 0.2f);
matrix.postTranslate(0, 200);

Please be careful with the matrix operation order; there are also post-operations and pre-
operations. Check the matrix class documentation for more information.

Advanced 2D Rendering

[77]

On the onDraw() method, just draw Bitmap using the drawBitmap (Bitmap bitmap,
Matrix matrix, Paint paint) method and using the matrix we've initialized on our
class constructor. In this example, we also used a null Paint object to simplify, as we
don't need anything specific from the Paint object here.

canvas.drawBitmap(backgroundBitmap, matrix, null);

Although these are the most common methods to draw a Bitmap onto a Canvas, there are a
few more methods.

Furthermore, check the Example12-Drawing folder on the GitHub repository to see the full
source code of this example.

Using the Paint class
We've been drawing some primitives until now, but Canvas provides us with many more
primitive rendering methods. We'll briefly cover some of them, but first, let's first talk about
the Paint class as we haven't introduced it properly.

According to the official definition, the Paint class holds the style and color information
about how to draw primitives, text, and bitmaps. If we check the examples we've been
building, we created a Paint object on our class constructor or on the onCreate method,
and we used it to draw primitives later on our onDraw() method. As, for instance, if we set
our background Paint instance Style to Paint.Style.FILL, it'll fill the primitive, but we
can change it to Paint.Style.STROKE if we only want to draw the border or the strokes of
the silhouette. We can draw both using Paint.Style.FILL_AND_STROKE.

To see Paint.Style.STROKE in action, we'll draw a black border on top of our selected
colored bar in our custom View. Let's start by defining a new Paint object called
indicatorBorderPaint and initialize it on our class constructor:

indicatorBorderPaint = new Paint();
indicatorBorderPaint.setAntiAlias(false);
indicatorBorderPaint.setColor(BLACK_COLOR);
indicatorBorderPaint.setStyle(Paint.Style.STROKE);
indicatorBorderPaint.setStrokeWidth(BORDER_SIZE);
indicatorBorderPaint.setStrokeCap(Paint.Cap.BUTT);

Advanced 2D Rendering

[78]

We also defined a constant with the size of the border line and set the stroke width to this
size. If we set the width to 0, Android guaranties it'll use a single pixel to draw the line. As
we want to draw a thick black border, this is not our case right now. In addition, we set the
stroke Cap to Paint.Cap.BUTT to avoid the stroke overflowing its path. There are two
more Caps we can use, Paint.Cap.SQUARE and Paint.Cap.ROUND. These last two will
end the stroke, respectively, with a circle, rounding the stroke, or a square.

Let's quickly see the differences between the three Caps and also introduce the drawLine
primitive.

First of all, we create an array with all three Caps, so we can easily iterate between them
and create a more compact code:

private static final Paint.Cap[] caps = new Paint.Cap[] {
 Paint.Cap.BUTT,
 Paint.Cap.ROUND,
 Paint.Cap.SQUARE
};

Now, on our onDraw() method, let's draw a line using each of the Caps using the
drawLine(float startX, float startY, float stopX, float stopY, Paint

paint) method:

int xPos = (getWidth() - 100) / 2;
int yPos = getHeight() / 2 - BORDER_SIZE * CAPS.length / 2;
for(int i = 0; i < CAPS.length; i++) {
 indicatorBorderPaint.setStrokeCap(CAPS[i]);
 canvas.drawLine(xPos, yPos, xPos + 100, yPos,
 indicatorBorderPaint);
 yPos += BORDER_SIZE * 2;
}
indicatorBorderPaint.setStrokeCap(Paint.Cap.BUTT);

We'll have a result similar to the following image. As we can see, the line is slightly shorter
when using the Paint.Cap.BUTT stroke Cap:

Advanced 2D Rendering

[79]

Also, as we saw before, we set the AntiAlias flag to true on the Paint object. If this flag is
enabled, all operations that support it will smooth the corners of what they are drawing.
Let's compare the differences with this flag enabled and disabled:

On the left, we've the three lines with the AntiAlias flag enabled, and on the right, we've
the same three lines with the AntiAlias flag disabled. We can only appreciate a difference
on the rounded edges, but the result is smoother and nicer. Not all operations and
primitives support it and might have an impact on performance, so we need to be careful
when using this flag.

We can also draw multiple lines using another method called drawLine(float[]
points, int offset, int count, Paint paint) or its simpler form
drawLine(float[] points, Paint paint).

This method will draw a single line for each set of the four entries into the array; it would
be like calling drawLine(array[index], array[index + 1], array[index + 2],
array[index +3], paint), incrementing the index by 4, and repeating this process until
the end of the array.

On the first method, we could also specify the amount of lines to draw and from which
offset we start inside the array.

Now, let's go to the task we had and draw the border:

canvas.drawArc(
 horMargin + BORDER_SIZE / 4,
 verMargin + BORDER_SIZE / 4,
 horMargin + circleSize - BORDER_SIZE /2,
 verMargin + circleSize - BORDER_SIZE /2,
 0, selectedAngle, true, indicatorBorderPaint);

Advanced 2D Rendering

[80]

It's simply drawing the same arc, but with this new Paint. One small detail: as the border
width grows centered from where it's drawing the stroke, we need to reduce the size of the
arc by BORDER_SIZE /2. Let's see the result:

We're missing the inner border, but that's normal because, if we remember from our
previous chapters, that part is there because we're clipping it out, not because drawArc is
drawing it that way. We can do a small trick to draw this internal border. We'll draw
another arc with the size of the clipping area, but just the stroke:

canvas.drawArc(
 clipX - BORDER_SIZE / 4,
 clipY - BORDER_SIZE / 4,
 clipX + clipWidth + BORDER_SIZE / 2,
 clipY + clipWidth + BORDER_SIZE / 2,
 0, selectedAngle, true, indicatorBorderPaint);

Here, we've applied the same logic with the border size, but the other way around: we draw
the arc slightly bigger instead of smaller.

Advanced 2D Rendering

[81]

Let's see the results:

We've mentioned earlier in this book, but it's important not to create new Paint objects in
the onDraw() method or basically, in any method that will be called every time a frame is
drawn. We might be tempted as, in some cases, it feels convenient; however, avoid the
temptation and create the objects in the class constructor or just reuse the objects. We can
change the Paint class instance properties and reuse it to paint with different colors or with
different styles.

Find the entire source code of this example in the Example13-Paint folder on the GitHub
repository.

We'll be playing more with the Paint object and its properties, but now, let's move to
drawing more primitives.

Advanced 2D Rendering

[82]

Drawing more primitives
Let's start by the simplest drawing operations: drawColor(int color), drawARGB(int
a, int r, int g, int b), drawRGB(int r, int g, int b), and
drawPaint(Paint paint). These will fill the entire canvas, taking into account the
clipping area.

Let's move forward to drawRect() and drawRoundRect(). These two methods are quite
simple too, drawRect() will draw a rectangle and drawRoundRect() will draw a
rectangle with rounded borders.

We can use both methods directly, specifying the coordinates or using Rect. Let's create a
simple example that will draw a new random rounded rectangle every time the view is
drawn or it’s onDraw() method is called.

To start, lets define two ArrayLists; one will hold the coordinates and the other will hold
the color information of that rectangle:

private Paint paint;
private ArrayList<Float> rects;
private ArrayList<Integer> colors;

We also declared a Paint object that we'll use to draw all the rounded rectangles. Let's now
initialize them:

public PrimitiveDrawer(Context context, AttributeSet attributeSet) {
 super(context, attributeSet);

 rects = new ArrayList<>();
 colors = new ArrayList<>();

 paint = new Paint();
 paint.setStyle(Paint.Style.FILL);
 paint.setAntiAlias(true);
}

We've set the paint object style to Paint.Style.FILL and set the AntiAlias flag, but we
haven't set the color. We'll do so before drawing each rectangle.

Advanced 2D Rendering

[83]

Let's now implement our onDraw() method. To start, we'll add four new random
coordinates. As Math.random() returns a value from 0 to 1, we multiply it by the current
view width and height to get a proper view coordinate. We also generate a new random
color with full opacity:

@Override
protected void onDraw(Canvas canvas) {
 canvas.drawColor(BACKGROUND_COLOR);

 int width = getWidth();
 int height = getHeight();

 for (int i = 0; i < 2; i++) {
 rects.add((float) Math.random() * width);
 rects.add((float) Math.random() * height);
 }
 colors.add(0xff000000 | (int) (0xffffff * Math.random()));

 for (int i = 0; i < rects.size() / 4; i++) {
 paint.setColor(colors.get(i));
 canvas.drawRoundRect(
 rects.get(i * 4),
 rects.get(i * 4 + 1),
 rects.get(i * 4 + 2),
 rects.get(i * 4 + 3),
 40, 40, paint);
 }

 if (rects.size() < 400) postInvalidateDelayed(20);
}

Then, we'll loop with all the random points we added and take the 4 of them at the time,
assuming the first two will be the starting X and Y and the latter two will be the ending X
and Y coordinates of the rectangle. We hardcoded 40 as the angle of the rounded edges. We
can play with this value to change the amount of roundness.

We've introduced bitwise operations on colors. We know we can store a color in a 32-bit
integer value, and usually, in ARGB format. That gives us 8 bits for each component. Doing
bitwise operations, we can easily manipulate colors. For more information on bitwise
operations, please refer to:
https://en.wikipedia. org/ wiki/ Bitwise_ operation.

https://en.wikipedia.org/wiki/Bitwise_operation
https://en.wikipedia.org/wiki/Bitwise_operation
https://en.wikipedia.org/wiki/Bitwise_operation
https://en.wikipedia.org/wiki/Bitwise_operation
https://en.wikipedia.org/wiki/Bitwise_operation
https://en.wikipedia.org/wiki/Bitwise_operation
https://en.wikipedia.org/wiki/Bitwise_operation
https://en.wikipedia.org/wiki/Bitwise_operation
https://en.wikipedia.org/wiki/Bitwise_operation
https://en.wikipedia.org/wiki/Bitwise_operation
https://en.wikipedia.org/wiki/Bitwise_operation
https://en.wikipedia.org/wiki/Bitwise_operation
https://en.wikipedia.org/wiki/Bitwise_operation
https://en.wikipedia.org/wiki/Bitwise_operation
https://en.wikipedia.org/wiki/Bitwise_operation

Advanced 2D Rendering

[84]

To finish, if we have less than 100 rectangles or 400 coordinates in our array, we post an
Invalidate event delayed by 20 milliseconds. It is only for demonstration purposes and to
show that it is adding and drawing more rectangles. The drawRoundRect() method can
easily be changed by drawRect() by just removing the two hardcoded 40s as the angle of
the rounded edges.

Let's see the result:

For the full source code, check the Example14-Primitives-Rect folder in the GitHub
repository.

Advanced 2D Rendering

[85]

Let's continue with other primitives, for example, drawPoints. The drawPoints(float[]
points, Paint paint) method will simply draw a list of points. It will use the stroke
width and the stroke Cap of the paint object. For instance, a quick example that draws few
random lines and also draws a point both at the beginning and at the end of each line:

@Override
protected void onDraw(Canvas canvas) {
 canvas.drawColor(BACKGROUND_COLOR);

 if (points == null) {
 points = new float[POINTS * 2];
 for(int i = 0; i < POINTS; i++) {
 points[i * 2] = (float) Math.random() * getWidth();
 points[i * 2 + 1] = (float) Math.random() * getHeight();
 }
 }

 paint.setColor(0xffa0a0a0);
 paint.setStrokeWidth(4.f);
 paint.setStrokeCap(Paint.Cap.BUTT);
 canvas.drawLines(points, paint);

 paint.setColor(0xffffffff);
 paint.setStrokeWidth(10.f);
 paint.setStrokeCap(Paint.Cap.ROUND);
 canvas.drawPoints(points, paint);
}

Advanced 2D Rendering

[86]

Let's see the result:

We're creating the points array here on the onDraw() method, but it's done only once.

Check the full source code of this example in the Example15-Primitives-Points folder,
in the GitHub repository.

Advanced 2D Rendering

[87]

Building on top of the previous example, we can easily introduce the drawCircle
primitive. Let's change the code a bit though; instead of generating only pairs of random
values, let's generate three random values. The first two will be the X and Y coordinate of
the circle and the third the circle's radius. In addition, let's remove the lines for the sake of
clarity:

@Override
protected void onDraw(Canvas canvas) {
 canvas.drawColor(BACKGROUND_COLOR);

 if (points == null) {
 points = new float[POINTS * 3];
 for(int i = 0; i < POINTS; i++) {
 points[i * 3] = (float) Math.random() * getWidth();
 points[i * 3 + 1] = (float) Math.random() * getHeight();
 points[i * 3 + 2] = (float) Math.random() * (getWidth()/4);
 }
 }

 for (int i = 0; i < points.length / 3; i++) {
 canvas.drawCircle(
 points[i * 3],
 points[i * 3 + 1],
 points[i * 3 + 2],
 paint);
 }
}

We've also initialized our paint object on our class constructor:

paint = new Paint();
paint.setStyle(Paint.Style.FILL);
paint.setAntiAlias(true);
paint.setColor(0xffffffff);

Advanced 2D Rendering

[88]

Let's see the result:

Check the full source code of this example on the Example16-Primitives-Circles
folder, in the GitHub repository.

To find out about all the primitives, modes, and methods to draw on a Canvas, check the
Android documentation.

Paths can be considered as containers of primitives, lines, curves, and other geometric
shapes that, as we already seen, can be used as clipping regions, drawn, or used to draw
text on it.

Advanced 2D Rendering

[89]

To begin, let's modify our previous example and convert all the circles to a Path:

@Override
protected void onDraw(Canvas canvas) {
 if (path == null) {
 float[] points = new float[POINTS * 3];
 for(int i = 0; i < POINTS; i++) {
 points[i * 3] = (float) Math.random() * getWidth();
 points[i * 3 + 1] = (float) Math.random() * getHeight();
 points[i * 3 + 2] = (float) Math.random() * (getWidth()/4);
 }

 path = new Path();

 for (int i = 0; i < points.length / 3; i++) {
 path.addCircle(
 points[i * 3],
 points[i * 3 + 1],
 points[i * 3 + 2],
 Path.Direction.CW);
 }

 path.close();
 }

We don't need to store the points, so we declared it as a local variable. We created a Path
object instead. Now that we have this Path with all the circles in it, we can draw it by
calling the drawPath(Path path, Paint paint) method or use it as a clipping mask.

We added an image to our project and we'll draw it as a background image, but we'll apply
a clipping mask defined by our Path to make things interesting:

 canvas.save();
 if (!touching) canvas.clipPath(path);
 if(background != null) {
 backgroundTranformation.reset();
 float scale = ((float) getWidth()) / background.getWidth();
 backgroundTranformation.postScale(scale, scale);
 canvas.drawBitmap(background, backgroundTranformation, null);
 }
 canvas.restore();
}

Advanced 2D Rendering

[90]

Let's see the result:

To see the full source code of this example, check the Example17-Paths folder on the
GitHub repository.

Checking the Android documentation about Paths, we can see that there are a lot of
methods to add primitives to a Path, for example:

addCircle()

addRect()

addRoundRect()

addPath()

However, we're not limited to these methods, we can also add lines or displace where our
path will start our next element using the lineTo or moveTo methods, respectively. In the
case we want to use relative coordinates, the Path class provides us with the methods
rLineTo and rMoveTo that assumes that the given coordinates are relative from the last
point of the Path.

Advanced 2D Rendering

[91]

For additional information about Path and its methods, check the Android documentation
website. We can do so, using the methods cubicTo and quadTo. A Bezier curve consists of
control points that control the shape of the smooth curve. Let's build a quick example by
adding control points each time the user taps on the screen.

First, let's define two Paint objects, one for the Bezier lines and another to draw the control
points for reference:

pathPaint = new Paint();
pathPaint.setStyle(Paint.Style.STROKE);
pathPaint.setAntiAlias(true);
pathPaint.setColor(0xffffffff);
pathPaint.setStrokeWidth(5.f);

pointsPaint = new Paint();
pointsPaint.setStyle(Paint.Style.STROKE);
pointsPaint.setAntiAlias(true);
pointsPaint.setColor(0xffff0000);
pointsPaint.setStrokeCap(Paint.Cap.ROUND);
pointsPaint.setStrokeWidth(40.f);

Control points will be drawn as round red dots, while the Bezier lines will be drawn as
thinner white lines. As we're initializing our objects, let's also define an empty Path and a
float array to store the points:

points = new ArrayList<>();
path = new Path();

Now, let's override onTouchEvent() to add the point where the user tapped the screen
and trigger a redraw of our custom view by calling the invalidate method.

@Override
public boolean onTouchEvent(MotionEvent event) {
 if (event.getAction() == MotionEvent.ACTION_DOWN) {
 points.add(event.getX());
 points.add(event.getY());

 invalidate();
 }

 return super.onTouchEvent(event);
}

Advanced 2D Rendering

[92]

On our onDraw() method, let's first check if we have already three points. If that is the case,
let's add a cubic Bezier to our Path:

while(points.size() - currentIndex >= 6) {
 float x1 = points.get(currentIndex);
 float y1 = points.get(currentIndex + 1);

 float x2 = points.get(currentIndex + 2);
 float y2 = points.get(currentIndex + 3);

 float x3 = points.get(currentIndex + 4);
 float y3 = points.get(currentIndex + 5);

 if (currentIndex == 0) path.moveTo(x1, y1);
 path.cubicTo(x1, y1, x2, y2, x3, y3);
 currentIndex += 6;
}

The currentIndex maintains the last index of the point array that has been inserted into
the Path.

Now, let's draw the Path and the points:

canvas.drawColor(BACKGROUND_COLOR);
canvas.drawPath(path, pathPaint);

for (int i = 0; i < points.size() / 2; i++) {
 float x = points.get(i * 2);
 float y = points.get(i * 2 + 1);
 canvas.drawPoint(x, y, pointsPaint);
}

Advanced 2D Rendering

[93]

Let's see the result:

See the full source code of this example on the Example18-Paths folder, in the GitHub
repository.

Drawing text
Text can be considered a primitive from the point of view of Canvas operations, but we've
put it here on its own section, as it's quite important. Instead of starting with the simplest
example, as we've just introduced Paths, we'll continue our previous example and draw the
text on top of the Path. To draw the text, we'll reuse the Paint object for the Bezier curve,
but we'll add some text parameters:

pathPaint.setTextSize(50.f);
pathPaint.setTextAlign(Paint.Align.CENTER);

Advanced 2D Rendering

[94]

This sets the size of the text and also aligns it to the center of the Path, so every time we add
new points, the text position will adapt to remain at the center. To draw the text, we simply
call the drawTextOnPath() method:

canvas.drawTextOnPath("Building Android UIs with Custom Views", path, 0, 0,
pathPaint);

This was a very quick addition to our code, but if we execute our application, we can see the
results with the text over the Path lines:

Take into account that we're drawing the same things as we drawn before, but we can freely
use the Path just as the guide for the text. There is no need to draw it or to draw the control
points.

Check the full source code of this example on the Example19-Text folder, in the GitHub
repository.

Advanced 2D Rendering

[95]

We've started drawing text on Paths, as we had the example almost built. However, there
are more simple methods for drawing text. For instance, we can just draw a text on a
specific position of the screen by calling either canvas.drawText(String text, float
x, float y, Paint paint) or canvas.drawText(char[] text, float x, float
y, Paint paint).

These methods will just do their job, but they will not check if the text fits in the available
space and they will definitely not split and wrap the text. To do so, we'll have to do it
ourselves. The Paint class provides us with methods to measure text and calculate text
boundaries. For example, we created a small helper method that returns the width and
height of String:

private static final float[] getTextSize(String str, Paint paint) {
 float[] out = new float[2];
 Rect boundaries = new Rect();
 paint.getTextBounds(str, 0, str.length(), boundaries);

 out[0] = paint.measureText(str);
 out[1] = boundaries.height();
 return out;
}

We've used the text boundary to get the text height, but we've used the measureText()
method to get the text width. There are some differences on how the size is computed in
both methods. Although it's not currently properly documented on the Android
documentation site, there is an old discussion about this on Stack Overflow:
http://stackoverflow.com/questions/7549182/android-paint-measuretext-vs-gettext

bounds.

However, we shouldn't implement our own text splitting method. If we want to draw a
large text and we know it might need splitting and wrapping, we can use the
StaticLayout class. In the example here, we'll create a StaticLayout with the width of
half the view width.

http://stackoverflow.com/questions/7549182/android-paint-measuretext-vs-gettextbounds
http://stackoverflow.com/questions/7549182/android-paint-measuretext-vs-gettextbounds

Advanced 2D Rendering

[96]

We can implement it on our onLayout() method:

@Override
protected void onLayout(boolean changed, int left, int top, int right, int
bottom) {
 super.onLayout(changed, left, top, right, bottom);

 // create a layout of half the width of the View
 if (layout == null) {
 layout = new StaticLayout(
 LONG_TEXT,
 0,
 LONG_TEXT.length(),
 paint,
 (right - left) / 2,
 Layout.Alignment.ALIGN_NORMAL,
 1.f,
 1.f,
 true);
 }
}

In our onDraw() method, we draw it centered on the screen. As we know, the layout width
was half the view width; we know we have to displace it by a quarter of the width.

@Override
protected void onDraw(Canvas canvas) {
 canvas.drawColor(BACKGROUND_COLOR);

 canvas.save();
 // center the layout on the View
 canvas.translate(canvas.getWidth()/4, 0);
 layout.draw(canvas);
 canvas.restore();
}

Advanced 2D Rendering

[97]

Here is the result:

Check the full source code of this example in the Example20-Text folder, in the GitHub
repository.

Transformations and operations
We already used some canvas transformations on our custom view before, but let's revisit
the Canvas operations we can use. First of all, let's see how we can concatenate these
transformations. Once we've used a transformation, any other transformation we use will
be concatenated or applied on top of our previous operations. To avoid this behavior, we've
to call the save() and restore() methods we also used before. To see how
transformations build on top of each other, let's create a simple example.

Advanced 2D Rendering

[98]

First, let's create a paint object on our constructor:

public PrimitiveDrawer(Context context, AttributeSet attributeSet) {
 super(context, attributeSet);

 paint = new Paint();
 paint.setStyle(Paint.Style.STROKE);
 paint.setAntiAlias(true);
 paint.setColor(0xffffffff);
}

Now, let's calculate the rectangle size based on the size of the screen on the onLayout()
method:

@Override
 protected void onLayout(boolean changed, int left, int top, int right,
 int bottom) {
 super.onLayout(changed, left, top, right, bottom);

 int smallerDimension = (right - left);
 if (bottom - top < smallerDimension) smallerDimension = bottom -
 top;

 rectSize = smallerDimension / 10;
 timeStart = System.currentTimeMillis();
}

We also stored the starting time, which we will use it for a quick and simple animation
afterwards. Now, we're ready to implement the onDraw() method:

@Override
protected void onDraw(Canvas canvas) {
 float angle = (System.currentTimeMillis() - timeStart) / 100.f;

 canvas.drawColor(BACKGROUND_COLOR);

 canvas.save();
 canvas.translate(canvas.getWidth() / 2, canvas.getHeight() / 2);

 for (int i = 0; i < 15; i++) {
 canvas.rotate(angle);
 canvas.drawRect(-rectSize / 2, -rectSize / 2, rectSize / 2,
 rectSize / 2, paint);
 canvas.scale(1.2f, 1.2f);
 }

Advanced 2D Rendering

[99]

 canvas.restore();
 invalidate();
}

We've first calculated the angle based on the amount of time that passed since the
beginning. Animations should always be based on time and not on the amount of frames
drawn.

Then, we draw the background, store the canvas state by calling canvas.save(), and
perform a translation to the center of the screen. We'll base all transformations and
drawings from the center, instead of the top left corner.

In this example, we'll draw 15 rectangles where each one will be increasingly rotated and
scaled. As transformations are applied on top of each other, this is very easy to do in a
simple for() loop. It is important to draw the rectangle from -rectSize / 2 to
rectSize / 2 instead of 0 to rectSize; otherwise, it will be rotating from one angle.

Change the code line where we draw the rectangle to canvas.drawRect(0, 0,
rectSize, rectSize, paint) to see what happens.

There is, though, an alternative to this method: we can use pivot points on the
transformations. Both rotate() and scale() methods support two additional float
parameters that are the pivot point coordinates. If we look at the source code
implementation of scale(float sx, float sy, float px, float py), we can see it
is simply applying a translation, calling the simple scale method, and applying the opposite
translation:

public final void scale(float sx, float sy, float px, float py) {
 translate(px, py);
 scale(sx, sy);
 translate(-px, -py);
}

Using this method, we could have implemented the onDraw() method this other way:

@Override
protected void onDraw(Canvas canvas) {
 float angle = (System.currentTimeMillis() - timeStart) / 100.f;

 canvas.drawColor(BACKGROUND_COLOR);

 canvas.save();
 canvas.translate(canvas.getWidth() / 2,
 canvas.getHeight() / 2);

 for (int i = 0; i < 15; i++) {

Advanced 2D Rendering

[100]

 canvas.rotate(angle, rectSize / 2, rectSize / 2);
 canvas.drawRect(0, 0, rectSize, rectSize, paint);
 canvas.scale(1.2f, 1.2f, rectSize / 2, rectSize / 2);
 }

 canvas.restore();
 invalidate();
}

See the following screenshot to see how the rectangles are concatenated:

In addition, the source code of this full example can be found in the Example21-
Transformations folder on the GitHub repository.

Advanced 2D Rendering

[101]

We've seen some basic operations on matrices, such as scale(), rotate(), and
translate(), but canvas provides us with some more additional methods:

skew: This applies a skew transformation.
setMatrix: This lets us compute a transformation matrix and directly sets it to
our canvas.
concat: This is similar to the previous case. We can concatenate any matrix to the
current one.

Putting it all together
So far, we've seen many different drawing primitives, clipping operations, and matrix
transformations, but the most interesting part is when we combine it all together. In order
to build great custom views, we've to use many different kinds of operations and
transformations.

However, having so many operations available is a double-edged sword. We have to be
careful when adding this complexity to our custom view, as we can compromise
performance quite easily. We should check if we're applying, for example, too many or
unnecessary clippings operations or if we aren’t optimizing enough or we aren’t
maximizing reuse of clipping and transformation operations. In that case, we might even
use the quickReject() method from the canvas object to quickly discard areas that will
fall outside the clipping area.

Also, we need to keep track of all save() and restore() we're performing to our canvas.
Performing additional restore() methods, not only means we have an issue with our
code, but is an actual error. If we have to change to different previously saved states, we
can use the restoreToCount() method together with saving the state number in the call
we do to save the state.

As we've mentioned before, and will mention again in the following chapters, avoid to
allocate memory or create new instances of an object, inside the onDraw() method;
especially remember this remark if at some point you think you have to create a new
instance of a paint object inside the onDraw(). Reuse paint objects or initialize them, for
instance, on the class constructor.

Advanced 2D Rendering

[102]

Summary
In this chapter, we've seen how to draw more complex graphic primitives, transform them,
and use clipping operations while drawing our custom view. Most of the time, these
primitives by themselves don't give us too much value but, we've also saw many quick
examples of how to put many of them together and create something useful. We didn't
cover all the possible methods, operations, or transformations, as it will be a lot of
information and will not be useful; it may seem like reading a language dictionary. To stay
up to date with all the possible methods and drawing primitives, keep checking the
developer's Android documentation and stay aware of the release notes of every new
release of Android to check what's new.

In the next chapter, we'll see how to use OpenGL ES to add 3D rendering to our custom
view.

5
Introducing 3D Custom Views

In previous chapters, we've seen how to implement custom views using the Android 2D
graphics library. That would be our most common approach, but sometimes, we might
need some more horsepower because of additional render particularities or the
requirements of our custom view. In those cases, we might use OpenGL for Embedded
Systems (OpenGL ES) and enable 3D rendering operations in our view.

In this chapter, we'll see how to use OpenGL ES in our custom views and show a practical
example of how we can build one. With more detail, we will cover the following topics:

Introduction to OpenGL ES
Drawing geometry
Loading external geometry

Introduction to OpenGL ES
Android supports OpenGL ES for 3D rendering. OpenGL ES is a subset of the desktop
OpenGL API implementation. On its own, Open Graphics Library (OpenGL) is a very
popular cross-platform API for rendering 2D and 3D graphics.

It is slightly more complex to use OpenGL ES to render our custom view than the standard
Android canvas drawing primitives and, as we'll see during this chapter, it needs to be used
with common sense and it won't always be the best approach.

Introducing 3D Custom Views

[104]

For any additional information about OpenGL ES please refer to the official documentation
from The Khronos Group:
https://www.khronos. org/ opengles/ .

Getting started with OpenGL ES in Android
It's very easy to create a 3D-enabled custom view. We can do it by simply extending
GLSurfaceView instead of just extending from the View class. The complexity comes in the
rendering part, but let's go step by step. First, we'll create a class named GLDrawer and add
it to our project:

package com.packt.rrafols.draw;

import android.content.Context;
import android.opengl.GLSurfaceView;
import android.util.AttributeSet;

public class GLDrawer extends GLSurfaceView {
 private GLRenderer glRenderer;

 public GLDrawer(Context context, AttributeSet attributeSet) {
 super(context, attributeSet);
 }
}

Like our previous examples, we created the constructor with the AttributeSet, so we can
inflate it and set parameters, if needed, from the XML layout file.

We might have the impression that OpenGL ES is only used in full screen games, but it can
be used in non-full screen views and even inside ViewGroups or a ScrollView.

To see how it behaves, let's add it to the layout file between two TextView:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/activity_main"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 android:padding="@dimen/activity_vertical_margin"
 tools:context="com.packt.rrafols.draw.MainActivity">

<TextView

https://www.khronos.org/opengles/
https://www.khronos.org/opengles/
https://www.khronos.org/opengles/
https://www.khronos.org/opengles/
https://www.khronos.org/opengles/
https://www.khronos.org/opengles/
https://www.khronos.org/opengles/
https://www.khronos.org/opengles/
https://www.khronos.org/opengles/
https://www.khronos.org/opengles/
https://www.khronos.org/opengles/
https://www.khronos.org/opengles/

Introducing 3D Custom Views

[105]

 android:layout_width="match_parent"
 android:layout_height="100dp"
 android:background="@android:color/background_light"
 android:gravity="center_vertical|center_horizontal"
 android:text="@string/filler_text"/>

<com.packt.rrafols.draw.GLDrawer
 android:layout_width="match_parent"
 android:layout_height="100dp"/>

<TextView
 android:layout_width="match_parent"
 android:layout_height="100dp"
 android:background="@android:color/background_light"
 android:gravity="center_vertical|center_horizontal"
 android:text="@string/filler_text"/>
</LinearLayout>

We need to do an additional step before our GLDrawer class can work. We have to create a
GLSurfaceView.Renderer object to handle all the rendering and set it to the view by
using the setRenderer() method. When we set this renderer, GLSurfaceView will
additionally create a new thread to manage the drawing cycle of the view. Let's add a
GLRenderer class at the end of the GLDrawer class file:

class GLRenderer implements GLSurfaceView.Renderer {
 @Override
 public void onSurfaceCreated(GL10 gl, EGLConfig config) {

 }

 @Override
 public void onSurfaceChanged(GL10 gl, int width, int height) {

 }

 @Override
 public void onDrawFrame(GL10 gl) {
 gl.glClearColor(1.f, 0.f, 0.f, 1.f);
 gl.glClear(GL10.GL_COLOR_BUFFER_BIT);
 }
}

Introducing 3D Custom Views

[106]

The glClearColor() method tells OpenGL which color we'd like to clear from the screen.
We're setting the four components, red, green, blue, and alpha, in a floating-point format
ranging from 0 to 1. glClear() is the method that actually clears the screen. As OpenGL
can also clear several other buffers, it'll only clear the screen if we set the
GL_COLOR_BUFFER_BIT flag. Now that we've been introduced to some OpenGL functions,
let's create a GLRenderer instance variable and initialize it in the class constructor:

private GLRenderer glRenderer;
public GLDrawer(Context context, AttributeSet attributeSet) {
 super(context, attributeSet);
 glRenderer = new GLRenderer()
 setRenderer(glRenderer);
}

When implementing a GLSurfaceView.Renderer class, we have to override the following
three methods or callbacks:

onSurfaceCreated(): This method will be called every time Android needs to
create an OpenGL context-for example, the very first time the rendered thread is
created, or every time the OpenGL context is lost. Context might be lost
whenever the application goes into the background. This callback is the ideal
method to put all the initialization code that depends on the OpenGL context.
onSurfaceChanged():This method will be called when the view is resized. It'll
also be called the very first time the surface is created.
onDrawFrame():This method is responsible for doing the actual drawing, and
will be called every time the view needs to be drawn.

