

DevOps for Salesforce

Build, test, and streamline data pipelines to simplify
development in Salesforce

Priyanka Dive
Nagraj Gornalli

BIRMINGHAM - MUMBAI

DevOps for Salesforce
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Aaron Lazar
Acquisition Editor: Karan Sadawana, Denim Pinto
Content Development Editor: Rohit Kumar Singh
Technical Editor: Ketan Kamble
Copy Editor: Safis Editing
Project Coordinator: Vaidehi Sawant
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Alishon Mendonsa
Production Coordinator: Arvindkumar Gupta

First published: September 2018

Production reference: 1290918

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78883-334-9

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and, as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://packt.com

Contributors

About the authors
Priyanka Dive is a DevOps engineer with substantial experience of working in the IT field
on various technologies, such as Docker, Kubernetes, Jenkins, AWS, and Azure. She has
worked on big data projects as a system and DevOps administrator. She has worked on
Salesforce projects and implemented DevOps practices for small and large projects as well.
She's a constant learner with a desire to learn anything new, and hence enjoys doing a lot of
tech POCs. She is also a technical blogger who loves to write on emerging technologies. She
is currently working as a DevOps Engineer Consultant for a US-based firm.

Nagraj Gornalli is a Team Leader at Persistent Systems on Salesforce projects. He has more
than eight years' experience in the IT field with different technologies. He has done many
certifications' such as Salesforce Certified Administrator, Salesforce Certified Platform
Developer, Salesforce Certified Sales Cloud Consultant, Data Integration Specialist,
Advanced Apex Specialist, Data Integration Specialist, and cloud certified professional. He
started as a trailblazer and is now ranked as a "Ranger" in trailhead.

About the reviewer
Guha Arumugam is a seasoned Salesforce Developer Lead and Technical Consultant with 8
years' expertise in complex implementations. He is a self-taught Salesforce professional
with 8X Salesforce certification. He has expertise in all phases of SDLC (discovery and
requirement gathering, project design, development/build, testing, and deployment) and
Sandbox strategies. He has a solid understanding of Agile and Scrum methodologies.

Guha is also a Salesforce developer evangelist and speaker at various Dreamins across the
US. He also leads the Washington DC Salesforce Developer and Salesforce Saturday
groups. He is an avid Salesforce blogger and his blog posts have helped many aspiring
Salesforce professionals in certifications.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insights with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Salesforce Development and Delivery Process 5
The typical Salesforce development process (without DevOps) 6
Traditional deployment 8

Issues with traditional deployment 9
Sandboxes 9
Eclipse for Salesforce development 10

Installing Eclipse Neon with the Force.com IDE plugin 11
Configuring a Force.com project in Eclipse 14

Technical and business challenges 17
DevOps for Salesforce? 17
Summary 19

Chapter 2: Applying DevOps to Salesforce Applications 20
The need for a DevOps process in Salesforce development 21
The differences between DevOps for Salesforce and other tech
stacks 22
Example – the typical DevOps process for a Java development stack 23

Configuring Maven in the Jenkins server 26
Adding a Jenkins webhook URL in a GitHub project 31
Continuous deployment 33

Installing the Publish Over SSH plugin in a Jenkins server 34
Summary 37
References 37

Chapter 3: Deployment in Salesforce 38
What is deployment with reference to DevOps? 39
Deployment in Salesforce 39

Change Sets 40
Deployment connections 41
Deployment using Change Sets 41

Creating deployment connections 42
Creating Outbound Change Sets 45
Validating Inbound Change Sets 50
Using Quick Deploy to deploy Change Sets 54

Deployment using the Ant Migration Tool 55
Using the Force.com IDE to deploy Apex 56
Installing Salesforce DX plugins to Visual Studio Code 71
Summary 75

Table of Contents

[ii]

Chapter 4: Introduction to the Force.com Migration Tool 76
What the Force.com Migration Tool is? 77
Setting up the Force.com Migration Tool 77

Prerequisites 77
Java 78
Ant 78
Installing the Ant Migration Tool on Linux 79
Installing the Ant Migration Tool on Windows 80
Installing the Salesforce Ant Migration Tool 83

Retrieving metadata from a sandbox 83
Deploying metadata on a sandbox 88
Deleting files/components from a Salesforce organization using
destructiveChanges.xml 89
How the Force.com tool helps developers and DevOps 90
Troubleshooting 90
Summary 91

Chapter 5: Version Control 92
What is meant by SCVS? 92
Version control in Salesforce 93
Introduction to Git 94
Setting up a GitLab server on a Linux instance 94
Prerequisites 95
Installing the GitLab server 96
Creating your first project in GitLab 98
Working with a Git repository 99
Viewing the commit history 102
Adding a user to GitLab 103
Troubleshooting 107

Solution 107
Branching strategy 107
Handling branches using the Git CLI 110
Merging changes from develop to master 112
Using Git in the Eclipse IDE 115

Configuring Git and pushing code to Git 115
Summary 141

Chapter 6: Continuous Integration 142
What is Jenkins? 143

CI using Jenkins 143
Installing a Jenkins server 144
Configuring the Ant Migration Tool with Jenkins 151
Configuring a Jenkins job to retrieve metadata from a sandbox 152

Triggering the same job again 159

Table of Contents

[iii]

Configuring a Jenkins job to deploy metadata on a sandbox 159
Summary 165

Chapter 7: Continuous Testing 166
What is code quality? 166

Checking code quality using a PMD report 166
PMD static analysis for Salesforce Apex using a Visual Studio (VS) Code
extension 167
PMD static analysis for Salesforce Apex using the command line 173

Executing Apex tests in a deployment using Jenkins 176
What is continuous testing? 178
Introducing Selenium 179

Setting up Selenium using Firefox 179
Recording tests using Selenium 183
Playing back the recorded tests using Selenium 186

Introducing Qualitia 187
Running test cases with Qualitia 188

Use case – continuous testing using Qualitia 188
Summary 189

Chapter 8: Tracking Application Changes and the ROI of Applying
DevOps to Salesforce 190

How to track application changes 190
Introducing Bugzilla 191
Publishing a build report to Git 197
How DevOps helps organizations deliver quickly 198
Enhanced productivity 199
How to measure ROI? 199
Summary 200

Other Books You May Enjoy 201

Index 204

Preface
Salesforce, with its immense functionalities and features, eases the functioning of an
enterprise in various areas, such as sales, marketing, and finance. Deploying Salesforce
applications is a tricky business, and it can get quite taxing for administrators and
consultants. This book will help you implement DevOps for Salesforce and explore its
features. You will learn DevOps principles and techniques for enterprise operations in
Salesforce and see how to implement continuous integration and continuous delivery using
tools such as Jenkins and Ant scripts. You will also learn how to use the Force.com
Migration Tool and Git to achieve versioning in Salesforce.

Who this book is for
If you are a Salesforce developer, consultant, or manager who wants to learn about DevOps
tools and set up pipelines for small as well as large Salesforce projects, this book is for you.

What this book covers
Chapter 1, Salesforce Development and Delivery Process, gives an overview of the traditional
Salesforce development process, including the environments used and how to set up an
environment with Eclipse and Force.com IDE. We will also discuss sandboxes and types of
sandbox.

Chapter 2, Applying DevOps to Salesforce Applications, discusses the need for DevOps in
Salesforce projects and what challenges we might face while handling the development and
deployment of large Salesforce projects.

Chapter 3, Deployment in Salesforce, shows how to deploy Salesforce code from one sandbox
to another sandbox, from one sandbox to production, and from one organization to another
organization. We will learn about the different types of code deployment and how to use
them depending on the type of project.

Chapter 4, Introduction to the Force.com Migration Tool, discusses the Force.com Migration
Tool and how to set up the tool in your environment. We will also see a sample deployment
of metadata to a developer or test sandbox using the Ant Migration Tool.

Preface

[2]

Chapter 5, Version Control, helps you to understand source code versioning systems and
their types. We will mainly focus on distributed Git version control. We will also learn
about using Git with Salesforce projects and saving Salesforce metadata to Git.

Chapter 6, Continuous Integration, shows how to automate backups for Salesforce metadata
and push code to the Git repository using Jenkins. We will also learn how to set up our own
Jenkins server and configure it to retrieve metadata from our Salesforce sandbox.

Chapter 7, Continuous Testing, talks about code quality and continuous testing. We will
discuss the tools used in automation testing, such as Selenium and Qualitia. We will also
look at a test case in a sample Salesforce application using record and playback in
Selenium.

Chapter 8, Tracking Application Changes and the ROI of Applying DevOps to Salesforce,
discusses the basics of Bugzilla and how to track issues when they are reported by a tester
or user. We will also learn how to enhance productivity and measure ROI.

To get the most out of this book
To follow the instructions in this book, you need a Windows system with the following
software installed:

Java
Eclipse
Git
Jenkins
ANT
PMD

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ ​/​www. ​packtpub. ​com/ ​sites/ ​default/ ​files/
downloads/​9781788833349_ ​ColorImages. ​pdf.

https://www.packtpub.com/sites/default/files/downloads/9781788833349_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788833349_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788833349_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788833349_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788833349_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788833349_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788833349_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788833349_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788833349_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788833349_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788833349_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788833349_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788833349_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788833349_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788833349_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788833349_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788833349_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788833349_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788833349_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788833349_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788833349_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781788833349_ColorImages.pdf

Preface

[3]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Enter apex stat into the command panel."

A block of code is set as follows:

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">
 <version>42.0</version>
</Package>

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">
 <version>42.0</version>
</Package>

Any command-line input or output is written as follows:

$pmd -d "Source Path" -R apex-ruleset -language apex -f CSV > "Destination
Ptah\ReportName.csv"

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Enter the Project name and Organization Settings details for connection."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[4]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email customercare@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://packt.com/submit-errata
http://authors.packtpub.com/
http://packt.com

1
Salesforce Development and

Delivery Process
Before we jump into the DevOps process for Salesforce or how we can apply DevOps to
Salesforce applications, we will first have a look at how typical or traditional Salesforce
development is done in organizations.

In this chapter, we will learn about the traditional development process of Salesforce
applications. There will be an overview of some Salesforce concepts such as the sandbox,
including the different types of sandboxes and how they are differentiated from each other.
We will see the development process of the Recruiting application, which is our sample
application, and explain Salesforce concepts. We will also discuss the technical challenges
we face in the development, deployment, and delivery of Salesforce applications. We will
discuss the life of a Salesforce developer without DevOps and the need for DevOps.

In this chapter, we will learn about the following topics:

The typical Salesforce development process (without DevOps)
Sandboxes
Eclipse for Salesforce development
Business and technical challenges
The need for DevOps

Salesforce Development and Delivery Process Chapter 1

[6]

The typical Salesforce development process
(without DevOps)
Salesforce development is different from other stack development platforms. Everything
you need to develop an application is available on the cloud. There is no need to install any
software. The main drawback of sandbox-based development is that a sandbox does not
provide versioning of your code. So, if someone overwrites your code, then you cannot get
a previous version of the code. This causes a big mess in large projects where multiple
developers are working on the project.

We will start development by creating our own Salesforce Developer Edition account for
free. Register with Salesforce for a free-tier account and test it out. Here are some guidelines
for new Salesforce users to create their own Salesforce application using https:/ ​/
developer.​salesforce. ​com/ ​signup:

Log in to your Salesforce account and provide your username and password.1.
Go to setup on top-right corner of your screen. Search for Apps in the Quick Find2.
box then select Apps. You will see the welcome page for apps. On the welcome
page, you will see some apps that are enabled for your organization.
We want to create a new application. Click on the New button. As you are a new3.
user, select Custom App. Enter Recruiting as the app label name. An app is a
collection of tabs that are used to create functionality. Users can switch between
apps:

https://developer.salesforce.com/signup
https://developer.salesforce.com/signup
https://developer.salesforce.com/signup
https://developer.salesforce.com/signup
https://developer.salesforce.com/signup
https://developer.salesforce.com/signup
https://developer.salesforce.com/signup
https://developer.salesforce.com/signup
https://developer.salesforce.com/signup
https://developer.salesforce.com/signup

Salesforce Development and Delivery Process Chapter 1

[7]

On the next screen, you can choose the image that will be used as the application4.
logo. For testing, you can use the default image or upload an image of your
choice. You can change it later on.
The next screen lets you specify which tabs you want to see on your application.5.
There are already some standard and custom tabs available for you to choose
from, or you can create your own custom tabs. For the sample application, you
can accept the default and move to the next page. The Home tab will be present
as the default tab.

Salesforce Development and Delivery Process Chapter 1

[8]

On the next screen, you need to choose the user profiles that will have access to6.
this application:

Make it visible to the Standard User and System Administrator profiles.7.
Save it and it's done.8.

Traditional deployment
There are two ways to deploy code to test in a sandbox or production environment:

Change sets: A change set is used to move changes from a development sandbox
to a production environment. Change sets do not contain data. Change sets are
best for deploying the same components to multiple organizations. Change sets
are good for small deployments, but not preferred for large deployments. The
Force.com Migration Tool can be used for large deployments as deployment
components can be easily managed.
Force.com Migration Tool: Using the Force.com Migration Tool requires some
setup. It is scriptable, so it is used for a multistage release process, where we can
easily have scripted retrieval and deployment of components. Repetitive
deployments using the parameters can be done. We can retrieve all metadata in
the organization, make changes using the editor, and deploy the same subset of
components.

Salesforce Development and Delivery Process Chapter 1

[9]

Issues with traditional deployment
No versioning is provided in a sandbox environment, so it becomes difficult when multiple
developers are working on a project and are not in sync. Keeping track of all changes in
project can look like finding a needle in a haystack. Deployment with a change set is not
recommended for large projects and creating a change set is not scriptable. So it becomes a
repetitive task.

The Force.com Migration Tool is good for large projects, but we do not have versioning, so
we cannot revert code to its previous version. Also, we are not able to track changes done
by developers.

We have different environments, such as development, test, stage, and production, in
almost all technical stacks. In Salesforce, we use a sandbox for development and test
environments. Sandboxes come in different types as per our requirement, and we can
choose which sandbox to use. Let's look at the different types of sandboxes.

Sandboxes
"Sandbox is copy of your production organization that contains the same configuration
information or metadata, such as custom objects and fields, process builders, flows, and so
on."

A sandbox is similar to the dev, test, and stage environments in other technology stacks.
They are mainly used for the development of Salesforce applications and testing of newly
developed features. We do not want to make changes in the production environment
directly without testing it thoroughly. So we need these different types of sandboxes;
depending on what we can do with them, we can choose which one to use. Some sandboxes
only have metadata from production, and some may have both metadata and data in them.
Sandboxes also vary in size. Let's see how they differ.

A sandbox is used to develop and test applications. Depending on the type of sandbox you
use, it may also include a copy of the data from your production organization. A sandbox is
completely isolated from the production organization, so any changes the developers make
won't compromise the data, applications, or day-to-day activities of the other users in the
production organization. It is ideal for developing complex customizations to minimize
risks.

Salesforce Development and Delivery Process Chapter 1

[10]

There are various types of sandboxes:

Developer: A Developer sandbox is used for development and testing. It
provides a separate environment for coding and testing changes done by
developers. According to Salesforce standards, one Developer sandbox should be
used by one developer for coding at a time, but it is possible for multiple
developers to log in at a time. However, a Developer sandbox does not keep
track of changes done in it so there are lots of possibilities that developers may
overwrite each other's code. A Developer sandbox has a copy of metadata from
production. It does not contain data.
Developer Pro: A Developer Pro sandbox is also used for development and
testing purposes, but this sandbox comes with increased storage size. Because of
the increased storage size, this sandbox can handle more development workloads
and can be used for data load and integration testing.
Partial Copy: A Partial Copy sandbox contains all the metadata from your
production organization, and it also contains a sample of the production
organization's data, which is defined in the sandbox template while creating a
Partial Copy sandbox. As this sandbox contains sample data, it is mainly used for
testing purposes. We can use a Partial Copy sandbox for development, testing,
and even for training purposes. Most people do not recommend them for load
testing purposes.
Full: A Full sandbox is a replica of your production organization. It contains all
the metadata and data from the production organization. It contains all data,
which includes records, attachments, and so on. You can use sandbox templates
to decide which data to copy from the production organization to the Full
sandbox, depending on which testing operations you want to perform. A Full
sandbox can be used for many purposes and supports load testing, performance
testing, and staging. It is difficult to use a Full sandbox for development because
it needs a long refresh interval.

Eclipse for Salesforce development
First, we will go through how we can use Eclipse for Salesforce application development.
We will start from the very basic steps, such as installing Eclipse and Force.com IDE,
followed by configuring Git with Eclipse.

Salesforce Development and Delivery Process Chapter 1

[11]

Installing Eclipse Neon with the Force.com IDE
plugin
We will start by installing Eclipse on the developer machine. To install Eclipse, you should
have a minimum of Java 6 installed. If it is not installed, you can install it from the official
website at https:/​/ ​java. ​com/ ​en/ ​download/ ​.

We are going to install Eclipse Neon. Java version 7 is required for Eclipse Neon.

The following are the prerequisites for a development environment for Salesforce:

Operating systems:
Windows 7, 8, or 10
macOS 10.7, 10.8, 10.9, 10.10, or 10.11
Ubuntu 12.04 LTS or 14.04 LTS

Java SE Development Kit (JDK), Runtime Environment 8 or later (Java
download page).

The installation steps are as follows:

Eclipse 4.5 or later is recommended. Go to the download site at https:/ ​/​www.1.
eclipse. ​org/ ​downloads/ ​.
Select the appropriate executable package for the operating system you are2.
using.
Once the download is complete, you can proceed with Eclipse installation.3.
Double-click on the .exe file if you are using Windows.
The Eclipse IDE for Java Developers distribution is the recommended installer.4.
Choose an installation folder for Eclipse and click on INSTALL. It will take some5.
time to install Eclipse.
After completing the installation, launch Eclipse. Select the workspace for6.
Eclipse.
You will see the welcome page for Eclipse.7.

Now we have installed Eclipse on our system, we can move forward with the installation of
Force.com IDE.

https://java.com/en/download/
https://java.com/en/download/
https://java.com/en/download/
https://java.com/en/download/
https://java.com/en/download/
https://java.com/en/download/
https://java.com/en/download/
https://java.com/en/download/
https://java.com/en/download/
https://java.com/en/download/
https://java.com/en/download/
https://java.com/en/download/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/

Salesforce Development and Delivery Process Chapter 1

[12]

The following are the steps to install Force.com IDE:

Launch Eclipse, go to the Help option and choose the Install New Software1.
option from the drop-down list:

Click Add.2.
In the Add Repository dialog, set the name to Force.com IDE and the location3.
to https://developer.salesforce.com/media/force-ide/eclipse45:

Salesforce Development and Delivery Process Chapter 1

[13]

Click OK.4.
If you are not using Java 8, then deselect Show only the latest versions of5.
available software, and it will show an older version of the plugin.
Eclipse will show a list of all available plugins. Select the Force.com IDE plugin,6.
and then click Next.
In the Install Details dialog, click Next.7.
Review the licenses, accept the terms, and click Finish.8.
Eclipse starts downloading Force.com IDE and installs it and other required9.
dependencies. Once the installation is completed, you need to restart Eclipse to
reflect the changes. Click Yes.

