

Mastering Spring Cloud

Build self-healing, microservices-based, distributed systems
using Spring Cloud

Piotr Mińkowski

BIRMINGHAM - MUMBAI

Mastering Spring Cloud
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Karan Sadawana
Content Development Editor: Lawrence Veigas
Technical Editor: Adhithya Haridas
Copy Editor: Safis Editing
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Jisha Chirayil
Production Coordinator: Arvindkumar Gupta

First published: April 2018

Production reference: 1250418

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78847-543-3

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Piotr Mińkowski has more than 10 years of experience working as a developer and an
architect in the banking and telecommunications sectors. He specializes in Java as well as in
technologies, tools, and frameworks associated with it. Now, he is working at Play, a mobile
operator in Poland, where he is responsible for the IT systems architecture. Here, he helps
the organization migrate from monoliths/SOA to a microservices-based architecture, and
also helps set up full Continuous Integration and Delivery environments.

About the reviewer
Samer ABDELKAFI has over 13 years of experience as a software architect and engineer,
with a major focus on open source technologies. He has contributed to numerous and
diverse projects in different sectors, such as banking, insurance, education, public services,
and utility billing. In the end of 2016, he created DEVACT, a company specializing in
information technology consulting. He also reviewed a book titled Spring MVC Blueprints.
In addition to his day job, Samer shares his experience in his blog, writing articles related to
Java and web technologies.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Introduction to Microservices 7
The blessings of microservices 7
Building microservices with Spring Framework 8
Cloud-native development 9
Learning the microservices architecture 10

Understanding the need for service discovery 13
Communication between services 15
Failures and circuit breakers 17

Summary 18

Chapter 2: Spring for Microservices 19
Introducing Spring Boot 20
Developing applications with Spring Boot 22

Customizing configuration files 24
Creating RESTful Web Services 28

API Documentation 30
Using Swagger 2 together with Spring Boot 31
Testing API with Swagger UI 32

Spring Boot Actuator features 34
Application information 35
Health information 37
Metrics 38

Developer tools 40
Integrating application with database 41

Building a sample application 41
Running the application 44
Summary 48

Chapter 3: Spring Cloud Overview 49
Beginning with the basics 50

Netflix OSS 51
Service discovery with Eureka 52
Routing with Zuul 52
Load balancing with Ribbon 52
Writing Java HTTP clients 53
Latency and fault tolerance with Hystrix 53
Configuration management with Archaius 53

Discovery and distributed configuration 54

Table of Contents

[ii]

An alternative – Consul 55
Apache Zookeeper 55
Miscellaneous projects 56

Distributed tracing with Sleuth 56
Messaging and integration 57
Cloud platform support 59
Other useful libraries 60

Security 60
Automated testing 60
Cluster features 61

Projects overview 61
Release trains 62
Summary 64

Chapter 4: Service Discovery 65
Running Eureka on the server side 66
Enabling Eureka on the client side 67

Deregistration on shutdown 69
Using discovery client programmatically 71

Advanced configuration settings 72
Refreshing the registry 73
Changing the instance identificator 75
Preferring the IP address 76
Response cache 77

Enabling secure communication between client and server 78
Registering a secure service 79

Eureka API 80
Replication and high availability 81

Architecture of the sample solution 81
Building the example application 82
Failover 86

Zones 88
Zones with a standalone server 89
Building an example application 89

Summary 92

Chapter 5: Distributed Configuration with Spring Cloud Config 93
Introduction to HTTP API resources 94

Native profile support 95
Building a server-side application 97
Building a client-side application 98

Adding a Eureka Server 98
Client-side bootstrap approaches 100

Config Server discovery 100

Table of Contents

[iii]

Repository backend types 102
Filesystem backend 102
Git backend 103

Different protocols 104
Using placeholders in URIs 104
Building a server application 104
Client-side configuration 107
Multiple repositories 107

Vault backend 108
Getting started with Vault 108
Integration with Spring Cloud Config 109

Client-side configuration 110
Additional features 111

Fail on start and retry 111
Secure client 111

Reload configuration automatically 111
Solution architecture 112
Reload configuration with @RefreshScope 113
Consuming events from a message broker 115
Monitoring repository changes on a Config Server 118

Simulating change events manually 119
Testing locally with a GitLab instance 120

Summary 122

Chapter 6: Communication Between Microservices 123
Different styles of communication 124
Synchronous communication with Spring Cloud 124
Load balancing with Ribbon 125

Enabling communication between microservices using the Ribbon client 125
Static load balancing configuration 126
Calling other services 127

Using RestTemplate together with service discovery 130
Building example application 130

Using Feign client 133
Support for different zones 133
Enabling Feign for an application 134

Building Feign interfaces 135
Launching microservices 136

Inheritance support 138
Creating a client manually 139
Client customization 139

Summary 141

Chapter 7: Advanced Load Balancing and Circuit Breakers 143
Load balancing rules 143

The WeightedResponseTime rule 145

Table of Contents

[iv]

Introducing Hoverfly for testing 145
Testing the rule 145

Customizing the Ribbon client 148
The circuit breaker pattern with Hystrix 150

Building an application with Hystrix 151
Implementing Hystrix's commands 151
Implementing fallback with cached data 153

The tripping circuit breaker 154
Monitoring latency and fault tolerance 157

Exposing Hystrix's metrics stream 159
Hystrix dashboard 160

Building an application with the dashboard 160
Monitoring metrics on the dashboard 162
Aggregating Hystrix's streams with Turbine 164

Enabling Turbine 165
Enabling Turbine with streaming 167

Failures and the circuit breaker pattern with Feign 168
Retrying the connection with Ribbon 168
Hystrix's support for Feign 169

Summary 172

Chapter 8: Routing and Filtering with API Gateway 173
Using Spring Cloud Netflix Zuul 174

Building a gateway application 174
Integration with service discovery 176
Customizing route configuration 177

Ignoring registered services 177
Explicity set service name 178
Route definition with the Ribbon client 178
Adding a prefix to the path 179
Connection settings and timeouts 179
Secure headers 180

Management endpoints 181
Providing Hystrix fallback 182
Zuul filters 183

Predefined filters 184
Custom implementations 185

Using Spring Cloud Gateway 186
Enable Spring Cloud Gateway for a project 187
Built-in predicates and filters 188
Gateway for microservices 192
Integration with service discovery 194

Summary 195

Chapter 9: Distributed Logging and Tracing 196
Best logging practices for microservices 197
Logging with Spring Boot 199

Table of Contents

[v]

Centralizing logs with ELK Stack 201
Setting up ELK Stack on the machine 202
Integrating an application with ELK Stack 203

Using LogstashTCPAppender 204
Using AMQP appender and a message broker 209

Spring Cloud Sleuth 211
Integrating Sleuth with an application 212
Searching events using Kibana 213
Integrating Sleuth with Zipkin 216

Running the Zipkin server 216
Building the client application 217

Analyze data with the Zipkin UI 218
Integration via message broker 222

Summary 223

Chapter 10: Additional Configuration and Discovery Features 224
Using Spring Cloud Consul 225

Running Consul agent 225
Integration on the client side 227
Service discovery 228

Health check 230
Zones 231
Client settings customization 233
Running in clustered mode 234

Distributed configuration 236
Managing properties in Consul 236
Client customization 237
Watching configuration changes 238

Using Spring Cloud Zookeeper 240
Running Zookeeper 241
Service discovery 242

Client implementation 242
Zookeeper dependencies 243

Distributed configuration 245
Summary 246

Chapter 11: Message-Driven Microservices 248
Learning about Spring Cloud Stream 248
Building a messaging system 249

Enabling Spring Cloud Stream 250
Declaring and binding channels 251
Customizing connectivity with the RabbitMQ broker 254
Integration with other Spring Cloud projects 259

The publish/subscribe model 263
Running a sample system 263
Scaling and grouping 265

Running multiple instances 265

Table of Contents

[vi]

Consumer groups 266
Partitioning 267

Configuration options 270
Spring Cloud Stream properties 270
Binding properties 271

The consumer 272
The producer 272

The advanced programming model 272
Producing messages 273
Transformation 273
Consuming messages conditionally 274

Using Apache Kafka 275
Running Kafka 275
Customizing application settings 276
Kafka Streams API support 277
Configuration properties 277

Multiple binders 278
Summary 280

Chapter 12: Securing an API 281
Enabling HTTPS for Spring Boot 282
Secure discovery 283

Registering a secure application 283
Serving Eureka over HTTPS 284

Keystore generation 285
Configurating SSL for microservices and Eureka server 286

Secure configuration server 288
Encryption and decryption 288
Configuring authentication for a client and a server 290

Authorization with OAuth2 292
Introduction to OAuth2 293
Building an authorization server 294
Client configuration 298
Using the JDBC backend store 300
Inter-service authorization 303
Enabling SSO on the API gateway 307

Summary 308

Chapter 13: Testing Java Microservices 309
Testing strategies 310
Testing Spring Boot applications 312

Building the sample application 313
Integration with the database 314

Unit tests 315
Component tests 317

Table of Contents

[vii]

Running tests with an in-memory database 317
Handling HTTP clients and service discovery 319
Implementing sample tests 321

Integration tests 322
Categorizing tests 322
Capturing HTTP traffic 323

Contract tests 324
Using Pact 324

Consumer side 325
Producer side 328

Using Spring Cloud Contract 330
Defining contracts and generating stubs 330
Verifying a contract on the consumer side 334
Scenarios 336

Performance testing 338
Gatling 338

Enabling Gatling 338
Defining the test scenario 338
Running a test scenario 340

Summary 343

Chapter 14: Docker Support 344
Introducing Docker 345
Installing Docker 346
Commonly used Docker commands 347

Running and stopping a container 348
Listing and removing containers 349
Pulling and pushing images 350
Building an image 352
Networking 352

Creating a Docker image with microservices 353
Dockerfiles 354
Running containerized microservices 356
Building an image using the Maven plugin 360
Advanced Docker images 362

Continuous Delivery 364
Integrating Jenkins with Docker 364
Building pipelines 366

Working with Kubernetes 370
Concepts and components 371
Running Kubernetes locally via Minikube 372
Deploying an application 373
Maintaining a cluster 377

Summary 378

Chapter 15: Spring Microservices on Cloud Platforms 380

Table of Contents

[viii]

Pivotal Cloud Foundry 381
Usage models 382
Preparing the application 383
Deploying the application 385

Using CLI 385
Binding to services 387
Using the Maven plugin 387

Maintenance 389
Accessing deployment details 389
Managing application life cycles 391
Scaling 392
Provisioning brokered services 394

The Heroku platform 396
Deployment methods 397

Using the CLI 397
Connecting to the GitHub repository 398
Docker Container Registry 399

Preparing an application 399
Testing deployments 401

Summary 403

Other Books You May Enjoy 404

Index 407

Preface
Developing, deploying, and operating cloud applications should be as easy as local
applications. This should be the governing principle behind any cloud platform, library, or
tool. Spring Cloud makes it easy to develop JVM applications for the cloud. In this book, we
introduce you to Spring Cloud and help you master its features.

You will learn to configure the Spring Cloud server and run the Eureka server to enable
service registration and discovery. Then you will learn about techniques related to load
balancing and circuit breaking and utilize all the features of the Feign client. We then dive
into advanced topics where you will learn to implement distributed tracing solutions for
Spring Cloud and build message-driven microservice architectures.

Who this book is for
This book appeals to developers keen to take advantage of Spring Cloud, an open source
library which helps developers quickly build distributed systems. Knowledge of Java and
Spring Framework will be helpful, but no prior exposure to Spring Cloud is required.

What this book covers
Chapter 1, Introduction to Microservices, will introduce you to the microservices architecture,
cloud environment, etc. You will learn the difference between a microservice based
application and a monolith application while also learning how to migrate to a
microservices application.

Chapter 2, Spring for Microservices, will introduce you Spring Boot framework. You will
learn how to effictively use it to create microservice application. We will cover such topics
like creating REST API using Spring MVC annotations, providing API documentation using
Swagger2, and exposing health checks and metrics using Spring Boot Actuator endpoints.

Chapter 3, Spring Cloud Overview, will provide a short description of the main projects
being a part of Spring Cloud. It will focus on describing the main patterns implemented by
Spring Cloud and assigning them to the particular projects.

Preface

[2]

Chapter 4, Service Discovery, will describe a service discovery pattern with Spring Cloud
Netflix Eureka. You will learn how to run Eureka server in standalone mode and how to
run multiple server instances with peer-to-peer replication. You will also learn how to
enable discovery on the client side and register these clients in different zones.

Chapter 5, Distributed Configuration with Spring Cloud Config, will describe how use
distributed configuration with Spring Cloud Config in your applications. You will learn
how to enable different backend repositories of property sources and push change
notifications using Spring Cloud Bus. We will compare discovery first bootstrap and config
first bootstrap approaches to illustrate integration between discovery service and
configuration server.

Chapter 6, Communication Between Microservices, will describe the most important elements
taking a part in an inter-service communication: HTTP clients and load balancers. You will
learn how to use Spring RestTemplate, Ribbon, and Feign clients with or without service
discovery.

Chapter 7, Advanced Load Balancing and Circuit Breakers, will described more advanced
topics related to inter-service communication between microservices. You will learn how to
implement different load balancing algorithms with Ribbon client, enabling circuit breaker
pattern using Hystrix and using Hystrix dashboard to monitor communication statistics.

Chapter 8, Routing and Filtering with API Gateway, will compare two projects used as an API
gateway and proxy for Spring Cloud applications: Spring Cloud Netlix Zuul and Spring
Cloud Gateway. You will learn how to integrate them with service discovery and create
simple and more advanced routing and filtering rules.

Chapter 9, Distributed Logging and Tracing, will introduce some popular tools for collecting
and analizing logging and tracing information generated by microservices. You will learn
how to use Spring Cloud Sleuth to append tracing information and correlating messages.
We will run sample applications that integrates with Elastic Stack in order to sent there log
messages, and Zipkin to collect traces.

Chapter 10, Additional Configuration and Discovery Features, will introduce two popular
products used for service discovery and distributed configuration: Consul and ZooKeeper.
You will learn how to run these tools locally, and intergrate your Spring Cloud applications
with them.

Preface

[3]

Chapter 11, Message-Driven Microservices, will guide you how to provide asynchronous,
message-driven communication between your microservices. You will learn how to
integrate RabbitMQ and Apache Kafka message brokers with your Spring Cloud
application to enable asynchronous one-to-one and publish/subscribe communication
styles.

Chapter 12, Securing an API, will describe varius ways of securing your microservices. We
will implement a system consisting of all previously introduced elements, that
communicates with each other over SSL. You will also learn how to use OAuth2 and JWT
token to authorize requests coming to your API.

Chapter 13, Testing Java Microservices, will describe different strategies of microservices
testing. It will focus on showing consumer-driven contract tests, especially useful in
microservice-based environment. You will how to use such frameworks like Hoverfly, Pact,
Spring Cloud Contract, Gatling for implemnting different types of automated tests.

Chapter 14, Docker Support, will provide a short introduction to Docker. It will focus on
describing most commonly used Docker commands, which are used for running and
monitoring microservices in containerized environment. You will also learn how to build
and run containers using popular continuous integration server - Jenkins, and deploy them
on Kubernetes platform.

Chapter 15, Spring Microservices on Cloud Platforms, will introduce two popular cloud
platforms that support Java applications: Pivotal Cloud Foundry and Heroku. You will
learn how to deploy, start, scale and monitor your applications on these platforms using
command-line tools or web console.

To get the most out of this book
In order to successfully read through this book and work out all the code samples, we
expect readers to fulfill the following requirements:

An active internet connection
Java 8+
Docker
Maven
Git client

Preface

[4]

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Mastering- Spring- Cloud. We also have other code bundles from our
rich catalog of books and videos available at https:/ /github. com/ PacktPublishing/ .
Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The last available version of the HTTP API endpoint,
http://localhost:8889/client-service-zone3.yml, returns data identical to the
input file."

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-Spring-Cloud
https://github.com/PacktPublishing/Mastering-Spring-Cloud
https://github.com/PacktPublishing/Mastering-Spring-Cloud
https://github.com/PacktPublishing/Mastering-Spring-Cloud
https://github.com/PacktPublishing/Mastering-Spring-Cloud
https://github.com/PacktPublishing/Mastering-Spring-Cloud
https://github.com/PacktPublishing/Mastering-Spring-Cloud
https://github.com/PacktPublishing/Mastering-Spring-Cloud
https://github.com/PacktPublishing/Mastering-Spring-Cloud
https://github.com/PacktPublishing/Mastering-Spring-Cloud
https://github.com/PacktPublishing/Mastering-Spring-Cloud
https://github.com/PacktPublishing/Mastering-Spring-Cloud
https://github.com/PacktPublishing/Mastering-Spring-Cloud
https://github.com/PacktPublishing/Mastering-Spring-Cloud
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

A block of code is set as follows:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-config-server</artifactId>
</dependency>

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

spring:
 rabbitmq:
 host: 192.168.99.100
 port: 5672

Any command-line input or output is written as follows:

$ curl -H "X-Vault-Token: client" -X GET
http://192.168.99.100:8200/v1/secret/client-service

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"In Google Chrome, you can import a PKCS12 keystore by going to
section Settings | Show advanced settings... | HTTPS/SSL | Manage certificates."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Preface

[6]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Introduction to Microservices

Microservices are one of the hottest trends to emerge in the IT world during the last few
years. It is relatively easy to identify the most important reasons for their growing
popularity. Both their advantages and disadvantages are well known, although what we
describe as disadvantages can be easily solved using the right tools. The advantages that
they offer include scalability, flexibility, and independent delivery; these are the reasons for
its rapidly growing popularity. There are a few earlier IT trends that had some influence
over this growth in the popularity of microservices. I'm referring to trends such as the usage
of common cloud-based environments and the migration from relational databases to
NoSQL.

Before discussing this at length, let's see the topics we will cover in this chapter:

Cloud-native development with Spring Cloud
The most important elements in microservices-based architecture
Models of interservice communication
Introduction to circuit breakers and fallback patterns

The blessings of microservices
The concept of microservices defines an approach to the architecture of IT systems that
divides an application into a collection of loosely coupled services that implement business
requirements. In fact, this is a variant of the concept of service-oriented architecture (SOA).
One of the most important benefits of a migration to microservices-based architecture is an
ability to perform continuous delivery of large and complex applications.

Introduction to Microservices Chapter 1

[8]

By now, you have probably had an opportunity to read some books or articles about
microservices. I think that most of them would have given you a detailed description of
their advantages and drawbacks. There are many advantages to using microservices. The
first is that microservices are relatively small and easy to understand for a new developer in
a project. We usually want to make sure that the change in the code performed in one place
would not have an unwanted effect on all the other modules of our application. With
microservices, we can have more certainty about this because we implement only a single
business area, unlike monolithic applications where sometimes even seemingly unrelated
functionalities are put in the same boat. That is not all. I have noticed that, usually, it is
easier to maintain expected code quality in small microservices than in a large monolith
where many developers have introduced their changes.

The second thing I like about microservices architecture concerns division. Until now, when
I had to deal with complex enterprise systems, I always saw that dividing the system into
subsystems was done according to other subsystems. For example, telecommunication
organizations always have a billing subsystem. Then you create a subsystem that hides the
billing complexity and provides an API. Then you find out that you need data that can't be
stored in the billing system because it is not easily customizable. So you create another
subsystem. This leads in effect to you building a complicated subsystem mesh, which is not
easy to understand, especially if you are a new employee in the organization. With
microservices, you do not have problems such as this. If they are well-designed, every
microservice should be responsible for an entire selected area. In some cases, those areas are
similar regardless of the sector in which an organization is active.

Building microservices with Spring
Framework
Although the concept of microservices has been an important topic for some years, there are
still not many stable frameworks that support all the features needed to run full
microservices environments. Since the beginning of my adventure with microservices, I
have been trying to keep up with the latest frameworks and find out the features developed
towards the needs of microservices. There are some other interesting solutions, such as
Vert.x or Apache Camel, but none of them is a match for Spring Framework.

Introduction to Microservices Chapter 1

[9]

Spring Cloud implements all proven patterns that are used in microservice-based
architecture, such as service registries, the configuration server, circuit breakers, cloud
buses, OAuth2 patterns, and API gateways. It has a strong community, therefore new
features are released at a high frequency. It is based on Spring's open programming model
used by millions of Java developers worldwide. It is also well-documented. You won't have
any problems in finding many available examples of Spring Framework usage online.

Cloud-native development
Microservices are intrinsically linked to cloud-computing platforms, but the actual concept
of microservices is nothing new. This approach has been applied in the IT development
world for many years, but now, through the popularity of cloud solutions, it has evolved to
a higher level. It is not hard to point out the reasons for this popularity. The use of a cloud
offers you scalability, reliability, and low maintenance costs in comparison with on-
premises solutions inside the organization. This has led to the rise of cloud-native
application development approaches that are intended to give you the benefits from all of
the advantages offered by cloud-like elastic scaling, immutable deployments, and
disposable instances. It all comes down to one thing—decreasing the time and cost that is
needed to meet new requirements. Today, software systems and applications are being
improved continuously. If you have a traditional approach to development, based on
monoliths, a code base grows and becomes too complex for modifications and maintenance.
Introducing new features, frameworks, and technologies becomes hard, which in turn
impacts innovations and inhibits new ideas. We can't argue with that.

There is also another side to this coin. Today, practically everyone thinks about migration to
the cloud, partly because it's trendy. Does everyone need this? Certainly not. Those who are
not absolutely sure about migrating their applications to a remote cloud provider, such as
AWS, Azure, or Google, would like to at least have an on-premises private cloud or Docker
containers. But will it really bring them the benefits that compensate for expenses incurred?
It is worth answering that question before looking at cloud-native development and cloud
platforms.

I'm not trying to dissuade you from using Spring Cloud—quite the opposite. We have to
thoroughly understand what cloud-native development is. Here is a really fine definition:

"A native cloud application is a program that is specifically designed for a cloud
computing environment as opposed to simply being migrated to the cloud."

Introduction to Microservices Chapter 1

[10]

Spring is designed to accelerate your cloud-native development. Building an application
with Spring Boot is very quick; I'll show you how to do this in detail in the next chapter.
Spring Cloud implements microservice architecture patterns and helps us in using the most
popular solutions from that field. Applications developed using these frameworks can
easily be adapted to be deployed on Pivotal Cloud Foundry or Docker containers, but they
might as well be launched in the traditional way as separated processes on one or more
machines, and you would have the advantage of a microservices approach. Let's now dive
into the microservices architecture.

Learning the microservices architecture
Let's imagine that a client approaches you, wanting you to design a solution for them. They
need some kind of banking application that has to guarantee data consistency within the
whole system. Our client had been using an Oracle database until now and has also
purchased support from their side. Without thinking too much, we decide to design a
monolithic application based on a relational data model. You can see a simplified diagram
of the system's design here:

Introduction to Microservices Chapter 1

[11]

There are four entities that are mapped into the tables in the database:

The first of them, Customer, stores and retrieves the list of active clients
Every customer could have one or more accounts, which are operated by
the Account entity
The Transfer entity is responsible for performing all transfers of funds between
accounts within the system
There is also the Product entity that is created to store information such as the
deposits and credits assigned to the clients

Without going into further details, the application exposes the API that provides all the
necessary operations for realizing actions on the designed database. Of course, the
implementation is in compliance with the three-layer model.

Consistency is not the most important requirement anymore; it is not even obligatory. The
client expects a solution, but does not want the development to require the redeployment of
the whole application. It should be scalable and should easily be able to extend new
modules and functionalities. Additionally, the client does not put pressure on the developer
to use Oracle or another relational database—not only that, but he would be happy to avoid
using it. Are these sufficient reasons to decide on migrating to microservices? Let's just
assume that they are. We divide our monolithic application into four independent
microservices, each one of them with a dedicated database. In some cases, it can still be a
relational database, while in others it can be a NoSQL database. Now, our system consists of
many services that are independently built and run in our environment. Along with an
increase in the number of microservices, there is a rising level of system complexity. We
would like to hide that complexity from the external API client, which should not be aware
that it talks to service X but not Y. The gateway is responsible for dynamically routing all
requests to different endpoints. For example, the word dynamically means that it should be
based on entries in the service discovery, which I'll talk about later in the section
Understanding the need for service discovery.

Introduction to Microservices Chapter 1

[12]

Hiding invocations of specific services or dynamic routing is not the only function of an API
gateway. Since it is the entry point to our system, it can be a great place to track important
data, collect metrics of requests, and count other statistics. It can enrich requests or response
headers in order to include some additional information that is usable by the applications
inside the system. It should perform some security actions, such as authentication and
authorization, and should be able to detect the requirements for each resource and reject
requests that do not satisfy them. Here's a diagram that illustrates the sample system,
consisting of four independent microservices, which is hidden from an external client
behind an API gateway:

Introduction to Microservices Chapter 1

[13]

Understanding the need for service discovery
Let's imagine that we have already divided our monolithic application into smaller,
independent services. From the outside, our system still looks the same as before, because
its complexity is hidden behind the API gateway. Actually, there are not many
microservices, but, there may well be many more. Additionally, each of them can interact
with the others. That means that every microservice has to keep information about the
others' network addresses. Maintaining such a configuration could be very troublesome,
especially when it comes down to manually overwriting every configuration. And what if
those addresses are changing dynamically after restart? The following diagram shows the
calling routes between our example microservices:

Introduction to Microservices Chapter 1

[14]

Service discovery is the automatic detection of devices and services offered by these devices
on a computer network. In the case of microservice-based architecture, this is the necessary
mechanism. Every service after startup should register itself in one central place that is
accessible by all other services. The registration key should be the name of a service or an
identificator, which has to be unique within the whole system in order to enable others to
find and call the service using that name. Every single key with the given name has some
values assigned to it. In the most common cases, these attributes indicate the network
location of the service. To be more accurate, they indicate one of the instances of the
microservice because it can be multiplied as independent applications running on different
machines or ports. Sometimes it is possible to send some additional information, but it
depends on the concrete service discovery provider. However, the important thing here is
that under the one key, more than one instance of the same service may be registered. In
addition to registration, each service gets a full list of the other services registered on the
particular discovery server. Not only that, every microservice must be aware of any changes
in the registration list. This may be achieved by periodically renewing the configuration
earlier collected from the remote server.

Some solutions combine the usage of service discovery with the server configuration
feature. When it comes right down to it, both approaches are pretty similar. The
configuration of the server lets you centralize the management of all configuration files in
your system. Usually, such a configuration is then a server as a REST web service. Before
startup, every microservice tries to connect to the server and get the parameters prepared
especially for it. One of the approaches stores such a configuration in the version control
system—for example, Git. Then the configuration server updates its Git working copy and
serves all properties as a JSON. In another approach, we can use solutions that store key-
value pairs and fulfill the role of providers during the service discovery procedure. The
most popular tools for this are Consul and Zookeeper. The following diagram illustrates an
architecture of a system that consists of some microservices with a database backend that
are registered in one central service known as a discovery service:

Introduction to Microservices Chapter 1

[15]

Communication between services
In order to guarantee the system's reliability, we cannot allow a situation where each service
would have only one instance running. We usually aim to have a minimum of two running
instances in case one of them experiences a failure. Of course, there could be more, but we'll
keep it low for performance reasons. Anyway, multiple instances of the same service make
it necessary to use load balancing for incoming requests. Firstly, the load balancer is usually
built into an API gateway. This load balancer should get the list of registered instances from
the discovery server. If there is no reason not to, then we usually use a round-robin rule that
balances incoming traffic 50/50 between all running instances. The same rule also applies to
load balancers on the microservices side.

Introduction to Microservices Chapter 1

[16]

The following diagram illustrates the most important components that are involved in
interservice communication between multiple instances of two sample microservices:

Most people, when they hear about microservices, consider it to consist of RESTful web
services with JSON notation, but that's just one of the possibilities. We can use some other
interaction styles, which, of course, apply not only to microservices-based architecture. The
first categorization that should be performed is one-to-one or one-to-many communication.
In one-to-one interaction, every incoming request is processed by exactly one service
instance while, in one-to-many, it is processed by multiple service instances. But the most
popular division criterion is whether the call is synchronous or asynchronous. Additionally,
asynchronous communication can be divided into notifications. When a client sends a
request to a service, but a reply is not expected, it can just perform a simple asynchronous
call, which does not block a thread and replies asynchronously.

Introduction to Microservices Chapter 1

[17]

Furthermore, it is worth mentioning reactive microservices. Now, from version 5, Spring
also supports this type of programming. There are also libraries with Reactive support for
interaction with NoSQL databases, such as MongoDB or Cassandra. The last well-known
communication type is publish-subscribe. This is a one-to-many interaction type where a
client publishes a message that is then consumed by all listening services. Typically, this
model is realized using message brokers, such as Apache Kafka, RabbitMQ, and
ActiveMQ.

Failures and circuit breakers
We have discussed most of the important concepts related to the microservices architecture.
Such mechanisms, such as service discovery, API gateways, and configuration servers, are
useful elements that help us to create a reliable and efficient system. Even if you have
considered many aspects of these while designing your system's architecture, you should
always be prepared for failures. In many cases, the reasons for failures are totally beyond
the control of the holder, such as network or database problems. Such errors can be
particularly severe for microservice-based systems, where one input request is processed in
many subsequent calls. The first good practice is to always use network timeouts when
waiting for a response. If a single service has a performance problem, we should try to
minimize the impact on the rest. It is better to send an error response than to wait on a reply
for a long time, blocking other threads.

An interesting solution for the network timeout problems might be the circuit breaker
pattern. It is a concept closely related to the microservice approach. A circuit breaker is
responsible for counting successful and failed requests. If the error rate exceeds an assumed
threshold, it trips and causes all further attempts to fail immediately. After a specific period
of time, the API client should get back to sending requests, and if they succeed, it closes the
circuit breaker. If there are many instances of each service available and one of them works
slower than others, the result is that it is overlooked during the load balancing process. The
second often-used mechanism for dealing with partial network failures is fallback. This is a
logic that has to be performed when a request fails. For example, a service can return
cached data, a default value, or an empty list of results. Personally, I'm not a big fan of this
solution. I would prefer to propagate error code to other systems than return cached data or
default values.

Introduction to Microservices Chapter 1

[18]

Summary
The big advantage of Spring Cloud is that it supports all the patterns and mechanisms we
have looked at. These are also stable implementations, unlike some other frameworks. I'll
describe in detail which of the patterns are supported by which Spring Cloud project in
Chapter 3, Spring Cloud Overview.

In this chapter, we have discussed the most important concepts related to microservices
architecture, such as cloud-native development, service discovery, distributed
configuration, API gateways, and the circuit breaker pattern. I have attempted to present
my point of view about the advantages and drawbacks of this approach in the development
of enterprise applications. Then, I described the main patterns and solutions related to
microservices. Some of these are well-known patterns that have been around for years and
are treated as something new in the IT world. In this summary, I would like to turn your
attention to some things. Microservices are cloud-native by their nature. Frameworks such
as Spring Boot and Spring Cloud help you to accelerate your cloud-native development.
The main motivation of migrating to cloud-native development is the ability to implement
and deliver applications faster while maintaining high quality. In many cases, microservices
help us to achieve this, but sometimes the monolithic approach is not a bad choice.

Although microservices are small and independent units, they are managed centrally.
Information such as network location, configuration, logging files, and metrics should be
stored in one central place. There are various types of tools and solutions that provide all
these features. We will talk about them in detail in almost all of the chapters in this book.
The Spring Cloud project is designed to help us in integrating with all that stuff. I hope to
efficiently guide you through the most important integrations it offers.

2
Spring for Microservices

I don't know many Java developers who have never touched Spring Framework. Actually,
it consists of so many projects and can be used with many other frameworks that sooner or
later you will be forced to try it. Although experiences with Spring Boot are rather less
common, it has quickly gained a lot of popularity. In comparison with Spring Framework,
Spring Boot is a relatively new solution. Its actual version is 2, instead of 5 for Spring
Framework. What was the purpose of its creation? What is the difference between a
running application with Spring Boot instead of the standard Spring Framework way?

Topics we will cover in this chapter include:

Using starters in order to enable additional features for the project
Using Spring Web library for implementing services that expose REST API
methods
Customizing service configuration using properties and YAML files
Documenting and providing the specification for exposed REST endpoints
Configuring health checks and monitoring features
Using Spring Boot profiles to adapt the application to run in different modes
Using ORM features for interacting with embedded and remote NoSQL
databases

Spring for Microservices Chapter 2

[20]

Introducing Spring Boot
Spring Boot is dedicated to running standalone Spring applications, the same as simple Java
applications, with the java -jar command. The basic thing that makes Spring Boot
different than standard Spring configuration is simplicity. This simplicity is closely related
to the first important term we need to know about, which is a starter. A starter is an artifact
that can be included in the project dependencies. It does nothing more than provide a set of
dependencies to other artifacts that have to be included in your application in order to
achieve the desired functionality. A package delivered in that way is ready for use, which
means that we don't have to configure anything to make it work. And that brings us to the
second important term related to Spring Boot, auto-configuration. All artifacts included by
the starters have default settings set, which can be easily overridden using properties or
other types of starters. For example, if you include spring-boot-starter-web in your
application dependencies it embeds a default web container and starts it on the default port
during application startup. Looking forward, the default web container in Spring Boot is
Tomcat, which starts on port 8080. We can easily change this port by declaring the specified
field in the application properties file and even change the web container by including
spring-boot-starter-jetty or spring-boot-starter-undertow in our project
dependencies.

Let me say a few words more about starters. Their official naming pattern is spring-boot-
starter-*, where * is the particular type of starter. There are plenty of starters available
within Spring Boot, but I would like to give you a short briefing on the most popular of
them, which have also been used in the examples provided in the following chapters of this
book:

Name Description

spring-boot-starter
Core starter, including auto-configuration
support, logging, and YAML.

spring-boot-starter-web
Allows us to build web applications, including
RESTful and Spring MVC. Uses Tomcat as the
default embedded container.

spring-boot-starter-jetty
Includes Jetty in the project and sets it as the
default embedded servlet container.

spring-boot-starter-undertow
Includes Undertow in the project and sets it as the
default embedded servlet container.

Spring for Microservices Chapter 2

[21]

spring-boot-starter-tomcat
Includes Tomcat as the embedded servlet
container. The default servlet container starter
used by spring-boot-starter-web.

spring-boot-starter-actuator
Includes Spring Boot Actuator in the project,
which provides features for monitoring and
managing applications.

spring-boot-starter-jdbc
Includes Spring JBDC with the Tomcat connection
pool. The driver for the specific database should
be provided by yourself.

spring-boot-starter-data-jpa
Includes all artifacts needed for interaction with
relational databases using JPA/Hibernate.

spring-boot-starter-data-mongodb
Includes all artifacts needed for interaction with
MongoDB and initializing a client connection to
Mongo on localhost.

spring-boot-starter-security
Includes Spring Security in the project and
enables basic security for applications by default.

spring-boot-starter-test
Allows the creation of unit tests using such
libraries as JUnit, Hamcrest, and Mockito.

spring-boot-starter-amqp
Includes Spring AMQP to the project and starts
RabbitMQ as the default AMQP broker.

If you are interested in the full list of available starters, refer to the Spring Boot specification.
Now, let's get back to the main differences between Spring Boot and standard configuration
with Spring Framework. Like I mentioned before we can include spring-boot-starter-
web, which embeds a web container into our application. With standard Spring
configuration, we do not embed a web container into the application, but deploy it as a
WAR file on the web container. This is a key difference and one of the most important
reasons that Spring Boot is used for creating applications deployed inside microservice
architecture. One of the main features of microservices is independence from other
microservices. In this case, it is clear that they should not share common resources, such as
databases or web containers. Deploying many WAR files on one web container is an anti-
pattern for microservices. Spring Boot is, therefore, the obvious choice.

Spring for Microservices Chapter 2

[22]

Personally, I have used Spring Boot while developing many applications, not only when
working in a microservice environment. If you try it instead of standard Spring Framework
configuration, you will not want to go back. In support of that conclusion you can find an
interesting diagram that illustrates the popularity of Java frameworks repositories on
GitHub: http://redmonk. com/ fryan/ files/ 2017/ 06/ java- tier1- relbar- 20170622- logo.
png. Let's take a closer look at how to develop applications with Spring Boot.

Developing applications with Spring Boot
The recommended way to enable Spring Boot in your project is by using a dependency
management system. Here, you can see a short snippet of how to include appropriate
artifacts in your Maven and Gradle projects. Here is a sample fragment from the Maven
pom.xml:

<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.5.7.RELEASE</version>
</parent>
<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
</dependencies>

With Gradle, we do not need to define parent dependency. Here's a fragment from
build.gradle:

plugins {
 id 'org.springframework.boot' version '1.5.7.RELEASE'
}
dependencies {
 compile("org.springframework.boot:spring-boot-starter-
web:1.5.7.RELEASE")
}

http://redmonk.com/fryan/files/2017/06/java-tier1-relbar-20170622-logo.png
http://redmonk.com/fryan/files/2017/06/java-tier1-relbar-20170622-logo.png
http://redmonk.com/fryan/files/2017/06/java-tier1-relbar-20170622-logo.png
http://redmonk.com/fryan/files/2017/06/java-tier1-relbar-20170622-logo.png
http://redmonk.com/fryan/files/2017/06/java-tier1-relbar-20170622-logo.png
http://redmonk.com/fryan/files/2017/06/java-tier1-relbar-20170622-logo.png
http://redmonk.com/fryan/files/2017/06/java-tier1-relbar-20170622-logo.png
http://redmonk.com/fryan/files/2017/06/java-tier1-relbar-20170622-logo.png
http://redmonk.com/fryan/files/2017/06/java-tier1-relbar-20170622-logo.png
http://redmonk.com/fryan/files/2017/06/java-tier1-relbar-20170622-logo.png
http://redmonk.com/fryan/files/2017/06/java-tier1-relbar-20170622-logo.png
http://redmonk.com/fryan/files/2017/06/java-tier1-relbar-20170622-logo.png
http://redmonk.com/fryan/files/2017/06/java-tier1-relbar-20170622-logo.png
http://redmonk.com/fryan/files/2017/06/java-tier1-relbar-20170622-logo.png
http://redmonk.com/fryan/files/2017/06/java-tier1-relbar-20170622-logo.png
http://redmonk.com/fryan/files/2017/06/java-tier1-relbar-20170622-logo.png
http://redmonk.com/fryan/files/2017/06/java-tier1-relbar-20170622-logo.png
http://redmonk.com/fryan/files/2017/06/java-tier1-relbar-20170622-logo.png
http://redmonk.com/fryan/files/2017/06/java-tier1-relbar-20170622-logo.png
http://redmonk.com/fryan/files/2017/06/java-tier1-relbar-20170622-logo.png
http://redmonk.com/fryan/files/2017/06/java-tier1-relbar-20170622-logo.png
http://redmonk.com/fryan/files/2017/06/java-tier1-relbar-20170622-logo.png
http://redmonk.com/fryan/files/2017/06/java-tier1-relbar-20170622-logo.png
http://redmonk.com/fryan/files/2017/06/java-tier1-relbar-20170622-logo.png
http://redmonk.com/fryan/files/2017/06/java-tier1-relbar-20170622-logo.png
http://redmonk.com/fryan/files/2017/06/java-tier1-relbar-20170622-logo.png

Spring for Microservices Chapter 2

[23]

When using Maven, it is not necessary to inherit from the spring-boot-starter-parent
POM. Alternatively, we can use the dependency management mechanism:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-dependencies</artifactId>
 <version>1.5.7.RELEASE</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

Now, all we need is to create the main application class and annotate it
with @SpringBootApplication, which is an equivalent to three other annotations used
together—@Configuration, @EnableAutoConfiguration, and @ComponentScan:

@SpringBootApplication
public class Application {

 public static void main(String[] args) {
 SpringApplication.run(Application.class, args);
 }

}

Once we have the main class declared and spring-boot-starter-web included, we only
need to run our first application. If you use a development IDE, such as Eclipse or IntelliJ,
you should just run your main class. Otherwise, the application has to be built and run like
a standard Java application with the java -jar command. First, we should provide the
configuration that is responsible for packaging all dependencies into an executable JAR
(sometimes called fat JARs) during application build. This action would be performed by
spring-boot-maven-plugin if it is defined in the Maven pom.xml:

<build>
 <plugins>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 </plugin>
 </plugins>
</build>

Spring for Microservices Chapter 2

[24]

The sample application does nothing more than start a Spring context on the Tomcat
container, which is available on port 8080. The fat JAR is about 14 MB in size. You can
easily, using an IDE, check out which libraries are included in the project. These are
all basic Spring libraries, such as spring-core, spring-aop, spring-context; Spring
Boot; Tomcat embedded; libraries for logging including Logback, Log4j, and Slf4j; and
Jackson libraries used for JSON serialization or deserialization. A good idea is to set the
default Java version for the project. You can easily set it up in pom.xml by declaring the
java.version property:

<properties>
 <java.version>1.8</java.version>
</properties>

We can change the default web container just by adding a new dependency, for example, to
the Jetty server:

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-jetty</artifactId>
 </dependency>

Customizing configuration files
It's one thing to have the ability to create applications quickly and without a huge volume
of work, but no less important is the ability to easily customize and override default
settings. Spring Boot comes in handy and provides mechanisms that enable configuration
management. The simplest way to do that is using configuration files, which are appended
to the application fat JAR. Spring Boot automatically detects configuration files whose name
start with the application prefix. Supported file types are .properties and .yml.
Therefore, we can create configuration files, such as application.properties or
application.yml, and even including profile-specific files such as, application-
prod.properties or application-dev.yml. Moreover, we can use OS environment
variables and command-line arguments to externalize configuration. When using properties
or YAML files, they should be placed in one of the following locations:

A /config subdirectory of the current application directory
The current application directory
A classpath /config package (for example, inside your JAR)
The classpath root

Spring for Microservices Chapter 2

[25]

If you would like to give a specific name to your configuration file, other than application or
application-{profile}, you need to provide a spring.config.name environment
property during startup. You can also use the spring.config.location property, which
contains a comma-separated list of directory locations or file paths:

java -jar sample-spring-boot-web.jar --spring.config.name=example
java -jar sample-spring-boot-web.jar --
spring.config.location=classpath:/example.properties

Inside configuration files, we can define two types of properties. First, there is a group of
common, predefined Spring Boot properties consumed by the underlying classes mostly
from the spring-boot-autoconfigure library. We can also define our own custom
configuration properties, which are then injected into the application using the @Value
or @ConfigurationProperties annotations.

Let's begin with the predefined properties. The full list of supported by the Spring Boot
project is available in their documentation in Appendix A, in the Common application
properties section. Most of them are specific to certain Spring modules, such as databases,
web servers, security, and some other solutions, but there is also a group of core properties.
Personally, I prefer using YAML instead of properties files because it is easily readable by
humans, but the decision is yours. Most commonly, I override such properties as
application name, which is used for service discovery and distributed configuration
management; web server port; logging; or database connection settings.
Usually, application.yml file is placed in the src/main/resources directory, which is
then located in the JAR root directory after the Maven build. Here's a sample configuration
file, which overrides default server port, application name, and logging properties:

server:
 port: ${port:2222}

spring:
 application:
 name: first-service

logging:
 pattern:
 console: "%d{HH:mm:ss.SSS} %-5level %logger{36} - %msg%n"
 file: "%d{HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n"
 level:
 org.springframework.web: DEBUG
 file: app.log

Spring for Microservices Chapter 2

[26]

The one really cool thing here is that you don't have to define any other external
configuration files, for example, log4j.xml or logback.xml, for logging configuration. In
the previous fragment, you can see that I changed the default log level for
org.springframework.web to DEBUG and log patterns, and created a log file, app.log,
placed in the current application directory. Now, the default application name is first-
service and the default HTTP port is 2222.

Our custom configuration settings should also be placed in the same properties or YAML
files. Here's a sample application.yml with custom properties:

name: first-service
my:
 servers:
 - dev.bar.com
 - foo.bar.com

A simple property can be injected using the @Value annotation:

@Component
public class CustomBean {

 @Value("${name}")
 private String name;

 // ...
}

There is also the ability to inject more complex configuration properties using
the @ConfigurationProperties annotation. The list of values defined in the my.servers
property inside the YAML file was injected to the target bean of type java.util.List:

@ConfigurationProperties(prefix="my")
public class Config {

 private List<String> servers = new ArrayList<String>();

 public List<String> getServers() {
 return this.servers;
 }
}

Spring for Microservices Chapter 2

[27]

So far, we have managed to create a simple application that does nothing more than start
Spring on a web container such as Tomcat or Jetty. In this part of the chapter, I wanted to
show you how simple it is to start application development using Spring Boot. Apart from
that, I have described how to customize configuration using YAML or properties files. For
those people who prefer clicking to typing, I recommend the Spring Initializr website
(https://start.spring. io/), where you can generate the project stub based on options
you choose. In the simple site view, you can choose build tools (Maven/Gradle), language
(Java/Kotlin/Groovy), and Spring Boot version. Then, you should provide all necessary
dependencies using the search engine following the Search for dependencies label. I
included spring-boot-starter-web, which is just labeled as Web on Spring Initializr as
you see in the following screenshot. After clicking on Generate project, the ZIP file with the
generated source code gets downloaded onto your computer. You might also be interested
in knowing that by clicking Switch to the full version, you are able to see almost all
available Spring Boot and Spring Cloud libraries, which can be included in the generated
project:

I think that, since we have been going over the basics about building projects using Spring
Boot, this is the right time to add some new features to our sample application.

https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/
https://start.spring.io/

Spring for Microservices Chapter 2

[28]

Creating RESTful Web Services
As a first step, let's create RESTful Web Services exposing some data to the calling clients.
As mentioned before, the Jackson library, which is responsible for the serialization and
deserialization of JSON messages, is automatically included in our classpath together with
spring-boot-starter-web. Thanks to that, we don't have to do anything more than
declare a model class, which is then returned or taken as a parameter by REST methods.
Here's our sample model class, Person:

public class Person {

 private Long id;
 private String firstName;
 private String lastName;
 private int age;
 private Gender gender;

 public Long getId() {
 return id;
 }

 public void setId(Long id) {
 this.id = id;
 }

 //...
}

Spring Web provides some annotations for creating RESTful Web Services. The first of them
is the @RestController annotation, which should be set on your controller bean class that
is responsible for handling incoming HTTP requests. There is also the @RequestMapping
annotation, which is usually used for mapping controller methods to HTTP. As you see in
the following code fragment, it can be used on the whole controller class to set the request
path for all methods inside it. We can use more specific annotations for the concrete HTTP
methods such as @GetMapping or @PostMapping. @GetMapping is the same as
@RequestMapping with the parameter method=RequestMethod.GET. Two other
commonly used annotations are @RequestParam and @RequestBody. The first binds path
and query params to objects; the second maps input JSON to objects using the Jackson
library:

@RestController
@RequestMapping("/person")
public class PersonController {

Spring for Microservices Chapter 2

[29]

 private List<Person> persons = new ArrayList<>();

 @GetMapping
 public List<Person> findAll() {
 return persons;
 }

 @GetMapping("/{id}")
 public Person findById(@RequestParam("id") Long id) {
 return persons.stream().filter(it ->
it.getId().equals(id)).findFirst().get();
 }

 @PostMapping
 public Person add(@RequestBody Person p) {
 p.setId((long) (persons.size()+1));
 persons.add(p);
 return p;
 }

 // ...
}

To be compatible with REST API standards, we should handle PUT and DELETE methods.
After their implementation, our service performs all CRUD operations:

Method Path Description

GET /person Returns all existing persons

GET /person/{id} Returns person with the given id

POST /person Adds new person

PUT /person Updates existing person

DELETE /person/{id} Removes person from list using given id

Here's a fragment of a sample @RestController implementation with the DELETE and
PUT methods:

@DeleteMapping("/{id}")
public void delete(@RequestParam("id") Long id) {
 List<Person> p = persons.stream().filter(it ->
it.getId().equals(id)).collect(Collectors.toList());
 persons.removeAll(p);
}

Spring for Microservices Chapter 2

[30]

@PutMapping
public void update(@RequestBody Person p) {
 Person person = persons.stream().filter(it ->
it.getId().equals(p.getId())).findFirst().get();
 persons.set(persons.indexOf(person), p);
}

The controller code is really simple. It stores all data in the local java.util.List, which is
obviously not a good programming practice. However, treat that as a simplification
adopted for the purposes of the basic example. In the section Integrating application with
database, in this chapter, I'll cover more advanced sample application that integrates with
the NoSQL database.

Probably some of you have experience with SOAP Web Services. If we had created a similar
service using SOAP instead of REST, we would provide a WSDL file for the client with all
service definitions described. Unfortunately, REST doesn't support such standard notation
as WSDL. In the initial stage of RESTful Web Services, it was said that Web Application
Description Language (WADL) would perform that role. But the reality is that many
providers, including Spring Web, do not generate WADL files after application startup.
Why am I mentioning this? Well, we have already finished our first microservice, which
exposes some REST operations over HTTP. You have probably run this microservice from
your IDE or using the java -jar command after building the fat JAR. If you didn't change
the configuration properties inside the application.yml file, or did not set the -Dport
option while running the application, it is available under http://localhost:2222. In
order to enable others to call our API, we have two choices. We can share a document
describing its usage or mechanisms for automatic API client generation. Or both of them.
That's where Swagger comes in.

API Documentation
Swagger is the most popular tool for designing, building, and documenting RESTful APIs.
It has been created by SmartBear, the designers of a very popular tool for SOAP Web
Services, SoapUI. I think that might be sufficient recommendation for those who have long
experience with SOAP. Anyway, with Swagger, we can design APIs using notation and
then generate source code from it, or the other way around, where we start with the source
code and then generate a Swagger file. With Spring Boot, we use the second option.

Spring for Microservices Chapter 2

[31]

Using Swagger 2 together with Spring Boot
The integration between Spring Boot and Swagger 2 is realized by the Springfox project. It
examines application at runtime to infer API semantics based on Spring configurations,
class structure, and Java annotations. To use Swagger in conjunction with Spring, we need
to add the following two dependencies to the Maven pom.xml and annotate the main
application class with @EnableSwagger2:

<dependency>
 <groupId>io.springfox</groupId>
 <artifactId>springfox-swagger2</artifactId>
 <version>2.7.0</version>
</dependency>
<dependency>
 <groupId>io.springfox</groupId>
 <artifactId>springfox-swagger-ui</artifactId>
 <version>2.7.0</version>
</dependency>

The API documentation will be automatically generated from the source code by the
Swagger library during application startup. The process is controlled by the Docket bean,
which is also declared in the main class. A nice idea might be to get the API version from
the Maven pom.xml file. We can get it by including the maven-model library in the
classpath and using the MavenXpp3Reader class. We also set some other properties, such as
title, author, and description using the apiInfo method. By default, Swagger generates
documentation for all REST services, including those created by Spring Boot. We would like
to limit this documentation only to our @RestController located inside
the pl.piomin.services.boot.controller package:

 @Bean
 public Docket api() throws IOException, XmlPullParserException {
 MavenXpp3Reader reader = new MavenXpp3Reader();
 Model model = reader.read(new FileReader("pom.xml"));
 ApiInfoBuilder builder = new ApiInfoBuilder()
 .title("Person Service Api Documentation")
 .description("Documentation automatically generated")
 .version(model.getVersion())
 .contact(new Contact("Piotr Mińkowski",
"piotrminkowski.wordpress.com", "piotr.minkowski@gmail.com"));
 return new Docket(DocumentationType.SWAGGER_2).select()
.apis(RequestHandlerSelectors.basePackage("pl.piomin.services.boot.controll
er"))
 .paths(PathSelectors.any()).build()
 .apiInfo(builder.build());
 }

Spring for Microservices Chapter 2

[32]

Testing API with Swagger UI
An API documentation dashboard is available at
http://localhost:2222/swagger-ui.html after application startup. This is a more
user-friendly version of the Swagger JSON definition file, which is also automatically
generated and available at http://localhost:2222/v2/api-docs. That file can be
imported by any other REST tools, for example, SoapUI:

If you prefer SoapUI instead of Swagger UI, you can easily import the Swagger definition
file by selecting Project | Import Swagger. Then, you need to provide a file address, as you
can see in this screenshot:

Spring for Microservices Chapter 2

[33]

Personally, I prefer Swagger UI. You can expand every API method to see their details.
Every operation can be tested by providing the required parameters or JSON input, and
clicking the Try it out! button. Here's a screenshot illustrating sending a POST /person test
request:

Spring for Microservices Chapter 2

[34]

Here's the response screen:

Spring Boot Actuator features
Just creating the working application and sharing standardized API documentation is not
everything, especially if we are talking about microservices, where there are plenty of
independent entities structuring one managed environment. The next important thing that
needs to be mentioned is monitoring and gathering metrics from applications. In that
aspect, Spring Boot also comes through. Project Spring Boot Actuator provides a number of
built-in endpoints, which allow us to monitor and interact with the application. To enable it
in our project, we should include spring-boot-starter-actuator in the dependencies.
Here's a list of the most important Actuator endpoints:

Path Description

/beans Displays a full list of all the Spring beans initialized in the application.

/env
Exposes properties from Spring’s Configurable Environment, which means, for
example, OS environment variables and properties from configuration files.