In our example, we've left the onSurfaceCreated() and onSurfaceChanged() methods
empty as, at this moment, we're only focusing on drawing a solid background to check if
we have everything working, and we don't need the view size yet.

If we run this example, we'll see both TextViews and our custom view with a red
background:

Introducing 3D Custom Views

[107]

If we set a breakpoint or we print a log in our onDrawFrame() method, we'll see that the
view is continuously redrawn. This behavior is different from a normal view, as the
renderer thread will be continuously calling the onDrawFrame() method. This behavior
can be modified by calling the setRender() method once we've set the renderer object. If
we call it before, it'll crash our application. There are two render modes:

setRenderMode(RENDERMODE_CONTINUOUSLY): This is the default behavior. The
renderer will be continuously called to render the view.
setRenderMode(RENDERMODE_WHEN_DIRTY): This can be set to avoid the
continuous redrawing of the view. Instead of calling invalidate, we have to call
requestRender in order to request a new render of the view.

Drawing basic geometry
We've got our view initialized and have drawn a solid red background. Let's draw
something more interesting. We'll focus on OpenGL ES 2.0 in the following examples, as it's
been available since Android 2.2, or API level 8, and it's not really worth explaining how to
do it in OpenGL ES 1.1. However, if you want to know more, there are some ports of the old
NeHe OpenGL ES tutorials ported to Android on GitHub:
https://github.com/ nea/ nehe- android- ports.

https://github.com/nea/nehe-android-ports
https://github.com/nea/nehe-android-ports
https://github.com/nea/nehe-android-ports
https://github.com/nea/nehe-android-ports
https://github.com/nea/nehe-android-ports
https://github.com/nea/nehe-android-ports
https://github.com/nea/nehe-android-ports
https://github.com/nea/nehe-android-ports
https://github.com/nea/nehe-android-ports
https://github.com/nea/nehe-android-ports
https://github.com/nea/nehe-android-ports
https://github.com/nea/nehe-android-ports
https://github.com/nea/nehe-android-ports
https://github.com/nea/nehe-android-ports
https://github.com/nea/nehe-android-ports

Introducing 3D Custom Views

[108]

OpenGLES 1.1 and OpenGL ES 2.0 code are incompatible because the OpenGL ES 1.1 code
is based on a fixed-function pipeline, where you have to specify the geometry, lights, and so
on, and OpenGL ES 2.0 is based on a programmable pipeline handled by the vertex and
fragment shaders.

First, as we require OpenGL ES 2.0, we should add a uses-feature configuration line in
our manifest file so that Google Play will not show the application to those devices that are
not compatible:

<application>

<uses-feature android:glEsVersion="0x00020000" android:required="true" />
 ...
</application>

If we use specific APIs from OpenGL ES3.0, we'd change the requirement to
android:glEsVersion="0x00030000" to let Google Play filter accordingly.

Once we've done this step, we could start drawing some more shapes and geometry. But
first, before setting the renderer, we should set the renderer context to 2 so it will create an
OpenGL ES 2.0 context. We can easily do that by modifying the constructor of the
GLDrawer class:

public GLDrawer(Context context, AttributeSet attributeSet) {
 super(context, attributeSet);
 setEGLContextClientVersion(2);
 glRenderer = new GLRenderer();
 setRenderer(glRenderer);
}

Let's now go through how to draw a rectangle on the screen, step by step. If you're familiar
with OpenGL ES 1.1 but not with OpenGL ES 2.0, you'll see that there is a bit more work to
do, but at the end, we'll benefit from the additional flexibility and power of OpenGL ES 2.0.

We will start by defining an array with the coordinates of a rectangle, or a quad, centered
on the position 0, 0, 0:

private float quadCoords[] = {
 -1.f, -1.f, 0.0f,
 -1.f, 1.f, 0.0f,
 1.f, 1.f, 0.0f,
 1.f, -1.f, 0.0f
 };

Introducing 3D Custom Views

[109]

We'll be drawing triangles, so we have to define their vertex indexes:

private short[] index = {
 0, 1, 2,
 0, 2, 3
};

To understand the reasoning behind these indexes, how to map them to the vertex indexes
we previously defined, and how we can draw a quad using two triangles, look at the
following diagram:

If we draw a triangle with the vertices 0, 1, and 2, and another one with the vertices 0, 2,
and 3, we'll end up having a quad.

When working with OpenGL ES, we'll need to provide data using a Buffer or a subclass of
a Buffer, so let's convert those arrays into Buffer:

ByteBuffer vbb = ByteBuffer.allocateDirect(quadCoords.length * (Float.SIZE
/ 8));
vbb.order(ByteOrder.nativeOrder());

vertexBuffer = vbb.asFloatBuffer();
vertexBuffer.put(quadCoords);
vertexBuffer.position(0);

Introducing 3D Custom Views

[110]

First, we have to allocate the space we need for the Buffer. As we know the size of the
array, this would be very easy: We just have to multiply it by the size of a float in bytes. One
float is exactly four bytes, but we can calculate it by getting the number of bits using
Float.SIZE and dividing it by 8. In Java 8, there is a new constant called Float.BYTES
that precisely returns the size in bytes.

We have to indicate that the Buffer in which we put the data will have the native byte
order of the platform. We can do this by calling the order() method on the Buffer with
ByteOrder.nativeOrder() as a parameter. Once we've done this step, we can convert it
to a float buffer by calling Buffer.asFloatBuffer() and set the data. To finish, we reset
the position of the Buffer to the beginning by setting its position to 0.

We have to do this process for the vertices as well as for the indexes. As indexes are stored
as short integers, we need to take that into consideration when we convert the buffer, and
when calculating the size:

ByteBuffer ibb = ByteBuffer.allocateDirect(index.length * (Short.SIZE /
8));
ibb.order(ByteOrder.nativeOrder());

indexBuffer = ibb.asShortBuffer();
indexBuffer.put(index);
indexBuffer.position(0);

As we mentioned before, the OpenGL ES 2.0 rendering pipeline is handled by the vertex
and the fragment shader. Let's create a helper method to load and compile the shader
code:

// Source:
// https://developer.android.com/training/graphics/opengl/draw.html
public static int loadShader(int type, String shaderCode){

 // create a vertex shader type (GLES20.GL_VERTEX_SHADER)
 // or a fragment shader type (GLES20.GL_FRAGMENT_SHADER)
 int shader = GLES20.glCreateShader(type);

 // add the source code to the shader and compile it
 GLES20.glShaderSource(shader, shaderCode);
 GLES20.glCompileShader(shader);

 return shader;
}

Introducing 3D Custom Views

[111]

Using this new method, we can load both the vertex and fragment shaders:

private void initShaders() {
 int vertexShader = loadShader(GLES20.GL_VERTEX_SHADER,
vertexShaderCode);
 int fragmentShader = loadShader(GLES20.GL_FRAGMENT_SHADER,
fragmentShaderCode);

 shaderProgram = GLES20.glCreateProgram();
 GLES20.glAttachShader(shaderProgram, vertexShader);
 GLES20.glAttachShader(shaderProgram, fragmentShader);
 GLES20.glLinkProgram(shaderProgram);
}

For the time being, let's use the default shaders from the Android developer's OpenGL
training website.

The vertexShader is as follows:

// Source:
// https://developer.android.com/training/graphics/opengl/draw.html
private final String vertexShaderCode =
 // This matrix member variable provides a hook to manipulate
 // the coordinates of the objects that use this vertex shader
"uniform mat4 uMVPMatrix;" +
"attribute vec4 vPosition;" +
"void main() {" +
 // The matrix must be included as a modifier of gl_Position.
 // Note that the uMVPMatrix factor *must be first* in order
 // for the matrix multiplication product to be correct.
" gl_Position = uMVPMatrix * vPosition;" +
"}";

The fragmentShader is as follows:

private final String fragmentShaderCode =
"precision mediump float;" +
"uniform vec4 vColor;" +
"void main() {" +
" gl_FragColor = vColor;" +
"}";

We've added a matrix multiplication in our vertexShader, so we can modify the position
of the vertices by updating the uMVPMatrix. Let's add a projection and some
transformations in order to have the basic rendering in place.

Introducing 3D Custom Views

[112]

We shouldn't forget about the onSurfaceChanged() callback; let's use it to set our
projection matrix and define the clipping planes of our camera, taking into account the
width and height of the screen to keep its aspect ratio:

@Override
public void onSurfaceChanged(GL10 unused, int width, int height) {
 GLES20.glViewport(0, 0, width, height);

 float ratio = (float) width / height;
 Matrix.frustumM(mProjectionMatrix, 0, -ratio * 2, ratio * 2, -2, 2,
 3, 7);
}

Let's compute the view matrix by using Matrix.setLookAtM() and multiplying it by the
projection matrix we've just calculated on mProjectionMatrix:

@Override
public void onDrawFrame(GL10 unused) {

 ...

 Matrix.multiplyMM(mMVPMatrix, 0, mProjectionMatrix, 0, mViewMatrix,
 0);

 int mMVPMatrixHandle = GLES20.glGetUniformLocation(shaderProgram,
 "uMVPMatrix");
 GLES20.glUniformMatrix4fv(mMVPMatrixHandle, 1, false, mMVPMatrix,
 0);

 ...

}

In the preceding code, we also saw how to update a variable that can be read from a
shader. To do so, we need to get the handle of the uniform variable first. By using
GLES20.glGetUniformLocation(shaderProgram, "uMVPMatrix") we can get the
handle of the uMVPMatrix uniform variable and, using this handle on the
GLES20.glUniformMatrix4fv call, we can set the matrix we've just calculated onto it. If
we check the code for the shader, we can see we've defined uMVPMatrix as uniform:

uniform mat4 uMVPMatrix;

Introducing 3D Custom Views

[113]

Now that we know how to set a uniform variable, let's do the same with the color. On the
fragment shader, we've set vColor as a uniform variable as well, so we can follow the
same method to set it:

float color[] = { 0.2f, 0.2f, 0.9f, 1.0f };

...

int colorHandle = GLES20.glGetUniformLocation(shaderProgram, "vColor");
GLES20.glUniform4fv(colorHandle, 1, color, 0);

Using the same mechanism, but changing glGetUniformLocation to
glGetAttribLocation, we can also set the vertex coordinates:

int positionHandle = GLES20.glGetAttribLocation(shaderProgram,
"vPosition");

GLES20.glVertexAttribPointer(positionHandle, 3,
 GLES20.GL_FLOAT, false,
 3 * 4, vertexBuffer);

We have everything ready to draw it to the screen; we just have to enable the vertex
attribute array, as we've set the coordinate data using the glVertexAttribPointer() call
and glDrawElements() will only draw enabled arrays:

GLES20.glEnableVertexAttribArray(positionHandle);

GLES20.glDrawElements(
 GLES20.GL_TRIANGLES, index.length,
 GLES20.GL_UNSIGNED_SHORT, indexBuffer);

GLES20.glDisableVertexAttribArray(positionHandle);

There are many mays of drawing geometry on OpenGL, but we've used the
glDrawElements() call pointing to the buffer of the face indexes we've previously created.
We've used GL_TRIANGLES primitive here, but there are many other OpenGL primitives we
can use. Check the official Khronos documentation about glDrawElements() for more
information:
https://www.khronos. org/ registry/ OpenGL- Refpages/ gl4/ html/ glDrawElements. xhtml.

Also, as good practice, and to restore the OpenGL machine state, we disable the vertex
attribute array after drawing.

https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawElements.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawElements.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawElements.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawElements.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawElements.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawElements.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawElements.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawElements.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawElements.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawElements.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawElements.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawElements.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawElements.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawElements.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawElements.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawElements.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawElements.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawElements.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawElements.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawElements.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawElements.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawElements.xhtml
https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/glDrawElements.xhtml

Introducing 3D Custom Views

[114]

If we execute this code, we'll get the following-still not really useful, but it's a start!

Check the Example23-GLSurfaceView in the GitHub repository for the full example
source code.

Drawing geometry
So far, we've seen how to set up our OpenGL renderer and draw some very basic geometry.
But, as you can imagine, we can do a lot more with OpenGL. In this section we'll see how to
do some more complex operations and how to load geometry defined using an external
tool. Sometimes, it might come in useful to define the geometry using code, but most of the
time, and especially if the geometry is very complex, it'll be designed and created using a
3D modeling tool. Knowing how we can import that geometry will definitely come in very
handy for our projects.

Introducing 3D Custom Views

[115]

Adding volume
In our previous example, we've seen how to draw a quad with one single color, but what
about if each vertex has a completely different color? The process will not be very different
from what we've already done, but let's see how we can do it.

First, let's change the color array to hold the color of the four vertices:

float color[] = {
 1.0f, 0.2f, 0.2f, 1.0f,
 0.2f, 1.0f, 0.2f, 1.0f,
 0.2f, 0.2f, 1.0f, 1.0f,
 1.0f, 1.0f, 1.0f, 1.0f,
};

Now, in our initBuffers() method, let's initialize an additional Buffer for the color:

private FloatBuffer colorBuffer;

...

ByteBuffer cbb = ByteBuffer.allocateDirect(color.length * (Float.SIZE /
8));
cbb.order(ByteOrder.nativeOrder());

colorBuffer = cbb.asFloatBuffer();
colorBuffer.put(color);
colorBuffer.position(0);

We have to update our shaders as well to take the color parameter into account. First, on
our vertexShader, we have to create a new attribute that we will call aColor to hold the
color of each vertex:

private final String vertexShaderCode =
"uniform mat4 uMVPMatrix;" +
"attribute vec4 vPosition;" +
"attribute vec4 aColor;" +
"varying vec4 vColor;" +
"void main() {" +
" gl_Position = uMVPMatrix * vPosition;" +
" vColor = aColor;" +
"}";

Introducing 3D Custom Views

[116]

Then, we define a varying vColor variable that will be passed to the fragmentShader, and
the fragmentShader will compute the value per fragment. Let's see the changes on the
fragmentShader:

private final String fragmentShaderCode =
"precision mediump float;" +
"varying vec4 vColor;" +
"void main() {" +
" gl_FragColor = vColor;" +
"}";

The only thing we've changed is the declaration of vColor; instead of being a uniform
variable, now it's a varying variable.

Just like we did with the vertex and face indexes, we have to set the color data to the
shader:

int colorHandle = GLES20.glGetAttribLocation(shaderProgram, "aColor");
GLES20.glVertexAttribPointer(colorHandle, 4,
 GLES20.GL_FLOAT, false,
 4 * 4, colorBuffer);

Before drawing, we have to enable and disable the vertex array. If the color array is not
enabled, we'll get a black square instead, as glDrawElements() will not be able to get the
color information;

GLES20.glEnableVertexAttribArray(colorHandle);
GLES20.glEnableVertexAttribArray(positionHandle);
GLES20.glDrawElements(
 GLES20.GL_TRIANGLES, index.length,
 GLES20.GL_UNSIGNED_SHORT, indexBuffer);

GLES20.glDisableVertexAttribArray(positionHandle);
GLES20.glDisableVertexAttribArray(colorHandle);

Introducing 3D Custom Views

[117]

If we run this example, we'll see a similar effect as our previous example, but we can see
how the color is interpolated between the vertices:

Now that we know how to interpolate colors, let's add some depth into the geometry.
Everything we've drawn so far is quite flat, so let's convert the quad into a cube. It is very
straightforward. Lets first define the vertices and new face indexes:

private float quadCoords[] = {
 -1.f, -1.f, -1.0f,
 -1.f, 1.f, -1.0f,
 1.f, 1.f, -1.0f,
 1.f, -1.f, -1.0f,

 -1.f, -1.f, 1.0f,
 -1.f, 1.f, 1.0f,
 1.f, 1.f, 1.0f,
 1.f, -1.f, 1.0f
};

Introducing 3D Custom Views

[118]

We've replicated the same four vertices we had before, but with a displaced Z coordinate,
that would add volume to the cube.

Now, we have to create the new face indexes. A cube has six faces, or quads, that can be
reproduced with twelve triangles:

private short[] index = {
 0, 1, 2, // front
 0, 2, 3, // front
 4, 5, 6, // back
 4, 6, 7, // back
 0, 4, 7, // top
 0, 3, 7, // top
 1, 5, 6, // bottom
 1, 2, 6, // bottom
 0, 4, 5, // left
 0, 1, 5, // left
 3, 7, 6, // right
 3, 2, 6 // right
};

Lets also add new colors for the new four vertices:

float color[] = {
 1.0f, 0.2f, 0.2f, 1.0f,
 0.2f, 1.0f, 0.2f, 1.0f,
 0.2f, 0.2f, 1.0f, 1.0f,
 1.0f, 1.0f, 1.0f, 1.0f,

 1.0f, 1.0f, 0.2f, 1.0f,
 0.2f, 1.0f, 1.0f, 1.0f,
 1.0f, 0.2f, 1.0f, 1.0f,
 0.2f, 0.2f, 0.2f, 1.0f
};

Introducing 3D Custom Views

[119]

If we execute this example, as it is, we'll get a strange result, similar to the following
screenshot:

Lets add a rotation transformation to the mMVPMatrix matrix to see what is going on.

Introducing 3D Custom Views

[120]

We have to define a private variable to hold the rotation angle and apply the rotation to the
mMVPMatrix:

private float angle = 0.f;
...
Matrix.setLookAtM(mViewMatrix, 0,
 0, 0, -4,
 0f, 0f, 0f,
 0f, 1.0f, 0.0f);

Matrix.multiplyMM(mMVPMatrix, 0, mProjectionMatrix, 0, mViewMatrix, 0);
Matrix.rotateM(mMVPMatrix, 0, angle, 1.f, 1.f, 1.f);

In this case, just to see what is going on, we're applying the rotation to the three axes: x, y,
and z. We also moved the camera a bit away from our previous example, as now there
might be some clipping if we don't do so.

To define the amount we have to rotate by, we'll use one of the Android timers:

private long startTime;
...
@Override
public void onSurfaceCreated(GL10 unused, EGLConfig config) {
 initBuffers();
 initShaders();
 startTime = SystemClock.elapsedRealtime();
}

We store the start time on the startTime variable, and on our onDrawFrame() method we
compute the angle based on the amount of time that has passed since this moment:

angle = ((float) SystemClock.elapsedRealtime() - startTime) * 0.02f;

Here, we have just multiplied it by 0.02f to limit the speed of rotation, as otherwise it'll be
too fast. Doing it this way, the animation speed will be the same on all devices regardless of
the rendering frame rate or their CPU speed. Now, if we run this code, we'll see the origin
of the issue we're experiencing:

Introducing 3D Custom Views

[121]

The issue is that OpenGL is not checking the z coordinate of the pixel when drawing all the
triangles, so there might be some superposition and overdrawing as we can easily see in the
preceding screenshots. Luckily for us, this is very easy to solve. OpenGL has a state that we
can use to enable and disable depth, or z, tests:

GLES20.glEnable(GLES20.GL_DEPTH_TEST);
GLES20.glEnableVertexAttribArray(colorHandle);
GLES20.glEnableVertexAttribArray(positionHandle);
GLES20.glDrawElements(
 GLES20.GL_TRIANGLES, index.length,
 GLES20.GL_UNSIGNED_SHORT, indexBuffer);

GLES20.glDisableVertexAttribArray(positionHandle);
GLES20.glDisableVertexAttribArray(colorHandle);
GLES20.glDisable(GLES20.GL_DEPTH_TEST);

Introducing 3D Custom Views

[122]

As with the previous example, after drawing we disable the state we've enabled to avoid
leaving an unknown OpenGL state for any other drawing operation. If we run this code,
we'll see the difference:

Check the Example24-GLDrawing on the GitHub repository for the full example source
code.

Introducing 3D Custom Views

[123]

Adding textures
Let's keep doing more interesting things! We've seen how to add a color per vertex, but let's
see now what do we have to change if we want to add some textures to our 3D object.

First, let's replace the color array with a texture coordinate array. We'll map texture
coordinate 0 to the start of our texture, in both axes, and 1 to the end of the texture, also in
both axes. Using the geometry we had in our previous example, we could then define the
texture coordinates this way:

private float texCoords[] = {
 1.f, 1.f,
 1.f, 0.f,
 0.f, 0.f,
 0.f, 1.f,

 1.f, 1.f,
 1.f, 0.f,
 0.f, 0.f,
 0.f, 1.f,
};

To load these texture coordinates, we use exactly the same procedure as we did previously:

ByteBuffer tbb = ByteBuffer.allocateDirect(texCoords.length * (Float.SIZE /
8));
tbb.order(ByteOrder.nativeOrder());

texBuffer = tbb.asFloatBuffer();
texBuffer.put(texCoords);
texBuffer.position(0);

Let's also create a helper method to load a resource into a texture:

private int loadTexture(int resId) {
 final int[] textureIds = new int[1];
 GLES20.glGenTextures(1, textureIds, 0);

 if (textureIds[0] == 0) return -1;

 // do not scale the bitmap depending on screen density
 final BitmapFactory.Options options = new BitmapFactory.Options();
 options.inScaled = false;

 final Bitmap textureBitmap =
 BitmapFactory.decodeResource(getResources(), resId, options);
 GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, textureIds[0]);

Introducing 3D Custom Views

[124]

 GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D,
 GLES20.GL_TEXTURE_MIN_FILTER, GLES20.GL_NEAREST);

 GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D,
 GLES20.GL_TEXTURE_MAG_FILTER, GLES20.GL_NEAREST);

 GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D,
 GLES20.GL_TEXTURE_WRAP_S, GLES20.GL_CLAMP_TO_EDGE);

 GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D,
 GLES20.GL_TEXTURE_WRAP_T, GLES20.GL_CLAMP_TO_EDGE);

 GLUtils.texImage2D(GLES20.GL_TEXTURE_2D, 0, textureBitmap, 0);
 textureBitmap.recycle();

 return textureIds[0];
}

We have to take into account that both texture dimensions have to be to the power of 2. To
preserve the original size of the image and avoid any scaling done by Android, we have to
set the bitmap options inScaled flag to false. In the previous code, we generate a texture
ID to hold the reference to our texture, binding it as the active texture, setting the
parameters of filtering and wrapping, and finally loading the bitmap data. Once we've done
so, we can recycle the temporary bitmap, as we don't need it anymore.

As we did before, we have to update our shaders as well. In our vertexShader, we have
to apply almost the same changes as we did before, adding an attribute where we can set
the vertex texture coordinate and a varying variable to pass to the fragmentShader:

private final String vertexShaderCode =
"uniform mat4 uMVPMatrix;" +
"attribute vec4 vPosition;" +
"attribute vec2 aTex;" +
"varying vec2 vTex;" +
"void main() {" +
" gl_Position = uMVPMatrix * vPosition;" +
" vTex = aTex;" +
"}";

Note that the vertex coordinates are a vec2 instead of a vec4, as we only have two
coordinates: U and V. Our new fragmentShader is a bit more complex than the one we
had before:

private final String fragmentShaderCode =
"precision mediump float;" +
"uniform sampler2D sTex;" +
"varying vec2 vTex;" +

Introducing 3D Custom Views

[125]

"void main() {" +
" gl_FragColor = texture2D(sTex, vTex);" +
"}";

We have to create the varying texture coordinate variable and also a uniform sampler2D
variable where we'll set the active texture. To get the color, we have to use the texture2D
lookup function to read the color data from the texture on the specified coordinates.

Let's now add a bitmap named texture.png to our drawables res folder and modify the
onSurfaceCreated() method to load it as a texture:

@Override
public void onSurfaceCreated(GL10 unused, EGLConfig config) {
 initBuffers();
 initShaders();

 textureId = loadTexture(R.drawable.texture);

 startTime = SystemClock.elapsedRealtime();
}

Here is the image used in our example:

Finally, let's update the onDrawFrame() method to set the texture coordinates:

int texCoordHandle = GLES20.glGetAttribLocation(shaderProgram, "aTex");
GLES20.glVertexAttribPointer(texCoordHandle, 2,
 GLES20.GL_FLOAT, false,
 0, texBuffer);

Introducing 3D Custom Views

[126]

Here is the texture itself:

int texHandle = GLES20.glGetUniformLocation(shaderProgram, "sTex");
GLES20.glActiveTexture(GLES20.GL_TEXTURE0);
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, textureId);
GLES20.glUniform1i(texHandle, 0);

Also, as we did before, we have to enable, and later disable, the texture coordinates vertex
array.

If we run this code, we'll get the following:

Check the Example25-GLDrawing on the GitHub repository for the full example source
code.

Introducing 3D Custom Views

[127]

Loading external geometry
So far, we've been drawing quads and cubes, but if we want to draw more complex
geometry, it is probably handier to model it on a 3D modeling tool rather than doing it by
code. We can cover multiple chapters on this topic, but let's just look at a quick example of
how can it be done and you can extend it to your needs.

We have used a Blender to model our example data. Blender is a free and open source 3D
modeling toolset and can be downloaded for free at its website:
https://www.blender. org/ .

For this example, we haven't modeled an extremely complex example; we've just used one
of the primitives that Blender provides: Suzanne:

https://www.blender.org/
https://www.blender.org/
https://www.blender.org/
https://www.blender.org/
https://www.blender.org/
https://www.blender.org/
https://www.blender.org/
https://www.blender.org/
https://www.blender.org/
https://www.blender.org/

Introducing 3D Custom Views

[128]

To simplify our importing tool, we'll select the object mesh under the Scene | Suzanne
drop-down menu on the right and, when we press Ctrl + T, Blender will convert all faces
into triangles. Otherwise, we'll have both triangles and quads on our exported file and it's
not straightforward to implement the face importer from our Android application code:

Now, we'll export it as a Wavefront (.obj) file, which will create both a .obj and a .mtl
file. The latter is the material information that, for the moment, we'll ignore. Let's put the
exported file into our project in the assets folder.

Let's now create a very simple Wavefront file object parser ourselves. As we'll be dealing
with files, loading, and parsing, we'll have to do it asynchronously:

public class WavefrontObjParser {
 public static void parse(Context context, String name, ParserListener
listener) {
 WavefrontObjParserHelper helper = new
WavefrontObjParserHelper(context, name, listener);
 helper.start();
 }

 public interface ParserListener {
 void parsingSuccess(Scene scene);

Introducing 3D Custom Views

[129]

 void parsingError(String message);
 }
}

As you can see, there is no actual work done here. To do the real loading and parsing, we've
created a helper class that will do it on a separate thread and call the listener either if it's
successful or if there has been an error parsing the file:

class WavefrontObjParserHelper extends Thread {
 private String name;
 private WavefrontObjParser.ParserListener listener;
 private Context context;

 WavefrontObjParserHelper(Context context, String name,
 WavefrontObjParser.ParserListener listener) {
 this.context = context;
 this.name = name;
 this.listener = listener;
 }

Then, when we call helper.start(), it'll create the actual thread, and execute the run()
method on it:

public void run() {
 try {

 InputStream is = context.getAssets().open(name);
 BufferedReader br = new BufferedReader(new
 InputStreamReader(is));

 Scene scene = new Scene();
 Object3D obj = null;

 String str;
 while ((str = br.readLine()) != null) {
 if (!str.startsWith("#")) {
 String[] line = str.split("");

 if("o".equals(line[0])) {
 if (obj != null) obj.prepare();
 obj = new Object3D();
 scene.addObject(obj);

 } else if("v".equals(line[0])) {
 float x = Float.parseFloat(line[1]);
 float y = Float.parseFloat(line[2]);
 float z = Float.parseFloat(line[3]);
 obj.addCoordinate(x, y, z);

Introducing 3D Custom Views

[130]

 } else if("f".equals(line[0])) {

 int a = getFaceIndex(line[1]);
 int b = getFaceIndex(line[2]);
 int c = getFaceIndex(line[3]);

 if (line.length == 4) {
 obj.addFace(a, b, c);
 } else {
 int d = getFaceIndex(line[4]);
 obj.addFace(a, b, c, d);
 }
 } else {
 // skip
 }
 }
 }
 if (obj != null) obj.prepare();
 br.close();

 if (listener != null) listener.parsingSuccess(scene);
 } catch(Exception e) {
 if (listener != null) listener.parsingError(e.getMessage());
 e.printStackTrace();
 }
 }

In the previous code, we first read the asset by opening the file with the name provided. To
get the application assets, we need a context here:

InputStream is = context.getAssets().open(name);
BufferedReader br = new BufferedReader(new InputStreamReader(is));

Then, we read the file line by line and we take different actions depending on the starting
keyword, except if the line starts with #, which means that it's a comment. We're only
taking into consideration the commands of a new object, vertex coordinates, and face index;
we're ignoring any additional commands that there might be on the file, such as material
used, or vertex and face normals.

As we can get face index information, such as f 330//278 336//278 338//278 332//278, we
created a helper method to parse that information and only extract the face index. The
number after the slashes is the face normal index. Refer to the official file format to
understand the usage of the face index numbers in more detail:

private static int getFaceIndex(String face) {
 if(!face.contains("/")) {
 return Integer.parseInt(face) - 1;

Introducing 3D Custom Views

[131]

 } else {
 return Integer.parseInt(face.split("/")[0]) - 1;
 }
}

Also, as face indices start at 1, we have to subtract 1 to get it right.