Salesforce Development and Delivery Process Chapter 1

[14]

When Eclipse restarts, select Window | Open Perspective | Other. Select10.
Force.com and then click OK:

We are done with setting up the Salesforce development environment in Eclipse.

Configuring a Force.com project in Eclipse
We have a Salesforce application, and we want Salesforce code in the local workspace we
just created using Force.com IDE:

Right-click on the Package Explorer area, then choose New and select Force.com1.
Project:

Salesforce Development and Delivery Process Chapter 1

[15]

Create a new Force.com project. You need to provide details about your project.2.
Enter the Project name and Organization Settings details for connection:

Username: Provide a username and append the sandbox name to it.
Password: Provide a password for the given username.
Security Token: You need to provide a security token for the sandbox.

Salesforce Development and Delivery Process Chapter 1

[16]

Environment: Choose the environment you are using, such as sandbox
or Production Edition:

Once you have filled in all the details, click Next.3.

We will get all the code in Eclipse from Salesforce. Now, whatever changes a developer
makes in Eclipse will be in sync with the sandbox being used.

Salesforce Development and Delivery Process Chapter 1

[17]

Technical and business challenges
Following traditional methods for the deployment of Salesforce projects is time-consuming.
Also, the major problem is with versioning of code, which causes issues in every
environment. A particular feature may run perfectly in a Developer sandbox, but we might
face issues in production. Tracking every change done by developers and administrators is
very difficult, so the miscommunication between teams can result in failed deployments or
delay in product delivery.

We can consider scenario where a particular feature needs to be launched as soon as
possible and we are facing deployment issues. We may not able to resolve it in time and
this will impact on our customers and business as well. We will face challenges such as the
following:

Failed deployments
Unable to track issues
No code coverage
Failed test cases

We need to streamline all these issues and have one solution which will solve almost all
problems; here, DevOps comes into the picture!!

DevOps for Salesforce?
Yes, we can apply DevOps practice to Salesforce projects and achieve continuous
integration and deployment, and continuous testing for Salesforce projects as well. In
DevOps, we have a rich toolset that can also be used for Salesforce projects.

Let's try to cover this step by step. The first and most important consideration is how we
can achieve versioning in Salesforce where the Salesforce sandbox itself doesn't keep
versions of code stored. A Salesforce sandbox stores only a minimal amount of information
about changes, such as which user made the previous change and its timestamp.
Obviously, this information is not enough to achieve full versioning. We can use a very
popular source code management tool, Git for Salesforce projects, where the sandbox will
be in sync with the Eclipse workspace and Git repository.

Salesforce Development and Delivery Process Chapter 1

[18]

Salesforce provides a very useful tool for migration of metadata from a local repository to a
sandbox, which is the Force.com Migration Tool. The Force.com Migration Tool is an Ant-
based tool for moving metadata from a sandbox to local repositories. With the Force.com
Migration Tool, we can perform operations such as retrieving metadata from a sandbox
and deploying metadata to a sandbox.

Using this Force.com Migration Tool with Jenkins, we can build our continuous integration
jobs. Jenkins is an automation server that allows us to automate tasks such as building,
testing, and deploying software on a particular environment. Jenkins is written in Java
programming language and allows us to create continuous integration jobs. In later
chapters, we will see how to use the Force.com Migration Tool with Jenkins and automate
continuous integration tasks in Salesforce projects.

Finding issues can be like finding a needle in haystack. We need to track issues in our
project. There are many applications present that we can use in our projects, such as Bug
Tracker and Jira. This helps us to get an idea about issues in our project and in which
environment they are present; also, it helps us be on track and stay updated. We will see
some of these applications in detail in later chapters. We will also see how we can integrate
these tools and have a CI-CD pipeline for Salesforce projects.

Achieving continuous testing with Salesforce is possible with the help of tools such as
Selenium and Qualitia. Selenium is a testing framework that is used to test web
applications. Qualitia is a scriptless automation tool that helps to create test cases without
writing scripts/code.

Do you still have doubts about applying DevOps to Salesforce? The answer can be positive
or negative, but, wait, do not mark it as your final answer because you have still to read the
following chapters, where we will try to provide a clearer idea about using DevOps tools
for Salesforce projects. Also, we will cover some examples and real-time scenarios about
DevOps and Salesforce, so stay tuned!

Salesforce Development and Delivery Process Chapter 1

[19]

Summary
In this chapter, we got an overview of the traditional Salesforce development process,
which environments are used for Salesforce development, and how we can set up a
Salesforce development environment with Eclipse and Force.com IDE. Also we looked into
sandboxes and the types of sandboxes used in Salesforce projects, and how they differ from
each other.

We also got some information about traditional deployment methods used for Salesforce
projects, such as change sets and the Force.com Migration Tool and discussed which
method is suitable for small and large projects. We also looked into technical and business
challenges in Salesforce.

In the next chapter, we will see how we can apply DevOps for Salesforce projects. We will
compare other technical stacks with Salesforce and see how applying DevOps to Salesforce
is different than DevOps in other technical stacks. We will also discuss various ways to
apply DevOps to Salesforce.

2
Applying DevOps to Salesforce

Applications
In the previous chapter, we learned some basics about the Salesforce development process,
what a sandbox is, the different types of sandbox, and how to choose a sandbox according
to our needs. We developed our own recruiting application using Salesforce, followed by
learning the traditional ways used for Salesforce deployment. We also had a look at the
issues we face during traditional deployments of Salesforce applications. We learned
Salesforce development setup with Eclipse. We discussed applying DevOps to Salesforce
applications.

In this chapter, we will discuss why there is a need for DevOps in Salesforce applications.
We will also discuss the problems we face while working on big projects that involve large
numbers of developers, testers, and so on. We will try to get a clear idea about how
applying DevOps for Salesforce is different from other tech stacks such as simple Java
application stacks. We will differentiate between the development process involved in
Salesforce applications and that of other tech stacks such as Java, PHP, Ruby, and so on. We
will also see in detail the DevOps process in Java applications to get a clearer idea about the
DevOps continuous integration and delivery process using DevOps tools. We will go
through a step-by-step process to set up a simple continuous integration pipeline with
Jenkins and Git. We will also learn how to install required plugins, configure the Maven
plugin in Jenkins, and how to add a Jenkins webhook URL in a GitHub project; we'll also
implement continuous deployment using the Jenkins plugin. Finally, we will see how we
can deploy our code whenever any changes are pushed to GitHub.

In this chapter, we will learn about the following topics:

The need for a DevOps process in Salesforce development.
The differences between DevOps for Salesforce and DevOps for other tech stacks.
For example, the typical DevOps process for a Java development stack

Applying DevOps to Salesforce Applications Chapter 2

[21]

The need for a DevOps process in
Salesforce development
As discussed in the previous chapter, we can apply DevOps practices in Salesforce projects
to achieve faster delivery of applications. The question arises, Why do we need DevOps?

Let's discuss some normal development practices in Salesforce projects. In Salesforce,
everything is on the cloud, you just need a browser and internet connection to start
developing your application. But as the development team grows, the complexities of
building different features and deploying them in a production environment also become
difficult. Although we can use different types of sandbox according to our need, managing
the deployment process is still a time-consuming task.

Given that multiple developers are working on different features in different sandbox
environments, we need to cherry-pick some features from those environments and deploy
them to a user acceptance testing (UAT) environment. This process is error-prone as it
involves human interaction at various phases. Also we don't have any system for version
control to manage changes done by developers.

Let's assume that somehow we managed to work with multiple developers with multiple
sandbox environments and without managing the source code (that is just a hypothetical
case but consider it is possible). What about testing new features in your application, and
more importantly ensuring that nothing breaks in the previous application? Achieving this
with manual testing would require a large number of testers and still we can't ensure that
we have tested each and every feature right from login to some complex feature we just
introduced in our application.

Why make such a mess when we can achieve more a streamlined delivery with the help of
DevOps? DevOps reduces the time of delivery and makes the process less prone to errors;
tracking applications becomes easier with a different set of open-source tools. We can
improve the Salesforce application development process by integrating it with a DevOps
toolset such as Git to maintain our source code version. We can integrate Jenkins for the
deployment of Salesforce applications. We will see how to do this in more detail in Chapter
6, Continuous Integration.

DevOps helps applications in other stacks to get more productive and follow a faster
delivery process. We can achieve fast delivery in Salesforce projects with some
modifications to the development and delivery processes. DevOps will impact everyone
who is involved in Salesforce application development, testing, and deployment directly or
indirectly, along with other end users.

Applying DevOps to Salesforce Applications Chapter 2

[22]

The differences between DevOps for
Salesforce and other tech stacks
Applying DevOps in Salesforce is different from other environments; let's look at this step
by step.

First, we will talk about the development process. Salesforce development is easy to start
with because you don't need any installations and extra setup on your development
machines. All you need is an internet connection and a browser supported by Salesforce
platforms, such as Internet Explorer, Google Chrome, Safari, and so on. As we
demonstrated in the previous chapter, a sample application in Salesforce is easy to develop
with some clicks as Salesforce provides some existing applications and tabs for you to
reuse. We can create some custom tabs in our application according to our requirements.
When it comes to other tech stacks such as Java, to get started with development we need to
install Java on our machines and set up some environment variables.

In tech stacks such as Java, JavaScript, PHP, and Ruby, the most common thing is using
version control systems such as Git, CVS, SVN, and so on, which help to keep track of
application changes done by each developer. Version control systems make it possible for
multiple developers to work on a single project or module without overwriting each other's
changes. In some situations, such as when something goes wrong and unfortunately we
need to roll back updates, version control is very useful.

When we have a small team of one or two developers working on a Salesforce application,
we may not need to use version control. But when it comes to teams with multiple
developers working on different sandboxes, developing different features releasing at
different timelines or sprints, it becomes necessary to have version control for a streamlined
development and delivery process.

There are some ways to deploy changes to Salesforce production organizations, such as
using Change Set, Eclipse, and Ant. For deployment using Change Set, you need to connect
organizations using Deployment Connection. Eclipse uses metadata for deployment and it
is mostly used by developers. Using Ant for deployment, we can perform file-based
deployment to production organizations.

Applying DevOps to Salesforce Applications Chapter 2

[23]

Example – the typical DevOps process for a
Java development stack
The prerequisites are as follows:

Java version 1.6 or above
Apache Maven 3.5.2
Jenkins server

Note: Use latest version of software available. In future, the previous
versions may not be compatible.

If you haven't already installed Java, you can download it from the official website: https:/
/​java.​com/​en/​download/ ​.

Use the following commands for this sample CI/CD application. I will be using an Ubuntu
16.04 instance for setup. So let's start by installing Java.

Log in to your Ubuntu server machine as a normal user. We need a user with sudo access
for installing packages on the machine. I will be using the Ubuntu username for this
example:

sudo apt-get update
sudo apt-get install default-jdk

The previous commands will install Java version 8 on the machine. Verify this with the
following command:

Note: The same setup should work if the Java version is incremented to a
stable version.

$java -version
openjdk version "1.8.0_151"
OpenJDK Runtime Environment (build 1.8.0_151-8u151-b12-0ubuntu0.16.04.2-
b12)
OpenJDK 64-Bit Server VM (build 25.151-b12, mixed mode)

https://java.com/en/download/
https://java.com/en/download/
https://java.com/en/download/
https://java.com/en/download/
https://java.com/en/download/
https://java.com/en/download/
https://java.com/en/download/
https://java.com/en/download/
https://java.com/en/download/
https://java.com/en/download/
https://java.com/en/download/

Applying DevOps to Salesforce Applications Chapter 2

[24]

Now, we have Java in place, so we will move on to the installation of Maven. The
installation steps are as follows:

Download Maven from the official website:1.

$wget
http://www-eu.apache.org/dist/maven/maven-3/3.5.2/binaries/apache-m
aven-3.5.2-bin.tar.gz

Extract the package using the following:2.

$tar -xvf apache-maven-3.5.2-bin.tar.gz

We need to set up environment variables. Add a path to .bashrc:3.

$export M2_HOME=/home/ubuntu/apache-maven-3.5.2
$export PATH=${M2_HOME}/bin:${PATH}
$source ~/.bashrc

Verify whether Maven was installed on your machine:4.

$ mvn -v
Apache Maven 3.5.2 (138edd61fd100ec658bfa2d307c43b76940a5d7d;
2017-10-18T07:58:13Z)
Maven home: /home/ubuntu/apache-maven-3.5.2
Java version: 1.8.0_151, vendor: Oracle Corporation
Java home: /usr/lib/jvm/java-8-openjdk-amd64/jre
Default locale: en_US, platform encoding: ANSI_X3.4-1968
OS name: "linux", version: "4.4.0-1049-aws", arch: "amd64", family:
"unix"

We will create a project in Maven. Here we will be using the official Maven example Maven
in 5 Minutes. You will find a link in the References section.

Let's move on to creating a sample project in Maven:

$mvn archetype:generate -DgroupId=com.mycompany.app -DartifactId=my-app -
DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false

It will take some time to download dependencies. After completing execution of command,
it will create a directory with value passed to DartifactId that is my-app.

In this example, src/main/java contains source code, src/test/java has test code, and
pom.xml contains all information required to build the project.

Applying DevOps to Salesforce Applications Chapter 2

[25]

The following is the source code we have from the sample app:

cat src/main/java/com/mycompany/app/App.java
package com.mycompany.app;
/**
 * Hello world!
 *
 */
public class App
{
 public static void main(String[] args)
 {
 System.out.println("Hello World!");
 }
}

Now we will build our sample project:

#mvn package

This will compile the project and create a JAR in the target folder as my-app-1.0-
SNAPSHOT.jar.

Test the JAR with the following command:

#java -cp target/my-app-1.0-SNAPSHOT.jar com.mycompany.app.App

We get the following output:

Hello World!

So, we got our sample application running but what if we have many developers working
on the project? We need a version control tool and some standard procedure for deploying
this project to the server environment. For this, we will follow our sample DevOps pipeline
with Git and Jenkins.

Git is a version control tool that helps us to track changes in our source code and coordinate
our work with different developments. It is the most commonly used version control tool
nowadays. We will have a look at Git in depth in Chapter 5, Version Control. For this
sample pipeline, we can use a GitHub account.

Create a repository on GitHub and push sample code to this repository:

$cd my-app
$Git init
$Git add .
$Git commit -m "first commit"

Applying DevOps to Salesforce Applications Chapter 2

[26]

$Git remote add origin https://Github.com/priyankadive/devops-sample.Git
$Git push -u origin master

Now that we have our version control ready, we will move on to the next step in using a
continuous integration and continuous delivery process using Jenkins.

Jenkins is an open-source tool written in the Java programming language. It is used to
automate continuous integration and continuous delivery jobs. We will see Jenkins in detail
in Chapter 6, Continuous Integration.

Let's get started with Jenkins:

Install Jenkins. I have installed Jenkins on an Ubuntu server.1.
Log in to the Jenkins server.2.
Install the required Jenkins plugins on the Jenkins server using the following3.
process.
Go to Manage Jenkins | GitHub Plugin and search for maven plugin.4.
Install the Maven plugin in Jenkins if it was not installed while setting up5.
Jenkins. You need to configure Maven in Jenkins Global Tool Configuration as
we have already installed it.

Configuring Maven in the Jenkins server
Go to Manage Jenkins | Global Tool Configuration.

We have already installed Maven on our machine. So enter a name for the Maven
installation and the M2_HOME path as follows:

Applying DevOps to Salesforce Applications Chapter 2

[27]

Let's configure our Jenkins job to build our sample project:

Click on create new jobs:1.

Create a Jenkins job with the Maven plugin. Provide the job name devops-ci-2.
cd (you can choose another project name, if you want):

Applying DevOps to Salesforce Applications Chapter 2

[28]

Applying DevOps to Salesforce Applications Chapter 2

[29]

In the Source Code Management section, provide the Git URL of your project.3.
Provide credentials to clone the repository in Jenkins:

Choose GitHub hook trigger for GitScm polling in Build Triggers. If Jenkins4.
receives a PUSH GitHub webhook from the preceding repository, it will trigger
this job:

Applying DevOps to Salesforce Applications Chapter 2

[30]

Provide a path to root pom.xml. It will be a relative path to the module root. In5.
Build, add Root POM as pom.xml and Goals and options as package:

Save your work and click on Build now.6.

This will create my-app-1.0-SNAPSHOT.jar in
the /var/lib/Jenkins/workspace/target folder. You can check the console logs while
the project build is in progress.

Once the JAR is successfully built, you can see the console logs as shown in the following
screenshot:

We have completed a continuous integration job successfully. Now, we need to add the
Jenkins webhook URL in the GitHub settings to trigger a Jenkins build whenever someone
pushes code to our GitHub project.

Applying DevOps to Salesforce Applications Chapter 2

[31]

Adding a Jenkins webhook URL in a GitHub
project
To add a Jenkins webhook URL, you need to perform the following steps:

Grab your GitHub webhook URL from Manage Jenkins | Configure System |1.
GitHub Web Hook Section.

Example URL: https://<your-domain-name or IP address>/web-
hook/

Go to GitHub | Choose your project. Go to Settings and select Integrations and2.
Services. Click on Add service and search for Jenkins. As a result, you will see
two service: Jenkins (Git plugin) and Jenkins (GitHub plugin). Choose one
according to your project. We are going for Jenkins (GitHub plugin):

Add your Jenkins webhook URL and click on Add service:3.

Applying DevOps to Salesforce Applications Chapter 2

[32]

Verify that the hook is working by clicking on Test service. It will send our test4.
payload to the Jenkins server. If everything is working fine, then we will see a
green check mark before the Jenkins webhook:

To test your continuous integration pipeline, add some changes in the README file
we created. Push changes to GitHub.

Applying DevOps to Salesforce Applications Chapter 2

[33]

In Jenkins, you can see the "devops-ci-cd" build is automatically started as5.
shown in the following screenshot:

Continuous deployment
We have completed the continuous integration step. When source code is updated in a
GitHub project, our Jenkins server will build a .jar file. We need to deploy the updated
code to a remote server. SSH is secure shell protocol widely used to securely log in to
remote systems. In this sample application, we will be using the Publish Over SSH plugin.
It is used to send build artifacts and execute commands on remote server using the SSH
protocol.