Spring for Microservices Chapter 2

[35]

/health Shows application health information.

/info
Displays arbitrary application information. It can be taken, for example, from
the build-info.properties or git.properties files.

/loggers Shows and modifies the configuration of loggers in the application.

/metrics
Shows metrics information for the current application, such as memory usage,
number of running threads, or REST method response time.

/trace Displays trace information (by default the last 100 HTTP requests).

Endpoints can be easily customized using Spring configuration properties. For example, we
can disable one of the enabled by default endpoints. By default, all endpoints except
for shutdown are enabled. Most of these endpoints are secured. If you would like to call
them from your web browser, you should provide security credentials in the request header
or disable security for the whole project. To do the latter, you have to include the following
statement in your application.yml file:

management:
 security:
 enabled: false

Application information
The full list of endpoints available for the project is visible in application logs during
startup. After disabling security, you can test all of them in your web browser. It's
interesting that the /info endpoint does not provide any information by default. If you
would like to change this, you might use one of the three available auto-configured
InfoContributor beans or write your own. The first of them,
EnvironmentInfoContributor, exposes environment keys in the endpoint. The second,
GitInfoContributor, detects the git.properties file in the classpath and then displays
all necessary information about commits, such as branch name or commit ID. The last one,
named BuildInfoContributor, gathers information from the META-INF/build-
info.properties file and also displays it in the endpoint. These two properties files for
Git and build information can be automatically generated during application build. To
achieve this, you should include git-commit-id-plugin in your pom.xml and customize
spring-boot-maven-plugin to generate build-info.properties in the way visible in
this code fragment:

<plugin>
 <groupId>org.springframework.boot</groupId>

Spring for Microservices Chapter 2

[36]

 <artifactId>spring-boot-maven-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>build-info</goal>
 <goal>repackage</goal>
 </goals>
 <configuration>
 <additionalProperties>
 <java.target>${maven.compiler.target}</java.target>
 <time>${maven.build.timestamp}</time>
 </additionalProperties>
 </configuration>
 </execution>
 </executions>
</plugin>
<plugin>
 <groupId>pl.project13.maven</groupId>
 <artifactId>git-commit-id-plugin</artifactId>
 <configuration>
 <failOnNoGitDirectory>false</failOnNoGitDirectory>
 </configuration>
</plugin>

With the build-info.properties file available, your /info would be a little different
than before:

{
 "build": {
 "version":"1.0-SNAPSHOT",
 "java": {
 "target":"1.8"
 },
 "artifact":"sample-spring-boot-web",
 "name":"sample-spring-boot-web",
 "group":"pl.piomin.services",
 "time":"2017-10-04T10:23:22Z"
 }
}

Spring for Microservices Chapter 2

[37]

Health information
As with the /info endpoint, there are also some auto-configured indicators for
the /health endpoint. We can monitor the status of disk usage, mail service, JMS, data
sources, and NoSQL databases, such as MongoDB or Cassandra. If you check out that
endpoint from our sample application, you only get the information about disk usage. Let's
add MongoDB to the project to test one of the available health
indicators, MongoHealthIndicator. MongoDB is not a random selection. It will be
useful for us in the future for a more advanced example of the Person microservice. To
enable MongoDB use, we need to add the following dependencies to pom.xml.
The de.flapdoodle.embed.mongo artifact is responsible for starting the embedded
database instance during application startup:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-mongodb</artifactId>
</dependency>
<dependency>
 <groupId>de.flapdoodle.embed</groupId>
 <artifactId>de.flapdoodle.embed.mongo</artifactId>
</dependency>

Now, the /health endpoint returns information about disk usage and MongoDB status:

{
 "status":"UP",
 "diskSpace":{
 "status":"UP",
 "total":499808989184,
 "free":193956904960,
 "threshold":10485760
 },
 "mongo":{
 "status":"UP",
 "version":"3.2.2"
 }
}

In this example, we can see the power of Spring Boot auto-configuration. We didn't have to
do anything more than include two dependencies to the project to enable embedded
MongoDB. Its status has been automatically added to the /health endpoint. It also has a
ready-to-use client connection to Mongo, which can be further used by the repository bean.

Spring for Microservices Chapter 2

[38]

Metrics
As we usually say, there is no such thing as a free lunch. Development is fast and easy, but
after including some additional libraries in the project, the fat JAR file now has about 30
MB. Using one of the auto-configured actuator endpoints, /metrics, we can easily check
out our microservice heap and non-heap memory usage. After sending some test requests,
heap usage was about 140 MB and non-heap was 65 MB. Total memory usage for the
application was about 320 MB. Of course, these values can be reduced a little even just by
using the -Xmx parameter during startup with the java -jar command. However, we
should not reduce this limit too much if we care about reliable working in production
mode. Apart from memory usage, the /metrics endpoint displays information about the
number of loaded classes, the number of active threads, the average duration of each API
method, and a lot more. Here's a fragment of the endpoint response for our sample
microservice:

{
 "mem":325484,
 "mem.free":121745,
 "processors":4,
 "instance.uptime":765785,
 "uptime":775049,
 "heap.committed":260608,
 "heap.init":131072,
 "heap.used":138862,
 "heap":1846272,
 "nonheap.committed":75264,
 "nonheap.init":2496,
 "nonheap.used":64876,
 "threads.peak":28,
 "threads.totalStarted":33,
 "threads":28,
 "classes":9535,
 "classes.loaded":9535,
 "gauge.response.person":7.0,
 "counter.status.200.person":4,
 // ...
}

Spring for Microservices Chapter 2

[39]

There is the possibility to create our own custom metrics. Spring Boot Actuator provides
two classes in case we would like to do that—CounterService and GaugeService.
CounterService, as its name indicates, exposes methods for value incrementation,
decrementation, and reset. By contrast, GaugeService is intended to just submit the
current value. Default metrics for the API method calling statistics are a little
imperfect because they are based only on the invoking path. There is no distinguishing
between method types if they are available on the same path. In our sample endpoint, this
applies to GET /person, POST /person, and PUT /person. Anyway, I created the
PersonCounterService bean, which counts the number of add and delete method calls:

@Service
public class PersonCounterService {
 private final CounterService counterService;

 @Autowired
 public PersonCounterService(CounterService counterService) {
 this.counterService = counterService;
 }

 public void countNewPersons() {
 this.counterService.increment("services.person.add");
 }

 public void countDeletedPersons() {
 this.counterService.increment("services.person.deleted");
 }
}

This bean needs to be injected into our REST controller bean, and the methods incrementing
the counter value can be invoked when a person is added or removed:

public class PersonController {

 @Autowired
 PersonCounterService counterService;

 // ...

 @PostMapping
 public Person add(@RequestBody Person p) {
 p.setId((long) (persons.size()+1));
 persons.add(p);
 counterService.countNewPersons();
 return p;
 }

Spring for Microservices Chapter 2

[40]

 @DeleteMapping("/{id}")
 public void delete(@RequestParam("id") Long id) {
 List<Person> p = persons.stream().filter(it ->
it.getId().equals(id)).collect(Collectors.toList());
 persons.removeAll(p);
 counterService.countDeletedPersons();
 }
}

Now, if you display application metrics again, you will see the following two new fields in
the JSON response:

{
 // ...
 "counter.services.person.add":4,
 "counter.services.person.deleted":3
}

All metrics generated by the Spring Boot application may be exported from the in-memory
buffers to a place where they can be analyzed and displayed. We can store them, for
example, in Redis, Open TSDB, Statsd, or even InfluxDB.

I think that's about all the details about built-in monitor endpoints I wanted to give you. I
had designated a relatively large amount of space to such topics as documentation, metrics,
and health checks, but in my opinion, these are the important aspects of microservice
development and maintenance. Developers often do not care if these mechanisms are well
implemented, but others often see our application just through the prism of those metrics,
health checks and application's logs quality. Spring Boot provides such an implementation
out of the box, and therefore developers do not have to spend much time enabling them.

Developer tools
Spring Boot offers some other useful tools for developers. The really cool thing for me is
that the application is automatically restarted whenever files on the project classpath
change. If you use Eclipse as your IDE, the only thing you have to do to enable it is to add
the spring-boot-devtools dependency to the Maven pom.xml. Then, try to change
something in one of your classes and save it. The application automatically restarts, and it
takes much less than stopping and starting in the standard way. When I start our sample
application, it takes about 9 seconds, and automatic restart takes only 3 seconds:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-devtools</artifactId>

Spring for Microservices Chapter 2

[41]

 <optional>true</optional>
</dependency>

We can exclude some resources if there is no need to trigger a restart when they are
changed. By default, any file available on the classpath that points to a folder will be
monitored for changes, even static assets or view templates, which do not need
restarting. For example, if they are placed in the static folder, you can exclude them by
adding the following property to the application.yml configuration file:

spring:
 devtools:
 restart:
 exclude: static/**

Integrating application with database
You can find more interesting features described in the Spring Boot specification. I would
like to spend more time describing other cool functionalities provided by that framework,
but we should not go too far away from the main topic—Spring for microservices. As you
may recall, through including embedded MongoDB in the project, I promised you a more
advanced microservice example. Before starting to work on it, let's go back for a moment to
the current version of our application. Its source code is available on my public GitHub
account. Clone the following Git repository to your local machine: https:/ /github. com/
piomin/sample-spring- boot- web. git.

Building a sample application
The basic example is available in the master branch. The more advanced sample, with
embedded MongoDB, is committed to the mongo branch. In case you would like to try
running more advanced sample, you need to switch to that branch using git checkout
mongo. Now, we need to perform some changes in the model class to enable object mapping
to MongoDB. The model class has to be annotated with @Document and the primary key
field with @Id. I also changed the ID field type from Long to String because MongoDB
generates primary keys in UUID format, for example, 59d63385206b6d14b854a45c:

@Document(collection = "person")
public class Person {

 @Id
 private String id;

https://github.com/piomin/sample-spring-boot-web.git
https://github.com/piomin/sample-spring-boot-web.git
https://github.com/piomin/sample-spring-boot-web.git
https://github.com/piomin/sample-spring-boot-web.git
https://github.com/piomin/sample-spring-boot-web.git
https://github.com/piomin/sample-spring-boot-web.git
https://github.com/piomin/sample-spring-boot-web.git
https://github.com/piomin/sample-spring-boot-web.git
https://github.com/piomin/sample-spring-boot-web.git
https://github.com/piomin/sample-spring-boot-web.git
https://github.com/piomin/sample-spring-boot-web.git
https://github.com/piomin/sample-spring-boot-web.git
https://github.com/piomin/sample-spring-boot-web.git
https://github.com/piomin/sample-spring-boot-web.git
https://github.com/piomin/sample-spring-boot-web.git
https://github.com/piomin/sample-spring-boot-web.git
https://github.com/piomin/sample-spring-boot-web.git
https://github.com/piomin/sample-spring-boot-web.git

Spring for Microservices Chapter 2

[42]

 private String firstName;
 private String lastName;
 private int age;
 private Gender gender;

 public String getId() {
 return id;
 }

 public void setId(String id) {
 this.id = id;
 }
 // ...
}

The next step is to create a repository interface that extends MongoRepository.
MongoRepository provides basic methods for searching and storing data, such as findAll,
findOne, save, and delete. Spring Data has a very smart mechanism for performing
queries using repository objects. We don't have to implement queries by ourselves, but only
define an interface method with the right name. The method name should have the prefix
findBy and then the searched field name. It may end with a standard search keyword
suffix, such as GreaterThan, LassThan, Between, Like, and many more. A MongoDB
query is automatically generated by Spring Data classes based on the full method name.
The same keywords may be used in conjunction with delete…By or remove…By to create
remove queries. In the PersonRepository interface, I decided to define two find methods.
The first of them, findByLastName, selects all Person entities with the given lastName
value. The second, findByAgeGreaterThan, is designed to retrieve all Person entities
with an age greater than a given value:

public interface PersonRepository extends MongoRepository<Person, String> {

 public List<Person> findByLastName(String lastName);
 public List<Person> findByAgeGreaterThan(int age);

}

The repository should be injected into the REST controller class. Then, we can finally call all
the required CRUD methods provided by PersonRepository:

@Autowired
private PersonRepository repository;
@Autowired
private PersonCounterService counterService;

@GetMapping

Spring for Microservices Chapter 2

[43]

public List<Person> findAll() {
 return repository.findAll();
}

@GetMapping("/{id}")
public Person findById(@RequestParam("id") String id) {
 return repository.findOne(id);
}

@PostMapping
public Person add(@RequestBody Person p) {
 p = repository.save(p);
 counterService.countNewPersons();
 return p;
}

@DeleteMapping("/{id}")
public void delete(@RequestParam("id") String id) {
 repository.delete(id);
 counterService.countDeletedPersons();
}

We have also added two API methods for custom find operations from the
PersonRepository bean:

@GetMapping("/lastname/{lastName}")
public List<Person> findByLastName(@RequestParam("lastName") String
lastName) {
 return repository.findByLastName(lastName);
}

@GetMapping("/age/{age}")
public List<Person> findByAgeGreaterThan(@RequestParam("age") int age) {
 return repository.findByAgeGreaterThan(age);
}

Spring for Microservices Chapter 2

[44]

That's all that had to be done. Our microservice that exposes basic API methods
implementing CRUD operations on an embedded Mongo database is ready to launch. You
have probably noticed that it didn't require us to create a lot of source code. Implementation
of any interaction with databases, whether relational or NoSQL, using Spring Data is fast
and relatively easy. Anyway, there is still one more challenge facing us. An embedded
database is a good choice, but only in development mode or for unit testing, not in
production. If you have to run your microservice in production mode, you would probably
launch one standalone instance or some instances of Mongo deployed as a sharded cluster,
and connect the application to them. For our example purposes, I'll run a single instance of
MongoDB using Docker.

If you are not familiar with Docker, you can always just install Mongo on
your local or remote machine. For more information about Docker, you
can also refer to Chapter 14, Docker Support where I will give you a short
briefing about it. There, you will find all you need to begin, for example,
how to install it on Windows and use basic commands. I will also use
Docker in the examples implemented for the purposes of the next chapters
and topics, so I think it would be useful if you have basic knowledge
about it.

Running the application
Let's start MongoDB using the Docker run command:

docker run -d --name mongo -p 27017:27017 mongo

Something that may be useful for us is the Mongo database client. Using this, it is possible
to create a new database and add some users with credentials. If you have Docker installed
on Windows, the default virtual machine address is 192.168.99.100. The Mongo
container has port 27017 exposed as a result of setting the -p parameter inside the run
command. Well, in fact, we do not have to create the database because, when we provide
the name while defining the client connection, it will automatically be created if it doesn't
exist:

Spring for Microservices Chapter 2

[45]

Next, we should create a user for the application with sufficient authority:

Spring for Microservices Chapter 2

[46]

Finally, we should set the Mongo database connection settings and credentials in
the application.yml configuration file:

server:
 port: ${port:2222}
spring:
 application:
 name: first-service

// ...

spring:
 profiles: production
 application:
 name: first-service
 data:
 mongodb:
 host: 192.168.99.100
 port: 27017
 database: microservices
 username: micro
 password: micro

Spring Boot has good support for multi-profile configuration. A YAML file can be separated
into a sequence of documents using --- lines, and each section of the document is parsed
independently to a flattened map. The preceding example does exactly the same as a
separated configuration file with application-production.yml. If you run the
application without any additional options, it uses the default settings, which have no
profile name set. If you would like to run it using production properties, you should set the
VM argument spring.profiles.active:

java -jar -Dspring.profiles.active=production sample-spring-boot-web-1.0-
SNAPSHOT.jar

That's not all. Now, the application with the active production profile failed to start because
it tried to initialize the embeddedMongoServer bean. As you might already know, almost
all of the additional solutions have auto configuration set in Spring Boot. It is no different in
this case. We need to exclude the EmbeddedMongoAutoConfiguration class from auto
configuration in the production profile:

spring:
 profiles: production
 // ...
 autoconfigure:

Spring for Microservices Chapter 2

[47]

 exclude:
org.springframework.boot.autoconfigure.mongo.embedded.EmbeddedMongoAutoConf
iguration

We might as well use the configuration class to exclude that artifact:

@Configuration
@Profile("production")
@EnableAutoConfiguration(exclude = EmbeddedMongoAutoConfiguration.class)
public class ApplicationConfig {
 // ...
}

Of course, we could have used a more elegant solution, such as Maven profiles, and
excluded the whole de.flapdoodle.embed.mongo artifact from the target build package.
The presented solution is just one of several possibilities to solve the problem, but it shows
the auto configuration and profile mechanisms in Spring Boot. Now, you can run our
sample application and perform some tests using, for example, Swagger UI. You can also
connect to the database using the Mongo client and check out the changes in the database.
Here's our sample project's final file structure:

pl
 +- piomin
 +- services
 +- boot
 +- Application.java
 |
 +- controller
 | +- PersonController.java
 |
 +- data
 | +- PersonRepository.java
 |
 +- model
 | +- Person.java
 | +- Gender.java
 |
 +- service
 | +- PersonCounterService.java

The example application is complete. These are all Spring Boot features I would like to
show you in this chapter. I have focused on those that are especially useful for creating
REST-based services.

Spring for Microservices Chapter 2

[48]

Summary
I have guided you through the process of single-microservice development, from a really
basic example to a more advanced, production-ready Spring Boot application. I have
described how to use starters to enable additional features for the project; use the Spring
Web library to implement services that expose REST API methods; and then we moved on
to customizing the service configuration using properties and YAML files. We also saw how
to document and provide specifications for exposed REST endpoints. Next, we configured
health checks and monitoring features. We used Spring Boot profiles to adapt the
application to run in different modes and, finally, we used ORM features for interacting
with embedded and remote NoSQL databases.

It's not an accident that I have not mentioned anything about Spring Cloud in this chapter.
You just can't start using Spring Cloud projects without basic knowledge and experience in
working with Spring Boot. Spring Cloud provides many different features that allow you to
place your service inside a full microservice-based ecosystem. We will be discussing these
functionalities one by one in the following chapters.

3
Spring Cloud Overview

In Chapter 1, Introduction to Microservices, I mentioned the cloud-native development style
and also that Spring Cloud helps you in the easy adoption of the best practices associated
with this concept. The most commonly used best practices have been collected together in
an interesting initiative called The Twelve-Factor App. As you might read on their website
(https://12factor. net/), this is a methodology for building Software as a Service (SaaS)
modern applications, which must be scalable, easily deployable on cloud platforms, and
delivered in the continuous deployment process. It is worth being familiar with these
principles, especially if you are a developer who builds applications running as a service.
Spring Boot and Spring Cloud provide features and components that make your application
compliant with Twelve-Factor rules. We can distinguish some typical features that the most
modern distributed systems usually use. Every opinionated framework should provide
them and there is no difference for Spring Cloud. Those features are as follows:

Distributed/versioned configuration
Service registration and discovery
Routing
Service-to-service calls
Load balancing
Circuit breakers
Distributed messaging

https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/
https://12factor.net/

Spring Cloud Overview Chapter 3

[50]

Beginning with the basics
Let's go back to the previous chapter for a moment. There I have already described in detail
the structure of a Spring Boot project. Configuration should be provided in YAML or a
properties file with the application or the application-{profile} name. In contrast to a
standard Spring Boot application, Spring Cloud is based on the configuration taken from a
remote server. However, minimal settings are needed inside the application; for example,
its name and config server address. That's why a Spring Cloud application creates a
bootstrap context, which is responsible for loading properties from the external sources.
Bootstrap properties are added with the highest priority and they cannot be overridden by
local configuration. Bootstrap context, which is a parent for the main application context,
uses bootstrap.yml instead of application.yml. Usually, we put the application name
and Spring Cloud Config settings, as follows:

spring:
 application:
 name: person-service
 cloud:
 config:
 uri: http://192.168.99.100:8888

Bootstrap context startup can be easily disabled by setting the
spring.cloud.bootstrap.enabled property to false. We can also change the name of
the bootstrap configuration file using the spring.cloud.bootstrap.name property or
even changing the location by setting spring.cloud.bootstrap.location. The profile
mechanisms are also available here, so we are allowed to create, for example, bootstrap-
development.yml, which is loaded on an active development profile. This and some other
features are available in the Spring Cloud Context library, which is added as a parent
dependency to the project classpath together with any other Spring Cloud library. One of
these features is some additional management endpoints included with the Spring Boot
Actuator:

env: A new POST method for Environment, log levels update, and
@ConfigurationProperties rebind
refresh: This reloads bootstrap context and refreshes all beans annotated with
@RefreshScope

restart: This restarts Spring ApplicationContext
pause: This stops Spring ApplicationContext
resume: This starts Spring ApplicationContext

Spring Cloud Overview Chapter 3

[51]

The next library together with Spring Cloud Context, which is included as a parent
dependency with Spring Cloud projects, is Spring Cloud Commons. It provides a common
abstraction layer for mechanisms such as service discovery, load balancing, and circuit
breakers. These include, among other things, frequently used annotations such
as @EnableDiscoveryClient or @LoadBalanced. I'll present more details about them in
the following chapters.

Netflix OSS
On reading the first two chapters, you have probably noticed the appearance of many
keywords related to microservice architecture. For some of you, it might be a new term, for
others, it is well known. But so far, one important word to the microservices community has
not been mentioned yet. It is definitely known by most of you, this word is Netflix. Well, I
also like their TV shows and other productions, but for developers, they are famous for
another reason. This reason is microservices. Netflix is one of the earliest pioneers of
migration from a traditional development model where we created monolithic applications
for a cloud-native microservices development approach. This company shares their
expertise with the community by pushing a great part of the source code into the public
repository, speaking in conference presentations, and publishing blog posts. Netflix has
been so successful with its architecture concept that they became a role model for other
large organizations and their IT architects such as Adrian Cockcroft are now prominent
evangelists for microservices. In turn, many open source frameworks based their libraries
on the solutions available under the code shared by Netflix. It is no different for Spring
Cloud, which provides integrations with the most popular Netflix OSS features such as
Eureka, Hystrix, Ribbon, or Zuul.

By the way, I don't know if you have been following Netflix, but they shed some
light on the reasons why they decided to open source much of their code. I think it is worth
quoting because that partly explains the success and unwaning popularity of their solutions
in the IT world:

"When we said we were going to move all of Netflix to the cloud everyone said we were
completely crazy. They didn't believe we were actually doing that, they thought we were
just making stuff up."

Spring Cloud Overview Chapter 3

[52]

Service discovery with Eureka
The first pattern provided by Spring Cloud Netflix is the service discovery with
Eureka. This package is divided into client and server.

To include a Eureka Client in your project you should use the spring-cloud-starter-
eureka starter. The client is always a part of an application and is responsible for
connecting to a remote discovery server. Once the connection is established it should send a
registration message with a service name and network location. In case the current
microservice has to call an endpoint from another microservice, the client should retrieve
the newest configuration with a list of registered services from the server. The server can be
configured and run as an independent Spring Boot application and it is supposed to be
highly available with each server replicating its state to other nodes. To include a Eureka
Server in your project you need to use the spring-cloud-starter-eureka-server
starter.

Routing with Zuul
The next popular pattern available under the Spring Cloud Netflix project is intelligent
routing with Zuul. It is not only a JVM-based router but it also acts as a server-side load
balancer and/or performs some filtering. It can also have a wide variety of applications.
Netflix uses it for cases such as authentication, load shedding, static response handling, or
stress testing. It is the same as Eureka Server in that it can be configured and run as an
independent Spring Boot application.

To include Zuul in your project use the spring-cloud-starter-zuul starter. In the
microservices architecture, Zuul has a vital role of the API gateway, which is an entry point
to the whole system. It needs to have knowledge of the network location of each service, so
it is able to interact with the Eureka Server by including the discovery client to the
classpath.

Load balancing with Ribbon
We cannot ignore the next Spring Cloud Netflix feature used for client-side load
balancing—Ribbon. It supports the most popular protocols such as TCP, UDP, and HTTP. It
can be used not only for synchronous REST calls, but also in asynchronous and reactive
models. In addition to load balancing, it provides integration with service discovery,
caching, batching, and fault tolerance. Ribbon is the next abstraction level over basic HTTP
and TCP clients.

Spring Cloud Overview Chapter 3

[53]

To include it in your project use the spring-cloud-starter-ribbon starter. Ribbon
supports round robin, availability filtering, and weighted response time load balancing
rules out-of-the-box and can be easily extended with custom defined rules. It is based on the
named client concept, where servers included for the load balancing should be provided
with a name.

Writing Java HTTP clients
Feign is a slightly less popular Netflix OSS package. It is a declarative REST client, which
helps us in writing web service clients more easily. With Feign, a developer only needs to
declare and annotate an interface while the actual implementation will be generated at
runtime.

To include Feign in your project you need to use the spring-cloud-starter-
feign starter. It integrates with the Ribbon client, so it supports, by default, load balancing
and other Ribbon features including communication with the discovery service.

Latency and fault tolerance with Hystrix
I have already mentioned the circuit breaker pattern in Chapter 1, Introduction to
Microservices, and Spring Cloud provides a library that implements this pattern. It is based
on the Hystrix package created by Netflix as a circuit breaker implementation. Hystrix is by
default integrated with the Ribbon and Feign clients. Fallback is closely related to the circuit
breaker concept. With Spring Cloud libraries you can easily configure fallback logic, which
should be performed if there is a read or circuit breaker timeout. To include Hystrix in your
project you should use the spring-cloud-starter-hystrix starter.

Configuration management with Archaius
The last important feature provided under the Spring Cloud Netflix project is Archaius.
Personally, I haven't touched this library, but it might be useful in some cases. The Spring
Cloud reference Archaius is an extension of the Apache Commons Configuration project. It
allows updating the configuration by either polling a source for changes or pushing
changes to the client.

Spring Cloud Overview Chapter 3

[54]

Discovery and distributed configuration
Service discovery and distributed configuration management are vital parts of the
microservices architecture. The technical implementation of these two different mechanisms
is pretty similar. It comes down to storing parameters under specific keys in a flexible key-
value storage. Actually, there are several interesting solutions available on the market
which provide both of these functionalities. Spring Cloud integrates with the most popular
of them. But there is also one exception where Spring Cloud has its own implementation
created only for distributed configuration. This feature is available under the Spring Cloud
Config project. In contrast, Spring Cloud does not provide its own implementation for
service registration and discovery.

As usual, we can divide this project into the server and client-side support. The server is the
one, central place where all of the external properties for applications are managed across
all of the environments. Configuration can be maintained simultaneously in several
versions and profiles. This is achieved by using Git as a storage backend. The mechanism is
really smart and we will discuss it in detail in Chapter 5, Distributed Configuration with
Spring Cloud Config. The Git backend is not the only one option for storing properties. The
config files could also be located on a file system or server classpath. The next option is to
use Vault as a backend. Vault is an open source tool for managing secrets such as tokens,
passwords, or certificates released by HashiCorp. I know that many organizations pay
particular attention to security issues such as storing credentials in a secure place, so it
could be the right solution for them. Generally, we can also manage security on the
configuration server access level. No matter which backend is used for storing properties,
Spring Cloud Config Server exposes an HTTP, resource-based API which provides easy
access to them. By default, this API is secured with basic authentication, but it is also
available to set an SSL connection with private/public key authentication.

A server can be run as an independent Spring Boot application with properties exposed
over the REST API. To enable it for our project we should add the spring-cloud-config-
server dependency. There is also support on the client-side. Every microservice that uses a
configuration server as a properties source needs to connect to it just after startup, before
creating any Spring beans. Interestingly, the Spring Cloud Config Server can be used by
non Spring applications. There are some popular microservice frameworks that integrate
with it on the client side. To enable Spring Cloud Config Client for your application you
need to include the spring-cloud-config-starter dependency.

Spring Cloud Overview Chapter 3

[55]

An alternative – Consul
An interesting alternative for Netflix discovery and Spring distributed configuration seems
to be Consul created by Hashicorp. Spring Cloud provides integrations with this
popular tool for discovering and configuring services in your infrastructure. As usual, this
integration can be enabled using a few simple common annotations and the only difference
in comparison with an earlier presented solution is in configuration settings. In order to
establish communication with a Consul server, its agent needs to be available for the
application. It has to be able to run as a separated process, which is available by default at
the http://localhost:8500 address. Consul also provides REST API, which can be
directly used for registration, collecting a list of services, or configuration of properties.

To activate Consul Service Discovery we need to use the spring-cloud-starter-
consul-discovery starter. After application startup and registration, a client would query
Consul in order to locate other services. It supports both the client-side load balancer with
Netflix Ribbon and dynamic router and filter with Netflix Zuul.

Apache Zookeeper
The next popular solution within this area supported by Spring Cloud is Apache
Zookeeper. Following its documentation, it is a centralized service for maintaining
configuration, naming, which also provides distributed synchronization, and is able to
group services. Everything that has previously applied to Consul regarding support in
Spring Cloud is also true for Zookeeper. I'm thinking here about simple common
annotations, which have to be used to enable integration, configuration though properties
inside settings files and auto-configuration for interacting with Ribbon or Zuul. To enable
service discovery with Zookeeper on the client side we need not only include spring-
cloud-starter-zookeeper-discovery, but also Apache Curator. It provides an API
framework and utilities to make integration easy and more reliable. It is not needed for
distributed configuration clients where we only have to include the spring-cloud-
starter-zookeeper-config for our project dependencies.

Spring Cloud Overview Chapter 3

[56]

Miscellaneous projects
It is worth mentioning two other projects, which are now in the incubation stage. All such
projects are available in the GitHub repository, https:/ / github. com/ spring- cloud-
incubator. Some of them will probably be officially attached to the Spring Cloud package
in the short term. The first of them is Spring Cloud Kubernetes, which provides integration
with this very popular tool. We could talk about it for a long time, but let's try to introduce
it in a few words. It is a system for automating deployment, scaling, and management of
containerized applications originally designed by Google. It is used for container
orchestration and has many interesting features including service discovery, configuration
management, and load balancing. In some cases, it might be treated as Spring Cloud's
competition. The configuration is provided with the usage of YAML files.

Important features from the Spring Cloud point of view are service discovery and
distributed configuration mechanisms, which are available on the Kubernetes platform. To
use them in your application you should include spring-cloud-starter-kubernetes
starter.

The second interesting project at the incubation stage is Spring Cloud Etcd. Exactly the
same as before, its main features are distributed configuration, service registration, and
discovery. Etcd is not a powerful tool like Kubernetes. It just provides a distributed key-
value store with a reliable way to store data in a clustered environment. And a little
trivia—Etcd is the backend for service discovery, cluster state, and configuration
management in Kubernetes.

Distributed tracing with Sleuth
Another one of Spring Cloud's essential functionalities is distributed tracing. It is
implemented in the Spring Cloud Sleuth library. Its primary purpose is to associate
subsequent requests dispatched between different microservices under processing single
input request. As in most cases, these are HTTP requests that implement tracing
mechanisms based on HTTP headers. The implementation is built over Slf4j and MDC. Slf4j
provides facade and abstraction for specific logging frameworks such as logback, log4j,
or java.util.logging. MDC or mapped diagnostic context in full, is a solution for
distinguishing log output from different sources and enriching them with additional
information that could be not available in the actual scope.

https://github.com/spring-cloud-incubator
https://github.com/spring-cloud-incubator
https://github.com/spring-cloud-incubator
https://github.com/spring-cloud-incubator
https://github.com/spring-cloud-incubator
https://github.com/spring-cloud-incubator
https://github.com/spring-cloud-incubator
https://github.com/spring-cloud-incubator
https://github.com/spring-cloud-incubator
https://github.com/spring-cloud-incubator
https://github.com/spring-cloud-incubator
https://github.com/spring-cloud-incubator

Spring Cloud Overview Chapter 3

[57]

Spring Cloud Sleuth adds trace and span IDs to the Slf4J MDC, so that we are able to extract
all of the logs with a given trace or span. It also adds some other entries such as application
name or exportable flag. It integrates with the most popular messaging solutions such as
Spring REST template, Feign client, Zuul filters, Hystrix, or Spring Integration message
channels. It can also be used together with RxJava or scheduled tasks. To enable it in your
project you should add the spring-cloud-starter-sleuth dependency. The usage of
basic span and trace IDs mechanisms is completely transparent for a developer.

Adding tracing headers is not the only feature of Spring Cloud Sleuth. It is also responsible
for recording timing information, which is useful in latency analysis. Such statistics can be
exported to Zipkin, a tool that can be used for querying and visualization timing data.

Zipkin is a distributing tracing system specially designed for
analyzing latency problems inside microservices architecture. It exposes
HTTP endpoints used for collecting input data. To enable generating and
sending traces to Zipkin we should include the spring-cloud-starter-
zipkin dependency to the project.

Frequently, there is no need to analyze everything; the input traffic volume is so high that
we would need to collect only a certain percentage of data. For that purpose, Spring Cloud
Sleuth provides a sampling policy, where we can decide how much input traffic is sent to
Zipkin. The second smart solution to the big data problem is to send statistics using the
message broker instead of the default HTTP endpoint. To enable this feature we have to
include the spring-cloud-sleuth-stream dependency, which allows your application
to become a producer of messages sent to Apache Kafka or RabbitMQ.

Messaging and integration
I have already mentioned messaging brokers and their usage for communication between
your application and Zipkin server. Generally, Spring Cloud supports two types of
communications via synchronous/asynchronous HTTP and with messaging brokers. The
first project from this area is Spring Cloud Bus. It allows you to send broadcast events to
applications informing them about state changes such as configuration property updates or
other management commands. Actually, we might want to use starters for AMQP with a
RabbitMQ broker or for Apache Kafka. As usual, we only need to include spring-cloud-
starter-bus-amqp or spring-cloud-starter-bus-kafka to the dependency
management and all other necessary operations are performed through auto-configuration.

Spring Cloud Overview Chapter 3

[58]

Spring Cloud Bus is a rather small project allowing you to use distributed messaging
features for common operations such as broadcasting configuration change events. The
right framework for building a system consisting of message-driven microservices is the
Spring Cloud Stream. This is a really powerful framework and one of the biggest Spring
Cloud projects, to which I have dedicated an entire chapter, Chapter 11, Message Driven
Microservices, of the book. The same as for Spring Cloud Bus, there are two binders
available, first for AMQP with RabbitMQ, and second for Apache Kafka. Spring Cloud
Stream is based on Spring Integration, which is another large project part of Spring. It
provides a programming model, supporting most Enterprise Integration Patterns such as
endpoint, channel, aggregator, or transformer. The applications included in the whole
microservice system communicate with each other through the Spring Cloud Stream input
and output channels. The main communication model between them is Publish/Subscribe,
where messages are broadcast through shared topics. Additionally, it is important to
support multi instances of every microservice. In most cases, a message should be
processed only by a single instance, which is not supported in a Publish/Subscribe model.
That's why Spring Cloud Stream introduces grouping mechanisms where only one member
of the group receives a message from a destination. The same as earlier, these are two
starters that can include a project depending on the binder type spring-cloud-starter-
stream-kafka or spring-cloud-starter-stream-rabbit.

There are two more projects related to Spring Cloud Stream. First, Spring Cloud Stream
App Starters defines a set of Spring Cloud Stream applications that can be run
independently or using the second project, Spring Cloud Data Flow. Among these
applications, we can distinguish connectors, adapters for network protocols, and generic
protocols. Spring Cloud Data Flow is another extensive and powerful Spring Cloud toolkit.
It simplifies development and deployment by providing a smart solution for building data
integration and real-time data processing pipelines. The orchestration of microservice-based
data pipelines is achieved with simple DSL, a drag-and-drop UI dashboard, and REST APIs
together.

Spring Cloud Overview Chapter 3

[59]

Cloud platform support
Pivotal Cloud Foundry is a cloud-native platform for deploying and managing modern
applications. Pivotal Software, as some of you probably already know, is an owner of the
Spring framework trademark. The patronage of a large, commercial platform is one of the
important reasons for Spring's growing popularity. What is obvious is that PCF fully
supports both Spring Boot's executable JAR files, and all of Spring Cloud microservices
patterns such as Config Server, service registry, and circuit breaker. These types of tools can
be easily run and configured using the marketplace available on the UI dashboard or client
command line. Development for PCF is even simpler than with standard Spring Cloud
application. The only thing we have to do is to include the right starters to project
dependencies:

spring-cloud-services-starter-circuit-breaker

spring-cloud-services-starter-config-client

spring-cloud-services-starter-service-registry

It's difficult to find an opinionated cloud framework that does not have support for AWS.
The same is true for Spring Cloud. Spring Cloud for Amazon Web Services provides
integration with the most popular web tools available there. This includes modules for
communication with Simple Queueing Service (SQS), Simple Notification Service (SNS),
ElasticCache, and Relational Database Service (RDS) that offer engines such as Aurora,
MySQL, or Oracle. The remote resources can be accessed using their name defined in the
CloudFormation stack. Everything is opaque in well-known Spring convention and
patterns. There are four main modules available:

Spring Cloud AWS Core: Included using the spring-cloud-starter-
aws starter, provides core components enabling direct access to the EC2 instance
Spring Cloud AWS Context: Delivers access to the Simple Storage Service,
Simple E-mail Service, and caching service
Spring Cloud AWS JDBC: Included using starter spring-cloud-starter-
aws-jdbc starter, provides data source lookup and configuration, which can be
used with any data access technology supported by Spring
Spring Cloud AWS Messaging: Included using starter spring-cloud-
starter-aws-messaging starter, allows an application to send and receive
messages with SQS (point-to-point) or SNS (Publish/Subscribe)

Spring Cloud Overview Chapter 3

[60]

There is another project that is worth mentioning although it is still at an early stage of
development. That is Spring Cloud Function, which offers support for serverless
architecture. Serverless is also known as FaaS (Function-as-a-Service), where a developer
creates only very small modules that are deployed on containers fully managed by a third-
party provider. Actually, Spring Cloud Functions implemented adapters for AWS Lambda
and Apache OpenWhisk, the most popular FaaS providers. I will be following the
development of this project designed for supporting a serverless approach.

In this section, we should not forget about the Spring Cloud Connectors project, formerly
known as Spring Cloud. It provides an abstraction for JVM-based applications deployed on
a cloud platform. Actually, it has support for Heroku and Cloud Foundry, where our
application could connect SMTP, RabbitMQ, Redis, or one of the available relational
databases using one of the Spring Cloud Heroku Connectors and Spring Cloud Foundry
Connector modules.

Other useful libraries
There are some important aspects surrounding microservices architecture, which can't be
considered its core features, but are also very important. The first of them is security.

Security
The big part of standard implementation for securing APIs with mechanisms such as
OAuth2, JWT, or basic authentication is available in Spring Security and Spring Web
projects. Spring Cloud Security uses those libraries to allow us to easily create systems that
implement common patterns such as single sign-on and token relay. To enable security
management for our application we should include the spring-cloud-starter-
security starter.

Automated testing
The next important area in microservices development is automated testing. For
microservices architecture, contact tests are growing in importance. Martin Fowler gave the
following definition:

"An integration contract test is a test at the boundary of an external service verifying that
it meets the contract expected by a consuming service."

Spring Cloud Overview Chapter 3

[61]

Spring Cloud has a very interesting implementation for that approach to unit testing,
Spring Cloud Contract. It uses WireMock for traffic recording and Maven plugin for
generating stubs.

It is also possible that you get the opportunity to use Spring Cloud Task. It helps a
developer to create short lived microservices using Spring Cloud, and run them locally or in
the cloud environment. To enable it in the project we should include the spring-cloud-
starter-task starter.

Cluster features
Finally, the last project, Spring Cloud Cluster. It provides a solution for the leadership
election and common stateful patterns with an abstraction and implementation for
Zookeeper, Redis, Hazelcast, and Consul.

Projects overview
As you can see, Spring Cloud contains many subprojects providing integration with lots of
different tools and solutions. I think it is easy to lose track, especially if you are using Spring
Cloud for the first time. In accordance with the principle that one diagram might express
things better than a thousand words, I'm presenting the most important projects divided
into categories as shown in the following diagram:

Spring Cloud Overview Chapter 3

[62]

Release trains
As we can see in the preceding diagram, there are many projects inside Spring Cloud and
there are many relationships between them. By definition, these are all independent projects
with different release cascades and version numbers. In a situation like this, dependency
management in our application might be problematic and that will require knowledge
about relationships between versions of all projects. To help make it easier, Spring Cloud
introduced the starter mechanism, which we have already discussed, and release trains. The
release trains are identified by names, not versions, to avoid confusion with the subprojects.
What is interesting is that they are named after London tube stations and they
are alphabetically ordered. The first release was Angel, the second was Brixton, and so on.
The whole mechanism of dependency management is based on BOM (bill of materials),
which is a standard Maven concept for managing artifacts versioned independently. Here's
an actual table with Spring Cloud project versions assigned to release trains. Names with
the suffix M[X], where [X] is the version number, means milestone, SR[X] means service
release, which refers to changes that fix critical bugs. As you can see in the following table,
Spring Cloud Stream has it own release trains, which groups its subprojects using the same
rules as Spring Cloud project:

Component Camden.SR7 Dalston.SR4 Edgware.M1 Finchley.M2 Finchley.BUILD-SNAPSHOT

spring-cloud-aws 1.1.4.RELEASE 1.2.1.RELEASE 1.2.1.RELEASE 2.0.0.M1 2.0.0.BUILD-SNAPSHOT

spring-cloud-bus 1.2.2.RELEASE 1.3.1.RELEASE 1.3.1.RELEASE 2.0.0.M1 2.0.0.BUILD-SNAPSHOT

spring-cloud-cli 1.2.4.RELEASE 1.3.4.RELEASE 1.4.0.M1 2.0.0.M1 2.0.0.BUILD-SNAPSHOT

spring-cloud-commons 1.1.9.RELEASE 1.2.4.RELEASE 1.3.0.M1 2.0.0.M2 2.0.0.BUILD-SNAPSHOT

spring-cloud-contract 1.0.5.RELEASE 1.1.4.RELEASE 1.2.0.M1 2.0.0.M2 2.0.0.BUILD-SNAPSHOT

spring-cloud-config 1.2.3.RELEASE 1.3.3.RELEASE 1.4.0.M1 2.0.0.M2 2.0.0.BUILD-SNAPSHOT

spring-cloud-netflix 1.2.7.RELEASE 1.3.5.RELEASE 1.4.0.M1 2.0.0.M2 2.0.0.BUILD-SNAPSHOT

spring-cloud-security 1.1.4.RELEASE 1.2.1.RELEASE 1.2.1.RELEASE 2.0.0.M1 2.0.0.BUILD-SNAPSHOT

spring-cloud-cloudfoundry 1.0.1.RELEASE 1.1.0.RELEASE 1.1.0.RELEASE 2.0.0.M1 2.0.0.BUILD-SNAPSHOT

spring-cloud-consul 1.1.4.RELEASE 1.2.1.RELEASE 1.2.1.RELEASE 2.0.0.M1 2.0.0.BUILD-SNAPSHOT

spring-cloud-sleuth 1.1.3.RELEASE 1.2.5.RELEASE 1.3.0.M1 2.0.0.M2 2.0.0.BUILD-SNAPSHOT

spring-cloud-stream Brooklyn.SR3 Chelsea.SR2 Ditmars.M2 Elmhurst.M1 Elmhurst.BUILD-SNAPSHOT

spring-cloud-zookeeper 1.0.4.RELEASE 1.1.2.RELEASE 1.2.0.M1 2.0.0.M1 2.0.0.BUILD-SNAPSHOT

spring-boot 1.4.5.RELEASE 1.5.4.RELEASE 1.5.6.RELEASE 2.0.0.M3 2.0.0.M3

spring-cloud-task 1.0.3.RELEASE 1.1.2.RELEASE 1.2.0.RELEASE 2.0.0.M1 2.0.0.RELEASE

Spring Cloud Overview Chapter 3

[63]

Now, all we need to do is provide the right release train name in the dependency
management section in the Maven pom.xml and then include projects using starters:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>Finchley.M2</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>
<dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-config</artifactId>
 </dependency>
 ...
</dependencies>

Here's the same sample for Gradle:

dependencyManagement {
 imports {
 mavenBom ':spring-cloud-dependencies:Finchley.M2'
 }
}
dependencies {
 compile ':spring-cloud-starter-config'
 ...
}

Spring Cloud Overview Chapter 3

[64]

Summary
In this chapter, I have introduced the most important projects that are part of Spring Cloud.
I have pointed out several areas to which I assigned each of those projects. After reading
this chapter, you should be able to recognize which library has to be included in your
application to able to implement patterns such as service discovery, distributed
configuration, circuit breaker, or load balancer. You should also recognize the differences
between application context, and bootstrap context and understand how to include
dependencies in the project using dependency management based on the release trains
concept. The last thing I wanted to draw your attention to in this chapter were some tools
integrated with Spring Cloud such as Consul, Zookeeper, RabbitMQ, or Zipkin. I described
all of them in some details. I also pointed out the projects responsible for interaction with
those tools.

This chapter completes the first part of the book. In this part, the main goal was to get you
into the basics related to Spring Cloud project. After reading it you should be able to
recognize the most important elements of microservices-based architecture, effectively use
Spring Boot to create simple and more advanced microservices, and finally, you should also
be able to list all of the most popular subprojects being that are a part of Spring Cloud.
Now, we may proceed to the next part of the book and discuss in detail those subprojects,
which are responsible for implementing common patterns of distributed systems in Spring
Cloud. Most of them are based on Netflix OSS libraries. We will begin with the solution
providing service registry, Eureka discovery server.

4
Service Discovery

Before we got to this point, we had discussed service discovery many times in previous
chapters. In fact, it is one of the most popular technical aspects of microservice architecture.
Such a subject could not have been omitted from the Netflix OSS implementation. They did
not decide to use any existing tool with similar features, but designed and developed a
discovery server especially for their own needs. Then, it had been open sourced along with
several other tools. The Netflix OSS discovery server is known as Eureka.

The Spring Cloud library for integration with Eureka consists of two parts, the client side
and the server side. The server is launched as a separate Spring Boot application and
exposes an API that allows for the collection of a list of registered services and adding a
new service with a location address. The server can be configured and deployed to be
highly available, with each server replicating its state with the others. The client is included
in the microservice application as a dependency. It is responsible for the registration after
startup, the deregistration before shutdown, and for keeping the registration list up to date
by polling the Eureka Server.

Here's a list of topics we will cover in this chapter:

Developing an application that runs embedded Eureka Server
Connecting to the Eureka Server from the client-side application
Advanced discovery client configuration
Enabling secure communication between client and server
Configuring failover and peer-to-peer replication mechanisms
Registering instances of a client-side application in different zones

Service Discovery Chapter 4

[66]

Running Eureka on the server side
Running the Eureka Server within a Spring Boot application is not a difficult task. Let's take
a look at how this can be done:

First, the right dependency has to be included to our project. Obviously, we will1.
use a starter for that:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-eureka-server</artifactId>
</dependency>

Eureka Server should also be enabled on the main application class:2.

@SpringBootApplication
@EnableEurekaServer
public class DiscoveryApplication {

 public static void main(String[] args) {
 new
SpringApplicationBuilder(DiscoveryApplication.class).web(true).run(
args);
 }

}

It is interesting that together with the server starter, client's dependencies are also3.
included. They can be useful for us, but only when launching Eureka in high
availability mode with peer-to-peer communication between discovery instances.
When running a standalone instance, it doesn't really get us anywhere except
printing some errors in the logs during startup. We can either exclude spring-
cloud-netflix-eureka-client from the starter dependencies or disable
discovery client using configuration properties. I prefer the second choice, and
also on this occasion, I changed the default server port to something other
than 8080. Here's the fragment of the application.yml file:

server:
 port: ${PORT:8761}
eureka:
 client:
 registerWithEureka: false
 fetchRegistry: false

Service Discovery Chapter 4

[67]

After completing the preceding steps, we can finally launch our first Spring4.
Cloud application. Just run the main class from your IDE or build project with
Maven; run it using the java -jar command and wait for the log line, Started
Eureka Server. It's up. A simple UI dashboard is available as a home page
at http://localhost:8761 and HTTP API methods may be called with
the /eureka/* path. The Eureka dashboard does not provide many features; in
fact, it is mostly used for checking out the list of registered services. This could be
found out by calling the REST API http://localhost:8761/eureka/apps
endpoint.

So, to conclude, we know how to run a Eureka standalone server with Spring Boot and how
to check the list of registered microservices using the UI console and HTTP methods. But
we still don't have any service that is able to register itself in discovery, and it's time to
change that. An example application with a discovery server and client implementation is
available on GitHub (https:/ /github. com/ piomin/ sample- spring- cloud- netflix. git) in
the master branch.

Enabling Eureka on the client side
As on the server side, there is only one dependency that has to be included to enable a
Eureka Client for the application. So, first include the following starter to your project's
dependencies:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-eureka</artifactId>
</dependency>

https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git

Service Discovery Chapter 4

[68]

The example application does nothing more than communicate with the Eureka Server. It
has to register itself and send metadata information such as host, port, health indicator
URL, and home page. Eureka receives heartbeat messages from each instance belonging to a
service. If the heartbeat isn't received after a configured period of time, the instance is
removed from the registry. The second responsibility of discovery client is fetching data
from the server, then caching it and periodically asking for changes. It can be enabled by
annotating the main class with @EnableDiscoveryClient. Surprisingly, there is another
way to activate this feature. You may use an annotation @EnableEurekaClient, especially
if there are multiple implementations of discovery client within the classpath (Consul,
Eureka, ZooKeeper). While @EnableDiscoveryClient lives in spring-cloud-commons,
@EnableEurekaClient lives in spring-cloud-netflix and only works for Eureka.
Here's the main class of the discovery client's application:

@SpringBootApplication
@EnableDiscoveryClient
public class ClientApplication {

 public static void main(String[] args) {
 new
SpringApplicationBuilder(ClientApplication.class).web(true).run(args);
 }

}

The discovery server address doesn't have to be provided in the client's configuration,
because it is available on the default host and port. However, we could easily imagine that
Eureka is not listening on its default 8761 port. The fragment of configuration file is visible
below. The discovery server network address can be overridden with the EUREKA_URL
parameter, as can the client's listening port with the PORT property. The name under which
the application is registered in the discovery server is taken from the
spring.application.name property:

spring:
 application:
 name: client-service

server:
 port: ${PORT:8081}

eureka:
 client:
 serviceUrl:
 defaultZone: ${EUREKA_URL:http://localhost:8761/eureka/}

Service Discovery Chapter 4

[69]

Let's run two independent instances of our sample client application on localhost. To
achieve that, the number of the listening port should be overridden for the instance on
startup like this:

java -jar -DPORT=8081 target/sample-client-service-1.0-SNAPSHOT.jar
java -jar -DPORT=8082 target/sample-client-service-1.0-SNAPSHOT.jar

As you can see in the following screenshot, there are two instances of client-service
registered with the hostname piomin and ports 8081 and 8082:

Deregistration on shutdown
Checking how a deregistration works with a Eureka Client is a bit more of a difficult task.
Our application should be shut down gracefully in order to be able to intercept a stopped
event and send an event to the server. The best way for a graceful shutdown is by using the
Spring Actuator /shutdown endpoint. The actuator is a part of Spring Boot and it can be
included in the project by declaring the spring-boot-starter-actuator dependency in
pom.xml. It is disabled by default, so we have to enable it in the configuration properties.
For the sake of simplicity, it is worth disabling user/password security for that endpoint:

endpoints:
 shutdown:
 enabled: true
 sensitive: false

Service Discovery Chapter 4

[70]

To shut down the application, we have to call the POST /shutdown API method. If you
receive the response {"message": "Shutting down, bye..."}, it means everything
went well and the procedure has been started. Before the application is disabled, some logs
starting from the line Shutting down DiscoveryClient ... will be printed out. After that, the
service will be unregistered from the discovery server and it completely disappears from
the list of registered services. I decided to shut down client instance #2 by calling
http://localhost:8082/shutdown (you may call it using any REST client, for example,
Postman), so only the instance running on port 8081 is still visible in the dashboard:

The Eureka Server dashboard also provides a convenient way to check out the history of
newly created and canceled leases:

Graceful shutdown is obviously the most suitable way of stopping an application, but in the
real world, we are not always able to achieve it. Many unexpected things can happen, such
as a server machine restart, application failure, or just network problems at the interface
between client and server. Such a situation is the same from a discovery server point of
view as stopping the client application from your IDE or killing the process from the
command line. If you try to do that, you will see that the discovery client shutdown
procedure won't be triggered and the service is still visible in the Eureka dashboard with
the UP status. Moreover, the lease will never expire.