To store all this data we're reading from the file, we've also created some data classes. The
Object3D class will store all relevant information-vertices, face indexes, and the Scene
class will store the whole 3D scene with all the Objects3D inside. For simplicity, we've kept
these implementations as short as possible, but they can be made way more complex
depending on our needs:

public class Scene {
 private ArrayList<Object3D> objects;

 public Scene() {
 objects = new ArrayList<>();
 }

 public void addObject(Object3D obj) {
 objects.add(obj);
 }

 public ArrayList<Object3D> getObjects() {
 return objects;
 }

 public void render(int shaderProgram, String posAttributeName,
 String colAttributeName) {
 GLES20.glEnable(GLES20.GL_DEPTH_TEST);

 for (int i = 0; i < objects.size(); i++) {
 objects.get(i).render(shaderProgram, posAttributeName,
 colAttributeName);
 }

 GLES20.glDisable(GLES20.GL_DEPTH_TEST);
 }
}

Introducing 3D Custom Views

[132]

We can see that there is a render() method on the Scene class. We've moved the
responsibility of rendering all its 3D objects to the Scene itself, and, applying the same
principle, each object is also responsible for rendering itself:

public void prepare() {
 if (coordinateList.size() > 0 && coordinates == null) {
 coordinates = new float[coordinateList.size()];
 for (int i = 0; i < coordinateList.size(); i++) {
 coordinates[i] = coordinateList.get(i);
 }
 }

 if (indexList.size() > 0 && indexes == null) {
 indexes = new short[indexList.size()];
 for (int i = 0; i < indexList.size(); i++) {
 indexes[i] = indexList.get(i);
 }
 }

 colors = new float[(coordinates.length/3) * 4];
 for (int i = 0; i < colors.length/4; i++) {
 float intensity = (float) (Math.random() * 0.5 + 0.4);
 colors[i * 4] = intensity;
 colors[i * 4 + 1] = intensity;
 colors[i * 4 + 2] = intensity;
 colors[i * 4 + 3] = 1.f;
 }

 ByteBuffer vbb = ByteBuffer.allocateDirect(coordinates.length *
 (Float.SIZE / 8));
 vbb.order(ByteOrder.nativeOrder());

 vertexBuffer = vbb.asFloatBuffer();
 vertexBuffer.put(coordinates);
 vertexBuffer.position(0);

 ByteBuffer ibb = ByteBuffer.allocateDirect(indexes.length *
 (Short.SIZE / 8));
 ibb.order(ByteOrder.nativeOrder());

 indexBuffer = ibb.asShortBuffer();
 indexBuffer.put(indexes);
 indexBuffer.position(0);

 ByteBuffer cbb = ByteBuffer.allocateDirect(colors.length *
 (Float.SIZE / 8));
 cbb.order(ByteOrder.nativeOrder());

Introducing 3D Custom Views

[133]

 colorBuffer = cbb.asFloatBuffer();
 colorBuffer.put(colors);
 colorBuffer.position(0);

 Log.i(TAG, "Loaded obj with " + coordinates.length + " vertices &"
 + (indexes.length/3) + " faces");
}

Once we've set all the data to the 3DObject, we can prepare it to render by calling its
prepare() method. This method will create the vertex and index Buffer, and, as in this
case we don't have any color information from the mesh on the data file, it'll generate a
random color, or rather an intensity, for each vertex.

Creating the buffers here in the 3DObject itself allows us to render any kind of object. The
Scene container doesn't know what kind of object or what kind of geometry is inside. We
could easily extend this class with another type of 3DObject, as long as it handles its own
rendering.

Finally, we've added a render() method to the 3DObject:

public void render(int shaderProgram, String posAttributeName, String
colAttributeName) {
 int positionHandle = GLES20.glGetAttribLocation(shaderProgram,
 posAttributeName);
 GLES20.glVertexAttribPointer(positionHandle, 3,
 GLES20.GL_FLOAT, false,
 3 * 4, vertexBuffer);

 int colorHandle = GLES20.glGetAttribLocation(shaderProgram,
 colAttributeName);
 GLES20.glVertexAttribPointer(colorHandle, 4,
 GLES20.GL_FLOAT, false,
 4 * 4, colorBuffer);

 GLES20.glEnableVertexAttribArray(colorHandle);
 GLES20.glEnableVertexAttribArray(positionHandle);
 GLES20.glDrawElements(
 GLES20.GL_TRIANGLES, indexes.length,
 GLES20.GL_UNSIGNED_SHORT, indexBuffer);

 GLES20.glDisableVertexAttribArray(positionHandle);
 GLES20.glDisableVertexAttribArray(colorHandle);
}

Introducing 3D Custom Views

[134]

This method is responsible for enabling and disabling the right arrays and rendering itself.
We get the shader attributes from the method parameters. Ideally, each object could have
its own shader, but we didn't want to add that much complexity in this example.

In our GLDrawer class, we've also added a helper method to calculate a perspective
frustrum matrix. One of the most used calls in OpenGL was gluPerspective, and NeHe,
the author of many awesome OpenGL tutorials, created a function to convert
gluPerspective to a glFrustrum call:

// source:
http://nehe.gamedev.net/article/replacement_for_gluperspective/21002/

private static void perspectiveFrustrum(float[] matrix, float fov, float
aspect, float zNear, float zFar) {
 float fH = (float) (Math.tan(fov / 360.0 * Math.PI) * zNear);
 float fW = fH * aspect;

 Matrix.frustumM(matrix, 0, -fW, fW, -fH, fH, zNear, zFar);
}

As we don't need it anymore, we've removed all vertex and face index information from
GLDrawer and simplified the onDrawFrame() method to now delegate the rendering of all
objects to the Scene class, and, by default, to each individual 3DObject:

@Override
public void onDrawFrame(GL10 unused) {
 angle = ((float) SystemClock.elapsedRealtime() - startTime) *
 0.02f;
 GLES20.glClearColor(1.0f, 0.0f, 0.0f, 1.0f);
 GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT |
 GLES20.GL_DEPTH_BUFFER_BIT);

 if (scene != null) {
 Matrix.setLookAtM(mViewMatrix, 0,
 0, 0, -4,
 0f, 0f, 0f,
 0f, 1.0f, 0.0f);

 Matrix.multiplyMM(mMVPMatrix, 0, mProjectionMatrix, 0,
 mViewMatrix, 0);
 Matrix.rotateM(mMVPMatrix, 0, angle, 0.8f, 2.f, 1.f);

 GLES20.glUseProgram(shaderProgram);

 int mMVPMatrixHandle = GLES20.glGetUniformLocation(shaderProgram,
"uMVPMatrix");
 GLES20.glUniformMatrix4fv(mMVPMatrixHandle, 1, false,

Introducing 3D Custom Views

[135]

 mMVPMatrix, 0);

 scene.render(shaderProgram, "vPosition", "aColor");
 }
}

Putting it all together, if we run this example, we'll get the following screen:

Check the Example26-GLDrawing on the GitHub repository for the full example source
code.

Introducing 3D Custom Views

[136]

Summary
In this chapter, we've seen how to create very basic custom views using OpenGL ES.
OpenGL ES adds a lot of possibilities when creating custom views, but it also adds a lot of
complexity if we don't have that much experience working with it. We could cover many
more chapters on this topic, but that is not the main goal of this book. We'll have some more
examples of using 3D custom views, but there is a lot of published material on how to learn,
or even master, OpenGL ES on Android devices.

In the next chapter, we'll see how to add more animations and smooth movements to our
custom view. As we could animate any parameter or variable, it will not matter if it is a 3D
custom view or a standard 2D custom view, but we'll see how to apply animations in both
cases.

6
Animations

So far we've seen how to create and render different types of custom views, from very
simple 2D canvas drawing to more complex canvas operations, and recently how to create a
custom view using OpenGL ES and vertex/fragment shaders. In some of the examples used
to demonstrate how to use these rendering primitives, we've already used some animations
and, as you could imagine, animations are one of the key elements of custom views. If we
want to build a highly complex UI using a custom view, but we don't animate it at all, it
might be better to simply use a static image.

In this chapter, we'll cover how to add animations to our custom views. There are many
ways of doing it, but in more detail, we'll look at the following topics:

Custom-made animations
Fixed time step technique
Using the Android Property Animator

In addition, we'll also see what are the issues if we implement some of the animations the
wrong way, as it might seem simpler, and by just good luck, although it'll play against us,
they'll seem to work perfectly fine on our device.

Custom-made animations
Let's start by showing how we can animate some values ourselves without relying too
much on the methods and classes provided by the Android SDK. In this section, we'll see
how to animate a single property or several properties using different mechanisms. By
doing so, we could then apply the approach that suits us better on our custom views,
depending on the type of animation we want to achieve or the specificities of the view we're
implementing.

Animations

[138]

Timed frame animations
We have already used this kind of animation on the 3D example in our previous chapter.
The main concept consists of assigning a new value to all the animatable properties before
drawing a new frame based on the amount of time passed. We can be tempted with
incrementing or computing a new value based on the number of frames drawn, but that is
highly inadvisable, as the animation will be played at different speeds depending on the
speed of the device, computation, or drawing complexity and other processes executing in
the background.

To do it right, we have to involve something independent from the rendering speed, frames
per second, or frames drawn, and a perfect solution is to use time-based animations.

Android provides us with several mechanisms to do so. For instance, we could use
System.currentTimeMillis(), System.nanoTime(), or even some of the methods
available in system clock, such as elapsedRealtime().

Let's build a simple example comparing different methods. First, let's create a simple
custom view that draws four rectangles, or Rects, rotated at different angles:

private static final int BACKGROUND_COLOR = 0xff205020;
private static final int FOREGROUND_COLOR = 0xffffffff;
private static final int QUAD_SIZE = 50;

private float[] angle;
private Paint paint;

public AnimationExampleView(Context context, AttributeSet attributeSet) {
 super(context, attributeSet);

 paint = new Paint();
 paint.setStyle(Paint.Style.FILL);
 paint.setAntiAlias(true);
 paint.setColor(FOREGROUND_COLOR);
 paint.setTextSize(48.f);

 angle = new float[4];
 for (int i = 0; i < 4; i++) {
 angle[i] = 0.f;
 }
}

On the class constructor, we initialize the Paint object and create an array of four floats to
hold the angle of rotation of each rectangle. At this point, the four of them will be at 0. Let's
now implement the onDraw() method.

Animations

[139]

On the onDraw() method, the first thing we've got to do is to clear the canvas background
with a solid color, to clear our previous frame.

Once we've done so, we calculate the coordinates where we'll draw the four rectangles and
proceed with the drawing. To simplify the rotation, in this case, we used the
canvas.translate and canvas.rotate with a pivot point to rotate by the center of the
rectangle. Also, to avoid doing additional calculations and keep it as simple as possible,
we're surrounding each rectangle drawing with a canvas.save and canvas.restore, to
keep the same state before each drawing operation:

@Override
protected void onDraw(Canvas canvas) {
 canvas.drawColor(BACKGROUND_COLOR);

 int width = getWidth();
 int height = getHeight();

 // draw 4 quads on the screen:
 int wh = width / 2;
 int hh = height / 2;

 int qs = (wh * QUAD_SIZE) / 100;

 // top left
 canvas.save();
 canvas.translate(
 wh / 2 - qs / 2,
 hh / 2 - qs / 2);

 canvas.rotate(angle[0], qs / 2.f, qs / 2.f);
 canvas.drawRect(0, 0, qs, qs, paint);
 canvas.restore();

 // top right
 canvas.save();
 canvas.translate(
 wh + wh / 2 - qs / 2,
 hh / 2 - qs / 2);

 canvas.rotate(angle[1], qs / 2.f, qs / 2.f);
 canvas.drawRect(0, 0, qs, qs, paint);
 canvas.restore();

 // bottom left
 canvas.save();
 canvas.translate(
 wh / 2 - qs / 2,

Animations

[140]

 hh + hh / 2 - qs / 2);

 canvas.rotate(angle[2], qs / 2.f, qs / 2.f);
 canvas.drawRect(0, 0, qs, qs, paint);
 canvas.restore();

 // bottom right
 canvas.save();
 canvas.translate(
 wh + wh / 2 - qs / 2,
 hh + hh / 2 - qs / 2);

 canvas.rotate(angle[3], qs / 2.f, qs / 2.f);
 canvas.drawRect(0, 0, qs, qs, paint);
 canvas.restore();

 canvas.drawText("a: " + angle[0], 16, hh - 16, paint);
 canvas.drawText("a: " + angle[1], wh + 16, hh - 16, paint);
 canvas.drawText("a: " + angle[2], 16, height - 16, paint);
 canvas.drawText("a: " + angle[3], wh + 16, height - 16, paint);

 postInvalidateDelayed(10);
}

To see the differences with more clarity, we're drawing a text showing the angle each
rectangle is being rotated. And, to actually trigger a redraw of our view, we're calling an
invalidate, delayed by 10 milliseconds.

The first rectangle will simply increment its angle each time it is drawn, ignoring time
methods, and the other three will use respectively: System.currentTimeMillis(),
System.nanoTime(), and SystemClock.elapsedRealtime(). Let's initialize some
variables to hold the initial values of the timers:

private long timeStartMillis;
private long timeStartNanos;
private long timeStartElapsed;

Add a small calculation at the beginning of the onDraw() method:

if (timeStartMillis == -1)
 timeStartMillis = System.currentTimeMillis();

if (timeStartNanos == -1)
 timeStartNanos = System.nanoTime();

if (timeStartElapsed == -1)
 timeStartElapsed = SystemClock.elapsedRealtime();

Animations

[141]

angle[0] += 0.2f;
angle[1] = (System.currentTimeMillis() - timeStartMillis) * 0.02f;
angle[2] = (System.nanoTime() - timeStartNanos) * 0.02f * 0.000001f;
angle[3] = (SystemClock.elapsedRealtime() - timeStartElapsed) * 0.02f;

Since some time can pass from the initial class creation to when the onDraw() method is
called, we're calculating the initial value of the timers here. If the value of
timeStartElapsed is -1, for example, it means it has not been initialized.

Then, as we've set the initial time, we can compute how much time has passed and use that
as the base value of our animations. Let's multiply it by a factor to control the speed. In this
case, we've used 0.02 as an example, and took into account that nanoseconds are in
another order of magnitude than milliseconds.

If we run this example, we'll have something similar to the following screenshot:

Animations

[142]

One of the issues with this approach is that if we put the application in the background and
after some time we put it back on the foreground, we can see all the values depending on
time jumping forward, as time will not stop when our app is in the background. To control
this, we can override the onVisibilityChanged() callback and check whenever our view
is visible or invisible:

@Override
protected void onVisibilityChanged(@NonNull View changedView, int
visibility) {
 super.onVisibilityChanged(changedView, visibility);

 // avoid doing this check before View is even visible
 if ((visibility == View.INVISIBLE || visibility == View.GONE) &&
 previousVisibility == View.VISIBLE) {

 invisibleTimeStart = SystemClock.elapsedRealtime();
 }

 if ((previousVisibility == View.INVISIBLE || previousVisibility ==
 View.GONE) &&
 visibility == View.VISIBLE) {

 timeStartElapsed += SystemClock.elapsedRealtime() -
 invisibleTimeStart;
 }
 previousVisibility = visibility;
}

In the preceding code, we're calculating the time our view is not visible and adjusting the
timeStartElapsed with that time. We've to avoid doing it the very first time, as this
method will be called the first time the view becomes visible. For that reason, we're
checking if timeStartElapsed is different from -1.

As we have this callback just before our view becomes visible, we can easily change our
previous code to calculate the initial value of the timers and put it here, simplifying our
onDraw() method as well:

@Override
protected void onVisibilityChanged(@NonNull View changedView, int
visibility) {
 super.onVisibilityChanged(changedView, visibility);

 // avoid doing this check before View is even visible
 if (timeStartElapsed != -1) {
 if ((visibility == View.INVISIBLE || visibility == View.GONE)
 &&

Animations

[143]

 previousVisibility == View.VISIBLE) {

 invisibleTimeStart = SystemClock.elapsedRealtime();
 }

 if ((previousVisibility == View.INVISIBLE || previousVisibility
 == View.GONE) &&
 visibility == View.VISIBLE) {

 timeStartElapsed += SystemClock.elapsedRealtime() -
 invisibleTimeStart;
 }
 } else {
 timeStartMillis = System.currentTimeMillis();
 timeStartNanos = System.nanoTime();
 timeStartElapsed = SystemClock.elapsedRealtime();
 }
 previousVisibility = visibility;
}

With this small adjustment, only to the timeStartElapsed, we'll see the animation is
preserved on the bottom right rectangle even when we put the application in the
background.

You can find the whole example source code in the Example27-Animations folder in the
GitHub repository.

Fixed timestep
There are times when calculations can be very complex when dealing with animations. One
clear example can be in physics simulations and in games in general, but some other times,
our calculations, even for a simple-ish custom view, can get a bit tricky when using time-
based animation. Having a fixed timestep will allow us to abstract our animation logic from
time variables, but still keep our animation tied to time.

The logic behind having a fixed timestep is to assume our animation logic will be always
executed a fixed rate. For instance, we can assume it will be executed at 60 fps regardless of
which is the actual rendering frames per second. To show how it could be done, we'll create
a new custom view that will spawn particles at the position we're pressing or dragging on
the screen and applying some very basic and simple physics.

Animations

[144]

First, let's create the basic custom view like our previous example:

private static final int BACKGROUND_COLOR = 0xff404060;
private static final int FOREGROUND_COLOR = 0xffffffff;
private static final int N_PARTICLES = 800;

private Paint paint;
private Particle[] particles;
private long timeStart;
private long accTime;
private int previousVisibility;
private long invisibleTimeStart;

public FixedTimestepExample(Context context, AttributeSet attributeSet) {
 super(context, attributeSet);

 paint = new Paint();
 paint.setStyle(Paint.Style.FILL);
 paint.setAntiAlias(true);
 paint.setColor(FOREGROUND_COLOR);

 particles = new Particle[N_PARTICLES];
 for (int i = 0; i < N_PARTICLES; i++) {
 particles[i] = new Particle();
 }

 particleIndex = 0;
 timeStart = -1;
 accTime = 0;
 previousVisibility = View.GONE;
}

We're initializing the basic variables and we're also creating an array of particles. Also,
as we've implemented the onVisibilityChange callback on our previous example, let's
take advantage of it:

@Override
protected void onVisibilityChanged(@NonNull View changedView, int
visibility) {
 super.onVisibilityChanged(changedView, visibility);
 if (timeStartElapsed != -1) {
 // avoid doing this check before View is even visible
 if ((visibility == View.INVISIBLE || visibility == View.GONE)
 &&
 previousVisibility == View.VISIBLE) {

 invisibleTimeStart = SystemClock.elapsedRealtime();

Animations

[145]

 }

 if ((previousVisibility == View.INVISIBLE || previousVisibility
 == View.GONE) &&
 visibility == View.VISIBLE) {

 timeStart += SystemClock.elapsedRealtime() -
 invisibleTimeStart;
 }
 } else {
 timeStart = SystemClock.elapsedRealtime();
 }
 previousVisibility = visibility;
}

Let's now define the Particle class, let's keep it as simple as possible:

class Particle {
 float x;
 float y;
 float vx;
 float vy;
 float ttl;

 Particle() {
 ttl = 0.f;
 }
}

We've only defined the x, y coordinates, the x and y velocity as vx and vy respectively, and
the time to live of the particle. When the time to live of the particle reaches 0, we'll not
update or draw it anymore.

Now, let's implement the onDraw() method:

@Override
protected void onDraw(Canvas canvas) {
 animateParticles(getWidth(), getHeight());

 canvas.drawColor(BACKGROUND_COLOR);

 for(int i = 0; i < N_PARTICLES; i++) {
 float px = particles[i].x;
 float py = particles[i].y;
 float ttl = particles[i].ttl;

 if (ttl > 0) {
 canvas.drawRect(

Animations

[146]

 px - PARTICLE_SIZE,
 py - PARTICLE_SIZE,
 px + PARTICLE_SIZE,
 py + PARTICLE_SIZE, paint);
 }
 }
 postInvalidateDelayed(10);
}

We've delegated all the animation to the animateParticles() method and here we're just
iterating through all the particles, checking if their time to live is positive and, in that case,
drawing them.

Let's see now how we can implement the animateParticles() method with a fixed time
step:

private static final int TIME_THRESHOLD = 16;
private void animateParticles(int width, int height) {
 long currentTime = SystemClock.elapsedRealtime();
 accTime += currentTime - timeStart;
 timeStart = currentTime;

 while(accTime > TIME_THRESHOLD) {
 for (int i = 0; i < N_PARTICLES; i++) {
 particles[i].logicTick(width, height);
 }

 accTime -= TIME_THRESHOLD;
 }
}

We calculate the time difference from the last time, or delta of time, and we accumulate it in
the accTime variable. Then, as long as accTime is higher than the threshold we've defined,
we execute one logic step. It might happen that more than one logic steps are executed
between renders or, in some other cases, it might not get executed during two different
frames.

Finally, we subtract the time threshold we defined to the accTime for each logic step we've
executed and we set the new timeStart to the time we used for calculating the difference
of time from the previous call to animateParticles().

In this example, we've defined the time threshold to be 16, so every 16 milliseconds we'll
execute one logic step, independently if we're rendering 10 or 60 frames per second.

Animations

[147]

The logicTick() method on the Particle class completely ignores the current value of
the timer, as it assumes it'll be executed on a fixed time step:

void logicTick(int width, int height) {
 ttl--;

 if (ttl > 0) {
 vx = vx * 0.95f;
 vy = vy + 0.2f;

 x += vx;
 y += vy;

 if (y < 0) {
 y = 0;
 vy = -vy * 0.8f;
 }

 if (x < 0) {
 x = 0;
 vx = -vx * 0.8f;
 }

 if (x >= width) {
 x = width - 1;
 vx = -vx * 0.8f;
 }
 }
}

It's an extreme over-simplification of a particle physic simulation. It basically applies
friction and adds vertical acceleration to the particles, calculates if they have to bounce from
the screen limits, and calculates the new x and y positions.

We're just missing the code to spawn new particles when we've a pressed or dragged a
TouchEvent:

@Override
public boolean onTouchEvent(MotionEvent event) {
 switch (event.getAction()) {
 case MotionEvent.ACTION_DOWN:
 case MotionEvent.ACTION_MOVE:
 spawnParticle(event.getX(), event.getY());
 return true;
 }
 return super.onTouchEvent(event);
}

Animations

[148]

Here, we're calling spawnParticle() as long as we've got a touch event that is a press or a
move. The implementation of spawnParticle() is also very simple:

private static final int SPAWN_RATE = 8;
private int particleIndex;

private void spawnParticle(float x, float y) {
 for (int i = 0; i < SPAWN_RATE; i++) {
 particles[particleIndex].x = x;
 particles[particleIndex].y = y;
 particles[particleIndex].vx = (float) (Math.random() * 40.f) -
 20.f;
 particles[particleIndex].vy = (float) (Math.random() * 20.f) -
 10.f;
 particles[particleIndex].ttl = (float) (Math.random() * 100.f)
 + 150.f;
 particleIndex++;
 if (particleIndex == N_PARTICLES) particleIndex = 0;
 }
}

We are using the particleIndex variable as a circular index of the particles array.
Whenever it arrives at the end of the array it'll start again at the very beginning. This
method sets the x and y coordinates of the touch event and it randomizes the velocity and
time to live of each spawned particle. We've created a SPAWN_RATE constant to spawn
multiple particles on the same touch event and improve the visual effect.

If we run the application, we can see it in action, and it'll be very similar to the following
screenshot, but in this case, it's very hard to capture the idea of the animation in a
screenshot:

Animations

[149]

But we're missing something. As we've mentioned before, sometimes we'll execute two, or
maybe more, logic steps between two rendered frames, but on some other times, we'll not
execute any logic steps between two consecutive frames. If we don't execute any logic steps
between those two frames, the result will be the same and a waste of CPU and battery life.

Even if we're between logic steps, that doesn't mean it hasn't passed any time between
frames. Actually, we're somewhere between the previous calculated logic step and the next
one. The good news is that we can actually calculate that, improving the smoothness of the
animation and solving this issue at the same time.

Let's include this modification to the animateParticles() method:

private void animateParticles(int width, int height) {
 long currentTime = SystemClock.elapsedRealtime();
 accTime += currentTime - timeStart;
 timeStart = currentTime;
 while(accTime > TIME_THRESHOLD) {

Animations

[150]

 for (int i = 0; i < N_PARTICLES; i++) {
 particles[i].logicTick(width, height);
 }
 accTime -= TIME_THRESHOLD;
 }
 float factor = ((float) accTime) / TIME_THRESHOLD;
 for (int i = 0; i < N_PARTICLES; i++) {
 particles[i].adjustLogicStep(factor);
 }
}

We're calculating the factor between which will tell us how close or far it is from the next
logic step. If the factor is 0, it means we're just at the exact time of the logic step we've just
executed. If the factor is 0.5, it means we're halfway between the current step and the next
one and if the factor is 0.8, we're almost at the next logic step and precisely 80% of time
passed since the previous step. The way to smooth the transition between one logic step and
the next is to interpolate using this factor, but to be able to do so, first we need to calculate
the values of the next step as well. Let's change the logicTick() method to implement this
change:

float nextX;
float nextY;
float nextVX;
float nextVY;

void logicTick(int width, int height) {
 ttl--;

 if (ttl > 0) {
 x = nextX;
 y = nextY;
 vx = nextVX;
 vy = nextVY;

 nextVX = nextVX * 0.95f;
 nextVY = nextVY + 0.2f;

 nextX += nextVX;
 nextY += nextVY;

 if (nextY < 0) {
 nextY = 0;
 nextVY = -nextVY * 0.8f;
 }

 if (nextX < 0) {
 nextX = 0;

Animations

[151]

 nextVX = -nextVX * 0.8f;
 }

 if (nextX >= width) {
 nextX = width - 1;
 nextVX = -nextVX * 0.8f;
 }
 }
}

Now, at every logic step we're assigning the values of the next logic step to the current
variables to avoid recalculating them, and calculating the next logic step. This way, we've
got both values; the current and the new values after the next logic step is executed.

As we'll be using some intermediate values between x, y, and nextX, nextY, we'll calculate
these values on new variables as well:

float drawX;
float drawY;

void adjustLogicStep(float factor) {
 drawX = x * (1.f - factor) + nextX * factor;
 drawY = y * (1.f - factor) + nextY * factor;
}

As we can see, drawX and drawY will be an intermediate state between the current logic
step and the next one. If we apply the previous example values to this factor, we'll see how
this method works.

If factor is 0drawX and drawY are exactly x and y. On the contrary, if factor is 1, drawX and
drawY are exactly nextX and nextY, although this should never happen as another logic
step would have been triggered.

In the case of factor being 0.8, drawX and drawY values are a linear interpolation weighed
at 80% the values of the next logic step and 20% of the current one, allowing a smooth
transition between states.

You can find the whole example source code in the Example28-FixedTimestep folder in
the GitHub repository. The fixed timestep is covered with more details in the fix your
timestep artiche on the Gaffer On Games blog.

Animations

[152]

Using Android SDK Classes
So far, we've seen how to create our own animations, using time-based animations or using
a fixed time step mechanism. But Android provides us several ways of doing animations
using its SDK and the animation framework. In most cases, we can simplify our animations
by just using the property animator system instead of creating our own, but that will
depend, always, on the complexity of what we want to achieve and how we want to tackle
the development.

For more information please refer to the property animation framework from the Android
developer's documentation website.

ValueAnimator
As part of the property animator system, we have the ValueAnimator class. We can use it
to simply animate int, float, or color variables or properties. It's quite easy to use, for
instance we can animate a float value from 0 to 360 during 1500 milliseconds using the
following code:

ValueAnimator angleAnimator = ValueAnimator.ofFloat(0, 360.f);
angleAnimator.setDuration(1500);
angleAnimator.start();

This is alright, but if we want to get updates of the animation and react to them, we've got
to set an AnimatorUpdateListener():

final ValueAnimator angleAnimator = ValueAnimator.ofFloat(0, 360.f);
angleAnimator.setDuration(1500);
angleAnimator.addUpdateListener(new ValueAnimator.AnimatorUpdateListener()
{
 @Override
 public void onAnimationUpdate(ValueAnimator animation) {
 angle = (float) angleAnimator.getAnimatedValue();
 invalidate();
 }
});
angleAnimator.start();

Also, in this example, we can see we're calling invalidate()from the
AnimatorUpdateListener(), so we're also telling the UI to redraw the view.

Animations

[153]

There are many things we can configure of the way the animation behaves: from the
animation repeat mode, number of repetitions, and type of interpolator. Let's see it in action
using the same example we used at the beginning of this chapter. Let's draw four rectangles
on the screen, and rotate them using different settings of a ValueAnimator:

//top left
final ValueAnimator angleAnimatorTL = ValueAnimator.ofFloat(0, 360.f);
angleAnimatorTL.setRepeatMode(ValueAnimator.REVERSE);
angleAnimatorTL.setRepeatCount(ValueAnimator.INFINITE);
angleAnimatorTL.setDuration(1500);
angleAnimatorTL.addUpdateListener(new
ValueAnimator.AnimatorUpdateListener() {
 @Override
 public void onAnimationUpdate(ValueAnimator animation) {
 angle[0] = (float) angleAnimatorTL.getAnimatedValue();
 invalidate();
 }
});

//top right
final ValueAnimator angleAnimatorTR = ValueAnimator.ofFloat(0, 360.f);
angleAnimatorTR.setInterpolator(new DecelerateInterpolator());
angleAnimatorTR.setRepeatMode(ValueAnimator.RESTART);
angleAnimatorTR.setRepeatCount(ValueAnimator.INFINITE);
angleAnimatorTR.setDuration(1500);
angleAnimatorTR.addUpdateListener(new
ValueAnimator.AnimatorUpdateListener() {
 @Override
 public void onAnimationUpdate(ValueAnimator animation) {
 angle[1] = (float) angleAnimatorTR.getAnimatedValue();
 invalidate();
 }
});

//bottom left
final ValueAnimator angleAnimatorBL = ValueAnimator.ofFloat(0, 360.f);
angleAnimatorBL.setInterpolator(new AccelerateDecelerateInterpolator());
angleAnimatorBL.setRepeatMode(ValueAnimator.RESTART);
angleAnimatorBL.setRepeatCount(ValueAnimator.INFINITE);
angleAnimatorBL.setDuration(1500);
angleAnimatorBL.addUpdateListener(new
ValueAnimator.AnimatorUpdateListener() {
 @Override
 public void onAnimationUpdate(ValueAnimator animation) {
 angle[2] = (float) angleAnimatorBL.getAnimatedValue();
 invalidate();
 }

Animations

[154]

});

//bottom right
final ValueAnimator angleAnimatorBR = ValueAnimator.ofFloat(0, 360.f);
angleAnimatorBR.setInterpolator(new OvershootInterpolator());
angleAnimatorBR.setRepeatMode(ValueAnimator.REVERSE);
angleAnimatorBR.setRepeatCount(ValueAnimator.INFINITE);
angleAnimatorBR.setDuration(1500);
angleAnimatorBR.addUpdateListener(new
ValueAnimator.AnimatorUpdateListener() {
 @Override
 public void onAnimationUpdate(ValueAnimator animation) {
 angle[3] = (float) angleAnimatorBR.getAnimatedValue();
 invalidate();
 }
});

angleAnimatorTL.start();
angleAnimatorTR.start();
angleAnimatorBL.start();
angleAnimatorBR.start();

Instead of setting the initial time and calculating the time difference, we're now configuring
four different ValueAnimators and triggering the invalidate calls from their
onAnimationUpdate() callbacks. On these ValueAnimator, we've used different
interpolators and different repeat modes: ValueAnimator.RESTART and
ValueAnimator.REVERSE. On all of them we've set the repeat count to
ValueAnimator.INFINITE so we can observe and compare the details of the interpolator
without pressure.

On the onDraw() method we've removed the postInvalidate call, as view will be
invalidated by the animations, but leaving the drawText() it's very interesting, as we'll be
able to see how the OvershootInterpolator() behaves and goes beyond their maximum
value.

If we run this example, we'll see the four rectangles animating with different interpolation
mechanisms. Play with the different interpolators, or even implement your own
interpolator by extending TimeInterpolator and implement the getInterpolation(float
input) method.

The input parameter of the getInterpolation method will be between 0 and 1, mapping
0 to the beginning of the animation and 1 to its end. The return value should be between 0
and 1, but could be lower or/and higher if we want to go beyond the original values like, for
example, the OvershootInterpolator. The ValueAnimator will then compute the right
value between the initial and final values based on this factor.

Animations

[155]

This example needs to be seen on an emulator or real device, but adding a bit of motion blur
to the screenshot slightly shows the rectangles are animating at different speeds and
accelerations.

ObjectAnimator
If we want to animate objects directly instead of properties, we could use the
ObjectAnimator class. ObjectAnimator is a subclass of ValueAnimator and uses the
same functionality and features, but adds the ability to animate objects properties by name.