Applying DevOps to Salesforce Applications Chapter 2

[34]

Installing the Publish Over SSH plugin in a Jenkins
server
Now, we will edit the Jenkins job which we created earlier. As the output of the continuous
integration step, we get my-app-1.0-SNAPSHOT.jar created in our Jenkins workspace. To
deploy this JAR on our test server, we are going to use a simple Jenkins plugin called
Publish Over SSH. This plugin allows us to transfer files to a remote server and run
commands as well. First we need to set up an SSH private key on the Manage Jenkins
page. Go to Manage Jenkins | Configure System and provide the following information:

Passphrase: Provide a passphrase for the key (leave it blank if not encrypted)
Path to key: The path to the key can be absolute, or relative to $JENKINS_HOME
Key: If the key is not present on Jenkins server then you can copy and paste it in
this field
Add SSH Server details such as Username, Hostname, and Remote Directory:

Applying DevOps to Salesforce Applications Chapter 2

[35]

Now go to our previous Jenkins job and choose the Run only if build succeeds option from
Post Steps so that if the build is successful then only the post steps will be executed.

From the Add post-build step drop-down list, select the Send files or execute commands
over SSH option:

Add the following configuration to copy the JAR to the test server and run the command to
start it:

Applying DevOps to Salesforce Applications Chapter 2

[36]

The command to deploy Hello world! is as follows:

#java -cp target/my-app-1.0-SNAPSHOT.jar com.mycompany.app.App

We have completed the continuous integration and Continuous Deployment process for
our sample Java application using Maven and Jenkins. So, whenever any developer
commits code to Git, the Jenkins job will be triggered, which will execute the build step to
create a JAR and deploy it to the test server, if the build is successful. We can add one more
step where we can execute automated test cases on the deployed application and get the
results of our new changes.

Applying DevOps to Salesforce Applications Chapter 2

[37]

Summary
In this chapter, we discussed why there is a need for DevOps in Salesforce projects, and
what challenges we might face while handling large Salesforce project developments and
deployments. Also, we looked at why DevOps for Salesforce is not like any other tech
stacks and what the differences between them are from the point of view of development,
setting up environments, and deploying changes to the production environment in
Salesforce and other stacks.

We went through the typical DevOps process for a Java development stack, where we
created a sample Java application and used Git version-control and track changes done
while developing the application. We worked on how to add a Jenkins webhook URL in a
GitHub project. We set up a sample Jenkins job where we added a Maven build step to
create a JAR whenever anyone pushes code to the Git master branch using a Jenkins
webhook. After completing the continuous integration step for our sample Java application,
we added a step in the Jenkins job for continuous deployment using the Publish Over SSH
plugin.

In the next chapter, we will discuss how deployment is done in Salesforce in traditional
ways. We will learn what deployment methods in Salesforce are, and discuss why there is a
need for automation in the deployment process and how Salesforce deployments can be
automated using Ant scripts.

References
Maven in 5 Minutes: https:/ ​/ ​maven. ​apache. ​org/ ​guides/ ​getting- ​started/ ​maven- ​in-
five-​minutes.​html

https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html
https://maven.apache.org/guides/getting-started/maven-in-five-minutes.html

3
Deployment in Salesforce

In the previous chapter, we discussed the need for DevOps in Salesforce application
deployment, and different scenarios where DevOps can make it easy for a large number of
developers to work on the same project. We saw that DevOps can give us streamlined
delivery, helping us track application issues with open source tools. We also took a look at
how Salesforce is different from other technical stacks. We went through the process of
setting up DevOps for the Java development stack using Git and Jenkins.

In this chapter, we are going to discuss how to deploy Salesforce code from one sandbox to
another sandbox, or from a sandbox to production, in a transitional way. There are various
ways to deploy code, such as using Change Sets or a migration tool.

In this chapter, we will learn about the following topics:

What is deployment with reference to DevOps?
Deployment from sandbox to sandbox and sandbox organization
Deployment using Change Sets
Deployment using a migration tool
Deployment using the Force.com IDE
Deployment using Visual Studio Code with Salesforce DX plugins
Deployment using third-party tools that use the Metadata API or the Tooling API

Let's start by looking at deployment in Salesforce.

Deployment in Salesforce Chapter 3

[39]

What is deployment with reference to
DevOps?
Successful deployment of code changes to a production environment involves many tasks,
such as unit testing, integration testing, configuration changes, avoiding downtime, taking
a backup of the existing environment to avoid data loss in the event of failed deployment,
provisioning to revert changes quickly, and so on. In DevOps, with the help of many
deployment, configuration management, backup, and restore tools, it is easy to perform
fast, zero-downtime deployments.

In DevOps, continuous deployment is the process of deploying every change from a
development environment to a production environment, where every change goes through
the pipeline of continuous integration, with testing happening automatically. This process
allows us to deliver new features and bug fixes to a production environment more quickly.

As every change goes through the DevOps pipeline, everything is tracked. For example, say
we wanted to deploy Java application code from a development to a production
environment, as we saw in Chapter 2, Applying DevOps to a Salesforce Application. Code
changes done by developers would be pushed to Git (a version control system), which
automatically triggers a Jenkins job for build JAR files and deploy them to a test
environment. We could go on adding continuous testing stages to a build job where we run
test cases and, depending on the result of the test case, the build would be promoted to the
next environment stage and then on to production.

The deployment process in Salesforce is different to deployment in other stacks. We will
discuss what types of deployment there are in Salesforce and the differences between them,
with some example scenarios. We will also learn how many ways there are to deploy a
project in Salesforce and which one is best.

Deployment in Salesforce
There are many different ways to deploy Salesforce in production. Salesforce deployment
involves simply moving Salesforce metadata to production.

There are three ways to move metadata to production:

From a sandbox to a Production Org
From one Production Org to another Production Org
From a developer org to a Production Org

Deployment in Salesforce Chapter 3

[40]

There are various methods to achieve Salesforce metadata deployment:

Change Sets
The Ant Migration Tool
The Force.com IDE
Third-party tools that use the Metadata API or the Tooling API
The SOAP API
Visual Studio Code with Salesforce DX plugins

Change Sets
To use a Change Set, a sandbox must be connected to a Production Organization. In the
previous chapter, we discussed creating a sandbox and creating a connection between the
sandbox and production organization. This is the traditional and most simple way to send
configuration and metadata changes from one sandbox to another or from one sandbox to a
Production Organization.

There are two different types of Change Set. Go to Setup and search with the Change
Set keyword.

The two types of Change Set are inbound Change Sets and Outbound Change Sets:

Outbound Change Sets: Outbound Change Sets need to be created in the source
sandbox. Typically, we create an Outbound Change Set in a sandbox and deploy
it to the Production Organization. We might choose to migrate changes from the
sandbox to the Production Organization, from the Production Organization to
the sandbox, or from sandbox to sandbox. You need to make changes in the
source sandbox and upload those changes to the destination sandbox or
Production Organization.
Inbound Change Sets: Inbound Change Sets are automatically visible in the
destination sandbox or Production Organization, once the outbound sandbox has
been uploaded successfully.

Deployment in Salesforce Chapter 3

[41]

Deployment connections
Before creating Change Sets in a sandbox or other organization, we need to authorize a
deployment connection in the organization. Go to Setup and search with the
Deployment keyword:

The Setup page

Deployment using Change Sets
There are four steps to deployment using Change Sets. They are as follows:

Creating deployment connections1.
Creating Outbound Change Sets2.
Validating inbound Change Sets3.
Using Quick Deploy to deploy Change Sets4.

We will discuss these steps in the following sections.

Deployment in Salesforce Chapter 3

[42]

Creating deployment connections
First, go to Setup and search with the deployment keyword:

Select Deployment Settings:

Selecting Deployment Settings

Deployment in Salesforce Chapter 3

[43]

Here we can find a list of the sandboxes and their connection statuses.

There are three different types of symbol:

Green colored arrow pointing to the right
Green colored arrow pointing to the left and right
Red colored broken arrow

Select Edit to modify inbound changes:

Modifying inbound changes

There is a checkbox labeled Allow Inbound Changes. This is for the connected
organization that is authorized to deploy Change Sets to our organization. We need to
select this checkbox to establish the connection:

Deployment in Salesforce Chapter 3

[44]

Allowing Inbound Changes

There is a checkbox labeled Accept Outbound Changes. This is a read-only field—you
cannot edit this field from here. This value is automatically selected if the connected
organization has selected the Allow Inbound Changes checkbox:

Allowing Outbound Changes

Deployment in Salesforce Chapter 3

[45]

Now click on the Save button to create the connection:

Creating Outbound Change Sets
Go to Setup and search with the outbound keyword:

Searching with outbound keyword

Deployment in Salesforce Chapter 3

[46]

An Outbound Change Set contains customization that you want to send from this
organization to another organization. This customization could include new components or
modifications to existing components, such as apps, objects, reports, or Apex classes and
triggers. An Outbound Change Set can't be used to delete or rename components in another
organization.

To create a new Outbound Change Set, hit the New button.

Add the name of the Change Set, which is mandatory, and enter its description:

Creating Outbound Change Set

Hit the Save button to create the Outbound Change Set.

A Change Set contains customization for components such as apps, objects, reports, and
email templates. You can use Change Sets to move customizations from one organization to
another.

After a Change Set has been uploaded, its components aren't refreshed and you can't add
or remove components. To refresh the source of components and modify the component
list, clone the Change Set.

Deployment in Salesforce Chapter 3

[47]

Click on Add to include Salesforce components in your Change Set:

Adding Salesforce components

You will see a list of all the Salesforce components, from which you can choose the
component you want to add and its type:

Deployment in Salesforce Chapter 3

[48]

Select the components that need to move to the Production Organization:

Click on Add to Change Set.

We can remove components if they've been added by mistake. You do so by clicking on the
Remove link:

Removing components

Deployment in Salesforce Chapter 3

[49]

Now hit the Upload button to upload the Change Set:

Options for Change Set

Once you upload this Change Set, you won't be able to edit it or recall it from the target
organization:

Upload confirmation message

Deployment in Salesforce Chapter 3

[50]

Select the organization you want to send the Change Set to and then click Upload. You will
get a confirmation message, as shown in the following screenshot:

Validating Inbound Change Sets
Go to Setup and search with the inbound keyword:

Searching with inbound keyword

Deployment in Salesforce Chapter 3

[51]

Then select Inbound Change Sets and click a Change Set name to see its details:

There are three options: Validate, Deploy, and Delete. Click on Validate to validate a
Change Set without deploying changes.

There are four options for validating a Change Set:

Default
Run local tests
Run all tests
Run specified tests

These options are shown in the following screenshot:

Deployment in Salesforce Chapter 3

[52]

Salesforce recommends that you select the Run Specified Tests option. In the following
screen we need to add specific test classes:

Deployment in Salesforce Chapter 3

[53]

Click Validate to validate the Change Set on the Production Organization:

On the confirmation prompt, click on OK:

Deployment in Salesforce Chapter 3

[54]

Using Quick Deploy to deploy Change Sets
To track validation progress, click on Deployment Status:

We can see the component list and the Apex test class list:

Deployment in Salesforce Chapter 3

[55]

Now the Change Set is enabled for the quick deployment of validated Change Sets by
skipping Apex tests as part of the deployment:

The Quick Deploy option

Now click on Quick Deploy to deploy the Change Set to the Production Organization.

Deployment using the Ant Migration Tool
The Ant Migration Tool provides a way to deploy metadata from the local directory to a
Salesforce sandbox. We can use the Ant command-line utility to automate deployment
tasks in Salesforce.

The Ant Migration Tool helps us to retrieve and deploy metadata to and from a sandbox.

This tool can also be used to take backups of your sandbox metadata. To configure access to
the sandbox, we need to provide sandbox credentials in the build.properties file.
The build.xml file contains commands for retrieving or deploying metadata.
Package.xml contains the components to be retrieved or deployed.

Deployment in Salesforce Chapter 3

[56]

The Ant Migration Tool is explained in detail via an example in Chapter 4, Introduction to
the Force.com Migration Tool.

We will discuss some scenarios where the Ant Migration Tool deployment type can be
used:

Deployment can involve many setup changes, but using the web interface to
make those changes is a difficult and time-consuming job. The Ant Migration
Tool can be used to automate the process of making setup changes.
Having multiple environments requires repeated deployment to the
development, testing, and staging environments before any changes can be
deployed to the production environment. Automating the retrieval and
deployment of components will help to speed up that process.
We can set up automated backups to occur at midnight, copying the metadata of
the sandbox and restoring it whenever we need to.

Using the Force.com IDE to deploy Apex
The Force.com IDE is a plugin for the Eclipse IDE. The Force.com IDE provides a unified
interface for building and deploying Salesforce applications. Designed for developers and
development teams, the IDE provides tools for accelerating Salesforce application
development, including source code editors, test execution tools, wizards, and integrated
help. This tool includes basic color-coding, outline view, integrated unit testing, and auto-
compilation on save with error-message display capability.

The Force.com IDE is a free resource provided by Salesforce to support its users and
partners, but isn't considered part of our services in terms of the Salesforce Master
Subscription Agreement.

To deploy Apex from a local project in the Force.com IDE to a Salesforce organization, use
the Deploy to Server wizard.

If you're deploying to a Production Organization, at least 75% of your Apex code must be
covered by unit tests, and all of those tests must complete successfully.

Deployment in Salesforce Chapter 3

[57]

Note the following:

When deploying components to the Production Organization, all test classes in
the organization are executed by default
There should be at least 1% test coverage in every trigger
All components should be compiled successfully
Test classes and test methods are not counted as part of Apex code coverage
Some parts of the code are not counted in Apex code coverage; for example,
debugs, comments, and spaces are not included

To use the Force.com IDE, we must first install Eclipse. Once Eclipse has been installed,
follow these steps to install the Force.com IDE:

Open Eclipse:1.

Deployment in Salesforce Chapter 3

[58]

Now enter the Workspace path and click OK:2.

Now select Help and click on Install New Software:3.

Deployment in Salesforce Chapter 3

[59]

To add new software, hit the Add... button.4.
In the Add Repository dialog box, enter the name as Force.com and enter the5.
location
as https://developer.salesforce.com/media/force-ide/eclipse45:

We will get a list of everything related to the Force.com IDE:

Deployment in Salesforce Chapter 3

[60]

List of available software

We need to select the Force.com IDE. We can add additional software, such6.
as Force.com Debugger and Force.com Lightning Support:

Deployment in Salesforce Chapter 3

[61]

Click on Next to proceed. If there are any issues, we can cancel the installation:7.

Installing the required software

Select the Keep my installation the same and modify the items being installed8.
to be compatible radio button. To proceed, click on Next. Again, if there are any
issues, we can cancel the installation:

Deployment in Salesforce Chapter 3

[62]

In Review Licenses, accept the terms and click Finish:9.

Deployment in Salesforce Chapter 3

[63]

Click OK to proceed. Now Eclipse successfully installs the Force.com IDE and10.
the required dependencies. When the installation is complete, you will be
prompted to restart. Click on Restart Now. Here only Eclipse will restart, not
your machine:

Wait for Eclipse to restart. Now select the Window tab and, in the Open11.
Perspective tab, select Other.
Select Force.com and click OK.12.

Follow these steps to deploy code from Force IDE:

First, we need to open the project. Then right-click on Project, which will show1.
many options. Select Force.com and click on Project Properties:

Deployment in Salesforce Chapter 3

[64]

Here we need to create a connection to the organization by using the
credentials. Fill in all the details; that is, the Username, Password, and
Security Token.

Deployment in Salesforce Chapter 3

[65]

Select the Environment as Production/Developer Edition:2.

Deployment in Salesforce Chapter 3

[66]

Hit the Apply and Close button:3.

Deployment in Salesforce Chapter 3

[67]

Once again, right-click on Project. We will see many options there;4.
select Force.com and click on Deploy to Server...:

Deployment in Salesforce Chapter 3

[68]

Here we need to add the credentials. Fill in all the details (in the Username,
Password, and Security Token fields):

Deployment in Salesforce Chapter 3

[69]

Hit the Next button. A window will appear showing a list of metadata5.
components:

Deployment in Salesforce Chapter 3

[70]

Select the components to be deployed via the relevant checkboxes:6.

Deployment in Salesforce Chapter 3

[71]

To validate the components, click Validate Deployment. We must validate all7.
components before actual deployment takes place:

Once the validation is successfully done, click Next. All of the selected8.
components will be deployed to the Salesforce organization.

Installing Salesforce DX plugins to Visual
Studio Code
Perform the following steps to set up Visual Studio Code:

Download and install the latest version of Visual Studio Code from https:/ ​/1.
code.​visualstudio. ​com/ ​download.

https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download

Deployment in Salesforce Chapter 3

[72]

After installation, open Visual Studio Code and, on the left toolbar, click the2.
Extensions icon. Search for Salesforce Extensions for VS Code:

Search results for Salesforce Extensions for VS Code

Deployment in Salesforce Chapter 3

[73]

Click on the relevant Install button to install the extension pack:3.

Installing the required extension

Deployment in Salesforce Chapter 3

[74]

Once the installation is complete, click on the Reload button:4.

Deployment in Salesforce Chapter 3

[75]

Summary
In this chapter, we learned about how to deploy Salesforce code from one sandbox to other
sandbox, from the sandbox to a Production Organization, and from one organization to
another organization. We were introduced to the different types of code deployment. We
also learned how to use them depending on the type of project. We learned about how we
can use Change Sets and the Force.com IDE to move code to production when we are
working on projects where we need to continuously move code to production, such as in an
ongoing project.

In the agile methodology, we mostly use the Ant Migration Tool, enabling code to be
moved at specific intervals or in sprints. In the next chapter, we will discuss the Ant
Migration Tool in greater depth.

4
Introduction to the Force.com

Migration Tool
In the previous chapter, we saw how Salesforce deployment is done in traditional ways. We
learned about change set deployment, inbound and outbound changes in Salesforce, how to
use Eclipse to deploy code to a sandbox, and Ant scripts as well. Also, we compared
deployment methods in Salesforce with their advantages and disadvantages and learned
how to choose the appropriate method of deployment according to our use case.

In this chapter, we will study the Force.com Migration Tool in detail. We will discover how
to install and set up the Force.com Migration Tool. Also, we will see how to use the
migration tool to retrieve metadata components from a Salesforce sandbox and deploy
them in another sandbox. Also, we will explain some important operations such as deploy
code and undeploy code. We will discuss about configuration files involved in sandbox
operations.

We are going to explain the complete process for retrieving metadata from a sandbox and
constructing a project manifest. We will learn how to configure sandbox credentials in
Force.com Migration Tool to perform operations like deploy or delete metadata files from a
sandbox.

In this chapter, we will learn about the following topics:

What the Force.com Migration Tool is?
How to set up the Force.com Migration Tool
How the Force.com tool helps developers and DevOps
Using the migration tool to retrieve metadata from a sandbox
Deploying metadata on a sandbox
Deleting files/components from a Salesforce organization using
destructiveChanges.xml

Troubleshooting

Introduction to the Force.com Migration Tool Chapter 4

[77]

What the Force.com Migration Tool is?
The Force.com Migration Tool provides a scripted way to deploy or retrieve metadata to
and from a Salesforce sandbox. It is based on Ant/Java.