Service Discovery Chapter 4

[71]

In order to avoid this situation, the default configuration on the server side should be
changed. Why does such a problem appear in the default settings? Eureka provides a special
mechanism by which the registry stops expiring entries when it detects that an certain
number of services didn't renew their lease in time. This should protect the registry from
clearing all entries when a part of a network failure occurs. That mechanism is called self-
preservation mode and can be disabled using the enableSelfPreservation property in
application.yml. Of course, it should not be disabled in production:

eureka:
 server:
 enableSelfPreservation: false

Using discovery client programmatically
After client application startup, the list of registered services is fetched from the Eureka
Server automatically. However, it might turn out to be necessary to use Eureka's client API
programmatically. We have two possibilities:

com.netflix.discovery.EurekaClient: It implements all HTTP API
methods exposed by the Eureka Server, which have been described in the Eureka
API section.
org.springframework.cloud.client.discovery.DiscoveryClient: It is a
Spring Cloud alternative to the native Netflix EurekaClient. It provides a
simple, generic API useful for all of the discovery clients. There are two methods
available, getServices and getInstances:

private static final Logger LOGGER =
LoggerFactory.getLogger(ClientController.class);

@Autowired
private DiscoveryClient discoveryClient;

@GetMapping("/ping")
public List<ServiceInstance> ping() {
 List<ServiceInstance> instances =
discoveryClient.getInstances("CLIENT-SERVICE");
 LOGGER.info("INSTANCES: count={}", instances.size());
 instances.stream().forEach(it -> LOGGER.info("INSTANCE: id={},
port={}", it.getServiceId(), it.getPort()));
 return instances;
}

Service Discovery Chapter 4

[72]

There is one interesting thing related to the preceding implementation. If you call the /ping
endpoint just after the service startup, it won't display any instances. This is related to the
response caching mechanisms and it is described in detail in the next section.

Advanced configuration settings
Eureka's configuration settings may be divided into three parts:

Server: It customizes the server behavior. It includes all of the properties with the
prefix eureka.server.*. The full list of available fields may be found in the
EurekaServerConfigBean class (https:/ /github. com/ spring- cloud/ spring-
cloud-netflix/ blob/ master/ spring- cloud- netflix- eureka- server/ src/ main/
java/org/ springframework/ cloud/ netflix/ eureka/ server/
EurekaServerConfigBean. java).
Client: It is the first of two available property sections on the Eureka Client's side.
It is responsible for the configuration of how the client can query the registry in
order to locate other services. It includes all of the properties with the prefix
eureka.client.*. For the full list of available fields, you may refer to the
EurekaClientConfigBean class (https:/ /github. com/ spring- cloud/ spring-
cloud-netflix/ blob/ master/ spring- cloud- netflix- eureka- client/ src/ main/
java/org/ springframework/ cloud/ netflix/ eureka/ EurekaClientConfigBean.
java).
Instance: It customizes the current instance of the Eureka Client's behavior, such
as port or name. It includes all of the properties with the prefix
eureka.instance.*. For the full list of available fields, you may refer to the
EurekaInstanceConfigBean class (https:/ /github. com/ spring- cloud/
spring-cloud- netflix/ blob/ master/ spring- cloud- netflix- eureka- client/
src/main/ java/ org/ springframework/ cloud/ netflix/ eureka/
EurekaInstanceConfigBean. java).

I have already shown you how to use some of those properties in order to have the desired
effect. I'm going to talk about some interesting scenarios related to configuration settings
customization in the next part of this section. It is not needed to describe all of the
properties. You may read about them in the comments included in the source code of all of
those classes that were listed previously.

https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-server/src/main/java/org/springframework/cloud/netflix/eureka/server/EurekaServerConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaClientConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java
https://github.com/spring-cloud/spring-cloud-netflix/blob/master/spring-cloud-netflix-eureka-client/src/main/java/org/springframework/cloud/netflix/eureka/EurekaInstanceConfigBean.java

Service Discovery Chapter 4

[73]

Refreshing the registry
Let's back up for a moment to the previous sample. Self-preservation mode has been
disabled, but it still takes a long time to wait on the lease cancellation by the server. There
are several reasons for this. The first is that every client service sends heartbeats to the
server every 30 seconds (default value), which is configurable with
the eureka.instance.leaseRenewalIntervalInSeconds property. If the server doesn't
receive a heartbeat, it waits 90 seconds before removing the instance from the registry and
thereby cutting off traffic sent to that instance. It is configurable with
the eureka.instance.leaseExpirationDurationInSeconds property. Those two
parameters are set on the client side. For testing purposes, we define small values in
seconds:

eureka:
 instance:
 leaseRenewalIntervalInSeconds: 1
 leaseExpirationDurationInSeconds: 2

There is also one property that should be changed on the server side. Eureka runs the evict
task in the background, which is responsible for checking whether heartbeats from the
client are still being received. By default, it is fired every 60 seconds. So even if the interval
of lease renewal and the duration of lease expiration are set to relatively low values, the
service instance might be removed at worst after 60 seconds. The delay between the
subsequent timer ticks can be configured using the evictionIntervalTimerInMs
property, which is set, in contrast to properties discussed previously, in milliseconds:

eureka:
 server:
 enableSelfPreservation: false
 evictionIntervalTimerInMs: 3000

Service Discovery Chapter 4

[74]

All of the required parameters have been defined on both the client and server side. Now,
we can run the discovery server again and then three instances of the client application on
ports 8081, 8082, and 8083 using the -DPORT VM argument. After that, we will shut down
the instances on ports 8081 and 8082 one by one, just by killing their processes. What is
the result? The disabled instances are almost immediately removed from Eureka registry.
Here's the log fragment from the Eureka Server:

There is still one instance available running on port 8083. The appropriate warning related
to the deactivation of the self-preservation mode will be printed out on the UI dashboard.
Some additional information such as lease expiration status or the number of renews during
the last minute may also be interesting. By manipulating all of those properties, we are able
to customize the maintenance of the expired lease removal procedure. However, it is
important to ensure that defined settings would not lack the performance of a system. There
are some other elements sensitive to the changes of configuration, like load balancers,
gateways, and circuit breakers. Eureka prints a warning message if you disable the self-
preservation mode, you can see it in the following screenshot:

Service Discovery Chapter 4

[75]

Changing the instance identificator
Instances registered on Eureka are grouped by name, but each of them must send a unique
ID, on the basis of which, the server is able to recognize it. Maybe you have noticed that
instanceId is displayed in the dashboard for every service's group in the Status
column. Spring Cloud Eureka automatically generates that number and it is equal to the
combination of the following fields:

${spring.cloud.client.hostname}:${spring.application.name}:${spring.applica
tion.instance_id:${server.port}}}.

This identificator may be easily overridden with the eureka.instance.instanceId
property. For testing purposes, let's launch some instances of the client application with the
following configuration settings and the -DSEQUENCE_NO=[n] VM argument, where [n] is
a sequence number starting from 1. Here's a sample configuration of a client's application
that dynamically sets the listen port and discovery instanceId based on the SEQUENCE_NO
parameter:

server:
 port: 808${SEQUENCE_NO}
eureka:
 instance:
 instanceId: ${spring.application.name}-${SEQUENCE_NO}

The results may be viewed in the Eureka dashboard:

Service Discovery Chapter 4

[76]

Preferring the IP address
By default, all instances are registered under their hostname. It is a very convenient
approach, on the assumption that we have DNS enabled on our network. However, it is not
uncommon that DNS is not available for a group of servers used as the microservice
environment in the organization. I just had that kind of situation myself. There remains
nothing else to do but to add host names and their IP addresses to the /etc/hosts file on
all of the Linux machines. An alternative to this solution is to change the registration
process configuration settings to advertise the IP addresses of services rather than the
hostname. To achieve this, the eureka.instance.preferIpAddress property should be
set to true on the client side. Every service instance in the registry will still be printed out
to a Eureka dashboard with instanceId containing a hostname, but if you click this link
the redirection will be performed based on the IP address. The Ribbon client that is
responsible for calling other services via HTTP will also follow the same principle.

If you decide to use an IP address as a primary method of determining the network location
of the service, you may have a problem. The problem may arise if you have more than one
network interface assigned to your machine. For example, in one organization where I have
been working, there were different networks for a management mode (a connection from
my workstation to the server) and for a production mode (a connection between two
servers). In consequence, each server machine had two network interfaces assigned with
different IP prefixes. To select the right interface, you can define a list of ignored patterns in
the application.yml configuration file. For example, we would like to ignore all
interfaces where the name starts with eth1:

spring:
 cloud:
 inetutils:
 ignoredInterfaces:
 - eth1*

There is also another way to get that effect. We can define network addresses that should be
preferred:

spring:
 cloud:
 inetutils:
 preferredNetworks:
 - 192.168

Service Discovery Chapter 4

[77]

Response cache
The Eureka Server caches responses by default. The cache is invalidated every 30 seconds. It
can be easily checked by calling the HTTP API endpoint /eureka/apps. If you call it just
after the registration of the client application, you will figure out that it is still not returned
in the response. Try again after 30 seconds, and you will see that the new instance appears.
The response cache timeout may be overridden with
the responseCacheUpdateIntervalMs property. Interestingly, there is no cache while
displaying a list of registered instances using the Eureka dashboard. In contrast to the REST
API, it bypasses the response cache:

eureka:
 server:
 responseCacheUpdateIntervalMs: 3000

We should remember that the Eureka registry is also cached on the client side. So, even if
we changed the cache timeout on the server, it may still take some time until it would be
refreshed by the client. The registry is periodically refreshed in an asynchronous,
background task that is scheduled every 30 seconds by default. This setting may be
overridden by declaring the registryFetchIntervalSeconds property. It only fetches
the delta in comparison to the last fetch attempt. This option may be disabled using
the shouldDisableDelta property. I defined 3 seconds timeouts on both the server and
client sides. If you start the sample application with such settings, /eureka/apps will show
the newly registered instance of the service, probably at your first attempt. Unless caching
on the client side makes sense, I'm not sure about the sense of caching on the server side,
especially since Eureka doesn't have any backend store. Personally, I have never had any
need to change the values of those properties, but I guess it can be important, for example,
if you develop unit tests with Eureka and you need an immediate response without
caching:

eureka:
 client:
 registryFetchIntervalSeconds: 3
 shouldDisableDelta: true

Service Discovery Chapter 4

[78]

Enabling secure communication between
client and server
Until now, none of the client's connections were being authenticated by the Eureka Server.
While in the development mode, security doesn't really matter as much as in the production
mode. The lack of it may be a problem. We would like to have, as a bare minimum, the
discovery server secured with basic authentication to prevent unauthorized access to any
service that knows its network address. Although Spring Cloud reference material claims
that HTTP basic authentication will be automatically added to your Eureka Client, I had to include
a starter with security to the project dependencies:

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
 </dependency>

Then, we should enable security and set the default credentials by changing the
configuration settings in the application.yml file:

security:
 basic:
 enabled: true
 user:
 name: admin
 password: admin123

Now, all HTTP API endpoints and the Eureka dashboard are secured. To enable the basic
authentication mode on the client side, the credentials should be provided within the URL
connection address, as you can see in the following configuration settings. An example
application that implements secure discovery is available in the same repository (https:/ /
github.com/piomin/ sample- spring- cloud- netflix. git) as the basic example, but you
need to switch to the security branch (https:/ /github. com/ piomin/ sample- spring-
cloud-netflix/tree/ security). Here's the configuration that enabled HTTP basic
authentication on the client side:

eureka:
 client:
 serviceUrl:
 defaultZone: http://admin:admin123@localhost:8761/eureka/

https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix/tree/security
https://github.com/piomin/sample-spring-cloud-netflix/tree/security
https://github.com/piomin/sample-spring-cloud-netflix/tree/security
https://github.com/piomin/sample-spring-cloud-netflix/tree/security
https://github.com/piomin/sample-spring-cloud-netflix/tree/security
https://github.com/piomin/sample-spring-cloud-netflix/tree/security
https://github.com/piomin/sample-spring-cloud-netflix/tree/security
https://github.com/piomin/sample-spring-cloud-netflix/tree/security
https://github.com/piomin/sample-spring-cloud-netflix/tree/security
https://github.com/piomin/sample-spring-cloud-netflix/tree/security
https://github.com/piomin/sample-spring-cloud-netflix/tree/security
https://github.com/piomin/sample-spring-cloud-netflix/tree/security
https://github.com/piomin/sample-spring-cloud-netflix/tree/security
https://github.com/piomin/sample-spring-cloud-netflix/tree/security
https://github.com/piomin/sample-spring-cloud-netflix/tree/security
https://github.com/piomin/sample-spring-cloud-netflix/tree/security
https://github.com/piomin/sample-spring-cloud-netflix/tree/security
https://github.com/piomin/sample-spring-cloud-netflix/tree/security
https://github.com/piomin/sample-spring-cloud-netflix/tree/security
https://github.com/piomin/sample-spring-cloud-netflix/tree/security

Service Discovery Chapter 4

[79]

For more advanced use, such as secure SSL connection with certificate
authentication between discovery client and server, we should provide a custom
implementation of DiscoveryClientOptionalArgs. We will discuss such an example
in Chapter 12, Securing an API, specifically dedicated to security for Spring Cloud
applications.

Registering a secure service
Securing the server side is one thing; registering a secure application is something else. Let's
look at how we can do this:

To enable SSL for a Spring Boot application, we need to start with generating a1.
self-signed certificate. I recommend you use keytool for that, which is available
under your JRE root in the bin catalog:

keytool -genkey -alias client -storetype PKCS12 -keyalg RSA -
keysize 2048 -keystore keystore.p12 -validity 3650

Enter the required data and copy the generated keystore file keystore.p12 to2.
your application's src/main/resources catalog. The next step is to enable
HTTPS for Spring Boot using configuration properties in application.yml:

server:
 port: ${PORT:8081}
 ssl:
 key-store: classpath:keystore.p12
 key-store-password: 123456
 keyStoreType: PKCS12
 keyAlias: client

After running the application, you should be able to call the secure endpoint3.
https://localhost:8761/info. We also need to perform some changes in the
Eureka client instance configuration:

eureka:
 instance:
 securePortEnabled: true
 nonSecurePortEnabled: false
 statusPageUrl: https://${eureka.hostname}:${server.port}/info
 healthCheckUrl: https://${eureka.hostname}:${server.port}/health
 homePageUrl: https://${eureka.hostname}:${server.port}/

Service Discovery Chapter 4

[80]

Eureka API
Spring Cloud Netflix provides a client written in Java that hides the Eureka HTTP API from
the developer. In case we use other frameworks than Spring, Netflix OSS provides a vanilla
Eureka client that can be included as a dependency. However, we may imagine a need to
call the Eureka API directly, for example, if the application is written in another language
than Java, or we need such information as a list of registered services in the Continuous
Delivery process. Here's a table for quick reference:

HTTP endpoint Description

POST /eureka/apps/appID
Add a new instance of
the service to the
registry

DELETE /eureka/apps/appID/instanceID
Remove the instance
of the service from the
registry

PUT /eureka/apps/appID/instanceID
Send a heartbeat to the
server

GET /eureka/apps
Get details about the
list of all registered
instances of services

GET /eureka/apps/appID

Get details about the
list of all registered
instances of a specific
service

GET /eureka/apps/appID/instanceID
Get details about a
single instance of the
service

PUT /eureka/apps/appID/instanceID/metadata?key=value
Update metadata
parameters

GET /eureka/instances/instanceID
Get details about all
registered instances
with a specific ID

PUT /eureka/apps/appID/instanceID/status?value=DOWN
Update the status of
the instance

Service Discovery Chapter 4

[81]

Replication and high availability
We have already discussed some useful Eureka settings, but until now we have analyzed
only a system with a single service discovery server. Such a configuration is valid, but only
in development mode. For production mode, we would like to have at least two discovery
servers running in case one of them fails or a network problem occurs. Eureka is by
definition built for availability and resiliency, two primary pillars of development at
Netflix. But it does not provide standard clustering mechanisms such as leadership election
or automatically joining to the cluster. It is based on the peer-to-peer replication model. It
means that all of the servers replicate data and send heartbeats to all of the peers, which are
set in configuration for the current server node. Such an algorithm is simple and effective
for containing data, but it also has some drawbacks. It limits scalability, because every node
has to withstand the entire write load on the server.

Architecture of the sample solution
Interestingly, a replication mechanism was one of the major motivations to begin work on
the new version of the Eureka Server. Eureka 2.0 is still under active development. Besides
optimized replication, it will also provide some interesting features such as a push model
from the server to clients for any changes in the registration list, auto-scaled servers, and a
rich dashboard. This solution seems promising, but Spring Cloud Netflix still uses version 1
and to be honest I was not able to find any plans for the migration to version 2. The current
Eureka version for Dalston.SR4 Release Train is 1.6.2. The configuration of the clustering
mechanism on the server side comes down to one thing, the set URL of another discovery
server using eureka.client.* properties section. The selected server would just register
itself in the other servers, which were chosen to be a part of the created cluster. The best
way to show how this solution works in practice is of course by example.

Service Discovery Chapter 4

[82]

Let's begin with the architecture of the example system, which is shown in the following
diagram. All of our applications will be run locally on different ports. At this stage, we have
to introduce the example of the API gateway based on Netflix Zuul. It would be helpful for
the purpose of load balancing tests between three instances of a service registered in
different zones:

Building the example application
For the Eureka Server, all of the required changes may be defined in configuration
properties. In the application.yml file, I defined three different profiles for each instance
of the discovery service. Now, if you try to run Eureka Server embedded in the Spring Boot
application, you need to activate the specific profile by providing the VM argument -
Dspring.profiles.active=peer[n], where [n] is the instance sequence number:

spring:
 profiles: peer1
eureka:
 instance:
 hostname: peer1
 metadataMap:
 zone: zone1
 client:
 serviceUrl:
 defaultZone:
http://localhost:8762/eureka/,http://localhost:8763/eureka/
server:
 port: ${PORT:8761}

Service Discovery Chapter 4

[83]

spring:
 profiles: peer2
eureka:
 instance:
 hostname: peer2
 metadataMap:
 zone: zone2
 client:
 serviceUrl:
 defaultZone:
http://localhost:8761/eureka/,http://localhost:8763/eureka/
server:
 port: ${PORT:8762}

spring:
 profiles: peer3
eureka:
 instance:
 hostname: peer3
 metadataMap:
 zone: zone3
 client:
 serviceUrl:
 defaultZone:
http://localhost:8761/eureka/,http://localhost:8762/eureka/
server:
 port: ${PORT:8763}

After running all three instances of Eureka using different profile names, we created a local
discovery cluster. If you take a look at the Eureka dashboard for any instance just after
startup, it always looks the same, we have three instances of DISCOVERY-SERVICE
visible:

Service Discovery Chapter 4

[84]

The next step is to run the client application. The configuration settings in the projects are
very similar to those for the application with the Eureka Server. The order of addresses
provided in the defaultZone field determines the sequence of connection attempts to
different discovery services. If the connection to the first server cannot be established, it
tries to connect with the second one from the list, and so on. The same as earlier, we should
set the VM argument -Dspring.profiles.active=zone[n] to select the right profile. I
also suggest you set the -Xmx192m parameter, keeping in mind that we test all of the
services locally. If you do not provide any memory limits for the Spring Cloud application it
consumes around 350 MB of heap after starting, and about 600 MB of total memory. Unless
you have got a lot of RAM it may make it difficult to run multiple instances of
microservices on your local machine:

spring:
 profiles: zone1
eureka:
 client:
 serviceUrl:
 defaultZone:
http://localhost:8761/eureka/,http://localhost:8762/eureka/,http://localhos
t:8763/eureka/
server:
 port: ${PORT:8081}

spring:
 profiles: zone2
eureka:
 client:
 serviceUrl:
 defaultZone:
http://localhost:8762/eureka/,http://localhost:8761/eureka/,http://localhos
t:8763/eureka/
server:
 port: ${PORT:8082}

spring:
 profiles: zone3
eureka:
 client:
 serviceUrl:
 defaultZone:
http://localhost:8763/eureka/,http://localhost:8761/eureka/,http://localhos
t:8762/eureka/
server:
 port: ${PORT:8083}

Service Discovery Chapter 4

[85]

Let's take a look at the Eureka dashboard again. We have three instances of client-
service registered everywhere, although the application has been originally connected to
only one instance of the discovery service. The result is the same no matter which discovery
service instance's dashboard we go into to look at. It was the exact purpose of this exercise.
Now, we create some additional implementation only to demonstrate that everything
works in accordance with the assumptions:

The client application does nothing more than expose a REST endpoint that prints the
selected profile name. The profile name points to the primary discovery service instance for
the particular application instance. Here's a simple @RestController implementation that
prints the name of the current zone:

@RestController
public class ClientController {
 @Value("${spring.profiles}")
 private String zone;

 @GetMapping("/ping")
 public String ping() {
 return "I'm in zone " + zone;
 }

}

Finally, we can proceed to the implementation of API gateway. It's out of the scope of this
chapter to go into detail about features provided by Zuul, Netflix's API gateway, and
router. We will discuss it in the next chapters. Zuul will now be helpful in testing our
sample solution, because it is able to retrieve the list of services registered in the discovery
server and perform load balancing between all of the running instances of the client
application. As you can see in the following configuration fragment, we use a discovery
server listening on port 8763. All incoming requests with the /api/client/** path would
be routed to client-service:

zuul:
 prefix: /api
 routes:

Service Discovery Chapter 4

[86]

 client:
 path: /client/**
 serviceId: client-service

eureka:
 client:
 serviceUrl:
 defaultZone: http://localhost:8763/eureka/
 registerWithEureka: false

Let's move on to the testing. Our application with the Zuul proxy should be launched using
the java -jar command and unlike previous services, there is no need to set any
additional parameters, including a profile name. It is connected by default with discovery
service number #3. To invoke the client API via the Zuul proxy, you have to type the
following address into your web browser, http://localhost:8765/api/client/ping.
The result is visible in the following screenshot:

If you retry the request a few times in a row, it should be load balanced between all of the
existing client-service instances in the proportions 1:1:1, although our gateway is
connected only to discovery #3. This example fully demonstrates how to build service
discovery with multiple Eureka instances.

The preceding example application is available on GitHub (https:/ /github. com/ piomin/
sample-spring-cloud- netflix. git) in the cluster branch (https:/ /github. com/ piomin/
sample-spring-cloud- netflix/ tree/ cluster_ no_ zones).

https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix.git
https://github.com/piomin/sample-spring-cloud-netflix/tree/cluster_no_zones
https://github.com/piomin/sample-spring-cloud-netflix/tree/cluster_no_zones
https://github.com/piomin/sample-spring-cloud-netflix/tree/cluster_no_zones
https://github.com/piomin/sample-spring-cloud-netflix/tree/cluster_no_zones
https://github.com/piomin/sample-spring-cloud-netflix/tree/cluster_no_zones
https://github.com/piomin/sample-spring-cloud-netflix/tree/cluster_no_zones
https://github.com/piomin/sample-spring-cloud-netflix/tree/cluster_no_zones
https://github.com/piomin/sample-spring-cloud-netflix/tree/cluster_no_zones
https://github.com/piomin/sample-spring-cloud-netflix/tree/cluster_no_zones
https://github.com/piomin/sample-spring-cloud-netflix/tree/cluster_no_zones
https://github.com/piomin/sample-spring-cloud-netflix/tree/cluster_no_zones
https://github.com/piomin/sample-spring-cloud-netflix/tree/cluster_no_zones
https://github.com/piomin/sample-spring-cloud-netflix/tree/cluster_no_zones
https://github.com/piomin/sample-spring-cloud-netflix/tree/cluster_no_zones
https://github.com/piomin/sample-spring-cloud-netflix/tree/cluster_no_zones
https://github.com/piomin/sample-spring-cloud-netflix/tree/cluster_no_zones
https://github.com/piomin/sample-spring-cloud-netflix/tree/cluster_no_zones
https://github.com/piomin/sample-spring-cloud-netflix/tree/cluster_no_zones
https://github.com/piomin/sample-spring-cloud-netflix/tree/cluster_no_zones
https://github.com/piomin/sample-spring-cloud-netflix/tree/cluster_no_zones
https://github.com/piomin/sample-spring-cloud-netflix/tree/cluster_no_zones
https://github.com/piomin/sample-spring-cloud-netflix/tree/cluster_no_zones
https://github.com/piomin/sample-spring-cloud-netflix/tree/cluster_no_zones
https://github.com/piomin/sample-spring-cloud-netflix/tree/cluster_no_zones

Service Discovery Chapter 4

[87]

Failover
You probably wish to ask what's going to happen if one instance of service discovery breaks
down? In order to check how the cluster would behave in case of failure, we are going to
modify the earlier sample a little. Now, Zuul has a failover connection to the second service
discovery available on port 8762 set in its configuration settings. For testing purposes, we
shut down the third instance of the discovery service available on port 8763:

eureka:
 client:
 serviceUrl:
 defaultZone:
http://localhost:8763/eureka/,http://localhost:8762/eureka/
 registerWithEureka: false

The current situation is illustrated in the following diagram. Testing is performed in the
same way as earlier, by calling the gateway's endpoint available under the
http://localhost:8765/api/client/ping address. And the result is also the same
as for the previous test, load balancing is performed equally among all three client-
service instances as expected. Although discovery service #3 has been disabled, two other
instances are still able to communicate with each other and have information about the
network location of the third client application instance replicated from instance #3 as long
as it was active. Now, even if we restart our gateway, it is still able to connect the discovery
cluster using the second address in order, set inside the defaultZone
field http://localhost:8762/eureka. The same applies to the third instance of the
client application, which in turn has discovery service #1 as a backup connection:

Service Discovery Chapter 4

[88]

Zones
A cluster-based on a peer-to-peer replication model is a good way to go in most cases, but
not always enough. Eureka has one more interesting feature that can be very useful in a
clustered environment. A zone mechanism is, in fact, the default behavior. Even if we have
a single standalone service discovery instance, every client's property has to be set to
eureka.client.serviceUrl.defaultZone in the configuration settings. When will this
be useful to us? To analyze it, we go back to the example from the previous section. Let's
imagine that now we have our environment divided into three different physical networks,
or we just have three different machines processing the incoming requests. Of course,
discovery services are still grouped logically in the cluster, but each instance is placed in a
separated zone. Every client application would be registered in the same zone as its main
discovery server. Instead of one instance of the Zuul gateway, we are going to launch three
instances, each one for a single zone. If the request comes into a gateway, it should prefer
those clients that leverage services within the same zone before trying to call services
registered in another zone. The current system architecture is visualized in the following
diagram. Of course, for example purposes, the architecture was simplified to be able to run
on a single local machine. In the real world, like I mentioned before, it would be launched
on three different machines or even on three different groups of machines, physically
separated into other networks:

Service Discovery Chapter 4

[89]

Zones with a standalone server
At this stage, we should emphasize one important thing, the zoning mechanism is realized
only on the client side. This means that the service discovery instance is not assigned to any
zone. So the preceding diagram may be slightly confusing, but it indicates which Eureka is
the default service discovery for all client applications and gateways registered in the
specific zone. Our purpose is to check out the mechanisms in the high availability mode,
but we may as well build it only with a single discovery server. The following diagram
illustrates a similar situation as the previous diagram, except that it assumes the existence of
only a single discovery server for all of the applications:

Building an example application
To enable zone handling, we need to perform some changes in the client's and gateway's
configuration settings. Here's a modified application.yml file from the client application:

spring:
 profiles: zone1
eureka:
 instance:
 metadataMap:
 zone: zone1
 client:
 serviceUrl:
 defaultZone:
http://localhost:8761/eureka/,http://localhost:8762/eureka/,http://localhos
t:8763/eureka/

Service Discovery Chapter 4

[90]

The only thing that had to be updated is
the eureka.instance.metadataMap.zone property, where we set the names of the zone
and our service had been registered.

More changes have to be made in the gateway configuration. First, we need to add three
profiles to be able to run an application registered in three different zones and three
different discovery servers. Now when launching the gateway application, we should set
the VM argument -Dspring.profiles.active=zone[n] to select the right profile.
Similar to client-service, we also had to add
the eureka.instance.metadataMap.zone property within the configuration
settings. There is also one property, eureka.client.preferSameZoneEureka, used for
the first time in the example, which had to be equal to true if the gateway should prefer
instances of the client application registered in the same zone:

spring:
 profiles: zone1
eureka:
 client:
 serviceUrl:
 defaultZone: http://localhost:8761/eureka/
 registerWithEureka: false
 preferSameZoneEureka: true
 instance:
 metadataMap:
 zone: zone1
server:
 port: ${PORT:8765}

spring:
 profiles: zone2
eureka:
 client:
 serviceUrl:
 defaultZone: http://localhost:8762/eureka/
 registerWithEureka: false
 preferSameZoneEureka: true
 instance:
 metadataMap:
 zone: zone2
server:
 port: ${PORT:8766}

spring:

Service Discovery Chapter 4

[91]

 profiles: zone3
eureka:
 client:
 serviceUrl:
 defaultZone: http://localhost:8763/eureka/
 registerWithEureka: false
 preferSameZoneEureka: true
 instance:
 metadataMap:
 zone: zone3
server:
 port: ${PORT:8767}

After launching all of the instances of discovery, client, and gateway applications, we can
try to call endpoints available under the http://localhost:8765/api/client/ping,
http://localhost:8766/api/client/ping, and
http://localhost:8767/api/client/ping addresses. Every one of them would
always be communicating with the client instance registered in the same zone. So in
contrast to tests without a preferred zone, for example, the first instance of gateway
available under port 8765 always prints I'm in zone zone1 while calling the ping endpoint:

What will happen when client #1 is not available? The incoming requests would be load
balanced 50/50 between two other instances of the client application, because they are both
in different zones than gateway #1.

Service Discovery Chapter 4

[92]

Summary
In this chapter, we had the opportunity to develop applications using Spring Cloud for the
first time in this book. In my opinion, the best way to start an adventure with a framework
for microservices is with trying to figure out how to implement service discovery properly.
Starting with the simplest use cases and examples, we have been going through advanced
and production-ready features provided by the Netflix OSS Eureka project. I have shown
you how to create and run a basic client and a standalone discovery server in five minutes.
Based on that implementation, I have introduced how to customize the Eureka client and
server to meet our specific needs, placing the emphasis on negative scenarios such as
network or application failure. Such features as the REST API or UI dashboard have been
discussed in detail. Finally, I have shown you how to create a production-ready
environment using Eureka's mechanisms such as replication, zones, and high availability.
With that knowledge, you should be able to choose those features of Eureka through which
you build a service discovery adapted to the specifics of your microservice-based
architecture.

Once we have discussed service discovery, we may proceed to the next essential element in
microservice-based architecture, a configuration server. Both discovery and configuration
services are usually based on key/value stores, so they may be provided with the same
products. However, since Eureka is dedicated only to discovery, Spring Cloud introduces
their own framework for managing distributed configurations, Spring Cloud Config.

5
Distributed Configuration with

Spring Cloud Config
It is the right time to introduce a new element in our architecture, a distributed
configuration server. Similar to service discovery, this is one of the key concepts around
microservices. In the previous chapter, we discussed in detail how to prepare discovery,
both on the server and client sides. But so far, we have always provided a configuration for
the application using properties placed inside a fat JAR file. That approach has one big
disadvantage, it requires a recompilation and a redeployment of the microservice's instance.
Another approach supported by Spring Boot assumes the use of an explicit configuration
stored in a filesystem outside of the fat JAR. It can be easily configured for an application
during startup with the spring.config.location property. That approach does not
require a redeployment, but it is also not free from drawbacks. With a lot of microservices, a
configuration management based on explicit files placed in a filesystem may be really
troublesome. In addition, let’s imagine that there are many instances of every microservice
and each of them has a specific configuration. Well, with that approach it is better not to
imagine it.

Anyway, a distributed configuration is a very popular standard in a cloud-native
environment. Spring Cloud Config provides server-side and client-side support for
externalized configuration in a distributed system. With that solution, we have one central
place where we can manage external properties for applications across all environments.
The concept is really simple and easy to implement. A server does nothing more than
expose HTTP and resource-based API interfaces, which returns property files in JSON,
YAML, or properties formats. Additionally, it performs decryption and encryption
operations for returned property values. A client needs to fetch configuration settings from
a server, and also decrypt them if such a feature has been enabled on the server side.

Distributed Configuration with Spring Cloud Config Chapter 5

[94]

Configuration data may be stored in different repositories. The default implementation of
EnvironmentRepository uses a Git backend. It is also possible to set up other VCS
systems such as SVN. If you don't want to take advantage of features provided by VCS as a
backend, you may use the filesystem or Vault. Vault is a tool for managing secrets, which
stores and controls access to such resources as tokens, passwords, certificates, and API keys.

The topics we will cover in this chapter are:

HTTP API exposed by Spring Cloud Config Server
Different types of repository backend on the server side
Integrating with service discovery
Reloading the configuration automatically with Spring Cloud Bus and message
broker

Introduction to HTTP API resources
The Config Server provides the HTTP API, which may be invoked in various ways. The
following endpoints are available:

/{application}/{profile}[/{label}]: This returns data in a JSON format;
the label parameter is optional
/{application}-{profile}.yml: This returns the YAML format
/{label}/{application}-{profile}.yml: A variant of the previous
endpoint, where we can pass an optional label parameter
/{application}-{profile}.properties: This returns the simple key/value
format used by properties files
/{label}/{application}-{profile}.properties: A variant of the previous
endpoint, where we can pass an optional label parameter

From a client point of view, the application parameter is the name of the application, which
is taken from the spring.application.name or spring.config.name property, and
profile is an active profile or comma-separated list of active profiles. The last available
parameter label is an optional property, important only while working with Git as a
backend store. It sets the name of the Git branch for configuration and defaults to master.

Distributed Configuration with Spring Cloud Config Chapter 5

[95]

Native profile support
Let’s begin with the simplest example, based on a filesystem backend. By default, Spring
Cloud Config Server tries to fetch configuration data from a Git repository. To enable the
native profile, we should launch the server with the spring.profiles.active option set
to native. It searches for files stored in the following locations, classpath:/,
classpath:/config, file:./, file:./config. It means that properties or YAML files
may be also placed inside a JAR file. For test purposes, I created a config folder inside
src/main/resources. Our configuration files will be stored in that location. Now, we
need to go back for a moment to the example from the previous chapter. As you probably
remember, I introduced the configuration for a clustered discovery environment, where
each client service instance was launched in a different zone. There were three available
zones and three client instances, each of them has its own profile in the application.yml
file. The source code for that example is available in the config branch. Here's the link:

https://github.com/ piomin/ sample- spring- cloud- netflix/ tree/ config

Our current task is to migrate that configuration to the Spring Cloud Config Server. Let's
remind ourselves the properties set for that example. Here are the profile settings used for
the first instance of the client application. According to the selected profile, there are a
changing instance running port, a default discovery server URL and a zone name:

spring:
 profiles: zone1

eureka:
 instance:
 metadataMap:
 zone: zone1
 client:
 serviceUrl:
 defaultZone: http://localhost:8761/eureka/

server:
 port: ${PORT:8081}

https://github.com/piomin/sample-spring-cloud-netflix/tree/config
https://github.com/piomin/sample-spring-cloud-netflix/tree/config
https://github.com/piomin/sample-spring-cloud-netflix/tree/config
https://github.com/piomin/sample-spring-cloud-netflix/tree/config
https://github.com/piomin/sample-spring-cloud-netflix/tree/config
https://github.com/piomin/sample-spring-cloud-netflix/tree/config
https://github.com/piomin/sample-spring-cloud-netflix/tree/config
https://github.com/piomin/sample-spring-cloud-netflix/tree/config
https://github.com/piomin/sample-spring-cloud-netflix/tree/config
https://github.com/piomin/sample-spring-cloud-netflix/tree/config
https://github.com/piomin/sample-spring-cloud-netflix/tree/config
https://github.com/piomin/sample-spring-cloud-netflix/tree/config
https://github.com/piomin/sample-spring-cloud-netflix/tree/config
https://github.com/piomin/sample-spring-cloud-netflix/tree/config
https://github.com/piomin/sample-spring-cloud-netflix/tree/config
https://github.com/piomin/sample-spring-cloud-netflix/tree/config
https://github.com/piomin/sample-spring-cloud-netflix/tree/config
https://github.com/piomin/sample-spring-cloud-netflix/tree/config
https://github.com/piomin/sample-spring-cloud-netflix/tree/config
https://github.com/piomin/sample-spring-cloud-netflix/tree/config
https://github.com/piomin/sample-spring-cloud-netflix/tree/config

Distributed Configuration with Spring Cloud Config Chapter 5

[96]

In the described example I placed all of the profiles settings in a single application.yml
file for simplicity. That file might as well be divided into three different files with the names
including the profiles, application-zone1.yml, application-zone2.yml, and
application-zone3.yml. Of course, such names are unique to a single application, so if
we decided to move the files into a remote configuration server, we should take care of their
names. The client application name is injected from spring.application.name and in
this case, it is client-service. So, to conclude, I created three configuration files with the
name client-service-zone[n].yml in the src/main/resources/config catalog,
where [n] is an instance's number. Now, when you call the
http://localhost:8888/client-service/zone1 endpoint, you will receive the
following response in JSON format:

{
 "name":"client-service",
 "profiles":["zone1"],
 "label":null,
 "version":null,
 "state":null,
 "propertySources":[{
 "name":"classpath:/config/client-service-zone1.yml",
 "source":{
 "eureka.instance.metadataMap.zone":"zone1",
"eureka.client.serviceUrl.defaultZone":"http://localhost:8761/eureka/",
 "server.port":"${PORT:8081}"
 }
 }]
}

We can also call http://localhost:8888/client-service-zone2.properties for the
second instance, which returns the following response as a list of properties:

eureka.client.serviceUrl.defaultZone: http://localhost:8762/eureka/
eureka.instance.metadataMap.zone: zone2
server.port: 8082

The last available version of the HTTP API
endpoint, http://localhost:8889/client-service-zone3.yml, returns data identical
to the input file. Here's the result for the third instance:

eureka:
 client:
 serviceUrl:
 defaultZone: http://localhost:8763/eureka/
 instance:
 metadataMap:

Distributed Configuration with Spring Cloud Config Chapter 5

[97]

 zone: zone3
server:
 port: 8083

Building a server-side application
We have started by discussing HTTP, a resource-based API provided by the Spring Cloud
Config Server, and the way of creating and storing properties there. But now let's move
back to the basics. The same as a discovery server, a Config Server may be run as a Spring
Boot application. To enable it on the server side, we should include spring-cloud-
config-server in our dependencies in the pom.xml file:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-config-server</artifactId>
</dependency>

In addition to this, we should enable the Config Server on the main application class. It
would be a good idea to change the server port to 8888, because it is the default value of
the spring.cloud.config.uri property on the client side. For example, it is auto
configured on the client side. To switch the server to a different port, you should set the
server.port property on 8888 or launch it with the
spring.config.name=configserver property. There is a configserver.yml
embedded in the spring-cloud-config-server library:

@SpringBootApplication
@EnableConfigServer
public class ConfigApplication {

 public static void main(String[] args) {
 new
SpringApplicationBuilder(ConfigApplication.class).web(true).run(args);
 }

}

Distributed Configuration with Spring Cloud Config Chapter 5

[98]

Building a client-side application
If you set port 8888 as the default for the server, the configuration on the client side is really
simple. All you need to do is to provide the bootstrap.yml file with the application name
and include the following dependency in your pom.xml. Of course, that rule is applicable
only on localhost, because the auto-configured Config Server address for a client is
http://localhost:8888:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-config</artifactId>
</dependency>

If you set a port different than 8888 for the server, or it is running on a different machine
than the client application, you should also set its current address in bootstrap.yml. Here
are the bootstrap context settings, which allow you to fetch properties for client-service
from the server available on port 8889. When running the application with the --
spring.profiles.active=zone1 argument, it automatically fetches the properties set for
the zone1 profile in the configuration server:

spring:
 application:
 name: client-service
 cloud:
 config:
 uri: http://localhost:8889

Adding a Eureka Server
As you have probably noticed, there is the discovery service network location address in the
client's properties. So, before launching the client service we should have a Eureka Server
running. Of course, Eureka also has its own configuration, which has been stored in
the application.yml file for the example from the previous chapter. That configuration,
similar to client-service, has been divided into three profiles, where each of them differ
from the others in such properties as the number of the server's HTTP port and the list of
discovery peers to communicate with.

Distributed Configuration with Spring Cloud Config Chapter 5

[99]

Now, we place those property files on the configuration server. Eureka fetches all of the
settings assigned to the selected profile on startup. File naming is consistent with the
already described standard, which means discovery-service-zone[n].yml. Before
running the Eureka Server, we should include spring-cloud-starter-config in the
dependencies to enable Spring Cloud Config Client, and replace application.yml with
bootstrap.yml, which is shown here:

spring:
 application:
 name: discovery-service
 cloud:
 config:
 uri: http://localhost:8889

Now, we may run three instances of the Eureka Server in peer-to-peer communication
mode by setting a different profile name in the --spring.profiles.active property.
After launching three instances of client-service, our architecture looks like the
following diagram. In comparison to the example from the previous chapter, both client
and discovery services fetch the configuration from the Spring Cloud Config Server, instead
of keeping it as a YML file inside a fat JAR:

Distributed Configuration with Spring Cloud Config Chapter 5

[100]

Client-side bootstrap approaches
In the example solution described previously, all of the applications must hold the network
location of the configuration server. The network location of service discovery is stored
there as a property. At this point, we are confronted with an interesting problem to discuss.
We could ask whether our microservices should be aware of the Config Server's network
address. In previous discussions, we have agreed that the main place all the service’s
network locations should be kept is the service discovery server. The configuration server is
also a Spring Boot application like other microservices, so logically it should register itself
with Eureka to enable the automated discovery mechanism for other services that have to
fetch data from the Spring Cloud Config Server. This in turn requires placing the service
discovery connection settings in bootstrap.yml instead of the
spring.cloud.config.uri property.

Choosing between these two different approaches is one of the decisions you need to make
while designing your system architecture. It's not that one solution is better than the other.
The default behavior for any application that uses the spring-cloud-config-client
artifact is called Config First Bootstrap in Spring Cloud nomenclature. When a config client
starts up, it binds to the server and initializes the context with remote property sources.
That approach has been presented in the first example in this chapter. In the second
solution, the Config Server registers with the service discovery and all of the applications
may use DiscoveryClient to locate it. That approach is called Discovery First Bootstrap.
Let's implement an example that illustrates that concept.

Config Server discovery
To access that example on GitHub, you need to switch to the
config_with_discovery branch. Here's the link:

https://github.com/ piomin/ sample- spring- cloud- netflix/ tree/ config_ with_
discovery.

The first change is related to the sample-service-discovery module. We don’t need
the spring-cloud-starter-config dependency there. The simple configuration is not
fetched from remote property sources, but set in bootstrap.yml. In contrast to the
previous example, we launch a single standalone Eureka instance in order to simplify the
exercise:

spring:
 application:
 name: discovery-service

https://github.com/piomin/sample-spring-cloud-netflix/tree/config_with_discovery
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_with_discovery
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_with_discovery
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_with_discovery
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_with_discovery
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_with_discovery
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_with_discovery
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_with_discovery
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_with_discovery
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_with_discovery
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_with_discovery
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_with_discovery
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_with_discovery
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_with_discovery
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_with_discovery
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_with_discovery
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_with_discovery
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_with_discovery
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_with_discovery
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_with_discovery
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_with_discovery
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_with_discovery
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_with_discovery
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_with_discovery

Distributed Configuration with Spring Cloud Config Chapter 5

[101]

server:
 port: ${PORT:8761}

eureka:
 client:
 registerWithEureka: false
 fetchRegistry: false

By contrast, we should include the spring-cloud-starter-eureka dependency for the
Config Server. Now, the full list of dependencies is shown in the following code. Moreover,
a discovery client has to be enabled by declaring the @EnableDiscoveryClient
annotation on the main class, and the Eureka Server address should be provided by setting
the eureka.client.serviceUrl.defaultZone property to
http://localhost:8761/eureka/ in the application.yml file:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-config-server</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-eureka</artifactId>
</dependency>

On the client application side, it is no longer needed to hold the address of the configuration
server. The only thing that has to be set is the service ID, in case it is different than
the Config Server. In accordance with the naming convention used for the services in the
presented examples, that ID is config-server. It should be overridden with the
spring.cloud.config.discovery.serviceId property. In order to allow discovery
mechanism enable the discovery mechanism to fetch remote property sources from
the configuration server, we should set
spring.cloud.config.discovery.enabled=true:

spring:
 application:
 name: client-service
 cloud:
 config:
 discovery:
 enabled: true
 serviceId: config-server

Distributed Configuration with Spring Cloud Config Chapter 5

[102]

Here's the screen with the Eureka dashboard, with one instance of the Config Server and
three instances of client-service registered. Every instance of the client's Spring Boot
application is the same as for the previous example and was launched with the --
spring.profiles.active=zone[n] parameter, where n is the number of the zone. The
only difference is that all of the client's service configuration files served by the Spring
Cloud Config Server have the same connection address as the Eureka Server:

Repository backend types
All of the previous examples in this chapter have used the filesystem backend, which means
that the config files were loaded from the local filesystem or classpath. This type of backend
is very good for tutorial purposes or for testing. If you would like to use Spring Cloud
Config in production, it is worth considering the other options. The first of them is a
repository backend based on Git, which is also enabled by default. It is not the only one
version control system (VCS) that can be used as a repository for configuration sources.
The other option is SVN, or we can even decide to create a composite environment, which
may consist of both Git and SVN repositories. The next supported backend type is based on
a tool provided by HashiCorp, Vault. It is especially useful when managing security
properties such as passwords or certificates. Let's take a closer look at each of the solutions
listed here.

Filesystem backend
I won't write a lot about this topic, because it has already been discussed in the previous
examples. All of them have shown how to store property sources in the classpath. There is
also the ability to load them from disk. By default, the Spring Cloud Config Server tries to
locate files inside an application's working directory or the config subdirectory at this
location. We can override the default location with the
spring.cloud.config.server.native.searchLocations property. The search
location path may contain placeholders for application, profile, and label. If you
don't use any placeholders in the location path, the repository automatically appends the
label parameter as a suffix.

Distributed Configuration with Spring Cloud Config Chapter 5

[103]

As a consequence, the configuration files are loaded from each search location and a
subdirectory with the same name as the label. For example, file:/home/example/config
is the same as file:/home/example/config,file:/home/example/config/{label}.
This behavior may be disabled by setting
spring.cloud.config.server.native.addLabelLocations to false.

As I have already mentioned, a filesystem backend is not a good choice for a production
deployment. If you place property sources in a classpath inside a JAR file, every change
requires a recompilation of the application. On the other hand, using a filesystem outside of
a JAR does not need recompilation, but this approach may be troublesome if you have more
than one instance of a config service working in a high availability mode. In that case, share
the filesystem across all of the instances or hold a copy of all of the property sources per
running instance. The Git backend is free from such disadvantages, and that's why it is
recommended for production use.

Git backend
The Git version control system has some features that make it very useful as a repository for
property sources. It allows you to easily manage and audit changes. By using well-known
VCS mechanisms such as commit, revert, and branching, we can perform important
operations a lot easier than in a filesystem approach. This type of backend also has another
two key advantages. It forces a separation between the Config Server source code and the
property files repository. If you take a look one more time at the previous examples, you
will see that the property files were stored together with the application source code.
Probably some of you would say that even if we used a filesystem backend, we can store
the whole configuration as a separate project on Git and upload it to a remote server on
demand. Of course, you would be right. But when using a Git backend with the Spring
Cloud Config, you have those mechanisms available out of the box. In addition, it resolves
the problems related to running multiple instances of the server. If you use a remote Git
server, the changes may be easily shared across all of the running instances.

Distributed Configuration with Spring Cloud Config Chapter 5

[104]

Different protocols
To set the location of the Git repository for the application, we should use
the spring.cloud.config.server.git.uri property in application.yml. If you are
familiar with Git, you well know that cloning may be realized using file, http/https, and ssh
protocols. The local repository access allows you to get started quickly without a remote
server. It is configured with file, prefix, for example,
spring.cloud.config.server.git.uri=file:/home/git/config-repo. For more
advanced usage when running Config Server in the high availability mode, you should use
the remote protocols SSH or HTTPS. In this case, Spring Cloud Config clones a remote
repository and then bases it on the local working copy as a cache.

Using placeholders in URIs
All the recently listed placeholders, application, profile, and label, are also supported
here. We can create a single repository per application using a placeholder as
in https://github.com/piomin/{application}, or even per
profile, https://github.com/piomin/{profile}. This type of backend implementation
maps the label parameter of the HTTP resource to a Git label, which may refer to commit
ID, branch, or tag name. The most appropriate way to discover interesting features for us is
obviously through an example. Let's begin by creating a Git repository dedicated to storing
the application's property sources.

Building a server application
I created an example configuration repository, which is available on GitHub here:

https://github.com/ piomin/ sample- spring- cloud- config- repo. git.

I placed all of the property sources used in the first example in this chapter, which
illustrated native profile support for client applications running in different discovery
zones. Now, our repository holds the files visible in this list:

https://github.com/piomin/sample-spring-cloud-config-repo.git
https://github.com/piomin/sample-spring-cloud-config-repo.git
https://github.com/piomin/sample-spring-cloud-config-repo.git
https://github.com/piomin/sample-spring-cloud-config-repo.git
https://github.com/piomin/sample-spring-cloud-config-repo.git
https://github.com/piomin/sample-spring-cloud-config-repo.git
https://github.com/piomin/sample-spring-cloud-config-repo.git
https://github.com/piomin/sample-spring-cloud-config-repo.git
https://github.com/piomin/sample-spring-cloud-config-repo.git
https://github.com/piomin/sample-spring-cloud-config-repo.git
https://github.com/piomin/sample-spring-cloud-config-repo.git
https://github.com/piomin/sample-spring-cloud-config-repo.git
https://github.com/piomin/sample-spring-cloud-config-repo.git
https://github.com/piomin/sample-spring-cloud-config-repo.git
https://github.com/piomin/sample-spring-cloud-config-repo.git
https://github.com/piomin/sample-spring-cloud-config-repo.git
https://github.com/piomin/sample-spring-cloud-config-repo.git
https://github.com/piomin/sample-spring-cloud-config-repo.git
https://github.com/piomin/sample-spring-cloud-config-repo.git
https://github.com/piomin/sample-spring-cloud-config-repo.git
https://github.com/piomin/sample-spring-cloud-config-repo.git

Distributed Configuration with Spring Cloud Config Chapter 5

[105]

The Spring Cloud Config Server by default tries to clone a repository after the first HTTP
resource call. If you would like to force cloning it after startup, you should set
the cloneOnStart property to true. Beyond this, it is required to set the repository
connection settings and the account authentication credentials:

spring:
 application:
 name: config-server
 cloud:
 config:
 server:
 git:
 uri: https://github.com/piomin/sample-spring-cloud-config-repo.git
 username: ${github.username}
 password: ${github.password}
 cloneOnStart: true

Distributed Configuration with Spring Cloud Config Chapter 5

[106]

After running the server, we can call the endpoints known from the previous exercises, for
example, http://localhost:8889/client-service/zone1
or http://localhost:8889/client-service-zone2.yml. The result would be the
same as for the earlier tests; the only difference is in the data source. Now, let's perform
another exercise. As you probably remember, we had to change the client's properties a
little when we created the example with discovery first bootstrap with the native profile
enabled. Because right now we are using a Git backend, we can develop a smarter solution
for that case. In the current approach, we would create discovery branch (https:/ /
github.com/piomin/ sample- spring- cloud- config- repo/ tree/ discovery) at our
configuration repository on GitHub, and we would place the files dedicated to the
application illustrating the discovery first bootstrap mechanism. If you call the Config
Server endpoints with the label parameter set to discovery, you will fetch data from our
new branch. Try to call http://localhost:8889/client-service/zone1/discovery
and/or http://localhost:8889/discovery/client-service-zone2.yml and check
the result.