For instance, to show how it works, we could animate a property of our own View this way.
Let's add a small rotation to the whole canvas, controlled by the canvasAngle variable:

float canvasAngle;

@Override
protected void onDraw(Canvas canvas) {
 canvas.save();

Animations

[156]

 canvas.rotate(canvasAngle, getWidth() / 2, getHeight() / 2);

 ...

 canvas.restore();
}

We've got to create a setter and a getter with the right name: set<VariableName>and
get<VariableName> in camel case, and in our specific case:

public void setCanvasAngle(float canvasAngle) {
 this.canvasAngle = canvasAngle;
}

public float getCanvasAngle() {
 return canvasAngle;
}

As these methods will be called by the ObjectAnimator, as we've already created them,
we're ready to set up the ObjectAnimator itself:

ObjectAnimator canvasAngleAnimator = ObjectAnimator.ofFloat(this,
"canvasAngle", -10.f, 10.f);
canvasAngleAnimator.setDuration(3000);
canvasAngleAnimator.setRepeatCount(ValueAnimator.INFINITE);
canvasAngleAnimator.setRepeatMode(ValueAnimator.REVERSE);
canvasAngleAnimator.addUpdateListener(new
ValueAnimator.AnimatorUpdateListener() {
 @Override
 public void onAnimationUpdate(ValueAnimator animation) {
 invalidate();
 }
});

It is basically the same approach of the ValueAnimator, but in this case, we're specifying
the property to animate using a String and the reference to the object. As we've just
mentioned, ObjectAnimator will call the getter and setter of the property using the
set<VariableName> and get<VariableName> format. In addition, in the
onAnimationUpdate callback there is only a call to invalidate(). We've removed any
value assignation like on the previous examples, as it'll be automatically updated by the
ObjectAnimator.

You can find the whole example source code in the Example29-PropertyAnimation
folder in the GitHub repository.

Animations

[157]

Summary
In this chapter, we've seen how to add different types of animation to our custom views,
from using the ValueAnimator and ObjectAnimator classes of the property animator
system of Android, to creating our own animations using time-based animation or using a
fixed time step mechanism.

Android provides us with even more animation classes, such as the AnimatorSet where
we could combine several animations and specify which one plays before or after another.

As a recommendation, we shouldn't reinvent the wheel and, if it is enough, try to use what
Android offers or maybe just extend it with our specific needs, but if it doesn't fit don't try
to force it, as maybe building your own animation might be simple and easier to maintain.

As with everything when developing software, use common sense and choose the best
option available.

In the next chapter, we'll see how to improve the performance of our custom views. In our
custom views, we're in full control of the drawing, so optimizing the draw method and
resource allocation is critical to avoid making our application sluggish and save some
battery from the user.

7
Performance Considerations

In the previous chapters, we have been talking briefly about performance and, for example,
avoiding doing some operations using the onDraw() method. But we haven't covered in
detail why you should follow these recommendations and what the real impact of not
following these best practices is to the custom view and to the application using it. Many of
the things we will explain here might seem common sense, and indeed they should be, but
sometimes we might not think about them, or we may not know or be aware of the real
impact that it might have on the application, both from a performance point of view and
regarding battery consumption.

In this chapter, we will address these points and we will look at the following topics in
more detail:

Recommendations and best practices
The impact on the app when performance is not taken into account
Code optimizations

Performance impact and recommendations
As we've just said, unless we have suffered it or we are supporting a low-end or really old
device, we might not even be aware of what the impact is of not following the performance
recommendations or best practices. If we are using a high-end device to test what are we
currently developing, we might not see how it performs on a low-end device, and most
probably there will be more downloads or more users using it on medium or low-end
devices. It is almost the same as when we develop a network-connected piece of software
with a nice and reliable Wi-Fi connection, or have an unlimited 4G network. The experience
might not be the same for those with a limited or metered connection, and for especially
those still on a 2G network.

Performance Considerations

[159]

It is important, in both cases, to take all our target users into account and test under several
scenarios, with different devices and hardware.

The impact of not following the best practices
One of the recommendations we have been giving during these last chapters is to avoid
allocating objects in the onDraw() method. But what will happen if we start allocating
objects?

Let's create a simple custom view and allocate an object on purpose so we can evaluate the
result when running the app:

package com.packt.rrafols.draw;

import android.content.Context;
import android.graphics.Bitmap;
import android.graphics.BitmapFactory;
import android.graphics.Canvas;
import android.graphics.Paint;
import android.graphics.Path;
import android.graphics.Rect;
import android.graphics.Region;
import android.util.AttributeSet;
import android.view.GestureDetector;
import android.view.MotionEvent;
import android.view.View;
import android.widget.Scroller;

public class PerformanceExample extends View {
 private static final String TAG =PerformanceExample.class.
 getName();

 private static final int BLACK_COLOR = 0xff000000;
 private static final int WHITE_COLOR = 0xffffffff;
 private float angle;

 public PerformanceExample(Context context, AttributeSet attributeSet)
 {
 super(context, attributeSet);

 angle = 0.f;
 }

 /**
 * This is precisely an example of what MUST be avoided.
 * It is just to exemplify chapter 7.

Performance Considerations

[160]

 *
 * DO NOT USE.
 *
 * @param canvas
 */
 @Override
 protected void onDraw(Canvas canvas) {
 Bitmap bitmap = Bitmap.createBitmap(getWidth(), getHeight(),
 Bitmap.Config.ARGB_8888);
 Rect rect = new Rect(0, 0, getWidth(), getHeight());
 Paint paint = new Paint();
 paint.setColor(BLACK_COLOR);
 paint.setStyle(Paint.Style.FILL);
 canvas.drawRect(rect, paint);
 canvas.save();

 canvas.rotate(angle, getWidth() / 2, getHeight() / 2);
 canvas.translate((getWidth() - getWidth()/4) / 2,
 (getHeight() - getHeight()/4) / 2);

 rect = new Rect(0, 0, getWidth() / 4, getHeight() / 4);
 paint = new Paint();
 paint.setColor(WHITE_COLOR);
 paint.setStyle(Paint.Style.FILL);
 canvas.drawBitmap(bitmap, 0, 0, paint);
 canvas.drawRect(rect, paint);
 canvas.restore();
 invalidate();
 bitmap.recycle();
 angle += 0.1f;
 }
 }

In this quick example, we are allocating several things within the onDraw() method, from
the Paint objects, to the Rect objects, to creating a new bitmap, which allocates internal
memory.

Performance Considerations

[161]

If we run this code, we'll get a rotating white rectangle in the middle of the screen, as in the
following screenshot:

In addition, we will not only get a similar view. If we check the logcat logs when our
application is running, we might get lines similar to these:

I art : Starting a blocking GC Explicit
I art : Explicit concurrent mark sweep GC freed 198893(13MB) AllocSpace
objects, 30(656KB) LOS objects, 26% free, 43MB/59MB, paused 2.835ms total
313.353ms
I art : Background partial concurrent mark sweep GC freed 26718(2MB)
AllocSpace objects, 1(20KB) LOS objects, 27% free, 43MB/59MB, paused
3.434ms total 291.430ms

Performance Considerations

[162]

We might even get them several times during the application execution. This is the Android
run-time's (ART's) garbage collector kicking in to clean unused objects to free up some
memory. As we are continuously creating new objects, the VM triggers the garbage
collector to free up some memory.

More information about garbage collection can be found at the following URL:
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science).

Luckily, Android Studio already shows us, quite clearly, that we are doing something
wrong inside our onDraw() method:

It also shows us what it might cause if we don't follow this recommendation. In this case, if
the garbage collector kicks in, in the middle of a scroll or drawing, we might get some
stuttering or, simply, a smooth animation might be seen as jumpy or not as smooth as it
should be.

Check the full source code of this example, which shouldn't be followed, in the Example30-
Performance folder in the GitHub repository. Please use it as an example of what should
be avoided.

https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)

Performance Considerations

[163]

Code optimization
Allocating objects is not the only thing we should take into consideration when thinking
about performance in our custom view. The amount of calculations, the type of calculations,
the amount of primitives we are drawing, the amount of overdrawing, and the list of things
we should check, is pretty big. In the end, most things are common sense: just don't
recalculate values that we already have and maximize parts of the code that can be skipped
if there are no changes required or, basically, try to reuse as much as possible what has been
calculated on previous frames.

Let's compare two methods that convert YUV pixel data to RGB. It is not the most typical
thing you'll have to do in a custom view, but it's perfect to show how performance can be
impacted by reusing as much as we can and not recalculating what doesn't have to be
recalculated.

When getting frames from the camera viewfinder in Android, they are usually in YUV
format instead of RGB. More information about YUV can be found at the following URL:
https://en.wikipedia.org/wiki/YUV.

We will start with a straightforward code and we will optimize it step by step to evaluate
the impact of all the optimizations:

private static void yuv2rgb(int width, int height, byte[] yuvData,
 int[] rgbData) {
 int uvOffset = width * height;
 for (int i = 0; i < height; i++) {
 int u = 0;
 int v = 0;
 for (int j = 0; j < width; j++) {
 int y = yuvData[i * width + j];
 if (y < 0) y += 256;

 if (j % 2 == 0) {
 u = yuvData[uvOffset++];
 v = yuvData[uvOffset++];
 }

 if (u < 0) u += 256;
 if (v < 0) v += 256;

 int nY = y - 16;
 int nU = u - 128;
 int nV = v - 128;

 if (nY< 0) nY = 0;

https://en.wikipedia.org/wiki/YUV

Performance Considerations

[164]

 int nR = (int) (1.164 * nY + 2.018 * nU);
 int nG = (int) (1.164 * nY - 0.813 * nV - 0.391 * nU);
 int nB = (int) (1.164 * nY + 1.596 * nV);

 nR = min(255, max(0, nR));
 nG = min(255, max(0, nG));
 nB = min(255, max(0, nB));

 nR&= 0xff;
 nG&= 0xff;
 nB&= 0xff;

 int color = 0xff000000 | (nR<< 16) | (nG<< 8) | nB;
 rgbData[i * width + j] = color;
 }
 }
}

This version is based on the YUV-to-RGB converter, found at the following URL:
https://searchcode.com/codesearch/view/2393/ and
http://sourceforge.jp/projects/nyartoolkit-and/.

We've used the floating point version here so that we can see, later on, the differences with
the fixed point version.

Now, let's create a small custom view that will transform, in every frame, a YUV image to
an RGB, set it into a Bitmap, and draw it on the screen:

@Override
protected void onDraw(Canvas canvas) {
 yuv2rgb(imageWidth, imageHeight, yuvData, rgbData);
 bitmap.setPixels(rgbData, 0, imageWidth, 0, 0, imageWidth,
 imageHeight);

 canvas.drawBitmap(bitmap, 0.f, 0.f, null);

 frames++;
 invalidate();
}

Let's also add a code to check the number of frames per second that our small code will
manage to draw. We will use this measurement to check the performance improvements on
the optimizations we'll be doing:

if (timeStart == -1) {
 timeStart = SystemClock.elapsedRealtime();
} else {

https://searchcode.com/codesearch/view/2393/
http://sourceforge.jp/projects/nyartoolkit-and/

Performance Considerations

[165]

 long tdiff = SystemClock.elapsedRealtime() - timeStart;
 if (tdiff != 0) {
 float fps = ((float) frames * 1000.f) / tdiff;
 Log.d(TAG, "FPS: " + fps);
 }
}

If we run this code as it is, on my device it measures 1.20 frames per second. The demo
image used is a 1,000x1,500 image. Let's see what we can do to improve it.

To start, we can remove some unnecessary calculations:

private static void yuv2rgb(int width, int height, byte[] yuvData,
 int[] rgbData) {
 int uvOffset = width * height;
 int offset = 0;
 for (int i = 0; i < height; i++) {
 int u = 0;
 int v = 0;
 for (int j = 0; j < width; j++) {
 int y = yuvData[offset];
 ...
 rgbData[offset] = color;

 offset++;
 }
 }
}

Here, we've removed the two calculations of the pixel position and we are doing it by just a
single increment at each pixel. In the previous case, it was doing the calculation i * width
+ j both for reading the yuvData and writing to rgbData. If we check the frames per
second counter after this change, we'll notice it has slightly increased to 1.22. Not a huge
improvement, but it's a start.

Now, we can see in the original implementation, the one used in the Android SDK, that the
floating point operations are commented out in favor of fixed point operations. Floating
point operations are usually costlier than plain integer operations. The performance of
floating point operations has been improving quite a lot these last years with all the new
hardware, but integer operations are still faster. We will not be able to get the same
precision as with floating point operations, but we can get quite a good approximation by
using fixed-point arithmetic.

More information about fixed-point arithmetic can be found at the following URL:
https://en.wikipedia.org/wiki/Fixed-point_arithmetic.

https://en.wikipedia.org/wiki/Fixed-point_arithmetic

Performance Considerations

[166]

When using fixed-point arithmetic, we have to define the number of bits of an integer value
that will be used as the fixed point precision. The remaining bits will be used to actually
store the integer value. Obviously, we'll have more precision as more bits we use to store it
but, on the other hand, we'll have less bits to store the integer value. The idea is to multiply
all constants and operations by a power of two number and, after doing all the operations,
divide the result by the same number. As it's a power of two, we can easily perform a fast
bitwise shift right operation instead of a costly divide.

For example, if we used a fixed point precision of 10 bits, we have to multiply all values by
1,024 or shift them 10 bits to the left and, at the end of all calculations, perform a right shift
of 10 bits.

Let's apply this to these operations:

int nR = (int) (1.164 * nY + 2.018 * nU);
int nG = (int) (1.164 * nY - 0.813 * nV - 0.391 * nU);
int nB = (int) (1.164 * nY + 1.596 * nV);

We are transforming them into the following:

int nR = (int) (1192 * nY + 2066 * nU);
int nG = (int) (1192 * nY - 833 * nV - 400 * nU);
int nB = (int) (1192 * nY + 1634 * nV);

We can check that 1.164 * 1,024 is 1192 rounded up, and the same applies to all the other
constants-we rounded the numbers to get the most valid approximation.

For the same reason, we have to change the following checks:

nR = min(255, max(0, nR));
nG = min(255, max(0, nG));
nB = min(255, max(0, nB));

We have to change the check with 255*255 multiplied by 1,024 of shifted 10 positions to the
left:

nR = min(255 << 10, max(0, nR));
nG = min(255 << 10, max(0, nG));
nB = min(255 << 10, max(0, nB));

Add the division by 1,024 or right shift by 10 before using the values to output the color:

nR>>= 10;
nG>>= 10;
nB>>= 10;

Performance Considerations

[167]

Implementing these changes, even if we have added some more operations compared to the
floating point version, improves our frames per second counter to 1.55.

Another small optimization we can do is to avoid calculating the luminance factor of every
component, as it's the same in each case. So let's replace this code:

int nR = (int) (1192 * nY + 2066 * nU);
int nG = (int) (1192 * nY - 833 * nV - 400 * nU);
int nB = (int) (1192 * nY + 1634 * nV);

With this one, which only calculates the luminance once:

int luminance = 1192 * nY;
int nR = (int)(luminance + 2066 * nU);
int nG = (int)(luminance - 833 * nV - 400 * nU);
int nB = (int)(luminance + 1634 * nV);

This should be optimized by most compilers; I'm not sure what the new compilers D8 and
R8 will do, but with the current Java/Android tooling, it isn't optimized. By making this
small change, we increase the frames per second counter to 1.59.

The way this YUV file format works is that a pair of U and V chroma values are shared for
two luminance values, so let's try to use this to our advantage to compute two pixels at the
same time, avoiding additional checks and code overhead:

for(int j = 0; j < width; j += 2) {
 int y0 = yuvData[offset];
 if (y0 < 0) y0 += 256;

 int y1 = yuvData[offset + 1];
 if (y1 < 0) y1 += 256;

 u = yuvData[uvOffset++];
 v = yuvData[uvOffset++];
 if (u < 0) u += 256;
 if (v < 0) v += 256;

 int nY0 = y0 - 16;
 int nY1 = y1 - 16;
 int nU = u - 128;
 int nV = v - 128;

 if (nY0 < 0) nY0 = 0;
 if (nY1 < 0) nY1 = 0;

 int chromaR = 2066 * nU;
 int chromaG = -833 * nV - 400 * nU;

Performance Considerations

[168]

 int chromaB = 1634 * nV;

 int luminance = 1192 * nY0;
 int nR = (int) (luminance + chromaR);
 int nG = (int) (luminance + chromaG);
 int nB = (int) (luminance + chromaB);

 nR = min(255 << 10, max(0, nR));
 nG = min(255 << 10, max(0, nG));
 nB = min(255 << 10, max(0, nB));

 nR>>= 10;
 nG>>= 10;
 nB>>= 10;

 nR&= 0xff;
 nG&= 0xff;
 nB&= 0xff;

 rgbData[offset] = 0xff000000 | (nR<< 16) | (nG<< 8) | nB;

 luminance = 1192 * nY1;
 nR = (int) (luminance + chromaR);
 nG = (int) (luminance + chromaG);
 nB = (int) (luminance + chromaB);

 nR = min(255 << 10, max(0, nR));
 nG = min(255 << 10, max(0, nG));
 nB = min(255 << 10, max(0, nB));

 nR>>= 10;
 nG>>= 10;
 nB>>= 10;

 nR&= 0xff;
 nG&= 0xff;
 nB&= 0xff;

 rgbData[offset + 1] = 0xff000000 | (nR<< 16) | (nG<< 8) | nB;

 offset += 2;
}

We are now just calculating the chroma components once, and we've removed the check to
get new U and V components only every two pixels. Doing these changes increased our
frames per second counter to 1.77.

Performance Considerations

[169]

As Java bytes range from -128 to 127, we've added some checks for negative numbers, but
instead of doing these checks, we can do a quick bitwise AND operation (&):

for (int i = 0; i < height; i++) {
 for (int j = 0; j < width; j += 2) {
 int y0 = yuvData[offset] & 0xff;
 int y1 = yuvData[offset + 1] & 0xff;

 int u = yuvData[uvOffset++] & 0xff;
 int v = yuvData[uvOffset++] & 0xff;

 ...
 }
}

That small change slightly increased our frames per second counter to 1.83. But we can still
optimize it a bit more. We have used 10 bits of fixed-point arithmetic precision, but, in this
particular case, we might have enough using 8 bits of precision. Changing from 10 bits of
precision to only 8 will save us one operation:

for (int i = 0; i < height; i++) {
 for (int j = 0; j < width; j += 2) {
 ...
 int chromaR = 517 * nU;
 int chromaG = -208 * nV - 100 * nU;
 int chromaB = 409 * nV;

 int lum = 298 * nY0;

 nR = min(65280, max(0, nR));
 nG = min(65280, max(0, nG));
 nB = min(65280, max(0, nB));

 nR<<= 8;
 nB>>= 8;

 nR&= 0x00ff0000;
 nG&= 0x0000ff00;
 nB&= 0x000000ff;

 rgbData[offset] = 0xff000000 | nR | nG | nB;

 ...

 offset += 2;
 }
}

Performance Considerations

[170]

We've updated all the constants to be multiplied by 256 instead of 1,024, and we've
updated the checks. The constant 65280 that appears on the code is 255 multiplied by 256.
On the part of the code that we are shifting the values to in order to get the actual color
components, we have to shift right the red component by 8 and shift it left by 16 to adjust it
to the ARGB position in the color component, so we can just do one single shift operation of
8 bits left. It's even better on the green coordinate-we have to shift it right by 8 and shift it
left by 8, so we can leave it as it is and not shift it at all. We still have to shift right the blue
component by 8 positions.

We also had to update the masks to check that every component stays between its 0-255
range, but now the masks are shifted by the right bit position s0x00ff0000, 0x0000ff00,
and 0x000000ff.

This change marginally improved our frames per second counter to 1.85, but we can still go
further. Let's try to get rid of all the shifts, checks, and masks. We could do that by using
some pre-calculated tables that we'll calculate once at the creation of our custom view. Let's
create this function to pre-calculate everything we need:

private static int[] luminance;
private static int[] chromaR;
private static int[] chromaGU;
private static int[] chromaGV;
private static int[] chromaB;

private static int[] clipValuesR;
private static int[] clipValuesG;
private static int[] clipValuesB;

private static void precalcTables() {
 luminance = new int[256];
 for (int i = 0; i <luminance.length; i++) {
 luminance[i] = ((298 * (i - 16)) >> 8) + 300;
 }
 chromaR = new int[256];
 chromaGU = new int[256];
 chromaGV = new int[256];
 chromaB = new int[256];
 for (int i = 0; i < 256; i++) {
 chromaR[i] = (517 * (i - 128)) >> 8;
 chromaGU[i] = (-100 * (i - 128)) >> 8;
 chromaGV[i] = (-208 * (i - 128)) >> 8;
 chromaB[i] = (409 * (i - 128)) >> 8;
 }

 clipValuesR = new int[1024];
 clipValuesG = new int[1024];

Performance Considerations

[171]

 clipValuesB = new int[1024];
 for (int i = 0; i < 1024; i++) {
 clipValuesR[i] = 0xFF000000 | (min(max(i - 300, 0), 255) << 16);
 clipValuesG[i] = min(max(i - 300, 0), 255) << 8;
 clipValuesB[i] = min(max(i - 300, 0), 255);
 }
}

We are calculating the values for luminance, all chroma components, and finally the
clipped, shifted, and masked values for everything. As luminance and some chromas
might be negative, we've added a +300 value to the luminance value, as it'll be added to all
values, and then adapted the clipValues tables to take that 300 offset into account.
Otherwise, we might try to index an array with a negative index, and that would make our
application crash. Checking whether the index is negative before accessing the array will
kill all the performance optimizations, as we are trying to get rid, as much as possible, of all
operations and checks.

Using these tables, our YUV-to-RGB converter code is reduced to the following:

private static void yuv2rgb(int width, int height, byte[] yuvData,
 int[] rgbData) {
 int uvOffset = width * height;
 int offset = 0;

 for (int i = 0; i < height; i++) {
 for (int j = 0; j < width; j += 2) {
 int y0 = yuvData[offset] & 0xff;
 int y1 = yuvData[offset + 1] & 0xff;

 int u = yuvData[uvOffset++] & 0xff;
 int v = yuvData[uvOffset++] & 0xff;

 int chR = chromaR[u];
 int chG = chromaGV[v] + chromaGU[u];
 int chB = chromaB[v];

 int lum = luminance[y0];
 int nR = clipValuesR[lum + chR];
 int nG = clipValuesG[lum + chG];
 int nB = clipValuesB[lum + chB];

 rgbData[offset] = nR | nG | nB;

 lum = luminance[y1];
 nR = clipValuesR[lum + chR];
 nG = clipValuesG[lum + chG];
 nB = clipValuesB[lum + chB];

Performance Considerations

[172]

 rgbData[offset + 1] = nR | nG | nB;

 offset += 2;
 }
 }
}

With these changes, we get a 2.04 frames per second counter, or a 70% increase of
performance, compared with the original method. Anyway, this is only an example of how
code can be optimized; if you really want to convert, in real-time, a YUV image to RGB, I
suggest that you either check out a native C or C++ implementation or go for a GPU or
render script approach.

Finally, if we run this application, we will get a screen similar to the following screenshot.
We are not scaling or applying any additional transformation to the image, as we just
wanted to measure the amount of time that it takes to transform from a YUV image to an
RGB image. Your screen image might differ depending on the screen size and your device:

Performance Considerations

[173]

Check the whole example source code in the Example31-Performance folder in the
GitHub repository.

There are many other things to take into consideration when talking about performance. If
you want to know more details about how Java code is translated into dexbyte code and
executed in the Android VM, check out the following presentation:
https://www.slideshare.net/RaimonRls/the-bytecode-mumbojumbo.

Mocking up the preview window
When previewing our custom views on Android Studio, there are some occasions when
calculations can be very complex or, for example, we need some data initialized, but we
can't do that while showing our custom view inside the preview window of Android
Studio. We'll be able to do something about this by checking the is InEditMode() method.

This method will return true if we are inside an IDE or a development tool. Knowing this
information, we could easily mock some of the data or simplify the rendering to just show a
preview of what we want to draw.

For example, in the Example07-BuilderPattern folder in the GitHub repository, we are
calling this method at the custom view creation to alter the color values used in the
gradient, although we could actually call it during the onDraw() method as well, to alter
the rendering of the view:

https://www.slideshare.net/RaimonRls/the-bytecode-mumbojumbo

Performance Considerations

[174]

Summary
In this chapter, we have seen what the impact is of not following the performance
recommendations and why there is a set of best practices and things we should avoid when
implementing our own custom view. We have also seen how to improve or optimize a code
for performance and how to tweak or customize a view to render a preview on the Android
Studio IDE preview window.

As we will see in the next chapter, whether our custom view is used by other people or
even by ourselves shouldn't make a difference. It should not make the application using it
crash or misbehave because of it. Like including a third-party library, it should never crash
our application, as otherwise, we will most probably stop using it and replace it with
another library.

So, in the next chapter, we will not only see how to apply these recommendations, but also
how to make our custom view reusable with many applications, and how to share it or
open source it so it can be widely used within the Android community.

8
Sharing Our Custom View

We've been building our custom view, or many of them, in these last chapters. We've seen
how to interact with them, how to draw 2D and 3D primitives, and we want somebody else
to be able to use it. That is a great idea! It might be for ourselves, we might reuse it in a
future project, or it might be a project by one of our colleagues. If we aim higher, it might be
a project by the Android community.

One of the things that makes the Android community awesome is that there are lots of open
source libraries. All these contributions by developers have helped many other developers
get started in Android development, learn to get a deeper understanding of some concepts,
or be able to build their applications in the first place.

Firstly, publishing your custom view or, for instance, an Android library, is one of the
methods that contributes to this amazing community. Secondly, by doing so, it's a great
way to advertise yourself, show the openness of your employer, and also attract talent to
your company.

In this chapter, we'll see what we should take into consideration if we want to share our
custom view and how to do it. We'll also put into practice some of the important
recommendations we've given in the previous chapters. Even more importantly, we want
other developers to use our custom view.

In more detail, we'll cover the following topics:

Recommendations and best practices
Publishing your custom view

Almost all recommendations given can be applied not only to custom views but to any
Android library we'd like to share or we want to make reusable for our colleagues or other
projects.

Sharing Our Custom View

[176]

Best practices for sharing our custom view
We should always aim for the highest quality possible, even though we're building a
custom view or component only for ourselves or for a small application. However, there are
some additional checks and best practices that we've to take into account if we want to
share our custom view so others can use it. If that is our goal, and we'd like to get as many
developers as possible using it in their applications or contributing to it, it'll be quite
challenging to involve them if we ignore these basic recommendations.

Considerations and recommendations
Something we should consider is that once we share our custom view, it might be used for
many Android applications. If our custom view has errors and crashes, it'll crash the
application using it. The application's users will not consider the custom view at fault but
rather the application itself. The application developer, or developers, might try to open an
issue or even submit a pull request to fix it, but if the custom view gives them too much
trouble, they'll just replace it.

This applies to your own applications as well; you don't want to use an unstable component
or custom view as you might end up either rewriting it or patching it up. As we've just
mentioned, we should always aim for the highest quality. If our custom view is only used in
one single application, the impact of finding a critical issue once it's at the production stage
or the application is published to the store or stores only affects one application. However,
if it's used by several applications, the impact and cost of maintenance increases. You can
imagine the impact of detecting a highly critical issue of an open source component and
having to make new releases of all the applications using it.

In addition, you should try to keep your code clean, well-organized, properly tested, and
reasonably documented. It'll be easier for you, as well as your colleagues if you're sharing
the custom view at your company, to maintain the custom view, and if it's open source, it
will encourage contributions and won't actually scare external contributors. As with many
other things, common sense applies. Don't over-document your custom view as basically
nobody will read it; keep it as simple as possible and straight to the point.

Sharing Our Custom View

[177]

In the following screenshot, we can see the open issues of the retrofit library, an open
source Android library widely used in many applications:

Sharing Our Custom View

[178]

Also, we can see there are many pull requests submitted by several developers, either fixing
issues or adding functionality or features. In the following screenshot is an example of a
pull request submitted to the retrofit library:

Sharing Our Custom View

[179]

We've previously covered it already, but it's also important that the custom view behaves
properly. Not only must it be crash-free but it also has to work properly on several devices
and resolutions and have good performance.

We can sum up the list of recommendations with the following points:

Stable
Work across devices and resolutions
Performant
Developed applying best code practices and standard style
Properly documented and easy to use

Configurable
We've explained in Chapter 2, Implementing Your First Custom View, how to parameterize a
custom view. We've created it because it might serve a very specific purpose, but in general
the more configurable it is, the more likely it will be used somewhere else.

Imagine we're building a progress bar. If our custom view always draws a horizontal red
bar, it'll have its uses but not many as it's too specific. If we allow the developer of the
application using this custom view to customize the color of the bar, we'd add several other
use cases for it. If, in addition, we also allow developers to configure the background color
or what kind of primitive we're drawing instead of a horizontal bar, we'll cover even more
different scenarios with our custom view.

We need to be careful as well; adding so many options will also increase the complexity of
the code and the component itself. Configuring colors is straightforward and doesn't have
that much impact, but being able to change the drawing primitive, for example, might be
slightly trickier. Adding complexity might impact on performance, stability, and our ability
to test and verify all scenarios are working fine when publishing it or making a new release.

Sharing Our Custom View

[180]

Publishing our custom view
Once we're happy with our custom view and the way it is, we're ready to share it. If we've
also followed the best practices and recommendations, we might be additionally confident.
Even if you haven't, the best way to learn is to get feedback from the community as soon as
possible. Don't be afraid of making mistakes; you'll learn on the way.

There are many ways of publishing a custom view: we can open source it, for example, or
we can just publish a compiled binary as a SDK or Android library. Most of the
recommendations above are given for the open source approach or internal reuse, either for
yourself or your colleagues, but many of them, not all, also apply if your goal is to publish a
closed SDK or just the compiled binary as a library.

Open sourcing our custom view
Open sourcing a custom view or, alternatively, an Android library, is pretty easy and
straightforward. You need to make sure you perform some additional steps but the process
itself is very simple.

We've been using GitHub to share the source code of the examples of this book. This is not a
coincidence. GitHub is one of the most widely used tools for sharing source code and open
source libraries and projects. It's also the tool we will recommend and will use in this
chapter to explain how to publish our custom view.

First things first; if we don't have a GitHub account, we've to register ourselves and create
it. Creating an account is free as long as we want to host only public repositories or publicly
accessible code. If we want to use it to store private code repositories, we've the paid option.
For the scope of this book, we've more than enough with the free option.

We can register directly from the home page: https:/ /www. github. com or from:
https://github.com/ join.

https://www.github.com
https://www.github.com
https://www.github.com
https://www.github.com
https://www.github.com
https://www.github.com
https://www.github.com
https://www.github.com
https://www.github.com
https://github.com/join
https://github.com/join
https://github.com/join
https://github.com/join
https://github.com/join
https://github.com/join
https://github.com/join
https://github.com/join
https://github.com/join
https://github.com/join

Sharing Our Custom View

[181]

Once we have made the account, we create a code repository to store the code. We can do so
at:
https://github.com/new.

As shown in following screenshot:

We must choose a repository name. It is highly recommended to add a description so its
easier for everyone else to understand what our component or library is doing. We also
have the option of adding a .gitignore file and adding a license.