The Force.com Migration Tool helps us to copy Salesforce components from one
organization easily. In normal practice, we have different environments such as
development, test, UAT, and production. As developers develop components in a
Developer sandbox, they need to move those changes to test or UAT for testers to test and
give the green light for a feature/change to production. However, this is not a one-time
process. Often, features or changes do not work properly or they introduce some bugs,
testers raise an issue/bug, and developers start working on them. Once the bug/issue is
fixed in the development environment, we need deployment of the change to test/UAT
again. So, this is a repetitive process due to many reasons. Doing this deployment using a
change set every time is not a convenient option, hence we need a solution to perform this
task that is fast, easy, and less error-prone.

The Ant Migration Tool provides a solution to all of the problems we just discussed. The
Ant Migration Tool is easy to set up and use. Once setup is done, only a few more things
need to be changed for repetitive use. Ant migration tasks can be scripted, so we can easily
automate most of your daily tasks. The Force.com Migration Tool is a Salesforce-supported
tool; we don't have to worry much about its compatibility with your application and
security.

Setting up the Force.com Migration Tool
For setting up the Force.com Migration Tool, you need to install some prerequisites as
mentioned in the following section. We can set up the migration tool on Windows, Mac, or
Linux operating systems. The following are the steps for setting up the Force.com
Migration Tool on a Linux machine.

Prerequisites
The prerequisites for setup are as follows:

Java 1.7.x or later
Ant tool

Let's install them on our system.

Introduction to the Force.com Migration Tool Chapter 4

[78]

Java
Java version 1.7.x or later is recommended for better security. Check whether Java is
already installed on your system using the command line as shown:

Open the Terminal.1.
Type java -version and press Enter.2.

You will see the following output:

java version "1.7.0_21"
Java(TM) SE Runtime Environment (build 1.7.0_21-b11)
Java HotSpot(TM) 64-Bit Server VM (build 23.21-b01, mixed mode)

If Java is not installed on the system, use the following instructions to install Java:

Visit http:/ ​/​www. ​oracle. ​com/ ​technetwork/ ​java/ ​javase/ ​downloads/ ​index.1.
html.
Download the latest version of the Java JDK. Install the JDK.2.
Verify by typing java -version at Command Prompt.3.

Ant
To check the Ant version installed, you need to perform the following steps:

Open the Terminal.1.
Run the ant -version command to verify whether Ant is installed on the2.
system.

The output will be as follows:

ant -version
Apache Ant(TM) version 1.10.1 compiled on February 2 2017

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Introduction to the Force.com Migration Tool Chapter 4

[79]

If Ant is not installed on your system, then use following steps to install Ant:

The recommended Ant version is 1.5.x or later; you will need to download
the latest version of Ant.

Download Apache Ant from http:/ ​/ ​ant.​apache. ​org/ ​bindownload. ​cgi. You1.
need to download an Ant version above 1.6 in ANT_HOME. Note that, in our case,
it is /usr/local/:

$wget http://www-eu.apache.org/dist//ant/binaries/apache-ant-
1.9.13-bin.tar.gz

Unzip Apache Ant to ANT_HOME:2.

$unzip apache-ant-1.9.13-bin.tar.gz

Add the bin directory to your path .3.
Add the Ant binary path to the .bashrc file as shown:4.

export JAVA_HOME=/usr/lib/jvm/java-1.8.0
export PATH=$PATH:$JAVA_HOME/bin
export ANT_HOME=/usr/local/apache-ant-1.9.13
export PATH=$PATH:$ANT_HOME/bin

For more information, see http:/ ​/​ant. ​apache. ​org/​manual/ ​install. ​html.

Installing the Ant Migration Tool on Linux
The installation steps are as follows:

Download the Force.com Migration Tool from https:/ ​/ ​developer. ​salesforce.1.
com/​page/ ​Force. ​com_ ​Migration_ ​Tool:

#wget https://gs0.Salesforce.com/dwnld/
SfdcAnt/Salesforce_ant_39.0.zip

http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/bindownload.cgi
http://ant.apache.org/manual/install.html
http://ant.apache.org/manual/install.html
http://ant.apache.org/manual/install.html
http://ant.apache.org/manual/install.html
http://ant.apache.org/manual/install.html
http://ant.apache.org/manual/install.html
http://ant.apache.org/manual/install.html
http://ant.apache.org/manual/install.html
http://ant.apache.org/manual/install.html
http://ant.apache.org/manual/install.html
http://ant.apache.org/manual/install.html
http://ant.apache.org/manual/install.html
http://ant.apache.org/manual/install.html
http://ant.apache.org/manual/install.html
http://ant.apache.org/manual/install.html
https://developer.salesforce.com/page/Force.com_Migration_Tool
https://developer.salesforce.com/page/Force.com_Migration_Tool
https://developer.salesforce.com/page/Force.com_Migration_Tool
https://developer.salesforce.com/page/Force.com_Migration_Tool
https://developer.salesforce.com/page/Force.com_Migration_Tool
https://developer.salesforce.com/page/Force.com_Migration_Tool
https://developer.salesforce.com/page/Force.com_Migration_Tool
https://developer.salesforce.com/page/Force.com_Migration_Tool
https://developer.salesforce.com/page/Force.com_Migration_Tool
https://developer.salesforce.com/page/Force.com_Migration_Tool
https://developer.salesforce.com/page/Force.com_Migration_Tool
https://developer.salesforce.com/page/Force.com_Migration_Tool
https://developer.salesforce.com/page/Force.com_Migration_Tool
https://developer.salesforce.com/page/Force.com_Migration_Tool
https://developer.salesforce.com/page/Force.com_Migration_Tool
https://developer.salesforce.com/page/Force.com_Migration_Tool
https://developer.salesforce.com/page/Force.com_Migration_Tool
https://developer.salesforce.com/page/Force.com_Migration_Tool

Introduction to the Force.com Migration Tool Chapter 4

[80]

Save the .zip file locally and extract the contents to the directory of your choice:2.

#unzip Salesforce_ant_39.0.zip

Note that, in our case, it is /home/devops/Force_com_tool.

After unzipping Salesforce_ant_39.0.zip, you will find ant-3.
Salesforce.jar; this is required to run Ant tasks. Copy
Salesforce_ant_39.0.zip to another folder named Sample, which has
examples for deploying and retrieving metadata from a sandbox
in codepkgclasses, removecodepkg. Also the Sample folder contains
a build.properties file where we provide credentials to access Salesforce
sandboxes. The Build.xml file has Ant tasks mentioned, which use credentials
from build.properties.

Installing the Ant Migration Tool on Windows
To use the Ant Migration Tool on a Windows machine, we need Java and Ant installed on
the machine. The steps to install Java and Ant are mentioned in the previous section.

The following steps are needed to set the ANT_HOME environment variable on Windows:

Enter environment in the search box:1.

Introduction to the Force.com Migration Tool Chapter 4

[81]

Select Edit the system environment variables. Under the Advanced tab, select2.
Environment Variables:

Under System Environment Variables, create a new ANT_HOME environment3.
variable. Set the value of ANT_HOME to the Ant binary path:

Introduction to the Force.com Migration Tool Chapter 4

[82]

Create a new environment variable with the name ANT_OPTS and value -4.
Xms256M:

Edit the Path environment variable and add the ANT_HOME path as shown in the5.
following screenshot. Click on OK. Again click on OK to save the environment
variable:

Open Command Prompt and check the Ant version using the ant -6.
version command. You will see the output as follows:

Apache Ant(TM) version 1.10.5 compiled on July 10 2018

Introduction to the Force.com Migration Tool Chapter 4

[83]

Installing the Salesforce Ant Migration Tool
The installation steps are as follows:

Download the ZIP file for the Ant Migration Tool from https:/ ​/​developer.1.
salesforce. ​com/ ​docs/ ​atlas. ​en-​us. ​daas. ​meta/ ​daas/ ​forcemigrationtool_
install. ​htm

Save the ZIP file to any directory you like. In this example, we will be using a2.
Demo folder at the C:\Demo path.
Extract Salesforce_ant_43.0.zip to C:\Demo\Salesforce_ant_43.0. The3.
contents of the ZIP file have already been explained in the Installing the Ant
Migration Tool on Linux section.

Retrieving metadata from a sandbox
To start retrieving metadata from a sandbox, we need to configure build.xml,
package.xml, and build.properties. The build.properties file is used to specify
Salesforce credentials to form a connection between your machine and the Salesforce
sandbox. The build.xml file contains Ant tasks that need to be performed in the sandbox.
package.xml is project manifest it will contain packages to retrieve or deploy.

We will go through the common procedure to retrieve metadata from a Salesforce
organization to a local machine using the Ant Migration Tool:

Go to the location where you extracted the Force.com Migration Tool .zip file.1.
You need to edit the build.properties file using any editor.
In this case, we will use vim editor. Run the following command:2.

$vim build.properties

Let's have a look at the sample build.properties file:3.

build.properties
sf.username = devopsxxx@Salesforce.com.dev
sf.password = mypassxxxxxxxxxxxxxxxxxxxxxxxxx
sf.token = <Security Token Generated>
#sf.sessionId = <Insert your Salesforce session id here. Use this
or username/password above. Cannot use both>
#sf.pkgName = <Insert comma separated package names to be
retrieved>
#sf.zipFile = <Insert path of the zipfile to be retrieved>
#sf.metadataType = <Insert metadata type name for which
listMetadata or bulkRetrieve operations are to be performed>

https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/forcemigrationtool_install.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/forcemigrationtool_install.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/forcemigrationtool_install.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/forcemigrationtool_install.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/forcemigrationtool_install.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/forcemigrationtool_install.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/forcemigrationtool_install.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/forcemigrationtool_install.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/forcemigrationtool_install.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/forcemigrationtool_install.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/forcemigrationtool_install.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/forcemigrationtool_install.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/forcemigrationtool_install.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/forcemigrationtool_install.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/forcemigrationtool_install.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/forcemigrationtool_install.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/forcemigrationtool_install.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/forcemigrationtool_install.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/forcemigrationtool_install.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/forcemigrationtool_install.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/forcemigrationtool_install.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/forcemigrationtool_install.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/forcemigrationtool_install.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/forcemigrationtool_install.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/forcemigrationtool_install.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/forcemigrationtool_install.htm
https://developer.salesforce.com/docs/atlas.en-us.daas.meta/daas/forcemigrationtool_install.htm

Introduction to the Force.com Migration Tool Chapter 4

[84]

Use 'https://login.Salesforce.com' for production or developer
edition (the default if not specified).
Use 'https://test.Salesforce.com for sandbox.
sf.serverurl = https:/ ​/ ​test. ​Salesforce. ​com <ForSandbox>
sf.maxPoll = 20
If your network requires an HTTP proxy, see
http://ant.apache.org/manual/proxy.html for configuration.
Load properties from file

Add the required login credentials for the desired Salesforce organization, such4.
as the following:

Sf.username: This field specifies the Salesforce username for your
sandbox/production. The username provided should have
permission to Modify All Data. If you are connecting to your
sandbox instance, then you need to append your sandbox name to
your username.
For example, if you can specify username as per you wish but it is
good practice to have meaningful names , it will help us to identify
sandbox. If your username is xxx@Salesforce.com and you want
to connect with sandbox dev then the sf.username value can be
xxx@Salesforce.com.dev.

Sf.password: This field specifies the password for your Salesforce
username. You need to append a Salesforce security token to the
password. A security token is 25-digit case-sensitive code that is
used for authenticating an API login. A security token is required
when you are logging in using an API.
For example, if your password is mypass and the security token is
xxxxxxxxxxxxxxxxxxxxxxxxx then the value of the sf.password
field should be mypassxxxxxxxxxxxxxxxxxxxxxxxxx.

https://test.salesforce.com
https://test.salesforce.com
https://test.salesforce.com
https://test.salesforce.com
https://test.salesforce.com
https://test.salesforce.com
https://test.salesforce.com
https://test.salesforce.com
https://test.salesforce.com

Introduction to the Force.com Migration Tool Chapter 4

[85]

If you don't have a security token, you can reset it. The steps to reset
your security token are as follows:

Log in to your organization, and navigate to the top1.
navigation bar. Go to <your name> | My
Settings | Personal | Reset My Security Token:

Click on Reset Security Token. This invalidates your2.
existing token.
You will get your security token on your user's mail ID. For3.
security reasons, the security token is not shown in the reset
settings.

Note: If you still face issues at login, you need to check whether you have
set a Login IP Range such as 53.14.120.10 to 53.14.120.255. Then you need
to delete the login IP range if you are not in the same IP range.

Sf.serverurl: This field specifies the server URL for Salesforce. If
you want to connect to a production organization or Developer
Edition organization then the value of this field will be
https://login.Salesforce.com. If you want to work with a
sandbox then the value of field will be
https://test.Salesforce.com.If you use custom domain then
you can set value
as https://custom-domain.my.salesforce.com.

Introduction to the Force.com Migration Tool Chapter 4

[86]

Now we need to list out all components we want to retrieve from the sandbox.5.
The package.xml file is a project manifest where we list all the components we
want to retrieve or deploy. In our package.xml file, we have mentioned all
Apex class components in the project. If you want to take a backup of your
sandbox metadata, then you can mention all components in package.xml. For
example, package.xml is for Apex classes only:

<?xml version="1.0" encoding="UTF-8"?>
<Package xmlns="http://soap.sforce.com/2006/04/metadata">
 <types>
 <members>*</members>
 <name>ApexClass</name>
 </types>
 <version>36.0</version>
</Package>

The next file we need to configure is build.xml. This file specifies a target to6.
retrieve and deploy metadata. Ant tasks are mentioned in the build.xml file.
The configuration steps are as follows:

Go to the directory where build.xml is situated1.
Run the ant command to verify whether you have installed Apache2.
Ant properly
The build.xml file loads the build.properties file to get access to3.
the sandbox
To retrieve metadata from your sandbox, user parameters can be set4.
for each <sf:retrieve> target
As our retrieve target is DevOps/src, all metadata will be stored in5.
this directory

For example, take a look at the following build.xml file:

<project name="Force.com Migration Tool"
default="retrieveUnpackaged" basedir="."
xmlns:sf="antlib:com.Salesforce">
<taskdef uri="antlib:com.Salesforce"
 resource="com/Salesforce/antlib.xml"
 classpath="lib/ant-Salesforce.jar"
 />
 <!-- Load properties from file -->
 <property file="build.properties"/>
 <!-- Load properites from environment -->
 <!-- These will override properties from the file -->
 <property environment="env"/>
 <property name="sf.username"

Introduction to the Force.com Migration Tool Chapter 4

[87]

value="${env.SF_USERNAME}"/>
 <property name="sf.password"
value="${env.SF_PASSWORD}"/>
 <property name="sf.token" value="${env.SF_TOKEN}"/>
 <property name="sf.serverurl"
value="${env.SF_SERVERURL}"/>

 <!-- Retrieve an unpackaged set of metadata from your
org -->
 <!-- The attribute 'unpackaged' is where metadata will
be stored -->
 <target name="retrieveUnpackaged">
 <!-- Retrieve the contents into another directory -->
 <sf:retrieve
 username="${sf.username}"
 password="${sf.password}${sf.token}"
 serverurl="${sf.serverurl}"
 retrieveTarget="DevOps/src"
 unpackaged="${basedir}/package.xml"
 />
 </target>
 <!-- Retrieve the information on all supported metadata
types -->
</project>

Retrieve metadata using the ant command. Run the following command to7.
retrieve Apex class metadata in the retrieve target, that is, DevOps/src:

$ ant -file build.xml

The console log is shown in the following screenshot:8.

If the build is successful, then it will show a BUILD SUCCESSFUL message.

Introduction to the Force.com Migration Tool Chapter 4

[88]

Deploying metadata on a sandbox
We saw in the previous example how we can retrieve metadata from a sandbox and deploy
to a local environment. We can use Eclipse to edit and make changes in code or add new
feature code. Developers can use the Force.com migration plugin to sync metadata with a
workspace in Eclipse. After making changes in code, developers can deploy changes on a
test/UAT sandbox. We can use the Force.com Migration Tool to deploy changes to the
sandbox.

We will go through the common procedure to deploy metadata to a Salesforce organization
from a local machine using the Ant Migration Tool. To provide access to the sandbox, we
need to add sandbox credentials in the build.properties file as we provided credentials
in Step 3 in the Retrieve metadata from sandbox section previously. The value of the
Sf.serverurl field will depend on where you want to deploy your changes. If you want
to deploy on test, UAT sandbox, or any other development sandbox, then it will be
https://test.Salesforce.com. If you are deploying your changes to the production
environment, then use https://login.Salesforce.com. But until all test cases are
successfully passed, we should not deploy any changes to the production environment
directly; this can introduce failure in existing features and break the application.

Once we are done with changes in build.properties, we need to add all the components
we want to deploy to the sandbox in package.xml:

<project name="Force.com Migration Tool" default="retrieveUnpackaged"
basedir="." xmlns:sf="antlib:com.Salesforce">
<taskdef uri="antlib:com.Salesforce"
 resource="com/Salesforce/antlib.xml"
 classpath="lib/ant-Salesforce.jar"
 />
 <property environment="env"/>
 <property name="sf.username" value="${env.SF_USERNAME}"/>
 <property name="sf.password" value="${env.SF_PASSWORD}"/>
 <property name="sf.token" value="${env.SF_TOKEN}"/>
 <property name="sf.serverurl" value="${env.SF_SERVERURL}"/>

 <sf:deploy
 username="${sf.username}"
 password="${sf.password}${sf.token}"
 serverurl="${sf.serverurl}"
 deployRoot="DevOps/src"
 maxPoll="1000"
 testLevel="NoTestRun"
 pollWaitMillis="10000"
 rollbackOnError="true"
 />

Introduction to the Force.com Migration Tool Chapter 4

[89]

 </target>
 </project>

In the preceding file, there are some new parameters, such as the following:

deployRoot: This is a mandatory parameter. All files to deploy will be there in
this directory.
maxPoll: This is an optional parameter. This parameter defines the number of
times to poll the server for the results of the deploy request. It has 200 as the
default value.
testLevel: This is an optional parameter that specifies which tests to run while
deployment is done on a specific sandbox. The value of this parameter can be
different depending on the type of sandbox and where deployment is going on.
For a development sandbox, this is set to NoTestRun as default where no tests
will run. You can specify other options where you can choose which test cases to
run or run all tests on organization that we will see in more detail in Chapter 7,
Continuous Testing.
pollWaitMillis: This is an optional parameter that defines the number of
milliseconds to wait while polling for results of the deployment. The default
value of this parameter is 10,000, so we can set this accordingly.

Deleting files/components from a Salesforce
organization using destructiveChanges.xml
We have seen we can retrieve metadata from a sandbox, and we can deploy changes to a
sandbox using the Ant Migration Tool. But sometimes we don't need some features and we
want to delete some components or files such as objects, fields, and so on from our
Salesforce organization. We need to create one more file along with package.xml that is
destructiveChanges.xml. The format of the destructiveChanges.xml delete
manifest will be the same as package.xml, only wildcard characters are not accepted in a
delete manifest.