Let's consider another situation. I changed the server port for the third instance of client-
service, but for some reason I would like to move back to the previous value. Do I have to
change and commit client-service-zone3.yml with the previous port value? No, all I
have to do is to pass the commit ID as a label parameter while calling the HTTP API
resource. The change performed is illustrated in the following screenshot:

If I invoke the API endpoint with the parent commit ID instead of branch name, the older
port number would be returned as a response. Here's the result of
calling http://localhost:8889/e546dd6/client-service-zone3.yml, where
e546dd6 is the previous commit ID:

eureka:
 client:
 serviceUrl:
 defaultZone: http://localhost:8761/eureka/
 instance:
 metadataMap:

https://github.com/piomin/sample-spring-cloud-config-repo/tree/discovery
https://github.com/piomin/sample-spring-cloud-config-repo/tree/discovery
https://github.com/piomin/sample-spring-cloud-config-repo/tree/discovery
https://github.com/piomin/sample-spring-cloud-config-repo/tree/discovery
https://github.com/piomin/sample-spring-cloud-config-repo/tree/discovery
https://github.com/piomin/sample-spring-cloud-config-repo/tree/discovery
https://github.com/piomin/sample-spring-cloud-config-repo/tree/discovery
https://github.com/piomin/sample-spring-cloud-config-repo/tree/discovery
https://github.com/piomin/sample-spring-cloud-config-repo/tree/discovery
https://github.com/piomin/sample-spring-cloud-config-repo/tree/discovery
https://github.com/piomin/sample-spring-cloud-config-repo/tree/discovery
https://github.com/piomin/sample-spring-cloud-config-repo/tree/discovery
https://github.com/piomin/sample-spring-cloud-config-repo/tree/discovery
https://github.com/piomin/sample-spring-cloud-config-repo/tree/discovery
https://github.com/piomin/sample-spring-cloud-config-repo/tree/discovery
https://github.com/piomin/sample-spring-cloud-config-repo/tree/discovery
https://github.com/piomin/sample-spring-cloud-config-repo/tree/discovery
https://github.com/piomin/sample-spring-cloud-config-repo/tree/discovery
https://github.com/piomin/sample-spring-cloud-config-repo/tree/discovery
https://github.com/piomin/sample-spring-cloud-config-repo/tree/discovery
https://github.com/piomin/sample-spring-cloud-config-repo/tree/discovery
https://github.com/piomin/sample-spring-cloud-config-repo/tree/discovery

Distributed Configuration with Spring Cloud Config Chapter 5

[107]

 zone: zone3
server:
 port: 8083

Client-side configuration
While building the server side with a Git backend, I have only shown you examples of
HTTP resource calls. Here's the example configuration for the client's application. Instead
of setting the profile property inside bootstrap.yml, we may also pass it in
the spring.profiles.active running parameter. This configuration makes the client
fetch properties from the discovery branch. We may also decide to switch to a certain
commit ID by setting it in the label property, as I have already mentioned:

spring:
 application:
 name: client-service
 cloud:
 config:
 uri: http://localhost:8889
 profile: zone1
 label: discovery
label: e546dd6 // uncomment for rollback

Multiple repositories
Sometimes, you may need to configure multiple repositories for a single Config Server. I
can imagine the situation that you would have to separate the business configuration from a
typical technical configuration. This is absolutely possible:

spring:
 cloud:
 config:
 server:
 git:
 uri:
https://github.com/piomin/spring-cloud-config-repo/config-repo
 repos:
 simple: https://github.com/simple/config-repo
 special:
 pattern: special*/dev*,*special*/dev*
 uri: https://github.com/special/config-repo
 local:
 pattern: local*
 uri: file:/home/config/config-repo

Distributed Configuration with Spring Cloud Config Chapter 5

[108]

Vault backend
I have already mentioned Vault as a tool for securely accessing secrets through a unified
interface. In order to enable the Config Server to use that type of backend, you must run it
with the Vault profile --spring.profiles.active=vault. Of course, before running the
Config Server you need to install and launch the Vault instance. I suggest you use Docker
for this. I know that this is our first contact with Docker in this book, and not everyone has
knowledge of that tool. I have provided a short introduction to Docker, its basic commands,
and use cases in Chapter 14, Docker Support. So, if this is your first contact with that
technology, please first take a look at that introduction. For those of you who are familiar
with Docker, here's the command for running a Vault container in development mode. We
may override the default listen address with the VAULT_DEV_LISTEN_ADDRESS parameter
or the ID of the initial generated root token with the VAULT_DEV_ROOT_TOKEN_ID
parameter:

docker run --cap-add=IPC_LOCK -d --name=vault -e
'VAULT_DEV_ROOT_TOKEN_ID=client' -p 8200:8200 vault

Getting started with Vault
Vault provides a command line interface, which may be used for adding new values to the
server and reading them from the server. Examples of calling those commands are shown
here. However, we have run Vault as a Docker container, so the most convenient way to
manage the secrets is through the HTTP API:

$ vault write secret/hello value=world
$ vault read secret/hello

The HTTP API is available for our instance of Vault under the
http://192.168.99.100:8200/v1/secret address. When calling every method of that
API, you need to pass a token as the request header X-Vault-Token. Because we set that
value in the VAULT_DEV_ROOT_TOKEN_ID environment parameter while launching a
Docker container, it is equal to client. Otherwise, it would be automatically generated
during startup and may be read from logs by invoking the command docker logs vault.
To start working with Vault, we in fact need to be aware of two HTTP methods—POST and
GET. When calling the POST method, we may define the list of secrets that should be added
to the server. The parameters passed in the curl command shown here are created using
the kv backend, which acts like a key/value store:

$ curl -H "X-Vault-Token: client" -H "Content-Type: application/json" -X
POST -d '{"server.port":8081,"sample.string.property": "Client
App","sample.int.property": 1}'

Distributed Configuration with Spring Cloud Config Chapter 5

[109]

http://192.168.99.100:8200/v1/secret/client-service

The newly added values may be read from the server by using the GET method:

$ curl -H "X-Vault-Token: client" -X GET
http://192.168.99.100:8200/v1/secret/client-service

Integration with Spring Cloud Config
As I have mentioned before, we have to run the Spring Cloud Config Server with the --
spring.profiles.active=vault parameter to enable Vault as a backend store. To
override the default auto configured settings, we should define the properties under
the spring.cloud.config.server.vault.* key. The current configuration for our
example application is shown here. An example application is available on GitHub; you
need to switch to the config_vault branch (https:/ /github. com/ piomin/ sample- spring-
cloud-netflix/tree/ config_ vault) to access it:

spring:
 application:
 name: config-server
 cloud:
 config:
 server:
 vault:
 host: 192.168.99.100
 port: 8200

Now, you may call the endpoint exposed by the Config Server. You have to pass the token
in the request header, but this time its name is X-Config-Token:

$ curl -X "GET" "http://localhost:8889/client-service/default" -H "X-
Config-Token: client"

https://github.com/piomin/sample-spring-cloud-netflix/tree/config_vault
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_vault
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_vault
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_vault
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_vault
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_vault
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_vault
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_vault
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_vault
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_vault
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_vault
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_vault
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_vault
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_vault
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_vault
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_vault
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_vault
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_vault
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_vault
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_vault
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_vault
https://github.com/piomin/sample-spring-cloud-netflix/tree/config_vault

Distributed Configuration with Spring Cloud Config Chapter 5

[110]

The response should be the same as what is shown next. These properties are the default for
all of the profiles of the client application. You may also add specific settings for the selected
profile by calling the Vault HTTP API method with the profile name after a comma
character, like
this, http://192.168.99.100:8200/v1/secret/client-service,zone1. If such a
profile name is included in the calling path, the properties for both the default and zone1
profiles are returned in the response:

{
 "name":"client-service",
 "profiles":["default"],
 "label":null,
 "version":null,
 "state":null,
 "propertySources":[{
 "name":"vault:client-service",
 "source":{
 "sample.int.property":1,
 "sample.string.property":"Client App",
 "server.port":8081
 }
 }]
}

Client-side configuration
When using Vault as a backend to your Config Server, the client will need to pass a token
for the server to be able to retrieve values from Vault. This token should be provided in the
client configuration settings with the spring.cloud.config.token property in
the bootstrap.yml file:

spring:
 application:
 name: client-service
 cloud:
 config:
 uri: http://localhost:8889
 token: client

Distributed Configuration with Spring Cloud Config Chapter 5

[111]

Additional features
Let's take a look at some other useful features of the Spring Cloud Config.

Fail on start and retry
Sometimes it doesn't make any sense to launch the application if the Config Server is
unavailable. In this case, we would like to halt a client with an exception. To achieve this,
we have to set the bootstrap configuration property spring.cloud.config.failFast to
true. Such a radical solution is not always the desired behavior. If a Config Server is
unreachable only occasionally, the better approach would be to keep trying to reconnect
until it succeeds. The spring.cloud.config.failFast property still has to be equal to
true, but we would also need to add the spring-retry library and spring-boot-
starter-aop to the application classpath. The default behavior assumes to retry six times
with an initial backoff interval of 1000 milliseconds. You may override these settings by
using the spring.cloud.config.retry.* configuration properties.

Secure client
The same as for the service discovery, we may secure the Config Server with basic
authentication. It can be easily enabled on the server side with Spring Security. In that case,
all the client needs to set is the username and password in the bootstrap.yml file:

spring:
 cloud:
 config:
 uri: https://localhost:8889
 username: user
 password: secret

Reload configuration automatically
We have already discussed the most important features of Spring Cloud Config. At that
point, we implemented examples illustrating how to use different backend storage as a
repository. But no matter whether we decided to choose filesystem, Git, or Vault, our client-
side application needed to restart to be able to fetch the newest configuration from the
server. However, sometimes this is not an optimal solution, especially if we have many
microservices running and some of them use the same generic configuration.

Distributed Configuration with Spring Cloud Config Chapter 5

[112]

Solution architecture
Even if we created a dedicated property file per single application, an opportunity
to dynamically reload it without restart could be very helpful. As you may have deduced,
such a solution is available for Spring Boot and therefore for Spring Cloud. In Chapter 4,
Service Discovery while describing deregistration from the service discovery server, I
introduced an endpoint, /shutdown, which may be used for gracefully shutting down.
There is also an endpoint available for Spring context restart, which works in a similar way
to that for shutdown.

An endpoint on the client side is just one component of the much larger system that needs
to be included to enable push notifications for the Spring Cloud Config. The most popular
source code repository providers, such as GitHub, GitLab, and Bitbucket, are able to send
notifications about changes in a repository by providing a WebHook mechanism. We may
configure the WebHook using the provider's web dashboard as a URL and a list of selected
event types. Such a provider will call the POST method defined in the WebHook with a
body containing a list of commits. It is required to include a Spring Cloud Bus dependency
in the project to enable the monitor endpoint on the Config Server side. When this endpoint
is invoked as a result of the WebHook activation, a Config Server prepares and sends an
event with a list of property sources that has been modified by the last commit. That event
is sent to a message broker. The Spring Cloud Bus provides implementations for RabbitMQ
and Apache Kafka. The first may be enabled for the project by including the spring-
cloud-starter-bus-amqp dependency, and the second by including the spring-cloud-
starter-bus-kafka dependency. Those dependencies should also be declared for a client
application to enable receiving messages from a message broker. We should also enable the
dynamic refresh mechanism on the client side by annotating the selected configuration class
with @RefreshScope. An architecture of this solution is shown here:

Distributed Configuration with Spring Cloud Config Chapter 5

[113]

Reload configuration with @RefreshScope
This time we will start unusually from the client side. The example application is available
on GitHub (https:/ /github. com/ piomin/ sample- spring- cloud- config- bus. git). The
same as the previous examples, it uses a Git repository as backend storage, which is also
created on GitHub (https:/ /github. com/ piomin/ sample- spring- cloud- config- repo). I
added some new properties to the client's configuration file and committed changes to the
repository. Here's the current version of the client's configuration:

eureka:
 instance:
 metadataMap:
 zone: zone1
 client:
 serviceUrl:
 defaultZone: http://localhost:8761/eureka/
server:
 port: ${PORT:8081}
management:
 security:
 enabled: false
sample:
 string:
 property: Client App
 int:
 property: 1

I disabled security for Spring Boot Actuator endpoints by setting
management.security.enabled to false. It is required to be able to call those endpoints
without passing security credentials. I also added two test
parameters, sample.string.property and sample.int.property, to demonstrate bean
refresh mechanisms based on their values in the example. Spring Cloud provides some
additional HTTP management endpoints for the Spring Boot Actuator. One of them is
/refresh, which is responsible for reloading the bootstrap context and refreshing beans
annotated with @RefreshScope. This is an HTTP POST method, which may be called
on our client's instance at http://localhost:8081/refresh. Before testing that
functionality, we need to have the discovery and Config Servers running. The client
application should be launched with the --spring.profiles.active=zone1 parameter.
Here's the class where the test properties sample.string.property and
sample.int.property are injected into the fields:

@Component
@RefreshScope
public class ClientConfiguration {

https://github.com/piomin/sample-spring-cloud-config-bus.git
https://github.com/piomin/sample-spring-cloud-config-bus.git
https://github.com/piomin/sample-spring-cloud-config-bus.git
https://github.com/piomin/sample-spring-cloud-config-bus.git
https://github.com/piomin/sample-spring-cloud-config-bus.git
https://github.com/piomin/sample-spring-cloud-config-bus.git
https://github.com/piomin/sample-spring-cloud-config-bus.git
https://github.com/piomin/sample-spring-cloud-config-bus.git
https://github.com/piomin/sample-spring-cloud-config-bus.git
https://github.com/piomin/sample-spring-cloud-config-bus.git
https://github.com/piomin/sample-spring-cloud-config-bus.git
https://github.com/piomin/sample-spring-cloud-config-bus.git
https://github.com/piomin/sample-spring-cloud-config-bus.git
https://github.com/piomin/sample-spring-cloud-config-bus.git
https://github.com/piomin/sample-spring-cloud-config-bus.git
https://github.com/piomin/sample-spring-cloud-config-bus.git
https://github.com/piomin/sample-spring-cloud-config-bus.git
https://github.com/piomin/sample-spring-cloud-config-bus.git
https://github.com/piomin/sample-spring-cloud-config-bus.git
https://github.com/piomin/sample-spring-cloud-config-bus.git
https://github.com/piomin/sample-spring-cloud-config-bus.git
https://github.com/piomin/sample-spring-cloud-config-repo
https://github.com/piomin/sample-spring-cloud-config-repo
https://github.com/piomin/sample-spring-cloud-config-repo
https://github.com/piomin/sample-spring-cloud-config-repo
https://github.com/piomin/sample-spring-cloud-config-repo
https://github.com/piomin/sample-spring-cloud-config-repo
https://github.com/piomin/sample-spring-cloud-config-repo
https://github.com/piomin/sample-spring-cloud-config-repo
https://github.com/piomin/sample-spring-cloud-config-repo
https://github.com/piomin/sample-spring-cloud-config-repo
https://github.com/piomin/sample-spring-cloud-config-repo
https://github.com/piomin/sample-spring-cloud-config-repo
https://github.com/piomin/sample-spring-cloud-config-repo
https://github.com/piomin/sample-spring-cloud-config-repo
https://github.com/piomin/sample-spring-cloud-config-repo
https://github.com/piomin/sample-spring-cloud-config-repo
https://github.com/piomin/sample-spring-cloud-config-repo
https://github.com/piomin/sample-spring-cloud-config-repo
https://github.com/piomin/sample-spring-cloud-config-repo

Distributed Configuration with Spring Cloud Config Chapter 5

[114]

 @Value("${sample.string.property}")
 private String sampleStringProperty;
 @Value("${sample.int.property}")
 private int sampleIntProperty;

 public String showProperties() {
 return String.format("Hello from %s %d", sampleStringProperty,
sampleIntProperty);
 }

}

That bean is injected into the ClientController class and invoked inside the ping
method, which is exposed at http://localhost:8081/ping:

@RestController
public class ClientController {

 @Autowired
 private ClientConfiguration conf;

 @GetMapping("/ping")
 public String ping() {
 return conf.showProperties();
 }

}

Now, let's change the values for test properties in client-service-zone1.yml and
commit them. If you call the Config Server HTTP endpoint /client-service/zone1,
you'll see the newest values returned as a response. But when you call the /ping method
exposed on the client application, you will still see older values visible on the left side of the
following screen. Why? Although the Config Server automatically detects repository
changes, the client application is not able to automatically refresh without any trigger. It
requires a restart to read the newest settings, or we may force a configuration reload by
invoking the previously described /refresh method:

Distributed Configuration with Spring Cloud Config Chapter 5

[115]

After calling the /refresh endpoint on the client application, you will see in the log files
that the configuration has been reloaded. Now, if you invoke /ping one more time, the
newest property values are returned in the response. That example illustrates how a hot
reload works for a Spring Cloud application, but it is obviously not our target solution. The
next step is to enable communication with the message broker:

Consuming events from a message broker
I have already mentioned that we may choose between two message brokers that are
integrated with the Spring Cloud Bus. In this example, I'm going to show you how to run
and use RabbitMQ. Let me just say a few words about that solution, because we are dealing
with it for the first time in the book. RabbitMQ has grown into the most popular message
broker software. It is written in Erlang and implements Advanced Message Queueing
Protocol (AMQP). It is easy to use and configure, even if we are talking about such
mechanisms as clustering or high availability.

Distributed Configuration with Spring Cloud Config Chapter 5

[116]

The most convenient way to run RabbitMQ on your machine is through a Docker container.
Two ports have been exposed outside the container. The first of them is used for client
connections (5672) and the second is dedicated to the management dashboard (15672). I
also ran the image with the management tag to enable the UI dashboard, which is not
available in the default version:

docker run -d --name rabbit -p 5672:5672 -p 15672:15672 rabbitmq:management

To enable support for the RabbitMQ broker for our example client application, we should
include the following dependency in pom.xml:

 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-bus-amqp</artifactId>
 </dependency>

That library contains auto-configuration settings. Because I run Docker on Windows, I need
to override some default properties. The full service configuration is stored inside a Git
repository, so the changes affect only remote files. We should add the following parameters
to the previously used version of the client's property source:

spring:
 rabbitmq:
 host: 192.168.99.100
 port: 5672
 username: guest
 password: guest

If you run the client application, an exchange and a queue would be automatically created
in RabbitMQ. You can easily check this out by logging in to the management dashboard
available at http://192.168.99.100:15672. The default username and password are
guest/guest. Here's the screen from my RabbitMQ instance. There is one exchange with
the name SpringCloudBus created, with two bindings to the client queue and Config
Server queue (I have already run it with the changes described in the next section). At this
stage, I wouldn't like to go into the detail about RabbitMQ and its architecture. A good
place for such a discussion would be in the Chapter 11, Message-Driven Microservices on the
Spring Cloud Stream project:

Distributed Configuration with Spring Cloud Config Chapter 5

[117]

Distributed Configuration with Spring Cloud Config Chapter 5

[118]

Monitoring repository changes on a Config
Server
Spring Cloud Config Server has to perform two tasks in the previously described process.
First of all, it has to detect changes in a property file stored in a Git repository. This may be
achieved by exposing a special endpoint, which would be called through a WebHook by the
repository provider. The second step is to prepare and send a
RefreshRemoteApplicationEvent targeted at the applications that might have been
changed. This in turn requires us to establish connection with a message broker. The
spring-cloud-config-monitor library is responsible for enabling the /monitor
endpoint. To enable support for the RabbitMQ broker, we should include the same starter
artifact as for the client application:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-config-monitor</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-bus-amqp</artifactId>
</dependency>

That's not all. The configuration monitor should also be activated in application.yml.
Because each repository provider has a dedicated implementation in Spring Cloud, it is
necessary to select which of them should be enabled:

spring:
 application:
 name: config-server
 cloud:
 config:
 server:
 monitor:
 github:
 enabled: true

Distributed Configuration with Spring Cloud Config Chapter 5

[119]

The change detection mechanism may be customized. By default, it detects changes in files
that match the application name. To override that behavior, you need to provide a custom
implementation of PropertyPathNotificationExtractor. It accepts the request
headers and body parameters, and returns a list of file paths that have been changed. To
support notifications from GitHub, we may
use GithubPropertyPathNotificationExtractor provided by spring-cloud-
config-monitor:

@Bean
public GithubPropertyPathNotificationExtractor
githubPropertyPathNotificationExtractor() {
 return new GithubPropertyPathNotificationExtractor();
}

Simulating change events manually
A monitor endpoint can be invoked by a WebHook configured on a Git repository provider
such as GitHub, Bitbucket, or GitLab. Testing such a feature with the application running
on localhost is troublesome. It turns out that we may easily simulate such a WebHook
activation by calling POST /monitor manually. For example, the Github command should
have the header X-Github-Event included in the request. The JSON body with changes in
the property files should look as shown in this cURL request:

$ curl -H "X-Github-Event: push" -H "Content-Type: application/json" -X
POST -d '{"commits": [{"modified": ["client-service-zone1.yml"]}]}'
http://localhost:8889/monitor

Now, let's change and commit a value of one property in the client-service-zone1.yml
file, for example, sample.int.property. Then, we may call the POST /monitor method
with the parameters shown in the previous example command. If you configured
everything according to my descriptions, you should see the following log line on your
client application side, Received remote refresh request. Keys refreshed
[sample.int.property]. If you call the /ping endpoint exposed by the client
microservice, it should return the newest value of the changed property.

Distributed Configuration with Spring Cloud Config Chapter 5

[120]

Testing locally with a GitLab instance
For those who do not prefer simulating events, I'm proposing a more practical exercise.
However, I would point out that it requires not only development skills from you, but also
a basic knowledge of Continuous Integration tools. We will start by running a GitLab
instance locally using its Docker image. GitLab is an open sourced web-based Git repository
manager with wiki and issue tracking features. It is very similar to such tools as GitHub or
Bitbucket, but may be easily deployed on your local machine:

docker run -d --name gitlab -p 10443:443 -p 10080:80 -p 10022:22
gitlab/gitlab-ce:latest

A web dashboard is available at http://192.168.99.100:10080. The first step is to
create an admin user and then log in using the credentials provided. I won't go into the
details of GitLab. It has a user-friendly and intuitive GUI interface, so I'm pretty sure you
will able to handle it without too much effort. Anyway, going forward, I created a project in
GitLab with the name sample-spring-cloud-config-repo. It may be cloned from
http://192.168.99.100:10080/root/sample-spring-cloud-config-repo.git. I
committed there the same set of configuration files, which is available in our example
repository on GitHub. The next step is to define a WebHook that invokes the Config
Server's /monitor endpoint with a push notification. To add a new WebHook for the
project, you need to go to the Settings | Integration section and then fill in the URL field
with the server address (use your hostname instead of localhost). Leave the Push
events checkbox selected:

Distributed Configuration with Spring Cloud Config Chapter 5

[121]

In comparison with the Config Server implementation with GitHub as a backend repository
provider, we need to change the enabled monitor type in application.yml and of course
provide a different address:

spring:
 application:
 name: config-server
 cloud:
 config:
 server:
 monitor:
 gitlab:
 enabled: true
 git:
 uri:
http://192.168.99.100:10080/root/sample-spring-cloud-config-repo.git
 username: root
 password: root123
 cloneOnStart: true

We should also register another bean implementing
PropertyPathNotificationExtractor:

@Bean
public GitlabPropertyPathNotificationExtractor
gitlabPropertyPathNotificationExtractor() {
 return new GitlabPropertyPathNotificationExtractor();
}

Finally, you may make and push some changes in the configuration files. The WebHook
should be activated and the client application's configuration should be refreshed. That is
the last example in this chapter; we may proceed to the conclusion.

Distributed Configuration with Spring Cloud Config Chapter 5

[122]

Summary
In this chapter, I have described the most important features of a Spring Cloud Config
project. The same as for service discovery, we started from the basics, a simple use case on
the client and server sides. We discussed the different backend repository types for a Config
Server. I implemented the examples illustrating how to use filesystem, Git, and even third-
party tools such as Vault as a repository for your property files. I put particular focus on
interoperability with other components, such as service discovery or multiple instances of
microservices within a larger system. Finally, I showed you how to reload an application's
configuration without restart, based on WebHooks and a message broker. To conclude,
after reading this chapter you should be able to use Spring Cloud Config as one element of
your microservice-based architecture and take an advantage of its main features.

After we have discussed an implemetation of service discovery and configuration server
with Spring Cloud, we may proceed to an inter-service communication. In the next two
chapters we will analyze basic and some more advanced samples that illustrate
synchronous communication between a few microservices.

6
Communication Between

Microservices
In the last two chapters, we discussed details related to very important elements in
microservice architecture—service discovery and the configuration server. However, it is
worth remembering that the main reason for their existence in the system is just to help in
the management of the whole set of independent, standalone applications. One aspect of
this management is communication between microservices. Here, a particularly important
role is played by service discovery, which is responsible for storing and serving the network
locations of all available applications. Of course, we may imagine our system architecture
without a service discovery server. Such an example will also be presented in this chapter.

However, the most important components taking part in an inter-service communication
are HTTP clients and client-side load balancers. In this chapter, we are going to focus just on
them.

The topics we will cover in this chapter include:

Using Spring RestTemplate for inter-service communication with and without
service discovery
Customizing the Ribbon client
Description of the main features provided by the Feign client, such as integration
with the Ribbon client, service discovery, inheritance, and zoning support

Communication Between Microservices Chapter 6

[124]

Different styles of communication
We can identify different styles of communication between microservices. It is possible to
classify them into two dimensions. The first of them is a division into synchronous and
asynchronous communication protocols. The key point of asynchronous communication is
that the client should not have blocked a thread while waiting for a response. The most
popular protocol for that type of communication is AMQP, and we already had the
opportunity to run an example of that protocol usage at the end of the previous chapter.
However, the main way of communication between services is still synchronous HTTP
protocol. We will be only talking about it in this chapter.

The second division is into different communication types based on whether there is a
single message receiver or multiple receivers. In one-to-one communication, each request is
processed by exactly one service instance. In one-to-many communication, each request
may be processed by many different services. This will be discussed in Chapter 11, Message
Driven Microservices.

Synchronous communication with Spring
Cloud
Spring Cloud provides a set of components to help you in implementing communication
between microservices. The first of them is RestTemplate, which is always used for
consuming RESTful web services by a client. It is included in a Spring Web project. To use it
effectively in a microservices environment, it should be annotated with the @LoadBalanced
qualifier. Thanks to that, it will be automatically configured to use Netflix Ribbon and it will
be able to take an advantage of service discovery by using service names instead of IP
addresses. Ribbon is a client-side load balancer, which provides a simple interface allowing
control over the behavior of HTTP and TCP clients. It can be easily integrated with other
Spring Cloud components, such as service discovery or circuit breaker, and, furthermore, it
is fully transparent to a developer. The next available component is Feign, a declarative
REST client also from the Netflix OSS stack. Feign already uses Ribbon for load balancing
and fetching data from service discovery. It may be easily declared on the interface by
annotating a method with @FeignClient. In this chapter, we will take a closer look at all
the components listed here.

Communication Between Microservices Chapter 6

[125]

Load balancing with Ribbon
The main concept around Ribbon is a named client. That's why we may call other services
using their names instead of the full address with hostname and port, without connecting to
a service discovery. In that case, the list of addresses should be provided in the Ribbon
configuration settings inside the application.yml file.

Enabling communication between microservices
using the Ribbon client
Let's proceed with the example. It consists of four independent microservices. Some of them
may call endpoints exposed by the others. The application source code is available here:

https://github.com/ piomin/ sample- spring- cloud- comm. git.

In this example, we will try to develop a simple order system where customers may buy
products. If a customer decides to confirm a selected list of products to buy, the POST
request is sent to the order-service. It is processed by the Order
prepare(@RequestBody Order order) {...} method inside REST controller. This
method is responsible for order preparation. First, it calculates the final price, considering
the price of each product from the list, customer order history, and their category in the
system by calling the proper API method from the customer-service. Then, it verifies the
customer's account balance is high enough to execute the order by calling the account
service, and, finally, it returns the calculated price. If the customer confirms the action, the
PUT /{id} method is called. The request is processed by the method Order
accept(@PathVariable Long id) {...} inside REST controller. It changes the order
status and withdraws money from the customer's account. The system architecture is
broken down into the individual microservices as shown here:

https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git

Communication Between Microservices Chapter 6

[126]

Static load balancing configuration
Our order-service has to communicate with all other microservices from the example to
perform the required operations. So, we need to define three different Ribbon clients with
network addresses set using the ribbon.listOfServers property. The second important
thing in the example is to disable discovery services in Eureka, which are enabled by
default. Here are all the defined properties for order-service inside its
application.yml file:

server:
 port: 8090

account-service:
 ribbon:
 eureka:
 enabled: false
 listOfServers: localhost:8091
customer-service:
 ribbon:
 eureka:
 enabled: false
 listOfServers: localhost:8092
product-service:
 ribbon:
 eureka:
 enabled: false
 listOfServers: localhost:8093

We should include the following dependencies in the project to use RestTemplate in
conjunction with the Ribbon client:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-ribbon</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
</dependency>

Communication Between Microservices Chapter 6

[127]

Then, we should enable the Ribbon client by declaring a list of the names configured in
application.yml. To achieve this, you may annotate the main class or any other Spring
configuration class with @RibbonClients. You should also register the RestTemplate
bean and annotate it with @LoadBalanced to enable interaction with Spring Cloud
components:

@SpringBootApplication
@RibbonClients({
 @RibbonClient(name = "account-service"),
 @RibbonClient(name = "customer-service"),
 @RibbonClient(name = "product-service")
})
public class OrderApplication {

 @LoadBalanced
 @Bean
 RestTemplate restTemplate() {
 return new RestTemplate();
 }

 public static void main(String[] args) {
 new
SpringApplicationBuilder(OrderApplication.class).web(true).run(args);
 }
 // ...
}

Calling other services
Finally, we may begin to implement the OrderController responsible for serving HTTP
methods exposed outside a microservice. It has the RestTemplate bean injected to be able
to call other HTTP endpoints. You may see in the following source code fragment that uses
the Ribbon client name configured in application.yml instead of IP address or hostname.
Using the same RestTemplate bean, we can communicate with three different
microservices. Let's just take a second here to discuss the methods available inside the
controller. In the first of the implemented methods, we call the GET endpoint from
product-service, which returns a list with details of selected products. Then, we invoke
the GET /withAccounts/{id} method exposed by customer-service. It returns the
customer details with the list of their accounts.

Communication Between Microservices Chapter 6

[128]

Now, we have all the information needed to calculate the final order price and validate the
customer has sufficient funds in their main account. The PUT method calls the endpoint
from account-service to withdraw money from the customer account. I have spent quite
a bit of time discussing methods available in OrderController. However, I think that it
was needed because the same example will be used to show the main features of Spring
Cloud components that provide mechanisms for synchronous communication between
microservices:

@RestController
public class OrderController {

 @Autowired
 OrderRepository repository;
 @Autowired
 RestTemplate template;

 @PostMapping
 public Order prepare(@RequestBody Order order) {
 int price = 0;
 Product[] products =
template.postForObject("http://product-service/ids", order.getProductIds(),
Product[].class);
 Customer customer =
template.getForObject("http://customer-service/withAccounts/{id}",
Customer.class, order.getCustomerId());
 for (Product product : products)
 price += product.getPrice();
 final int priceDiscounted = priceDiscount(price, customer);
 Optional<Account> account = customer.getAccounts().stream().filter(a
-> (a.getBalance() > priceDiscounted)).findFirst();
 if (account.isPresent()) {
 order.setAccountId(account.get().getId());
 order.setStatus(OrderStatus.ACCEPTED);
 order.setPrice(priceDiscounted);
 } else {
 order.setStatus(OrderStatus.REJECTED);
 }
 return repository.add(order);
 }

 @PutMapping("/{id}")
 public Order accept(@PathVariable Long id) {
 final Order order = repository.findById(id);
 template.put("http://account-service/withdraw/{id}/{amount}", null,
order.getAccountId(), order.getPrice());
 order.setStatus(OrderStatus.DONE);

Communication Between Microservices Chapter 6

[129]

 repository.update(order);
 return order;
 }
 // ...
}

It is interesting to note that the GET /withAccounts/{id} method from customer-
service, which is called by order-service, also uses the Ribbon client to communicate
with another microservice, account-service. Here's the fragment from
CustomerController with the implementation of the preceding method:

@GetMapping("/withAccounts/{id}")
public Customer findByIdWithAccounts(@PathVariable("id") Long id) {
 Account[] accounts =
template.getForObject("http://account-service/customer/{customerId}",
Account[].class, id);
 Customer c = repository.findById(id);
 c.setAccounts(Arrays.stream(accounts).collect(Collectors.toList()));
 return c;
}

First, build the whole project with the Maven command mvn clean install. Then, you
may launch all the microservices in any order using the java -jar command without any
additional parameters. Optionally, you can run the application from your IDE. The test data
is prepared for every microservice on startup. There is no persistence storage, so all objects
will be removed after a restart. We can test the whole system by calling the POST method
exposed by order-service. The example request is shown here:

$ curl -d '{"productIds": [1,5],"customerId": 1,"status": "NEW"}' -H
"Content-Type: application/json" -X POST http://localhost:8090

If you try to send this request, you will able to see the following logs printed by the Ribbon
client:

DynamicServerListLoadBalancer for client customer-service initialized:
DynamicServerListLoadBalancer:{NFLoadBalancer:name=customer-service,current
list of Servers=[localhost:8092],Load balancer stats=Zone stats:
{unknown=[Zone:unknown; Instance count:1; Active connections count: 0;
Circuit breaker tripped count: 0; Active connections per server: 0.0;]
},Server stats: [[Server:localhost:8092; Zone:UNKNOWN; Total Requests:0;
Successive connection failure:0; Total blackout seconds:0; Last connection
made:Thu Jan 01 01:00:00 CET 1970; First connection made: Thu Jan 01
01:00:00 CET 1970; Active Connections:0; total failure count in last (1000)
msecs:0; average resp time:0.0; 90 percentile resp time:0.0; 95 percentile
resp time:0.0; min resp time:0.0; max resp time:0.0; stddev resp time:0.0]
]}ServerList:com.netflix.loadbalancer.ConfigurationBasedServerList@7f1e23f6

Communication Between Microservices Chapter 6

[130]

The approach described in this section has one big disadvantage, which makes it not very
usable in a system composed of several microservices. The problem is more severe if you
have auto-scaling. It is easy to see that all the network addresses of services have be
managed manually. Of course, we may move the configuration settings from the
application.yml file inside every fat JAR to the configuration server. However, it does
not change the fact that management of a large number of interactions will still be
troublesome. Such a problem would be easily solved by the ability for the client-side load
balancer and service discovery to interact.

Using RestTemplate together with service
discovery
In fact, an integration with service discovery is the default behavior of the Ribbon client. As
you probably remember, we disabled Eureka for the client-side balancer by setting
the ribbon.eureka.enabled property to false. The existence of service discovery
simplifies a configuration of Spring Cloud components during inter-service communication,
examples in this section.

Building example application
The system architecture is the same as for the previous example. To view the source code
for the current exercise, you have to switch to the ribbon_with_discovery branch
(https://github.com/ piomin/ shown here- spring- cloud- comm/ tree/ ribbon_ with_
discovery). The first thing you will see there is a new module, discovery-service. We
have discussed in detail almost all aspects related to Eureka in Chapter 4, Service
Discovery, so you should not have any problems with launching it. We run a single
standalone Eureka server with really basic settings. It is available on the default port, 8761.

In comparison with the previous example, we should remove all the configuration and
annotations strictly related to the Ribbon client. In their place, the Eureka discovery client
has to be enabled with @EnableDiscoveryClient and the Eureka server address is
provided in the application.yml file. Now, the main class of order-service looks like
this:

@SpringBootApplication
@EnableDiscoveryClient
public class OrderApplication {

https://github.com/piomin/sample-spring-cloud-comm/tree/ribbon_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/ribbon_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/ribbon_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/ribbon_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/ribbon_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/ribbon_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/ribbon_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/ribbon_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/ribbon_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/ribbon_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/ribbon_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/ribbon_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/ribbon_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/ribbon_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/ribbon_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/ribbon_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/ribbon_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/ribbon_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/ribbon_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/ribbon_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/ribbon_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/ribbon_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/ribbon_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/ribbon_with_discovery

Communication Between Microservices Chapter 6

[131]

 @LoadBalanced
 @Bean
 RestTemplate restTemplate() {
 return new RestTemplate();
 }

 public static void main(String[] args) {
 new
SpringApplicationBuilder(OrderApplication.class).web(true).run(args);
 }
 // ...
}

Here's the current configuration file. I set the name of the service with the
spring.application.name property:

spring:
 application:
 name: order-service

server:
 port: ${PORT:8090}

eureka:
 client:
 serviceUrl:
 defaultZone: ${EUREKA_URL:http://localhost:8761/eureka/}

This is the same as earlier; we also launch all microservices. But, this time account-
service and product-service will be multiplied by two instances. When starting a
second instance of each service, the default server port may be overridden with the -DPORT
or -Dserver.port parameter, for example, java -jar -DPORT=9093 product-
service-1.0-SNAPSHOT.jar. All the instances have been registered in the Eureka server.
This can be easily checked out using its UI dashboard:

Communication Between Microservices Chapter 6

[132]

This is the first time in this book we have seen a practical example of load balancing. By
default, the Ribbon client distributes traffic equally among all the registered instances of the
microservice. That algorithm is called round robin. In practice, it means that the client
remembers where it forwarded the last request and then sends the current request to the
service next in the row. This approach may be overridden by the other rule I'm going to
show you in detail in the next chapter. Load balancing may also be configured for the
previous example without service discovery, by setting a comma-separated list of service
addresses in ribbon.listOfServers, for example,
ribbon.listOfServers=localhost:8093,localhost:9093. Getting back to the
example application, the requests sent by order-service will be load balanced between
two instances of account-service and product-service. This looks similar to
customer-service, which distributes traffic between two instances of account-service.
If you launch all the instances of the service visible on the Eureka dashboard in the previous
screenshot and send some test requests to order-service, you will certainly see the
following log which I have posted. I have highlighted the fragment where the Ribbon client
displays a list of addresses found for the target service:

DynamicServerListLoadBalancer for client account-service initialized:
DynamicServerListLoadBalancer:{NFLoadBalancer:name=account-service,current
list of Servers=[minkowp-l.p4.org:8091, minkowp-l.p4.org:9091],Load
balancer stats=Zone stats: {defaultzone=[Zone:defaultzone; Instance
count:2; Active connections count: 0; Circuit breaker tripped count: 0;
Active connections per server: 0.0;]
 },Server stats: [[Server:minkowp-l.p4.org:8091; Zone:defaultZone; Total
Requests:0; Successive connection failure:0; Total blackout seconds:0; Last
connection made:Thu Jan 01 01:00:00 CET 1970; First connection made: Thu
Jan 01 01:00:00 CET 1970; Active Connections:0; total failure count in last
(1000) msecs:0; average resp time:0.0; 90 percentile resp time:0.0; 95
percentile resp time:0.0; min resp time:0.0; max resp time:0.0; stddev resp
time:0.0]
 , [Server:minkowp-l.p4.org:9091; Zone:defaultZone; Total Requests:0;
Successive connection failure:0; Total blackout seconds:0; Last connection
made:Thu Jan 01 01:00:00 CET 1970; First connection made: Thu Jan 01
01:00:00 CET 1970; Active Connections:0; total failure count in last (1000)
msecs:0; average resp time:0.0; 90 percentile resp time:0.0; 95 percentile
resp time:0.0; min resp time:0.0; max resp time:0.0; stddev resp time:0.0]
]}ServerList:org.springframework.cloud.netflix.ribbon.eureka.DomainExtracti
ngServerList@3e878e67

Communication Between Microservices Chapter 6

[133]

Using Feign client
RestTemplate is a Spring component specially adapted to interact with Spring Cloud and
microservices. However, Netflix has developed their own tool that acts as a web service
client for providing out-of-the-box communication between independent REST
services. Feign client, which is in it, generally does the same as RestTemplate with
the @LoadBalanced annotation, but in a more elegant way. It is a Java to HTTP client
binder that works by processing annotations into a templatized request. When using Open
Feign client, you only have to create an interface and annotate it. It integrates with Ribbon
and Eureka to provide a load balanced HTTP client, fetching all the necessary network
addresses from service discovery. Spring Cloud adds support for Spring MVC annotations
and for using the same HTTP message converters as in Spring Web.

Support for different zones
Let me back up for a moment to the last example. I'm going to propose some changes to
complicate our system architecture a little. The current architecture is visualized in the
following diagram. The communication model between microservices is still the same, but
now we launch two instances of every microservice and divide them into two different
zones. A zoning mechanism has been already discussed in Chapter 4, Service Discovery,
when talking about service discovery with Eureka, so I assume it is well known to you. The
main purpose of this exercise is not only to show how to use Feign client, but also how a
zoning mechanism works in communication between instances of microservices. Let's start
with the basics then:

Communication Between Microservices Chapter 6

[134]

Enabling Feign for an application
To include Feign in the project, we have to add to the dependencies the spring-cloud-
starter-feign artifact or spring-cloud-starter-openfeign for Spring Cloud Netflix
in minimal version 1.4.0:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-feign</artifactId>
</dependency>

The next step is to enable Feign for the application by annotating a main or a configuration
class with @EnableFeignClients. This annotation will result in a search for all clients
implemented in the application. We may also reduce the number of client used by setting
the clients or basePackages annotation properties, for example,
@EnableFeignClients(clients = {AccountClient.class, Product.class}).
Here's the main class of the order-service application:

@SpringBootApplication
@EnableDiscoveryClient
@EnableFeignClients
public class OrderApplication {

 public static void main(String[] args) {
 new
SpringApplicationBuilder(OrderApplication.class).web(true).run(args);
 }

 @Bean
 OrderRepository repository() {
 return new OrderRepository();
 }

}

Communication Between Microservices Chapter 6

[135]

Building Feign interfaces
An approach where only an interface with some annotations has to be created to provide a
component is standard for Spring Framework. For Feign, an interface must be annotated
with @FeignClient(name = "..."). It has one required property name, which
corresponds to the invoked microservice name if service discovery is enabled. Otherwise, it
is used together with the url property, where we can set a concrete network address.
@FeignClient is not the only annotation that needs to be used here. Every method in our
client interface is associated with a specific HTTP API endpoint by marking it with
@RequestMapping or more concrete annotations, such as @GetMapping, @PostMapping,
or @PutMapping, as in this example source code fragment:

@FeignClient(name = "account-service")
public interface AccountClient {
 @PutMapping("/withdraw/{accountId}/{amount}")
 Account withdraw(@PathVariable("accountId") Long id,
@PathVariable("amount") int amount);
}

@FeignClient(name = "customer-service")
public interface CustomerClient {
 @GetMapping("/withAccounts/{customerId}")
 Customer findByIdWithAccounts(@PathVariable("customerId") Long
customerId);
}

@FeignClient(name = "product-service")
public interface ProductClient {
 @PostMapping("/ids")
 List<Product> findByIds(List<Long> ids);
}

Such components may be injected into the controller bean as they are also Spring Beans.
Then, we just have to invoke their methods. Here's the current implementation of the REST
controller in order-service:

@Autowired
OrderRepository repository;
@Autowired
AccountClient accountClient;
@Autowired
CustomerClient customerClient;
@Autowired
ProductClient productClient;

@PostMapping

Communication Between Microservices Chapter 6

[136]

public Order prepare(@RequestBody Order order) {
 int price = 0;
 List<Product> products =
productClient.findByIds(order.getProductIds());
 Customer customer =
customerClient.findByIdWithAccounts(order.getCustomerId());
 for (Product product : products)
 price += product.getPrice();
 final int priceDiscounted = priceDiscount(price, customer);
 Optional<Account> account = customer.getAccounts().stream().filter(a ->
(a.getBalance() > priceDiscounted)).findFirst();
 if (account.isPresent()) {
 order.setAccountId(account.get().getId());
 order.setStatus(OrderStatus.ACCEPTED);
 order.setPrice(priceDiscounted);
 } else {
 order.setStatus(OrderStatus.REJECTED);
 }
 return repository.add(order);
}

Launching microservices
I have changed a configuration for all the microservices in application.yml. Now, there
are two different profiles, the first used for assigning an application to zone1 and the
second for zone2. You may check out the version from the feign_with_discovery
branch (https:// github. com/ piomin/ shown here- spring- cloud- comm/ tree/ feign_ with_
discovery). Then, build the whole project using the mvn clean install command. The
application should be launched with the java -jar --
spring.profiles.active=zone[n] command, where [n] is the number of the zone.
Because you have to start many instances to perform that test, it is worth considering a limit
on heap size by setting the -Xmx parameter, for example, -Xmx128m. Here are the current
configuration settings for one of the microservices:

spring:
 application:
 name: account-service

spring:
 profiles: zone1
eureka:
 instance:
 metadataMap:

https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery

Communication Between Microservices Chapter 6

[137]

 zone: zone1
 client:
 serviceUrl:
 defaultZone: http://localhost:8761/eureka/
 preferSameZoneEureka: true
server:
 port: ${PORT:8091}

spring:
 profiles: zone2
eureka:
 instance:
 metadataMap:
 zone: zone2
 client:
 serviceUrl:
 defaultZone: http://localhost:8761/eureka/
 preferSameZoneEureka: true
server:
 port: ${PORT:9091}

We will launch one instance of every microservice per single zone. So, there are nine
running Spring Boot applications, including the service discovery server, as shown in this
screenshot:

If you send the test request to the instance of order-service running in zone1
(http://localhost:8090), all the traffic will be forwarded to the other services in that
zone, and the same for zone2 (http://localhost:9090). I have highlighted the fragment
where the Ribbon client prints a list of found addresses of the target service registered in the
current zone:

DynamicServerListLoadBalancer for client product-service initialized:
DynamicServerListLoadBalancer:{NFLoadBalancer:name=product-service,current
list of Servers=[minkowp-l.p4.org:8093],Load balancer stats=Zone stats:
{zone1=[Zone:zone1; Instance count:1; Active connections count: 0; Circuit
breaker tripped count: 0; Active connections per server: 0.0;]...

Communication Between Microservices Chapter 6

[138]

Inheritance support
You have probably noticed that the annotations inside a controller implementation and the
Feign client implementation for a REST service served by that controller are identical. We
may create an interface that contains abstract REST method definitions. That interface can
be implemented by a controller class or extended by a Feign client interface:

public interface AccountService {

 @PostMapping
 Account add(@RequestBody Account account);

 @PutMapping
 Account update(@RequestBody Account account);

 @PutMapping("/withdraw/{id}/{amount}")
 Account withdraw(@PathVariable("id") Long id, @PathVariable("amount")
int amount);

 @GetMapping("/{id}")
 Account findById(@PathVariable("id") Long id);

 @GetMapping("/customer/{customerId}")
 List<Account> findByCustomerId(@PathVariable("customerId") Long
customerId);

 @PostMapping("/ids")
 List<Account> find(@RequestBody List<Long> ids);

 @DeleteMapping("/{id}")
 void delete(@PathVariable("id") Long id);

}

Now, the controller class provides an implementation for all methods from the base
interface, but does not contain any annotations for REST mappings instead of
@RestController. Here's a fragment of the account-service controller:

@RestController
public class AccountController implements AccountService {

 @Autowired
 AccountRepository repository;

 public Account add(@RequestBody Account account) {
 return repository.add(account);
 }

Communication Between Microservices Chapter 6

[139]

 // ...
}

The Feign client interface for calling account-service does not provide any methods. It
just extends the base interface, AccountService. To see the full implementation based on
interfaces and Feign inheritance, switch to the feign_with_inheritance branch:

https://github.com/ piomin/ shown here- spring- cloud- comm/ tree/ feign_ with_
inheritance

Here's an example Feign client declaration with inheritance support. It extends the
AccountService interface, and hence handles all the methods exposed by
@RestController:

@FeignClient(name = "account-service")
public interface AccountClient extends AccountService {
}

Creating a client manually
If you are not convinced by the annotation-like style, you may always create a Feign client
manually using the Feign Builder API. Feign has several features that can be customized,
such as encoders and decoders for messages or HTTP client implementation:

AccountClient accountClient = Feign.builder().client(new OkHttpClient())
 .encoder(new JAXBEncoder())
 .decoder(new JAXBDecoder())
 .contract(new JAXRSContract())
 .requestInterceptor(new BasicAuthRequestInterceptor("user",
"password"))
 .target(AccountClient.class, "http://account-service");

Client customization
Client customization can be performed not only with the Feign Builder API, but also by
using the annotation-like style. We may provide a configuration class by setting it with
the configuration property of @FeignClient:

@FeignClient(name = "account-service", configuration =
AccountConfiguration.class)

https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_inheritance
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_inheritance
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_inheritance
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_inheritance
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_inheritance
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_inheritance
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_inheritance
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_inheritance
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_inheritance
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_inheritance
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_inheritance
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_inheritance
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_inheritance
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_inheritance
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_inheritance
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_inheritance
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_inheritance
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_inheritance
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_inheritance
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_inheritance
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_inheritance
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_inheritance
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_inheritance
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_inheritance

Communication Between Microservices Chapter 6

[140]

An example configuration bean is shown here:

@Configuration
public class AccountConfiguration {
 @Bean
 public Contract feignContract() {
 return new JAXRSContract();
 }

 @Bean
 public Encoder feignEncoder() {
 return new JAXBEncoder();
 }

 @Bean
 public Decoder feignDecoder() {
 return new JAXBDecoder();
 }

 @Bean
 public BasicAuthRequestInterceptor basicAuthRequestInterceptor() {
 return new BasicAuthRequestInterceptor("user", "password");
 }
}

Spring Cloud supports the following properties to override by declaring Spring Beans:

Decoder: By default, ResponseEntityDecoder.
Encoder: By default, SpringEncoder.
Logger: By default, Slf4jLogger.
Contract: By default, SpringMvcContract.
Feign.Builder: By default, HystrixFeign.Builder.
Client: If Ribbon is enabled, it is LoadBalancerFeignClient; otherwise, the
default Feign client is used.
Logger.Level: It sets a default log level for Feign. You can choose between
NONE, BASIC, HEADERS and FULL.
Retryer: It allows the implementing of the retry algorithm in case of
communication failure.
ErrorDecoder: It allows the mapping of the HTTP status code into application-
specific exception.

Communication Between Microservices Chapter 6

[141]

Request.Options: It allows setting read and connects timeout for the request.
Collection<RequestInterceptor>: Collection of registered
RequestInterceptor implementations that perform some actions basing on
data taken from request.

Feign client can also be customized using configuration properties. It is possible to override
settings for all available clients or only for a single selected client by providing its name
after the feign.client.config property prefix. If we set the name default instead of a
specific client name, it will apply it to all Feign clients. Default configurations can also be
specified when using the @EnableFeignClients annotation and its
defaultConfiguration attribute in a similar way to what was described previously. The
settings provided in the appplication.yml file always have a higher priority than
the @Configuration bean. To change that approach and prefer @Configuration instead
of the YAML file, you should set the feign.client.default-to-
properties property to false. Here's an example Feign client configuration for account-
service that sets connect timeout, read timeout of HTTP connection, and log level:

feign:
 client:
 config:
 account-service:
 connectTimeout: 5000
 readTimeout: 5000
 loggerLevel: basic

Summary
In this chapter, we have launched a couple of microservices that communicate with one
another. We discussed such topics as different implementations of REST clients, load
balancing between multiple instances, and integration with service discovery. In my
opinion, these aspects are so important that I decided to describe them in two chapters. This
chapter should be treated as an introduction to the subject of inter-service communication
and a discussion of integration with other important components of microservice
architecture. The next chapter will show more advanced use of load balancers and REST
clients, with particular attention on network and communication problems. After reading
this chapter, you should be able to use Ribbon, Feign, and even RestTemplate properly in
your applications and connect them to other Spring Cloud components.

Communication Between Microservices Chapter 6

[142]

In most cases, this knowledge is enough. However, sometimes you will need to customize
client-side load balancer configuration or enable more advanced communication
mechanisms like a circuit breaker or fallback. It is important to understand these solutions
and their impact on the inter-service communication in your system. We will discuss them
in the next chapter.

7
Advanced Load Balancing and

Circuit Breakers
In this chapter, we will continue the subject discussed in the previous chapter, inter-service
communication. We will extend it to more advanced samples of load balancing, timeouts,
and circuit breaking.

Spring Cloud provides features that make implementation of communication between
microservices nice and simple. However, we must not forget that the major difficulties we
would face with such communication concern the processing time of the systems involved.
If you have many microservices in your system, one of the first issues you need to deal with
is the problem of latency. In this chapter, I would like to discuss a few Spring Cloud
features that help us to avoid latency problems that are caused by many hops between
services when processing a single input request, slow responses from several services, or a
temporary unavailability of services. There are several strategies for dealing with partial
failures. These include setting network timeouts, limiting the number of waiting requests,
implementing different load balancing methods, or setting up a circuit breaker pattern and
fallback implementation.

We will also talk about Ribbon and Feign clients once again, this time focusing on their
more advanced configuration features. An entirely new library that will be introduced here
is Netflix Hystrix. This library implements the circuit breaker pattern.

The topics we will cover in this chapter include the following:

Different load balancing algorithms with Ribbon clients
Enabling a circuit breaker for the application
Customizing Hystrix with configuration properties
Monitoring interservice communication with the Hystrix dashboard
Using Hystrix together with Feign clients

Advanced Load Balancing and Circuit Breakers Chapter 7

[144]

Load balancing rules
Spring Cloud Netflix provides different load balancing algorithms in order to provide
different benefits to the user. Your choice of supported method depends on your needs. In
the Netflix OSS nomenclature, this algorithm is called a rule. The custom rule class should
have implemented an IRule base interface. The following implementations are available by
default inside Spring Cloud:

RoundRobinRule: This rule simply chooses servers using the well-known round
robin algorithm, where incoming requests are distributed across all instances
sequentially. It is often used as the default rule or fallbacks for more advanced
rules, such as ClientConfigEnabledRoundRobinRule and
ZoneAvoidanceRule. ZoneAvoidanceRule is the default rule for Ribbon
clients.
AvailabilityFilteringRule: This rule will skip servers that are marked as
circuit tripped or with a high number of concurrent connections. It also uses
RoundRobinRule as a base class. By default, an instance is circuit tripped if an
HTTP client fails to establish a connection with it three times in a row. This
approach may be customized with the
niws.loadbalancer.<clientName>.connectionFailureCountThreshold
property. Once an instance is circuit tripped, it will remain in this state for the
next 30 seconds before the next retry. This property may also be overridden in the
configuration settings.
WeightedResponseTimeRule: With this implementation, a traffic volume
forwarder to the instance is inversely proportional to the instance's average
response time. In other words, the longer the response time, the less weight it will
get. In these circumstances, a load balancing client will record the traffic and
response time of every instance of the service.
BestAvailableRule: According to the description from the class
documentation, this rule skips servers with tripped circuit breakers and picks the
server with the lowest concurrent requests.

Tripped circuit breaker is a term taken from electrical engineering, and
means that there's no current flowing through a circuit. In IT terminology,
it refers to the situation where too many consecutive requests that are sent
to a service fail, and therefore any further attempts to invoke the remote
service will be interrupted immediately by the software on the client side
in order to relieve the server-side application.