The .gitignore is quite a useful file. All files mentioned here won't be uploaded to
GitHub. For instance, there is no need to upload all the temporary files, builds, intermediate
build files, or configuration files from Android Studio that hold information about the
project specifically to our local computer. It won't be useful to anybody to know that we're
storing the project in \Users\raimon\development\AndroidCustomView for instance.

https://github.com/new

Sharing Our Custom View

[182]

Adding a license is very important to determine what rights we are granting to those using
our source code. Some of the most common licenses for open source projects are Apache
2.0, MIT, and GPLv3 licenses:

MIT is the less restrictive and permissive license. It allows other parties to use the
source in any way they want as long as they include the license and copyright
notice.
Apache 2.0 is also quite permissive. Like the MIT license, it allows other parties to
use the source in any way they want as long as they include the license and
copyright notice and state the changes done to the original files.
GPLv3 is slightly more restrictive as it forces anyone using your source code to
distribute the source code of the application using it under the same license. This
might be a restriction for some companies as they'd like to preserve the IP of their
source code.

All three licenses limit the liability of the original developer and do not provide any
warranty. They all provide the software or source code as is.

Many Android libraries use either the MIT or Apache 2.0 license and it's our
recommendation to use either for your custom view.

Once the repository is created and initialized, we can upload our code. We can use any Git
client we prefer or simply use the command-line interface.

First, we clone the repository we've just created-just as reference, not a real repository:

raimon$ git clone https://github.com/rrafols/androidcustomview.git
Cloning into 'androidcustomview'...
remote: Counting objects: 5, done.
remote: Compressing objects: 100% (4/4), done.
remote: Total 5 (delta 0), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (5/5), done.

Checking connectivity. Done.

If we already have the directory created with our source code inside, Git will complain it
can't create the directory:

raimon$ git clone https://github.com/rrafols/androidcustomview.git

fatal: destination path androidcustomview already exists and is not an empty directory.

Sharing Our Custom View

[183]

In this case, we've to use a different approach. First, we have to initialize the local
repository:

androidcustomview raimon$ gitinit
Initialized empty Git repository in
/Users/raimon/dev/androidcustomview/.git/

Then add the remote repository:

androidcustomview raimon$ git remote add origin
https://github.com/rrafols/androidcustomview.git

Finally, pull the content from the master branch:

androidcustomview raimon$ git pull origin master
remote: Counting objects: 5, done.
remote: Compressing objects: 100% (4/4), done.
remote: Total 5 (delta 0), reused 0 (delta 0), pack-reused 0
Unpacking objects: 100% (5/5), done.
From https://github.com/rrafols/androidcustomview
 * branch master -> FETCH_HEAD
 * [new branch] master -> origin/master

Now we can add all the files we'd like to add to the GitHub repository. In this case, we'll
add everything and Git will automatically ignore those files matching the patterns on the
.gitignore file:

androidcustomview raimon$ git add *

We can commit to the local repository now. Always use a meaningful commit message or
description as it will be useful later on to know what was changed:

androidcustomview raimon$ git commit -m "Adding initial files"
[master bc690c7] Adding initial files
 6 files changed, 741 insertions(+)

When this is done, we're ready to push those commits to the remote repository, at https:/ /
github.com/ in this example:

androidcustomview raimon$ git push origin master
Username for 'https://github.com': rrafols
Password for 'https://rrafols@github.com':
Counting objects: 9, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (8/8), done.
Writing objects: 100% (8/8), 6.06 KiB | 0 bytes/s, done.
Total 8 (delta 3), reused 0 (delta 0)
remote: Resolving deltas: 100% (3/3), done.

https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/

Sharing Our Custom View

[184]

To https://github.com/rrafols/androidcustomview.git
343509f..bc690c7 master -> master

For more information about Git go to:
https://en.wikipedia. org/ wiki/ Git.

When creating a repository, GitHub also asks us if we wants to create a README.md file.
This README.md file is what will be shown on the repository page as documentation. It's
formatted using markdown, which is why the extension is .md, and it's important to keep it
up-to-date with information about the project, how to use it, a quick example, and a
mention of the license and authors. The most important part here is that anyone who wants
to use your custom view can check quite quickly how to do so, if the license is appropriate,
and how to contact you for support and help. This last part is optional as they can always
open an issue on GitHub, but it's nice to have. We can even edit and preview the changes
directly from:
https://github.com/ .

It's not only important to keep the documentation up-to-date, it's also important to keep the
library maintained and up-to-date. There are bugs that need addressing, new features to
add, new versions of Android that break, deprecate, improve or add new method, and
other developers opening issues or asking questions. When looking for a custom view or
Android library, if there are no recent updates or, at least, not in the last few months, it
looks abandoned and it greatly decreases the chances somebody else will use it.

Creating a binary artifact
We've been talking about shared custom views and Android libraries as if they were the
same. The most suitable way to share a custom view is as an Android library. The main
difference between an Android application and an Android library is that the latter cannot
be run by itself on a device or emulator and will only produce an .aar file. This .aar file
can, later on, be added as a dependency in an Android application project or other libraries.
We could also have sub-modules inside the same project and have dependencies between
them. To see how this works, we'll convert a custom view project into an Android library
and we'll add a test application project to quickly test it.

First, once we have an Android application, we can convert it to a library by just performing
two simple steps:

Remove the line mentioning the applicationId on the app module1.
build.gradle file.

https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Git
https://en.wikipedia.org/wiki/Git
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/
https://github.com/

Sharing Our Custom View

[185]

Change the plugin applied from com.android.application to2.
com.android.library.

Basically changing the following:

apply plugin: 'com.android.application'

android {
 compileSdkVersion 25
 buildToolsVersion"25.0.2"
 defaultConfig {
 applicationId"com.rrafols.packt.customview"
 minSdkVersion 21
 targetSdkVersion 25
 versionCode 1
 versionName"1.0"

Change to the following:

apply plugin: 'com.android.library'

android {
 compileSdkVersion 25
 buildToolsVersion"25.0.2"
 defaultConfig {
 minSdkVersion 21
 targetSdkVersion 25
 versionCode 1
 versionName"1.0"

In our example, we've also refactored the app module name to lib.

More information on how to convert an Android application to an Android library can be
found at the developer Android documentation page:

https://developer. android. com/ studio/ projects/ android- library. html.

If we're developing or extending this library, we'd recommend adding a new module inside
the project as a test application. It would considerably speed up developing and testing of
the custom view.

https://developer.android.com/studio/projects/android-library.html
https://developer.android.com/studio/projects/android-library.html
https://developer.android.com/studio/projects/android-library.html
https://developer.android.com/studio/projects/android-library.html
https://developer.android.com/studio/projects/android-library.html
https://developer.android.com/studio/projects/android-library.html
https://developer.android.com/studio/projects/android-library.html
https://developer.android.com/studio/projects/android-library.html
https://developer.android.com/studio/projects/android-library.html
https://developer.android.com/studio/projects/android-library.html
https://developer.android.com/studio/projects/android-library.html
https://developer.android.com/studio/projects/android-library.html
https://developer.android.com/studio/projects/android-library.html
https://developer.android.com/studio/projects/android-library.html
https://developer.android.com/studio/projects/android-library.html
https://developer.android.com/studio/projects/android-library.html
https://developer.android.com/studio/projects/android-library.html
https://developer.android.com/studio/projects/android-library.html
https://developer.android.com/studio/projects/android-library.html

Sharing Our Custom View

[186]

We can add a new module using the Android Studio File menu: File | New | New Module:

Once we've added a test application module, we add a dependency to the library. In the
build.gradle file of the new module, add a dependency to the local lib module:

dependencies {
 compile project(":lib")
 compile fileTree(dir: 'libs', include: ['*.jar'])
 androidTestCompile('com.android.support.test.espresso:espresso-
core:2.2.2',
 {
 exclude group: 'com.android.support', module: 'support-annotations'
 })

 compile 'com.android.support:appcompat-v7:25.3.1'
 compile 'com.android.support.constraint:constraint-layout:1.0.2'
 testCompile'junit:junit:4.12'
}

Sharing Our Custom View

[187]

Now you can add the custom view to this new test application layout and test it. In
addition, we can also produce a library binary to distribute. It'll only include the library or
the lib module. We can do so by executing the lib:assembleRelease task on gradle:

Example32-Library raimon$./gradlew lib:assembleRelease

We'll get the .aar file in our project folder at lib/build/outputs/aar/lib-
release.aar. Using the lib:assembleDebug task, we'll produce the debug library, or
simply using lib:assembleDebug we'll get both debug and release versions.

You can distribute the binary in any way you prefer, but one recommendation is to upload
to an artifact platform. Many companies are using internal artifact or software repositories
for their enterprise libraries and artifacts in general, but if you want to make it available to
the wider public, you can upload it to JCenter, for example. If we check our topmost
build.gradle file from any Android project, we will see there is a dependency on
JCenter to look for libraries:

...
repositories {
 jcenter()
}

We can easily do so from Bintray: https:/ /bintray. com, for example. Once we've
registered, we could create projects, import them from GitHub, create releases and versions,
and even publish it to JCenter if our project is accepted.

For more information about the Bintray gradle plugin, go to:
https://github.com/bintray/gradle-bintray-plugin#readme.

To simplify our lives, there are some open source examples and code that will make this
process way simpler. But first, let's create a repository on Bintray.

https://bintray.com
https://bintray.com
https://bintray.com
https://bintray.com
https://bintray.com
https://bintray.com
https://bintray.com
https://github.com/bintray/gradle-bintray-plugin#readme

Sharing Our Custom View

[188]

We'll name it AndroidCustomView, set it up as a Maven repository, and add a default
Apache 2.0 license:

Sharing Our Custom View

[189]

Once we have it, we can create versions or we can add them directly from our gradle build
scripts. In order to do so, we must add some dependencies to our topmost build.gradle:

buildscript {
 repositories {
 jcenter()
 }

 dependencies {
 classpath'com.android.tools.build:gradle:2.3.0'
 classpath'com.jfrog.bintray.gradle:gradle-
bintrayplugin:1.4'classpath'com.github.dcendents:android-maven-
gradleplugin:1.4.1'
 }
}

Now we can take advantage of some open source gradle build scripts already created.
Instead of copying and pasting or adding more code to our build script, we can simply
apply it directly from GitHub. Let's add these two lines to the very end of our library
build.gradle file:

...
apply from:
'https://raw.githubusercontent.com/nuuneoi/JCenter/master/installv1.gra
 dle'
apply from:
'https://raw.githubusercontent.com/nuuneoi/JCenter/master/bintrayv1.gra
 dle'

After applying these two gradle build scripts, we end up having an additional task:
bintrayUpload. We need to add the artifact configuration first, so let's add it at the very
beginning of the file, just after the apply library line on the library module build.gradle
file:

apply plugin: 'com.android.library'

ext {
 bintrayRepo = 'AndroidCustomView'
 bintrayName = 'androidcustomview'
 publishedGroupId = 'com.rrafols.packt'
 libraryName = 'AndroidCustomView'
 artifact = 'androidcustomview'
 libraryDescription = 'Uploading libraries example.'
 siteUrl = 'https://github.com/rrafols/AndroidCustomView'
 gitUrl = 'https://github.com/rrafols/androidcustomview.git'
 libraryVersion = '1.0.0'
 developerId = 'rrafols'

Sharing Our Custom View

[190]

 developerName = 'Raimon Ràfols'
 developerEmail = ''
 licenseName = 'The Apache Software License, Version 2.0'
 licenseUrl = 'http://www.apache.org/licenses/LICENSE-2.0.txt'
 allLicenses = ["Apache-2.0"]
}

We need to add the Bintray user and API key information to our local.properties file:

bintray.user=rrafols
bintray.apikey=<key - can be retrieved from the edit profile option on
bintray.com>

The bintrayRepo variable has to match the repository where we'd like to store our binaries
or otherwise the build script will fail.

Now that we've all the configuration in place, we can build a new version of the library by
using ./gradlew install and uploading it to Bintray by using ./gradlew
bintrayUpload.

Keep in mind that versions are read-only when they've been uploaded, so we'll not be able
to override them and we'll get an error when executing our gradle script unless we update
the version number and upload a different version.

Sharing Our Custom View

[191]

Once we've uploaded a version, we'll have something close to the following screen:

Sharing Our Custom View

[192]

We can also inspect the files of an uploaded version to see what has been uploaded. If we
go to a version and to the Files menu, we'll see the .aar Android library and all the other
files the script has uploaded for us:

As we can see, it also packaged and uploaded the source code, the Javadoc and created a
.pom file as it's hosted as a Maven repository.

After doing all these steps, we can upload it to JCenter directly from the artifact repository
page by pressing Add to JCenter. Once approved, anyone wanting to use our library can
simply define a dependency on com.rrafols.packt.androidcustomview and directly
get it from JCenter.

For more information about this process and the author of these gradle build scripts, go to:
https://inthecheesefactory. com/ blog/ how-to- upload- library- to-jcenter- maven-
central-as-dependency/ en.

https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en
https://inthecheesefactory.com/blog/how-to-upload-library-to-jcenter-maven-central-as-dependency/en

Sharing Our Custom View

[193]

Something we haven't mentioned but is also quite important is how to version our library.
Whenever we're creating a new release, we create a version number. It is highly
recommended to use semantic versioning, MAJOR.MINOR.PATCH, when versioning our
custom view. This way we can easily indicate if changes in one version are introducing
incompatibilities or not. For instance, using semantic versioning, if we change the major
number, we're indicating we've introduced incompatibilities with previous versions, or by
changing the minor number, we indicate we've added new functionality without
introducing any incompatibility. This is important for third-parties or other developers
using our library, so they know what to expect from one version to the next.

For more information on Semantic Versioning, go to:
http://semver.org/ .

Check also the full source code of this example in the Example32-Library folder on the
GitHub repository.

Summary
In this chapter, we have seen the recommendations for sharing our custom view and how
we can actually do it. There are many benefits from open sourcing our custom views or
sharing them internally at our company, for example. We'll not only pay more attention to
quality and to details, but we will also foster collaborations and enrich the Android
developer community.

In the next chapters, we will see how we can put all the information we have been covering
these last chapters and build some more complex custom views that we can use and include
directly in our applications.

http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/
http://semver.org/

9
Implementing Your Own EPG

So far, we have been building very basic examples to show some of the functionalities and
methods that Android provides us with to implement and draw our custom views. In this
chapter, we will see a more complex example of a custom view. We'll be building an
Electronic Programming Guide (EPG).

An EPG is a fairly complex component to build, and if done wrong, can have an impact on
the user experience. For example, if it doesn't perform well, it'll feel sluggish and tedious to
use.

We'll be using several things we have covered in previous chapters. All together it can be a
bit too much, but we will be building it step by step, and, in more detail, we will cover:

How to build a basic EPG custom view
How to add basic animations and interactions
How to allow zooming
Making it configurable

Building an EPG
If we want to make our EPG useful, it should show several channels, and both current and
future TV programs at the same time. Also, it'd be nice to clearly see what's currently
playing, and have clear indicators of when other TV programs start and end.

In this specific component, we will opt for one method of rendering that covers these
points. You can use it as an example, but there are many other ways to render the same
kind of information. Also, it won't be connected to a backend service providing the EPG
data. All EPG data will be mocked up, but it can be easily connected to any service,
although some changes might need to be done.

Implementing Your Own EPG

[195]

EPG basics and animation setup
We'll start by creating a class-extending view. On its onDraw() method we will draw the
following parts:

The view background
The EPG body with all the channels and TV programs
A top time bar hinting at the time
A vertical line indicating the current time

We'll also need to trigger a redraw cycle if we are animating some variables.

So, let's start with this implementation of the onDraw() method, and let's proceed method
by method:

@Override
protected void onDraw(Canvas canvas) {
 animateLogic();

 long currentTime = System.currentTimeMillis();

 drawBackground(canvas);
 drawEPGBody(canvas, currentTime, frScrollY);
 drawTimeBar(canvas, currentTime);
 drawCurrentTime(canvas, currentTime);

 if (missingAnimations()) invalidate();
}

The easiest method to implement will be drawBackground():

private static final int BACKGROUND_COLOR = 0xFF333333;
private void drawBackground(Canvas canvas) {
 canvas.drawARGB(BACKGROUND_COLOR >> 24,
 (BACKGROUND_COLOR >> 16) & 0xff,
 (BACKGROUND_COLOR >> 8) & 0xff,
 BACKGROUND_COLOR & 0xff);
}

Implementing Your Own EPG

[196]

In this case, we have defined a background color as 0xFF333333, which is some kind of
dark gray, and we are just filling the whole screen with the drawARGB() call, masking and
shifting the color components.

Now, let's go for the drawTimeBar() method:

private void drawTimeBar(Canvas canvas, long currentTime) {
 calendar.setTimeInMillis(initialTimeValue - 120 * 60 * 1000);
 calendar.set(Calendar.MINUTE, 0);
 calendar.set(Calendar.SECOND, 0);
 calendar.set(Calendar.MILLISECOND, 0);

 long time = calendar.getTimeInMillis();
 float x = getTimeHorizontalPosition(time) - frScrollX + getWidth()
 / 4.f;

 while (x < getWidth()) {
 if (x > 0) {
 canvas.drawLine(x, 0, x, timebarHeight, paintTimeBar);
 }

 if (x + timeBarTextBoundaries.width() > 0) {
 SimpleDateFormat dateFormatter =
 new SimpleDateFormat("HH:mm", Locale.US);

 String date = dateFormatter.format(new Date(time));
 canvas.drawText(date,
 x + programMargin,
 (timebarHeight - timeBarTextBoundaries.height()) /
 2.f + timeBarTextBoundaries.height(),paintTimeBar);
 }

 time += 30 * 60 * 1000;
 x = getTimeHorizontalPosition(time) - frScrollX + getWidth() /
 4.f;
 }

 canvas.drawLine(0,
 timebarHeight,
 getWidth(),
 timebarHeight,
 paintTimeBar);
}

Implementing Your Own EPG

[197]

Let's explain what this method is doing:

First, we got the initial time at which we'd like to start drawing the time marks:1.

calendar.setTimeInMillis(initialTimeValue - 120 * 60 * 1000);
calendar.set(Calendar.MINUTE, 0);
calendar.set(Calendar.SECOND, 0);
calendar.set(Calendar.MILLISECOND, 0);

long time = calendar.getTimeInMillis();

We defined the initialTimeValue in our class constructor as half an hour to the
current time. We also removed the minutes, seconds, and milliseconds as we'd
like to indicate the exact hours and the exact half hour past each hour, for
instance: 9.00, 9.30, 10.00, 10.30, and so on in this example.

Then we created a helper method to get the screen position based on a timestamp
that will be used in many other places in the code:

private float getTimeHorizontalPosition(long ts) {
 long timeDifference = (ts - initialTimeValue);
 return timeDifference * timeScale;
}

In addition, we need to calculate a timescale based on the device screen density.2.
To calculate it, we defined a default timescale:

private static final float DEFAULT_TIME_SCALE = 0.0001f;

In the class constructor, we adjusted the timescale depending on the screen3.
density:

final float screenDensity =
getResources().getDisplayMetrics().density;
timeScale = DEFAULT_TIME_SCALE * screenDensity;

We know there are many Android devices with different screen sizes and densities. Doing it
this way, instead of hardcoding the pixel dimensions, makes the rendering as close as
possible on all devices.

Implementing Your Own EPG

[198]

With the help of this method, we can easily loop on blocks of half an hour until we reach the
end of the screen:

float x = getTimeHorizontalPosition(time) - frScrollX + getWidth() / 4.f;
while (x < getWidth()) {

 ...
 time += 30 * 60 * 1000; // 30 minutes
 x = getTimeHorizontalPosition(time) - frScrollX + getWidth() / 4.f;
}

By adding 30 minutes, converted to milliseconds, to the time variable we increment the
horizontal marks in blocks of 30 minutes.

We've taken into consideration the frScrollX position as well. This variable will be
updated when we add interactions that allow us to scroll, but we will see that later in this
chapter.

The rendering is quite straightforward: we draw a vertical line as long as the x coordinate is
inside the screen:

if (x > 0) {
 canvas.drawLine(x, 0, x, timebarHeight, paintTimeBar);
}

we draw the time in HH:mm format, just next to it:

SimpleDateFormat dateFormatter = new SimpleDateFormat("HH:mm", Locale.US);
String date = dateFormatter.format(new Date(time));
canvas.drawText(date,
 x + programMargin,
 (timebarHeight - timeBarTextBoundaries.height()) / 2.f
 + timeBarTextBoundaries.height(), paintTimeBar);

One small performance improvement we can do is to store the strings so we don't have to
call the format method again and again, and avoid costly object creation. We can do so by
creating a HashMap that takes a long variable as a key and returns a string:

String date = null;
if (dateFormatted.containsKey(time)) {
 date = dateFormatted.get(time);
} else {
 date = dateFormatter.format(new Date(time));
 dateFormatted.put(time, date);
}

Implementing Your Own EPG

[199]

We use the formatted date if we already have it, or format it first and store it on the
HashMap if it's the first time.

We can now go on to draw the current time indicator. It is quite easy; it's just a vertical box
that is slightly wider than a single line, so we use drawRect() instead of drawLine():

private void drawCurrentTime(Canvas canvas, long currentTime) {
 float currentTimePos = frChNameWidth +
 getTimeHorizontalPosition(currentTime) - frScrollX;
 canvas.drawRect(currentTimePos - programMargin/2,
 0,
 currentTimePos + programMargin/2,
 timebarHeight,
 paintCurrentTime);
 canvas.clipRect(frChNameWidth, 0, getWidth(), getHeight());
 canvas.drawRect(currentTimePos - programMargin/2,
 timebarHeight,
 currentTimePos + programMargin/2,
 getHeight(),
 paintCurrentTime);
}

As we already have the getTimeHorizontalPosition method, we can easily pinpoint
where to draw the current time indicator. As we will be scrolling through the TV programs,
we split the drawing into two parts: one that draws a line over the time bar, without any
clipping; and another line from the end of the time bar to the bottom of the screen. In the
latter we apply a clipping to only draw it on top of the TV programs.

To understand this more clearly, let's take a look at a screenshot of the result:

Implementing Your Own EPG

[200]

At the left side, we have got the icons representing the channels, on the top side is the time
bar, and the rest is the body of the EPG with different TV programs. We'd like to avoid the
current timeline, in red, going over the channel icons, so we apply the clipping we have just
mentioned.

Finally, we can implement the drawing of the whole EPG body. It's a bit more complex than
the other methods, so let's go through it step by step. First, we need to calculate the number
of channels we have to draw to avoid doing unnecessary calculations and trying to draw
outside the screen:

int startChannel = (int) (frScrollY / channelHeight);
verticalOffset -= startChannel * channelHeight;
int endChannel = startChannel + (int) ((getHeight() - timebarHeight) /
channelHeight) + 1;
if (endChannel >= channelList.length) endChannel = channelList.length - 1;

Implementing Your Own EPG

[201]

Like we did with the timescale, we also define a default channel height and compute it
based on the screen density:

private static final int CHANNEL_HEIGHT = 80;
...
channelHeight = CHANNEL_HEIGHT * screenDensity;

Now that we know the initial channel and the end channel we need to draw, we can outline
the drawing loop:

canvas.save();
canvas.clipRect(0, timebarHeight, getWidth(), getHeight());

for (int i = startChannel; i <= endChannel; i++) {
 float channelTop = (i - startChannel) * channelHeight -
 verticalOffset +
 timebarHeight;
 float channelBottom = channelTop + channelHeight;

 ...

}

canvas.drawLine(frChNameWidth, timebarHeight, frChNameWidth, getHeight(),
paintChannelText);
canvas.restore();

We'll be modifying the canvas clipping several times, so let's save it at the beginning of the
method and restore it at the end. This way we won't impact any other drawing method
completed after this. Inside the loop, for each channel, we also calculate the channelTop
and channelBottom values as they'll be handy later when drawing it. These values
indicate the vertical coordinates for the top and the bottom of the channel we are drawing.

Let's now draw the icon for each channel, requesting it first from the internet if we don't
have it. We'll be using Picasso to manage the Internet requests, but we can use any other
library:

if (channelList[i].getIcon() != null) {
 float iconMargin = (channelHeight -
 channelList[i].getIcon().getHeight()) / 2;

 canvas.drawBitmap(channelList[i].getIcon(), iconMargin, channelTop
 + iconMargin, null);

} else {
 if (channelTargets[i] == null) {
 channelTargets[i] = new ChannelIconTarget(channelList[i]);

Implementing Your Own EPG

[202]

 }

 Picasso.with(context)
 .load(channelList[i]
 .getIconUrl())
 .into(channelTargets[i]);
}

There is information about Picasso at:
http://square.github. io/ picasso/ .

Also, for each channel, we need to draw the TV programs that are inside the screen. Once
again, let's use the method we previously created to convert a timestamp into a screen
coordinate:

for (int j = 0; j < programs.size(); j++) {
 Program program = programs.get(j);

 long st = program.getStartTime();
 long et = program.getEndTime();

 float programStartX = getTimeHorizontalPosition(st);
 float programEndX = getTimeHorizontalPosition(et);

 if (programStartX - frScrollX > getWidth()) break;
 if (programEndX - frScrollX >= 0) {

 ...
 }
}

Here, we are getting the program start and end positions from the program start and end
times. If the start position is beyond the width of the screen, we can stop checking more TV
programs as they'll all be outside the screen, assuming the TV programs are sorted by time
in ascending order. Also, if the end position is less than 0, we can skip this specific TV
program as it'll also be drawn outside the screen.

The actual drawing is quite simple; we are using a drawRoundRect for the TV program
background and we are drawing the program name centered on it. We're also clipping the
area just in case the name is longer than the TV program box:

canvas.drawRoundRect(horizontalOffset + programMargin + programStartX,
 channelTop + programMargin,
 horizontalOffset - programMargin + programEndX,
 channelBottom - programMargin,
 programMargin,
 programMargin,

http://square.github.io/picasso/
http://square.github.io/picasso/
http://square.github.io/picasso/
http://square.github.io/picasso/
http://square.github.io/picasso/
http://square.github.io/picasso/
http://square.github.io/picasso/
http://square.github.io/picasso/
http://square.github.io/picasso/
http://square.github.io/picasso/
http://square.github.io/picasso/
http://square.github.io/picasso/

Implementing Your Own EPG

[203]

 paintProgram);

canvas.save();
canvas.clipRect(horizontalOffset + programMargin * 2 + programStartX,
 channelTop + programMargin,
 horizontalOffset - programMargin * 2 + programEndX,
 channelBottom - programMargin);

paintProgramText.getTextBounds(program.getName(), 0,
program.getName().length(), textBoundaries);
float textPosition = channelTop + textBoundaries.height() + ((channelHeight
- programMargin * 2) - textBoundaries.height()) / 2;
canvas.drawText(program.getName(),
 horizontalOffset + programMargin * 2 + programStartX,
 textPosition,
 paintProgramText);
canvas.restore();

We've also added a small check to see if a TV program is currently playing. If the current
time is greater than or equal to the program start time and smaller than its end time, we can
conclude that the TV program is currently playing and render it with the highlighted color.

if (st <= currentTime && et > currentTime) {
 paintProgram.setColor(HIGHLIGHTED_PROGRAM_COLOR);
 paintProgramText.setColor(Color.BLACK);
} else {
 paintProgram.setColor(PROGRAM_COLOR);
 paintProgramText.setColor(Color.WHITE);
}

Let's now add the animation cycle. For this example, we have chosen the fixed time-step
mechanism. We'll only animate the scroll variables, both horizontal and vertical, and the
movement of the channel part of the screen:

private void animateLogic() {
 long currentTime = SystemClock.elapsedRealtime();
 accTime += currentTime - timeStart;
 timeStart = currentTime;

 while (accTime > TIME_THRESHOLD) {
 scrollX += (scrollXTarget - scrollX) / 4.f;
 scrollY += (scrollYTarget - scrollY) / 4.f;
 chNameWidth += (chNameWidthTarget - chNameWidth) / 4.f;
 accTime -= TIME_THRESHOLD;
 }

 float factor = ((float) accTime) / TIME_THRESHOLD;
 float nextScrollX = scrollX + (scrollXTarget - scrollX) / 4.f;

Implementing Your Own EPG

[204]

 float nextScrollY = scrollY + (scrollYTarget - scrollY) / 4.f;
 float nextChNameWidth = chNameWidth + (chNameWidthTarget -
 chNameWidth) / 4.f;

 frScrollX = scrollX * (1.f - factor) + nextScrollX * factor;
 frScrollY = scrollY * (1.f - factor) + nextScrollY * factor;
 frChNameWidth = chNameWidth * (1.f - factor) + nextChNameWidth *
 factor;
}

In our renderings and calculations later, we will use the frScrollX, frScrollY, and
frChNameWidth variables, which contain the fractional parts between the current logic tick
and the following one.

We'll see how to scroll in the next section when talking about adding interaction to the EPG,
but we have just introduced the movement of the channel part. Right now, we are only
rendering each channel as an icon, but, to have more information, we have added a toggle
that makes the channel box, where we currently have the icon, become larger and draw the
channel title next to the icon.

We've created a Boolean switch to track which state we are rendering and to draw the
channel name if required:

if (!shortChannelMode) {
 paintChannelText.getTextBounds(channelList[i].getName(),
 0,
 channelList[i].getName().length(),
 textBoundaries);

 canvas.drawText(channelList[i].getName(),
 channelHeight - programMargin * 2,
 (channelHeight - textBoundaries.height()) / 2 +
 textBoundaries.height() + channelTop,
 paintChannelText);
}

The toggle is quite simple, as it just changes the channel box width target to
channelHeight, so it'll have square dimensions, or two times the channelHeight when
drawing the text. The animation cycle will take care of animating the variable:

if (shortChannelMode) {
 chNameWidthTarget = channelHeight * 2;
 shortChannelMode = false;
} else {
 chNameWidthTarget = channelHeight;
 shortChannelMode = true;
}

Implementing Your Own EPG

[205]

Interaction
So far, it's not really useful as we can't interact with it. To add interaction, we need to
override the onTouchEvent() method from the View, as we have seen in previous
chapters.

In our own implementation of onTouchEvent, we are mainly interested in the
ACTION_DOWN, ACTION_UP, and ACTION_MOVE events. Let's see the implementation we
have done:

private float dragX;
private float dragY;
private boolean dragged;

...

@Override
public boolean onTouchEvent(MotionEvent event) {

 switch(event.getAction()) {
 case MotionEvent.ACTION_DOWN:
 dragX = event.getX();
 dragY = event.getY();

 getParent().requestDisallowInterceptTouchEvent(true);
 dragged = false;
 return true;

 case MotionEvent.ACTION_UP:
 if (!dragged) {
 // touching inside the channel area, will toggle
 large/short channels
 if (event.getX() < frChNameWidth) {
 switchNameWidth = true;
 invalidate();
 }
 }

 getParent().requestDisallowInterceptTouchEvent(false);
 return true;

 case MotionEvent.ACTION_MOVE:
 float newX = event.getX();
 float newY = event.getY();

 scrollScreen(dragX - newX, dragY - newY);

Implementing Your Own EPG

[206]

 dragX = newX;
 dragY = newY;
 dragged = true;
 return true;
 default:
 return false;
 }
}

This method doesn't contain that much logic; it's just checking if we are dragging on the
screen, calling scrollScreen with the drag amount delta from the last event, and, in the
case where we haven't dragged and just pressed on the channel box, triggering the toggle to
make the channel box bigger or smaller.