Delete component is same process as deploying components with delete manifest file. We
need to add a list of the components to delete in destructiveChanges.xml. A sample file
to delete a custom object is as follows:

<?xml version="1.0" encoding="UTF-8"?>
 <Package xmlns="http:/ ​/​soap. ​sforce. ​com/ ​2006/ ​04/​metadata">
 <types>
 <members>MyTestObject__c</members>

http://soap.sforce.com/2006/04/metadata
http://soap.sforce.com/2006/04/metadata
http://soap.sforce.com/2006/04/metadata
http://soap.sforce.com/2006/04/metadata
http://soap.sforce.com/2006/04/metadata
http://soap.sforce.com/2006/04/metadata
http://soap.sforce.com/2006/04/metadata
http://soap.sforce.com/2006/04/metadata
http://soap.sforce.com/2006/04/metadata
http://soap.sforce.com/2006/04/metadata
http://soap.sforce.com/2006/04/metadata
http://soap.sforce.com/2006/04/metadata
http://soap.sforce.com/2006/04/metadata
http://soap.sforce.com/2006/04/metadata
http://soap.sforce.com/2006/04/metadata

Introduction to the Force.com Migration Tool Chapter 4

[90]

 <name>CustomObject</name>
 </types>
</Package>

To deploy destructive changes, we need package.xml that contains only an API version. It
should not contain any list of components. The destructiveChanges.xml and
package.xml files should be in same directory.

How the Force.com tool helps developers
and DevOps
The Force.com Migration Tool provides developers with a way to easily perform operations
on their sandbox, such as retrieving, deploying, and deleting metadata. Using the
Force.com Migration Tool, developers can deploy code to different sandboxes and switch
between workspaces on Eclipse. The Migration Tool is easy to set up on developers'
machines, and it provides a secure way to communicate with your Salesforce organization.

We can face issues if something goes wrong with deployments; having automated daily
backup is very important in such scenarios. The Force.com Migration Tool provides a
command-line way to retrieve the code and configuration from a Salesforce sandbox, so
DevOps or admins can automate the task of taking a backup for your Salesforce
organization code and configuration. Also, we can make use of open source continuous
integration tools such as Jenkins to automate the process to take a backup of a Salesforce
organization and save it to Git. In Chapter 6, Continuous Integration, we will cover using
Jenkins to automate the Salesforce organization backup process step by step.

Troubleshooting
In this section, we will have a look at troubleshooting scenarios:

Connection issues: The most common issue we face during retrieval or
deploying metadata is a connection issue. We use asynchronous types of requests
during retrieval or deployment of metadata so we do not get a response
immediately. The call for deploy operation is asynchronous sometimes Ant
Migration Tool time outs during deployment. So if the Ant Migration Tool fails
due to timeout and the deployment has any errors, we will not be able to see the
error logs. In that case, we need to configure the pollWaitMillis and maxPoll
parameters.

Introduction to the Force.com Migration Tool Chapter 4

[91]

Invalid credentials or user locked out: If you are getting this error, then there is
an issue with your build.properties file. You need to verify the username,
password, security token, and server URL are correct. Also, if you have several
failed login attempts, then there is chance that your user is locked out. So, the
number of failed attempts that are allowed depends on your organization's
settings. Sometimes, verifying proxy settings will also help to resolve issues with
credentials.
Failed test cases: If you are deploying changes to production, then as per
Salesforce standards you need 75% code to be covered by test cases, and all test
cases should pass to deploy code to a production environment successfully.

Summary
In this chapter, we learned about the Force.com Migration Tool and how to set up the tool
in your environment. We have seen the step-by-step process to retrieve metadata from a
sandbox using Ant scripts, and we learned about configuring our sandbox credentials in
build.properties to provide access to a sandbox environment, listing components to
retrieve in the package.xml project manifest, and retrieving the contents into the directory
mentioned in the build.xml file.

After successfully retrieving metadata from a sandbox to a local machine, we moved to the
next step, which is deploying changes to a sandbox. We have seen sample deployment of
metadata using the Ant Migration Tool to a developer sandbox or test sandbox. Sometimes,
we might need to delete components or files from a sandbox. We have seen how we can
delete components from a Salesforce organization using destructiveChanges.xml.

In the next chapter, we will see what source control versioning is. We will also learn the
advantages of using Git, branching strategy in Git, and how to set up a Git repository for
your Salesforce project. We will also go through the developer flow of using Git with a code
editor such as Eclipse.

5
Version Control

In the previous chapter, we looked at the Force.com migration tool. We went through a
step-by-step procedure for setting up Force.com or the Ant migration tool on a Windows
and Linux machine, studied the files that are required to retrieve metadata from a sandbox,
and how to provide credentials to access a sandbox. We looked at the procedure to deploy
metadata on sandboxes and discussed how Force.com helps developers and DevOps in
everyday life.

In this chapter, we will study the source code versioning system and its types. We will
mainly focus on Git distributed version control, and operations performed on the Git
repository, such as commit, push, merge, and so on. We will also go through the step-by-
step procedure for setting up our own GitLab server, adding a repository, adding users,
and creating a branch. We will discuss Git branching strategies and protecting branches.
Finally, we will learn how to use Git with a Salesforce project and how to save Salesforce
metadata to Git.

What is meant by SCVS?
Source Code Versioning System (SCVS) as the name indicates, it helps to manage source
code changes over time. There are many source control versioning systems available such
as CVS, SVN, Git, and so on. Version control maintains the history of every file change, and
helps developers to track changes in an application. The main reasons behind having a
version control system are to be able track changes in an application and to be able to revert
back if something goes wrong. As code undergoes various changes, version control helps
us to maintain a working version of code, and with the help of versioning, we can also
maintain different environments such as testing, staging, and production. Multiple users
can work on the same application source code simultaneously using version control.

Version Control Chapter 5

[93]

There are two varieties of version control, centralized and distributed. In centralized
version control, there is one central repository where each user gets their own working
copy. If anyone commits their changes to the source control system, other co-users can get
those changes by updating their working copy. Subversion and CVS are centralized version
systems.

In distributed version control, each user gets a local repository and working copy. Changes
made by the user are saved in their local repository when they commit code. Co-users can
get those changes when the user pushes the changes to the remote repository.

Version control in Salesforce
Salesforce has a limited audit capability to track changes in a sandbox. Making changes in
the production environment is risky, and we are not able to see versions of files or track
changes in a sandbox.

Reverting code in Salesforce is a very difficult task if we don't have version control in place.

Why doesn't Salesforce provide its own version control? Salesforce was basically designed
for users to get their application running on the cloud without much understanding of the
code. We can build small applications in Salesforce with just clicks, so Salesforce didn't
focus on having version control. In Salesforce, we can modify the Salesforce organization in
place so we don't need to have code on a local machine.

Mostly people working on Salesforce think that there is lot of work involved in setting up
version control for Salesforce, which is only required if we have large teams. To set up
version control for Salesforce projects, developers and administrators need to learn how to
use version control systems, and they might need some knowledge of the command-line
instructions involved. But we have many integrations of Git where we don't need to know
about commands as we can use buttons or tabs instead.

As we have mentioned here, Salesforce does not provide any in-built version control, so we
need to set up a source code version control system. There are many version control
systems, but the most popular version control system is Git. In the following section, we
will go through the GitLab setup and using Git in a Salesforce project.

Version Control Chapter 5

[94]

Introduction to Git
Git is a commonly used version control system invented by Linus Torvalds. It is a
distributed type of version control which enables more than one developer to work on the
same project simultaneously.

It helps to maintain versions of source code so that if anything goes wrong, you can always
revert back to the working version of your source code. To use Git, you will need a
repository that will store your source code and make it available to all who are working on
it.

Git uses the GitHub as a hosting service for Git repositories, and so first of all, you will
need a GitHub account so that you will be able to create a repository to store your source
code. There are two types of repository:

Public repository: You can host public repositories on GitHub for free. These
repositories will be accessible to all, so if you are going to save your important
source code on GitHub, you should not save it on a public repository.
Private repository: These repositories are protected; nobody can access them
unless you give them access. You have to pay for private repositories.

We have introduced GitHub, but for now we will be using GitLab. GitLab is a fully
featured open source Git server that you can install on your server. GitLab is a database-
backend web application and is available in both community and enterprise editions.

Let's move to our next point, which is setting up our own GitLab server.

Setting up a GitLab server on a Linux
instance
To set up the server, an omnibus package installation is recommended. We will install the
GitLab Community Edition on an Ubuntu 16.04 server. You can install GitLab on other
operating systems such as Ubuntu, Centos, Debian, and so on; you can find a list
here: https:/​/​about. ​gitlab. ​com/ ​installation/ ​. An omnibus package installation is the
recommended method by GitLab itself, as the set up is easy and the upgrade process is also
painless.

https://about.gitlab.com/installation/
https://about.gitlab.com/installation/
https://about.gitlab.com/installation/
https://about.gitlab.com/installation/
https://about.gitlab.com/installation/
https://about.gitlab.com/installation/
https://about.gitlab.com/installation/
https://about.gitlab.com/installation/
https://about.gitlab.com/installation/
https://about.gitlab.com/installation/
https://about.gitlab.com/installation/
https://about.gitlab.com/installation/

Version Control Chapter 5

[95]

Prerequisites
GitLab recommends using a server with the following configuration:

2 cores
4 GB of RAM

Install the required packages before installing GitLab Community Edition:

$sudo apt-get update
$sudo apt-get install ca-certificates curl openssh-server postfix

For the Postfix installation, choose Internet Site when prompted. On the next screen, enter
your server's domain name or IP address to configure the system that will send mail:

Let's move on to the GitLab server installation.

Version Control Chapter 5

[96]

Installing the GitLab server
We have installed all required dependencies for the GitLab server. Run the following
commands to install GitLab:

$curl -LO https://packages.gitlab.com/install/repositories
/gitlab/gitlab-ce/script.deb.sh
% Total % Received % Xferd Average Speed Time Time Time
Current Dload Upload Total Spent Left Speed
100 5933 0 5933 0 0 23796 0 --:--:-- --:--:-- --:--:--
23827

You can examine script.deb.sh and check all the packages that will be installed and
their configuration, as you need to know what is being installed on your server. Once you
have verified script.deb.sh, you are good to go for the next step in the installation:

$ sudo bash script.deb.sh
Detected operating system as Ubuntu/xenial.
Checking for curl...
Detected curl...
Checking for gpg...
Detected gpg...
Running apt-get update... done.
Installing apt-transport-https... done.
Installing /etc/apt/sources.list.d/gitlab_gitlab-ce.list...done.
Importing packagecloud gpg key... done.
Running apt-get update... done.

The repository is set up! You can now install packages.

This script will set up our server to use the GitLab maintained repositories. After
completing this script, we will install the actual GitLab application with apt:

$sudo apt-get install gitlab-ce

This will install the required components on our system, and the GitLab configuration file
is /etc/gitlab/gitlab.rb. You can edit the configuration file and reconfigure the
GitLab server:

$sudo gitlab-ctl reconfigure

Version Control Chapter 5

[97]

After installation is complete, visit your GitLab external URL and set up a password for the
root user:

Log in with root user, and you will get the Welcome page for GitLab, as shown in this
screenshot:

Now you have successfully set up GitLab, let's use it and create your first repository.

Version Control Chapter 5

[98]

Creating your first project in GitLab
Log in to your GitLab server and follow the steps to create your first project repository:

Choose Create a Project to create a project on the GitLab server. In the project,1.
we will store all our code, configuration, and other information related to our
application.
Provide a project name and description. For now, we will create a sample Hello2.
World node application. Our project name is Sample.
Next, comes the visibility level of your project; it can be public, internal, or3.
private.
Public repositories can be cloned by anyone; any logged-in user can clone4.
internal project repositories. To clone a private project, a user needs explicit
access to clone the repository.
For now we will keep it public and check Initialize repository with a README5.
for a quick start.
Click on Create Project:6.

Version Control Chapter 5

[99]

Clone the project URL:7.

If you have Git commands installed on your machine, run the following8.
command to clone the repository to your local machine:

$git clone http://35.155.183.87/root/Sample.git
Cloning into 'Sample'...
remote: Enumerating objects: 3, done.
remote: Counting objects: 100% (3/3), done.
remote: Total 3 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (3/3), done.

You will see the Readme.md file is already created in the Sample project. You are all set to
start working with your Git repository:

Working with a Git repository
We have cloned the Sample repository on our local machine. Now we will see how to work
with the Git repository:

Create a Node.js Hello World application that will create an HTTP server and1.
respond to all requests on port 8080 with the string Hello World. Here is the
sample code for the Node.js application:

var http = require("http");

http.createServer(function (request, response) {

Version Control Chapter 5

[100]

 // Send the HTTP header
 // HTTP Status 200 OK
 // Content Type is text/plain
 response.writeHead(200, {'Content-Type': 'text/plain'});
 // Send response body as "Hello World"
 response.end('Hello World\n');
}).listen(8080);

// Print message
console.log('Server running at http://127.0.0.1:8080/');

Save the code in main.js and add this file to our Git repository.2.
Check untracked changes in our Git repository with following command:3.

$git status
On branch master
Your branch is up to date with 'origin/master'.
Untracked files:
 (use "git add <file>..." to include in what will be
committed)
 main.js
nothing added to commit but untracked files present (use "git
add" to track)

By default, GitLab sets master branch as our default branch. The newly
added main.js file is not present on the remote repository, and it is also not
tracked in the local Git.

Every file in the Git working directory is tracked, untracked, or ignored. The
files which are committed or staged before are tracked files. Files that are not
staged or committed are untracked files. The files that you don't want to add in
the repository, such as files with credentials or machine-generated files, are
mentioned in the .gitignore file.

An example of a .gitignore file coded to ignore all files with a .log extension
is as follows:

.gitignore
ignore all logs
*.log

Version Control Chapter 5

[101]

Let's add the main.js file to the local repository; it needs to be indexed first. The4.
git add command updates the index using the content found in the working
directory. These changes will be staged for commit. You can add all changes into
the index using * or the -a option in the git add command:

$git add .
$ git status
On branch master
Your branch is up to date with 'origin/master'.
Changes to be committed:
 (use "git reset HEAD <file>..." to unstage)
 new file: main.js

The next step is to commit staged changes to the local repository:5.

$git commit -m "Add main.js file"
[master 9d8892d] Add main.js file
 1 file changed, 15 insertions(+)
 create mode 100644 main.js

The commit command is used to commit changes in the local repository. Other developers
will not be able to see the changes. The important thing while committing your changes is
to provide a commit message with the -m option in the command. Make sure your commit
message relates to changes you're making in the code so that others using it will be able to
understand your changes.

If you don't mention the filename, it will commit all the recent changes you made in the
code.

The final step is to push your local changes to the remote repository; the push operation
refers to pushing changes to the remote repository. While pushing changes, it is important
to mention the origin of the changes:

$ git push origin master
Username for 'http://35.155.183.87': priyanka
Password for 'http://priyanka@35.155.183.87':
Counting objects: 3, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 547 bytes | 547.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0)
To http://35.155.183.87/priyanka/Sample.git
 aad9bc9..9d8892d master -> master

Version Control Chapter 5

[102]

Git will ask you for your credentials to authenticate the user and the push changes to the
remote repository hosted on the GitLab server. Now you will be able to see those changes
in the GitLab web URL.

It will look like this:

Viewing the commit history
You can check logs using the command line, switch to the Git repository and run the git
log command, as shown here, to check the most recent commits. This command without
any extra argument shows commits made in the repository in reverse order. The command
output also contains information such as the SHA-1 checksum, the commit message, the
date and time of the commit, and author details:

$git log
commit 9d8892da192fffb93a9a8a58fdf700632dabee3c (HEAD -> master,
origin/master, origin/HEAD)
Author: Priyanka Dive <user@example.com>
Date: Mon Aug 27 00:56:39 2018 +0530

 Add main.js file

Version Control Chapter 5

[103]

commit aad9bc971f4e69242e550f9e1771e23c1785b5e2
Author: priyanka <user@example.com>
Date: Sun Aug 26 18:47:08 2018 +0000

 Initial commit

You can check Git commit messages with the timestamp and user details, as shown here:

Adding a user to GitLab
The steps to add a user are as follows:

Log in to GitLab with admin user (root).1.
Click the spanner icon (top right) to enter Admin area:2.

Version Control Chapter 5

[104]

You will see three buttons, New project, New user, and New group. Click on3.
New user:

Version Control Chapter 5

[105]

Fill in the required information – Name, Username, and Email:4.

Provide a project user limit as per your organization's rules. Also, if you want a5.
user to be able to create a group, give them access to creating a group by
checking Can create group. If you want a user to have limited access, then select
the Access level to be Regular, and if a user needs Admin privileges, then select
the Access level to be Admin for the user:

Version Control Chapter 5

[106]

After filling in all the required information, click on Create user. This will create6.
the user and send a password reset link to the user's Email ID.

Version Control Chapter 5

[107]

Troubleshooting
Consider the following error:

There was an error running gitlab-ctl reconfigure:
execute[/opt/gitlab/embedded/bin/initdb -D /var/opt/gitlab/postgresql/data
-E UTF8] (postgresql::enable line 80) had an error:
Mixlib::ShellOut::ShellCommandFailed: Expected process to exit with [0],
but received '1'
---- Begin output of /opt/gitlab/embedded/bin/initdb -D
/var/opt/gitlab/postgresql/data -E UTF8 ----
STDOUT: The files belonging to this database system will be owned by user
"gitlab-psql".
This user must also own the server process.
STDERR: initdb: invalid locale settings; check LANG and LC_* environment
variables
---- End output of /opt/gitlab/embedded/bin/initdb -D
/var/opt/gitlab/postgresql/data -E UTF8 ----
Ran /opt/gitlab/embedded/bin/initdb -D /var/opt/gitlab/postgresql/data -E
UTF8 returned 1

Solution
This issue can be due to the LANG and LC_* variables, which are unset in the Linux system.
In the omnibus installation, we can set these variables using the following commands and
run the installation command again or reconfigure GitLab:

$export LC_ALL="en_US.UTF-8"
$export LC_CTYPE="en_US.UTF-8"

Branching strategy
Branching is a very useful feature provided by Git. It helps to develop multiple features in
parallel. Branching can be useful to define environment specific codes such as develop, test,
stage, and production. Usually, the environment to Git branch mapping will be, for
example, the code for the development environment stored in the develop Git branch; for
the test environment, we use the test Git branch, and so on. For the production
environment, we use the master branch, as it is the first default branch created when we
create any Git repository.

Version Control Chapter 5

[108]

Let's see how we can create a branch using the web UI:

Log in to GitLab.1.
Go to your repository, Sample, that we created in the Creating your first project in2.
GitLab section:

As you see in this screenshot, we have only one branch which is the master, and
is the default branch.