Advanced Load Balancing and Circuit Breakers Chapter 7

[145]

The WeightedResponseTime rule
Until now, we have usually tested our services manually by calling them from a web
browser or a REST client. The current changes do not allow such an approach because we
need to set fake delays for the services, as well as generate many HTTP requests.

Introducing Hoverfly for testing
At this point, I would like to introduce an interesting framework that may be a perfect
solution for these kinds of tests. I am talking about Hoverfly, a lightweight service
virtualization tool that is used to stub or simulate HTTP services. It is originally written in
Go, but also gives you an expressive API for managing Hoverfly in Java. Hoverfly Java,
maintained by SpectoLabs, provides classes that abstract away the binary and API calls, a
DSL for creating simulations, and an integration with the JUnit test framework. This
framework has a feature that I really like. You may easily add a delay to every simulated
service by calling one method in your DSL definition. To enable Hoverfly for your project,
you have to include the following dependency in your Maven pom.xml:

<dependency>
 <groupId>io.specto</groupId>
 <artifactId>hoverfly-java</artifactId>
 <version>0.9.0</version>
 <scope>test</scope>
</dependency>

Testing the rule
The sample we are discussing here is available on GitHub. To access it, you have to switch
to weighted_lb branch (https:/ /github. com/piomin/ sample- spring- cloud- comm/ tree/
weighted_lb). Our JUnit test class, called CustomerControllerTest, is available under
the src/test/java directory. To enable Hoverfly for the test, we should define the JUnit
@ClassRule. The HoverflyRule class provides an API that allows us to simulate many
services with different addresses, characteristics, and responses. In the following source
code fragment, you may see that two instances of our sample microservice account-
service have been declared inside @ClassRule. As you probably remember, that service
has been invoked by customer-service and order-service.

https://github.com/piomin/sample-spring-cloud-comm/tree/weighted_lb
https://github.com/piomin/sample-spring-cloud-comm/tree/weighted_lb
https://github.com/piomin/sample-spring-cloud-comm/tree/weighted_lb
https://github.com/piomin/sample-spring-cloud-comm/tree/weighted_lb
https://github.com/piomin/sample-spring-cloud-comm/tree/weighted_lb
https://github.com/piomin/sample-spring-cloud-comm/tree/weighted_lb
https://github.com/piomin/sample-spring-cloud-comm/tree/weighted_lb
https://github.com/piomin/sample-spring-cloud-comm/tree/weighted_lb
https://github.com/piomin/sample-spring-cloud-comm/tree/weighted_lb
https://github.com/piomin/sample-spring-cloud-comm/tree/weighted_lb
https://github.com/piomin/sample-spring-cloud-comm/tree/weighted_lb
https://github.com/piomin/sample-spring-cloud-comm/tree/weighted_lb
https://github.com/piomin/sample-spring-cloud-comm/tree/weighted_lb
https://github.com/piomin/sample-spring-cloud-comm/tree/weighted_lb
https://github.com/piomin/sample-spring-cloud-comm/tree/weighted_lb
https://github.com/piomin/sample-spring-cloud-comm/tree/weighted_lb
https://github.com/piomin/sample-spring-cloud-comm/tree/weighted_lb
https://github.com/piomin/sample-spring-cloud-comm/tree/weighted_lb
https://github.com/piomin/sample-spring-cloud-comm/tree/weighted_lb
https://github.com/piomin/sample-spring-cloud-comm/tree/weighted_lb
https://github.com/piomin/sample-spring-cloud-comm/tree/weighted_lb
https://github.com/piomin/sample-spring-cloud-comm/tree/weighted_lb

Advanced Load Balancing and Circuit Breakers Chapter 7

[146]

Let's take a look at a test class from the customer-service module. It simulates the GET
/customer/* method with a predefined response for two instances of account-
service available on ports 8091 and 9091. The first of them has been delayed by 200
milliseconds, while the second is delayed by 50 milliseconds:

@ClassRule
public static HoverflyRule hoverflyRule = HoverflyRule
 .inSimulationMode(dsl(
 service("account-service:8091")
 .andDelay(200, TimeUnit.MILLISECONDS).forAll()
 .get(startsWith("/customer/"))
.willReturn(success("[{\"id\":\"1\",\"number\":\"1234567890\",\"balance\":5
000}]", "application/json")),
 service("account-service:9091")
 .andDelay(50, TimeUnit.MILLISECONDS).forAll()
 .get(startsWith("/customer/"))
.willReturn(success("[{\"id\":\"2\",\"number\":\"1234567891\",\"balance\":8
000}]", "application/json"))))
 .printSimulationData();

Before running the test, we should also modify the ribbon.listOfServers configuration
file by changing it to listOfServers: account-service:8091, account-
service:9091. We should only make such a modification when working with Hoverfly.

Here's a test method that invokes the GET /withAccounts/ {id} endpoint exposed by
customer-service a thousand times. This, in turn, invokes the GET
customer/{customerId} endpoint from account-service, with a list of accounts
owned by the customer. Every request is load balanced between two instances of account-
service using WeightedResponseTimeRule:

@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment = WebEnvironment.DEFINED_PORT)
public class CustomerControllerTest {

 private static Logger LOGGER =
LoggerFactory.getLogger(CustomerControllerTest.class);

 @Autowired
 TestRestTemplate template;
 // ...

 @Test
 public void testCustomerWithAccounts() {
 for (int i = 0; i < 1000; i++) {
 Customer c = template.getForObject("/withAccounts/{id}",

Advanced Load Balancing and Circuit Breakers Chapter 7

[147]

Customer.class, 1);
 LOGGER.info("Customer: {}", c);
 }
 }

}

The method of working with a weighted response rule implementation is really interesting.
Just after starting the test, the incoming requests are load balanced at a ratio of 50:50
between two instances of account-service. But, after some time, most of them are
forwarded to the instance with the lesser delay.

Finally, 731 requests were processed by the instance available on port 9091 and 269 by the
instance at port 8091 for a JUnit test launched on my local machine. However, at the end of
the test, the proportion looked a bit different and was weighted in favor of the instance with
the lesser delay, where incoming traffic is divided 4:1 between the two instances.

Now, we will change our test case a little by adding a third instance of account-service
with a big delay of around 10 seconds. This modification aims to simulate a timeout in
HTTP communication. Here's the fragment from the JUnit @ClassRule definition with the
newest service instance listening on port 10091:

service("account-service:10091")
 .andDelay(10000, TimeUnit.MILLISECONDS).forAll()
 .get(startsWith("/customer/"))
.willReturn(success("[{\"id\":\"3\",\"number\":\"1234567892\",\"balance\":1
0000}]", "application/json"))

We should accordingly perform a change in the Ribbon configuration to enable load
balancing to the newest instance of account-service:

listOfServers: account-service:8091, account-service:9091, account-
service:10091

The last thing that has to be changed, but which is left as it is in the previous test case, is
the RestTemplate bean declaration. In this instance, I have set both the read and the
connect timeout to one second because the third instance of account-service launched
during the test is delayed by 10 seconds. Every request sent there would be terminated by
the timeout after one second:

@LoadBalanced
@Bean
RestTemplate restTemplate(RestTemplateBuilder restTemplateBuilder) {
 return restTemplateBuilder
 .setConnectTimeout(1000)

Advanced Load Balancing and Circuit Breakers Chapter 7

[148]

 .setReadTimeout(1000)
 .build();
}

If you run the same test as before, the result would not be satisfactory. The distribution
between all declared instances will be 420, processed by the instance listening on port 8091
(with a delay of 200 milliseconds), 468, processed by the instance listening on port 9091
(with a delay of 50 milliseconds), and 112 sent to the third instance, terminated by the
timeout. Why am I quoting all these statistics? We may change a default load balancing rule
from WeightedResponseTimeRule to AvailabilityFilteringRule and rerun the test.
If we do this, 496 requests will be sent to both the first and second instance, while only 8
will be sent to the third instance, with a one second timeout. Interestingly, if you set
BestAvailableRule as the default rule, all requests would be sent to the first instance.

Now that you have read through this example, you can easily see the differences between
all available load balancing rules for the Ribbon client.

Customizing the Ribbon client
Several configuration settings of the Ribbon client may be overridden with Spring bean
declarations. As with Feign, it should be declared in the client annotation field named
configuration, for example,@RibbonClient(name = "account-service",
configuration = RibbonConfiguration.class). The following features may be
customized with this approach:

IClientConfig: The default implementation of this is
DefaultClientConfigImpl.
IRule: This component is used to determine which service instance should be
selected from a list. The ZoneAvoidanceRule implementation class is auto-
configured.
IPing: This is a component that runs in the background. It is responsible for
ensuring that the instances of service are running.

Advanced Load Balancing and Circuit Breakers Chapter 7

[149]

ServerList<Server>: This can be static or dynamic. If it is dynamic (as used by
DynamicServerListLoadBalancer), a background thread will refresh and
filter the list at a predefined interval. By default, Ribbon uses a static list of
servers taken from configuration file. It is implemented
by ConfigurationBasedServerList.
ServerListFilter<Server>: ServerListFilter is a component used by
DynamicServerListLoadBalancer to filter the servers returned from a
ServerList implementation. There are two implementations of that
interface—auto-configured ZonePreferenceServerListFilter and
ServerListSubsetFilter.
ILoadBalancer: This is responsible for performing load balancing between
available instances of a service on the client side. By default, Ribbon
uses ZoneAwareLoadBalancer.
ServerListUpdater: This is responsible for updating the list of available
instances of a given application. By default, Ribbon
uses PollingServerListUpdater.

Let's look at an example configuration class that defines the default implementation of
the IRule and IPing components. Such a configuration may be defined for a single Ribbon
client, as well as for all Ribbon clients available in the application classpath, by providing
the @RibbonClients(defaultConfiguration =
RibbonConfiguration.class) annotation:

@Configuration
public class RibbonConfiguration {

 @Bean
 public IRule ribbonRule() {
 return new WeightedResponseTimeRule();
 }

 @Bean
 public IPing ribbonPing() {
 return new PingUrl();
 }

}

Advanced Load Balancing and Circuit Breakers Chapter 7

[150]

Even if you don't have any experience with Spring, you may probably have guessed (based
on the previous samples) that the configuration can also be customized using
the properties file. In that case, Spring Cloud Netflix is compatible with the properties
described in the Ribbon documentation provided by Netflix. The following classes are the
supported properties, and they should be prefixed by <clientName>.ribbon, or, if they
apply to all clients, by ribbon:

NFLoadBalancerClassName: ILoadBalancer default implementation class
NFLoadBalancerRuleClassName: IRule default implementation class
NFLoadBalancerPingClassName: IPing default implementation class
NIWSServerListClassName: ServerList default implementation class
NIWSServerListFilterClassName: ServerListFilter default
implementation class

Here's a similar sample to the preceding @Configuration class that overrides the IRule
and IPing default implementations used by the Spring Cloud application:

account-service:
 ribbon:
 NFLoadBalancerPingClassName: com.netflix.loadbalancer.PingUrl
 NFLoadBalancerRuleClassName:
com.netflix.loadbalancer.WeightedResponseTimeRule

The circuit breaker pattern with Hystrix
We have already discussed the different implementations of load balancer algorithms in
Spring Cloud Netflix. Some of them are based on monitoring the instance response time or
the number of failures. In these cases, a load balancer makes decisions about which instance
should be invoked based on these statistics. The circuit breaker pattern should be treated as
an extension of that solution. The main idea behind a circuit breaker is very simple. A
protected function call is wrapped in a circuit breaker object, which is responsible for
monitoring a number of failure calls. If the failures reach a threshold, the circuit is opened,
and all further calls will be failed automatically. Usually, it is also desirable to have some
kind of monitor alert if a circuit breaker trips. Some crucial benefits derived from the usage
of the circuit breaker pattern in your applications are the ability to continue operating when
a related service fails, the prevention of a cascaded failure, and giving a failing service time
to recover.

Advanced Load Balancing and Circuit Breakers Chapter 7

[151]

Building an application with Hystrix
Netflix provides an implementation of the circuit breaker pattern in their library called
Hystrix. That library has also been included as a default implementation of the circuit
breaker for Spring Cloud. Hystrix has some other interesting features, and should also be
treated as a comprehensive tool for dealing with latency and fault tolerance for distributed
systems. What is important is that if the circuit breaker is opened, Hystrix redirects all calls
to the specified fallback method. The fallback method is designed to provide a generic
response without any dependency on a network, usually read from an in-memory cache or
just implemented as static logic. If it becomes necessary to perform a network call, it is
recommended that you implement it using another HystrixCommand or
HystrixObservableCommand. To include Hystrix in your project, you should use the
spring-cloud-starter-netflix-hystrix or spring-cloud-starter-
hystrix starter for Spring Cloud Netflix versions older than 1.4.0:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-hystrix</artifactId>
</dependency>

Implementing Hystrix's commands
Spring Cloud Netflix Hystrix looks for a method that is annotated with the
@HystrixCommand annotation, and then wraps it in a proxy object connected to a circuit
breaker. Thanks to this, Hystrix is able to monitor all calls of such a method. This annotation
currently works only for a class marked with @Component or @Service. That's important
information for us, because we have implemented the logic related to other services calling
in all the previous samples inside the REST controller class, which is marked with
the @RestController annotation. So, in the customer-service application, all that logic
has been moved to the newly created CustomerService class, which is then injected into
the controller bean. The method responsible for communication with account-service
has been annotated with @HystrixCommand. I have also implemented a fallback method,
the name of which passes into the fallbackMethod annotation's field. This
method only returns an empty list:

@Service
public class CustomerService {

 @Autowired
 RestTemplate template;
 @Autowired
 CustomerRepository repository;

Advanced Load Balancing and Circuit Breakers Chapter 7

[152]

 // ...

 @HystrixCommand(fallbackMethod = "findCustomerAccountsFallback")
 public List<Account> findCustomerAccounts(Long id) {
 Account[] accounts =
template.getForObject("http://account-service/customer/{customerId}",
Account[].class, id);
 return Arrays.stream(accounts).collect(Collectors.toList());
 }

 public List<Account> findCustomerAccountsFallback(Long id) {
 return new ArrayList<>();
 }

}

Don't forget to mark your main class with @EnableHystrix, which is needed to tell Spring
Cloud that it should use circuit breakers for the application. We may also optionally
annotate a class with @EnableCircuitBreaker, which does the same. For test purposes,
the account-service.ribbon.listOfServers property should have included the
network addresses of two instances of the localhost:8091, localhost:9091 service.
Although we have declared two instances of account-service for the Ribbon client, we
will start the only one that is available on the 8091 port. If you call the customer-service
method GET http://localhost:8092/withAccounts/{id}, Ribbon will try to load
balance every incoming request between those two declared instances, that is, once you
receive the response containing a list of accounts and the second time you receive an empty
account list, or vice versa. This is illustrated by the following fragment of the application
logs. This is illustrated by the following fragment of application's logs. To access the sample
application's source code, you should switch to the hystrix_basic branch (https:/ /
github.com/piomin/ sample- spring- cloud- comm/ tree/ hystrix_ basic) in the same GitHub
repository as the samples from the previous chapter:

{"id":1,"name":"John Scott","type":"NEW","accounts":[]}

{"id":1,"name":"John
Scott","type":"NEW","accounts":[{"id":1,"number":"1234567890","balance":500
0},{"id":2,"number":"1234567891","balance":5000},{"id":3,"number":"12345678
92","balance":0}]}

https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_basic
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_basic
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_basic
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_basic
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_basic
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_basic
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_basic
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_basic
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_basic
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_basic
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_basic
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_basic
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_basic
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_basic
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_basic
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_basic
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_basic
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_basic
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_basic
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_basic
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_basic
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_basic

Advanced Load Balancing and Circuit Breakers Chapter 7

[153]

Implementing fallback with cached data
The fallback implementation presented in the previous example is very simple. Returning
an empty list does not make much sense for an application running in production. It makes
more sense to use the fallback method in your application when you read data from a cache
in case of a request failure, for example. Such a cache may be implemented inside the client
application or with the use of third-party tools, such as Redis, Hazelcast, or EhCache. The
simplest implementation is available within the Spring Framework, and can be used after
including the spring-boot-starter-cache artifact with your dependencies. To enable
caching for the Spring Boot application, you should annotate the main or configuration
class with @EnableCaching and provide the CacheManager bean in the following context:

@SpringBootApplication
@RibbonClient(name = "account-service")
@EnableHystrix
@EnableCaching
public class CustomerApplication {

 @LoadBalanced
 @Bean
 RestTemplate restTemplate() {
 return new RestTemplate();
 }

 public static void main(String[] args) {
 new
SpringApplicationBuilder(CustomerApplication.class).web(true).run(args);
 }

 @Bean
 public CacheManager cacheManager() {
 return new ConcurrentMapCacheManager("accounts");
 }
 // ...

}

Advanced Load Balancing and Circuit Breakers Chapter 7

[154]

Then you can mark the method wrapped with the circuit breaker using the @CachePut
annotation. This will add the result returning from the calling method to the cache map. In
that case, our map is named accounts. Finally, you may read the data inside your fallback
method implementation by invoking the CacheManager bean directly. If you retry the
same request a couple of times, you will see that the empty list of accounts is no longer
returned as a response. Instead, the service always returns data that is cached during the
first successful call:

@Autowired
CacheManager cacheManager;
@CachePut("accounts")
@HystrixCommand(fallbackMethod = "findCustomerAccountsFallback")
public List<Account> findCustomerAccounts(Long id) {
 Account[] accounts =
template.getForObject("http://account-service/customer/{customerId}",
Account[].class, id);
 return Arrays.stream(accounts).collect(Collectors.toList());
}

public List<Account> findCustomerAccountsFallback(Long id) {
 ValueWrapper w = cacheManager.getCache("accounts").get(id);
 if (w != null) {
 return (List<Account>) w.get();
 } else {
 return new ArrayList<>();
 }
}

The tripping circuit breaker
Let me suggest an exercise for you to do. Until now, you have learned how to enable and
implement circuit breakers in your application using Hystrix, in conjunction with Spring
Cloud, and how to use a fallback method to take data from the cache. But you still
have not used a tripped circuit breaker to prevent the failure instance from being invoked
by a load balancer. Now, I would like to configure Hystrix to open the circuit after three
failed call attempts if the failure percentage is greater than 30 percent and prevent the API
method from being called for the next 5 seconds. The measurement time window is around
10 seconds. To meet these requirements, we have to override several default Hystrix
configuration settings. It may be performed using the @HystrixProperty annotation
inside @HystrixCommand.

Advanced Load Balancing and Circuit Breakers Chapter 7

[155]

Here's the current implementation of the method responsible for getting the account list
from customer-service:

@CachePut("accounts")
@HystrixCommand(fallbackMethod = "findCustomerAccountsFallback",
 commandProperties = {
 @HystrixProperty(name =
"execution.isolation.thread.timeoutInMilliseconds", value = "500"),
 @HystrixProperty(name = "circuitBreaker.requestVolumeThreshold", value
= "10"),
 @HystrixProperty(name = "circuitBreaker.errorThresholdPercentage",
value = "30"),
 @HystrixProperty(name = "circuitBreaker.sleepWindowInMilliseconds",
value = "5000"),
 @HystrixProperty(name = "metrics.rollingStats.timeInMilliseconds",
value = "10000")
 }
)
public List<Account> findCustomerAccounts(Long id) {
 Account[] accounts =
template.getForObject("http://account-service/customer/{customerId}",
Account[].class, id);
 return Arrays.stream(accounts).collect(Collectors.toList());
}

The full list of Hystrix's configuration properties is available on Netflix's GitHub site
at https://github.com/Netflix/Hystrix/wiki/Configuration. I won't discuss all of
them, only the most important properties for communication between microservices. Here's
the list of the properties used in our sample, along with their descriptions:

execution.isolation.thread.timeoutInMilliseconds: This property sets
the time in milliseconds, after which a read or connect timeout will occur and the
client will walk away from the command execution. Hystrix marks such a
method call as a failure, and performs fallback logic. That timeout may be
completely turned off by setting the command.timeout.enabled property to
false. The default is 1,000 milliseconds.
circuitBreaker.requestVolumeThreshold: This property sets the minimum
number of requests in a rolling window that will trip the circuit. The default
value is 20. In our sample, this property is set to 10, which means that the first
nine will not trip the circuit, even if all of them fail. I set that value because we
have assumed that the circuit should be opened if 30 percent of incoming
requests fail, but the minimum number of incoming requests is three.

https://github.com/Netflix/Hystrix/wiki/Configuration

Advanced Load Balancing and Circuit Breakers Chapter 7

[156]

circuitBreaker.errorThresholdPercentage: This property sets the
minimum error percentage. Exceeding this percentage results in opening the
circuit, and the system starts short-circuiting requests to fallback logic. The
default value is 50. I set it to 30 because, in our sample, I want 30 percent of
failed requests should open the circuit.
circuitBreaker.sleepWindowInMilliseconds: This property sets a period
of time between tripping the circuit and allowing attempts taken in order to
determine whether the circuit should be closed again. During this time, all
incoming requests are rejected. The default value is 5,000. Because we would
like to wait 10 seconds before the first call is retired after the circuit has been
opened, I set it to 10,000.
metrics.rollingStats.timeInMilliseconds: This property sets the
duration of the statistical rolling window in milliseconds. This is how long
Hystrix keeps metrics for the circuit breaker to use, and for publishing.

With these settings, we may run the same JUnit test as for the previous example. We launch
two stubs of account-service using HoverflyRule. The first of them would be delayed
by 200 milliseconds, while a second one that is delayed by 2,000 milliseconds is greater than
the timeout set for @HystrixCommand with the
execution.isolation.thread.timeoutInMilliseconds property. After running
JUnit CustomerControllerTest, take a look at the printed logs. I have inserted the logs
taken from the test launched on my machine. The first request from customer-service is
load balanced to the first instance, delayed by 200 ms (1). Every request sent to the
instance available on 9091 finishes with a timeout after one second. After sending 10
requests, the first failure causes a trip of the circuit (2). Then, for the next 10 seconds, every
single request is handled by a fallback method, which returns cached data (3), (4). After
10 seconds, the client tries to call an instance of account-service again and succeeds (5)
because it hits on the instance delayed by 200 ms. That success results in the closure of the
circuit. Unfortunately, the second instance of account-service still responds slowly, so
the scenario happens all over again until the JUnit test finishes (6) and (7). This detailed
description shows you exactly how a circuit breaker with Hystrix works for Spring Cloud:

16:54:04+01:00 Found response delay setting for this request host:
{account-service:8091 200} // (1)
16:54:05+01:00 Found response delay setting for this request host:
{account-service:9091 2000}
16:54:05+01:00 Found response delay setting for this request host:
{account-service:8091 200}
16:54:06+01:00 Found response delay setting for this request host:
{account-service:9091 2000}
16:54:06+01:00 Found response delay setting for this request host:

Advanced Load Balancing and Circuit Breakers Chapter 7

[157]

{account-service:8091 200}
...
16:54:09+01:00 Found response delay setting for this request host:
{account-service:9091 2000} // (2)
16:54:10.137 Customer [id=1, name=John Scott, type=NEW, accounts=[Account
[id=1, number=1234567890, balance=5000]]] // (3)
...
16:54:20.169 Customer [id=1, name=John Scott, type=NEW, accounts=[Account
[id=1, number=1234567890, balance=5000]]] // (4)
16:54:20+01:00 Found response delay setting for this request host:
{account-service:8091 200} // (5)
16:54:20+01:00 Found response delay setting for this request host:
{account-service:9091 2000}
16:54:21+01:00 Found response delay setting for this request host:
{account-service:8091 200}
...
16:54:25+01:00 Found response delay setting for this request host:
{account-service:8091 200} // (6)
16:54:26.157 Customer [id=1, name=John Scott, type=NEW, accounts=[Account
[id=1, number=1234567890, balance=5000]]] // (7)

Monitoring latency and fault tolerance
As I have already mentioned, Hystrix is not only a simple tool implementing a circuit
breaker pattern. It is a solution that deals with latency and fault tolerance in distributed
systems. One interesting feature provided by Hystrix is the ability to expose the most
important metrics related to interservice communication and display them using a UI
dashboard. This function is available for clients wrapped with the Hystrix command.
In some previous samples, we have analyzed only a part of our system to simulate a delay
in communication between customer-service and account-service. That's a really
good approach when testing advanced load balancing algorithms or different circuit
breaker configuration settings, but now we will go back to analyzing the whole of our
sample system setup as a set of standalone Spring Boot applications. This allows us to
observe how Spring Cloud, in conjunction with Netflix OSS tools, helps us to monitor and
react to latency issues and failures in communication between our microservices. The
sample system simulates a failure in a simple way. It has a static configuration with the
network addresses of two instances, account-service, and product-service, but only
one of them for each service is running.

Advanced Load Balancing and Circuit Breakers Chapter 7

[158]

In order to refresh your memory, the architecture of our sample system, taking into
consideration assumptions about failure, is shown in the following diagram:

This time, we'll begin a bit differently, with a test. Here's the fragment of the test method,
which is being invoked in a loop. First, it calls the POST http://localhost:8090/
endpoint from order-service, sending an Order object, and it receives a response with
the id, status, and price set. Within that request, which has been labeled in the
preceding diagram as (1), order-service communicates with product-
service and customer-service and, in addition, customer-service calls the endpoint
from account-service. If the order has been accepted, the test client calls the PUT
http://localhost:8090/{id} method with the order's id to accept it and withdraw
funds from the account. On the server side, there is only one interservice communication in
that case, which is labeled (2) in the preceding diagram. Before running this test, you have
to launch all microservices that are a part of our system:

Random r = new Random();
Order order = new Order();
order.setCustomerId((long) r.nextInt(3)+1);
order.setProductIds(Arrays.asList(new Long[] {(long) r.nextInt(10)+1,(long)
r.nextInt(10)+1}));
order = template.postForObject("http://localhost:8090", order,
Order.class); // (1)
if (order.getStatus() != OrderStatus.REJECTED) {
 template.put("http://localhost:8090/{id}", null, order.getId()); // (2)
}

Advanced Load Balancing and Circuit Breakers Chapter 7

[159]

Exposing Hystrix's metrics stream
Each microservice that uses Hystrix in communication with other microservices may expose
metrics of every integration wrapped with the Hystrix command. To enable such a metrics
stream, you should include a dependency on spring-boot-starter-actuator. This will
expose the /hystrix.stream object as a management endpoint. It is also necessary to
include spring-cloud-starter-hystrix, which has already been added to our sample
application:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-actuator</artifactId>
</dependency>

A generated stream is exposed as further JSON entries containing metrics characterizing a
single call within a method. Here's a single entry for a call within the GET
/withAccounts/{id} method from customer-service:

{"type":"HystrixCommand","name":"customer-
service.findWithAccounts","group":"CustomerService","currentTime":151308920
4882,"isCircuitBreakerOpen":false,"errorPercentage":0,"errorCount":0,"reque
stCount":74,"rollingCountBadRequests":0,"rollingCountCollapsedRequests":0,"
rollingCountEmit":0,"rollingCountExceptionsThrown":0,"rollingCountFailure":
0,"rollingCountFallbackEmit":0,"rollingCountFallbackFailure":0,"rollingCoun
tFallbackMissing":0,"rollingCountFallbackRejection":0,"rollingCountFallback
Success":0,"rollingCountResponsesFromCache":0,"rollingCountSemaphoreRejecte
d":0,"rollingCountShortCircuited":0,"rollingCountSuccess":75,"rollingCountT
hreadPoolRejected":0,"rollingCountTimeout":0,"currentConcurrentExecutionCou
nt":0,"rollingMaxConcurrentExecutionCount":1,"latencyExecute_mean":5,"laten
cyExecute":{"0":0,"25":0,"50":0,"75":15,"90":16,"95":31,"99":47,"99.5":47,"
100":62},"latencyTotal_mean":5,"latencyTotal":{"0":0,"25":0,"50":0,"75":15,
"90":16,"95":31,"99":47,"99.5":47,"100":62},"propertyValue_circuitBreakerRe
questVolumeThreshold":10,"propertyValue_circuitBreakerSleepWindowInMillisec
onds":10000,"propertyValue_circuitBreakerErrorThresholdPercentage":30,"prop
ertyValue_circuitBreakerForceOpen":false,"propertyValue_circuitBreakerForce
Closed":false,"propertyValue_circuitBreakerEnabled":true,"propertyValue_exe
cutionIsolationStrategy":"THREAD","propertyValue_executionIsolationThreadTi
meoutInMilliseconds":2000,"propertyValue_executionTimeoutInMilliseconds":20
00,"propertyValue_executionIsolationThreadInterruptOnTimeout":true,"propert
yValue_executionIsolationThreadPoolKeyOverride":null,"propertyValue_executi
onIsolationSemaphoreMaxConcurrentRequests":10,"propertyValue_fallbackIsolat
ionSemaphoreMaxConcurrentRequests":10,"propertyValue_metricsRollingStatisti
calWindowInMilliseconds":10000,"propertyValue_requestCacheEnabled":true,"pr
opertyValue_requestLogEnabled":true,"reportingHosts":1,"threadPool":"Custom
erService"}

Advanced Load Balancing and Circuit Breakers Chapter 7

[160]

Hystrix dashboard
Hystrix dashboard visualizes the following information:

Health and traffic volume is displayed as a circle that is changing its color and
size together with the changes in incoming statistics
The error percentage over the last 10 seconds
The request rate over the last two minutes by number, displaying the results on a
graph
The circuit breaker status (open/closed)
The number of service hosts
The latency percentiles over the last minute
The service's thread pools

Building an application with the dashboard
The Hystrix dashboard is integrated with Spring Cloud. The best approach when
implementing the dashboard inside a system is to separate out an independent Spring Boot
application with the dashboard. To include the Hystrix dashboard in your project, use the
spring-cloud-starter-hystrix-netflix-dashboard starter or spring-cloud-
starter-hystrix-dashboard for Spring Cloud Netflix versions older than 1.4.0:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-hystrix-dashboard</artifactId>
</dependency>

The application's main class should be annotated with @EnableHystrixDashboard. After
launching it, the Hystrix dashboard is available under the /hystrix context path:

@SpringBootApplication
@EnableHystrixDashboard
public class HystrixApplication {

 public static void main(String[] args) {
 new
SpringApplicationBuilder(HystrixApplication.class).web(true).run(args);
 }

}

Advanced Load Balancing and Circuit Breakers Chapter 7

[161]

I configured port 9000 as the default for the Hystrix application in our sample system,
which is implemented in the hystrix-dashboard module. So, if you call the
http://localhost:9000/hystrix address in a web browser after launching hystrix-
dashboard, it will display the page as shown in the following screenshot. There, you
should provide the Hystrix stream endpoint's address, and, optionally, a title. If you would
like to display metrics for all the endpoints that are called from order-service, type the
address http://localhost:8090/hystrix.stream and then click the Monitor
Stream button :

Advanced Load Balancing and Circuit Breakers Chapter 7

[162]

Monitoring metrics on the dashboard
In this section, we will look at calling the GET /withAccounts/{id} method from
customer-service. It is wrapped with @HystrixCommand. It is displayed on the Hystrix
dashboard under the title customer-service.findWithAccounts, taken from a
commandKey attribute. In addition, the UI dashboard also shows information about the
thread pools that are assigned to every Spring Bean that provides an implementation of
methods wrapped with Hystrix's command. In this case, it is CustomerService:

@Service
public class CustomerService {

 // ...
 @CachePut("customers")
 @HystrixCommand(commandKey = "customer-service.findWithAccounts",
fallbackMethod = "findCustomerWithAccountsFallback",
 commandProperties = {
 @HystrixProperty(name =
"execution.isolation.thread.timeoutInMilliseconds", value = "2000"),
 @HystrixProperty(name =
"circuitBreaker.requestVolumeThreshold", value = "10"),
 @HystrixProperty(name =
"circuitBreaker.errorThresholdPercentage", value = "30"),
 @HystrixProperty(name =
"circuitBreaker.sleepWindowInMilliseconds", value = "10000"),
 @HystrixProperty(name =
"metrics.rollingStats.timeInMilliseconds", value = "10000")
 })
 public Customer findCustomerWithAccounts(Long customerId) {
 Customer customer =
template.getForObject("http://customer-service/withAccounts/{id}",
Customer.class, customerId);
 return customer;
 }

 public Customer findCustomerWithAccountsFallback(Long customerId) {
 ValueWrapper w =
cacheManager.getCache("customers").get(customerId);
 if (w != null) {
 return (Customer) w.get();
 } else {
 return new Customer();
 }
 }

}

Advanced Load Balancing and Circuit Breakers Chapter 7

[163]

Here's the screen from the Hystrix dashboard just after the start of a JUnit test. We monitor
the state of all three methods wrapped with @HystrixCommand. The circuit has been
opened for the findByIds method from product-service, as expected. After a few
seconds, the circuit has also been opened for the withdraw method from account-
service:

Advanced Load Balancing and Circuit Breakers Chapter 7

[164]

After a few moments, the situation will be stabilized. All the circuits remain closed because
only a small percentage of traffic is sent to the inactive instances of applications. This shows
the power of Spring Cloud with Hystrix and Ribbon. The system was able to automatically
reconfigure itself in order to redirect most of the incoming requests to the working instances
based on the metrics generated by the load balancers and circuit breakers:

Aggregating Hystrix's streams with Turbine
You have probably noticed that we were only able to look at an individual instance of the
service in the Hystrix dashboard. There were no metrics from communication between
customer-service and account-service when we were displaying the state of
commands for order-service, and vice versa. We might also imagine that there is more
than one instance of order-service running, which makes it necessary to switch regularly
between different instances or services in the Hystrix dashboard. Fortunately, there is an
application called Turbine that aggregates all of the relevant /hystrix.stream endpoints
into a combined /turbine.stream and makes it possible for us to monitor the overall
health of the whole system.

Advanced Load Balancing and Circuit Breakers Chapter 7

[165]

Enabling Turbine
Before making any changes to enable Turbine for our application, we should start by
enabling service discovery, which is required here. Switch to the
hystrix_with_turbine branch to access the version of our sample system that supports
service discovery with Eureka and aggregates Hystrix's streams using Turbine. To enable
Turbine for the project exposing the UI dashboard, just include spring-cloud-starter-
turbine in the dependencies and annotate the main application class with
@EnableTurbine:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-turbine</artifactId>
</dependency>

The turbine.appConfig configuration property is a list of Eureka service names that
Turbine will use to look up instances. The Turbine stream is then available in the Hystrix
dashboard under the URL http://localhost:9000/turbine.stream. The address is
also determined by a value of the turbine.aggregator.clusterConfig
property, http://localhost:9000/turbine.stream?cluster=<clusterName>. The
cluster parameter can be omitted if the name is default. Here's the Turbine configuration
that combines all of Hystrix's visualization metrics in a single UI dashboard:

turbine:
 appConfig: order-service,customer-service
 clusterNameExpression: "'default'"

Now, all of Hystrix's metrics for the whole sample system are displayed in a single
dashboard site. All we need to display them is to monitor the statistics stream, available
under http://localhost:9000/turbine.stream:

Advanced Load Balancing and Circuit Breakers Chapter 7

[166]

Alternatively, we can configure a cluster per service by providing a list of services with
the turbine.aggregator.clusterConfig property. In that case, you may switch
between clusters by providing the service name cluster with the
http://localhost:9000/turbine.stream?cluster=ORDER-SERVICE parameter. The
cluster name must be provided in uppercase because values returned by the Eureka server
are in uppercase:

turbine:
 aggregator:
 clusterConfig: ORDER-SERVICE,CUSTOMER-SERVICE
 appConfig: order-service,customer-service

By default, Turbine is looking for the /hystrix.stream endpoint on a registered instance
under its homePageUrl address in Eureka. Then it appends /hystrix.stream to that
URL. Our sample application order-service is launched under port 8090, so we
should also override the default management port to 8090. The current configuration of
order-service is shown in the following code fragment. Alternatively, you may also
change that port with the eureka.instance.metadata-map.management.port
property:

spring:
 application:
 name: order-service

server:
 port: ${PORT:8090}

eureka:
 client:
 serviceUrl:
 defaultZone: ${EUREKA_URL:http://localhost:8761/eureka/}

management:
 security:
 enabled: false
 port: 8090

Advanced Load Balancing and Circuit Breakers Chapter 7

[167]

Enabling Turbine with streaming
The classic Turbine model of pulling metrics from all the distributed Hystrix commands is
not always a good choice. An operation such as collecting metrics from HTTP endpoints
may also be realized asynchronously with a message broker. To enable Turbine with
streaming, we should include the following dependencies with the project and then
annotate the main application with @EnableTurbineStream. The following sample uses
RabbitMQ as a default message broker, but you may use Apache Kafka by including
spring-cloud-starter-stream-kafka:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-turbine-stream</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-stream-rabbit</artifactId>
</dependency>

The dependencies visible in the preceding code should be included on the server side. For
client applications, these are order-service and customer-service, and we need to add
the spring-cloud-netflix-hystrix-stream library. If you have run your message
broker locally, it should have worked successfully on auto-configured settings. You may
also run RabbitMQ using a Docker container, as we did in the example of the Spring Cloud
Config with AMQP bus described in Chapter 5, Distributed Configuration with Spring Cloud
Config. Then you should override the following properties in application.yml for both
the client-side and server-side applications:

spring:
 rabbitmq:
 host: 192.168.99.100
 port: 5672
 username: guest
 password: guest

If you log in to the RabbitMQ management console, available under
http://192.168.99.100:15672, you will see that the new exchange with the name
springCloudHystrixStream has been created after our sample application's startup.
Now, the only thing left to do is to run the same JUnit test as we did for the sample that
illustrated the classic Turbine approach, described in the previous section. All metrics are
sent through the message broker and may be observed under the
http://localhost:9000 endpoint. If you would like to try it by yourself, switch to the
hystrix_with_turbine_stream branch (see https:/ /github. com/ piomin/ sample-
spring-cloud-comm/ tree/ hystrix_ with_ turbine_ stream for more information).

https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_with_turbine_stream
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_with_turbine_stream
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_with_turbine_stream
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_with_turbine_stream
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_with_turbine_stream
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_with_turbine_stream
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_with_turbine_stream
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_with_turbine_stream
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_with_turbine_stream
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_with_turbine_stream
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_with_turbine_stream
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_with_turbine_stream
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_with_turbine_stream
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_with_turbine_stream
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_with_turbine_stream
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_with_turbine_stream
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_with_turbine_stream
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_with_turbine_stream
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_with_turbine_stream
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_with_turbine_stream
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_with_turbine_stream
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_with_turbine_stream
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_with_turbine_stream
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_with_turbine_stream
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_with_turbine_stream
https://github.com/piomin/sample-spring-cloud-comm/tree/hystrix_with_turbine_stream

Advanced Load Balancing and Circuit Breakers Chapter 7

[168]

Failures and the circuit breaker pattern with
Feign
The Feign client is, by default, integrated with Ribbon and Hystrix. This means that, if you
wish, you can apply different approaches to deal with latency and timeouts in your system
when using that library. The first of these approaches is a connection retry mechanism
provided by the Ribbon client. The second is a circuit breaker pattern and a fallback
implementation available under the Hystrix project, which has already been discussed in
the previous sections of this chapter.

Retrying the connection with Ribbon
Hystrix is enabled by default for the application when using a Feign library. This means
that you should disable it in the configuration settings if you do not want to use it. For the
purpose of testing a retry mechanism with Ribbon, I suggest that you disable Hystrix. In
order to enable connection retrying for Feign, you only have to set two configuration
properties—MaxAutoRetries and MaxAutoRetriesNextServer. The important settings,
in this case, are also ReadTimeout and ConnectTimeout. All of them may be overridden in
the application.yml file. Here's the list of the most important Ribbon settings:

MaxAutoRetries: This is the maximum number of retries on the same server or
service instances. The first try is excluded from this count.
MaxAutoRetriesNextServer: This is the maximum number of next servers or
service instances to retry, excluding the first server.
OkToRetryOnAllOperations: This states that all operations can be retried for
this client.
ConnectTimeout: This is the maximum time waiting to establish a connection to
a server or service instance.
ReadTimeout: This is the maximum time waiting for a response from the server
after establishing a connection.

Advanced Load Balancing and Circuit Breakers Chapter 7

[169]

Let's assume that we have two instances of a target service. The connection to the first has
been established, but it responds too slowly and a timeout occurs. The client performs one
retry to that instance in accordance with the MaxAutoRetries=1 property. If it has still not
been successful, it tries to connect with a second available instance of that service. This
action is repeated twice in the case of a failure, according to what has been set in the
MaxAutoRetriesNextServer=2 property. If the described mechanism is ultimately not
successful, the timeout is returned to the external client. In that case, it may happen even
after more than four seconds. Take a look at the following configuration:

ribbon:
 eureka:
 enabled: true
 MaxAutoRetries: 1
 MaxAutoRetriesNextServer: 2
 ConnectTimeout: 500
 ReadTimeout: 1000

feign:
 hystrix:
 enabled: false

This solution is a standard retry mechanism implemented for a microservices-based
environment. We may also look at some other scenarios related to the different
configuration settings of Ribbon's timeouts and retries. There is no reason why we shouldn't
use that mechanism together with Hystrix's circuit breaker. However, we have to remember
that ribbon.ReadTimeout should be lower than the value of Hystrix's
execution.isolation.thread.timeoutInMilliseconds property.

I suggest that you test the configuration settings that we just described as an exercise. You
may use a previously introduced Hoverfly JUnit rule for simulating the delays and stubs of
a service's instances.

Hystrix's support for Feign
To begin with, I would like to reiterate that Hystrix is enabled by default for the application
when using a Feign library, but only for the older versions of Spring Cloud. According to
the documentation for the newest version of Spring Cloud, we should set
the feign.hystrix.enabled property to true, which forces Feign to wrap all methods
with a circuit breaker.

Advanced Load Balancing and Circuit Breakers Chapter 7

[170]

Prior to the Spring Cloud Dalston release, if Hystrix was on the classpath,
Feign would have wrapped all methods in a circuit breaker by default.
This default behavior was changed in Spring Cloud Dalston in favor of an
opt-in approach.

When using Hystrix together with a Feign client, the simplest way to provide configuration
properties previously set with @HystrixProperty inside @HystrixCommand is through
the application.yml file. Here's the equivalent configuration of the samples presented
before:

hystrix:
 command:
 default:
 circuitBreaker:
 requestVolumeThreshold: 10
 errorThresholdPercentage: 30
 sleepWindowInMilliseconds: 10000
 execution:
 isolation:
 thread:
 timeoutInMilliseconds: 1000
 metrics:
 rollingStats:
 timeInMilliseconds: 10000

Feign supports the notation of a fallback. To enable fallbacks for a given @FeignClient, we
should set the fallback attribute with the class name that provides a fallback
implementation. The implementation class should be defined as a Spring Bean:

@FeignClient(name = "customer-service", fallback =
CustomerClientFallback.class)
public interface CustomerClient {

 @CachePut("customers")
 @GetMapping("/withAccounts/{customerId}")
 Customer findByIdWithAccounts(@PathVariable("customerId") Long
customerId);

}

Advanced Load Balancing and Circuit Breakers Chapter 7

[171]

Fallback implementation is based on a cache, and implements the interface annotated with
@FeignClient:

@Component
public class CustomerClientFallback implements CustomerClient {

 @Autowired
 CacheManager cacheManager;

 @Override
 public Customer findByIdWithAccountsFallback(Long customerId) {
 ValueWrapper w =
cacheManager.getCache("customers").get(customerId);
 if (w != null) {
 return (Customer) w.get();
 } else {
 return new Customer();
 }
 }

}

Optionally, we may implement a FallbackFactory class. That approach has one big
advantage, it gives you access to the cause that made the fallback trigger. To declare a
FallbackFactory class for Feign, just use the fallbackFactory attribute inside
@FeignClient:

@FeignClient(name = "account-service", fallbackFactory =
AccountClientFallbackFactory.class)
public interface AccountClient {

 @CachePut
 @GetMapping("/customer/{customerId}")
 List<Account> findByCustomer(@PathVariable("customerId") Long
customerId);

}

Advanced Load Balancing and Circuit Breakers Chapter 7

[172]

The custom FallbackFactory class needs to implement a FallbackFactory
interface, which declares the one T create(Throwable cause) method that has to be
overridden:

@Component
public class AccountClientFallbackFactory implements
FallbackFactory<AccountClient> {

 @Autowired
 CacheManager cacheManager;

 @Override
 public AccountClient create(Throwable cause) {
 return new AccountClient() {
 @Override
 List<Account> findByCustomer(Long customerId) {
 ValueWrapper w =
cacheManager.getCache("accounts").get(customerId);
 if (w != null) {
 return (List<Account>) w.get();
 } else {
 return new Customer();
 }
 }
 }
 }
}

Summary
You may not be aware of the configuration settings or tools described in this chapter if you
have already been using auto-configured clients for inter-service communication. However,
I think that it is worth having some knowledge about a few of the advanced mechanisms,
even if they can run in the background and/or out of the box. In this chapter, I have tried to
give you a closer view on topics, such as load balancers, retries, fallbacks, or circuit breakers
by demonstrating how they work using simple examples. After reading this chapter, you
should be able to customize Ribbon, Hystrix, or Feign clients to suit your needs related to
communication between microservices, both on a small and large scale. You should also
understand the when and why of using them in your system. With this chapter, we are
closing the discussion about the core elements inside microservices-based architecture.
Now, we have got one more important component to look at that is outside the system by
quite a bit, the gateway. This hides the system complexity from an external client.

8
Routing and Filtering with API

Gateway
In this chapter, we will discuss the next important element of microservice-based
architecture, an API gateway. It is not our first encounter with that element in practice. We
have already implemented a simple gateway pattern in Chapter 4, Service Discovery, for the
purpose of presenting how a zoning mechanism works for service discovery with Eureka.
We used Netflix's Zuul library, which is a JVM-based router and server-side load balancer.
Netflix designed Zuul to provide features such as authentication, stress and canary testing,
dynamic routing, and active/active multiregional traffic management. Although this is not
explicitly stated, it also acts as a gateway in microservice architecture and its main task is to
hide the complexity of your system from an external client.

Until now, Zuul, in fact, didn't have any competition when it came to API gateway pattern
implementation inside the Spring Cloud framework. However, the situation is changing
dynamically with the progressive development of a new project called Spring Cloud
Gateway. It is built on the base of Spring Framework 5, Project Reactor, and Spring Boot 2.0.
The last stable version of that library is 1.0.0, but there are many crucial changes in the
version currently being developed, 2.0.0, which is still at the milestone stage. Spring Cloud
Gateway aims to provide a simple, effective way to route to APIs and provide cross-cutting
concerns related to them such as security, monitoring/metrics, and resiliency. Although the
solution is relatively new, it is definitely worthy of attention.

Routing and Filtering with API Gateway Chapter 8

[174]

The topics we will cover in this chapter include:

Static routing and load balancing based on URLs
Integrating Zuul and Spring Cloud Gateway with service discovery
Creating custom filters with Zuul
Customizing route configuration with Zuul
Providing Hystrix fallback in case of route failure
Description of the main components included in Spring Cloud
Gateway—predicators and gateway filters

Using Spring Cloud Netflix Zuul
Spring Cloud has implemented an embedded Zuul proxy to allow frontend application's
proxy calls to backend services. This feature is useful for external clients, because it hides
system complexity and helps to avoid the need to manage CORS and authentication
concerns independently for all microservices. To enable it, you should annotate a Spring
Boot main class with @EnableZuulProxy, and this forwards incoming requests to the
target service. Of course, Zuul is integrated with the Ribbon load balancer, Hystrix circuit
breaker, and service discovery, for example with Eureka.

Building a gateway application
Let's go back to the example from the previous chapter to append the last element in the
microservice-based architecture, API Gateway. What we haven't considered yet is how the
external client would call our services. First, we would not want to expose the network
addresses of all microservices running inside the system. We may also perform some
operations such as request authentication or setting tracing headers in just one place. The
solution is to share only a single edge network address, which proxies all the incoming
requests to the appropriate service. The current example's system architecture is illustrated
in the following diagram:

Routing and Filtering with API Gateway Chapter 8

[175]

For the needs of our current sample, let me go back for a moment to the project already
discussed in the previous chapter. It is available in GitHub (https:/ /github. com/piomin/
sample-spring-cloud- comm. git) in master branch. Now, we will add a new module called
gateway-service to that project. The first step is to include Zuul with the Maven
dependencies. We have to use the spring-cloud-starter-zuul starter:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-zuul</artifactId>
</dependency>

https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git

Routing and Filtering with API Gateway Chapter 8

[176]

After annotating a Spring Boot main class with @EnableZuulProxy, we may proceed to
route configuration, which is provided in the application.yml file. By default, the Zuul
starter artifact does not include the service discovery client. The routes are configured
statically with the url property set to the network address of the service. Now, if you
launch all the microservices and the gateway application, you may try to call them via the
gateway. Each service is available under the path set in the configuration property path for
every single route, for example, http://localhost:8080/account/1 would be
forwarded to http://localhost:8091/1:

server:
 port: ${PORT:8080}

zuul:
 routes:
 account:
 path: /account/**
 url: http://localhost:8091
 customer:
 path: /customer/**
 url: http://localhost:8092
 order:
 path: /order/**
 url: http://localhost:8090
 product:
 path: /product/**
 url: http://localhost:8093

Integration with service discovery
The static route configuration presented in the previous example is not enough for a
microservice-based system. The main requirement for an API gateway is a built-in
integration with service discovery. To enable service discovery with Eureka for Zuul, we
have to include the spring-cloud-starter-eureka starter in the project dependencies
and enable the client by annotating the application's main class with
@EnableDiscoveryClient. In fact, it does not make sense to let the gateway register itself
in discovery server, it must only fetch the current list of registered services. So we would
disable that registration by setting the eureka.client.registerWithEureka property to
false. The route's definition in the application.yml file is really simple. Each route's
name is mapped to the application service name in Eureka:

zuul:
 routes:
 account-service:

Routing and Filtering with API Gateway Chapter 8

[177]

 path: /account/**
 customer-service:
 path: /customer/**
 order-service:
 path: /order/**
 product-service:
 path: /product/**

Customizing route configuration
There are several configuration settings, which allow us to customize the behavior of the
Zuul proxy. Some of them are strictly related to the service discovery integration.

Ignoring registered services
Spring Cloud Zuul by default exposes all the services registered in Eureka server. If you
would like to skip the automatic addition of every service, you have to set the
zuul.ignored-services property with a pattern matched to all the ignored service
names from a discovery server. How does it work in practice? Even if you do not provide
any configuration with zuul.routes.* properties, Zuul would fetch the list of services
from Eureka and automatically bind them to the path with the service name. For example,
account-service would be available under the gateway address
http://localhost:8080/account-service/**. Now, if you set the following
configuration in your application.yml file, it would ignore account-service and
respond with an HTTP 404 status:

zuul:
 ignoredServices: 'account-service'

You may also ignore all registered services by setting zuul.ignored-services to '*'. If a
service matches a pattern that is ignored, but also included in the routes map configuration,
then it will be included by Zuul. In that case, only customer-service would be processed:

zuul:
 ignoredServices: '*'
 routes:
 customer-service: /customer/**

Routing and Filtering with API Gateway Chapter 8

[178]

Explicity set service name
The service name from a discovery server may also be set in configuration using
the serviceId property. It gives you fine-grained control over a route, because you can
specify the path and the serviceId independently. Here's the equivalent configuration of
the routes:

zuul:
 routes:
 accounts:
 path: /account/**
 serviceId: account-service
 customers:
 path: /customer/**
 serviceId: customer-service
 orders:
 path: /order/**
 serviceId: order-service
 products:
 path: /product/**
 serviceId: product-service

Route definition with the Ribbon client
There is another approach to configuring routes. We may disable Eureka discovery in order
to rely solely on a list of network addresses provided with the listOfServers property of
the Ribbon client. All incoming requests to the gateway are load balanced by default
between all instances of the service through a Ribbon client. This rule is true even if you
enable or disable service discovery, as in the following example code:

zuul:
 routes:
 accounts:
 path: /account/**
 serviceId: account-service

ribbon:
 eureka:
 enabled: false

account-service:
 ribbon:
 listOfServers: http://localhost:8091,http://localhost:9091

Routing and Filtering with API Gateway Chapter 8

[179]

Adding a prefix to the path
Sometimes it is necessary to set a different path for services invoked via a gateway rather
than allow them being available directly. In that case, Zuul provides the ability to add
prefixes to all the defined mappings. This may be easily configured with the zuul.prefix
property. By default, Zuul cuts that prefix before forwarding requests to the services.
However, that behavior can also be disabled by setting the zuul.stripPrefix property to
false. A stripPrefix property may be configured not only globally for all defined
routes, but also per single route.

Here's an example that adds the /api prefix to all the forwarded requests. Now, for
example, if you would like to call the GET /{id} endpoint from account-service, you
should use the address http://localhost:8080/api/account/1:

zuul:
 prefix: /api
 routes:
 accounts:
 path: /account/**
 serviceId: account-service
 customers:
 path: /customer/**
 serviceId: customer-service

What would happen if we have provided the configuration with stripPrefix set to
false? Zuul would try to look for endpoints in the target services under the context paths
/api/account and /api/customer:

zuul:
 prefix: /api
 stripPrefix: false

Connection settings and timeouts
The main task of Spring Cloud Netflix Zuul is to route incoming requests to downstream
services. Therefore, it has to use an HTTP client implementation to communicate with those
services. The default HTTP client used by Zuul is now backed by the Apache HTTP Client
instead of the deprecated Ribbon RestClient. If you would like to use Ribbon, you should
set the ribbon.restclient.enabled property to true. You may also try OkHttpClient
by setting the ribbon.okhttp.enabled property to true.