The scrollScreen method simply updates the scrollXTarget and scrollYTarget and
checks its boundaries:

private void scrollScreen(float dx, float dy) {
 scrollXTarget += dx;
 scrollYTarget += dy;

 if (scrollXTarget < -chNameWidth) scrollXTarget = -chNameWidth;
 if (scrollYTarget < 0) scrollYTarget = 0;

 float maxHeight = channelList.length * channelHeight - getHeight()
 + 1 + timebarHeight;
 if (scrollYTarget > maxHeight) scrollYTarget = maxHeight;

 invalidate();
}

Also, it's highly important to call invalidate to trigger a redraw event. On the onDraw()
event itself, we check if all animations are finished and trigger more redraw events if
needed:

if (missingAnimations()) invalidate();

The actual implementation of missingAnimations is quite straightforward:

private static final float ANIM_THRESHOLD = 0.01f;

private boolean missingAnimations() {
 if (Math.abs(scrollXTarget - scrollX) > ANIM_THRESHOLD)
 return true;

if (Math.abs(scrollYTarget - scrollY) > ANIM_THRESHOLD)
 return true;

Implementing Your Own EPG

[207]

if (Math.abs(chNameWidthTarget - chNameWidth) > ANIM_THRESHOLD)
 return true;

return false;
}

We're just checking all properties that can be animated if their difference from their target
value is smaller than a predefined threshold. If only one is bigger than this threshold, we
need to trigger more redraw events and animation cycles.

Zooming
As we are rendering a box for each TV program and its size is directly determined by the
TV program duration, it might happen that TV program titles will be larger than its
rendered box. In those cases, we might want to read some more parts of the title, or, at other
times, we may like to compress things a bit so we can have an overall picture of what will
be on TV later that day.

To solve this, we can implement a zooming mechanism by pinching on our device screen on
top of our EPG widget. We can apply this zooming directly to the timeScale variable, and,
as we have used it everywhere for all calculations, it'll keep everything synchronized:

scaleDetector = new ScaleGestureDetector(context,
 new ScaleGestureDetector.SimpleOnScaleGestureListener() {

 ...
 });

To simplify it, let's use the SimpleOnScaleGestureListener, which allows us to override
only the methods we'd like to use.

Now, we need to modify the onTouchEvent to let the scaleDetector instance process the
event as well:

@Override
public boolean onTouchEvent(MotionEvent event) {
 scaleDetector.onTouchEvent(event);

 if (zooming) {
 zooming = false;
 return true;
 }

Implementing Your Own EPG

[208]

 ...

}

We've also added a check to see if we are zooming. We'll update this variable in the
ScaleDetector implementation, but the concept is to avoid scrolling the view, or
processing drag events, if we are already zooming.

Let's now implement the ScaleDetector:

scaleDetector = new ScaleGestureDetector(context, new
ScaleGestureDetector.SimpleOnScaleGestureListener() {
 private long focusTime;
 private float scrollCorrection = 0.f;
 @Override
 public boolean onScaleBegin(ScaleGestureDetector detector) {
 zooming = true;
 focusTime = getHorizontalPositionTime(scrollXTarget +
 detector.getFocusX() - frChNameWidth);
 scrollCorrection = getTimeHorizontalPosition((focusTime)) -
 scrollXTarget;
 return true;
 }

 public boolean onScale(ScaleGestureDetector detector) {
 timeScale *= detector.getScaleFactor();
 timeScale = Math.max(DEFAULT_TIME_SCALE * screenDensity / 2,
 Math.min(timeScale, DEFAULT_TIME_SCALE *
 screenDensity * 4));

 // correct scroll position otherwise will move too much when
 zooming
 float current = getTimeHorizontalPosition((focusTime)) -
 scrollXTarget;
 float scrollDifference = current - scrollCorrection;
 scrollXTarget += scrollDifference;
 zooming = true;

 invalidate();
 return true;
 }

 @Override
 public void onScaleEnd(ScaleGestureDetector detector) {
 zooming = true;
 }
});

Implementing Your Own EPG

[209]

We're basically doing two different things. First, we adjust the timeScale variable from
half the default value to four times the default value:

timeScale *= detector.getScaleFactor();
timeScale = Math.max(DEFAULT_TIME_SCALE * screenDensity / 2,
 Math.min(timeScale, DEFAULT_TIME_SCALE * screenDensity
 * 4));

Also, we adjust the scroll position to avoid an unpleasant effect when scaling. By adjusting
the scroll position, we are trying to keep the focus of the pinch at the same position, even
after zooming in or out.

float current = getTimeHorizontalPosition((focusTime)) - scrollXTarget;
float scrollDifference = current - scrollCorrection;
scrollXTarget += scrollDifference;

For more information about the ScaleDetector and gestures, check out the official
Android documentation.

Configurations and Extensions
If want to create a custom view that is usable by many people, it needs to be customizable.
The EPG is no exception. In our initial implementation, we hardcoded some colors and
values, but let's see how we can extend these functionalities and make our EPG
customizable.

Making it configurable
In the initial chapters of this book, we introduced how to add parameters and, that way,
easily customize our custom view. Following the same principles, we have created an
attrs.xml file with all the customizable parameters:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <declare-styleable name="EPG">
 <attr name="backgroundColor" format="color"/>
 <attr name="programColor" format="color"/>
 <attr name="highlightedProgramColor" format="color"/>
 <attr name="currentTimeColor" format="color"/>
 <attr name="channelTextColor" format="color"/>
 <attr name="programTextColor" format="color"/>
 <attr name="highlightedProgramTextColor" format="color"/>

Implementing Your Own EPG

[210]

 <attr name="timeBarColor" format="color"/>

 <attr name="channelHeight" format="float"/>
 <attr name="programMargin" format="float"/>
 <attr name="timebarHeight" format="float"/>
 </declare-styleable>
</resources>

There are many other variables that could be added as parameters, but these are the main
customizations from the point of view of the custom view look and feel.

Also, in our class constructor, we have added the code to read and parse these parameters.
In a case where they're not present, we'd default to the previous values we hardcoded.

TypedArray ta = context.getTheme().obtainStyledAttributes(attrs,
R.styleable.EPG, 0, 0);
try {
 backgroundColor = ta.getColor(R.styleable.EPG_backgroundColor,
 BACKGROUND_COLOR);
 paintChannelText.setColor(ta.getColor(R.styleable.EPG_channelTextColor
 Color.WHITE));
 paintCurrentTime.setColor(ta.getColor(R.styleable.EPG_currentTimeColor,
 CURRENT_TIME_COLOR));
 paintTimeBar.setColor(ta.getColor(R.styleable.EPG_timeBarColor,
 Color.WHITE));

 highlightedProgramColor =
 ta.getColor(R.styleable.EPG_highlightedProgramColor,
 HIGHLIGHTED_PROGRAM_COLOR);

 programColor = ta.getColor(R.styleable.EPG_programColor,
 PROGRAM_COLOR);

 channelHeight = ta.getFloat(R.styleable.EPG_channelHeight,
 CHANNEL_HEIGHT) * screenDensity;

 programMargin = ta.getFloat(R.styleable.EPG_programMargin,
 PROGRAM_MARGIN) * screenDensity;

 timebarHeight = ta.getFloat(R.styleable.EPG_timebarHeight,
 TIMEBAR_HEIGHT) * screenDensity;

 programTextColor = ta.getColor(R.styleable.EPG_programTextColor,
 Color.WHITE);

 highlightedProgramTextColor =
 ta.getColor(R.styleable.EPG_highlightedProgramTextColor,

Implementing Your Own EPG

[211]

 Color.BLACK);
} finally {
 ta.recycle();
}

To make it simpler and clearer for anyone trying to customize it, we can do a small change.
Let's redefine the parameters that map directly to pixel sizes as dimensions instead of floats:

<attr name="channelHeight" format="dimension"/>
<attr name="programMargin" format="dimension"/>
<attr name="timebarHeight" format="dimension"/>

Update the parsing code to the following:

channelHeight = ta.getDimension(R.styleable.EPG_channelHeight,
 CHANNEL_HEIGHT * screenDensity);

programMargin = ta.getDimension(R.styleable.EPG_programMargin,
 PROGRAM_MARGIN * screenDensity);

timebarHeight = ta.getDimension(R.styleable.EPG_timebarHeight,
 TIMEBAR_HEIGHT * screenDensity);

By using getDimension instead of getFloat, it'll automatically convert dimensions set as
density pixels to actual pixels. It'll not do that transformation to the default value, so we still
need to do the multiplication by the screenDensity ourselves.

Finally, we need to add these configurations in the activity_main.xml layout file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
xmlns:app="http://schemas.android.com/apk/res-auto"
tools:context="com.rrafols.packt.epg.MainActivity">

 <com.rrafols.packt.epg.EPG
 android:id="@+id/epg_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:channelHeight="80dp"
 app:highlightedProgramColor="#ffffdd20"
 app:highlightedProgramTextColor="#ff000000"/>
</LinearLayout>

Implementing Your Own EPG

[212]

We can see the result of these changes in the following screenshot:

Implementing callbacks
Another critical functionality from our EPG that we haven't covered yet is the ability to
actually do something when clicking on a TV program. If we want to do something useful
with our EPG, rather than just showing the titles of what is coming, we must implement
this functionality.

This implementation is quite straightforward and will handle the logic to an external
listener or callback. It would also be quite easy to modify the source code to implement
some custom behavior on the EPG itself.

Implementing Your Own EPG

[213]

To begin, we create a new interface inside the EPG class with one single method:

interface EPGCallback {
 void programClicked(Channel channel, Program program);
}

This method will be called whenever we click on a TV program, and whoever is
implementing this callback will get both the Channel and the TV Program.

Now, let's modify the onTouchEvent() method to handle this new functionality:

if (event.getX() < frChNameWidth) {

 ...
} else {
 clickProgram(event.getX(), event.getY());
}

In our previous code, we were checking only if we clicked on the channel area of the screen.
Now we can use the other area to detect if we have clicked inside a TV program.

Let's now implement the clickProgram() method:

private void clickProgram(float x, float y) {
 long ts = getHorizontalPositionTime(scrollXTarget + x -
 frChNameWidth);
 int channel = (int) ((y + frScrollY - timebarHeight) /
 channelHeight);

 ArrayList<Program> programs = channelList[channel].getPrograms();
 for (int i = 0; i < programs.size(); i++) {
 Program pr = programs.get(i);
 if (ts >= pr.getStartTime() && ts < pr.getEndTime()) {
 if (callback != null) {
 callback.programClicked(channelList[channel], pr);
 }
 break;
 }
 }
}

We first convert the horizontal position where the user clicks into a timestamp, and, with
the vertical position of the touch event, we can determine the channel. With the channel and
the timestamp, we could check which program the user has clicked inside and call the
callback with that information.

Implementing Your Own EPG

[214]

In the GitHub example, we added a dummy listener that will only log the channel and
program clicked:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 EPG epg = (EPG) findViewById(R.id.epg_view);
 epg.setCallback(new EPG.EPGCallback() {
 @Override
 public void programClicked(Channel channel, Program program) {
 Log.d("EPG", "program clicked: " + program.getName() + "
 channel: " + channel.getName());
 }
 });

 populateDummyChannelList(epg);
}

There is also a populateDummyChannelList() method in this Activity onCreate. This
method will only populate random channel and TV program data and should be removed if
connecting with a real EPG data provider.

The whole example can be found in the Example33-EPG folder on the GitHub repository.

Summary
In this chapter, we have seen how to build a simple EPG with many functionalities, but we
have probably left many others without an implementation. For instance, our TV program
rendering is rather simple, and we could add way more information inside the TV program
box, such as the duration, start time, and end time, or even show the TV program
description directly there.

Feel free to take what's in the GitHub repository and play with it, add new customizations
or functionalities, and adapt it to your needs.

We haven't specifically talked about performance that much, but we have tried to minimize
the amount of allocations inside our onDraw method and the methods called by it as much
as possible, and we have reduced what we are drawing on the screen as much as possible
and don't even process elements that will fall outside the screen boundaries.

Implementing Your Own EPG

[215]

Taking into account these details is critical if we want our custom view, or the EPG in this
case, to be snappy, responsive, and scale with more channels and TV programs.

In the next chapter we will be building another complex custom view that we can use to
draw graphs on our Android applications.

10
Building a Charts Component

In the previous chapter, we saw how to build a complex custom view that combined a bit of
everything we've covered in this book. It included some rendering code, used a third-party
library, had touch interactions and animations, and we briefly talked about performance
considerations. It was a rather complete custom view example, but it's not the only one. In
this chapter, we'll be building another complex custom view. Step by step, we'll build a
charts custom view to draw graphs we can embed in our Android applications. We'll start
by building a very basic implementation and we'll be adding additional features and
functionalities along the way. In more detail, we'll see about:

Building a basic charts component
How to take into account margins and padding
Using Paths to improve rendering
Updating and growing our data set
Rendering additional features and customizations

Building a basic chart custom view
Most probably, at one point or another, we'll have to draw some charts in an Android
application. It can be a static chart, which isn't that fun as it can be replaced simply by an
image, or it can be a dynamic chart, allowing user interactions and reactions to data
changes. This last case is where we can use a custom view to draw real-time graphs, add
multiple sources of data, and even animate it. Let's start by building a very simple custom
view where we'll add more features later on.

Building a Charts Component

[217]

Margins and padding
As with any normal view, our custom view will be subject to the layout manager's margins
and to the view's padding. We should not worry that much about the margin values, as the
layout manager will directly process them and will transparently modify the size available
for our custom view. The values we've to take into consideration are the padding values. As
we can see in the following image, the margin is the space the layout manager is adding
before and after our custom view and the padding is the internal space between the view
boundaries and the content itself:

Our view has to manage this padding appropriately. To do so, we can directly use the
different getPadding methods from canvas such as getPaddingTop(),
getPaddingBottom(), getPaddingStart(), and so on. Using the padding values, we
should adjust the rendering area accordingly on our onDraw() method:

protected void onDraw(Canvas canvas) {
 int startPadding = getPaddingStart();
 int topPadding = getPaddingTop();

 int width = canvas.getWidth() - startPadding - getPaddingEnd();
 int height = canvas.getHeight() - topPadding - getPaddingBottom();
}

In this code, we're storing the left and topmost points of our Canvas which are the start and
top padding values respectively. We have to be careful with this sentence as the start
padding might not be the left padding. If we check the documentation we'll find there are
both getPaddingStart(), getPaddingEnd(), getPaddingLeft(), and
getPaddingRight(). The start padding, for example, can be the right padding if our
device is configured in Right-To-Left (RTL) mode. We have to be careful with these details
if we'd like to support both LTR and RTL devices. In this specific example, we'll build it
with RTL support by detecting the layout direction using the getLayoutDirection()
method available on view. But first, let's focus on a very simple implementation.

Building a Charts Component

[218]

Basic implementation
Our basic implementation will be quite straightforward. Let's start by creating the class and
its constructor:

public class Chart extends View {
 private Paint linePaint;

 public Chart(Context context, AttributeSet attrs) {
 super(context, attrs);
 linePaint = new Paint();
 linePaint.setAntiAlias(true);
 linePaint.setColor(0xffffffff);
 linePaint.setStrokeWidth(8.f);
 linePaint.setStyle(Paint.Style.STROKE);
 }
}

We've initialized a Paint object on our constructor, but this time we've set the style to
Paint.Style.STROKE as we're only interested in drawing lines. Let's now add a method
so whoever is using the custom view can set the data to render:

private float[] dataPoints;
private float minValue;
private float maxValue;
private float verticalDelta;

public void setDataPoints(float[] originalData) {
 dataPoints = new float[originalData.length];
 minValue = Float.MAX_VALUE;
 maxValue = Float.MIN_VALUE;
 for (int i = 0; i< dataPoints.length; i++) {
 dataPoints[i] = originalData[i];
 if (dataPoints[i] <minValue) minValue = dataPoints[i];
 if (dataPoints[i] >maxValue) maxValue = dataPoints[i];
 }

 verticalDelta = maxValue - minValue;
 postInvalidate();
}

We're making a copy of the original data array as we don't have control over it and it might
change without prior warning. Later, we'll see how can we improve this behavior and adapt
to changes to the data set.

Building a Charts Component

[219]

We're also calculating the maximum and minimum values on the array and the difference
between them. This will allow us to get a relative scale of those numbers and scale them
down, or up if needed, to a 0 to 1 scale, which will be quite handy for adjusting the
rendering to our view height.

Now that we have the data, we can implement our onDraw() method:

@Override
protected void onDraw(Canvas canvas) {
 canvas.drawARGB(255,0 ,0 ,0);
 float leftPadding = getPaddingLeft();
 float topPadding = getPaddingTop();

 float width = canvas.getWidth() - leftPadding - getPaddingRight();
 float height = canvas.getHeight() - topPadding -
 getPaddingBottom();

 float lastX = getPaddingStart();
 float lastY = height * ((dataPoints[0] - minValue) / verticalDelta)
 + topPadding;
 for (int i = 1; i < dataPoints.length; i++) {
 float y = height * ((dataPoints[i] - minValue) / verticalDelta)
 + topPadding;
 float x = width * (((float) i + 1) / dataPoints.length) +
 leftPadding;

 canvas.drawLine(lastX, lastY, x, y, linePaint);
 lastX = x;
 lastY = y;
 }
}

To keep it as simple as possible, for the time being, we're drawing a black background
with canvas.drawARGB(255, 0, 0, 0) and then we're computing the available size on
our Canvas by subtracting the paddings from the total width and height.

We're also splitting the horizontal space equally for all the points and scaling them
vertically to use the whole available space. As we've calculated the difference between the
minimum and maximum value of our data set, we can scale those numbers to a 0 to 1 range
by subtracting the minimum value of the number and then dividing by the difference or
verticalDelta as the variable we're using here.

Building a Charts Component

[220]

With these calculations, we only have to keep track of the previous values in order to be
able to draw a line from the old point to the new one. Here, we are storing the last x and y
coordinates in the lastX and lastY variables respectively and we are updating them at the
end of every single loop.

Optimizations and improvements with Paths
We could actually pre-calculate these operations we're doing on the onDraw() method as
there is no need to do it every single time we're drawing the chart on the screen. We could
just do it at the setDataPoints(), which is the only point in our custom view that our
data set can be changed or replaced:

public void setDataPoints(float[] originalData) {
 dataPoints = new float[originalData.length];

 float minValue = Float.MAX_VALUE;
 float maxValue = Float.MIN_VALUE;
 for (int i = 0; i < dataPoints.length; i++) {
 dataPoints[i] = originalData[i];
 if (dataPoints[i] < minValue) minValue = dataPoints[i];
 if (dataPoints[i] > maxValue) maxValue = dataPoints[i];
 }

 float verticalDelta = maxValue - minValue;

 for (int i = 0; i < dataPoints.length; i++) {
 dataPoints[i] = (dataPoints[i] - minValue) / verticalDelta;
 }

 postInvalidate();
}

Now, we can simplify our onDraw() method as we can safely assume our data set will
always range between 0 and 1:

@Override
protected void onDraw(Canvas canvas) {
 canvas.drawARGB(255,0 ,0 ,0);
 float leftPadding = getPaddingLeft();
 float topPadding = getPaddingTop();

 float width = canvas.getWidth() - leftPadding - getPaddingRight();
 float height = canvas.getHeight() - topPadding -
 getPaddingBottom();

Building a Charts Component

[221]

 float lastX = getPaddingStart();
 float lastY = height * dataPoints[0] + topPadding;
 for (int i = 1; i < dataPoints.length; i++) {
 float y = height * dataPoints[i] + topPadding;
 float x = width * (((float) i) / dataPoints.length) +
 leftPadding;

 canvas.drawLine(lastX, lastY, x, y, linePaint);

 lastX = x;
 lastY = y;
 }
}

But we can go further and convert the line drawings into a Path:

private Path graphPath;

@Override
protected void onDraw(Canvas canvas) {
 canvas.drawARGB(255,0 ,0 ,0);

 float leftPadding = getPaddingLeft();
 float topPadding = getPaddingTop();

 float width = canvas.getWidth() - leftPadding - getPaddingRight();
 float height = canvas.getHeight() - topPadding -
 getPaddingBottom();

 if (graphPath == null) {
 graphPath = new Path();

 graphPath.moveTo(leftPadding, height * dataPoints[0] +
 topPadding);

 for (int i = 1; i < dataPoints.length; i++) {
 float y = height * dataPoints[i] + topPadding;
 float x = width * (((float) i + 1) / dataPoints.length) +
 leftPadding;

 graphPath.lineTo(x, y);
 }
 }

 canvas.drawPath(graphPath, linePaint);
}

Building a Charts Component

[222]

It will generate a Path with all the lines from one point to another the very first time the
onDraw() method is called. The graph will be also scaled to the canvas dimensions. The
only issue we will have now is that it'll not automatically adjust to a canvas size change or
if our graph data is updated. Let's see how we can fix it.

First, we have to declare a boolean flag to determine if we've to regenerate the Path or not
and two variables to hold the last width and height of our custom view:

private boolean regenerate;
private float lastWidth;
private float lastHeight;

In our class constructor, we have to create an instance of the Path. Later on, instead of
checking with null and creating a new instance, we'd call the reset method to generate a
new Path, but reusing this way the object instance:

graphPath = new Path();
lastWidth = -1;
lastHeight = -1;

On setDataPoints() we have to set regenerate to true just before the call to
postInvalidate. And on our onDraw() method, we've to add additional checks to detect
when the canvas size changes:

if (lastWidth != width || lastHeight != height) {
 regenerate = true;

 lastWidth = width;
 lastHeight = height;
}

As we have just mentioned, instead of checking with null, we will check the value of the
boolean flag to regenerate the Path:

if (regenerate) {
 graphPath.reset();
 graphPath.moveTo(leftPadding, height * dataPoints[0] + topPadding);

 for (int i = 1; i < dataPoints.length; i++) {
 float y = height * dataPoints[i] + topPadding;
 float x = width * (((float) i + 1) / dataPoints.length) +
 leftPadding;

 graphPath.lineTo(x, y);
 }

Building a Charts Component

[223]

 regenerate = false;
}

Background lines and details
Let's add it into an Android project to see the results. First let's create a very simple layout
file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 tools:context="com.rrafols.packt.chart.MainActivity">

 <com.rrafols.packt.chart.Chart
 android:layout_margin="16dp"
 android:padding="10dp"
 android:id="@+id/chart_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

</LinearLayout>

Let's also create an empty activity that will only set this layout file as the content View and
generate some random data for our chart component to render:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 Chart chart = (Chart) findViewById(R.id.chart_view);

 float[] data = new float[20];
 for (int i = 0; i < data.length; i++) {
 data[i] = (float) Math.random() * 10.f;
 }

 chart.setDataPoints(data);
}

Building a Charts Component

[224]

If we run this example, we'll get the following screen:

OK, we've a simple implementation done, but let's add some details. We'll start by adding a
small dot on each data point for improved clarity. Let's create a new Paint object on our
class constructor for that:

circlePaint = new Paint();
circlePaint.setAntiAlias(true);
circlePaint.setColor(0xffff2020);
circlePaint.setStyle(Paint.Style.FILL);

Now, one approach to do so, is to create an additional Path that will draw small circles on
each data point. Using the same approach as we did for the line Path, we'll create an
instance of the circlePath on the class constructor and reset it whenever it has to be
regenerated. As we're calculating the coordinates for the lines, we can reuse them as the
location of the circles:

@Override
protected void onDraw(Canvas canvas) {
 canvas.drawARGB(255,0 ,0 ,0);

 float leftPadding = getPaddingLeft();
 float topPadding = getPaddingTop();

Building a Charts Component

[225]

 float width = canvas.getWidth() - leftPadding - getPaddingRight();
 float height = canvas.getHeight() - topPadding -
 getPaddingBottom();

 if (lastWidth != width || lastHeight != height) {

 regenerate = true;

 lastWidth = width;
 lastHeight = height;
 }

 if (regenerate) {
 circlePath.reset();
 graphPath.reset();

 float x = leftPadding;
 float y = height * dataPoints[0] + topPadding;

 graphPath.moveTo(x, y);
 circlePath.addCircle(x, y, 10, Path.Direction.CW);

 for (int i = 1; i < dataPoints.length; i++) {
 y = height * dataPoints[i] + topPadding;
 x = width * (((float) i + 1) / dataPoints.length) +
 leftPadding;

 graphPath.lineTo(x, y);
 circlePath.addCircle(x, y, 10, Path.Direction.CW);
 }

 regenerate = false;
 }

 canvas.drawPath(graphPath, linePaint);
 canvas.drawPath(circlePath, circlePaint);
}

In this example, we've hard coded the radius of the circle to 10, just a bit bigger than the
thickness of the lines: 8, but we'll talk about customizations later on this chapter.

Building a Charts Component

[226]

If we now run this example, we'll see the difference from our previous version:

To add a more visual reference, let's also add some background lines. As it will be drawn
using different settings, let's first create a new Paint object:

backgroundPaint = new Paint();
backgroundPaint.setColor(0xffBBBB40);
backgroundPaint.setStyle(Paint.Style.STROKE);
backgroundPaint.setPathEffect(new DashPathEffect(new float[] {5, 5}, 0));

Now, let's modify the onDraw() method to also generate a new Path with the background
lines:

@Override
protected void onDraw(Canvas canvas) {
 canvas.drawARGB(255,0 ,0 ,0);

 float leftPadding = getPaddingLeft();
 float topPadding = getPaddingTop();

Building a Charts Component

[227]

 float width = canvas.getWidth() - leftPadding - getPaddingRight();
 float height = canvas.getHeight() - topPadding -
 getPaddingBottom();

 if (lastWidth != width || lastHeight != height) {
 regenerate = true;

 lastWidth = width;
 lastHeight = height;
 }

 if (regenerate) {
 circlePath.reset();
 graphPath.reset();
 backgroundPath.reset();

 for (int i = 0; i <= dataPoints.length; i++) {
 float xl = width * (((float) i) / dataPoints.length) +
 leftPadding;
 backgroundPath.moveTo(xl, topPadding);
 backgroundPath.lineTo(xl, topPadding + height);
 }

 for (int i = 0; i <= 10; i++) {
 float yl = ((float) i / 10.f) * height + topPadding;
 backgroundPath.moveTo(leftPadding, yl);
 backgroundPath.lineTo(leftPadding + width, yl);
 }

 float x = leftPadding;
 float y = height * dataPoints[0] + topPadding;

 graphPath.moveTo(x, y);
 circlePath.addCircle(x, y, 10, Path.Direction.CW);

 for (int i = 1; i < dataPoints.length; i++) {
 x = width * (((float) i + 1) / dataPoints.length) +
 leftPadding;
 y = height * dataPoints[i] + topPadding;

 graphPath.lineTo(x, y);
 circlePath.addCircle(x, y, 10, Path.Direction.CW);
 }

 regenerate = false;
 }

 canvas.drawPath(backgroundPath, backgroundPaint);

Building a Charts Component

[228]

 canvas.drawPath(graphPath, linePaint);
 canvas.drawPath(circlePath, circlePaint);
}

Here, we are creating both horizontal and vertical lines. Horizontal lines will be created at
the same exact points there will be a data point. We won't follow the same principle for
vertical lines, we'll just draw 10 vertical lines uniformly separated between the top and the
bottom of our Canvas. Executing our example now, we'll get something similar to the
following screen:

That's alright, but we are still missing some reference points. Let's draw some horizontal
and vertical labels.

First, let's create an array of labels and create a method to let anyone using this custom view
set them:

private String[] labels;

public void setLabels(String[] labels) {
 this.labels = labels;
}

Building a Charts Component

[229]

If they're not set, we can either don't draw anything or generate them ourselves. In this
example, we'll generate them ourselves automatically using the array index:

if (labels == null) {
 labels = new String[dataPoints.length + 1];
 for (int i = 0; i < labels.length; i++) {
 labels[i] = "" + i;
 }
 }

To measure the text, so we can center it, we'll reuse a Rect object. Let's create and
instantiate it:

private Rect textBoundaries = new Rect();

Now, we can add the following code to the onDraw() method to draw the bottom labels,
one for each point in our data set:

for (int i = 0; i <= dataPoints.length; i++) {
 float xl = width * (((float) i) / dataPoints.length) + leftPadding;
 backgroundPaint.getTextBounds(labels[i], 0, labels[i].length(),
 textBoundaries);
 canvas.drawText(labels[i],
 xl - (textBoundaries.width() / 2),
 height + topPadding + backgroundPaint.getTextSize() * 1.5f,
 backgroundPaint);
}

We have also adjusted the total height of the graph to add some space for the labels:

float height = canvas.getHeight() - topPadding - getPaddingBottom()
 - backgroundPaint.getTextSize() + 0.5f;

Let's also draw a side legend indicating the value and scale of the points. As we're drawing
a pre-defined set of vertical lines, we just have to calculate these values. We'd have to
convert these values from the 0 to 1 range back to their original range and specific value.

We'd have to adjust the width and the initial left point of the graph depending on the label
size. So, in addition, let's calculate the maximum width of the side labels:

float maxLabelWidth = 0.f;

for (int i = 0; i <= 10; i++) {
 float step = ((float) i / 10.f);
 float value = step * verticalDelta + minValue;
 verticalLabels[i] = decimalFormat.format(value);
 backgroundPaint.getTextBounds(verticalLabels[i], 0,
 verticalLabels[i].length(), textBoundaries);

Building a Charts Component

[230]

 if (textBoundaries.width() > maxLabelWidth) {
 maxLabelWidth = textBoundaries.width();
 }
}

We also used a DecimalFormat instance to format the floating point values. We've created
this DecimalFormat with the following pattern:

decimalFormat = new DecimalFormat("#.##");

In addition, we're storing the labels in an array to avoid regenerating them every single
time we're drawing our view. With the maximum label width stored in the maxLabelWidth
variable, we can adjust the paddings:

float labelLeftPadding = getPaddingLeft() + maxLabelWidth * 0.25f;
float leftPadding = getPaddingLeft() + maxLabelWidth * 1.5f;

We'll still use leftPadding to render all the objects and labelLeftPadding to render the
labels. We have added the size of the maximum label and an additional 50% of padding
that will be distributed before and after the label when drawing it. For that reason, the
labels will be rendered with an additional 25% of maxLabelWidth padding, so there will be
another 25% of space between the end of the label and the start of the graph.

We can easily draw the vertical labels by just iterating the array and computing the right
vertical position:

for (int i = 0; i <= 10; i++) {
 float step = ((float) i / 10.f);
 float yl = step * height + topPadding- (backgroundPaint.ascent() +
 backgroundPaint.descent()) * 0.5f;
 canvas.drawText(verticalLabels[i],
 labelLeftPadding,
 yl,
 backgroundPaint);
}

To center the text on a vertical coordinate, we're using the average between the ascent and
descent from the current font.

Building a Charts Component

[231]

If we now run this example, we'll have a more detailed view of our graph:

We said, early in this chapter, that we'll build support for RTL and LTR devices. In this
graph view, the legend will feel more natural on the right side of the screen if the device
layout is configured as RTL. Let's quickly implement this change:

float labelLeftPadding = getPaddingLeft() + maxLabelWidth * 0.25f;
float leftPadding = getPaddingLeft() + maxLabelWidth * 1.5f;
float rightPadding = getPaddingRight();
float topPadding = getPaddingTop();

float width = canvas.getWidth() - leftPadding - rightPadding;
float height = canvas.getHeight() - topPadding - getPaddingBottom()
 - backgroundPaint.getTextSize() + 0.5f;

if (getLayoutDirection() == LAYOUT_DIRECTION_RTL) {
 leftPadding = getPaddingEnd();
 labelLeftPadding = leftPadding + width + maxLabelWidth * 0.25f;
}

Building a Charts Component

[232]

The only change we've to do is to is checking if the layout direction is
LAYOUT_DIRECTION_RTL and change the leftPadding and the labelLeftPadding to
update where to draw the graph and the labels.

Customizations
In the last chapter we've already seen how to add parameters to our custom view. On the
graph custom view we're building in this chapter, we could configure, for example, colors,
thickness of the lines, size of dots, and so on, but instead we'll focus on other kinds of
customizations, for example, inverting the vertical axis, and enabling or disabling the
rendering of the bottom and side labels or graph legend. Contrasting with the previous
configurations, these will require some additional code tweaks and specific
implementations.