Version Control Chapter 5

[109]

Click on Branch, you will be redirected to a page where you can see all the active3.
branches for this repository. Currently, we have a master branch:

Click on New branch, type in the branch name, develop. We will be using this4.
branch for development:

Click on Create branch. That's it. You can see the new branch that's been created5.
from the master branch. You can now create another branch from the develop or
master branch. As the develop branch is created from the master branch, all the
code in the develop branch will be the same as in the master branch, for now:

Version Control Chapter 5

[110]

Now, if we go to Active Branches, we can see two branches in the list. There is a6.
difference between those two branches. The master branch is the default branch
and the protected branch, but the newly created develop branch is not a
protected branch. The only users who are authorized to make modifications in a
protected branch are mostly senior developers or project leads. Due to this, we
can avoid the problem of multiple developers simultaneously working on
different features.

Handling branches using the Git CLI
After the Git clone, you will, by default, get code for the default branch set on your
repository. In our case, it is the master branch. Let's check which branch we have cloned
using the following command:

$git branch
* master

Version Control Chapter 5

[111]

The asterisk in front of the branch name indicates a current branch.

Let's create a test branch:

$git branch test

This will create a new branch named test, on your local Git repository:

 $git branch
 * master
 test

Now you will see two branches in your local Git repository, the git branch
<BRANCH_NAME> command will create a branch from the current branch. So, the test branch
is created from the master branch.

Switch to the newly created the test branch and push it to the remote repository:

 $git checkout test
 Switched to branch 'test'
 $git push origin test
 Username for 'http://54.202.196.64': root
 Password for 'http://root@54.202.196.64':
 Total 0 (delta 0), reused 0 (delta 0)
 remote:
 remote: To create a merge request for test, visit:
 remote:
http://54.202.196.64/root/Sample/merge_requests/new?merge_request%5Bsource_
branch%5D=test
 remote:
 To http://54.202.196.64/root/Sample.git
 * [new branch] test -> test

Verify if you can see the test branch in the GitLab web UI:

Version Control Chapter 5

[112]

Merging changes from develop to master
Let's see how to merge changes from the develop branch to the master branch:

You can specify which branch to clone from the Git repository:1.

$git clone http://54.202.196.64/root/Sample.git -b develop
Cloning into 'Sample'...
remote: Enumerating objects: 6, done.
remote: Counting objects: 100% (6/6), done.
remote: Compressing objects: 100% (4/4), done.
remote: Total 6 (delta 0), reused 0 (delta 0)
Unpacking objects: 100% (6/6), done.

For testing, we will make a small change, such as changing the console log2.
message from Hello World to Hello Git. Add the changes to Git and push
the changes to the remote develop branch:

$git add main.js
$git commit -m "Test merge request"
$git push origin develop
Counting objects: 3, done.
Delta compression using up to 4 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 321 bytes | 321.00 KiB/s, done.
Total 3 (delta 1), reused 0 (delta 0)
remote:
remote: To create a merge request for develop, visit:

Version Control Chapter 5

[113]

remote:
http://54.202.196.64/root/Sample/merge_requests/new?merge_reque
st%5Bsource_branch%5D=develop
remote:
To http://54.202.196.64/root/Sample.git
44fd847..a93bd41 develop -> develop

If you want to create a merge request, open the URL shown in remote.3.
Assign it to the person who has the right to accept a merge request on the master4.
branch:

In our case, it is assigned to Administrator. Fill out the required information and5.
click Submit Merge Request.
The Administrator user can see the merge request and, after verifying changes6.
done by developers, if there are no merge conflicts and all previous checks are
passed successfully, then the Administrator will accept the merge request by
clicking on Merge. Changes in test will be moved to the master branch:

Version Control Chapter 5

[114]

The Administrator can modify the commit message, and remove the source branch if it is
not required afterwards. If something goes wrong, the Administrator can revert the
changes as well:

Version Control Chapter 5

[115]

Using Git in the Eclipse IDE
Steps 1 to 3 are already explained in Chapter 1, Salesforce Development and Delivery Process:

Eclipse installation1.
Install the Force.com IDE plugin2.
Configure Force.com project in Eclipse3.

We will continue with the next steps in the following sections.

Configuring Git and pushing code to Git
Now we need to configure Git.

Create the repository in a new folder by right-clicking on the folder and1.
selecting Git repository here...:

Version Control Chapter 5

[116]

Here, we are not selecting the Make it Bare and click on OK:2.

Version Control Chapter 5

[117]

You will see the next screen. Click on OK:3.

Version Control Chapter 5

[118]

Right-click on the folder and select TortoiseGit and click on Settings:4.

Version Control Chapter 5

[119]

You will see the next screen. Click on OK:5.

Select the Git and enter the Name and Email:6.

Version Control Chapter 5

[120]

You will see the next screen. Select the Git and click on Remote:7.

Version Control Chapter 5

[121]

Open the Git project in the browser and select the project.8.
Copy the HTTP URL from the project:9.

Enter the copied URL in URL and Push URL. Select All in the Tags field10.
and click on the Add New/Save button:

Version Control Chapter 5

[122]

Click on the Yes button:11.

Version Control Chapter 5

[123]

You will see this screen. Click on OK:12.

Enter the Git credentials in this screen:13.

Version Control Chapter 5

[124]

Click on OK:14.

Version Control Chapter 5

[125]

Once you have completed the process, click on the Close button:15.

Version Control Chapter 5

[126]

Finally, click on OK:16.

Version Control Chapter 5

[127]

Now you have to pull the files from the Git repository, the steps are as follows:

Right-click on the same file and select TortoiseGit and click on Pull...:1.

Version Control Chapter 5

[128]

You will get one popup, as shown. Select ... to select Remote Branch:2.

Version Control Chapter 5

[129]

Here you can see all the list of remote branches, select the specific branch and3.
click on OK:

Version Control Chapter 5

[130]

Once the process is complete, click on Close:4.

Now the connection has been created and all the files copied to the local folder
from the Git repository.

Version Control Chapter 5

[131]

Add your files into this folder:5.

Version Control Chapter 5

[132]

Right-click on the same folder and select the TortoiseGit and click on Add...:6.

Version Control Chapter 5

[133]

Select all the files and click on OK:7.

Version Control Chapter 5

[134]

Once the process is complete, click on Commit...:8.

Version Control Chapter 5

[135]

Now add the commit message and click on Commit & Push:9.

Version Control Chapter 5

[136]

To see all the remote branches, select the ... button:10.

Version Control Chapter 5

[137]

Here you see all the branches, select the specific branch:11.

Version Control Chapter 5

[138]

Now click on OK:12.

Version Control Chapter 5

[139]

Once the process is complete, click on Close:13.

Version Control Chapter 5

[140]

Now all the files are moved to the Git repository. Check on the Git repository:14.

Check all the files have been committed correctly:15.

All code is successfully committed in the Git repository.

Version Control Chapter 5

[141]

Summary
In this chapter, we learned about version control systems. We have seen what version
control we have in Salesforce and why we need a version control system such as Git. We
learned how to install GitLab on on-premise servers using the most recommended method
by GitLab itself—the omnibus setup. After setting up our own GitLab server, we learned
how to create our first project in GitLab using a web UI. We worked with the Git repository
using Git commands, such as git clone, add, commit, push, and so on.

We discussed the branching strategy in Git and general scenarios where we need to work
with different branches. We have learned about concepts such as protected branch, and
default branch. We also got to know how we can create a new branch from an existing
branch, and merge code from one branch to another branch. Finally, we learned how to use
Git for our Salesforce project with Eclipse.

In the next chapter, we will go to our next stage, which is Continuous Integration using a
Jenkins server. We will learn how Jenkins helps us to automate our daily tasks, such as
retrieving and deploying metadata using the Force.com migration tool and Git.

6
Continuous Integration

In the previous chapter, we learned about the importance of version control systems in
projects and how we can achieve version control in our Salesforce project. We looked at
instructions for how to set up our own GitLab server and push metadata from the
Salesforce organization to the Git repository. After following the steps to install Git on a
developer machine and sync it with the Salesforce sandbox, developers will be able to make
and save their changes in the Git repository.

In this chapter, we will learn about how we can use Git integration with Jenkins to
automate backups and the deployment of Salesforce metadata. We will discuss Jenkins and
look at how continuous integration is achieved in Salesforce using Jenkins and the Ant
Migration Tool. We will look at how to configure the Ant Migration Tool with Jenkins and
and how to configure a Jenkins job to retrieve metadata from the sandbox. We will cover
step-by-step instructions for deploying changes to UAT or a testing environment using
Jenkins.

In this chapter, we will cover the following topics:

What is Jenkins?
Installing Jenkins
Configuring the Ant Migration Tool with Jenkins
Providing sandbox credentials to Jenkins
Configuring a Jenkins job to retrieve metadata from a sandbox
Configuring a Jenkins job to deploy metadata on a sandbox

Continuous Integration Chapter 6

[143]

What is Jenkins?
Jenkins is a continuous integration server written in Java. Jenkins is an open source
automation server. You can install it on your machine easily. Jenkins can be installed on
Windows, macOS, and Linux machines. Jenkins is easily configurable and has many
plugins to support continuous integration and deployment. If you have experience of using
containers, you can use Docker to install Jenkins using Docker images from the registry.

CI using Jenkins
Continuous integration entails developers pushing their code to a shared repository and
testing it using regular builds so that they can detect problems in the code gradually.

There are several tools that can be used to achieve continuous integration.

Using continuous integration, you can easily back-track where things have gone wrong in
the code. If you don't follow continuous integration, it will be more difficult and expensive
to detect errors in the code at the production stage.

The following is a list of CI tools:

Jenkins
TeamCity
Travis CI
Go CD
Bamboo

Continuous Integration Chapter 6

[144]

In this chapter, we are going to use Jenkins to achieve continuous integration.

Jenkins is an open source, cross-platform CI tool. Jenkins has ability to add plugins, which
makes it very flexible and easy to integrate. You can configure CI using the UI as well as
commands.

Installing a Jenkins server
Let's start with the Jenkins server installation on a Windows server. Installation on the
Linux server has already been covered in Chapter 2, Applying DevOps to Salesforce
Applications. We will cover Jenkins server installation on a Windows machine here so that
Windows users can get an idea about the setup.

The following are the hardware and software requirements for installation of the Jenkins
server.

The hardware requirements are:

256 MB of RAM
1 GB of drive space

The software requirements are:

Java 8
A web browser: Jenkins is supported by most of popular web browsers, such as
Google Chrome, Mozilla Firefox, Microsoft Internet Explorer, and the latest
version of Apple Safari

Download the latest Jenkins server package for Windows at the following website
http://mirrors.jenkins.io/windows/latest. You will get the latest ZIP file on your
machine of the version of the Jenkins package.

http://mirrors.jenkins.io/windows/latest

Continuous Integration Chapter 6

[145]

Once the download is completed, extract the ZIP file and start the installation by double-
clicking on the jenkins.msi file. Follow the Jenkins setup wizard to complete the Jenkins
server installation. Choose the path for the Jenkins server installation and click on Next:

Continuous Integration Chapter 6

[146]

On the next screen, click on Install to proceed with the installation:

Continuous Integration Chapter 6

[147]

After the Jenkins installation is done, you need to configure the Jenkins server. Visit
http://<Server-IP-address>:8080 if the setup has been done on a local machine for
testing. You can access the Jenkins server at http://localhost:8080. You will need to
wait for some time if you see a message such as Please wait while Jenkins is getting ready
to work...:

Continuous Integration Chapter 6

[148]

To unlock the Jenkins server, you need to provide the default Jenkins password stored at
the following location: C:\Program Files
(x86)\Jenkins\secrets\initialAdminPassword. For a Linux machine, the path will
be different.

On the next screen, we will be able to choose plugins to install in the Jenkins server. Click
on Select plugins to install:

Continuous Integration Chapter 6

[149]

We will only choose Ant Plugin and Git Plugin, as we can install other plugins after the
basic setup is done:

Here is the next page:

Continuous Integration Chapter 6

[150]

After the plugin installation has been completed, in Create First Admin User provide a
Username, Password, Full name, and E-mail address:

Continuous Integration Chapter 6

[151]

Click on Save and Finish to complete the Jenkins setup.

Configuring the Ant Migration Tool with
Jenkins
To communicate with Salesforce, we need to install the Ant Migration Tool on the Jenkins
server. We have already covered the installation steps for the Ant Migration Tool in
Chapter 4, Introduction to the Force.com Migration Tool. Install the Ant Migration Tool on the
Jenkins server and configure the path in Jenkins. Once you install the Ant plugin in Jenkins,
you will get the option to Invoke Ant in the Add build step dropdown menu for your
Jenkins Job, which will run build.xml and perform the tasks mentioned in the script:

When the developer triggers the Jenkins Job, we will select Invoke Ant to retrieve the
Salesforce metadata. Once the build is successful, we will have the metadata in the
directory and trigger the Jenkins job to push the metadata from Jenkins to the GitLab
repository. Verify the metadata in the GitLab repository.

Now we will set the global credentials in Jenkins.

Go to Manage Jenkins and select Global Tool Configuration. On your machine, the
executable file can be different. Go to the Git section and provide Path to Git executable as
shown in the following screenshot:

Continuous Integration Chapter 6

[152]

Configuring a Jenkins job to retrieve
metadata from a sandbox
We have created the Git repository with the metadata from the Salesforce Production
organization in Chapter 5, Version Control. We will use the same sample project and GitLab
repository, Salesforce_demo, with the current production code from the Salesforce
Sandbox. The instructions are as follows:

Create the branch to retrieve code from the sandbox:1.

Branch : sandbox_to_git

Log in to the Jenkins server and click on New Item to create a Jenkins job:2.

Continuous Integration Chapter 6

[153]

Give the name Retrive_sandbox_to_git to the Jenkins job. As we are working3.
on an Ant build project, select Build a Free-style Project. Click OK. The Freestyle
project type is used to create a Jenkins project with any SCM using any build
system:

Continuous Integration Chapter 6

[154]

Configure the job. After the job has been created, we will go to the job4.
configuration page. In the General tab, provide the project name and description,
as follows:

Project Name: Retrive_sandbox_to_git.
Description: Job to retrieve metadata from sandbox and push to Git.
Source Code Management: Keep it as None, as we don't need SCM for
this job.
Build Triggers: Do not choose any trigger.
Build Environment: Select Add timestamp to console output if
available:

Continuous Integration Chapter 6

[155]

Select Invoke Ant from the Add build step dropdown menu and provide the5.
path for build.xml to retrieve the metadata from the sandbox to the Jenkins
workspace:

Continuous Integration Chapter 6

[156]

Configure the build:6.
Targets: Leave the target empty. Here, you can specify a list of targets1.
you want to run. If we leave it empty, the target specified in the build
script will be executed.
Build File: The location of build.xml is at2.
<JENKINS_WORKSPACE>/<ITEM-NAME>. You can specify your build
file here; by default Ant will use build.xml in the root directory. The
workspace root directory is at: <JENKINS_WORKSPACE>/$ITEM_NAME.
Example: Building in workspace
<JENKoNS_WORKSPACE>/Retrive_SandBox_to_Git.
Java Options: <-Xmn1024m> provide the Java memory limit, because3.
the job will throw error if its less.

The sample build.xml is as shown:

<project name="Force.com Migration Tool"
default="retrieveUnpackaged" basedir="."
xmlns:sf="antlib:com.Salesforce">
<taskdef uri="antlib:com.Salesforce"
 resource="com/Salesforce/antlib.xml"
 classpath="lib/ant-Salesforce.jar"
 />
 <property file="build.properties"/>
 <property environment="env"/>
 <property name="sf.username"
value="${env.SF_USERNAME}"/>
 <property name="sf.password"
value="${env.SF_PASSWORD}"/>
 <property name="sf.token" value="${env.SF_TOKEN}"/>
 <property name="sf.serverurl"
value="${env.SF_SERVERURL}"/>
 <target name="retrieveUnpackaged">
 <sf:retrieve
 username="${sf.username}"
 password="${sf.password}${sf.token}"
 serverurl="${sf.serverurl}"
 retrieveTarget="DevOps/src"
 unpackaged="${basedir}/package.xml"
 />
 </target>
</project>

Continuous Integration Chapter 6

[157]

This will retrieve an unpackaged set of metadata from your organization. In
retrieveTarget, mention the path where the metadata will be stored:

In Post-build Actions, we will execute a shell script to perform a Git push to7.
the sandbox_to_git branch:

Trigger job Retrive_SandBox_to_Git2. It will push all the code
retrieved by the Build.xml script in DevOps/src.
The following are some sample commands to push code in the Git
repository:

 $git add.
 $git commit -m "Retrieve metadata from sandbox"
 $git remote add origin <remote-repository-URL>
 $git push -u origin sandbox_to_git

Continuous Integration Chapter 6

[158]

Test the job: Make sure the project is enabled in Jenkins. Select it from the list of8.
projects, and click Build Now.

Check the Console Output. After the build, click Build Details and1.
you can also refer to the Console Output and check if there are any
errors on the build script:

Check the Console Output in the Jenkins Console. If the build is successful, then9.
it will show the following message: BUILD SUCCESSFUL:

Verify the updated code in the Git Branch sandbox_to_git.10.

Continuous Integration Chapter 6

[159]

Triggering the same job again
To execute the same Jenkins job again, follow these steps:

Log in to Jenkins.1.
Select the job that you want to run.2.
Click on Build Now.3.
Check the status/console output.4.

Configuring a Jenkins job to deploy
metadata on a sandbox
We have Eclipse with the Force.com IDE and Git installed in it. The developer sandbox is in
sync with Eclipse. Developers work with Eclipse and the Force.com IDE. Sandbox will be in
sync with the Eclipse workspace. After changes are done, the developer will push changes
to the Git branch and mention the deployment component in package.xml. This Git push
will trigger a Jenkins job that will execute the Ant deploy script and deploy changes from
the developer sandbox to test the sandbox:

Continuous Integration Chapter 6

[160]

The tools used are:

Git: To track Salesforce changes in Git
Force.com Migration Tool: For Salesforce deployments
Jenkins: To automate deployments to a pre-UAT environment with Jenkins and
Ant scripts

The configuration steps are as follows:

Create a Jenkins job to deploy code to the sandbox. Log in to the Jenkins server1.
and click on New Item to create a Jenkins job:

Continuous Integration Chapter 6

[161]

Configure Source Code Management. Copy the project URL from your Git2.
project and paste it the to Repository URL.

Continuous Integration Chapter 6

[162]

Add the credentials for Git access in Jenkins Credentials. Add your username3.
and password and select the following credential:

Continuous Integration Chapter 6

[163]

Configure the Git credentials and branches you want to build:4.

Select the build and select Invoke Ant. Configure the build file and the5.
build.properties file:

Continuous Integration Chapter 6

[164]

The components developers want to deploy will be mentioned in package.xml6.
and deployed in the ant job. The sample Build.xml for the deploy job is as
follows:

<target name="deployCode">
 <!-- Deploy Code From src to SandBox -->
 <sf:deploy
 username="${sf.username}"
 password="${sf.password}${sf.token}"
 serverurl="${sf.serverurl}"
 deployroot="src"
 runAllTests="false"
 />
</target>

Once developers push the code to the respective Git branch, the Jenkins job will7.
be triggered and the new code is deployed to the destination sandbox. This
sandbox can be a UAT sandbox or production. You can use the same job for
different scenarios.