Routing and Filtering with API Gateway Chapter 8

[180]

We may configure the basic settings for HTTP clients such as the connect or read timeout,
and the maximum number of connections. There are two available options for such
configurations depending on whether we are using service discovery or not. If you have
defined Zuul routes with a specified network address through the url property, then you
should set zuul.host.connect-timeout-millis and zuul.host.socket-timeout-
millis. For the purpose of controlling the maximum number of connections, you should
override the default value of the zuul.host.maxTotalConnections property, which is
by default set to 200. It is also possible to define the maximum number of connections per
single route by setting the zuul.host.maxPerRouteConnections property, which is by
default 20.

If Zuul is configured to fetch a list of services from the discovery server, you need to
configure the same timeouts as before with the Ribbon client
properties ribbon.ReadTimeout and ribbon.SocketTimeout. The maximum number of
connections can be customized with ribbon.MaxTotalConnections and
ribbon.MaxConnectionsPerHost.

Secure headers
You may be a little surprised if you set, for example, the Authorization HTTP header in
the request and it isn't forwarded to the downstream service. This is because Zuul defines a
default list of sensitive headers, which are removed during the routing process. These are
the headers Cookie, Set-Cookie, and Authorization. This feature has been designed
with a view to communicate with external servers. While there is no objection to sharing
headers between services in the same system, it is not recommended to share them with
external servers for security reasons. This approach may be customized by overriding
default values for the sensitiveHeaders property. It may be set globally for all routes or
just for a single route. The sensitiveHeaders are a not an empty blacklist, so to make
Zuul forward all headers, you should explicitly set it to the empty list:

zuul:
 routes:
 accounts:
 path: /account/**
 sensitiveHeaders:
 serviceId: account-service

Routing and Filtering with API Gateway Chapter 8

[181]

Management endpoints
Spring Cloud Netflix Zuul exposes two additional management endpoints for monitoring:

Routes: Prints a list of defined routes
Filters: Prints a list of implemented filters (available from version
1.4.0.RELEASE of Spring Cloud Netflix)

To enable the managements endpoints feature, we have to include (as always) spring-
boot-starter-actuator in the project dependencies. It's a good idea to disable endpoint
security for test purposes by setting the management.security.enabled property to
false. Now, you may just call the GET /routes method and it would print the following
JSON response for our example system:

{
 "/api/account/**": "account-service",
 "/api/customer/**": "customer-service",
 "/api/order/**": "order-service",
 "/api/product/**": "product-service",
}

For more detailed information, you have to add the ?format=details query string to
the /routes path. That option is also available from version 1.4.0 of Spring Cloud
(Edgware Release Train). There is also a POST /route method that would force a refresh of
the currently existing routes. Additionally, you can disable the whole endpoint by setting
endpoints.routes.enabled to false:

"/api/account/**": {
 "id": "account-service",
 "fullPath": "/api/account/**",
 "location": "account-service",
 "path": "/**",
 "prefix": "/api/account",
 "retryable": false,
 "customSensitiveHeaders": false,
 "prefixStripped": true
}

Routing and Filtering with API Gateway Chapter 8

[182]

The response result of the /filters endpoint is pretty interesting. You may see how many
and what types of filters are available by default on the Zuul gateway. Here's the fragment
of a response with one selected filter. It contains a full class name, the order of calling, and
status. For more information about filters, you can refer to the section, Zuul filters:

"route": [{
 "class":
"org.springframework.cloud.netflix.zuul.filters.route.RibbonRoutingFilter",
 "order": 10,
 "disabled": false,
 "static": true
}, {
...
]

Providing Hystrix fallback
We may provide a fallback response for every single route defined in Zuul's configuration,
in case a circuit is opened. To do that, we should create a bean of type
ZuulFallbackProvider (which is currently deprecated) or FallbackProvider. Inside
that implementation, we have to specify the route ID pattern to match all the routes that
should be handled by the fallback bean. The second step is to return the implementation
of the ClientHttpResponse interface as a response in the fallbackResponse method.

Here's a simple fallback bean that maps every exception to the HTTP status 200 OK and
sets the errorCode and errorMessage in the JSON response. Fallback is only executed for
the account-service route:

public class AccountFallbackProvider implements FallbackProvider {

 @Override
 public String getRoute() {
 return "account-service";
 }

 @Override
 public ClientHttpResponse fallbackResponse(Throwable cause) {
 return new ClientHttpResponse() {

 @Override
 public HttpHeaders getHeaders() {
 HttpHeaders headers = new HttpHeaders();
 headers.setContentType(MediaType.APPLICATION_JSON);
 return headers;

Routing and Filtering with API Gateway Chapter 8

[183]

 }

 @Override
 public InputStream getBody() throws IOException {
 AccountFallbackResponse response = new
AccountFallbackResponse("1.2", cause.getMessage());
 return new ByteArrayInputStream(new
ObjectMapper().writeValueAsBytes(response));
 }

 @Override
 public String getStatusText() throws IOException {
 return "OK";
 }

 @Override
 public HttpStatus getStatusCode() throws IOException {
 return HttpStatus.OK;
 }

 @Override
 public int getRawStatusCode() throws IOException {
 return 200;
 }

 @Override
 public void close() {

 }
 };
 }
 // ...
}

Zuul filters
As I have already mentioned, Spring Cloud Zuul by default provides a couple of beans,
which are the implementations of the ZuulFilter interface. Every built-in filter may be
disabled by setting the zuul.<SimpleClassName>.<filterType>.disable property to
true. For example, to disable
org.springframework.cloud.netflix.zuul.filters.post.SendResponseFilter,
you have to set zuul.SendResponseFilter.post.disable=true.

Routing and Filtering with API Gateway Chapter 8

[184]

The HTTP filtering mechanism is probably well known to you. A filter dynamically
intercepts requests and responses to transform, or just use, the information taken from the
HTTP message. It may be triggered before or after an incoming request or outgoing
response. We may identify a couple of types of filter provided by Zuul for Spring Cloud:

Pre filter: It is used to prepare initial data in the RequestContext for use in
filters downstream. The main responsibility is to set information required for
route filters.
Route filter: It is called after the pre filter and is responsible for creating requests
to other services. The main reason for using it is a need to adapt a request or
response to the model required by the client.
Post filter: Most commonly, it manipulates the response. It may even transform
the response body.
Error filter: It is executed only if an exception is thrown by other filters. There is
only one built-in implementation of an error filter. SendErrorFilter is executed
if RequestContext.getThrowable() is not null.

Predefined filters
If you annotate the main class with @EnableZuulProxy, Spring Cloud Zuul loads the filter
beans used by both SimpleRouteLocator and DiscoveryClientRouteLocator. This is
a list of the most important implementations installed as normal Spring Beans:

ServletDetectionFilter: This is a pre filter. It checks whether the request is
coming through the Spring Dispatcher. Sets a Boolean with the key
FilterConstants.IS_DISPATCHER_SERVLET_REQUEST_KEY.
FormBodyWrapperFilter: This is a pre filter. It parses form data and re-encodes
it for downstream requests.
PreDecorationFilter: This is a pre filter. It determines where and how to
route based on the supplied RouteLocator. It is also responsible for setting
headers related to the proxy.
SendForwardFilter: This is a route filter. It forwards requests using
RequestDispatcher.
RibbonRoutingFilter: This is a route filter. It uses Ribbon, Hystrix, and
external HTTP clients such as Apache HttpClient, OkHttpClient, or Ribbon
HTTP client to send requests. Service IDs are taken from the request context.

Routing and Filtering with API Gateway Chapter 8

[185]

SimpleHostRoutingFilter: This is a route filter. It sends requests to URLs via
an Apache HTTP client. URLs are found in the request context.
SendResponseFilter: This is a post filter. It writes responses from proxied
requests to the current response.

Custom implementations
In addition to the filters installed by default, we may create our custom implementations.
Each of them has to implement the ZuulFilter interface and its four methods. These
methods are responsible for setting the type of filter (filterType), determining the order
of filter execution between other filtering with the same type (filterOrder), enabling or
disabling the filter (shouldFilter) and finally the filter logic implementation (run). Here's
an example implementation that adds the X-Response-ID header to the response:

public class AddResponseIDHeaderFilter extends ZuulFilter {

 private int id = 1;

 @Override
 public String filterType() {
 return "post";
 }

 @Override
 public int filterOrder() {
 return 10;
 }

 @Override
 public boolean shouldFilter() {
 return true;
 }

 @Override
 public Object run() {
 RequestContext context = RequestContext.getCurrentContext();
 HttpServletResponse servletResponse = context.getResponse();
 servletResponse.addHeader("X-Response-ID",
 String.valueOf(id++));
 return null;
 }

}

Routing and Filtering with API Gateway Chapter 8

[186]

That's not all that has to be done. The custom filter implementation should also be declared
as an @Bean in the main class or Spring configuration class:

@Bean
AddResponseIDHeaderFilter filter() {
 return new AddResponseIDHeaderFilter();
}

Using Spring Cloud Gateway
There are three basic concepts around Spring Cloud Gateway:

Route: That is the basic building block of the gateway. It consists of a unique ID
for identifying a route, a destination URI, a list of predicates, and a list of filters.
A route is matched only if all the predicates have been fulfilled.
Predicates: These are the logic that is executed before processing each request. It
is responsible for detecting whether the different attributes of the HTTP request,
such as headers and parameters, match the defined criteria. The implementation
is based on the Java 8 interface java.util.function.Predicate<T>. The
input type is in turn based on Spring's
org.springframework.web.server.ServerWebExchange.
Filters: They allow the modification of the incoming HTTP request or outgoing
HTTP response. They may be modified before or after sending the downstream
request. Route filters are scoped to a particular route. They implement Spring's
org.springframework.web.server.GatewayFilter.

Routing and Filtering with API Gateway Chapter 8

[187]

Enable Spring Cloud Gateway for a project
Spring Cloud Gateway is built on top of the Netty web container and Reactor framework.
The Reactor project and Spring Web Flux may be used together with version 2.0 of Spring
Boot. Until now, we have used version 1.5, so there is a different declaration of parent
project version. Currently, Spring Boot 2.0 is still at the milestone stage. Here's the fragment
from Maven pom.xml that inherits from the spring-boot-starter-parent project.

<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>2.0.0.M7</version>
</parent>

We also need to change the release train of Spring Cloud in comparison with the previous
examples. The newest available milestone version is Finchley.M5:

<properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
 <java.version>1.8</java.version>
 <spring-cloud.version>Finchley.M5</spring-cloud.version>
</properties>
<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>${spring-cloud.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

After setting the right versions of Spring Boot and Spring Cloud, we may finally include
the spring-cloud-starter-gateway starter in the project dependencies:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-gateway</artifactId>
</dependency>

Routing and Filtering with API Gateway Chapter 8

[188]

Built-in predicates and filters
Spring Cloud Gateway includes many built-in route predicates and gateway filter factories.
Every route may be defined using configuration properties in the application.yml file or
programmatically with the Fluent Java Routes API. The list of available predicate factories
is provided in the following table. Multiple factories may be combined for a single route
definition with a logical and relation. The collection of filters may be configured in
the application.yml file under the spring.cloud.gateway.routes property for each
defined route under the predicates property:

Name Description Example

After Route
It takes a date-time parameter
and matches requests that happen
after it

After=2017-11-20T...

Before Route
It takes a date-time parameter
and matches requests that happen
before it

Before=2017-11-20T...

Between

Route

It takes two date-time parameters and
matches requests that happen
between those dates

Between=2017-11-20T...,
2017-11-21T...

Cookie Route

It takes a cookie name and regular
expression parameters, finds the
cookie in the HTTP request's header,
and matches its value with the
provided expression

Cookie=SessionID, abc.

Header Route

It takes the header name and regular
expression parameters, finds a
specific header in the HTTP request's
header, and matches its value with
the provided expression

Header=X-Request-Id, \d+

Host Route
It takes a hostname ANT style pattern
with the . separator as a parameter
and matches it with the Host header

Host=**.example.org

Method Route It takes an HTTP method to match as
a parameter

Method=GET

Path Route It takes a pattern of request context
path as a parameter

Path=/account/{id}

Routing and Filtering with API Gateway Chapter 8

[189]

Name Description Example

Query Route
It takes two parameters—a required
param and an optional regexp and
matches them with query parameters

Query=accountId, 1.

RemoteAddr

Route

It takes a list of IP addresses in CIDR
notation, like 192.168.0.1/16, and
matches it with the remote address of
a request

RemoteAddr=192.168.0.1/16

There are a few more built-in implementations of the gateway filter pattern. The list of
available factories is also provided in the following table. The collection of filters may be
configured in the application.yml file under the spring.cloud.gateway.routes
property for each route defined under the filters property:

Name Description Example

AddRequestHeader

Adds a header to an
HTTP request with
name and value
provided in
parameters

AddRequestHeader=X-Response-ID,
123

AddRequestParameter

Adds a query
parameter to an
HTTP request with
name and value
provided in
parameters

AddRequestParameter=id, 123

AddResponseHeader

Adds a header to an
HTTP response with
name and value
provided in
parameters

AddResponseHeader=X-Response-ID,
123

Hystrix

 It takes a
parameter, which is
the name of the
HystrixCommand

Hystrix=account-service

Routing and Filtering with API Gateway Chapter 8

[190]

Name Description Example

PrefixPath

Adds a prefix to the
HTTP request path
defined in the
parameter

PrefixPath=/api

RequestRateLimiter

It limits the number
of processing
requests per single
user based on three
input parameters
including a
maximum number
of requests per
second, burst
capacity, and a bean
that returns the user
key

RequestRateLimiter=10, 20,
#{@userKeyResolver}

RedirectTo

It takes an HTTP
status and a redirect
URL as parameters
and puts it to
the Location
HTTP header in
order to perform a
redirect

RedirectTo=302,
http://localhost:8092

RemoveNonProxyHeaders

It removes some
hop-by-hop headers
from forwarded
requests, such as
Keep-Alive, Proxy-
Authenticate, or
Proxy-Authorization

-

RemoveRequestHeader

It takes the name of
the header as a
parameter and
removes it from the
HTTP request

RemoveRequestHeader=X-Request-Foo

Routing and Filtering with API Gateway Chapter 8

[191]

Name Description Example

RemoveResponseHeader

It takes the name of
the header as a
parameter and
removes it from the
HTTP response

RemoveResponseHeader=X-Response-ID

RewritePath

It takes a path
regexp parameter
and a replacement
parameter and then
rewrites the request
path

RewritePath=/account/(?<path>.*),
/$\{path}

SecureHeaders
It adds some secure
headers to the
response

-

SetPath

It takes a single
parameter with a
path template
parameter and
changes a request
path

SetPath=/{segment}

SetResponseHeader

It takes name and
value parameters to
set a header on the
HTTP response

SetResponseHeader=X-Response-ID,
123

SetStatus

It takes a single
status parameter,
which must be a
valid HTTP status,
and sets it on a
response

SetStatus=401

Here's a simple example with two predicates and two filters set. Each GET
/account/{id} request coming in to the gateway is forwarded to
http://localhost:8080/api/account/{id} with the new HTTP header, X-Request-
ID, included:

spring:
 cloud:
 gateway:

Routing and Filtering with API Gateway Chapter 8

[192]

 routes:
 - id: example_route
 uri: http://localhost:8080
 predicates:
 - Method=GET
 - Path=/account/{id}
 filters:
 - AddRequestHeader=X-Request-ID, 123
 - PrefixPath=/api

The same configuration may be provided using a fluent API defined in the Route class.
This style gives us more flexibility. While configuration with YAML may combine
predicates using logical and, the fluent Java API allows you to use and(), or(), and
negate() operators on the Predicate class. Here's the alternative route implemented
using the fluent API:

@Bean
public RouteLocator customRouteLocator(RouteLocatorBuilder routeBuilder) {
 return routeBuilder.routes()
 .route(r -> r.method(HttpMethod.GET).and().path("/account/{id}")
 .addRequestHeader("X-Request-ID", "123").prefixPath("/api")
 .uri("http://localhost:8080"))
 .build();
}

Gateway for microservices
Let's get back to our example microservice-based system. We have already discussed this
example in the section on API gateway configuration based on Spring Cloud Netflix Zuul.
We would like to prepare the same static route definition as was already prepared for the
application based on a Zuul proxy. Each service would then be available under the gateway
address and specific path, for example, http://localhost:8080/account/**. The most
suitable way to declare such a configuration with Spring Cloud Gateway is through Path
Route Predicate Factory and RewritePath GatewayFilter Factory. A rewrite path mechanism
changes the request path by taking part of it or adding some pattern. In our case, every
incoming request path is rewritten from, for example, account/123 to /123. Here's the
gateway's application.yml file:

server:
 port: ${PORT:8080}

spring:
 application:
 name: gateway-service

Routing and Filtering with API Gateway Chapter 8

[193]

cloud:
 gateway:
 routes:
 - id: account-service
 uri: http://localhost:8091
 predicates:
 - Path=/account/**
 filters:
 - RewritePath=/account/(?<path>.*), /$\{path}
 - id: customer-service
 uri: http://localhost:8092
 predicates:
 - Path=/customer/**
 filters:
 - RewritePath=/customer/(?<path>.*), /$\{path}
 - id: order-service
 uri: http://localhost:8090
 predicates:
 - Path=/order/**
 filters:
 - RewritePath=/order/(?<path>.*), /$\{path}
 - id: product-service
 uri: http://localhost:8093
 predicates:
 - Path=/product/**
 filters:
 - RewritePath=/product/(?<path>.*), /$\{path}

Surprisingly, this is all that has to be done. We don't have to provide any additional
annotation compared to what we have been doing when working with other Spring Cloud
components such as Eureka or Config Server. So, the main class of our gateway's
application is visible in the following code fragment. You have to build the project using
mvn clean install and launch it with java -jar, or just run the main class from your
IDE. The example application source code is available on GitHub (https:/ /github. com/
piomin/sample-spring- cloud- gateway. git):

@SpringBootApplication
public class GatewayApplication {

 public static void main(String[] args) {
 SpringApplication.run(GatewayApplication.class, args);
 }

}

https://github.com/piomin/sample-spring-cloud-gateway.git
https://github.com/piomin/sample-spring-cloud-gateway.git
https://github.com/piomin/sample-spring-cloud-gateway.git
https://github.com/piomin/sample-spring-cloud-gateway.git
https://github.com/piomin/sample-spring-cloud-gateway.git
https://github.com/piomin/sample-spring-cloud-gateway.git
https://github.com/piomin/sample-spring-cloud-gateway.git
https://github.com/piomin/sample-spring-cloud-gateway.git
https://github.com/piomin/sample-spring-cloud-gateway.git
https://github.com/piomin/sample-spring-cloud-gateway.git
https://github.com/piomin/sample-spring-cloud-gateway.git
https://github.com/piomin/sample-spring-cloud-gateway.git
https://github.com/piomin/sample-spring-cloud-gateway.git
https://github.com/piomin/sample-spring-cloud-gateway.git
https://github.com/piomin/sample-spring-cloud-gateway.git
https://github.com/piomin/sample-spring-cloud-gateway.git
https://github.com/piomin/sample-spring-cloud-gateway.git
https://github.com/piomin/sample-spring-cloud-gateway.git

Routing and Filtering with API Gateway Chapter 8

[194]

Integration with service discovery
The gateway may be configured to create routes based on the list of services registered in
service discovery. It can integrate with those solutions that have a DiscoveryClient
compatible service registry, such as Netflix Eureka, Consul, or Zookeeper. To enable
DiscoveryClient Route Definition Locator, you should set
the spring.cloud.gateway.discovery.locator.enabled property to true and
provide a DiscoveryClient implementation on the classpath. We use Eureka client and
server for discovery. Notice that with the newest milestone version, Finchley.M5, of
Spring Cloud all the Netflix's artifact's names have been changed and now it is, for
example, spring-cloud-starter-netflix-eureka-client instead of spring-cloud-
starter-eureka:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>

The main class should be the same for the Eureka client application, annotated with
@DiscoveryClient. Here's the application.yml file with routing configuration. The
only change in comparison with the previous example is in the uri property for every
defined route. Instead of providing their network address we may use its name taken from
discovery server with an lb prefix, for example, lb://order-service:

spring:
 application:
 name: gateway-service
 cloud:
 gateway:
 discovery:
 locator:
 enabled: true
 routes:
 - id: account-service
 uri: lb://account-service
 predicates:
 - Path=/account/**
 filters:
 - RewritePath=/account/(?<path>.*), /$\{path}
 - id: customer-service
 uri: lb://customer-service
 predicates:
 - Path=/customer/**
 filters:
 - RewritePath=/customer/(?<path>.*), /$\{path}

Routing and Filtering with API Gateway Chapter 8

[195]

 - id: order-service
 uri: lb://order-service
 predicates:
 - Path=/order/**
 filters:
 - RewritePath=/order/(?<path>.*), /$\{path}
 - id: product-service
 uri: lb://product-service
 predicates:
 - Path=/product/**
 filters:
 - RewritePath=/product/(?<path>.*), /$\{path}

Summary
With an API gateway, we have finished the discussion about the implementation of the core
elements of a microservice-based architecture in Spring Cloud. After reading that part of the
book, you should be able to customize and use tools such as Eureka, Spring Cloud Config,
Ribbon, Feign, Hystrix, and finally a gateway based on Zuul and Spring Cloud Gateway
together.

Treat this chapter as a comparison between two available solutions—the older Netflix Zuul
and the newest one, Spring Cloud Gateway. The second of them is changing dynamically.
Its current version, 2.0, may be used only with Spring 5 and is still not available in release
version. The first of them, Netflix Zuul, is stable, but it does not support asynchronous, non-
blocking connections. It is still based on Netflix Zuul 1.0, although there is a new version of
Zuul that supports asynchronous communication. Regardless of the differences between
them, I have described how to provide a simple and a more advanced configuration using
both of these solutions. I have also presented, based on the examples from the previous
chapters, an integration with a service discovery, client-side load balancer, and circuit
breaker.

9
Distributed Logging and Tracing

When breaking down a monolith into microservices, we usually spend a lot of time
thinking about business boundaries or the partitioning of our application logic, but we
forget about the logs. From my own experience as a developer and software architect, I can
say that developers do not usually pay much attention to logging. On the other hand,
operation teams, which are responsible for application maintenance, are mainly dependent
on logs. Regardless of one's area of expertise, it is indisputable that logging is something
that all applications have to do, whether they have monolithic or microservices architecture.
However, microservices force adding a whole new dimension to design and arrangement of
application logs. There are many small, independent, horizontally scaled,
intercommunicating services that are running on multiple machines. Requests are often
processed by multiple services. We have to correlate these requests and store all the logs in
a single, central place in order to make it easier to view them. Spring Cloud introduces a
dedicated library that implements a distributed tracing solution, Spring Cloud Sleuth.

There is also one thing that should be discussed here. Logging is not the same as tracing! It
is worth pointing out the differences between them. Tracing is following your program's
data flow. It is typically used by technical support teams to diagnose where a problem
occurs. You have to trace your system flow to discover performance bottlenecks or times
when the error occurs. Logging is used for error reporting and detecting. It should always
be enabled, in contrast to tracing. When you design a large system and you would like to
have good and flexible error reporting across machines, you should definitely think about
collecting log data in a centralized way. The recommended and most popular solution for
this is the ELK stack (Elasticsearch + Logstash + Kibana). There is no dedicated library for
this stack in Spring Cloud, but the integration may be realized with Java logging
frameworks, such as Logback or Log4j. There is another tool that will be discussed in
this chapter, Zipkin. It is a typical tracing tool that helps gather timing data that can be used
to troubleshoot latency problems in microservice architecture.

Distributed Logging and Tracing Chapter 9

[197]

The topics we will cover in this chapter include the following:

The best practices for logging in microservices-based systems
Using Spring Cloud Sleuth to append tracing information to messages and
correlating events
Integrating the Spring Boot application with Logstash
Displaying and filtering log entries using Kibana
Using Zipkin as a distributed tracing tool and integrating it with the application
through Spring Cloud Sleuth

Best logging practices for microservices
One of the most important best practices for dealing with logging is to trace all the
incoming requests and outgoing responses. Maybe it seems obvious to you, but I have seen
a couple of applications that did not comply with that requirement. If you meet this
demand, there is one consequence that occurs with microservices-based architecture. The
overall number of logs in your system increases compared to monolithic applications,
where there is no messaging. This, in turn, requires us to pay even more attention to
logging than before. We should do our best to generate as little information as possible,
even though this information can tell us much about the situation. How do we achieve this?
First of all, it is good to have the same log message format across all the microservices. For
example, let's consider how to print variables in the application logs. I suggest you use the
JSON notation in view of the fact that, usually, messages exchanged between microservices
are formatted with JSON. This format has a very straightforward standard, which makes
your logs easily readable and parseable, as shown in the following code fragment:

17:11:53.712 INFO Order received:
{"id":1,"customerId":5,"productId":10}

The preceding format is much easier to analyze than something like the following:

17:11:53.712 INFO Order received with id 1, customerId 5 and productId
10.

Distributed Logging and Tracing Chapter 9

[198]

But generally, the most important thing here is standardization. No matter which format
you choose, it is crucial to use it everywhere. You should also be careful to ensure that your
logs are meaningful. Try to avoid sentences that do not contain any information. For
example, from the following format, it is not clear which order is being processed:

17:11:53.712 INFO Processing order

However, if you really want this kind of log entry format, try to assign it to different log
levels. It is really a bad practice to log everything with the same level of INFO. Some kinds
of information are more important than others, so the one difficulty here is to decide what
level the log entry should be logged at. Here are some suggestions:

TRACE: This is for very detailed information, intended only for development. You
might keep it for a short period of time, just after deployment to a production
environment, but treat it as a temporary file.
DEBUG: At this level, log anything that happens in the program. This is mostly
used for debugging or troubleshooting by developers. The distinction between
DEBUG and TRACE is probably the most difficult.
INFO: At this level, you should log the most important information during the
operation. These messages have to be easily understandable, not just for
developers, but also for administrators or advanced users, to let them quickly
find out what the application is doing.
WARN: At this level, log all events that could potentially become errors. Such a
process may be continued, but you should take extra caution with it.
ERROR: Usually, you print exceptions at this level. The important thing here is not
to throw exceptions everywhere if, for example, only one business logic execution
has not succeeded.
FATAL: This Java logging level designates very severe error events that will
probably cause the application to stop.

There are other good logging practices, but I have mentioned the most important ones for
use in microservices-based systems. It is also worth mentioning one more aspect of logging,
normalization. If you would like to easily understand and interpret your logs, you should
definitely know how and when they were collected, what they contain, and why they were
emitted. There are some especially important characteristics that should be normalized
across all microservices, such as Time (when), Hostname (where), and AppName (who). As
you will see in the next part of this chapter, this kind of normalization is very useful when a
centralized method of collecting logs is implemented in your system.

Distributed Logging and Tracing Chapter 9

[199]

Logging with Spring Boot
Spring Boot uses Apache Commons Logging for internal logging, but if you are including
dependencies with starters, Logback will be used by default in your application. It doesn't
inhibit the possibility of using other logging frameworks in any way. The default
configurations are also provided for Java Util Logging, Log4J2, and SLF4J. Logging settings
may be configured in the application.yml file with logging.* properties. The default
log output contains the date and time in milliseconds, log level, process ID, thread name,
the full name of the class that has emitted the entry, and the message. It may be overridden
by using the logging.pattern.console and logging.pattern.file properties
respectively for the console and file appenders.

By default, Spring Boot only logs on to a console. In order to allow the writing of log files in
addition to a console output, you should set a logging.file or logging.path property.
If you specify the logging.file property, the logs would be written to the file at an exact
location or a location relative to the current directory. If you set logging.path, it creates
a spring.log file in the specified directory. Log files will be rotated after reaching 10 MB.

The last thing that can be customized in the application.yml settings file is the log
levels. By default, Spring Boot writes messages with ERROR, WARN, and INFO levels. We may
override this setting for every single package or class with logging.level.* properties.
The root logger can also be configured using logging.level.root. Here's an example
configuration in the application.yml file, which changes the default pattern format, as
well as a few log levels, and sets the location of the logging file:

logging:
 file: logs/order.log
 level:
 com.netflix: DEBUG
 org.springframework.web.filter.CommonsRequestLoggingFilter: DEBUG
 pattern:
 console: "%d{HH:mm:ss.SSS} %-5level %msg%n"
 file: "%d{HH:mm:ss.SSS} %-5level %msg%n"

Distributed Logging and Tracing Chapter 9

[200]

As you can see in the preceding example, such a configuration is pretty simple, but, in some
cases, it is not enough. If you would like to define additional appenders or filters, you
should definitely include the configuration for one of the available logging
systems—Logback (logback-spring.xml), Log4j2 (log4j2-spring.xml), or Java Util
Logging (logging.properties). As I have mentioned earlier, by default, Spring Boot uses
Logback for the application logs. If you provide the logback-spring.xml file in the root
of the classpath, it will override all settings defined in application.yml. For example, you
may create file appenders that rotate logs daily and retain a maximum history of 10 days.
This feature is very commonly used in applications. In the next section of this chapter, you
will also learn that a custom appender is required to integrate your microservice with
Logstash. Here's an example Logback configuration file's fragment that sets a daily rolling
policy for the logs/order.log file:

<configuration>
 <appender name="FILE"
class="ch.qos.logback.core.rolling.RollingFileAppender">
 <file>logs/order.log</file>
 <rollingPolicy
class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
 <fileNamePattern>order.%d{yyyy-MM-dd}.log</fileNamePattern>
 <maxHistory>10</maxHistory>
 <totalSizeCap>1GB</totalSizeCap>
 </rollingPolicy>
 <encoder>
 <pattern>%d{HH:mm:ss.SSS} %-5level %msg%n</pattern>
 </encoder>
 </appender>
 <root level="DEBUG">
 <appender-ref ref="FILE" />
 </root>
</configuration>

It is also worth mentioning that Spring recommends using logback-spring.xml for
Logback instead of the default logback.xml. Spring Boot includes a couple of extensions to
Logback that may be helpful for an advanced configuration. They cannot be used in the
standard logback.xml, but only with logback-spring.xml. We have listed some of
these extensions that will allow you to define profile-specific configurations or surface
properties from the Spring Environment:

<springProperty scope="context" name="springAppName"
source="spring.application.name" />
<property name="LOG_FILE" value="${BUILD_FOLDER:-build}/${springAppName}"/>

<springProfile name="development">

Distributed Logging and Tracing Chapter 9

[201]

...
</springProfile>

<springProfile name="production">
 <appender name="flatfile"
class="ch.qos.logback.core.rolling.RollingFileAppender">
 <file>${LOG_FILE}</file>
 <rollingPolicy
class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
 <fileNamePattern>${LOG_FILE}.%d{yyyy-MM-dd}.gz</fileNamePattern>
 <maxHistory>7</maxHistory>
 </rollingPolicy>
 <encoder>
 <pattern>${CONSOLE_LOG_PATTERN}</pattern>
 <charset>utf8</charset>
 </encoder>
 </appender>
 ...
</springProfile>

Centralizing logs with ELK Stack
ELK is the acronym for three open source tools—Elasticsearch, Logstash, and Kibana. It is
also called Elastic Stack. The heart of this system is Elasticsearch, a search engine based on
another open source project written in Java, Apache Lucene. This library is especially
suitable for applications that require full-text searches in cross-platform environments. The
main reason for the popularity of Elasticsearch is its performance. Of course, it has some
other advantages, such as scalability, flexibility, and easy integration by providing a
RESTful, JSON-based API for searching stored data. It has a large community and many use
cases, but the most interesting one for us is its ability to store and search logs generated by
applications. Logging is the main reason for including Logstash in ELK Stack. This open
source data-processing pipeline allows us to collect, process, and input data into
Elasticsearch.

Logstash supports many inputs that pull events from external sources. What is interesting
is that it has many outputs, and Elasticsearch is only one of them. For example, it can write
events to Apache Kafka, RabbitMQ, or MongoDB, and it can write metrics to InfluxDB or
Graphite. It not only receives and forwards data to their destinations, but can also parse and
transform it on the fly.

Distributed Logging and Tracing Chapter 9

[202]

Kibana is the last element of ELK Stack. It is an open source, data-visualization plugin for
Elasticsearch. It allows you to visualize, explore, and discover data from Elasticsearch. We
may easily display and filter all the logs collected from our application by creating search
queries. On this basis, we can export data to PDF or CSV formats to provide reports.

Setting up ELK Stack on the machine
Before we try to send any logs from our application to Logstash, we have to configure ELK
Stack on the local machine. The most suitable way to run it is through Docker containers.
All the products in the stack are available as Docker images. There is a dedicated Docker
registry hosted by Elastic Stack's vendor. A full list of published images and tags can be
found at www.docker.elastic.co. All of them use centos:7 as the base image.

We will begin from the Elasticsearch instance. Its development can be started with the
following command:

docker run -d --name es -p 9200:9200 -p 9300:9300 -e
"discovery.type=single-node"
docker.elastic.co/elasticsearch/elasticsearch:6.1.1

Running Elasticsearch in development mode is the most convenient way of running it
because we don't have to provide any additional configuration. If you would like to launch
it in production mode, the vm.max_map_count Linux kernel setting needs to be set to at
least 262144. The procedure for modifying it is different depending on the OS platform. For
Windows with Docker Toolbox, it must be set via docker-machine:

docker-machine ssh
sudo sysctl -w vm.max_map_count=262144

The next step is to run a container with Logstash. In addition to launching a container with
Logstash, we should also define an input and output. The output is obvious—Elasticsearch,
which is now available under the default Docker machine address, 192.168.99.100. As an
input, we define the simple TCP plugin logstash-input-tcp, which is compatible with
LogstashTcpSocketAppender used as a logging appender in our sample application. All
the logs from our microservices will be sent in JSON format. For now, it is important to set
the json codec for that plugin. Each microservice will be indexed in Elasticsearch with its
name and micro prefix. Here's the Logstash configuration file, logstash.conf:

input {
 tcp {
 port => 5000
 codec => json

http://www.docker.elastic.co

Distributed Logging and Tracing Chapter 9

[203]

 }
}

output {
 elasticsearch {
 hosts => ["http://192.168.99.100:9200"]
 index => "micro-%{appName}"
 }
}

Here's the command that runs Logstash and exposes it on port 5000. It also copies the file
with the preceding settings to the container and overrides the default location of the
Logstash configuration file:

docker run -d --name logstash -p 5000:5000 -v ~/logstash.conf:/config-
dir/logstash.conf docker.elastic.co/logstash/logstash-oss:6.1.1 -f /config-
dir/logstash.conf

Finally, we can run the last element of the stack, Kibana. By default, this is exposed
on port 5601 and connects to the Elasticsearch API available on port 9200 in order to be
able to load data from there:

docker run -d --name kibana -e
"ELASTICSEARCH_URL=http://192.168.99.100:9200" -p 5601:5601
docker.elastic.co/kibana/kibana:6.1.1

If you would like to run all Elastic Stack products on your Docker machine on Windows,
you would probably have to increase the default RAM memory for your Linux virtual
image to a minimum of 2 GB. After launching all containers, you may finally access the
Kibana dashboard available under http://192.168.99.100:5601 and then proceed to
integrate your application with Logstash.

Integrating an application with ELK Stack
There are many ways of integrating Java applications with ELK Stack via Logstash. One of
the methods involves using Filebeat, which is a log data shipper for local files. This
approach requires a beats (logstash-input-beats) input configured for the instance of
Logstash, which is, in fact, the default option. You should also install and launch a Filebeat
daemon on the server machine. It is responsible for the delivery of the logs to Logstash.

Distributed Logging and Tracing Chapter 9

[204]

Personally, I prefer a configuration based on Logback and dedicated appenders. It seems to
be simpler than using a Filebeat agent. Besides having to deploy an additional service,
Filebeat requires us to play with a parsing expression, such as the Grok filter. When using a
Logback appender, you don't require any log shippers. This appender is available within
the project Logstash JSON encoder. You may enable it for your application by declaring
the net.logstash.logback.appender.LogstashSocketAppender appender inside
the logback-spring.xml file.

We will also discuss an alternative approach for sending data to Logstash, using a message
broker. In the example that we will shortly examine, I'm going to show you how to use
Spring AMQPAppender to publish logging events to a RabbitMQ exchange. In this case,
Logstash subscribes to the exchange and consumes published messages.

Using LogstashTCPAppender
The library logstash-logback-encoder provides three types of appenders—UDP, TCP,
and async. The TCP appender is most commonly used. What is worth mentioning is that
TCP appenders are asynchronous, and all the encoding and communication is delegated to
a single thread. In addition to appenders, the library also provides some encoders and
layouts to enable you to log in the JSON format. Because Spring Boot includes a Logback
library by default, as well as spring-boot-starter-web, we only have to add one
dependency to Maven pom.xml:

<dependency>
 <groupId>net.logstash.logback</groupId>
 <artifactId>logstash-logback-encoder</artifactId>
 <version>4.11</version>
</dependency>

The next step is to define the appender with the LogstashTCPAppender class in the
Logback configuration file. Every TCP appender requires you to configure an encoder. You
may choose between LogstashEncoder and LoggingEventCompositeJsonEncoder.
LoggingEventCompositeJsonEncoder gives you more flexibility. It is composed of one
or more JSON providers that are mapped to the JSON output. By default, there are no
providers configured. It doesn't work that way with LogstashTCPAppender. By default, it
includes several standard fields, such as timestamp, version, logger name, and stack trace. It
also adds all entries from the mapped diagnostic context (MDC) and the context, unless
you disable it by setting one of the includeMdc or includeContext properties to false:

<appender name="STASH"
class="net.logstash.logback.appender.LogstashTcpSocketAppender">
 <destination>192.168.99.100:5000</destination>

Distributed Logging and Tracing Chapter 9

[205]

 <encoder
class="net.logstash.logback.encoder.LoggingEventCompositeJsonEncoder">
 <providers>
 <mdc />
 <context />
 <logLevel />
 <loggerName />
 <pattern>
 <pattern>
 {
 "appName": "order-service"
 }
 </pattern>
 </pattern>
 <threadName />
 <message />
 <logstashMarkers />
 <stackTrace />
 </providers>
 </encoder>
</appender>

Now, I would like to come back for a moment to our sample system. We are still in the same
Git repository (https:/ /github. com/ piomin/ sample- spring- cloud- comm. git) and
feign_with_discovery branch (https:/ /github. com/ piomin/ sample- spring- cloud-
comm/tree/feign_ with_ discovery). I have added some logging entries in the source code
in accordance with the recommendations described in the Best logging practices for
microservices section. Here's the current version of the POST method inside order-service.
I have used Logback over SLF4J as a logger by calling the
getLogger method from org.slf4j.LoggerFactory:

@PostMapping
public Order prepare(@RequestBody Order order) throws
JsonProcessingException {
 int price = 0;
 List<Product> products =
productClient.findByIds(order.getProductIds());
 LOGGER.info("Products found: {}", mapper.writeValueAsString(products));
 Customer customer =
customerClient.findByIdWithAccounts(order.getCustomerId());
 LOGGER.info("Customer found: {}", mapper.writeValueAsString(customer));
 for (Product product : products)
 price += product.getPrice();
 final int priceDiscounted = priceDiscount(price, customer);
 LOGGER.info("Discounted price: {}",
mapper.writeValueAsString(Collections.singletonMap("price",

https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery

Distributed Logging and Tracing Chapter 9

[206]

priceDiscounted)));
 Optional<Account> account = customer.getAccounts().stream().filter(a ->
(a.getBalance() > priceDiscounted)).findFirst();
 if (account.isPresent()) {
 order.setAccountId(account.get().getId());
 order.setStatus(OrderStatus.ACCEPTED);
 order.setPrice(priceDiscounted);
 LOGGER.info("Account found: {}",
mapper.writeValueAsString(account.get()));
 } else {
 order.setStatus(OrderStatus.REJECTED);
 LOGGER.info("Account not found: {}",
mapper.writeValueAsString(customer.getAccounts()));
 }

 return repository.add(order);
}

Let's take a look at the Kibana dashboard. It is available
at http://192.168.99.100:5601. The application logs may be easily discovered and
analyzed there. You can select the required index name in the menu on the left side of the
page (labeled 1 in the following screenshot). Log statistics are presented on the timeline
graph (2). You can narrow down the time taken as search parameter by clicking a concrete
bar or choosing a group of bars. All logs for a given period of time are displayed on the
panel present below the graph (3):

Distributed Logging and Tracing Chapter 9

[207]

Each entry can be expanded to look at its details. In the detailed table view, we can see, for
example, the name of the Elasticsearch index (_index) and the level or name of the
microservice (appName). Most of those fields have been set
by LoggingEventCompositeJsonEncoder. I have only defined one application-specific
field, appName:

Distributed Logging and Tracing Chapter 9

[208]

Kibana gives us a great ability to search for particular entries. We may define filters just by
clicking on the selected entries in order to define a set of search criteria. In the preceding
screenshot, you can see how I filtered out all the entries with incoming HTTP requests. As
you probably remember, the
org.springframework.web.filter.CommonsRequestLoggingFilter class is
responsible for logging them. I have just defined the filter whose name is equal to a fully-
qualified logger class name. Here's the screen from my Kibana dashboard, which displays
the logs generated only by CommonsRequestLoggingFilter:

Distributed Logging and Tracing Chapter 9

[209]

Using AMQP appender and a message broker
The configuration with the Spring AMQP appender and message broker is a little bit more
complicated than the method that uses the simple TCP appender. First, you need to launch
a message broker on your local machine. I have described this process in Chapter
5, Distributed Configuration with Spring Cloud Config, where I introduced RabbitMQ for
dynamic configuration reloading with Spring Cloud Bus. Assuming you have started an
instance of RabbitMQ locally or as a Docker container, you can proceed to configuration.
We have to create a queue for publishing incoming events and then bind it to the exchange.
To achieve this, you should log in to the Rabbit management console and then go to
the Queues section. I have created the queue with the name q_logstash. I defined the new
exchange with the name ex_logstash, which is visible in the following screenshot. The
queue has been bound to the exchange with routing keys for all the example microservices:

Distributed Logging and Tracing Chapter 9

[210]

After we have launched and configured the instance of RabbitMQ, we may start integrating
on the application side. First, you have to include spring-boot-starter-amqp in the
project dependencies to provide implementations of the AMQP client and AMQP
appender:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-amqp</artifactId>
</dependency>

Then, the only thing you have to do is to define the appender with the
org.springframework.amqp.rabbit.logback.AmqpAppender class in the Logback
configuration file. The most important properties that need to be set are the RabbitMQ
network address (host, port), the name of the declared exchange (exchangeName), and
the routing key (routingKeyPattern), which has to match one of the keys declared for the
exchange bindings. In comparison with the TCP appender, a disadvantage of this approach
is the need to prepare a JSON message sent to Logstash by yourself. Here's a fragment of
the Logback configuration for order-service:

<appender name="AMQP"
 class="org.springframework.amqp.rabbit.logback.AmqpAppender">
 <layout>
 <pattern>
 {
 "time": "%date{ISO8601}",
 "thread": "%thread",
 "level": "%level",
 "class": "%logger{36}",
 "message": "%message"
 }
 </pattern>
 </layout>
 <host>192.168.99.100</host>
 <port>5672</port>
 <username>guest</username>
 <password>guest</password>
 <applicationId>order-service</applicationId>
 <routingKeyPattern>order-service</routingKeyPattern>
 <declareExchange>true</declareExchange>
 <exchangeType>direct</exchangeType>
 <exchangeName>ex_logstash</exchangeName>
 <generateId>true</generateId>
 <charset>UTF-8</charset>
 <durable>true</durable>
 <deliveryMode>PERSISTENT</deliveryMode>
</appender>

Distributed Logging and Tracing Chapter 9

[211]

Logstash may be easily integrated with RabbitMQ by declaring the rabbitmq (logstash-
input-rabbitmq) input:

input {
 rabbitmq {
 host => "192.168.99.100"
 port => 5672
 durable => true
 exchange => "ex_logstash"
 }
}

output {
 elasticsearch {
 hosts => ["http://192.168.99.100:9200"]
 }
}

Spring Cloud Sleuth
Spring Cloud Sleuth is a rather small, simple project, which nevertheless provides some
useful features for logging and tracing. If you refer to the example discussed in the Using
LogstashTCPAppender section, you can easily see that there is no possibility to filter all the
logs related to single request. In a microservices-based environment, it is also very
important to correlate messages exchanged by the applications when handling requests that
are coming into the system. This is the main motivation in creating the Spring Cloud Sleuth
project.

If Spring Cloud Sleuth is enabled for the application, it adds some HTTP headers to the
requests, which allows you to link requests with the responses and the messages exchanged
by independent applications, for example, through RESTful API. It defines two basic units
of work—span and trace. Each of these is identified by a unique 64 bit ID. The value of the
trace ID is equal to the initial value of the span ID. Span refers to a single exchange, where
the response is sent as a reaction to the request. Trace is something that is usually called
correlation IT, and it helps us to link all the logs from different applications generated
during the processing of requests coming into the system.

Distributed Logging and Tracing Chapter 9

[212]

Every trace and span ID is added to the Slf4J MDC (mapped diagnostic context), so you
will able to extract all the logs with a given trace or span in a log aggregator. MDC is just a
map that stores the context data of the current thread. Every client request coming to the
server is handled by a different thread. Thanks to this, each thread can have access to the
values of its MDC within the thread lifecycle. As well as spanId and traceId, Spring
Cloud Sleuth also adds the following two spans to the MDC:

appName: The name of the application that has generated the log entry
exportable: This specifies whether the log should be exported to Zipkin or not

In addition to the preceding features, Spring Cloud Sleuth also provides:

An abstraction over common distributed tracing data models, which allows
integrating with Zipkin.
Records timing information in order to aid it in latency analysis. It also includes
different sampling policies to manage the volume of data exported to Zipkin.
Integrates with common Spring components taking part in communication
like servlet filter, asynchronous endpoints, RestTemplate, message channels, Zuul
filters and Feign client.

Integrating Sleuth with an application
In order to enable Spring Cloud Sleuth features for the application, just add the spring-
cloud-starter-sleuth starter to the dependencies:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-sleuth</artifactId>
</dependency>

After including this dependency, the format of the log entries generated by the application
has been changed. You can see this as follows:

2017-12-30 00:21:31.639 INFO [order-
service,9a3fef0169864e80,9a3fef0169864e80,false] 49212 --- [nio-8090-
exec-6] p.p.s.order.controller.OrderController : Products found:
[{"id":2,"name":"Test2","price":1500},{"id":9,"name":"Test9","price":2450}]
2017-12-30 00:21:31.683 INFO [order-
service,9a3fef0169864e80,9a3fef0169864e80,false] 49212 --- [nio-8090-
exec-6] p.p.s.order.controller.OrderController : Customer found:
{"id":2,"name":"Adam
Smith","type":"REGULAR","accounts":[{"id":4,"number":"1234567893","balance"
:5000},{"id":5,"number":"1234567894","balance":0},{"id":6,"number":"1234567

Distributed Logging and Tracing Chapter 9

[213]

895","balance":5000}]}
2017-12-30 00:21:31.684 INFO [order-
service,9a3fef0169864e80,9a3fef0169864e80,false] 49212 --- [nio-8090-
exec-6] p.p.s.order.controller.OrderController : Discounted price:
{"price":3752}
2017-12-30 00:21:31.684 INFO [order-
service,9a3fef0169864e80,9a3fef0169864e80,false] 49212 --- [nio-8090-
exec-6] p.p.s.order.controller.OrderController : Account found:
{"id":4,"number":"1234567893","balance":5000}
2017-12-30 00:21:31.711 INFO [order-
service,58b06c4c412c76cc,58b06c4c412c76cc,false] 49212 --- [nio-8090-
exec-7] p.p.s.order.controller.OrderController : Order found:
{"id":4,"status":"ACCEPTED","price":3752,"customerId":2,"accountId":4,"prod
uctIds":[9,2]}
2017-12-30 00:21:31.722 INFO [order-
service,58b06c4c412c76cc,58b06c4c412c76cc,false] 49212 --- [nio-8090-
exec-7] p.p.s.order.controller.OrderController : Account modified:
{"accountId":4,"price":3752}
2017-12-30 00:21:31.723 INFO [order-
service,58b06c4c412c76cc,58b06c4c412c76cc,false] 49212 --- [nio-8090-
exec-7] p.p.s.order.controller.OrderController : Order status changed:
{"status":"DONE"}

Searching events using Kibana
Spring Cloud Sleuth automatically adds HTTP headers X-B3-SpanId and X-B3-TraceId
to all the requests and responses. These fields are also included to the MDC as spanId and
traceId. But before moving to the Kibana dashboard, I would like you to take a look
at the following figure. This is a sequence diagram that illustrates the communication flow
between sample microservices:

Distributed Logging and Tracing Chapter 9

[214]

There are two available methods that are exposed by order-service. The first is for
creating a new order and the second is for confirming it. The first POST / method, in fact,
calls endpoints from all other services directly from customer-service, product-
service, and account-service through customer-service. The second PUT
/{id} method integrates with only one endpoint from account-service.

The flow described previously may now be mapped by the log entries stored in ELK
Stack. When using Kibana as a log aggregator, together with fields generated by Spring
Cloud Sleuth, we may easily find entries by filtering them using trace or span IDs. Here's an
example, where we have discovered all the events related to a call of the POST
/ endpoint from order-service with the X-B3-TraceId field equal to
103ec949877519c2:

Here's an example similar to the previous one, but where all events stored during the
processing request are sent to the PUT /{id} endpoint. These entries have been also
filtered out by the X-B3-TraceId field, the value of which is equal to 7070b90bfb36c961:

Distributed Logging and Tracing Chapter 9

[215]

Here, you can see the full list of fields, which has been sent to Logstash by the microservice
application. The fields with the X- prefix have been included in the message by the Spring
Cloud Sleuth library:

Distributed Logging and Tracing Chapter 9

[216]

Integrating Sleuth with Zipkin
Zipkin is a popular, open source, distributed tracing system, which helps in gathering
timing data needed to analyze latency problems in microservices-based architecture. It is
able to collect, look up, and visualize data using a UI web console. The Zipkin UI provides a
dependency diagram showing how many traced requests were processed by all
applications within the system. Zipkin consists of four elements. I have already mentioned
one of them, Web UI. The second one is Zipkin collector, which is responsible for
validating, storing, and indexing all incoming trace data. Zipkin uses Cassandra as a default
backend store. It also natively supports Elasticsearch and MySQL. The last element is query
service, which provides a simple JSON API for finding and retrieving traces. It is mostly
consumed by Web UI.

Running the Zipkin server
We may run the Zipkin server locally in several ways. One of these ways involves using a
Docker container. The following command launches an in-memory server instance:

docker run -d --name zipkin -p 9411:9411 openzipkin/zipkin

After running the Docker container, the Zipkin API is available
at http://192.168.99.100:9411. Alternatively, you can start it using Java libraries and
the Spring Boot application. To enable Zipkin for your application, you should include the
following dependencies to your Maven pom.xml file, as shown in the following code
fragment. The default versions are managed by spring-cloud-dependencies. For our
example application, I have used Edgware.RELEASE Spring Cloud Release Train:

<dependency>
 <groupId>io.zipkin.java</groupId>
 <artifactId>zipkin-server</artifactId>
</dependency>
<dependency>
 <groupId>io.zipkin.java</groupId>
 <artifactId>zipkin-autoconfigure-ui</artifactId>
</dependency>

Distributed Logging and Tracing Chapter 9

[217]

I have added a new zipkin-service module to our example system. It is really simple.
The only thing that has to be implemented is the application main class, which is annotated
with @EnableZipkinServer. Thanks to this, the Zipkin instance is embedded in the
Spring Boot application:

@SpringBootApplication
@EnableZipkinServer
public class ZipkinApplication {

 public static void main(String[] args) {
 new
SpringApplicationBuilder(ZipkinApplication.class).web(true).run(args);
 }

}

In order to launch the Zipkin instance on its default port, we have to override the default
server port in the application.yml file. After launching the application, the Zipkin API is
available at http://localhost:9411:

spring:
 application:
 name: zipkin-service

server:
 port: ${PORT:9411}

Building the client application
If you would like to use both Spring Cloud Sleuth and Zipkin in your project, just add
starter spring-cloud-starter-zipkin to the dependencies. It enables integration with
Zipkin via the HTTP API. If you have started the Zipkin server as an embedded instance
inside the Spring Boot application, you don't have to provide any additional configuration
containing connection address. If you use the Docker container, you should override the
default URL in application.yml:

spring:
 zipkin:
 baseUrl: http://192.168.99.100:9411/

Distributed Logging and Tracing Chapter 9

[218]

You can always take advantage of integration with service discovery. If you have the
discovery client enabled through @EnableDiscoveryClient for your application with the
embedded Zipkin server, you may just set the property
spring.zipkin.locator.discovery.enabled to true. In that case, even if it is not
available under the default port, all applications will be able to localize it through the
registered name. You should also override the default Zipkin application name with the
spring.zipkin.baseUrl property:

spring:
 zipkin:
 baseUrl: http://zipkin-service/

By default, Spring Cloud Sleuth sends only a few selected incoming requests. It is
determined by the property spring.sleuth.sampler.percentage, the value of which
needs to be a double between 0.0 and 1.0. The sampling solution has been implemented
because data volumes exchanged between distributed systems can be sometimes very high.
Spring Cloud Sleuth provides sampler interface that can be implemented to take control
over the sampling algorithm. The default implementation is available in class
PercentageBasedSampler. If you would like to trace all the requests exchanged by your
applications, just declare AlwaysSampler bean. It may be useful for the test purposes:

@Bean
public Sampler defaultSampler() {
 return new AlwaysSampler();
}

Analyze data with the Zipkin UI
Let's go back for a moment to our example system. As I have mentioned before, the new
zipkin-service module has been added. I have also enabled Zipkin tracing for all the
microservices, including gateway-service. By default, Sleuth takes the value
spring.application.name as a span's service name. You may override that name with
the spring.zipkin.service.name property.