Let's start by allowing inverting the vertical axis. Our default implementation will render
the smaller values on top and the bigger values at the bottom of our graph. This might not
be the expected result, so let's add a way to invert the axis:

private boolean invertVerticalAxis;

public void setInvertVerticalAxis(boolean invertVerticalAxis) {
 this.invertVerticalAxis = invertVerticalAxis;
 regenerate = true;
 postInvalidate();
}

Then, we have to change only how labels are generated and invert, if applicable, the values
of the data points. To change the generation of labels, we can do it by simply updating the
order of the steps. Instead of getting a number from 0 to 1, we'll invert the process and get a
number from 1 to 0:

float maxLabelWidth = 0.f;
if (regenerate) {
 for (int i = 0; i <= 10; i++) {
 float step;

 if (!invertVerticalAxis) {
 step = ((float) i / 10.f);
 } else {
 step = ((float) (10 - i)) / 10.f;
 }

 float value = step * verticalDelta + minValue;
 verticalLabels[i] = decimalFormat.format(value);

Building a Charts Component

[233]

 backgroundPaint.getTextBounds(verticalLabels[i], 0,
 verticalLabels[i].length(), textBoundaries);
 if (textBoundaries.width() > maxLabelWidth) {
 maxLabelWidth = textBoundaries.width();
 }
 }
}

To get an inverted value of a data point, if needed, depending on the flag's value, let's add a
new method to do so:

private float getDataPoint(int i) {
 float data = dataPoints[i];
 return invertVerticalAxis ? 1.f - data : data;
}

Now, instead of getting the data points directly from the array, we should use this method,
as it will transparently invert the number if needed.

As we've mentioned before, we've also added a setLabels() method, so labels can also be
externally customized.

We can also add a boolean flag to allow or prevent drawing the legend and background
lines:

private boolean drawLegend;

public void setDrawLegend(boolean drawLegend) {
 this.drawLegend = drawLegend;
 regenerate = true;
 postInvalidate();
}

Simply check the status of this flag before drawing the background lines and labels.

See the full example in the Example34-Charts folder on the GitHub repository.

Adding advanced features
We've been building a simple implementation of a charts custom view. But we'll need some
more features or our custom view might feel a bit static or not really useful. We can't build
all the features we might think of or probably need. Also, we should be careful of not
building a Swiss army knife custom view as it might become hard to maintain and might
have an impact on the custom view performance.

Building a Charts Component

[234]

Real-time updates
In our first plain implementation of our custom view, we've created a method to set the
data points but we couldn't modify or update the data. Let's implement some quick changes
to be able to dynamically add points. In this implementation, we adjusted the values to the
0 to 1 scale directly on the setDataPoints() method. As we'll provide a method to add
new data values, we might get values outside the original minimum and maximum values,
invalidating the scale we calculated before.

Let's first store the data in a collection instead of an array, so we can easily add new values:

private ArrayList<Float> dataPoints;

public void setDataPoints(float[] originalData) {
 ArrayList<Float> array = new ArrayList<>();
 for (float data : originalData) {
 array.add(data);
 }

 setDataPoints(array);
}

public void setDataPoints(ArrayList<Float> originalData) {
 dataPoints = new ArrayList<Float>();
 dataPoints.addAll(originalData);

 adjustDataRange();
}

We'll be storing the data in an ArrayList and we've modified the setDataPoints()
method in order to be able to do so. Also, we have created the adjustDataRange()
method to recalculate the range of the data and trigger a data regeneration and a redraw of
our view:

private void adjustDataRange() {
 minValue = Float.MAX_VALUE;
 maxValue = Float.MIN_VALUE;
 for (int i = 0; i < dataPoints.size(); i++) {
 if (dataPoints.get(i) < minValue) minValue = dataPoints.get(i);
 if (dataPoints.get(i) > maxValue) maxValue = dataPoints.get(i);
 }

 verticalDelta = maxValue - minValue;

 regenerate = true;

Building a Charts Component

[235]

 postInvalidate();
}

The implementation of the addValue() method is quite simple. We add the new data to the
ArrayList and if it's inside the current range, we just trigger a regeneration of the graph
and a redraw of our view. If it's outside the current range, we call the adjustDataRange()
method to adjust all the data to the new range:

public void addValue(float data) {
 dataPoints.add(data);

 if (data < minValue || data > maxValue) {
 adjustDataRange();
 } else {
 regenerate = true;
 postInvalidate();
 }
}

We just need to modify the getDataPoint() method to adjust the data to the 0 to 1 range:

private float getDataPoint(int i) {
 float data = (dataPoints.get(i) - minValue) / verticalDelta;
 return invertVerticalAxis ? 1.f - data : data;
}

If we run the example, we can see we can add new points to the graph and it will adjust
automatically. To completely change or update the data, the method setDataPoints()
must be called.

Multiple data sets
Sometimes, we'd like to show multiple graphs to compare them or simply to show multiple
data sets at the same time. Let's do some modifications to allow two graphs at the same time
in our graph custom view. It can be further extended to support even more graphs, but let's
limit it to two to simplify the logic in this example.

Building a Charts Component

[236]

First, we need to create different Paint and Path objects for each graph. We'll create arrays to
store them as it'll be easier, later on, to iterate and render them. For example, we can create
several Paint objects with different colors for each graph:

linePaint = new Paint[2];
linePaint[0] = new Paint();
linePaint[0].setAntiAlias(true);
linePaint[0].setColor(0xffffffff);
linePaint[0].setStrokeWidth(8.f);
linePaint[0].setStyle(Paint.Style.STROKE);

linePaint[1] = new Paint();
linePaint[1].setAntiAlias(true);
linePaint[1].setColor(0xff4040ff);
linePaint[1].setStrokeWidth(8.f);
linePaint[1].setStyle(Paint.Style.STROKE);
circlePaint = new Paint[2];
circlePaint[0] = new Paint();
circlePaint[0].setAntiAlias(true);
circlePaint[0].setColor(0xffff2020);
circlePaint[0].setStyle(Paint.Style.FILL);
circlePaint[1] = new Paint();
circlePaint[1].setAntiAlias(true);
circlePaint[1].setColor(0xff20ff20);
circlePaint[1].setStyle(Paint.Style.FILL);

Actually, it's a lot of work to set the same parameters again and again, so we can use
another constructor from Paint that copies the attributes from an already existing Paint
object:

linePaint = new Paint[2];
linePaint[0] = new Paint();
linePaint[0].setAntiAlias(true);
linePaint[0].setColor(0xffffffff);
linePaint[0].setStrokeWidth(8.f);
linePaint[0].setStyle(Paint.Style.STROKE);
linePaint[1] = new Paint(linePaint[0]);
linePaint[1].setColor(0xff4040ff);

circlePaint = new Paint[2];
circlePaint[0] = new Paint();
circlePaint[0].setAntiAlias(true);
circlePaint[0].setColor(0xffff2020);
circlePaint[0].setStyle(Paint.Style.FILL);

circlePaint[1] = new Paint(circlePaint[0]);
circlePaint[1].setColor(0xff20ff20);

Building a Charts Component

[237]

Also, the Path objects and the data storage:

graphPath = new Path[2];
graphPath[0] = new Path();
graphPath[1] = new Path();

circlePath = new Path[2];
circlePath[0] = new Path();
circlePath[1] = new Path();

dataPoints = (ArrayList<Float>[]) new ArrayList[2];

We had also need a mechanism to add data to a specific data set:

public void setDataPoints(ArrayList<Float> originalData, int index) {
 dataPoints[index] = new ArrayList<Float>();
 dataPoints[index].addAll(originalData);

 adjustDataRange();
}

As we will have different data sets, we've to calculate the minimum and maximum values
of all data sets. We will be using the same scale on each graph so it will be easier to
compare:

private void adjustDataRange() {
 minValue = Float.MAX_VALUE;
 maxValue = Float.MIN_VALUE;
 for (int j = 0; j < dataPoints.length; j++) {
 for (int i = 0; dataPoints[j] != null && i <
 dataPoints[j].size(); i++) {
 if (dataPoints[j].get(i) < minValue) minValue =
 dataPoints[j].get(i);
 if (dataPoints[j].get(i) > maxValue) maxValue =
 dataPoints[j].get(i);
 }
 }

 verticalDelta = maxValue - minValue;

 regenerate = true;
 postInvalidate();
}

Building a Charts Component

[238]

Finally, we need to update the getDataPoint() method to allow us to get data from
different data sets:

private float getDataPoint(int i, int index) {
 float data = (dataPoints[index].get(i) - minValue) / verticalDelta;
 return invertVerticalAxis ? 1.f - data : data;
}

With all these methods, we can update our path generation code to generate multiple
Paths. If the data set for that graph is not defined, it'll not generate the Path.

for (int j = 0; j < 2; j++) {
 if (dataPoints[j] != null) {
 float x = leftPadding;
 float y = height * getDataPoint(0, j) + topPadding;

 graphPath[j].moveTo(x, y);
 circlePath[j].addCircle(x, y, 10, Path.Direction.CW);

 for (int i = 1; i < dataPoints[j].size(); i++) {
 x = width * (((float) i + 1) / dataPoints[j].size()) +
 leftPadding;
 y = height * getDataPoint(i, j) + topPadding;

 graphPath[j].lineTo(x, y);
 circlePath[j].addCircle(x, y, 10, Path.Direction.CW);
 }
 }
}

The rendering code, which is just iterating through all the generated Paths and drawing
them with their correspondent Paint objects:

for (int j = 0; j < graphPath.length; j++) {
 canvas.drawPath(graphPath[j], linePaint[j]);
 canvas.drawPath(circlePath[j], circlePaint[j]);
}

Building a Charts Component

[239]

If we run this example with two sets of random data, we'll see something similar to the
following screen:

Zooming and scrolling
Another interesting feature we can implement into our custom view is the ability to zoom
and scroll. Like we did in our previous chapter, we'll use the ScaleDetector class from
Android to detect the pinch gesture and update the zoom in our custom view.

Implementation will be quite different from the previous chapter. In this case, we'll do it in
a simpler way. As we want to zoom everything, we'll just apply a canvas transformation
instead of regenerating the scaled Path objects again, but first, let's implement the gesture
detector and add the ability to scroll and animate properties.

Building a Charts Component

[240]

We can almost copy the same methods we used in our previous custom EPG View for
animating variable logic and checking if we still have an unfinished animation:

private boolean missingAnimations() {
 if (Math.abs(scrollXTarget - scrollX) > ANIM_THRESHOLD)
 return true;

 if (Math.abs(scrollYTarget - scrollY) > ANIM_THRESHOLD)
 return true;

 return false;
}

private void animateLogic() {
 long currentTime = SystemClock.elapsedRealtime();
 accTime += currentTime - timeStart;
 timeStart = currentTime;

 while (accTime > TIME_THRESHOLD) {
 scrollX += (scrollXTarget - scrollX) / 4.f;
 scrollY += (scrollYTarget - scrollY) / 4.f;
 accTime -= TIME_THRESHOLD;
 }

 float factor = ((float) accTime) / TIME_THRESHOLD;
 float nextScrollX = scrollX + (scrollXTarget - scrollX) / 4.f;
 float nextScrollY = scrollY + (scrollYTarget - scrollY) / 4.f;

 frScrollX = scrollX * (1.f - factor) + nextScrollX * factor;
 frScrollY = scrollY * (1.f - factor) + nextScrollY * factor;
}

We can also add, almost as it is, the code for checking drag events, sending the touch events
to the scale detector and scroll the screen depending on the drag amount:

@Override
public boolean onTouchEvent(MotionEvent event) {
 scaleDetector.onTouchEvent(event);

 if (zooming) {
 invalidate();
 zooming = false;
 return true;
 }

 switch(event.getAction()) {
 case MotionEvent.ACTION_DOWN:

Building a Charts Component

[241]

 dragX = event.getX();
 dragY = event.getY();

 getParent().requestDisallowInterceptTouchEvent(true);
 dragged = false;
 return true;

 case MotionEvent.ACTION_UP:
 getParent().requestDisallowInterceptTouchEvent(false);
 return true;

 case MotionEvent.ACTION_MOVE:
 float newX = event.getX();
 float newY = event.getY();

 scrollScreen(dragX - newX, dragY - newY);

 dragX = newX;
 dragY = newY;
 dragged = true;
 return true;
 default:
 return false;
 }
}

private void scrollScreen(float dx, float dy) {
 scrollXTarget += dx;
 scrollYTarget += dy;

 if (scrollXTarget < 0) scrollXTarget = 0;
 if (scrollYTarget < 0) scrollYTarget = 0;

 if (scrollXTarget > getWidth() * scale - getWidth()) {
 scrollXTarget = getWidth() * scale - getWidth();
 }

 if (scrollYTarget > getHeight() * scale - getHeight()) {
 scrollYTarget = getHeight() * scale - getHeight();
 }

 invalidate();
}

Building a Charts Component

[242]

We've defined a variable named scale that will control the amount of zooming, or scaling,
we're doing to our graph custom view. Let's now write the implementation of the
scaleDetector:

scaleDetector = new ScaleGestureDetector(context, new
ScaleGestureDetector.SimpleOnScaleGestureListener() {
 private float focusX;
 private float focusY;
 private float scrollCorrectionX = 0.f;
 private float scrollCorrectionY = 0.f;

 @Override
 public boolean onScaleBegin(ScaleGestureDetector detector) {
 zooming = true;
 focusX = detector.getFocusX();
 focusY = detector.getFocusY();
 scrollCorrectionX = focusX * scale - scrollXTarget;
 scrollCorrectionY = focusY * scale - scrollYTarget;
 return true;
 }

 public boolean onScale(ScaleGestureDetector detector) {
 scale *= detector.getScaleFactor();
 scale = Math.max(1.f, Math.min(scale, 2.f));

 float currentX = focusX * scale - scrollXTarget;
 float currentY = focusY * scale - scrollYTarget;

 scrollXTarget += currentX - scrollCorrectionX;
 scrollYTarget += currentY - scrollCorrectionY;

 invalidate();
 return true;
 }

 @Override
 public void onScaleEnd(ScaleGestureDetector detector) {
 zooming = true;
 }
});

We also implemented a scroll correction mechanism to keep where we're zooming as
centered as possible. In this case, we had to implement it on both the horizontal and the
vertical axis. The main idea behind the algorithm is to calculate the horizontal and vertical
position of the focused point of the gesture and when changing the zoom, adjusting the
scroll position to keep it at the same place.

Building a Charts Component

[243]

Now, our onDraw() method will simply start with the following:

animateLogic();

canvas.save();

canvas.translate(-frScrollX, -frScrollY);
canvas.scale(scale, scale);

We need to check and process the animation cycles by calling animateLogic(), then let's
behave properly and save our canvas state, apply a translation by the scrolling values
frScrollX and frScrollY, and scale the whole canvas by the scale variable.

Everything we'll render will be displaced by the scroll position and scaled by the value of
the scale variable. Before finishing the method, we've to restore our canvas and trigger a
new redraw cycle if not all the property animations have finished:

canvas.restore();
if (missingAnimations()) invalidate();

See the full example source code in the Example35-Charts folder on the GitHub
repository.

Summary
In this chapter we have seen how to build a charts custom view to draw graphs in our
Android applications. We have also quickly covered how to manage paddings, RTL / LTR
support, and we have finally added some complexity to our custom view by supporting
multiple data sets or adding the features of zooming and scrolling.

Also, the way we've implemented this custom view; using independent data ranges and
adapting it dynamically to the screen, means it'll automatically adjust to any screen
resolution or for example, to an orientation change. This is usually a good practice and will
prevent many issues when testing our custom view on several devices. In addition, making
the sizes of everything we draw on the screen depend on the screen density, like we did in
our previous example, will make the portability even easier.

In the next chapter, we will show how to build a custom view using the 3D rendering
capabilities we've introduced in previous chapters.

11
Creating a 3D Spinning Wheel

Menu
With the exception of Chapter 5, Introducing 3D Custom Views, where we explained how to
build custom views using OpenGL ES, all the other examples in this book use the 2D
drawing methods available from the Canvas class. In the last two chapters, we have seen
how to build slightly more complex custom views, but none of them were using any 3D
rendering techniques. So, in this chapter, we will show how to build and customize a full
custom 3D view and how to interact with it.

With more detail, we will cover the following in this chapter:

Adding interactions to a 3D custom view
Adding a GestureDetector to manage complex gestures
Using a scroller to manage scroll and fling gestures
Rendering text into textures and drawing them on OpenGL ES
Generating geometry programmatically

Creating an interactive 3D custom view
In Chapter 5, Introducing 3D Custom Views, we saw how to create a very simple rotating
cube using OpenGL ES. Starting from that example and by just adding a way to react to
user interactions, we can create the foundations of a more complex and interactive custom
view.

Creating a 3D Spinning Wheel Menu

[245]

Adding interactions
Let's start by using the code from the Example25-GLDrawing. Processing user interactions
is quite simple, as we have already seen in our previous examples. We don't have to do
anything different than before, just override the onTouchEvent() method in our class
extending GLSurfaceView and react properly to the different MotionEvents we will
receive. For instance, if we don't return true when we receive a
MotionEvent.ACTION_DOWN, we will not receive any further events, as we are basically
saying that we are not handling the event.

Once we have the source code of the example, let's add a simple implementation of the
onTouchEvent() that tracks drag events:

private float dragX;
private float dragY;

@Override
public boolean onTouchEvent(MotionEvent event) {
 switch(event.getAction()) {
 case MotionEvent.ACTION_DOWN:
 dragX = event.getX();
 dragY = event.getY();

 getParent().requestDisallowInterceptTouchEvent(true);
 return true;

 case MotionEvent.ACTION_UP:
 getParent().requestDisallowInterceptTouchEvent(false);
 return true;

 case MotionEvent.ACTION_MOVE:
 float newX = event.getX();
 float newY = event.getY();

 angleTarget -= (dragX - newX) / 3.f;

 dragX = newX;
 dragY = newY;
 return true;
 default:
 return false;
 }
}

Creating a 3D Spinning Wheel Menu

[246]

We'll use the drag amount to change the angle of rotation of the cube, as we will see in the
following code snippets. In addition, later in this chapter, we will see how we can do this
animation using a scroller class, but, for the moment, let's use a fixed time-step
mechanism:

private float angle = 0.f;
private float angleTarget = 0.f;
private float angleFr = 0.f;

private void animateLogic() {
 long currentTime = SystemClock.elapsedRealtime();
 accTime += currentTime - timeStart;
 timeStart = currentTime;

 while (accTime > TIME_THRESHOLD) {
 angle += (angleTarget - angle) / 4.f;
 accTime -= TIME_THRESHOLD;
 }

 float factor = ((float) accTime) / TIME_THRESHOLD;
 float nextAngle = angle + (angleTarget - angle) / 4.f;

 angleFr = angle * (1.f - factor) + nextAngle * factor;
}

It uses the same principles as what we have been doing in previous examples, execute a
single tick of logic every TIME_THRESHOLD milliseconds. The cube angle value will be
interpolated between the current state and the next state depending on the time remaining
to the execution of the next logic tick. This interpolated value will be stored on the angleFr
variable.

We have also done some changes to the onSurfaceChanged to use the perspective
projection mode instead of using Matrix.frustrumM. The latter defines the six clipping
planes: near, far, top, bottom, left, and right. However, using Matrix.perspective allows
us to define the projection matrix in terms of the camera field of view angle and two
clipping planes: near and far. It might be handier in some situations, but at the end of the
day, both methods achieve the same objective:

@Override
public void onSurfaceChanged(GL10 unused, int width, int height) {
 GLES20.glViewport(0, 0, width, height);

 float ratio = (float) width / height;
 Matrix.perspectiveM(mProjectionMatrix, 0, 90, ratio, 0.1f, 7.f);
}

Creating a 3D Spinning Wheel Menu

[247]

Finally, we have got to do some changes to the onDrawFrame() method:

@Override
public void onDrawFrame(GL10 unused) {
animateLogic();
 GLES20.glClearColor(1.0f, 0.0f, 0.0f, 1.0f);
 GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT |
GLES20.GL_DEPTH_BUFFER_BIT);

 Matrix.setLookAtM(mViewMatrix, 0,
 0, 0, -3,
 0f, 0f, 0f,
 0f, 1.0f, 0.0f);

 Matrix.multiplyMM(mMVPMatrix, 0, mProjectionMatrix, 0, mViewMatrix, 0);
 Matrix.rotateM(mMVPMatrix, 0, angleFr, 0.f, 1.f, 0.f);
 Matrix.rotateM(mMVPMatrix, 0, 5.f, 1.f, 0.f, 0.f);
 GLES20.glUseProgram(shaderProgram);
 int positionHandle = GLES20.glGetAttribLocation(shaderProgram,
"vPosition");
 GLES20.glVertexAttribPointer(positionHandle, 3,
 GLES20.GL_FLOAT, false,
 0, vertexBuffer);

 int texCoordHandle = GLES20.glGetAttribLocation(shaderProgram, "aTex");
 GLES20.glVertexAttribPointer(texCoordHandle, 2, GLES20.GL_FLOAT, false,
 0, texBuffer);
 int mMVPMatrixHandle = GLES20.glGetUniformLocation(shaderProgram,
 "uMVPMatrix");

 GLES20.glUniformMatrix4fv(mMVPMatrixHandle, 1, false, mMVPMatrix, 0);

 int texHandle = GLES20.glGetUniformLocation(shaderProgram, "sTex");
 GLES20.glActiveTexture(GLES20.GL_TEXTURE0);
 GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, textureId);
 GLES20.glUniform1i(texHandle, 0);

 GLES20.glEnable(GLES20.GL_DEPTH_TEST);
 GLES20.glEnableVertexAttribArray(texHandle);
 GLES20.glEnableVertexAttribArray(positionHandle);
 GLES20.glDrawElements(
 GLES20.GL_TRIANGLES, index.length,
 GLES20.GL_UNSIGNED_SHORT, indexBuffer);

 GLES20.glDisableVertexAttribArray(positionHandle);
 GLES20.glDisableVertexAttribArray(texHandle);
 GLES20.glDisable(GLES20.GL_DEPTH_TEST);
}

Creating a 3D Spinning Wheel Menu

[248]

Basically, the changes we have got to make are to call the animateLogic() method to
execute any pending logic tick and use the interpolated angleFr variable for the rotation
angle. If we run this example, we will get the same cube we had in Example25 but, in this
case, we can control the animation by dragging horizontally on the screen. We have also got
to remember, that there is no need to call invalidate or postInvalidate as when
extending our class from GLSurfaceView and, unless specifically indicated, the screen will
be constantly redrawn.

Improving interactions and animations
We have been using a fixed time-step mechanism to manage the animations, but let's see
what advantages it gives us to use a scroller class provided by Android to handle the
animations, instead of handling all the animations by ourselves.

First, let's create a GestureDetector instance to handle the touch events:

private GestureDetectorCompat gestureDetector =
 new GestureDetectorCompat(context, new MenuGestureListener());

We are using the GestureDetectorCompat from the support library to guarantee the same
behavior on older versions of Android.

As we covered in Chapter 3, Handling Events, by introducing a GestureDetector we can
greatly simplify our onTouchEvent(), as all the logic will be handled by the
MenuGestureListener callback instead of being on the onTouchEvent():

@Override
public boolean onTouchEvent(MotionEvent event) {
 return gestureDetector.onTouchEvent(event);
}

The gestureDetector requires an implementation of an OnGestureListener, but if we
only want to implement some methods and not have to worry about the other methods
exposed by the interface, we could just extend from
GestureDetector.SimpleOnGestureListener and only override the methods we need.
The GestureDetector.SimpleOnGestureListener class comes with a dummy empty
implementation for all the methods exposed in the OnGestureListener interface.

SimpleOnGestureListener also implements other interfaces to make our lives as
software engineers easier, but please refer to the Android documentation for more
information.

Creating a 3D Spinning Wheel Menu

[249]

Let's then create our own internal class, MenuGestureListener, extending from
GestureDetector.SimpleOnGestureListener:

class MenuGestureListener extends
 GestureDetector.SimpleOnGestureListener {
 @Override
 public boolean onDown(MotionEvent e) {
 scroller.forceFinished(true);
 return true;
 }

 @Override
 public boolean onScroll(MotionEvent e1, MotionEvent e2, float
 distanceX,
 float distanceY) {
 scroller.computeScrollOffset();
 int lastX = scroller.getCurrX();

 scroller.forceFinished(true);
 scroller.startScroll(lastX, 0, -(int) (distanceX + 0.5f), 0);
 return true;
 }

 @Override
 public boolean onFling(MotionEvent e1, MotionEvent e2, float
 velocityX, float velocityY) {
 scroller.computeScrollOffset();
 int lastX = scroller.getCurrX();

 scroller.forceFinished(true);
 scroller.fling(lastX,
 0,
 (int) (velocityX/4.f),
 0,
 -360*100,
 360*100,
 0,
 0);
 return true;
 }
}

As we have mentioned before, even if it's an OnGestureListener implementation, we
have got to return true on the onDown() method. Otherwise, the onScroll() or
onFling() methods from our OnGestureListener implementation won't be called
whenever there is a scroll or fling event.

Creating a 3D Spinning Wheel Menu

[250]

Anyway, we still have some work to do on the onDown() method: We have got to stop any
running animation so the custom view will feel more reactive to the user.

We have implemented two other methods: onScroll() and onFling(). They're both
managing different gestures that directly map to different ways of scrolling. Whenever we
are dragging on the screen, the onScroll() method will be called as we will be actually
scrolling. On the other hand, when we do a fling gesture; that is, when the user drags and
lifts the finger from the screen very quickly, we need to take into consideration other
parameters, such as the velocity and friction of the animation. When the gesture finishes,
the animation will still run for some time, slowing down until stopping depending on the
defined friction. In that case, the onFling() method from our listener will be called with
the horizontal and vertical velocity of the fling event, leaving the friction to be handled by
us.

In both events, we will be using a scroller class to simplify the calculations. We could do
it ourselves but, although implementing the onScroll() logic would be quite
straightforward, implementing the onFling() animation properly would require some
calculations and complexities that we can take for granted by using a scroller class.

On the onScroll() implementation, we are simply calling the startScroll method of
the scroller from the current position and the dragged distance. To get the current
position, we have got to call scroller.computeScrollOffset first. If we don't call it, the
current value will always be zero. Once we have called this method, we can retrieve the
current value of the scroller by using the getCurrX method.

As in our listener we are getting the distance as a floating point and startScroll only
accepts integer values, we will round the distanceX value by just adding 0.5 and then
converting it in to an integer value.

Similarly, on the onFling() implementation we will be calling the fling method of the
scroller. We'll get the current position, as we have described in the onScroll()
implementation, and we will adjust the velocity as it was too high from the point of view of
animating a rotating cube. We have set the maximum and minimum values to 100 full turns
of the cube as, in normal circumstances, we don't want to limit the rotation.

Now, by using a scroller, we can get rid of the animateLogic() method and all
associated variables, as we will no longer need them. On both gestures, scroll and fling, the
animations will be performed on the background and we can directly query the current
animated value directly from the scroller instance.

Creating a 3D Spinning Wheel Menu

[251]

The only changes we have got to do on the onDraw() method is to call the
scroller.computeScrollOffset method to have an updated value and, instead of using
the angleFr variable, get the value from the scroller:

Matrix.rotateM(mMVPMatrix, 0, scroller.getCurrX(), 0.f, 1.f, 0.f);

Adding actionable callbacks
Let's convert this into an actionable menu. We could map an action to each face of the cube.
As we are rotating the cube horizontally, or on the y axis, we could map an action to each of
the four available faces.

For added clarity, as currently the rotation might end in the middle of a face, let's add a
small feature: whenever the animation finishes, let's snap it to the closest face, so we'll
always have a fully aligned front face of the cube when there is no animation running.

Implementing snapping is fairly simple. We have got to check if the animation has finished
and, in that case, check which face is facing to the camera. We could do so by simply
dividing the current rotation angle by 90; 360 degrees split by four faces is 90 degrees each.
To see if we are closer to that face than from the next one, we have got to get the fractional
part of the rotation angle. If we calculate the angle modulo 90, we will get a number
between 0 and 89. If that result is smaller than half the degrees needed to switch from one
face to another, we will be on the right face. However, in the opposite case, if that result is
bigger than 45, or smaller than -45, we'd have to rotate to the next or previous face,
respectively. Let's write this small logic in our onDraw() method, just after the call to
scroller.computeScrollOffset:

if (scroller.isFinished()) {
 int lastX = scroller.getCurrX();
 int modulo = lastX % 90;
 int snapX = (lastX / 90) * 90;
 if (modulo >= 45) snapX += 90;
 if (modulo <- 45) snapX -= 90;

 if (lastX != snapX) {
 scroller.startScroll(lastX, 0, snapX - lastX, 0);
 }
}

Creating a 3D Spinning Wheel Menu

[252]

To calculate the snap angle, we do an integer division by 90 and multiply the result by 90.
As it's an integer division, it'll get rid of the decimal part and calculate the absolute angle
value of that face. Another way of writing that code would be the following:

int face = lastX / 90;
int snapX = face * 90;

Then, depending on the modulo result, we are adding 90 or subtracting 90 to effectively go
to the next or previous face.

Now, let's add the code to manage the user clicks. First, let's create an interface of a listener
to delegate the handling of the event to that listener:

interface OnMenuClickedListener {
 void menuClicked(int option);
}

Also, let's add an OnMenuClickedListener variable to our class and a setter method:

private OnMenuClickedListener listener;

public void setOnMenuClickedListener(OnMenuClickedListener listener) {
 this.listener = listener;
}

Now, we can implement the onSingleTapUp method on the MenuGestureListener:

@Override
public boolean onSingleTapUp(MotionEvent e) {
 scroller.computeScrollOffset();
 int angle = scroller.getCurrX();
 int face = (angle / 90) % 4;
 if (face < 0) face += 4;

 if (listener != null) listener.menuClicked(face);
 return true;
}

Let's also add an id to our custom view in the activity_main layout file, so we can get
the GLDrawer view from the code:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/activity_main"
 android:layout_width="match_parent"
 android:layout_height="match_parent"

Creating a 3D Spinning Wheel Menu

[253]

 android:orientation="vertical"
 android:padding="@dimen/activity_vertical_margin"
 tools:context="com.packt.rrafols.draw.MainActivity">

<com.packt.rrafols.draw.GLDrawer
android:id="@+id/gldrawer"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>
</LinearLayout>

Finally, modify the MainActivity class to create an OnMenuClickedListener and set it
to the GLDrawer view:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 GLDrawer glDrawer = (GLDrawer) findViewById(R.id.gldrawer);
 glDrawer.setOnMenuClickedListener(new
 GLDrawer.OnMenuClickedListener() {
 @Override
 public void menuClicked(int option) {
 Log.i("Example36-Menu3D", "option clicked " + option);
 }
 });
}

If we run this example, we will see how the MainActivity is logging which face are we
clicking on the cube:
com.packt.rrafols.draw I/Example36-Menu3D: option clicked 3

com.packt.rrafols.draw I/Example36-Menu3D: option clicked 2.

We will also see how the snapping works. Play with it to see how it snaps to the current
face, to the next one, or to the previous one if we are scrolling backwards.

Customizations
We are still rendering the cube the same way we left it in Example25. Let's change it to
draw every cube face in a different solid color. We can define a different color per vertex,
but as vertices are shared between faces, their colors will be interpolated.