Continuous Integration Chapter 6

[165]

Summary
In this chapter, we have learned how to automate backups for Salesforce metadata and
push code to the Git repository using Jenkins. Tracking changes in Salesforce is possible
with GitLab and Jenkins jobs. We have explained how to configure the Ant Migration Tool
with Jenkins and what the flow is for this retrieved code from the sandbox to the Jenkins
server so as to push it to the Git branch using the script for backup.

We have learned how to set up our own Jenkins server and configure it to retrieve
metadata from our Salesforce sandbox. Also we have configured a Jenkins job for
deploying metadata from one sandbox to another sandbox. Regarding the deployment job,
we discussed the tools that can be used and explained the flow for deployment to UAT or
testing with a diagram.

In the next chapter, we will learn about continuous testing and code coverage in Salesforce.
We will discuss the steps to perform tests on Salesforce using Selenium and Qualitia. We
will learn about automating the process of continuous testing using Jenkins.

7
Continuous Testing

In the previous chapter, we learned about setting our own Jenkins server and using Jenkins
for continuous integration, how to configure Jenkins for retrieving metadata from
Salesforce sandbox, and pushing code to Git's version control. We also performed steps to
deploy metadata to UAT sandbox, using Jenkins and the Ant migration tool.

In this chapter, we will learn about code quality using PMD. We will discuss continuous
testing and executing Apex tests in a deployment using Jenkins. We will get to know
Selenium, and how to set up Selenium using Firefox. We will also go through record and
playback for the Salesforce sample application. We will discuss using the Qualitia scriptless
automation tool with Jenkins, where we get test reports in HTML format.

What is code quality?
Code quality is identify based on some parameters such as best practices standards and
rule sets. When code quality is increased, then user acceptance testing issues and
production issues are reduced and productivity is increased. Using this PMD report,
produced by an open source static source code analyzer that reports on issues found in the
code, we can allocate extra time for reviewing code, and this increases product quality,
along with best practice standards and effective governance.

Checking code quality using a PMD report
There are two methods for performing the analysis. We will discuss them in the next
sections.

Continuous Testing Chapter 7

[167]

PMD static analysis for Salesforce Apex using a Visual
Studio (VS) Code extension
Here, we will learn to analyze directly in VS Code on Apex and Visual force files. First, you
have to install Visual Studio Code on your machine. (We already learned how to install VS
Code in Chapter 3, Deployment in Salesforce).

You need to perform the following steps:

Open Visual Studio Code and click on Extensions (Ctrl + Shift + X):1.

Continuous Testing Chapter 7

[168]

In Search extension in Market Place, enter pmd:2.

Continuous Testing Chapter 7

[169]

Select Apex PMD and click Install:3.

Continuous Testing Chapter 7

[170]

Once installation is complete, click Reload and this will restart your VS Code:4.

Continuous Testing Chapter 7

[171]

Open the file about which you want to analyze the PMD report:5.

Continuous Testing Chapter 7

[172]

Now, open the command panel by right-clicking and selecting All Commands,6.
or press Ctrl + Shift + P. Enter Apex stat in the command panel:

Now, click on Apex Static Analysis: On File. It shows you all the analytical7.
results in PROBLEMS.
Resolve all the problems and run Apex Static Analysis: On File again.8.

Continuous Testing Chapter 7

[173]

PMD static analysis for Salesforce Apex using the
command line
Here, we can run a PMD analysis on all files by using a single command. The steps are as
follows:

First, download the PMD JAR file from https:/ ​/​sourceforge. ​net/​projects/1.
pmd/​files/ ​pmd- ​eclipse/ ​update- ​site/ ​, and then take a look at this screenshot:

Extract the JAR file, go inside the bin file, and copy the path of that folder.2.
Now, open Run by pressing Windows + R and enter the command to open the3.
command-line panel.
Go to your bin path by entering the path of that folder. If you are on another4.
drive, then first go to that drive and enter the copied path:

https://sourceforge.net/projects/pmd/files/pmd-eclipse/update-site/
https://sourceforge.net/projects/pmd/files/pmd-eclipse/update-site/
https://sourceforge.net/projects/pmd/files/pmd-eclipse/update-site/
https://sourceforge.net/projects/pmd/files/pmd-eclipse/update-site/
https://sourceforge.net/projects/pmd/files/pmd-eclipse/update-site/
https://sourceforge.net/projects/pmd/files/pmd-eclipse/update-site/
https://sourceforge.net/projects/pmd/files/pmd-eclipse/update-site/
https://sourceforge.net/projects/pmd/files/pmd-eclipse/update-site/
https://sourceforge.net/projects/pmd/files/pmd-eclipse/update-site/
https://sourceforge.net/projects/pmd/files/pmd-eclipse/update-site/
https://sourceforge.net/projects/pmd/files/pmd-eclipse/update-site/
https://sourceforge.net/projects/pmd/files/pmd-eclipse/update-site/
https://sourceforge.net/projects/pmd/files/pmd-eclipse/update-site/
https://sourceforge.net/projects/pmd/files/pmd-eclipse/update-site/
https://sourceforge.net/projects/pmd/files/pmd-eclipse/update-site/
https://sourceforge.net/projects/pmd/files/pmd-eclipse/update-site/
https://sourceforge.net/projects/pmd/files/pmd-eclipse/update-site/
https://sourceforge.net/projects/pmd/files/pmd-eclipse/update-site/
https://sourceforge.net/projects/pmd/files/pmd-eclipse/update-site/
https://sourceforge.net/projects/pmd/files/pmd-eclipse/update-site/
https://sourceforge.net/projects/pmd/files/pmd-eclipse/update-site/

Continuous Testing Chapter 7

[174]

Now, create your command:5.

pmd -d "Source Path" -R apex-ruleset -language Apex -f CSV >
"Destination Ptah\ReportName.csv"
//Source Path: Your Project Directory Path till src.
//Destination Path: Report Folder Path where you want to store
the report.

Then, execute this command:6.

Continuous Testing Chapter 7

[175]

You will get an exported CSV file:

Now, open that CSV file and correct your code based on the error types.7.

In the CSV file, we get following columns:

Problem: This is just a serial number of the problems
Package: In this column, we get the package name of that file
File: In this column, we get the exact file path of that file
Priority: There are different types of priorities, from 1 to 3, and they are added to
this column
Line: In this column, we get the exact line number of the problem
Description: In this column, we get a single-line description of the problem
Rule set: In this column, we get the rule set's name
Rule: In this column, we get the rule's name

There are different types of rules and rule sets. Here are some examples of rules and rule
sets:

Best practices:
ApexUnitTestClassShouldHaveAsserts

AvoidGlobalModifier

AvoidLogicInTrigger

Code style:
ClassNamingConventions

ForLoopsMustUseBraces

IfElseStmtsMustUseBraces

IfStmtsMustUseBraces

MethodNamingConventions

VariableNamingConventions

Continuous Testing Chapter 7

[176]

Design:
AvoidDeeplyNestedIfStmts

CyclomaticComplexity

ExcessiveClassLength

ExcessiveParameterList

ExcessivePublicCount

NcssMethodCount

StdCyclomaticComplexity

TooManyFields

Errors prone:
AvoidHardcodingId

EmptyCatchBlock

EmptyStatementBlock

Performance:
AvoidSoqlInLoops

Security:
ApexCRUDViolation

ApexSharingViolations

ApexSOQLInjection

ApexXSSFromURLParam

Executing Apex tests in a deployment using
Jenkins
In Salesforce code, coverage of Apex components should be more than 75% to deploy
changes to production. If any test case fails during deployment, then deployment to
production will also fail. To avoid this, it is recommended that you test your deployment in
sandbox first before deploying it to production. Sometimes, individual code coverage of
Apex components may be less than 75%, but overall code coverage for your organization
should be 75% or more. To ensure test cases don't fail in production, you can execute a
subset of test cases in sandbox after it's deployed. We have already seen deploying changes
from one sandbox to another in the previous chapter. We just need to make small changes
in build.xml to specify the subset of tests to execute while deploying.

Continuous Testing Chapter 7

[177]

Here is a sample build.xml with test cases to execute:

<target name="deployCode">
 <sf:deploy username="${sf.username}" password="${sf.password}"
 sessionId="${sf.sessionId}" serverurl="${sf.serverurl}"
 deployroot="codepkg" testLevel="RunSpecifiedTests">
 <runTest>TestClassSample1</runTest>
 <runTest>TestClassSample2</runTest>
 <runTest>TestClassSample3</runTest>
 </sf:deploy>
</target>

To run specific tests, the value of the testLevel parameter should be set to
RunSpecifiedTests. A child element, </runTest>, is used to specify the test classes to
run.

To run all test cases from sf:deploy tasks with the runAllTests="true"
attribute, package.xml should be empty, as shown here:

<?xml version="1.0" encoding="UTF-8"?> <Package
xmlns="http://soap.sforce.com/2006/04/metadata"> <version>42.0</version>
</Package>

Here is a sample build.xml used to run all test cases:

<target name="deployCode">
 <!-- Deploy Code From src to sandBox -->
 <sf:deploy
 username="${sf.username}"
 password="${sf.password}${sf.token}"
 serverurl="${sf.serverurl}"
 deployroot="src"
 runAllTests="true"
 />
</target>

The role of Jenkins in deployment will be the same; developers just need to change the
parameters in the build.xml and the package.xml configuration files.

Continuous Testing Chapter 7

[178]

What is continuous testing?
Continuous testing is the process of executing test cases after new changes are deployed to
the environment. In continuous testing, we evaluate deployments at every stage so that any
bugs introduced in the existing code are reported earlier in the software development cycle.
Software changes are continuously moved from the development to the test environment,
and the testing team needs to test all the existing functionalities, along with new
functionalities. Manual testing takes a longer time to complete, and feedback from the
testing team is required to make further decisions about application delivery. Continuous
testing helps us to get immediate feedback and makes the testing cycle easier. Having
continuous testing in place reduces the business risk involved in releasing software with
bugs:

Continuous Testing Chapter 7

[179]

Continuous testing is dein the preceding diagram. Whenever any new feature is developed
by the development team, developers push code in a source code versioning system such as
Git, so that the changes are tracked. Once a feature is ready in the development
environment, it is moved to a continuous integration server such as Jenkins. Jenkins will
build the source code, and once the build is deployed to the test environment, we will
configure the Jenkins job to execute the test cases. For continuous testing, we can use tools
to write and execute automation test cases, such as Selenium, Katalon Studio, Qualitia, and
so on. In this chapter, we will only focus on the Selenium testing framework.

Introducing Selenium
Selenium is an open source tool used for automating tests we run on a web application.
Selenium is a web-based application. We can automate the testing using Selenium.
Selenium supports many browsers, including Chrome, Firefox, and Safari. You don't need
scripting or development knowledge to get started with Selenium, a person
with administration experience can also start setting up Selenium. Using a record/playback
tool in Selenium, we can perform tests without knowledge of the scripting language.
Selenium supports multiple platforms, including Windows, Linux, and Mac. We are going
to look at the steps to set up Selenium on Mac.

Setting up Selenium using Firefox
We will set up Selenium with Firefox on macOS. The installation steps for Firefox might
differ, depending on your operating system. We will be using Mac in this example.

Here are some prerequisites for installing Firefox on Mac:

Operating systems: macOS 10.9, 10.10, 10.11, 10.12, and 10.13
Recommended hardware: Macintosh computer with an Intel x86 processor
512 MB of RAM
200 MB hard drive space

Continuous Testing Chapter 7

[180]

The installation steps are as follows:

Visit https:/ ​/ ​www. ​mozilla. ​org/​firefox/ ​new/ ​?​utm_ ​medium= ​referralandutm_1.
source=​support. ​mozilla. ​org. It will automatically detect the platform you are
using and provide a download link in the browser.
Click the download button; it will start downloading Firefox.2.
Once the download is complete, open the Firefox.dmg file.3.
Drag and drop Firefox into the applications folder:4.

It will start copying the Firefox.dmg file to Applications:

https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org
https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org
https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org
https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org
https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org
https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org
https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org
https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org
https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org
https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org
https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org
https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org
https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org
https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org
https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org
https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org
https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org
https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org
https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org
https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org
https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org
https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org
https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org
https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org
https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org
https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org
https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org
https://www.mozilla.org/firefox/new/?utm_medium=referral&utm_source=support.mozilla.org

Continuous Testing Chapter 7

[181]

Open Firefox from Applications. You will see a warning that Firefox is being5.
installed from the internet. Click on Open.
We have Firefox installed on our system. We can skip email verification in6.
Firefox. Open https:/ ​/ ​www. ​seleniumhq. ​org/ ​download/ ​ in Firefox.
Go to the Selenium IDE section and click on the For Firefox link. It will redirect7.
you to the Add Selenium IDE extension page:

Click on Add to Firefox:8.

https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/
https://www.seleniumhq.org/download/

Continuous Testing Chapter 7

[182]

This extension require some permissions to work. Click on Add:9.

Once the Selenium IDE plugin is added, you will see the popup:10.

Once the Selenium IDE plugin is installed in Firefox, you can launch it by11.
clicking on the Selenium IDE icon in the top-right corner:

Continuous Testing Chapter 7

[183]

Recording tests using Selenium
The steps to record tests are as follows:

Once Selenium is launched, you will see the following window. Provide the base1.
URL as https:/ ​/​login. ​salesforce. ​com and click on Start Recording:

https://login.salesforce.com/
https://login.salesforce.com/
https://login.salesforce.com/
https://login.salesforce.com/
https://login.salesforce.com/
https://login.salesforce.com/
https://login.salesforce.com/
https://login.salesforce.com/
https://login.salesforce.com/

Continuous Testing Chapter 7

[184]

Every action you perform in Firefox will be tracked by Selenium. Open https:/ ​/2.
login.​salesforce. ​com, provide a username and password to log in, and click on
Login:

Once logged in, you can click on any item or perform any action. You will see a3.
notification about commands being recorded by Selenium:

After performing the task, click on Logout. You can see the steps being recorded4.
by Selenium in this screenshot:

https://login.salesforce.com/
https://login.salesforce.com/
https://login.salesforce.com/
https://login.salesforce.com/
https://login.salesforce.com/
https://login.salesforce.com/
https://login.salesforce.com/
https://login.salesforce.com/

Continuous Testing Chapter 7

[185]

You can see the commands stored in the Selenium IDE:

Go to the Selenium IDE window, and you will see the data collected by5.
Selenium. Click on Stop Recording:

Continuous Testing Chapter 7

[186]

Save the recording under any name, for example, Sample. You can keep the6.
names specific to the tests you performed as a meaningful naming convention:

Playing back the recorded tests using Selenium
A record step is completed by Selenium. Now, we can use the same file to re-run the steps.
This process is called playback:

Open Selenium IDE from the Firefox browser.1.
Click on Open Project:2.

Browse to the file we stored in the record step as Sample.side. Open this file3.
and click on Run Current Test:

Selenium will open Salesforce UEL and perform steps from the sample test case.4.
Log in to Salesforce and log out after performing the test case.

Continuous Testing Chapter 7

[187]

Check the logs in Selenium's Log console:5.

Click on Stop Test execution if you want to stop execution:6.

We can write test cases in any language and execute test cases after deploying to Salesforce
sandbox. Selenium can be used to automate tests. Whenever we deploy code from the
development sandbox to the UAT sandbox or from sandbox, to production, we can execute
test cases with Selenium to cover each and every scenario and make sure the application is
bug-free. Manually testing all functionality can take a long time, and we end up having
longer testing cycles. Releasing changes to production frequently involves a lot of testing
and feedback loops to ensure the quality of the application.

We can create a Jenkins job for the execution of test cases with Selenium on the deployment
sandbox. If the sandbox is not a full-copy sandbox, then we might need to add some test
data, change email IDs of users, and so on. For such tasks, we can use Selenium to automate
and speed up the process of software testing and delivery.

Introducing Qualitia
Qualitia is a scriptless testing tool. Qualitia is a functional test automation platform that
provides us with a way to automate testing without scripting. Qualitia integrates with
Jenkins as well. Qualitia is based on Selenium, in that it doesn't require you to write any
scripts. After executing test cases in sandbox, Qualitia presents the results for the test cases
in HTML format so that they are readable by the end user. We can host these HTML files on
a file server and developers and testers will be able to access them using web browser.

Continuous Testing Chapter 7

[188]

Qualitia provides integration with Jenkins. We can execute automated test cases after
deploying to the UAT sandbox. Also, we will be able to schedule our automated tests once
per day in our pre-production or staging sandbox.

Running test cases with Qualitia
To run test cases with Qualitia, we need to integrate it with Jenkins. Qualitia's job will be
executed on the Windows server, so if we don't have Jenkins on the Windows server, then
we can add the Windows client to the Jenkins server and run Qualitia test cases on it. We
need the Qualitia JAR and path to the XML test cases and Chrome's driver in order to
execute tests. Qualitia will run a test case sandbox and generate reports in HTML.

Use case – continuous testing using Qualitia
The following diagram shows the integration of open source tools with Salesforce sandbox
and provides versioning, scriptless testing, and automated deployments using GitLab, the
Force.com Migration tool, Jenkins, and Qualitia:

Continuous Testing Chapter 7

[189]

In the previous scenario, developers work with Eclipse and the Force.com IDE. sandbox
will be in sync with the Eclipse workspace. After the changes are complete, the developer
will push changes to Git and mention the components to be deployed in the package.xml
file. This Git push will trigger the Jenkins job, which will execute the Ant deployment script
and deploy changes from the developer's sandbox to the test sandbox. If our deployment is
successful, then it will trigger another job to run Qualitia tests, creating a report in HTML
format.

Here is a list of the tools used:

Git: For tracking Salesforce changes in Git
Force.com Migration tool: For Salesforce deployments
Jenkins: To automate deployments to the pre-UAT environment, with Jenkins
and an Ant script
Qualitia: Scriptless testing tool

Note: We can use Selenium for automation testing instead of Qualitia.

Summary
In this chapter, we learned about code quality and continuous testing. We discussed the
tools used in automation testing, such as Selenium and Qualitia. We learned the step-by-
step process for setting up Selenium with Firefox. We performed a test case on a sample
Salesforce application, using record and playback in Selenium.

We discussed use cases for the Qualitia scriptless automation tool, used to perform tests on
the Salesforce application and store the results of automation tests in HTML format. We
demonstrated a use case of using a diagram with Git for version control Jenkins as a
continuous integration server, and Qualitia for executing automation tests on a Salesforce
application. We can replace Qualitia with Selenium if we wish to.