To successfully test our system with Zipkin, we have to start the microservices, gateway,
discovery, and Zipkin servers. To generate and send some test data, you could just run the
JUnit test implemented by the
pl.piomin.services.gateway.GatewayControllerTest class. It sends 100 messages
to order-service via gateway-service, available at
http://localhost:8080/api/order/**.

Distributed Logging and Tracing Chapter 9

[219]

Let's analyze the data collected from all the services by Zipkin. You may easily check it out
using its UI web console. All the traces are tagged with the service's name spans. If there are
five spans for the entry, it means that the request coming into the system has been
processed by five different services. You can see this in the following screenshot:

You may filter the entries with different criteria, such as the service name, span name, trace
ID, request time, or duration. Zipkin also visualizes failed requests and sorts them by
duration, in descending or ascending order:

Distributed Logging and Tracing Chapter 9

[220]

You can take a look at the details of every entry. Zipkin visualizes the flow between all the
microservices taking part in communication. It is considering timing the data of
every incoming request. You may uncover the reasons for latency in your system:

Distributed Logging and Tracing Chapter 9

[221]

Zipkin provides some additional interesting features. One of these is the ability to visualize
dependencies between applications. The following screenshot illustrates the
communication flow of our sample system:

You may check out how many messages have been exchanged between services just by
clicking on the relevant element:

Distributed Logging and Tracing Chapter 9

[222]

Integration via message broker
Integration with Zipkin via HTTP is not the only option. As is usual with Spring Cloud, we
may use a message broker as a proxy. There are two available brokers—RabbitMQ and
Kafka. The first of these can be included in the project by using the spring-rabbit
dependency, while the second can be included with spring-kafka. The default destination
name for both of these brokers is zipkin:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-zipkin</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.amqp</groupId>
 <artifactId>spring-rabbit</artifactId>
</dependency>

This feature also requires changes on the Zipkin server side. We have configured a
consumer that is listening for the data coming into the RabbitMQ or Kafka queue. To
achieve this, just include the following dependencies in your project. You still need to have
the zipkin-server and zipkin-autoconfigure-ui artifacts in the classpath:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-sleuth-zipkin-stream</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-stream-rabbit</artifactId>
</dependency>

Distributed Logging and Tracing Chapter 9

[223]

You should annotate the main application class with @EnableZipkinStreamServer
instead of @EnableZipkinServer. Fortunately, @EnableZipkinStreamServer is also
annotated with @EnableZipkinServer, which means that you may also use the standard
Zipkin server endpoints for collecting spans over HTTP, and for searching them with the UI
web console:

@SpringBootApplication
@EnableZipkinStreamServer
public class ZipkinApplication {

 public static void main(String[] args) {
 new
SpringApplicationBuilder(ZipkinApplication.class).web(true).run(args);
 }

}

Summary
Logging and tracing are usually not very important during development, but these are the
key features that are used in the maintenance of the system. In this chapter, I have placed
emphasis on the fields of development and operations. I have shown you how to integrate a
Spring Boot microservice application with Logstash and Zipkin in several ways. I have also
shown you some examples to illustrate how to enable Spring Cloud Sleuth features for an
application in order to make it easier to monitor calls between many microservices. After
reading this chapter, you should also be able to effectively use Kibana as a log aggregator
tool and Zipkin as a tracing tool for discovering bottlenecks in communication inside your
system.

Spring Cloud Sleuth, in conjunction with Elastic Stack and Zipkin, seems to be a very
powerful ecosystem, which removes any doubts you might have about problems with
monitoring systems that consist of many independent microservices.

10
Additional Configuration and

Discovery Features
We talked a great deal about service discovery and distributed configuration in Chapter 4,
Service Discovery, and Chapter 5, Distributed Configuration with Spring Cloud Config. We
discussed two solutions in detail. The first of them, Eureka, is provided by Netflix OSS and
has been adopted by Spring Cloud for service discovery. The second was the Spring Cloud
Config project dedicated only to a distributed configuration. However, there are some
interesting solutions on the market effectively combining both of these features. Currently,
Spring Cloud supports two of them:

Consul: This product is built by HashiCorp. It is a highly available, distributed
solution designed to connect and configure applications across dynamic,
distributed infrastructure. Consul is a rather complex product, and has multiple
components, but its main functionality is discovering and configuring services
across any infrastructure.
Zookeeper: This product is built by Apache Software Foundation. It is a
distributed, hierarchical key/value storage written in Java. It is designed to
maintain configuration information, naming, and distributed synchronization. In
contrast to Consul, it is more of a primitive key/value storage than a modern
service discovery tool. However, Zookeeper is still very popular, especially for
solutions based on the Apache Software stack.

Additional Configuration and Discovery Features Chapter 10

[225]

Support for two other popular products from that area is still in the development stage. The
following projects have still not been added to the official Spring Cloud Release Train:

Kubernetes: This is an open-source solution designed for automating
deployment, scaling, and management of containerized applications, originally
created by Google. This tool is enjoying great popularity right now. Recently, the
Docker platform has started supporting Kubernetes.
Etcd: This is a distributed reliable key/value storage for the most critical data of a
distributed system written in Go. It is used in production by many companies
and other software products, for example, Kubernetes.

In this chapter, I'm going to introduce only officially supported solutions, namely Consul
and Zookeeper. Kubernetes, which is much more than only a key/value storage or a service
registry, will be discussed in Chapter 14, Docker Support.

Using Spring Cloud Consul
The Spring Cloud Consul project provides integration for Consul and Spring Boot
applications through auto-configuration. By using the well-known Spring Framework
annotation style, we may enable and configure common patterns within microservice-based
environments. These patterns include service discovery using Consul agent, distributed
configuration using Consul key/value store, distributed events with Spring Cloud Bus, and
Consul Events. The project also supports a client-side load balancer based on Netflix's
Ribbon and an API gateway based on Netflix's Zuul. Before we start to discuss these
features, we first have to run and configure Consul agent.

Running Consul agent
We will begin with the simplest way of starting Consul agent on our local machines. The
standalone development mode may be easily set up with the Docker container. Here's the
command, which will start the Consul container from the official Hashicorp's image
available on Docker Hub:

docker run -d --name consul -p 8500:8500 consul

Additional Configuration and Discovery Features Chapter 10

[226]

After launching, Consul is available under the address http://192.168.99.100:8500. It
exposes RESTful HTTP API, that is, the main interface. All the API routes are prefixed with
/v1/. Of course, it is not required to use the API directly. There are some programming
libraries that can be used to consume the API more conveniently. One of them is consul-
api, the client written in Java and also used by Spring Cloud Consul internally. There is
also the web UI dashboard provided by Consul available under the same address as the
HTTP API, but on a different context path, /ui/. It allows for viewing all registered
services and nodes, viewing all health checks and their current status, and reading and
setting key/value data.

As I mentioned in the preface to this section, we are going to use three different features of
Consul—agent, events, and KV store. Each of them is represented by the group of
endpoints, respectively /agent, /event, and /kv. The most interesting agent endpoints are
those related with service registration. Here's a list of these endpoints:

Method Path Description

GET /agent/services

It returns a list of the services
registered with the local agent.
If Consul is run in a clustered
mode, that list may be different
than the list reported by the
/catalog endpoint before
synchronization performed
between cluster members.

PUT /agent/service/register

It adds a new service to the
local agent. The agent is
responsible for managing local
services, and for sending
updates to the servers to
perform synchronization for the
global catalog.

PUT /agent/service/deregister/:service_id

It removes a service with
service_id from the local
agent. The agent takes care of
de-registering the service with
the global catalog.

Additional Configuration and Discovery Features Chapter 10

[227]

The /kv endpoints are dedicated to managing simple key/value store, which is especially
useful for storing service configuration or other metadata. It is worth noting that each data
center has its own KV store, so in order to share it across multiple nodes, we should have
configured the Consul replicate daemon. Anyway, here's a list of the three endpoints for
managing the key/value store:

Method Path Description

GET /kv/:key
It returns the value for the given key name. If the requested key does
not exist, HTTP status 404 is returned as a response.

PUT /kv/:key
It is used for adding a new key to the store, or just to update the
existing one with a key name.

DELETE /kv/:key
It is the last CRUD method that is used for deleting a single key, or
all keys, with the same prefix.

Spring Cloud uses Consul Events for providing a dynamic configuration reload. There are
two simple API methods. The first of them, PUT /event/fire/:name, triggers a new
event. The second, GET /event/list, returns a list of events, which might be filtered by
name, tag, node, or service name.

Integration on the client side
To activate Consul service discovery in your project, you should include the starter
spring-cloud-starter-consul-discovery to the dependencies. If you would like to
enable distributed configuration with Consul, just include spring-cloud-starter-
consul-config. In some cases, you would probably use both these features in your client-
side application. Then, you should declare a dependency to the spring-cloud-starter-
consul-all artifact:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-consul-all</artifactId>
</dependency>

Additional Configuration and Discovery Features Chapter 10

[228]

By default, the Consul agent is expected to be available under the address
localhost:8500. If it is different for your application, you should provide the appropriate
address in the application.yml or bootstrap.yml file:

spring:
 cloud:
 consul:
 host: 192.168.99.100
 port: 18500

Service discovery
Discovery with Consul is enabled for the application by annotating the main class with the
generic Spring Cloud @EnableDiscoveryClient. You should remember that from
Chapter 4, Service Discovery, because there is no difference in comparison with Eureka. The
default service name is also taken from the ${spring.application.name} property.
Sample microservices that use Consul as a discovery server are available on GitHub in the
https://github.com/ piomin/ sample- spring- cloud- consul. git repository. The
architecture of the system is the same as for examples in some previous chapters. There are
four microservices, order-service, product-service, customer-service,
and account-service, and the API gateway is implemented in the module gateway-
service. For inter-service communication, we use the Feign client together with the
Ribbon load balancer:

@SpringBootApplication
@EnableDiscoveryClient
@EnableFeignClients
public class CustomerApplication {

 public static void main(String[] args) {
 new
SpringApplicationBuilder(CustomerApplication.class).web(true).run(args);
 }

}

https://github.com/piomin/sample-spring-cloud-consul.git
https://github.com/piomin/sample-spring-cloud-consul.git
https://github.com/piomin/sample-spring-cloud-consul.git
https://github.com/piomin/sample-spring-cloud-consul.git
https://github.com/piomin/sample-spring-cloud-consul.git
https://github.com/piomin/sample-spring-cloud-consul.git
https://github.com/piomin/sample-spring-cloud-consul.git
https://github.com/piomin/sample-spring-cloud-consul.git
https://github.com/piomin/sample-spring-cloud-consul.git
https://github.com/piomin/sample-spring-cloud-consul.git
https://github.com/piomin/sample-spring-cloud-consul.git
https://github.com/piomin/sample-spring-cloud-consul.git
https://github.com/piomin/sample-spring-cloud-consul.git
https://github.com/piomin/sample-spring-cloud-consul.git
https://github.com/piomin/sample-spring-cloud-consul.git
https://github.com/piomin/sample-spring-cloud-consul.git
https://github.com/piomin/sample-spring-cloud-consul.git
https://github.com/piomin/sample-spring-cloud-consul.git
https://github.com/piomin/sample-spring-cloud-consul.git

Additional Configuration and Discovery Features Chapter 10

[229]

By default, the Spring Boot application is registered in Consul with the instance ID
generated as a concatenation of values taken from the properties
spring.application.name, spring.profiles.active, server.port. In most cases, it
is enough to be sure that the ID is unique, but if the custom pattern is required, it may be
easily set with the spring.cloud.consul.discovery.instanceId property:

spring:
 cloud:
 consul:
 discovery:
 instanceId:
${spring.application.name}:${vcap.application.instance_id:${spring.applicat
ion.instance_id:${random.value}}}

After launching all the sample microservices, take a look at the Consul UI dashboard. You
should see there are four different services registered, like in the following screenshot:

Alternatively, you may check out a list of registered services using the RESTful HTTP API
endpoint GET /v1/agent/services. Here's the fragment of the JSON response:

"customer-service-zone1-8092": {
 "ID": "customer-service-zone1-8092",
 "Service": "customer-service",
 "Tags": [],
 "Address": "minkowp-l.p4.org",
 "Port": 8092,
 "EnableTagOverride": false,
 "CreateIndex": 0,
 "ModifyIndex": 0
},
"order-service-zone1-8090": {
 "ID": "order-service-zone1-8090",
 "Service": "order-service",
 "Tags": [],

Additional Configuration and Discovery Features Chapter 10

[230]

 "Address": "minkowp-l.p4.org",
 "Port": 8090,
 "EnableTagOverride": false,
 "CreateIndex": 0,
 "ModifyIndex": 0
}

Now, you may easily test the whole system by sending some test requests to order-
service using the pl.piomin.services.order.OrderControllerTest JUnit test class.
Everything should work fine, and the same as for discovery with Eureka.

Health check
Consul checks out the health status of every registered instance by calling the /health
endpoint. If you do not wish to provide the Spring Boot Actuator library in the classpath, or
there are some problems with your service, it will be visible on the web dashboard:

If the health check endpoint is available under a different context path for any reason, you
may override that path with the spring.cloud.consul.discovery.healthCheckPath
property. There is also the possibility to change the status refresh interval by defining
healthCheckInterval with a pattern, such as, for example, 10s for seconds or 2m for
minutes.

spring:
 cloud:
 consul:
 discovery:
 healthCheckPath: admin/health
 healthCheckInterval: 20s

Additional Configuration and Discovery Features Chapter 10

[231]

Zones
I assume you remember our discussion about zoning mechanisms available for discovery
with Eureka in Chapter 4, Service Discovery. It is useful when the hosts are placed in a
different location, and you would prefer communication between instances registered in the
same zone. The official documentation of the Spring Cloud Consul (http:/ /cloud. spring.
io/spring-cloud- static/ spring- cloud- consul/ 1.2. 3.RELEASE/ single/ spring- cloud-
consul.html) says nothing about such a solution, which fortunately doesn't mean it is not
implemented. Spring Cloud provides a zoning mechanism based on Consul tags. The
default zone for the application may be configured with the
spring.cloud.consul.discovery.instanceZone property. It sets the tag configured in
the spring.cloud.consul.discovery.defaultZoneMetadataName property with the
passed value. The default metadata tag name is zone.

Let's go back to the sample applications. I have extended all the configuration files with two
profiles, zone1 and zone2. Here's the bootstrap.yml file for order-service:

spring:
 application:
 name: order-service
 cloud:
 consul:
 host: 192.168.99.100
 port: 8500

spring:
 profiles: zone1
 cloud:
 consul:
 discovery:
 instanceZone: zone1
server:
 port: ${PORT:8090}

spring:
 profiles: zone2
 cloud:
 consul:
 discovery:
 instanceZone: zone2
server:
 port: ${PORT:9090}

http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html
http://cloud.spring.io/spring-cloud-static/spring-cloud-consul/1.2.3.RELEASE/single/spring-cloud-consul.html

Additional Configuration and Discovery Features Chapter 10

[232]

There are two running instances of every microservice registered in two different zones.
After building the whole project with the mvn clean install command, you should
launch the Spring Boot application with the active profile zone1 or zone2, for example,
java -jar --spring.profiles.active=zone1 target/order-service-1.0-

SNAPSHOT.jar. You can see the full list of registered instances tagged with the zone in the
Nodes section. The view from the Consul dashboard is visible in the following screenshot:

The last element of our architecture is an API gateway based on Zuul. We also run two
instances of gateway-service in different zones. We would like to omit registration in
Consul and allow only a configuration to be fetched, which is used by the Ribbon client
while performing load balancing. Here's the fragment of the bootstrap.yml file of
gateway-service. Registration has been disabled by setting the properties
spring.cloud.

consul.discovery.register and spring.cloud.consul.discovery.
registerHealthCheck to false:

spring:
 profiles: zone1
 cloud:
 consul:
 discovery:
 instanceZone: zone1
 register: false
 registerHealthCheck: false

Additional Configuration and Discovery Features Chapter 10

[233]

server:
 port: ${PORT:8080}

spring:
 profiles: zone2
 cloud:
 consul:
 discovery:
 instanceZone: zone2
 register: false
 registerHealthCheck: false
server:
 port: ${PORT:9080}

Client settings customization
The Spring Cloud Consul client may be customized through the properties in the
configuration file. Some of those settings have already been introduced in the previous
sections in this chapter. Other useful settings have been listed in the following table. All of
them are prefixed with spring.cloud.consul.discovery:

Property Default
value Description

enabled true
It sets whether Consul discovery is enabled or
disabled for an application

failFast true
It throws exceptions during service registration if
true; otherwise, it logs warnings

hostname - It sets the hostname of the instance when registering
in Consul

preferIpAddress false
It forces an application to send its IP address instead
of the hostname during registration

scheme http
It sets whether the service is available under HTTP or
HTTPS protocol

serverListQueryTags - It allows filtering services by a single tag

serviceName - It overrides the service name, which by default takes
from the property spring.application.name

Additional Configuration and Discovery Features Chapter 10

[234]

tags - It sets the list tags with values to use when
registering the service

Running in clustered mode
Until now, we were always launching a single, standalone instance of Consul. As far as this
is a suitable solution in development mode, it is not enough for a production. There, we
would like to have a scalable, production-grade service discovery infrastructure, consisting
of some nodes working together inside the cluster. Consul provides support for clustering
based on a gossip protocol used for communication between members and a Raft consensus
protocol for a leadership election. I wouldn't like to go into the details of that process, but
some basics about Consul architecture should be clarified.

We have already talked about Consul agent, but what it is exactly and what is its role
weren't explained. An agent is the long-running daemon on every member of the Consul
cluster. It may be run in either client or server mode. All agents are responsible for running
checks and keeping services registered, in different nodes and in sync, globally.

Our main goal in this section is to set up and configure the Consul cluster using its Docker
image. First, we will start the container, which acts as a leader of the cluster. There is only
one difference in the currently used Docker command than for the standalone Consul
server. We have set the environment variable CONSUL_BIND_INTERFACE=eth0 in order to
change the network address of the cluster agent from 127.0.0.1 to the one available for
other member containers. My Consul server is now running at the internal address
172.17.0.2. To check out what your address is (it should be the same) you may run the
command docker logs consul. The appropriate information is logged just after
container startup:

docker run -d --name consul-1 -p 8500:8500 -e CONSUL_BIND_INTERFACE=eth0
consul

Knowledge of that address is very important, since now we have to pass it to every member
container startup command as a cluster join parameter. We also bind it to all interfaces by
setting 0.0.0.0 as a client address. Now, we may easily expose the client agent API
outside the container using the -p parameter:

docker run -d --name consul-2 -p 8501:8500 consul agent -server -
client=0.0.0.0 -join=172.17.0.2
docker run -d --name consul-3 -p 8502:8500 consul agent -server -
client=0.0.0.0 -join=172.17.0.2

Additional Configuration and Discovery Features Chapter 10

[235]

After running two containers with Consul agent, you may check out the full list of cluster
members by executing the following command on the leader's container:

The Consul server agent is exposed on the 8500 port, while member agents on ports 8501
and 8502. Even if the microservice instance registers itself to a member agent, it is visible to
all members of a cluster:

We may easily change the default Consul agent address for the Spring Boot application by
changing the configuration properties:

spring:
 application:
 name: customer-service
 cloud:
 consul:
 host: 192.168.99.100
 port: 8501

Additional Configuration and Discovery Features Chapter 10

[236]

Distributed configuration
An application with Spring Cloud Consul Config library in the classpath fetches
configuration from the Consul key/value store during the bootstrap phase. That is, by
default, stored in the /config folder. When we are creating a new key first, we have to set
a folder path. That path is then used for identifying the key and assigning it to the
application. Spring Cloud Config tries to resolve properties stored in the folder based on the
application name and active profiles. Assuming we have the spring.application.name
property set to order-service in the bootstrap.yml file and the
spring.profiles.active running argument set to zone1, it tries to locate the property
sources in the following order: config/order-service,zone1/, config/order-
service/, config/application,zone1/, config/application/. All folders with the
prefix config/application are the default configuration dedicated to all the applications
that do not have service-specific property sources.

Managing properties in Consul
The most comfortable way to add a single key to Consul is through its web dashboard. The
other way is by using the /kv HTTP endpoint, which has been already described at the
beginning of this chapter. When using a web console, you have to go to the section
KEY/VALUE. Then, you may view all the currently existing keys and also create a new one
by providing its full path and value, in any format. That feature is visualized in the
following screenshot:

Additional Configuration and Discovery Features Chapter 10

[237]

Every single key may be updated or deleted:

To access a sample application that uses a property source stored in Consul, you should
switch to the branch configuration in the same repository as the previous sample. I have
created keys, server.port and spring.cloud.consul.discovery.instanceZone, for
every microservice instead of defining it in the application.yml or bootstrap.yml files.

Client customization
The Consul Config client may be customized with the following properties, which are
prefixed with spring.cloud.consul.config:

enabled: By setting this property to false, you may disable Consul Config. It is
useful if you include spring-cloud-starter-consul-all, which enables both
discovery and distributed configuration.
fail-fast: This sets whether to throw exceptions during configuration lookup
or log warnings in case of connection failure. Setting it to true allows the
application to continue startup normally.
prefix: This sets the base folder for all the configuration values. By default, it is
/config.
defaultContext: This sets the folder name used by all applications that do not
have a specific configuration. By default, it is /application. For example, if you
override it to app, the properties should be searched in the folder /config/apps

Additional Configuration and Discovery Features Chapter 10

[238]

profileSeparator: By default, a profile is separated with an application name
using a comma. That property allows you to override the value of that separator.
For example, if you set it to ::, you should create the folder /config/order-
service::zone1/. Here's an example:

spring:
 cloud:
 consul:
 config:
 enabled: true
 prefix: props
 defaultContext: app
 profileSeparator: '::'

Sometimes, you would like to store a blob of properties created in a YAML or Properties
format, in contrast to individual key/value pairs. In that case, you should set the
spring.cloud.consul.config.format property to YAML or PROPERTIES. Then, the
application would look for configuration properties located inside a folder with the data
key, for example, config/order-service,zone1/data, config/order-service/data,
config/application,zone1/data, or config/application/data. The default data
key may be changed using the spring.cloud.consul.config.data-key property.

Watching configuration changes
The sample that has been discussed in the previous section loads the configuration on
startup of the application. If you would like that configuration to be reloaded, you should
send an HTTP POST to the /refresh endpoint. In order to examine how such a refresh
would work for our application, we modify the fragment of application code responsible for
creating some test data. Until now, it has been provided as a repository, @Bean, with some
hardcoded in-memory objects. Take a look at the following code:

@Bean
CustomerRepository repository() {
 CustomerRepository repository = new CustomerRepository();
 repository.add(new Customer("John Scott", CustomerType.NEW));
 repository.add(new Customer("Adam Smith", CustomerType.REGULAR));
 repository.add(new Customer("Jacob Ryan", CustomerType.VIP));
 return repository;
}

Additional Configuration and Discovery Features Chapter 10

[239]

Our goal is to move the code visible here to the configuration store using the
Consul key/value feature. To achieve this, we have to create three keys per object, with
names id, name, and type. The configuration is loaded from the properties with the
repository prefix:

@RefreshScope
@Repository
@ConfigurationProperties(prefix = "repository")
public class CustomerRepository {

 private List<Customer> customers = new ArrayList<>();

 public List<Customer> getCustomers() {
 return customers;
 }

 public void setCustomers(List<Customer> customers) {
 this.customers = customers;
 }
 // ...
}

The next step is to define the appropriate keys for each service using the Consul web
dashboard. Here's the sample configuration for the list consisting of Customer objects. The
list is initialized on application startup:

Additional Configuration and Discovery Features Chapter 10

[240]

You may change the value of each property. The update event would be automatically sent
to application thanks to Consul's ability to watch a key prefix. If there is a new
configuration data, the refresh event is published to the queue. All queues and exchanges
are created on application startup by Spring Cloud Bus, which is included in the project as a
dependency of spring-cloud-starter-consul-all. If your application receives such an
event, it prints the following information in logs:

Refresh keys changed: [repository.customers[1].name]

Using Spring Cloud Zookeeper
Spring Cloud supports various products used as a part of the microservices architecture.
You can find this out when reading this chapter where Consul has been compared with
Eureka as a discovery tool, and with Spring Cloud Config as a distributed configuration
tool. Zookeeper is another solution that might serve as an alternative choice to those listed
previously. As with Consul, it can be used for both service discovery and distributed
configuration. To enable Spring Cloud Zookeeper in the project, you should include the
spring-cloud-starter-zookeeper-discovery starter for the service discovery feature,
or spring-cloud-starter-zookeeper-config for the configuration server feature.
Alternatively, you may declare a spring-cloud-starter-zookeeper-all dependency
that activates all functionalities for the application. Don't forget to include spring-boot-
starter-web, which is still required to provide web functionality:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-zookeeper-all</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
</dependency>

Zookeeper connection settings are auto-configured. By default, the client tries to connect to
localhost:2181. In order to override it, you should define the
spring.cloud.zookeeper.connect-string property with the current server network
address:

spring:
 cloud:
 zookeeper:
 connect-string: 192.168.99.100:2181

Additional Configuration and Discovery Features Chapter 10

[241]

As with Spring Cloud Consul, Zookeeper supports all the most popular communication
libraries provided by Spring Cloud Netflix, such as Feign, Ribbon, Zuul, or Hystrix. Before
we start working on the sample implementation, first we have to start the Zookeeper
instance.

Running Zookeeper
As you probably guessed, I'm going to launch Zookeeper on the local machine using its
Docker image. The following command starts the Zookeeper server instance. Since it fails
fast, the best approach is to always restart it:

docker run -d --name zookeeper --restart always -p 2181:2181 zookeeper

In contrast to previously discussed solutions in this area, such as Consul or Eureka,
Zookeeper doesn't provide a simple RESTful API or a web management console that allows
us to easily manage it. It has an official API binding for Java and C. We may also use its
command line interface, which can be easily started within the Docker container. The
command visible here starts the container with the command line client, and links it to the
Zookeeper server container:

docker run -it --rm --link zookeeper:zookeeper zookeeper zkCli.sh -server
zookeeper

Zookeeper CLI allows for performing some useful operations, such as the following:

Creating znodes: To create a znode with the given path, use the command
create /path /data.
Getting data: The command get /path returns the data and metadata
associated with the znode.
Watching znode for changes: This shows a notification if znode or znode's
children data changes. Watching can only be set with the get command.
Setting data: To set znode data, use the command set /path /data.
Creating children of a znode: This command is similar to that used for creating a
single znode. The only difference is that the path of the child znode includes the
parent path create /parent/path/subnode/path /data.
Listing children of a znode: This may be displayed using the ls /path
command.
Checking status: This may be checked out with the command stat /path.
Status describes the metadata of a specified znode, like timestamp or version
number.

Additional Configuration and Discovery Features Chapter 10

[242]

Removing/deleting a znode: The command rmr /path removes the znode with
all its children.

In that fragment, the term znode has appeared for the first time. When storing data,
Zookeeper uses a tree structure, where each node is called a znode. The names of those
znodes are based on the path taken from the root node. Each node has a name. It can be
accessed using the absolute path that begins from the root node. This concept is similar to
Consul folders, and has been used for creating keys in the key/value store.

Service discovery
The most popular Java client library for Apache Zookeeper is Apache Curator. It provides
an API framework and utilities to make using Apache Zookeeper much easier. It also
includes recipes for common-use cases and extensions, such as service discovery or Java 8
asynchronous DSL. Spring Cloud Zookeeper leverages one such extension for service
discovery implementation. The usage of the Curator library by Spring Cloud Zookeeper is
completely transparent for the developer, so I wouldn't like to describe it in more detail
here.

Client implementation
The usage on the client side is the same as for other Spring Cloud projects related to service
discovery. The application main class, or @Configuration class, should be annotated with
@EnableDiscoveryClient. The default service name, instance ID, and port are taken from
spring.application.name, the Spring Context ID, and server.port, respectively.
Sample application source code is available in the GitHub repository at https:/ /github.
com/piomin/sample- spring- cloud- zookeeper. git. Fundamentally, it is no different than
the sample system introduced for Consul, other than the dependency on Spring Cloud
Zookeeper Discovery. It still consists of four microservices, which communicate with each
other. Now, after cloning the repository, build it with the mvn clean install command.
Then, run every service with an active profile name using java -jar command, for
example, java -jar --spring.profiles.active=zone1 order-
service/target/order-service-1.0-SNAPSHOT.jar.

https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git

Additional Configuration and Discovery Features Chapter 10

[243]

You may see the list of registered services and instances by using the CLI commands ls and
get. Spring Cloud Zookeeper, by default, registers all instances in the /services root
folder. It may be overridden with the spring.cloud.zookeeper.discovery.root
property. You may check out a list of currently registered services by using the Docker
container with the command-line client:

Zookeeper dependencies
Spring Cloud Zookeeper has one additional feature, called Zookeeper dependencies.
Dependencies are to be understood as the other applications registered in Zookeeper, which
are called via the Feign client or the Spring RestTemplate. These dependencies may be
provided as properties of the application. The functionality is enabled through auto-
configuration after you include the spring-cloud-starter-zookeeper-discovery
starter to the project. It may be disabled by setting the
spring.cloud.zookeeper.dependency.enabled property to false.

The configuration of the Zookeeper Dependency mechanism is provided with
spring.cloud.zookeeper.dependencies.* properties. Here's the fragment of the
bootstrap.yml file from order-service. This service integrates with all other available
services:

spring:
 application:
 name: order-service
 cloud:
 zookeeper:
 connect-string: 192.168.99.100:2181
 dependency:
 resttemplate:
 enabled: false
 dependencies:
 account:
 path: account-service

Additional Configuration and Discovery Features Chapter 10

[244]

 loadBalancerType: ROUND_ROBIN
 required: true
 customer:
 path: customer-service
 loadBalancerType: ROUND_ROBIN
 required: true
 product:
 path: product-service
 loadBalancerType: ROUND_ROBIN
 required: true

Let's take a closer look at the preceding configuration. The root property of every called
service is the alias, which may then be used as the service name by the Feign client or
@LoadBalanced RestTemplate:

@FeignClient(name = "customer")
public interface CustomerClient {

 @GetMapping("/withAccounts/{customerId}")
 Customer findByIdWithAccounts(@PathVariable("customerId") Long
customerId);

}

The next very important field in the configuration is the path. It sets the path under which
the dependency is registered in Zookeeper. So, if that property has the value customer-
service, it means Spring Cloud Zookeeper tries to look up the appropriate service znode
under the path /services/customer-service. There are some other properties that may
customize the behavior of the client. One of them is loadBalancerType, used for applying
the load balancing strategy. We can choose between three available
strategies—ROUND_ROBIN, RANDOM, and STICKY. I also set the required property to true
for every service mapping. Now, if your application can’t detect the required dependency
during boot time, it fails to start. Spring Cloud Zookeeper dependencies also allow
managing API versions (the properties contentTypeTemplate and versions), and
request headers (the headers property).

Additional Configuration and Discovery Features Chapter 10

[245]

By default, Spring Cloud Zookeeper enables RestTemplate for communication with
dependencies. In the sample application available in branch dependencies (https:/ /
github.com/piomin/ sample- spring- cloud- zookeeper/ tree/ dependencies), we use the
Feign client instead of @LoadBalanced RestTemplate. In order to disable that feature, we
should set the property
spring.cloud.zookeeper.dependency.resttemplate.enabled to false.

Distributed configuration
Configuration management with Zookeeper is pretty similar to that described for Spring
Cloud Consul Config. By default, all the property sources are stored in the /config folder
(or znode in Zookeeper nomenclature). Let me point it out one more time. Assuming we
have the spring.application.name property set to order-service in the
bootstrap.yml file, and the spring.profiles.active running argument set to zone1,
it tries to locate the property sources in the following order: config/order-
service,zone1/, config/order-service/, config/application,zone1/,
config/application/. Properties stored in the folder with the prefix
config/application in the namespace are available for all applications that use
Zookeeper for distributed configuration.

To access the sample application, you need to switch to the branch configuration in the
https://github.com/ piomin/ sample- spring- cloud- zookeeper. git repository. The
configuration defined in the local application.yml or bootstrap.yml file, visible here,
has now been moved to Zookeeper:

spring:
 profiles: zone1
server:
 port: ${PORT:8090}

spring:
 profiles: zone2
server:
 port: ${PORT:9090}

https://github.com/piomin/sample-spring-cloud-zookeeper/tree/dependencies
https://github.com/piomin/sample-spring-cloud-zookeeper/tree/dependencies
https://github.com/piomin/sample-spring-cloud-zookeeper/tree/dependencies
https://github.com/piomin/sample-spring-cloud-zookeeper/tree/dependencies
https://github.com/piomin/sample-spring-cloud-zookeeper/tree/dependencies
https://github.com/piomin/sample-spring-cloud-zookeeper/tree/dependencies
https://github.com/piomin/sample-spring-cloud-zookeeper/tree/dependencies
https://github.com/piomin/sample-spring-cloud-zookeeper/tree/dependencies
https://github.com/piomin/sample-spring-cloud-zookeeper/tree/dependencies
https://github.com/piomin/sample-spring-cloud-zookeeper/tree/dependencies
https://github.com/piomin/sample-spring-cloud-zookeeper/tree/dependencies
https://github.com/piomin/sample-spring-cloud-zookeeper/tree/dependencies
https://github.com/piomin/sample-spring-cloud-zookeeper/tree/dependencies
https://github.com/piomin/sample-spring-cloud-zookeeper/tree/dependencies
https://github.com/piomin/sample-spring-cloud-zookeeper/tree/dependencies
https://github.com/piomin/sample-spring-cloud-zookeeper/tree/dependencies
https://github.com/piomin/sample-spring-cloud-zookeeper/tree/dependencies
https://github.com/piomin/sample-spring-cloud-zookeeper/tree/dependencies
https://github.com/piomin/sample-spring-cloud-zookeeper/tree/dependencies
https://github.com/piomin/sample-spring-cloud-zookeeper/tree/dependencies
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git
https://github.com/piomin/sample-spring-cloud-zookeeper.git

Additional Configuration and Discovery Features Chapter 10

[246]

The required znodes have to be created using CLI. Here's the list of Zookeeper commands
that create znodes with the given path. I have used the create /path /data command:

Summary
In this chapter, I have guided you through the main features of two Spring Cloud
projects—Consul and Zookeeper. I haven't focused only on Spring Cloud functionalities,
but have also given you the instructions on how to start, configure, and maintain instances
of its tools. We have discussed even more advanced scenarios, such as setting up a cluster
consisting of numerous members using Docker. There, you had a chance to see the true
power of Docker as a development tool. It allowed us to initialize a cluster that consists of
three members just by using three simple commands, without any additional configuration.

Consul seems to be an important alternative to Eureka as a discovery server when using
Spring Cloud. I cannot say the same about Zookeeper. As you have probably noticed, I have
written much more about Consul than Zookeeper. Also, Spring Cloud treats Zookeeper as a
second choice. It still does not have a zoning mechanism or watching capability for
configuration changes that are implemented, in contrast to Spring Cloud Consul. You
shouldn't be surprised by this. Consul is a modern solution designed in order to meet needs
of the newest architectures, such as microservices-based systems, while Zookeeper is a
key/value store adopted as a service discovery tool for applications running in a distributed
environment. However, it is worth considering this tool if you use an Apache Foundation
stack in your system. Thanks to that, you may take advantage of integration between
Zookeeper and other Apache components, such as Camel or Karaf, and easily discover
services created using the Spring Cloud framework.

Additional Configuration and Discovery Features Chapter 10

[247]

To conclude, after reading this chapter, you should be able to use the main features of
Spring Cloud Consul and Spring Cloud Zookeeper in your microservice-based architecture.
You should also know the major advantages and disadvantages of all available discovery
and configuration tools within Spring Cloud, in order to choose the most appropriate
solution for your system.

11
Message-Driven Microservices

We have already discussed many features around microservice-based architecture provided
by Spring Cloud. However, we have always been considering synchronous, RESTful-based
inter-service communication. As you probably remember from Chapter 1, Introduction to
Microservices, there are some other popular communication styles, such as publish/subscribe
or asynchronous, event-driven point-to-point messaging. In this chapter, I would like to
introduce a different approach to microservices than that presented in previous chapters.
We will talk in more detail about how you can work with Spring Cloud Stream in order to
build message-driven microservices.

Topics we will cover in this chapter include:

The main terms and concepts related to Spring Cloud Stream
Using RabbitMQ and Apache Kafka message brokers as binders
The Spring Cloud Stream programming model
Advanced configurations of binding, producers, and consumers
Implementation of scaling, grouping, and partitioning mechanisms
Multiple binder support

Learning about Spring Cloud Stream
Spring Cloud Stream is built on top of Spring Boot. It allows us to create standalone,
production-grade Spring applications and uses Spring Integration that helps in
implementing communication with message brokers. Every application created with Spring
Cloud Stream integrates with other microservices through input and output channels.
Those channels are connected to external message brokers via middleware-specific binder
implementations. There are two built-in binder implementations available—Kafka and
Rabbit MQ.

Message-Driven Microservices Chapter 11

[249]

Spring Integration extends the Spring programming model to support the well-known
Enterprise Integration Patterns (EIP). EIP defines a number of components that are
typically used for orchestration in distributed systems. You have probably heard about
patterns such as message channels, routers, aggregators, or endpoints. A primary goal of
the Spring Integration framework is to provide a simple model for building Spring
applications based on EIP. If you are interested in more details about EIP, please refer to the
website at http://www. enterpriseintegrationpatterns. com/ patterns/ messaging/ toc.
html.

Building a messaging system
I think that the most suitable way to introduce main Spring Cloud Stream features is
through the sample microservices-based system. We will lightly modify an architecture of
the system that has been discussed in the previous chapters. Let me provide a short recall of
that architecture. Our system is responsible for processing orders. It consists of four
independent microservices. The order-service microservice first communicates with
product-service in order to collect the details of the selected products, and then with
customer-service to retrieve information about the customer and his accounts. Now, the
orders sent to order-service will be processed asynchronously. There is still an exposed
RESTful HTTP API endpoint for submitting new orders by the clients, but they are not
processed by the application. It only saves new orders, sends it to a message broker, and
then responds to the client that the order has been approved for processing. The main goal
of the currently discussed example is to show a point-to-point communication, so the
messages would be received by only one application, account-service. Here's a diagram
that illustrates the sample system architecture:

http://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html
http://www.enterpriseintegrationpatterns.com/patterns/messaging/toc.html

Message-Driven Microservices Chapter 11

[250]

After receiving a new message, account-service calls the method exposed by product-
service in order to find out its price. It withdraws money from the account and then sends
back the response to order-service with the current order status. That message is also
sent through the message broker. The order-service microservice receives the message
and updates the order status. If the external client would like to check the current status
order, it may call the endpoint exposing the find method with the order details. The
sample application's source code is available on GitHub (https:/ /github. com/ piomin/
sample-spring-cloud- messaging. git).

Enabling Spring Cloud Stream
The recommended way to include Spring Cloud Stream in the project is with a dependency
management system. Spring Cloud Stream has an independent release trains management
in relation to the whole Spring Cloud framework. However, if we have declared spring-
cloud-dependencies in the Edgware.RELEASE version in the dependencyManagement
section, we wouldn't have to declare anything else in pom.xml. If you prefer to use only the
Spring Cloud Stream project, you should define the following section:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream-dependencies</artifactId>
 <version>Ditmars.SR2</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

The next step is to add spring-cloud-stream to the project dependencies. I also
recommend you include at least the spring-cloud-sleuth library to provide sending
messaging with the same traceId as the source request incoming to order-service via
the Zuul gateway:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-sleuth</artifactId>
</dependency>

https://github.com/piomin/sample-spring-cloud-messaging.git
https://github.com/piomin/sample-spring-cloud-messaging.git
https://github.com/piomin/sample-spring-cloud-messaging.git
https://github.com/piomin/sample-spring-cloud-messaging.git
https://github.com/piomin/sample-spring-cloud-messaging.git
https://github.com/piomin/sample-spring-cloud-messaging.git
https://github.com/piomin/sample-spring-cloud-messaging.git
https://github.com/piomin/sample-spring-cloud-messaging.git
https://github.com/piomin/sample-spring-cloud-messaging.git
https://github.com/piomin/sample-spring-cloud-messaging.git
https://github.com/piomin/sample-spring-cloud-messaging.git
https://github.com/piomin/sample-spring-cloud-messaging.git
https://github.com/piomin/sample-spring-cloud-messaging.git
https://github.com/piomin/sample-spring-cloud-messaging.git
https://github.com/piomin/sample-spring-cloud-messaging.git
https://github.com/piomin/sample-spring-cloud-messaging.git
https://github.com/piomin/sample-spring-cloud-messaging.git
https://github.com/piomin/sample-spring-cloud-messaging.git

Message-Driven Microservices Chapter 11

[251]

To enable connectivity to a message broker for your application, annotate the main class
with @EnableBinding. The @EnableBinding annotation takes one or more interfaces as
parameters. You may choose between three interfaces provided by Spring Cloud Stream:

Sink: This is used for marking a service that receives messages from the inbound
channel.
Source: This is used for sending messages to the outbound channel.
Processor: This can be used in case you need both an inbound channel and an
outbound channel, as it extends the Source and Sink interfaces. Because order-
service sends messages, as well as receives them, its main class has been
annotated with @EnableBinding(Processor.class).

Here's the main class of order-service that enables Spring Cloud Stream binding:

@SpringBootApplication
@EnableDiscoveryClient
@EnableBinding(Processor.class)
public class OrderApplication {

 public static void main(String[] args) {
 new
SpringApplicationBuilder(OrderApplication.class).web(true).run(args);
 }

}

Declaring and binding channels
Thanks to the use of Spring Integration, the application is independent from a message
broker implementation included in the project. Spring Cloud Stream automatically detects
and uses a binder found on the classpath. It means we may choose different types of
middleware, and use it with the same code. All the middleware-specific settings can be
overridden through external configuration properties in the form supported by Spring Boot,
such as application arguments, environment variables, or just the application.yml file.
As I have mentioned before, Spring Cloud Stream provides binder implementations for
Kafka and Rabbit MQ. To include support for Kafka, you add the following dependency to
the project:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-stream-kafka</artifactId>
</dependency>

Message-Driven Microservices Chapter 11

[252]

Personally, I prefer RabbitMQ, but in this chapter, we will create a sample for both
RabbitMQ and Kafka. Since we have already discussed RabbitMQ's features, I'll begin with
the samples based on RabbitMQ:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-stream-rabbit</artifactId>
</dependency>

After enabling Spring Cloud Stream and including the binder implementation, we may
create senders and listeners. Let's begin with the producer responsible for sending new
order messages to the broker. This is implemented by OrderSender in order-service,
which uses the Output bean for sending messages:

@Service
public class OrderSender {

 @Autowired
 private Source source;

 public boolean send(Order order) {
 return
this.source.output().send(MessageBuilder.withPayload(order).build());
 }

}

That bean is called by the controller, which exposes the HTTP method that allows
submitting new orders:

@RestController
public class OrderController {

 private static final Logger LOGGER =
LoggerFactory.getLogger(OrderController.class);
 private ObjectMapper mapper = new ObjectMapper();

 @Autowired
 OrderRepository repository;
 @Autowired
 OrderSender sender;

 @PostMapping
 public Order process(@RequestBody Order order) throws
JsonProcessingException {
 Order o = repository.add(order);
 LOGGER.info("Order saved: {}", mapper.writeValueAsString(order));

Message-Driven Microservices Chapter 11

[253]

 boolean isSent = sender.send(o);
 LOGGER.info("Order sent: {}",
mapper.writeValueAsString(Collections.singletonMap("isSent", isSent)));
 return o;
 }

}

The message with information about the order has been sent to message broker. Now, it
should be received by account-service. To make this happen, we have to declare the
receiver, which is listening for messages incoming to the queue created on the message
broker. To receive the message with the order data, we just have to annotate the method
that takes the Order object as a parameter with @StreamListener:

@SpringBootApplication
@EnableDiscoveryClient
@EnableBinding(Processor.class)
public class AccountApplication {

 @Autowired
 AccountService service;

 public static void main(String[] args) {
 new
SpringApplicationBuilder(AccountApplication.class).web(true).run(args);
 }

 @Bean
 @StreamListener(Processor.INPUT)
 public void receiveOrder(Order order) throws JsonProcessingException {
 service.process(order);
 }

}

Now you may launch the sample applications. But, there is one important detail that has
not yet been mentioned. Both those applications try to connect with RabbitMQ running on
localhost, and both of them treat the same exchanges as an input or output. It is a problem,
since order-service sends the message to the output exchange, while account-service
listens for messages incoming to its input exchange. These are different exchanges, but first
things first. Let's begin with running a message broker.

Message-Driven Microservices Chapter 11

[254]

Customizing connectivity with the RabbitMQ
broker
We have already started the RabbitMQ broker using its Docker image in the previous
chapters, so it is worth reminding ourselves of that command. It starts a standalone Docker
container with RabbitMQ, available under port 5672, and its UI web console, available
under port 15672:

docker run -d --name rabbit -p 15672:15672 -p 5672:5672 rabbitmq:management

The default RabbitMQ address should be overridden with the spring.rabbit.*
properties inside the application.yml file:

spring:
 rabbitmq:
 host: 192.168.99.100
 port: 5672

By default, Spring Cloud Stream creates a topic exchange for communication. This type of
exchange better suits the publish/subscribe interaction model. We may override it with the
exchangeType property, as in the fragment of application.yml, as shown here:

spring:
 cloud:
 stream:
 rabbit:
 bindings:
 output:
 producer:
 exchangeType: direct
 input:
 consumer:
 exchangeType: direct

Message-Driven Microservices Chapter 11

[255]

The same configuration settings should be provided for both order-service and
account-service. You don't have to create any exchange manually. If it does not exist, it
is automatically created by the application during startup. Otherwise, the application just
binds to that exchange. By default, it creates exchanges with names input for the @Input
channel, and output for the @Output channel. These names may be overridden with the
spring.cloud.stream.bindings.output.destination and
spring.cloud.stream.bindings.input.destination properties, where input and
output are the names of the channels. This configuration option is not just a nice addition to
the Spring Cloud Stream features, but the key setting used for correlating the input and
output destinations in inter-service communication. The explanation for why that happens
is very simple. In our example, order-service is the message source application, so it
sends messages to the output channel. Then, on the other hand, account-service listens
for incoming messages on the input channel. If the order-service output channel and
account-service input channel do not refer to the same destination on the broker, the
communication between them would fail. In conclusion, I decided to use a destination with
the names orders-out and orders-in, and I have provided the following configuration
for order-service:

spring:
 cloud:
 stream:
 bindings:
 output:
 destination: orders-out
 input:
 destination: orders-in

The similar configuration settings for account-service are reversed:

spring:
 cloud:
 stream:
 bindings:
 output:
 destination: orders-in
 input:
 destination: orders-out

Message-Driven Microservices Chapter 11

[256]

After both applications start up, you may easily check out the list of exchanges declared on
the RabbitMQ broker using its web management console, available
at http://192.168.99.100:15672 (quest/guest). The following the implicitly created
exchanges, and you may see our two destinations created for the test purpose:

Message-Driven Microservices Chapter 11

[257]

By default, Spring Cloud Stream provides one input and one output message channel. We
may imagine a situation where our system would need more than one destination for each
type of message channel. Let's move back to the sample system architecture for a moment,
and consider the situation where every order is asynchronously processed by two other
microservices. Until now, only account-service has been listening for incoming events
from order-service. In the current sample, product-service would be the receiver of
incoming orders. Its main goal in that scenario is to manage the number of available
products and decrease them on the basis of order details. It requires us to define two input
and output message channels inside order-service, because we still have point-to-point
communication based on a direct RabbitMQ exchange, where each message may be
processed by exactly one consumer.

In that case, we should declare two interfaces with @Input and @Output methods. Every
method has to return a channel object. Spring Cloud Stream provides two bindable
message components—MessageChannel for an outbound communication, and its
extension, SubscribableChannel, for an inbound communication. Here's the interface
definition for interaction with product-service. The analogous interface has been created
for messaging with account-service:

public interface ProductOrder {

 @Input
 SubscribableChannel productOrdersIn();

 @Output
 MessageChannel productOrdersOut();
}

The next step is to activate the declared components for the application by annotating its
main class with @EnableBinding(value={AccountOrder.class,
ProductOrder.class}. Now, you may refer to these channels in the configuration
properties using their names, for example,
spring.cloud.stream.bindings.productOrdersOut.destination=product-

orders-in. Each channel name may be customized by specifying a channel name when
using the @Input and @Output annotations, as shown in the following example:

public interface ProductOrder {

 @Input("productOrdersIn")
 SubscribableChannel ordersIn();

 @Output("productOrdersOut")
 MessageChannel ordersOut();

Message-Driven Microservices Chapter 11

[258]

}

Based on the custom interfaces declaration, Spring Cloud Stream will generate a bean that
implements that interface. However, it still has to be accessed in the bean responsible for
sending the message. In comparison with the previous sample, it would be more
comfortable to inject bound channels directly. Here's the current product order sender's
bean implementation. There is also a similar implementation of the bean, which sends
messages to account-service:

@Service
public class ProductOrderSender {

 @Autowired
 private MessageChannel output;
 @Autowired
 public SendingBean(@Qualifier("productOrdersOut") MessageChannel
output) {
 this.output = output;
 }

 public boolean send(Order order) {
 return this.output.send(MessageBuilder.withPayload(order).build());
 }

}

Every message-channel custom interface should also be provided for the target service. The
listener should be bound to the right message channel and the destination on the message
broker:

@StreamListener(ProductOrder.INPUT)
public void receiveOrder(Order order) throws JsonProcessingException {
 service.process(order);
}

Message-Driven Microservices Chapter 11

[259]

Integration with other Spring Cloud projects
You have probably noticed that the sample system mixes different styles of inter-service
communication. There are some microservices that use typical RESTful HTTP API, and
some others that use the message broker. There are also no objections to mixing different
styles of communication inside a single application. You may, for example, include
spring-cloud-starter-feign to the project with Spring Cloud Stream, and enable it
with the @EnableFeignClients annotation. In our sample system, those two different
styles of communication combine account-service, which integrates with order-
service via the message broker, and with product-service through the REST API.
Here's the Feign client's product-service implementation inside the account-
service module:

@FeignClient(name = "product-service")
public interface ProductClient {
 @PostMapping("/ids")
 List<Product> findByIds(@RequestBody List<Long> ids);
}

There is other good news. Thanks to Spring Cloud Sleuth, all the messages exchanged
during a single request incoming to the system via a gateway have the same traceId.
Whether it is synchronous REST communication, or asynchronous messaging, you may
easily track and correlate the logs between microservices using standard log files, or log
aggregator tools such as Elastic Stack.