Creating a 3D Spinning Wheel Menu

[254]

We'd have to replicate some vertices so we can have different unique colors for each single
face:

private float quadCoords[] = {
 -1.f, -1.f, -1.0f, // 0
 -1.f, 1.f, -1.0f, // 1
 1.f, 1.f, -1.0f, // 2
 1.f, -1.f, -1.0f, // 3

 -1.f, -1.f, 1.0f, // 4
 -1.f, 1.f, 1.0f, // 5
 1.f, 1.f, 1.0f, // 6
 1.f, -1.f, 1.0f, // 7

 -1.f, -1.f, -1.0f, // 8 - 0
 -1.f, -1.f, 1.0f, // 9 - 4
 1.f, -1.f, 1.0f, // 10 - 7
 1.f, -1.f, -1.0f, // 11 - 3

 -1.f, 1.f, -1.0f, // 12 - 1
 -1.f, 1.f, 1.0f, // 13 - 5
 1.f, 1.f, 1.0f, // 14 - 6
 1.f, 1.f, -1.0f, // 15 - 2

 -1.f, -1.f, -1.0f, // 16 - 0
 -1.f, -1.f, 1.0f, // 17 - 4
 -1.f, 1.f, 1.0f, // 18 - 5
 -1.f, 1.f, -1.0f, // 19 - 1

 1.f, -1.f, -1.0f, // 20 - 3
 1.f, -1.f, 1.0f, // 21 - 7
 1.f, 1.f, 1.0f, // 22 - 6
 1.f, 1.f, -1.0f // 23 - 2
};

private short[] index = {
 0, 1, 2, // front
 0, 2, 3, // front
 4, 5, 6, // back
 4, 6, 7, // back
 8, 9,10, // top
 8,11,10, // top
 12,13,14, // bottom
 12,15,14, // bottom
 16,17,18, // left
 16,19,18, // left
 20,21,22, // right

Creating a 3D Spinning Wheel Menu

[255]

 20,23,22 // right
};

We have updated the index as well, to map to the new faces. On the duplicated vertex, we
have added a comment with the new index and the old index.

Now, we can define some colors:

float colors[] = {
 0.0f, 1.0f, 0.0f, 1.0f,
 0.0f, 1.0f, 0.0f, 1.0f,
 0.0f, 1.0f, 0.0f, 1.0f,
 0.0f, 1.0f, 0.0f, 1.0f,

 0.0f, 0.0f, 1.0f, 1.0f,
 0.0f, 0.0f, 1.0f, 1.0f,
 0.0f, 0.0f, 1.0f, 1.0f,
 0.0f, 0.0f, 1.0f, 1.0f,

 0.0f, 0.0f, 0.0f, 1.0f,
 0.0f, 0.0f, 0.0f, 1.0f,
 0.0f, 0.0f, 0.0f, 1.0f,
 0.0f, 0.0f, 0.0f, 1.0f,

 1.0f, 1.0f, 1.0f, 1.0f,
 1.0f, 1.0f, 1.0f, 1.0f,
 1.0f, 1.0f, 1.0f, 1.0f,
 1.0f, 1.0f, 1.0f, 1.0f,

 1.0f, 1.0f, 0.0f, 1.0f,
 1.0f, 1.0f, 0.0f, 1.0f,
 1.0f, 1.0f, 0.0f, 1.0f,
 1.0f, 1.0f, 0.0f, 1.0f,

 1.0f, 0.0f, 1.0f, 1.0f,
 1.0f, 0.0f, 1.0f, 1.0f,
 1.0f, 0.0f, 1.0f, 1.0f,
 1.0f, 0.0f, 1.0f, 1.0f
};

Let's also change the texture initialization on the initBuffer methods to create a color
Buffer, like we did in Example24-GLDrawing:

ByteBuffer cbb = ByteBuffer.allocateDirect(colors.length * (Float.SIZE /
8));
cbb.order(ByteOrder.nativeOrder());

colorBuffer = cbb.asFloatBuffer();

Creating a 3D Spinning Wheel Menu

[256]

colorBuffer.put(colors);
colorBuffer.position(0);

Update the pixel and vertex Shaders:

private final String vertexShaderCode =
 "uniform mat4 uMVPMatrix;" +
 "attribute vec4 vPosition;" +
 "attribute vec4 aColor;" +
 "varying vec4 vColor;" +
 "void main() {" +
 " gl_Position = uMVPMatrix * vPosition;" +
 " vColor = aColor;" +
 "}";

private final String fragmentShaderCode =
 "precision mediump float;" +
 "varying vec4 vColor;" +
 "void main() {" +
 " gl_FragColor = vColor;" +
 "}";

To make it more configurable, let's create a public setColors() method on GLDrawer to
change the colors:

public void setColors(int[] faceColors) {
 glRenderer.setColors(faceColors);
}

The implementation on the Renderer is as follows:

private void setColors(int[] faceColors) {
 colors = new float[4 * 4 * faceColors.length];
 int wOffset = 0;
 for (int faceColor : faceColors) {
 float[] color = hexToRGBA(faceColor);
 for(int j = 0; j < 4; j++) {
 colors[wOffset++] = color[0];
 colors[wOffset++] = color[1];
 colors[wOffset++] = color[2];
 colors[wOffset++] = color[3];
 }
 }
 ByteBuffer cbb = ByteBuffer.allocateDirect(colors.length *
 (Float.SIZE /8));
 cbb.order(ByteOrder.nativeOrder());

 colorBuffer = cbb.asFloatBuffer();

Creating a 3D Spinning Wheel Menu

[257]

 colorBuffer.put(colors);
 colorBuffer.position(0);
}

For simplicity, we will pass the colors as an integer, instead of a float array, so we can use
colors in hexadecimal encoding, for example. To convert an integer color to a float array we
can use a simple helper method:

private float[] hexToRGBA(int color) {
 float[] out = new float[4];

 int a = (color >> 24) & 0xff;
 int r = (color >> 16) & 0xff;
 int g = (color >> 8) & 0xff;
 int b = (color) & 0xff;

 out[0] = ((float) r) / 255.f;
 out[1] = ((float) g) / 255.f;
 out[2] = ((float) b) / 255.f;
 out[3] = ((float) a) / 255.f;
 return out;
}

To update the example, let's set some colors using the method we have just added:

glDrawer.setColors(new int[] {
 0xff4a90e2,
 0xff161616,
 0xff594236,
 0xffff5964,
 0xff8aea92,
 0xffffe74c
});

If we run the example, we will get something like the following screenshot:

Creating a 3D Spinning Wheel Menu

[258]

Check the full source code of this example in the Example36-Menu3D folder in the GitHub
repository.

Beyond the basic implementation
We have got a very basic and actionable 3D menu but, in order for it to be used on a
production application, we have got to add some more details. For instance, we can now
select a different menu option depending on the face of the cube we are selecting, but unless
we are doing a very simple color picker, we'd be selecting an option completely blind, as we
won't know which face does exactly what.

One way to solve this is to render some text depending on which face is selected, but on
OpenGL ES we can't simply just call drawText and render some text, like we are used to do
when using a Canvas. Also, in this example, there are only four selectable faces or options;
let's make some changes so we can have more selectable options.

Creating a 3D Spinning Wheel Menu

[259]

Rendering text
As we have just mentioned, to render text, we can't just call a drawText method that will
render some text in 3D inside our small 3D scene. Actually, we'd be using drawText, but
just to render it on a background Bitmap that would be used as a texture for an additional
plane we will be rendering.

In order to do so, we'd have to define the geometry of that plane:

private float planeCoords[] = {
 -1.f, -1.f, -1.4f,
 -1.f, 1.f, -1.4f,
 1.f, 1.f, -1.4f,
 1.f, -1.f, -1.4f,
};

private short[] planeIndex = {
 0, 1, 2,
 0, 2, 3
};

private float texCoords[] = {
 1.f, 1.f,
 1.f, 0.f,
 0.f, 0.f,
 0.f, 1.f
};

As the cube front face is at z-coordinate -1.f, this plane will be at -1.4f, so 0.4f in front of it,
otherwise it might get occluded by the cube.

We have got to add the vertex and fragment Shader again, to render with a texture.
Although we will not replace the current Shader we have got in our code, we will have to
live with both sets of Shader:

private final String vertexShaderCodeText =
 "uniform mat4 uMVPMatrix;" +
 "attribute vec4 vPosition;" +
 "attribute vec2 aTex;" +
 "varying vec2 vTex;" +
 "void main() {" +
 " gl_Position = uMVPMatrix * vPosition;" +
 " vTex = aTex;" +
 "}";

private final String fragmentShaderCodeText =
 "precision mediump float;" +

Creating a 3D Spinning Wheel Menu

[260]

 "uniform sampler2D sTex;" +
 "varying vec2 vTex;" +
 "void main() {" +
 " gl_FragColor = texture2D(sTex, vTex);" +
 "}";

Let's also update the initBuffers method to initialize both sets of Buffers:

private void initBuffers() {
 ByteBuffer vbb = ByteBuffer.allocateDirect(quadCoords.length
 * (Float.SIZE / 8));
 vbb.order(ByteOrder.nativeOrder());

 vertexBuffer = vbb.asFloatBuffer();
 vertexBuffer.put(quadCoords);
 vertexBuffer.position(0);

 ByteBuffer ibb = ByteBuffer.allocateDirect(index.length
 * (Short.SIZE / 8));
 ibb.order(ByteOrder.nativeOrder());

 indexBuffer = ibb.asShortBuffer();
 indexBuffer.put(index);
 indexBuffer.position(0);

 ByteBuffer cbb = ByteBuffer.allocateDirect(colors.length
 * (Float.SIZE / 8));
 cbb.order(ByteOrder.nativeOrder());

 colorBuffer = cbb.asFloatBuffer();
 colorBuffer.put(colors);
 colorBuffer.position(0);

 vbb = ByteBuffer.allocateDirect(planeCoords.length
 * (Float.SIZE / 8));
 vbb.order(ByteOrder.nativeOrder());

 vertexTextBuffer = vbb.asFloatBuffer();
 vertexTextBuffer.put(planeCoords);
 vertexTextBuffer.position(0);

 ibb = ByteBuffer.allocateDirect(planeIndex.length
 * (Short.SIZE / 8));
 ibb.order(ByteOrder.nativeOrder());

 indexTextBuffer = ibb.asShortBuffer();
 indexTextBuffer.put(planeIndex);

Creating a 3D Spinning Wheel Menu

[261]

 indexTextBuffer.position(0);

 ByteBuffer tbb = ByteBuffer.allocateDirect(texCoords.length
 * (Float.SIZE / 8));
 tbb.order(ByteOrder.nativeOrder());

 texBuffer = tbb.asFloatBuffer();
 texBuffer.put(texCoords);
 texBuffer.position(0);
}

As we can see, this method is allocating both sets of Buffers: one set for the cube and
another for the plane we will use to draw the text. We have got to do a similar approach for
the vertex and fragment Shaders, we have got to load and link both sets of Shaders:

private void initShaders() {
 int vertexShader = loadShader(GLES20.GL_VERTEX_SHADER,
vertexShaderCode);
 int fragmentShader = loadShader(GLES20.GL_FRAGMENT_SHADER,
 fragmentShaderCode);

 shaderProgram = GLES20.glCreateProgram();
 GLES20.glAttachShader(shaderProgram, vertexShader);
 GLES20.glAttachShader(shaderProgram, fragmentShader);
 GLES20.glLinkProgram(shaderProgram);

 vertexShader = loadShader(GLES20.GL_VERTEX_SHADER,
vertexShaderCodeText);
 fragmentShader = loadShader(GLES20.GL_FRAGMENT_SHADER,
 fragmentShaderCodeText);

 shaderTextProgram = GLES20.glCreateProgram();
 GLES20.glAttachShader(shaderTextProgram, vertexShader);
 GLES20.glAttachShader(shaderTextProgram, fragmentShader);
 GLES20.glLinkProgram(shaderTextProgram);
}

We are attaching the shaders we will use to draw the text in a texture to another Shader
program we will store in the shaderTextProgram variable. Depending on what we want
to render we could now switch from shaderProgram or shaderTextProgram.

Let's now create a method that returns a Bitmap with a text centered on it:

private Bitmap createBitmapFromText(String text) {
 Bitmap out = Bitmap.createBitmap(512, 512,
 Bitmap.Config.ARGB_8888);
 out.eraseColor(0x00000000);

Creating a 3D Spinning Wheel Menu

[262]

 Paint textPaint = new Paint();
 textPaint.setAntiAlias(true);
 textPaint.setColor(0xffffffff);
 textPaint.setTextSize(60);
 textPaint.setStrokeWidth(2.f);
 textPaint.setStyle(Paint.Style.FILL);

 Rect textBoundaries = new Rect();
 textPaint.getTextBounds(text, 0, text.length(), textBoundaries);

 Canvas canvas = new Canvas(out);
 for (int i = 0; i < 2; i++) {
 canvas.drawText(text,
 (canvas.getWidth() - textBoundaries.width()) / 2.f,
 (canvas.getHeight() - textBoundaries.height()) / 2.f +
 textBoundaries.height(), textPaint);
 textPaint.setColor(0xff000000);
 textPaint.setStyle(Paint.Style.STROKE);
 }
 return out;
}

This method creates a Bitmap of 512 by 512 with eight bits per color component and four
components: alpha, or transparency, red, green, and blue. Then, it is creating a Paint object
with the color and size of the text, getting the text boundaries in order to center it on the
Bitmap and drawing the text twice on the Canvas object we can get from the Bitmap. Text
is drawn twice, because it first draws the text with a solid white color and then, as we
change the Paint object style to STROKE, it's draws the silhouette using a black color.

The code we had in previous examples to load a texture was loading it from a local
resource. As it was converting it into an unscaled Bitmap, we could reuse most of that code
to load our generated Bitmap. Let's recover the loadTexture() method we already had,
but let's change it to use a helper method to upload a Bitmap into a Texture:

private int loadTexture(int resId) {
 final int[] textureIds = new int[1];
 GLES20.glGenTextures(1, textureIds, 0);

 if (textureIds[0] == 0) return -1;

 // do not scale the bitmap depending on screen density
 final BitmapFactory.Options options = new BitmapFactory.Options();
 options.inScaled = false;

 final Bitmap textureBitmap =
 BitmapFactory.decodeResource(getResources(),

Creating a 3D Spinning Wheel Menu

[263]

 resId, options);
 attachBitmapToTexture(textureIds[0], textureBitmap);

 return textureIds[0];
}

The implementation of the helper method is as follows:

private void attachBitmapToTexture(int textureId, Bitmap textureBitmap) {
 GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, textureId);

 GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D,
 GLES20.GL_TEXTURE_MIN_FILTER, GLES20.GL_LINEAR);

 GLES20.glTexParameteri(GLES20.GL_TEXTURE_2D,
 GLES20.GL_TEXTURE_MAG_FILTER, GLES20.GL_LINEAR);

 GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D,
 GLES20.GL_TEXTURE_WRAP_S, GLES20.GL_CLAMP_TO_EDGE);

 GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D,
 GLES20.GL_TEXTURE_WRAP_T, GLES20.GL_CLAMP_TO_EDGE);

 GLUtils.texImage2D(GLES20.GL_TEXTURE_2D, 0, textureBitmap, 0);
}

We have only got to create a method that puts everything together: that is, one
that generates a Bitmap from a text, generates a textureIds, uploads the Bitmap as a
texture, and recycles the Bitmap:

private int generateTextureFromText(String text) {
 final int[] textureIds = new int[1];
 GLES20.glGenTextures(1, textureIds, 0);

 Bitmap textureBitmap = createBitmapFromText(text);
 attachBitmapToTexture(textureIds[0], textureBitmap);
 textureBitmap.recycle();
 return textureIds[0];
}

Using this method, we can now generate a different texture for each face of the cube:

@Override
public void onSurfaceCreated(GL10 unused, EGLConfig config) {
 initBuffers();
 initShaders();

 textureId = new int[4];

Creating a 3D Spinning Wheel Menu

[264]

 for (int i = 0; i < textureId.length; i++) {
 textureId[i] = generateTextureFromText("Option " + (i + 1));
 }
}

We can now add at the bottom of the onDraw() method some additional code to render a
plane in front of each face of the cube:

GLES20.glUseProgram(shaderTextProgram);
positionHandle = GLES20.glGetAttribLocation(shaderTextProgram,
"vPosition");

GLES20.glVertexAttribPointer(positionHandle, 3,
 GLES20.GL_FLOAT, false,
 0, vertexTextBuffer);

int texCoordHandle = GLES20.glGetAttribLocation(shaderTextProgram, "aTex");
GLES20.glVertexAttribPointer(texCoordHandle, 2,
 GLES20.GL_FLOAT, false,
 0, texBuffer);

int texHandle = GLES20.glGetUniformLocation(shaderTextProgram, "sTex");
GLES20.glActiveTexture(GLES20.GL_TEXTURE0);
GLES20.glEnable(GLES20.GL_BLEND);
GLES20.glBlendFunc(GLES20.GL_SRC_ALPHA, GLES20.GL_ONE_MINUS_SRC_ALPHA);

for (int i = 0; i < 4; i++) {
 GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, textureId[i]);
 GLES20.glUniform1i(texHandle, 0);

 mMVPMatrixHandle = GLES20.glGetUniformLocation(shaderTextProgram,
 "uMVPMatrix");
 GLES20.glUniformMatrix4fv(mMVPMatrixHandle, 1, false, mMVPMatrix,
 0);

 GLES20.glEnableVertexAttribArray(texHandle);
 GLES20.glEnableVertexAttribArray(positionHandle);
 GLES20.glDrawElements(
 GLES20.GL_TRIANGLES, planeIndex.length,
 GLES20.GL_UNSIGNED_SHORT, indexTextBuffer);

 GLES20.glDisableVertexAttribArray(positionHandle);
 GLES20.glDisableVertexAttribArray(texHandle);

 Matrix.rotateM(mMVPMatrix, 0, -90.f, 0.f, 1.f, 0.f);
}

GLES20.glDisable(GLES20.GL_BLEND);

Creating a 3D Spinning Wheel Menu

[265]

GLES20.glDisable(GLES20.GL_DEPTH_TEST);

As we can see, we are changing the positionHandle to the plane geometry, enabling the
texture vertex array and, in addition, we are enabling the blending mode. As the text
texture will be transparent with the exception of the text, we need to enable blending or
otherwise, OpenGL ES will render the transparent pixels as black.

To draw different planes, one for each horizontal face of the cube, we are doing a small loop
where we bind a different texture and rotate by 90 degrees on each iteration.

If we run this example, we will see something similar to the following screenshot:

Creating a 3D Spinning Wheel Menu

[266]

Multiple faces
Now that we have added the ability to render some text on top of the faces of the cube, we
can know what we are selecting when clicking an option, but we are still limited to four
different options. Currently, we have got the geometry hardcoded in the code in several
arrays. If we want to make the number of options, or number or faces, dynamic we'd have
to generate, programmatically, both the geometry and the face indexes.

Luckily for us, our starting point is to have several choices in a 3D circle, so we only have to
generate a hollow cylinder with several faces, exactly as much as the number of options
we'd like to have.

Let's add a method to the GLDrawer custom view class, allowing us to set the number of
options and faces that we will have:

public void setNumOptions(int options) {
 double halfAngle = Math.PI / options;
 float[] coords = new float[options * 3 * 4];
 int offset = 0;
 for (int i = 0; i < options; i++) {
 float angle = (float) (i * 2.f * Math.PI / options
 - Math.PI / 2.f - halfAngle);

 float nextAngle = (float) ((i + 1) * 2.f * Math.PI / options
 - Math.PI / 2.f - halfAngle);

 float x0 = (float) Math.cos(angle) * 1.2f;
 float x1 = (float) Math.cos(nextAngle) * 1.2f;
 float z0 = (float) Math.sin(angle) * 1.2f;
 float z1 = (float) Math.sin(nextAngle) * 1.2f;

 coords[offset++] = x0;
 coords[offset++] = -1.f;
 coords[offset++] = z0;

 coords[offset++] = x1;
 coords[offset++] = -1.f;
 coords[offset++] = z1;

 coords[offset++] = x0;
 coords[offset++] = 1.f;
 coords[offset++] = z0;

 coords[offset++] = x1;
 coords[offset++] = 1.f;
 coords[offset++] = z1;
 }

Creating a 3D Spinning Wheel Menu

[267]

 short[] index = new short[options * 6];
 for (int i = 0; i < options; i++) {
 index[i * 6 + 0] = (short) (i * 4 + 0);
 index[i * 6 + 1] = (short) (i * 4 + 1);
 index[i * 6 + 2] = (short) (i * 4 + 3);

 index[i * 6 + 3] = (short) (i * 4 + 0);
 index[i * 6 + 4] = (short) (i * 4 + 2);
 index[i * 6 + 5] = (short) (i * 4 + 3);
 }

 glRenderer.setCoordinates(options, coords, index);
}

To generate diverse faces in a form of a cylinder is as easy as dividing the 360 degrees, or
two times PI in radians, of a circle in the amount of faces we'd like to have. Here, we are
dividing 2.f*Math.PI by the number of options and then multiplying it by the loop
iterator. By calculating the sine and the cosine of that angle we can get two coordinates,
usually x and y in a 2D projection, but in our specific case, we'd map it to x and z as we are
setting the y coordinate to -1.f as the top vertical edge and 1.f as the bottom vertical
edge. We are also calculating the next x and z coordinates, so we can create a face quad
between these points.

We're generating four points for each face and we're indexing them as two triangles in the
index array. This matches perfectly with the way we were generating colors before, as we're
generating four color values for each face and now we are also generating exactly four
vertices per face, each face will have a unique solid color.

At the end of the method, we're calling the setCoordinates() method of the
GLRenderer, but that is very simple to implement:

private void setCoordinates(int options, float[] coords, short[] index) {
 this.quadCoords = coords;
 this.index = index;
 this.options = options;
}

This will work without touching anything else, as long as we call it before the surface is
created. As we're talking about it, we have got to update the onSurfaceCreated()
method to use the number of options we've set instead of the default four we had
hardcoded in the code before:

@Override
public void onSurfaceCreated(GL10 unused, EGLConfig config) {
 initBuffers();

Creating a 3D Spinning Wheel Menu

[268]

 initShaders();

 textureId = new int[options];
 for (int i = 0; i < textureId.length; i++) {
 textureId[i] = generateTextureFromText("Option " + (i + 1));
 }

 faceAngle = 360.f / options;
}

We're also calculating the amount we've got to rotate to switch from one face to another. In
our previous case it was easy, as there were four faces, 360 degrees divided by 4 is 90. Now,
the calculation is still straightforward, but we've got to change the hardcoded 90 we had in
the code by this new variable we've created, named faceAngle, the value of which is 360
divided by the number of options.

Let's test this new feature by calling it on the MainActivity, just after setting the different
colors:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 GLDrawer glDrawer = (GLDrawer) findViewById(R.id.gldrawer);
 glDrawer.setOnMenuClickedListener(new
 GLDrawer.OnMenuClickedListener() {
 @Override
 public void menuClicked(int option) {
 Log.i("Example37-Menu3D", "option clicked " + option);
 }
 });
 glDrawer.setColors(new int[] {
 0xff4a90e2,
 0xff161616,
 0xff594236,
 0xffff5964,
 0xff8aea92,
 0xffffe74c
 });

 glDrawer.setNumOptions(6);
}

Creating a 3D Spinning Wheel Menu

[269]

We've not specifically added a check, but the number of colors must be at least the same
number of options or otherwise we will get an exception when rendering.

If we run this example, we will see something similar to the following screenshot,
depending always on the current rotation:

Check out the full source code of this example in the Example37-Menu3D folder in the
GitHub repository.

Creating a 3D Spinning Wheel Menu

[270]

Summary
In this chapter, we've seen how to add interactions to a 3D custom view to make it
interactive. In addition, we've seen how to use a scroller instance to manage both scroll
and fling gestures and how to render text as a texture and use different geometry with
different Buffers and different Shaders. At the end, we've also seen how we can easily
generate geometry to make our custom view adaptable and dynamic.

In this book, we've seen how to build different kinds of custom views and to use both
methods and classes from the Android SDK or to use our own, depending on our needs.
We've also seen how to build both 2D and 3D custom views and to make them reactive to
user input. At the end of the day, using all the APIs we've shown and a lot of creativity we
can build any custom view we want. We still have to keep in mind that Android provides
us with a great framework that is constantly evolving and contains plenty of good, and
efficient, ways of drawing awesome UIs, but sometimes we want to build something special
that we can't easily make using the standard APIs.

To learn even more about building Android UIs and custom views, there are plenty of
tutorials on development blogs, several open sourced open views, and many sessions at
meetups and conferences. Attending local meetups and conferences is a great way to not
only learn about custom views, but also to stay up-to-date with Android development.
There are many initiatives led by the Android community and I'd really like to encourage
anyone to contribute in any way they can to keep the Android community alive and as
awesome as it is.

Index

3
3D modeling toolset
 download link 127

A
Adobe After Effects 10
advanced event handling
 about 68
 gestures, detecting 68
advanced features
 adding 233
 multiple data sets 236, 237, 239
 multiple data sets, adding 235
 real-time updates, adding 234
Android Arsenal
 reference 11
Android developer documentation
 URL 15
Android library
 reference 185
Android SDK Classes
 ObjectAnimator 155
 using 152
 ValueAnimator 152, 153, 155
Android Studio
 URL 12
Android UI widgets 8
Android Virtual Device Manager (AVD Manager)

16

Android
 about 7
 OpenGL for Embedded Systems (OpenGL ES)

104

B
best practices, for sharing custom view
 about 176
 configurable 179
 considerations and recommendations 176, 178,

179

Bintray gradle plugin
 reference 187
bitmaps
 drawing 73, 76
Button 7
bytecode mumbo-jumbo
 reference 173

C
chart custom view
 background lines and details 223, 224, 226,

228, 231
 building 216
 customizations 232
 implementing 218, 219
 improvements, with Paths 220, 222
 margins 217
 optimizations, with Paths 220, 222
 padding 217
circular activity indicator
 creating 48, 49, 50, 52, 53, 56
code optimization 163, 170
complex layouts 64, 67
coordinate transformations
 reference 63
custom layout
 creating 44
 ViewGroup, extending 44, 45, 47
custom view
 about 7

[272]

 binary artifact, creating 184, 189, 192
 builder pattern 39, 41, 43
 creating 21
 creating, from scratch 25, 26
 examples, on market 9
 extending 21, 25
 instantiating 37
 instantiating, from code 37
 measuring 28, 29, 30, 31, 32, 34
 need for 8
 open sourcing 180, 181, 182, 184
 parameterizing 28, 34, 36
 publishing 180
 reference 8
 registration link, reference 180
 scroll feature 239, 242, 243
 zoom feature 239, 242, 243
custom-made animations
 about 137
 fixed timestep 143, 144, 147, 148, 150
 timed frame animations 138, 139, 142

D
development tools
 installing 12, 14
drag events 62
drawing operations
 about 72
 bitmaps, drawing 73
 Paint class, using 77
 primitives, drawing 82
 summarizing 101
 text, drawing 93
 using, with transformations 97

E
Electronic Programming Guide (EPG)
 about 194
 animation setup 195, 197, 204
 basics 195, 197, 204
 building 194
 callbacks, implementing 212, 213, 214
 configurations 209
 customizing 209, 211
 extensions 209

 interaction 205
 zooming 207, 209
emulator
 setting up 16, 18
environment
 setting 11
events
 drag events 62
 handling 57
 touch events, reacting 57
external geometry
 loading 127

F
fixed-point arithmetic
 reference 165

G
garbage collection
 reference 162
Garbage Collector (GC) 40
geometry
 drawing 107, 108, 109, 110, 111, 113, 114
 external geometry, adding 128, 132, 134
 textures, adding 123, 126
 volume, adding 115, 116, 117, 118, 119, 120,

122

gestures
 about 68
 defining 68
 detecting 70
Git
 reference 184
GitHub repository 269
glDrawElements()
 reference 113
gradle build scripts
 reference 192

H
hardware acceleration
 reference 54
HashMap 198

I
ImageView 7
interactive 3D custom view
 actionable callbacks, adding 251
 animations, improving 248
 basic implementation 258
 creating 244
 customizations 253, 258
 interactions, adding 245
 interactions, improving 248

L
ListView 7
Lottie
 reference 11

M
multiple faces 266, 269

O
onDraw() method
 reference 61
Open Graphics Library 103
OpenGL API 103
OpenGL for Embedded Systems (OpenGL ES)
 about 103
 basic geometry, drawing 107
 for Android 104, 106
 reference 104, 107

P
Paint class
 using 77, 78, 79, 80, 81
performance impact 158
performance recommendations
 about 158
 best practices, not following 159
Picasso
 reference 202
preview window
 mocking up 173

primitives
 drawing 82, 83, 84, 85, 87, 88, 90, 91, 92

R
real device, for developing
 setting up 20
RecyclerView 9
rendering 48
Right-To-Left (RTL) mode 217

S
Semantic Versioning
 reference 193
Stack Overflow
 reference 95
StaggeredGrid layout 9
StaggeredGridView 9

T
text
 drawing 93, 94, 95, 96
 rendering 259, 264
TextView 7
touch events
 reacting to 57, 58, 59, 61
transformations 97, 99

V
ViewParent
 reference 65
views interactive
 reference 71

W
widget 7

Y
YUV-to-RGB converter
 reference 164
YUV
 reference 163

	Cover
	Title Page
	Copyright
	Credits
	About the Author
	Acknowledgements
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Getting Started
	What's a custom view
	The need for custom views
	Examples on the market

	Setting up the environment
	Installing development tools
	How to set up an emulator
	How to set up a real device for developing

	Creating our own first custom view
	Extending a view
	Creating a simple view from scratch

	Summary

	Chapter 2: Implementing Your First Custom View
	Measuring and parameterizing our custom view
	Measuring our custom view
	Parameterizing our custom view

	Instantiating custom views
	Instantiating custom views from code
	Builder pattern

	Creating a custom layout
	Extending ViewGroup

	Basic rendering
	Creating the basic circular activity indicator

	Summary

	Chapter 3: Handling Events
	Basic event handling
	Reacting to touch events
	Drag events
	Complex layouts

	Advanced event handling
	Detecting gestures

	Summary

	Chapter 4: Advanced 2D Rendering
	Drawing operations
	Bitmaps
	Using the Paint class
	Drawing more primitives
	Drawing text
	Transformations and operations
	Putting it all together

	Summary

	Chapter 5: Introducing 3D Custom Views
	Introduction to OpenGL ES
	Getting started with OpenGL ES in Android
	Drawing basic geometry

	Drawing geometry
	Adding volume
	Adding textures
	Loading external geometry

	Summary

	Chapter 6: Animations
	Custom-made animations
	Timed frame animations
	Fixed timestep

	Using Android SDK Classes
	ValueAnimator
	ObjectAnimator

	Summary

	Chapter 7: Performance Considerations
	Performance impact and recommendations
	The impact of not following the best practices
	Code optimization
	Mocking up the preview window

	Summary

	Chapter 8: Sharing Our Custom View
	Best practices for sharing our custom view
	Considerations and recommendations
	Configurable

	Publishing our custom view
	Open sourcing our custom view
	Creating a binary artifact

	Summary

	Chapter 9: Implementing Your Own EPG
	Building an EPG
	EPG basics and animation setup
	Interaction
	Zooming

	Configurations and Extensions
	Making it configurable
	Implementing callbacks

	Summary

	Chapter 10: Building a Charts Component
	Building a basic chart custom view
	Margins and padding
	Basic implementation
	Optimizations and improvements with Paths
	Background lines and details
	Customizations

	Adding advanced features
	Real-time updates
	Multiple data sets
	Zooming and scrolling

	Summary

	Chapter 11: Creating a 3D Spinning Wheel Menu
	Creating an interactive 3D custom view
	Adding interactions
	Improving interactions and animations
	Adding actionable callbacks
	Customizations

	Beyond the basic implementation
	Rendering text
	Multiple faces

	Summary

	Index