8
Tracking Application Changes

and the ROI of Applying
DevOps to Salesforce

In this chapter, we will discuss how we can track application changes using open source
technologies, such as the Git source control versioning system. We will learn the basics of
Bugzilla and how to track issues when they are reported by a tester or user until the fix for
the issue/feature is deployed to production.

We will also see how to add some post-build steps in Jenkins to report the build status to
Git. This will allow developers to get information about the build status related to every
commit. We will discuss how DevOps helps any Salesforce organization to deliver
applications faster and what the ROI is from applying DevOps to Salesforce.

How to track application changes
Tracking application changes without a version control system is like finding a needle in a
haystack. We have seen how to use GitLab to track application changes in Chapter 5,
Version Control. Whenever bugs are reported by testers, we use a bug tracker such as
Bugzilla to track the life cycle of a bug—from identifying it until the fix is released to
production. When a new bug or feature is added to the bug tracker, it is assigned to a
developer and the developer starts working on that fix or new feature. Code changes are
tracked in Git repositories when developers commit changes to the respective feature
branch. The develop branch commit message should contain the bug ID to identify the
changes done with respect to a particular bug or feature.

Tracking Application Changes and the ROI of Applying DevOps to Salesforce Chapter 8

[191]

If a new feature is added or an issue is fixed, developers can add meaningful commit
messages to help us track changes for a new functionality. When we want to merge changes
to develop a branch or perform cherry-picks on commits, this becomes easy with
meaningful commit messages with a bug ID.

Introducing Bugzilla
Bugzilla bug tracking is an open source bug tracking system. Using Bugzilla, you can create
a bug and track that bug until it is closed. Bugzilla provides project management and issue
tracking features. Bugzilla is used to improve performance and scalability. Other features
include an advanced query application that can remember your searches and integrated
email capabilities.

First, you have to install Bugzilla on your system or server, from where you can access
Bugzilla using a web browser. The steps are as follows:

You can install Bugzilla on a machine from https:/ ​/​www. ​bugzilla. ​org/​docs/ ​4.1.
4/​en/​html/ ​installation. ​html.
Now open Bugzilla through your browser; the screen looks like the following:2.

https://www.bugzilla.org/docs/4.4/en/html/installation.html
https://www.bugzilla.org/docs/4.4/en/html/installation.html
https://www.bugzilla.org/docs/4.4/en/html/installation.html
https://www.bugzilla.org/docs/4.4/en/html/installation.html
https://www.bugzilla.org/docs/4.4/en/html/installation.html
https://www.bugzilla.org/docs/4.4/en/html/installation.html
https://www.bugzilla.org/docs/4.4/en/html/installation.html
https://www.bugzilla.org/docs/4.4/en/html/installation.html
https://www.bugzilla.org/docs/4.4/en/html/installation.html
https://www.bugzilla.org/docs/4.4/en/html/installation.html
https://www.bugzilla.org/docs/4.4/en/html/installation.html
https://www.bugzilla.org/docs/4.4/en/html/installation.html
https://www.bugzilla.org/docs/4.4/en/html/installation.html
https://www.bugzilla.org/docs/4.4/en/html/installation.html
https://www.bugzilla.org/docs/4.4/en/html/installation.html
https://www.bugzilla.org/docs/4.4/en/html/installation.html
https://www.bugzilla.org/docs/4.4/en/html/installation.html
https://www.bugzilla.org/docs/4.4/en/html/installation.html
https://www.bugzilla.org/docs/4.4/en/html/installation.html
https://www.bugzilla.org/docs/4.4/en/html/installation.html
https://www.bugzilla.org/docs/4.4/en/html/installation.html
https://www.bugzilla.org/docs/4.4/en/html/installation.html

Tracking Application Changes and the ROI of Applying DevOps to Salesforce Chapter 8

[192]

Click on Log In and enter the credentials. Once you have logged in, the page will3.
look like this:

Now click on User Preferences or on Administration to open the admin panel.4.
Once the admin panel is opened, click on Users:5.

Tracking Application Changes and the ROI of Applying DevOps to Salesforce Chapter 8

[193]

In the next screen, click on add a new user:6.

Enter the Login name, Password, and Real name. Finally, click on Add:7.

Tracking Application Changes and the ROI of Applying DevOps to Salesforce Chapter 8

[194]

Select the relevant accesses and click on Save Changes:8.

Tracking Application Changes and the ROI of Applying DevOps to Salesforce Chapter 8

[195]

Now click on File a Bug on the home page:9.

In the following screen, you can see the multiple fields:
Product: Git Demo Project
Reporter: ngornalli
Component: Git Project Model
Component Description: This component is created for Git
Demo Project
Version: 1.0
Severity: High
Hardware: Other
OS: Windows
Org*: Transformer
Type of the Ticket*: Defect
Raised By: QA
Steps to Reproduce Issue*: Steps to reproduce issue
Expected Result*: Expected Result

Tracking Application Changes and the ROI of Applying DevOps to Salesforce Chapter 8

[196]

Summary: New Defect added for Git Demo Project
Description: Description
Attachment: If there is any screenshot then attach it here

Finally, click on Submit Bug.10.

Tracking Application Changes and the ROI of Applying DevOps to Salesforce Chapter 8

[197]

Publishing a build report to Git
As we have seen in Chapter 6, Continuous Integration, we can trigger a Jenkins job as code is
pushed to Jenkins using a Git Webhook. Jenkins will start the build using the Ant
Migration Tool and deploy metadata to the sandbox. However, whether the build failed or
is successful is not shown anywhere. So we need to change the Jenkins job to deploy
changes from Git to the sandbox. Go to the Jenkins job that you want to change and click on
Configure.

Add the post-build Git Publisher step to set the build status to Git commit:

In GitLab, you can view the status of the Jenkins job to check whether is successful or it
failed. We can track each commit in Git and see if the deployment to the sandbox step build
has passed. If we configure the Jenkins job to run automation test cases after deployment is
done in testing the sandbox, we can get the status of the execution of automation test cases
in Git:

Tracking Application Changes and the ROI of Applying DevOps to Salesforce Chapter 8

[198]

How DevOps helps organizations deliver
quickly
Version control helps us track issues and revert changes. Differentiating between branches
becomes easy with GitLab. If something goes wrong, finding a bug or issue is easy as we
have all the changes tracked in Git repositories. Also, with Jenkins being able to retrieve
metadata from the sandbox and store it in Git, it is very useful while taking backups. We
don't need to do the same task again. We can configure a Jenkins job to take a backup of
metadata components in Git and send a notification email to the respective admins.

Tracking Application Changes and the ROI of Applying DevOps to Salesforce Chapter 8

[199]

The Jenkins continuous integration server helps us to deploy changes from a developer's
machine to the sandbox or from one sandbox to another sandbox. We can configure Jenkins
jobs to deploy changes as soon as they are pushed to Git using Jenkins Webhooks.
Deployment of metadata from a developer sandbox to UAT sandboxes can be automated
and your Salesforce credentials are safely stored in Jenkins Credentials in secret text, which
will be only used during execution of a Jenkins job.

Code coverage is important for improving the quality of code written by developers. We
can make sure that standard practices are being followed while developing an application.
Making use of Jenkins to execute Apex tests in the deployment of metadata to the sandbox
is an easy way to ensure we have 75% code coverage as per the Salesforce criteria.

Enhanced productivity
When we have most deployments automated using the Jenkins continuous integration
server and all the changes being made are tracked in a source control versioning system
such as Git, developers can spend more time on actual development tasks. As we have seen
in Chapter 7, Continuous Testing, with the help of automation testing, we can cover the
testing cycle faster and fulfill code coverage criteria in Salesforce. Selenium makes it easy to
automate test cases. Finding bugs in an early phase of the software development cycle is
very important in order to make sure software is bug-free and application deliverables are
deployed to production faster.

How to measure ROI?
Applying DevOps methodologies to Salesforce using open source tools, such as GitLab,
Jenkins, Selenium, and so on, helps organizations set up their automation process at
minimal cost and with minimal efforts (in doing a one-time setup and configuration).

ROI cannot be measured as a number, but the ROI from applying DevOps can be measured
as of the time we save in the deployment of Salesforce and the rework we do whenever
developers accidentally overwrite each others' changes. Identifying issues faster with
automation testing in the early stages of software development makes it easy to fix issues.
Fixing defects in production costs us more time than fixing bugs early in a test or pre-
production environment. Having a bug in production will have a business impact on our
application.

Tracking Application Changes and the ROI of Applying DevOps to Salesforce Chapter 8

[200]

The reduced time in the maintenance window when we are deploying changes to
production and the reduced number of issues in production help us to measure the ROI
from applying DevOps to our Salesforce organization. The release cycle can be reduced
from weeks to days with automated test cases using Jenkins continuous integration.

By applying DevOps practices to a Salesforce application, we can achieve customer
satisfaction and speed up the product delivery process. Developers need to work less hard
at maintaining an application, focusing more on developing new features.

Summary
In this chapter, we learned about tracking application changes, Bugzilla, enhancing
productivity, and measuring ROI.

We started this book with very basic or no knowledge of DevOps practices or tools used in
DevOps. We learned some basics about Salesforce by creating a sample application in
Salesforce and discussed the different sandbox environments. Using Eclipse with
Salesforce, we can integrate Git with a sandbox to achieve a source control version system.
We learned about different deployment methods used in Salesforce, and we automated
Salesforce deployments using the Jenkins continuous integration server.

We learned about setting up our own GitLab server and pushing code changes from a
Salesforce sandbox to a GitLab repository. Implementing continuous integration in a
Salesforce environment with the Jenkins server helps us to speed up deployment to UAT or
another sandbox.

We learned how to automate testing for a Salesforce application with Selenium. We
discussed Selenium record and playback with a sample Salesforce application. Automation
testing helped us reduce the testing cycle from days to hours. We saw how DevOps tools
can be used in a Salesforce application. You can apply the concepts learned in this book to
any Salesforce application. Throughout this book, we tried to provide you with good
insights into DevOps tools and step-by-step instructions to set up your own DevOps
process with open source tools. Most of the exercises in this book can be followed using a
free Salesforce account.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Salesforce Lightning Cookbook
Syed Chand Shah

ISBN: 978-1-78953-825-0

Enable and configure a Lightning solution
Create standard Lightning solutions and build a basic page layout
Add custom components to your Lightning pages
Build and migrate reports and dashboards
Integrate Lightning pages with Visualforce to enhance performance
Add stunning custom designs and styling with Lightning Design System

https://www.packtpub.com/application-development/salesforce-lightning-cookbook

Other Books You May Enjoy

[202]

Practical DevOps - Second Edition
Joakim Verona

ISBN: 978-1-78839-257-0

Understand how all deployment systems fit together to form a larger system
Set up and familiarize yourself with all the tools you need to be efficient with
DevOps
Design an application suitable for continuous deployment systems with DevOps
in mind
Store and manage your code effectively using Git, Gerrit, Gitlab, and more
Configure a job to build a sample CRUD application
Test your code using automated regression testing with Jenkins Selenium
Deploy your code using tools such as Puppet, Ansible, Palletops, Chef, and
Vagrant

https://www.packtpub.com/virtualization-and-cloud/practical-devops-second-edition

Other Books You May Enjoy

[203]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
Ant Migration Tool
 configuring, with Jenkins 151
 used, for deployment 55
Ant
 download link 79
Apex
 deploying, Force.com IDE used 56, 61, 71
 test execution, Jenkins used 176
application changes
 tracking 190

B
branch
 creating, web UI used 108
 handling, Git CLI used 110
branching strategy 107
Bugzilla
 about 191, 195
 reference 191
build report
 publishing, to Git 197

C
Change Sets
 Inbound Change Sets 40
 Outbound Change Sets 40
changes
 merging, from develop branch to master branch

112

CI
 Jenkins, using 143
code quality
 about 166
 checking, PMD report used 166
 PMD static analysis, command line used 173

 PMD static analysis, with Visual Studio (VS) code
extension 167

commit history
 viewing 102
continuous deployment 33
continuous testing 178

D
deployment, Change Sets used
 deployment connections, creating 42
 inbound Change Sets, validating 50
 Outbound Change Sets, creating 45
 Quick Deploy, using 54
destructiveChanges.xml
 used, for deleting files/components 89
develop branch
 changes, merging to master branch 112
DevOps for Salesforce
 comparing, with tech stacks 22
DevOps
 deployment 39
 uses 198
 using, for Salesforce 17

E
Eclipse for Salesforce application development
 Eclipse Neon, installing with Force.com IDE

plugin 11
 Force.com project, configuring in Eclipse 14
 using 10
Eclipse IDE
 Git, using 115
Eclipse Neon 11
Eclipse
 reference 11
enhanced productivity 199

[205]

F
Firefox
 reference 181
 used, for Selenium setup 179
Force.com IDE plugin
 used, for deploying Apex 56, 63, 71
 used, for installing Eclipse Neon 11
Force.com Migration Tool
 about 77
 download link 79
 setting up 77
 uses 90
Force.com project
 configuring, in Eclipse 14

G
Git CLI
 used, for handling branches 110
Git repositories
 private repository 94
 public repositories 94
 working with 99
Git
 about 94
 build report, publishing 197
 code, pushing to 115, 140
 configuring 115, 140
 using, in Eclipse IDE 115
GitLab server setup, on Linux instance
 prerequisites 95
GitLab server
 installing 96
GitLab
 project, creating 98
 user, adding to 103

J
Java development stack
 DevOps process 23
Java
 installation link 78
Jenkins job
 configuring, for metadata deployment on

sandbox 159

 configuring, for metadata retrieval from sandbox
152

 executing 159
Jenkins server
 installing 144, 150
 Maven, configuring 26, 29
 Publish Over SSH plugin, installing 34
Jenkins webhook URL
 adding, in GitHub 31
Jenkins
 about 143
 used, for Apex test execution 176
 used, for configuring Ant Migration Tool 151
 using, with Jenkins 143

L
Linux instance
 GitLab server, setting up 94

M
master branch
 about 107
 changes, merging from develop branch 112
metadata
 deploying, on sandbox 88
 retrieving, from sandbox 83

P
prerequisites, Force.com Migration Tool
 Ant 78
 Ant Migration Tool, installing on Linux 79
 Ant Migration Tool, installing on Windows 80
 Java 77
 Salesforce Ant Migration Tool, installing 83

Q
Qualitia 187, 188

R
ROI
 measuring 199

S
Salesforce development process (without DevOps)

6

Salesforce development
 DevOps process, need for 21
Salesforce DX plugins
 installing, to Visual Studio Code 71
Salesforce metadata deployment
 about 40
 Change Sets 40
 Change Sets, using 41
 deployment connections 41
Salesforce
 deployment 39
 DevOps, using 17
 reference 6
 technical and business challenges 17
 version control 93
sandbox
 about 9
 developer 10
 Developer Pro 10
 Full 10
 metadata, deploying 88
 metadata, deploying by Jenkins job configuration

159

 metadata, retrieving 83
 metadata, retrieving by Jenkins job configuration

152

 Partial Copy 10
Selenium
 about 179
 setting up, Firefox used 179
 used, for playing back recorded tests 186
 used, for recording tests 183
Source Code Versioning System (SCVS) 92

T
traditional deployment
 change sets 8
 Force.com Migration Tool 8
 issues 9
troubleshooting scenarios
 connection issues 90
 failed test cases 91
 invalid credentials or user locked out 91
troubleshooting
 about 107
 solution 107

U
user acceptance testing (UAT) 21

V
Visual Studio Code
 Salesforce DX plugins, installing 71

	Cover

	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Salesforce Development and Delivery Process

	The typical Salesforce development process (without DevOps)
	Traditional deployment
	Issues with traditional deployment

	Sandboxes
	Eclipse for Salesforce development
	Installing Eclipse Neon with the Force.com IDE plugin
	Configuring a Force.com project in Eclipse

	Technical and business challenges
	DevOps for Salesforce?
	Summary

	Chapter 2: Applying DevOps to Salesforce Applications

	The need for a DevOps process in Salesforce development
	The differences between DevOps for Salesforce and other tech stacks
	Example – the typical DevOps process for a Java development stack
	Configuring Maven in the Jenkins server
	Adding a Jenkins webhook URL in a GitHub project
	Continuous deployment
	Installing the Publish Over SSH plugin in a Jenkins server

	Summary
	References

	Chapter 3: Deployment in Salesforce

	What is deployment with reference to DevOps?
	Deployment in Salesforce
	Change Sets
	Deployment connections
	Deployment using Change Sets
	Creating deployment connections
	Creating Outbound Change Sets
	Validating Inbound Change Sets
	Using Quick Deploy to deploy Change Sets

	Deployment using the Ant Migration Tool
	Using the Force.com IDE to deploy Apex
	Installing Salesforce DX plugins to Visual Studio Code
	Summary

	Chapter 4: Introduction to the Force.com Migration Tool

	What the Force.com Migration Tool is?
	Setting up the Force.com Migration Tool
	Prerequisites
	Java
	Ant
	Installing the Ant Migration Tool on Linux
	Installing the Ant Migration Tool on Windows
	Installing the Salesforce Ant Migration Tool

	Retrieving metadata from a sandbox
	Deploying metadata on a sandbox
	Deleting files/components from a Salesforce organization using destructiveChanges.xml
	How the Force.com tool helps developers and DevOps
	Troubleshooting
	Summary

	Chapter 5: Version Control�
	What is meant by SCVS?
	Version control in Salesforce
	Introduction to Git
	Setting up a GitLab server on a Linux instance
	Prerequisites
	Installing the GitLab server
	Creating your first project in GitLab
	Working with a Git repository
	Viewing the commit history
	Adding a user to GitLab
	Troubleshooting
	Solution

	Branching strategy
	Handling branches using the Git CLI
	Merging changes from develop to master
	Using Git in the Eclipse IDE
	Configuring Git and pushing code to Git

	Summary

	Chapter 6: Continuous Integration

	What is Jenkins?
	CI using Jenkins

	Installing a Jenkins server
	Configuring the Ant Migration Tool with Jenkins
	Configuring a Jenkins job to retrieve metadata from a sandbox
	Triggering the same job again

	Configuring a Jenkins job to deploy metadata on a sandbox
	Summary

	Chapter 7: Continuous Testing

	What is code quality?
	Checking code quality using a PMD report
	PMD static analysis for Salesforce Apex using a Visual Studio (VS) Code extension
	PMD static analysis for Salesforce Apex using the command line

	Executing Apex tests in a deployment using Jenkins
	What is continuous testing?
	Introducing Selenium
	Setting up Selenium using Firefox
	Recording tests using Selenium
	Playing back the recorded tests using Selenium

	Introducing Qualitia
	Running test cases with Qualitia
	Use case – continuous testing using Qualitia

	Summary

	Chapter 8: Tracking Application Changes and the ROI of Applying DevOps to Salesforce

	How to track application changes
	Introducing Bugzilla
	Publishing a build report to Git
	How DevOps helps organizations deliver quickly
	Enhanced productivity
	How to measure ROI?
	Summary

	Other Books You May Enjoy
	Index