I think now is a good time to run and test our sample system. First, we have to build the
whole project with the mvn clean install command. To access the code sample with
two microservices listening for messages on two different exchanges, you should switch to
the advanced branch (https:/ /github. com/ piomin/ sample- spring- cloud- messaging/
tree/advanced). You should launch all the applications available there—gateway,
discovery, and the three microservices (account-service, order-service, product-
service). The currently discussed case assumes we have also started RabbitMQ, Logstash,
Elasticsearch, and Kibana using its Docker container. For detailed instructions on how to
run Elastic Stack locally using Docker images, refer to Chapter 9, Distributed Logging and
Tracing. The following diagram shows the architecture of the system in detail:

https://github.com/piomin/sample-spring-cloud-messaging/tree/advanced
https://github.com/piomin/sample-spring-cloud-messaging/tree/advanced
https://github.com/piomin/sample-spring-cloud-messaging/tree/advanced
https://github.com/piomin/sample-spring-cloud-messaging/tree/advanced
https://github.com/piomin/sample-spring-cloud-messaging/tree/advanced
https://github.com/piomin/sample-spring-cloud-messaging/tree/advanced
https://github.com/piomin/sample-spring-cloud-messaging/tree/advanced
https://github.com/piomin/sample-spring-cloud-messaging/tree/advanced
https://github.com/piomin/sample-spring-cloud-messaging/tree/advanced
https://github.com/piomin/sample-spring-cloud-messaging/tree/advanced
https://github.com/piomin/sample-spring-cloud-messaging/tree/advanced
https://github.com/piomin/sample-spring-cloud-messaging/tree/advanced
https://github.com/piomin/sample-spring-cloud-messaging/tree/advanced
https://github.com/piomin/sample-spring-cloud-messaging/tree/advanced
https://github.com/piomin/sample-spring-cloud-messaging/tree/advanced
https://github.com/piomin/sample-spring-cloud-messaging/tree/advanced
https://github.com/piomin/sample-spring-cloud-messaging/tree/advanced
https://github.com/piomin/sample-spring-cloud-messaging/tree/advanced
https://github.com/piomin/sample-spring-cloud-messaging/tree/advanced
https://github.com/piomin/sample-spring-cloud-messaging/tree/advanced

Message-Driven Microservices Chapter 11

[260]

After running all the required applications and tools, we may proceed to the tests. Here's
the sample request, which can be sent to the order-service via the API gateway:

curl -H "Content-Type: application/json" -X POST -d
'{"customerId":1,"productIds":[1,3,4],"status":"NEW"}'
http://localhost:8080/api/order

Message-Driven Microservices Chapter 11

[261]

When I run the test for the first time with the applications configured following the
description in the previous sections, it doesn't work. I can understand that some of you may
be confused a little, because generally it was tested on the default settings. To make it run
properly, I also have to add the following property in application.yml:
spring.cloud.stream.rabbit.bindings.output.producer.routingKeyExpressio

n: '"#"'. It sets the default producer's routing key to conform with the exchange's routing
key automatically created during the application boot. In the following screenshot, you may
see one of the output exchange definitions:

Message-Driven Microservices Chapter 11

[262]

After the modification described previously, the test should be concluded successfully. The
logs printed by the microservices are correlated with each other by traceId. I modified the
default Sleuth logging format in logback-spring.xml a little, and that's how it is
configured now—%d{HH:mm:ss.SSS} %-5level [%X{X-B3-TraceId:-},%X{X-B3-

SpanId:-}] %msg%n. After sending the test request order-service test request, log the
following information:

12:34:48.696 INFO [68038cdd653f7b0b,68038cdd653f7b0b] Order saved:
{"id":1,"status":"NEW","price":0,"customerId":1,"accountId":null,"productId
s":[1,3,4]}
12:34:49.821 INFO [68038cdd653f7b0b,68038cdd653f7b0b] Order sent:
{"isSent":true}

As you can see, account-service also uses the same logging format and prints the same
traceId as order-service:

12:34:50.079 INFO [68038cdd653f7b0b,23432d962ec92f7a] Order processed:
{"id":1,"status":"NEW","price":0,"customerId":1,"accountId":null,"productId
s":[1,3,4]}
12:34:50.332 INFO [68038cdd653f7b0b,23432d962ec92f7a] Account found:
{"id":1,"number":"1234567890","balance":50000,"customerId":1}
12:34:52.344 INFO [68038cdd653f7b0b,23432d962ec92f7a] Products found:
[{"id":1,"name":"Test1","price":1000},{"id":3,"name":"Test3","price":2000},
{"id":4,"name":"Test4","price":3000}]

All the logs generated during the single transaction can be aggregated using Elastic Stack.
You may filter the entries by the X-B3-TraceId field, for example, 9da1e5c83094390d:

Message-Driven Microservices Chapter 11

[263]

The publish/subscribe model
The main motivation for creating a Spring Cloud Stream project is, in fact, support for a
persistent publish/subscribe model. In the previous sections, we have discussed point-to-
point communication between microservices, which is just an additional feature. However,
the programming model is still the same, irrespective of whether we decided to use a point-
to-point or publish/subscribe model.

In publish/subscribe communication, the data is broadcast through shared topics. It reduces
the complexity of both the producer and the consumer, and allows new applications to be
easily added to the existing topology without any changes in flow. This can be clearly seen
in the last-presented sample of the system, where we decided to add the second application
that has consumed events produced by the source microservice. In comparison to the initial
architecture, we had to define custom message channels dedicated for each of the target
applications. With direct communication through queues, the message can be consumed by
only one application instance, so as such, the solution was necessary. The uses of the
publish/subscribe model simplify that architecture.

Running a sample system
The development of the sample application is simpler for the publish/subscribe model than
for point-to-point communication. We don't have to override any default message channels
to enable interaction with more than one receiver. In comparison with the initial sample that
has illustrated messaging to a single target application (account-service), we only need
to modify configuration settings a little. Because Spring Cloud Stream, by default, binds to
the topic, we don't have to override exchangeType for the input message channel. As you
may see in the configuration fragment that follows, we still use point-to-point
communication when sending the response to order-service. If we really think about it,
that makes sense. The order-service microservice sends the message that has to be
received by both account-service and product-service, while the response from them
is addressed only to order-service:

spring:
 application:
 name: product-service
 rabbitmq:
 host: 192.168.99.100
 port: 5672
 cloud:
 stream:
 bindings:

Message-Driven Microservices Chapter 11

[264]

 output:
 destination: orders-in
 input:
 destination: orders-out
 rabbit:
 bindings:
 output:
 producer:
 exchangeType: direct
 routingKeyExpression: '"#"'

The logic of the main processing method of product-service is really simple. It just has
to find all the productIds from the received order, change the number of stored products
for every one of them, and then send the response to order-service:

@Autowired
ProductRepository productRepository;
@Autowired
OrderSender orderSender;

public void process(final Order order) throws JsonProcessingException {
 LOGGER.info("Order processed: {}", mapper.writeValueAsString(order));
 for (Long productId : order.getProductIds()) {
 Product product = productRepository.findById(productId);
 if (product.getCount() == 0) {
 order.setStatus(OrderStatus.REJECTED);
 break;
 }
 product.setCount(product.getCount() - 1);
 productRepository.update(product);
 LOGGER.info("Product updated: {}",
mapper.writeValueAsString(product));
 }
 if (order.getStatus() != OrderStatus.REJECTED) {
 order.setStatus(OrderStatus.ACCEPTED);
 }
 LOGGER.info("Order response sent: {}",
mapper.writeValueAsString(Collections.singletonMap("status",
order.getStatus())));
 orderSender.send(order);
}

Message-Driven Microservices Chapter 11

[265]

To access the current sample, you just have to switch to the publish_subscribe branch,
available at https:/ / github. com/ piomin/ sample- spring- cloud- messaging/ tree/
publish_subscribe. Then, you should build the parent project and run all the services as
for the previous sample. If you would like to test it all works fine until you have only one
running instance of account-service and product-service. Let's discuss that problem.

Scaling and grouping
When talking about microservice-based architecture, scalability is always presented as one
of its main advantages. The ability to scale up the system by creating multiple instances of a
given application is very important. When doing this, different instances of an application
are placed in a competing consumer relationship, where only one of the instances is
expected to handle a given message. For point-to-point communication, it is not a problem,
but in a publish-subscribe model, where the message is consumed by all the receivers, it
may be a challenge.

Running multiple instances
Availability for scaling up the number of microservice's instances is one of the main
concepts around Spring Cloud Stream. However, there is no magic behind this idea.
Running multiple instances of an application is very easy with Spring Cloud Stream. One of
the reasons for this is native support from message brokers, which is designed to handle
many consumers and huge amounts of traffic.

In our case, all the messaging microservices also expose the RESTful HTTP API, so first, we
have to customize the server port per instance. We have performed such operations before.
We may also consider setting two Spring Cloud Stream properties,
spring.cloud.stream.instanceCount and spring.cloud.stream.instanceIndex.
Thanks to them, every instance of the microservice is able to receive information about how
many other examples of the same application are started and what is its own instance index.
The correct configuration of these properties is required only if you would like to enable the
partitioning feature. I'll talk about this mechanism more in a moment. Now, let's take a look
at the configuration settings of the scaled-up applications. Both account-service and
product-service define two profiles for the purpose of running multiple instances of the
application. We have customized there an HTTP port of the server, number, and an index of
the instance:

spring:
 profiles: instance1

https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe

Message-Driven Microservices Chapter 11

[266]

 cloud:
 stream:
 instanceCount: 2
 instanceIndex: 0
server:
 port: ${PORT:8091}

spring:
 profiles: instance2
 cloud:
 stream:
 instanceCount: 2
 instanceIndex: 1
server:
 port: ${PORT:9091}

After building the parent project, you may run two instances of the application. Each of
them is initialized with properties assigned to the right profile passed during startup, for
example, java -jar --spring.profiles.active=instance1 target/account-
service-1.0-SNAPSHOT.jar. If you send a test request to the order-service endpoint
POST /, the new order would be forwarded to the RabbitMQ topic exchange in order to be
received by both the account-service and product-service, which are connected to
that exchange. The problem is that the message is received by all the instances of each
service, which is not exactly what we wanted to achieve. Here, a grouping mechanism
comes with help.

Consumer groups
Our purpose is clear. We have many microservices that consume messages from the same
topic. Different instances of an application are placed in a competing consumer relationship,
but only one of them should handle a given message. Spring Cloud Stream introduces the
concept of a consumer group that models this behavior. To activate such a behavior, we
should set a property called spring.cloud.stream.bindings.<channelName>.group,
with a group name. After setting it, all groups that subscribe to a given destination receive a
copy of the published data, but only one member of each group receives and handles a
message from that destination. In our case, there are two groups. First, for all the account-
service instances with a name account, and second, for a product-service with a name
product.

Message-Driven Microservices Chapter 11

[267]

Here's the current binding configuration for account-service. The orders-in
destination is a queue created for direct communication with order-service, so only
orders-out is grouped by service name. An analogous configuration has been prepared
for product-service:

spring:
 cloud:
 stream:
 bindings:
 output:
 destination: orders-in
 input:
 destination: orders-out
 group: account

The first difference is visible in the names of queues automatically created for the RabbitMQ
exchange. Now, it is not a randomly generated name, such as orders-
in.anonymous.qNxjzDq5Qra-yqHLUv50PQ, but a determined string consisting of the
destination and group name. The following screenshot shows all the queues currently
existing on RabbitMQ:

You may perform the retest by yourself to verify if the message is received by only one
application in the same group. However, you have no confidence which instance would
handle the incoming message. In order to determine this, you can use a partitioning
mechanism.

Partitioning
Spring Cloud Stream provides support for partitioning data between multiple instances of
an application. In the typical use case, the destination is viewed as being divided into
different partitions. Each producer, when sending messages received by multiple consumer
instances, ensures that data is identified by configured fields to force processing by the
same consumer instance.

Message-Driven Microservices Chapter 11

[268]

To enable the partitioning feature for your application, you have to define the
partitionKeyExpression or partitionKeyExtractorClass properties, and
partitionCount in the producer configuration settings. Here's the sample configuration
that may be provided for your application:

spring.cloud.stream.bindings.output.producer.partitionKeyExpression=payload
.customerId
spring.cloud.stream.bindings.output.producer.partitionCount=2

Partitioning mechanisms also require setting of the
spring.cloud.stream.instanceCount and spring.cloud.stream.instanceIndex
properties on the consumer side. It also has to be explicitly enabled with the
spring.cloud.stream.bindings.input.consumer.partitioned property set to
true. The instance index is responsible for identifying the unique partition from which a
particular instance receives data. Generally, partitionCount on the producer side and
instanceCount on the consumer side should be equal.

Let me familiarize you with the partitioning mechanism provided by Spring Cloud Stream.
First, it calculates a partition key based on partitionKeyExpression, which is evaluated
against the outbound message or implementation of the
PartitionKeyExtractorStrategy interface, which defines the algorithm for extracting
the key for the message. Once the message key is calculated, the target partition is
determined as a value between zero and partitionCount - 1. The default calculation
formula is key.hashCode() % partitionCount. It can be customized with the
partitionSelectorExpression property, or by creating an implementation of the
org.springframework.cloud.stream.binder.PartitionSelectorStrategy

interface. The calculated key is matched with instanceIndex on the consumer side.

I think that the main concept around partitioning has been explained. Let's proceed to the
sample. Here's the current configuration of the input channel for product-service (the
same as with the account group name set for account-service):

spring:
 cloud:
 stream:
 bindings:
 input:
 consumer:
 partitioned: true
 destination: orders-out
 group: product

Message-Driven Microservices Chapter 11

[269]

We have two running instances of each microservice that consumes data from the topic
exchange. There are also two partitions set for the producer within order-service. The
message key is calculated based on the customerId field from the Order object. The
partition with index 0 is dedicated for orders having an even number in the customerId
field, while the partition with index 1 is for odd numbers in the customerId field.

In fact, RabbitMQ does not have native support for partitioning. It is interesting how Spring
Cloud Stream implements the partitioning process with RabbitMQ. Here's a screenshot that
illustrates the list of bindings for exchanges created in RabbitMQ. As you may see, there are
two routing keys that have been defined for the exchange—orders-out-0 and orders-
out-1:

Message-Driven Microservices Chapter 11

[270]

If you send an order with customerId equal to 1 in a JSON message, for example,
{"customerId": 1,"productIds": [4],"status": "NEW"}, it would always be
processed by an instance with instanceIndex=1. It may be checked out in the application
logs or by using the RabbitMQ web console. Here's a diagram with the message rates for
each queue, where the message with customerId=1 has been sent several times:

Configuration options
Spring Cloud Stream configuration settings may be overridden using any mechanism
supported by Spring Boot, such as application arguments, environment variables, and
YAML or property files. It defines a number of generic configuration options that may be
applied to all binders. However, there are also some additional properties specific for a
particular message broker used by the application.

Spring Cloud Stream properties
The current group of properties applies to the whole Spring Cloud Stream application. All
the following properties are prefixed with spring.cloud.stream:

Name Default
value Description

instanceCount 1
The number of running instances of an
application. For more details, refer to the Scaling
and grouping section.

instanceIndex 0
The index of the instance of the application. For
more details, also refer to the Scaling and grouping
section.

Message-Driven Microservices Chapter 11

[271]

Name Default
value Description

dynamicDestinations - A list of destinations that can be bound
dynamically.

defaultBinder -
The default binder in case there are multiple
binders defined. For more details, also refer to the
Multiple binders section.

overrideCloudConnectors false

This is used only if the cloud is active and Spring
Cloud Connectors is found on the classpath. When
it is set to true, binders completely ignore the
bound services and rely on
the spring.rabbitmq.* or
spring.kafka.* Spring Boot properties.

Binding properties
The next group of properties is related to a message channel. In Spring Cloud
nomenclature, these are binding properties. They may be assigned only to a consumer, a
producer, or to both simultaneously. Here is a list of the properties, along with their default
value and a description:

Name Default
value Description

destination -
The target destination name on the broker configured for the
message channel. It can be specified as a comma-separated list of
destinations if the channel is used by only one consumer.

group null
The consumer group of the channel. See the Scaling and grouping
section for more details.

contentType null

The content type of messages exchanged via a given channel. We
may set it, for example, to application/json. Then all the
objects sent from that application would be automatically
converted to a JSON string.

binder null
The default binder used by the channel. See the Multiple binders
section for more details.

Message-Driven Microservices Chapter 11

[272]

The consumer
The following list of properties is available for input bindings only, and must be prefixed
with spring.cloud.stream.bindings.<channelName>.consumer. I'll indicate just the
most important of them:

Name Default value Description

concurrency 1 Number of consumers per single input channel

partitioned false It enables receiving data from a partitioned producer

headerMode embeddedHeaders If it is set to raw, header parsing on input is disabled

maxAttempts 3
Number of retries if message processing fails. Setting
this option to 1 disables the retry mechanism

The producer
The following binding properties are available for output bindings only, and must be
prefixed with spring.cloud.stream.bindings.<channelName>.producer. I'll also
indicate only the most important of them:

Name Default value Description

requiredGroups - A comma-separated list of groups that must
be created on the message broker

headerMode embeddedHeaders
If it is set to raw, header parsing on input is
disabled

useNativeEncoding false
If it is set to true, the outbound message is
serialized directly by the client library

errorChannelEnabled false
If it is set to true, failure messages are sent to
the error channel for the destination

The advanced programming model
The basics around the Spring Cloud Stream programming model have been presented
together with samples of point-to-point and publish/subscribe communication. Let's discuss
some more advanced example features.

Message-Driven Microservices Chapter 11

[273]

Producing messages
In all the samples presented in this chapter, we have sent orders through RESTful API for
testing purposes. However, we may easily create some test data by defining the message
source inside the application. Here's a bean that generates one message per second using
@Poller and sends it to the output channel:

@Bean
@InboundChannelAdapter(value = Source.OUTPUT, poller = @Poller(fixedDelay =
"1000", maxMessagesPerPoll = "1"))
public MessageSource<Order> ordersSource() {
 Random r = new Random();
 return () -> new GenericMessage<>(new Order(OrderStatus.NEW, (long)
r.nextInt(5), Collections.singletonList((long) r.nextInt(10))));
}

Transformation
As you probably remember, account-service and product-service have been
receiving events from order-service and then sending back the response message. We
have created the OrderSender bean, which was responsible for preparing the response
payload and sending it to the output channel. It turns out that the implementation may be
simpler if we return the response object in method and annotate it with @SentTo:

@StreamListener(Processor.INPUT)
@SendTo(Processor.OUTPUT)
public Order receiveAndSendOrder(Order order) throws
JsonProcessingException {
 LOGGER.info("Order received: {}", mapper.writeValueAsString(order));
 return service.process(order);
}

We can even imagine such an implementation, such as the following, without using
@StreamListener. The transformer pattern is responsible for changing the object's form.
In that case, it modifies two order fields—status and price:

@EnableBinding(Processor.class)
public class OrderProcessor {

 @Transformer(inputChannel = Processor.INPUT, outputChannel =
Processor.OUTPUT)
 public Order process(final Order order) throws JsonProcessingException
{
 LOGGER.info("Order processed: {}",

Message-Driven Microservices Chapter 11

[274]

mapper.writeValueAsString(order));
 // ...
 products.forEach(p -> order.setPrice(order.getPrice() +
p.getPrice()));
 if (order.getPrice() <= account.getBalance()) {
 order.setStatus(OrderStatus.ACCEPTED);
 account.setBalance(account.getBalance() - order.getPrice());
 } else {
 order.setStatus(OrderStatus.REJECTED);
 }
 return order;
 }

}

Consuming messages conditionally
Assuming we would like to treat messages incoming to the same message channel
differently, we may use conditional dispatching. Spring Cloud Stream supports dispatching
messages to multiple @StreamListener methods registered on an input channel, based on
a condition. That condition is a Spring Expression Language (SpEL) expression defined in
the condition attribute of the @StreamListener annotation:

public boolean send(Order order) {
 Message<Order> orderMessage =
MessageBuilder.withPayload(order).build();
 orderMessage.getHeaders().put("processor", "account");
 return this.source.output().send(orderMessage);
}

Here's the sample implementation that defines two methods annotated
with @StreamListener that listen on the same topic. One of them is dedicated only for
messages incoming from account-service, while the second is dedicated only for
product-service. The incoming message is dispatched, based on its header with the
processor name:

@SpringBootApplication
@EnableDiscoveryClient
@EnableBinding(Processor.class)
public class OrderApplication {

 @StreamListener(target = Processor.INPUT, condition =
"headers['processor']=='account'")
 public void receiveOrder(Order order) throws JsonProcessingException {

Message-Driven Microservices Chapter 11

[275]

 LOGGER.info("Order received from account: {}",
mapper.writeValueAsString(order));
 // ...
 }

 @StreamListener(target = Processor.INPUT, condition =
"headers['processor']=='product'")
 public void receiveOrder(Order order) throws JsonProcessingException {
 LOGGER.info("Order received from product: {}",
mapper.writeValueAsString(order));
 // ...
 }

}

Using Apache Kafka
I have mentioned Apache Kafka a couple of times when discussing Spring Cloud
integration with message brokers. However, until now, we haven't run any samples based
on that platform. The fact is that RabbitMQ tends to be the preferred choice when working
with Spring Cloud projects, but Kafka is also worthy of our attention. One of its advantages
over RabbitMQ is native support for partitioning, which is one of the most important
features of Spring Cloud Stream.

Kafka is not a typical message broker. It is rather a distributed streaming platform. Its main
feature is to allow you to publish and subscribe to streams of records. It is especially useful
for real-time streaming applications that transform or react to streams of data. It is usually
run as a cluster consisting of one or more servers, and stores streams of records in topics.

Running Kafka
Unfortunately, there is no official Docker image with Apache Kafka. However, we may use
one that is unofficial, for example, that shared by Spotify. In comparison to other available
Kafka docker images, this one runs both Zookeeper and Kafka in the same container. Here's
the Docker command that launches Kafka and exposes it on port 9092. Zookeeper is also
available outside on port 2181:

docker run -d --name kafka -p 2181:2181 -p 9092:9092 --env
ADVERTISED_HOST=192.168.99.100 --env ADVERTISED_PORT=9092 spotify/kafka

Message-Driven Microservices Chapter 11

[276]

Customizing application settings
To enable Apache Kafka for the application, include the spring-cloud-starter-
stream-kafka starter to the dependencies. Our current sample is very similar to to the
sample of publish/subscribe using with RabbitMQ publish/subscribe with grouping and
partitioning presented in The publish/subscribe model, section. The only difference is in the
dependencies and configuration settings.

Spring Cloud Stream automatically detects and uses a binder found on the classpath. The
connection settings may be overridden with spring.kafka.* properties. In our case, we
just need to change the auto-configured Kafka client address to the Docker machine address
192.168.99.100. The same modification should be performed for Zookeeper, which is
used by the Kafka client:

spring:
 application:
 name: order-service
 kafka:
 bootstrap-servers: 192.168.99.100:9092
 cloud:
 stream:
 bindings:
 output:
 destination: orders-out
 producer:
 partitionKeyExpression: payload.customerId
 partitionCount: 2
 input:
 destination: orders-in
 kafka:
 binder:
 zkNodes: 192.168.99.100

After starting discovery, gateway, and all the required instances of microservices, you can
perform the same tests as for the previous samples. If everything is configured correctly,
you should see the following fragment in the logs during your application boot. The result
of the tests is exactly the same as for the sample based on RabbitMQ:

16:58:30.008 INFO [,] Discovered coordinator 192.168.99.100:9092 (id:
2147483647 rack: null) for group account.
16:58:30.038 INFO [,] Successfully joined group account with generation 1
16:58:30.039 INFO [,] Setting newly assigned partitions [orders-out-0,
orders-out-1] for group account
16:58:30.081 INFO [,] partitions assigned:[orders-out-0, orders-out-1]

Message-Driven Microservices Chapter 11

[277]

Kafka Streams API support
Spring Cloud Stream Kafka provides a binder specially designed for Kafka Streams
binding. With this binder, the application can leverage the Kafka Streams API. To enable
such a feature for your application, include the following dependency to your project:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream-binder-kstream</artifactId>
</dependency>

The Kafka Streams API provides high-level stream DSL. It may be accessed by declaring the
@StreamListener method that takes the KStream interface as a parameter. KStream
provides some useful methods for stream manipulation, well-known from other streaming
APIs such as map, flatMap, join, or filter. There are also some other methods specific to
Kafka Stream, such as to(...) (for sending streams to a topic) or through(...) (same as
to, but also creates a new instance of KStream from the topic):

@SpringBootApplication
@EnableBinding(KStreamProcessor.class)
public class AccountApplication {

 @StreamListener("input")
 @SendTo("output")
 public KStream<?, Order> process(KStream<?, Order> input) {
 // ..
 }

 public static void main(String[] args) {
 SpringApplication.run(AccountApplication.class, args);
 }

}

Configuration properties
Some of the Spring Cloud configuration settings for Kafka have been presented before
when discussing the implementation of the sample application. Here's a table with the most
important properties, which can be set for customizing the Apache Kafka binder. All these
properties are prefixed by spring.cloud.stream.kafka.binder:

Message-Driven Microservices Chapter 11

[278]

Name Default value Description

brokers localhost
A comma-separated list of brokers with or without
port information.

defaultBrokerPort 9092
It sets the default port if no port is defined using the
brokers property.

zkNodes localhost
A comma-separated list of ZooKeeper nodes with or
without port information.

defaultZkPort 2181
It sets the default ZooKeeper port if no port is defined
using the zkNodes property.

configuration - A Key/Value map of Kafka client properties. It applies
to all the clients created by the binder.

headers - The list of custom headers that will be forwarded by
the binder.

autoCreateTopics true
If set to true, the binder creates new topics
automatically.

autoAddPartitions false
If set to true, the binder creates new partitions
automatically.

Multiple binders
In Spring Cloud Stream nomenclature, the interface that may be implemented to provide
connection to physical destinations at the external middleware is called binder. Currently,
there are two available built-in binder implementations—Kafka and RabbitMQ. In case you
would like to provide a custom binder library, the key interface that is an abstraction for a
strategy for connecting inputs and outputs to external middleware is Binder, having two
methods—bindConsumer and bindProducer. For more details, you may refer to the
Spring Cloud Stream specifications.

The important thing for us is an ability to use multiple binders in a single application. You
can even mix different implementations, for example, RabbitMQ with Kafka. Spring Cloud
Stream relies on Spring Boot's auto-configuration in the binding process. The
implementation available on the classpath is used automatically. In case you would like to
use both the default Binders, include the following dependencies to the project:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream-binder-rabbit</artifactId>

Message-Driven Microservices Chapter 11

[279]

</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-stream-binder-kafka</artifactId>
</dependency>

If more than one binder has been found in the classpath, the application must detect which
of them should be used for the particular channel binding. We may configure the default
binder globally with the spring.cloud.stream.defaultBinder property, or
individually per each channel with the
spring.cloud.stream.bindings.<channelName>.binder property. Now, we go back
for a moment to our sample to configure multiple binders there. We define RabbitMQ for
direct communication between account-service and order-service, and Kafka for the
publish/subscribe model between order-service and other microservices.

Here's the equivalent configuration to that provided for account-service in the
publish_subscribe branch (https:/ / github. com/ piomin/ sample- spring- cloud-
messaging/tree/publish_ subscribe), but based on two different binders:

spring:
 cloud:
 stream:
 bindings:
 output:
 destination: orders-in
 binder: rabbit1
 input:
 consumer:
 partitioned: true
 destination: orders-out
 binder: kafka1
 group: account
 rabbit:
 bindings:
 output:
 producer:
 exchangeType: direct
 routingKeyExpression: '"#"'
 binders:
 rabbit1:
 type: rabbit
 environment:
 spring:
 rabbitmq:
 host: 192.168.99.100
 kafka1:

https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe
https://github.com/piomin/sample-spring-cloud-messaging/tree/publish_subscribe

Message-Driven Microservices Chapter 11

[280]

 type: kafka
 environment:
 spring:
 kafka:
 bootstrap-servers: 192.168.99.100:9092

Summary
Spring Cloud Stream can be treated as a separate category in comparison to all the other
Spring Cloud projects. It is often being associated with other projects, and which are
currently strongly promoted by Pivotal Spring Cloud Data Flow. That is a toolkit for
building data integration and real-time data processing pipelines. However, it is a huge
subject and rather a topic of discussion for a separate book.

More to the point, Spring Cloud Stream provides support for asynchronous messaging,
which may be easily implemented using a Spring annotation style. I think that for some of
you, that style of inter-service communication is not as obvious as the RESTful API model.
Therefore, I have focused on showing you the examples of point-to-point and
publish/subscribe communication using Spring Cloud Stream. I have also described the
differences between those two styles of messaging.

The publish/subscribe model is nothing new, but thanks to Spring Cloud Stream, it may be
easily included to the microservice-based system. Some of the key concepts, such as
consumer groups or partitioning, have also been described in this chapter. After reading it,
you should be able to implement microservices based on the messaging model, and
integrate them with other Spring Cloud libraries in order to provide logging, tracing, or just
deploying them as part of the existing, REST-based microservices system.

12
Securing an API

Security is one of the most commonly discussed problems related to microservices-based
architecture. There is always one main problem for all security concerns—a network. With
microservices, where typically there is much more communication over the network than
there is for monolithic applications, the approach to authentication and authorization
should be reconsidered. Traditional systems are usually secured at the border and then
allow the frontend service full access to the backend components. The migration to
microservices forces us to change this approach to delegated-access management.

How does Spring Framework address the security concerns of microservices-based
architecture? It provides several projects that implement different patterns regarding
authentication and authorization. The first of these is Spring Security, which is a de facto
standard for secure Spring-based Java applications. It consists of a few submodules that
help you get started with SAML, OAuth2, or Kerberos. There is also the Spring Cloud
Security project. It provides several components that allow you to integrate basic Spring
Security features with the main elements of microservices architecture, such as gateways,
load balancers, and REST HTTP clients.

In this chapter, I'm going to show you how to secure all the main components of your
microservices-based system. I will describe the particular elements relevant to the topic in
the order of the chapters that compose the second part of this book. So, we would begin
from service discovery with Eureka, then move on to the Spring Cloud Config Server and
inter-service communication, and then finally discuss API gateway security.

Here's what we will look at in this chapter:

Configuring a secure connection for a single Spring Boot application
Enabling HTTPS communication for the most important elements of
microservice-based architecture
Encrypting and decrypting property values in configuration files stored on
Config Server

Securing an API Chapter 12

[282]

Simple in-memory based authentication with OAuth2 for microservices
More advanced OAuth2 configuration with JDBC backend store and JWT tokens
Using OAuth2 authorization in inter-service communication with Feign client

But first, let's begin with the basics. I'll show you how to create your first secure
microservice that exposes an API over HTTPS.

Enabling HTTPS for Spring Boot
If you want to use SSL and serve your RESTful APIs over HTTPS, you will need to generate
a certificate. The fastest way to achieve this is through a self-signed certificate, which is
enough for development mode. JRE provides a simple tool for certificate
management—keytool. It is available under your JRE_HOME\bin directory. The command
in the following code generates a self-signed certificate and puts it into the PKCS12
KeyStore. Besides KeyStore's type, you will also have to set its validity, alias, and the name
of the file. Before starting the generation process, keytool will ask you for your password
and some additional information, as follows:

keytool -genkeypair -alias account-key -keyalg RSA -keysize 2048 -storetype
PKCS12 -keystore account-key.p12 -validity 3650

Enter keystore password:
Re-enter new password:
What is your first and last name?
 [Unknown]: localhost
What is the name of your organizational unit?
 [Unknown]: =
What is the name of your organization?
 [Unknown]: piomin
What is the name of your City or Locality?
 [Unknown]: Warsaw
What is the name of your State or Province?
 [Unknown]: mazowieckie
What is the two-letter country code for this unit?
 [Unknown]: PL
Is CN=localhost, OU=Unknown, O=piomin, L=Warsaw, ST=mazowieckie, C=PL
correct?
 [no]: yes

Securing an API Chapter 12

[283]

I have copied the generated certificate into the src/main/resources directory inside the
Spring Boot application. After building and running the application, it will be available on
the classpath. To enable SSL, we have to provide some configuration settings in
the application.yml file. SSL can be customized for Spring by setting the various
server.ssl.* properties:

server:
 port: ${PORT:8090}

ssl:
 key-store: classpath:account-key.p12
 key-store-password: 123456
 key-store-type: PKCS12
 key-alias: account-key

security:
 require-ssl: true

Secure discovery
As you can see, the configuration of SSL for a microservice application is not a very hard
task. However, it is time to increase the difficulty level. We have already launched a single
microservice that serves a RESTful API over HTTPS. Now we want that microservice to
integrate with the discovery server. There are two problems that arise from this. The first of
these is the need to publish information about the secure microservice's instance in Eureka.
The second of these concerns exposing Eureka over HTTPS and forcing the discovery client
to authenticate against a discovery server using a private key. Let's discuss these issues in
detail.

Registering a secure application
If your application is exposed over a secure SSL port, you should change two flags from the
EurekaInstanceConfig—nonSecurePortEnabled to false and securePortEnabled
to true. This forces Eureka to publish instance information that shows an explicit
preference for secure communication. The Spring Cloud DiscoveryClient will always
return a URL starting with HTTPS for a service that is configured this way, and the Eureka
instance information will have a secure health check URL:

eureka:
 instance:
 nonSecurePortEnabled: false

Securing an API Chapter 12

[284]

 securePortEnabled: true
 securePort: ${PORT:8091}
 statusPageUrl: https://localhost:${eureka.instance.securePort}/info
 healthCheckUrl: https://localhost:${eureka.instance.securePort}/health
 homePageUrl: https://localhost:${eureka.instance.securePort}

Serving Eureka over HTTPS
When the Eureka server starts with Spring Boot, it is deployed on an embedded Tomcat
container, so the SSL configuration is the same as for the standard microservice. The
difference is that we must take account of the client-side application, which establishes a
secure connection with a discovery server over HTTPS. The discovery client should
authenticate itself against the Eureka server and it should also verify the server's certificate.
That communication process between client and server is called two-way SSL or mutual
authentication. There is also one-way authentication, which is in fact the default option,
where only the client validates the server's public key. Java applications use KeyStore and
trustStore for storing private keys and certificates corresponding to public keys. The only
difference between trustStore and KeyStore is what they store and for what purpose. When
an SSL handshake between client and server is performed, a trustStore is used to verify the
credentials, while a KeyStore is used to provide credentials. So in other words, a KeyStore
keeps a private key and certificate for a given application, while a trustStore keeps the
certificates that are used to identify it from the third party. Developers often do not pay
much attention to those terms when configuring a secure connection, but a proper
understanding of them helps you to easily understand what will happen next.

In a typical microservices-based architecture, there are plenty of independent applications
and a single discovery server. Every application has its own private key stored in a
KeyStore and a certificate corresponding to a discovery server's public key in a trustStore.
On the other hand, the server keeps all the certificates generated for the client-side
applications. That's enough theory for now. Let's take a look at the following figure. It
illustrates the current situation of our system that was used as an example in the previous
chapters:

Securing an API Chapter 12

[285]

Keystore generation
After discussing the basics regarding security in Java, we may proceed to the generation of
private and public keys for our microservices. Just like before, we will use the command-
line tool provided under JRE—keytool. Let's begin with a well-known command for
generating a keystore file with a key pair. One KeyStore is generated for a discovery
server, and a second for the one selected microservice, in this particular case, for account-
service:

keytool -genkey -alias account -store type JKS -keyalg RSA -keysize 2048 -
keystore account.jks -validity 3650
keytool -genkey -alias discovery -storetype JKS -keyalg RSA -keysize 2048 -
keystore discovery.jks -validity 3650

Then, the self-signed certificate has to be exported from a KeyStore to a file—for example,
with a .cer or .crt extension. You will then be prompted for the password you provided
during the KeyStore's generation:

keytool -exportcert -alias account -keystore account.jks -file account.cer
keytool -exportcert -alias discovery -keystore discovery.jks -file
discovery.cer

Securing an API Chapter 12

[286]

The certificate corresponding to the public key has been extracted from the KeyStore, so
now it can be distributed to all interested parties. The public certificate from account-
service should be included in the discovery server's trustStore and vice-versa:

keytool -importcert -alias discovery -keystore account.jks -file
discovery.cer
keytool -importcert -alias account -keystore discovery.jks -file
account.cer

The same steps that were performed for account-service have to be repeated for each
subsequent microservice that registers itself in the Eureka server. Here are the keytool's
commands used for generating SSL keys and certificates for order-service:

keytool -genkey -alias order -storetype JKS -keyalg RSA -keysize 2048 -
keystore order.jks -validity 3650
keytool -exportcert -alias order -keystore order.jks -file order.cer
keytool -importcert -alias discovery -keystore order.jks -file
discovery.cer
keytool -importcert -alias order -keystore discovery.jks -file order.cer

Configurating SSL for microservices and Eureka server
Each keystore file has been placed in the src/main/resources directory of every secure
microservice and service discovery. The SSL configuration settings of every microservice
are very similar to those from the example in the section titled Enabling HTTPS for Spring
Boot. The only difference is the type of currently used KeyStore, which is now JKS instead of
PKCS12. However, there are more differences between the earlier sample and the service
discovery configuration. First, I have enabled client certificate authentication by setting the
server.ssl.client-auth property to need. This in turn requires us to provide a
trustStore with the server.ssl.trust-store property. Here are the current SSL
configuration settings in application.yml for discovery-service:

server:
 port: ${PORT:8761}
 ssl:
 enabled: true
 client-auth: need
 key-store: classpath:discovery.jks
 key-store-password: 123456
 trust-store: classpath:discovery.jks
 trust-store-password: 123456
 key-alias: discovery

Securing an API Chapter 12

[287]

If you run the Eureka application with the preceding configuration and then try to visit its
web dashboard available under https://localhost:8761/, you will probably get an
error code like SSL_ERROR_BAD_CERT_ALERT. This error occurs because there is no trusted
certificate imported to your web browser. For this purpose, we may import one of the
client's application KeyStores, from account-service, for example. But first, we need to
convert it from JKS format to another format supported by a web browser, such as PKCS12.
Here's the keytool command for the conversion of KeyStore from JKS to PKCS12 format:

keytool -importkeystore -srckeystore account.jks -srcstoretype JKS -
deststoretype PKCS12 -destkeystore account.p12

PKCS12 is supported by all the most popular web browsers, such as Google Chrome and
Mozilla Firefox. You can import a PKCS12 KeyStore to Google Chrome by navigating to the
section Settings | Show advanced settings... | HTTPS/SSL | Manage certificates. If you
try to visit the Eureka web dashboard one more time, you should be authenticated
successfully, and you will be able to see the list of registered services. However, there will
be no application registered there. In order to provide secure communication between the
discovery clients and the server, we need to create a @Bean of
a DiscoveryClientOptionalArgs type for every microservice, which overwrites the
discovery client's implementation. What is interesting is that Eureka uses Jersey as a REST
client. With EurekaJerseyClientBuilder, we may easily build a new client
implementation and pass the keystore and truststore file's location. The following is
the code fragment from account-service, where we create a new EurekaJerseyClient
object and set it as an argument of DiscoveryClientOptionalArgs:

@Bean
public DiscoveryClient.DiscoveryClientOptionalArgs
discoveryClientOptionalArgs() throws NoSuchAlgorithmException {
 DiscoveryClient.DiscoveryClientOptionalArgs args = new
DiscoveryClient.DiscoveryClientOptionalArgs();
 System.setProperty("javax.net.ssl.keyStore",
 "src/main/resources/account.jks");
 System.setProperty("javax.net.ssl.keyStorePassword", "123456");
 System.setProperty("javax.net.ssl.trustStore",
 "src/main/resources/account.jks");
 System.setProperty("javax.net.ssl.trustStorePassword", "123456");
 EurekaJerseyClientBuilder builder = new EurekaJerseyClientBuilder();
 builder.withClientName("account-client");
 builder.withSystemSSLConfiguration();
 builder.withMaxTotalConnections(10);
 builder.withMaxConnectionsPerHost(10);
 args.setEurekaJerseyClient(builder.build());
 return args;
}

Securing an API Chapter 12

[288]

A similar implementation should be provided for every microservice in our sample system.
A sample application source code is available on GitHub (https:/ /github. com/ piomin/
sample-spring-cloud- security. git). You may clone it and run all the Spring Boot
applications with your IDE. If everything works, you should see the same list of registered
services in the Eureka dashboard as you can see in the following screenshot. In case of any
problem with the SSL connection, try and set the -Djava.net.debug=ssl VM argument
during the boot of the application to be able to check out the full logs from the SSL
handshake process:

Secure configuration server
There is one other key element in our architecture that should be considered during our
discussion about security—the Spring Cloud Config Server. I would say that it is even more
important to protect the config server than the discovery service. Why? Because we usually
store their authentication credentials to the external systems, along with other data that
should be hidden from unauthorized access and usage. There are several ways to properly
secure your config server. You may configure an HTTP basic authentication, a secure SSL
connection, encrypt/decrypt sensitive data, or use third-party tools such as those already
described in Chapter 5, Distributed Configuration with Spring Cloud Config. Let's take a
closer look at some of them.

Encryption and decryption
Before we begin, we have to download and install the Java Cryptography Extension (JCE)
provided by Oracle. It consists of two JAR files (local_policy.jar and
US_export_policy.jar), which need to override the existing policy files in the JRE
lib/security directory.

https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git

Securing an API Chapter 12

[289]

If the remote property sources stored on the config server contain encrypted data, their
values should be prefixed with {cipher} and wrapped in quotes to designate it as a YAML
file. Wrapping in quotes is not necessary for .properties files. If such a value cannot be
decrypted, it is replaced by an additional value (usually <n/a>) under the same key
prefixed with invalid.

In our last sample, we stored the passphrase used for protecting the keystore file in the
application configuration settings. Keeping it there as a plain text file may not be the best
idea, so it is the first candidate for encryption. The question is, how do we encrypt it?
Fortunately, Spring Boot provides two RESTful endpoints that can help with that.

Let's see how it works. First, we need to start a config server instance. The simplest way for
this is to activate the --spring.profiles.active=native profile, which launches the
server with the property sources from the local classpath or filesystem. Now we may call
two POST endpoints /encrypt and /decrypt. The /encrypt method takes our plain-text
password as an argument. The result can be checked out using an inverse operation,
/decrypt, which takes an encrypted password as a parameter:

$ curl http://localhost:8888/encrypt -d 123456
AQAzI8jv26K3n6ff+iFzQA9DUpWmg79emWu4ndEXyvjYnKFSG7rBmJP0oFTb8RzjZbTwt4ehRiK
Wqu5qXkH8SAv/8mr2kdwB28kfVvPj/Lb5hdUkH1TVrylcnpZaKaQYBaxlsa0RWAKQDk8MQKRw1n
J5HM4LY9yjda0YQFNYAy0/KRnwUFihiV5xDk5lMOiG4b77AVLmz+9aSAODKLO57wOQUzM1tSA7l
O9HyDQW2Hzl1q93uOCaP5VQLCJAjmHcHvhlvM442bU3B29JNjH+2nFS0RhEyUvpUqzo+PBi4RoA
KJH9XZ8G7RaTOeWIcJhentKRf0U/EgWIVW21NpsE29BHwf4F2JZiWY2+WqcHuHk367X21vk11AV
l9tJk9aUVNRk=

The encryption is done with the public key, while the decryption is done with the private
key. Therefore, you need to provide only the public key in the server if you perform just the
encryption. For testing purposes, we can create the KeyStore using keytool. We have
already created some KeyStores before, so you will not have any problems with that. The
generated file should be placed in the classpath and then in the config-service
configuration settings using encrypt.keyStore.* properties:

encrypt:
 keyStore:
 location: classpath:/config.jks
 password: 123456
 alias: config
 secret: 123456

Securing an API Chapter 12

[290]

Now, if you move the configuration settings of each microservice to the config server, you
can encrypt every password, as shown in the following sample fragment:

server:
 port: ${PORT:8091}
 ssl:
 enabled: true
 key-store: classpath:account.jks
 key-store-password:
'{cipher}AQAzI8jv26K3n6ff+iFzQA9DUpWmg79emWu4ndEXyvjYnKFSG7rBmJP0oFTb8RzjZb
Twt4ehRiKWqu5qXkH8SAv/8mr2kdwB28kfVvPj/Lb5hdUkH1TVrylcnpZaKaQYBaxlsa0RWAKQD
k8MQKRw1nJ5HM4LY9yjda0YQFNYAy0/KRnwUFihiV5xDk5lMOiG4b77AVLmz+9aSAODKLO57wOQ
UzM1tSA7lO9HyDQW2Hzl1q93uOCaP5VQLCJAjmHcHvhlvM442bU3B29JNjH+2nFS0RhEyUvpUqz
o+PBi4RoAKJH9XZ8G7RaTOeWIcJhentKRf0U/EgWIVW21NpsE29BHwf4F2JZiWY2+WqcHuHk367
X21vk11AVl9tJk9aUVNRk='
 key-alias: account

Configuring authentication for a client and a
server
The implementation of authentication for Spring Cloud Config Server looks exactly the
same as for the Eureka server. We can use an HTTP basic authentication basing on standard
Spring security mechanisms. First, we need to make sure that the spring-security
artifact is on the classpath. Then we should enable security with security.basic.
enabled set to true and define a username and password. The sample configuration
settings are visible in the following code fragment:

security:
 basic:
 enabled: true
 user:
 name: admin
 password: admin123

The basic authentication must also be enabled on the client side. It can be realized in two
different ways. The first of these is via the config server URL:

spring:
 cloud:
 config:
 uri: http://admin:admin123@localhost:8888

Securing an API Chapter 12

[291]

The second approach is based on separate username and password properties:

spring:
 cloud:
 config:
 uri: http://localhost:8888
 username: admin
 password: admin123

If you would like to set up SSL authentication, you need to follow the steps described in the
section titled Secure discovery. After generating the KeyStores with private keys and
certificates and setting the proper configuration, we may run the config server. Now, it is
exposing its RESTful API over HTTPS. The only difference is in the implementation on the
client side. This is because Spring Cloud Config uses a different HTTP client than Spring
Cloud Netflix Eureka. As you may probably guess, it leverages RestTemplate, as it is
entirely created within the Spring Cloud project.

To force the client-side application to use two-way SSL authentication instead of a standard,
nonsecure HTTP connection, first we should create a @Configuration bean implementing
the PropertySourceLocator interface. There, we may build a custom RestTemplate that
uses a secure HTTP connection factory:

@Configuration
public class SSLConfigServiceBootstrapConfiguration {

 @Autowired
 ConfigClientProperties properties;

 @Bean
 public ConfigServicePropertySourceLocator
configServicePropertySourceLocator() throws Exception {
 final char[] password = "123456".toCharArray();
 final File keyStoreFile = new
File("src/main/resources/discovery.jks");
 SSLContext sslContext = SSLContexts.custom()
 .loadKeyMaterial(keyStoreFile, password, password)
 .loadTrustMaterial(keyStoreFile).build();
 CloseableHttpClient httpClient =
HttpClients.custom().setSSLContext(sslContext).build();
 HttpComponentsClientHttpRequestFactory requestFactory = new
HttpComponentsClientHttpRequestFactory(httpClient);
 ConfigServicePropertySourceLocator
configServicePropertySourceLocator = new
ConfigServicePropertySourceLocator(properties);
 configServicePropertySourceLocator.setRestTemplate(new
RestTemplate(requestFactory));

Securing an API Chapter 12

[292]

 return configServicePropertySourceLocator;
 }

}

However, by default, this bean would not be created before the application tries to establish
a connection with the config server. To change this behavior, we should also create
the spring.factories file in /src/main/resources/META-INF and specify the custom
bootstrap configuration class:

org.springframework.cloud.bootstrap.BootstrapConfiguration =
pl.piomin.services.account.SSLConfigServiceBootstrapConfiguration

Authorization with OAuth2
We have already discussed some concepts and solutions related to authentication in a
microservices environment. I have shown you the examples of basic and SSL authentication
between microservices and a service discovery, and also between microservices and a
config server. In inter-service communication, authorization seems to be more important
then authentication, which is instead implemented on the edge of the system. It's worth
understanding the difference between authentication and authorization. Simply put,
authentication verifies who you are, while authorization verifies what you are authorized to
do.

Currently the most popular authorization methods for RESTful HTTP APIs are OAuth2 and
Java Web Tokens (JWT). They may be mixed together as they are rather more
complementary than other solutions. Spring provides support for OAuth providers and
consumers. With Spring Boot and Spring Security OAuth2, we may quickly implement
common security patterns, such as single sign-on, token relay, or token exchange. But
before we dive into the details regarding those projects, as well as other development
details, we need to acquire a basic knowledge of the preceding solution.

Securing an API Chapter 12

[293]

Introduction to OAuth2
OAuth2 is the standard currently used by almost all major websites that allow you to access
their resources through a shared API. It delegates user authentication to an independent
service that stores user credentials and authorizes third-party applications to access shared
information about users' accounts. OAuth2 is used for giving your users access to data
while protecting their account credentials. It provides flows for web, desktop, and mobile
applications. The following are some basic terms and roles related to OAuth2:

Resource owner: This role governs access to the resource. This access is limited
by the scope of the granted authorization.
Authorization grant: This grants permission for access. There are various ways
you may choose to confirm access—authorization code, implicit, resource-owner
password credentials, and client credentials.
Resource server: This is a server that stores the owner’s resources that can be
shared using a special token.
Authorization server: This manages the allocation of keys, tokens, and other
temporary resource access codes. It also has to ensure that access is granted to the
relevant user.
Access token: This is a key that allows access to a resource.

In order to better understand what these terms and roles are in practice, take a look at the
following diagram. It visualizes a typical flow of the authorization process using the OAuth
protocol:

Securing an API Chapter 12

[294]

Let's run through the further steps of interaction between the individual components listed
previously. The application requests authorization from the resource owner in order to be
able to access the requested service. The resource sends an authorization grant as the
response, which is then sent by the application, together with its own identity, to the
authorization server. The authorization server verifies the application identity's credentials
and authorization grant, and then sends an access token back. The application requests the
resource from the resource server using a received access token. Finally, if the access token
is valid, the application is able to invoke the request service.

Building an authorization server
After moving from monolithic applications to microservices, the obvious solution seems to
be the centralization of the authorization effort by creating an authorization service. With
Spring Boot and Spring Security, you may easily create, configure, and launch an
authorization server. First, we need to include the following starters to the project
dependencies:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-oauth2</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-security</artifactId>
</dependency>

The implementation of an authorization server pattern with Spring Boot is very easy. We
just have to annotate the main class or the configuration class with
@EnableAuthorizationServer and then provide security.oauth2.client.client-
id and security.oauth2.client.client-secret properties in the application.yml
file. Of course, this variant is as simple as possible, since it defines an in-memory
implementation of the client details service.

Securing an API Chapter 12

[295]

A sample application is available in the same repository as the previous samples in this
chapter (https://github. com/ piomin/ sample- spring- cloud- security. git), but in a
different branch, oauth2 (https:/ / github. com/ piomin/ sample- spring- cloud- security/
tree/oauth2). The authorization server is available under the auth-service module.
Here's the main class of auth-service:

@SpringBootApplication
@EnableAuthorizationServer
public class AuthApplication {

 public static void main(String[] args) {
 new
SpringApplicationBuilder(AuthApplication.class).web(true).run(args);
 }

}

Here is the fragment of the application's configuration settings. In addition to the client's ID
and secret, I have also set its default scope and enabled basic security for the whole project:

security:
 user:
 name: root
 password: password
 oauth2:
 client:
 client-id: piotr.minkowski
 client-secret: 123456
 scope: read

After running our authorization service, we may perform some tests. For example, we may
call the POST /oauth/token method in order to create an access token using resource
owner password credentials, just like in the following command:

$ curl piotr.minkowski:123456@localhost:9999/oauth/token -d
grant_type=password -d username=root -d password=password

We may also use an authorization code grant type by calling the GET /oauth/authorize
endpoint from your web browser:

http://localhost:9999/oauth/authorize?response_type=token&client_id=piotr.m
inkowski&redirect_uri=http://example.com&scope=read

https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security.git
https://github.com/piomin/sample-spring-cloud-security/tree/oauth2
https://github.com/piomin/sample-spring-cloud-security/tree/oauth2
https://github.com/piomin/sample-spring-cloud-security/tree/oauth2
https://github.com/piomin/sample-spring-cloud-security/tree/oauth2
https://github.com/piomin/sample-spring-cloud-security/tree/oauth2
https://github.com/piomin/sample-spring-cloud-security/tree/oauth2
https://github.com/piomin/sample-spring-cloud-security/tree/oauth2
https://github.com/piomin/sample-spring-cloud-security/tree/oauth2
https://github.com/piomin/sample-spring-cloud-security/tree/oauth2
https://github.com/piomin/sample-spring-cloud-security/tree/oauth2
https://github.com/piomin/sample-spring-cloud-security/tree/oauth2
https://github.com/piomin/sample-spring-cloud-security/tree/oauth2
https://github.com/piomin/sample-spring-cloud-security/tree/oauth2
https://github.com/piomin/sample-spring-cloud-security/tree/oauth2
https://github.com/piomin/sample-spring-cloud-security/tree/oauth2
https://github.com/piomin/sample-spring-cloud-security/tree/oauth2
https://github.com/piomin/sample-spring-cloud-security/tree/oauth2
https://github.com/piomin/sample-spring-cloud-security/tree/oauth2
https://github.com/piomin/sample-spring-cloud-security/tree/oauth2
https://github.com/piomin/sample-spring-cloud-security/tree/oauth2

Securing an API Chapter 12

[296]

After that, you will be redirected to the approval page. You may confirm the action and
finally get your access token. It will be sent to the callback URL passed in the
redirect_uri parameter of the initial request. Here's the sample response that I received
after my test:

http://example.com/#access_token=dd736a4a-1408-4f3f-b3ca-43dcc05e6df0&token
_type=bearer&expires_in=43200.

The same OAuth2 configuration that was provided within the application.yml file can
be also implemented programatically. In order to achieve this, we should declare any
@Beans that implements AuthorizationServerConfigurer. One of these is the
AuthorizationServerConfigurerAdapter adapter, which provides empty methods,
allowing you to create custom definitions of the following separated configurers:

ClientDetailsServiceConfigurer: This defines the client details service.
Client details can be initialized, or you can just refer to an existing store.
AuthorizationServerSecurityConfigurer: This defines the security
constraints on the token endpoints /oauth/token_key and
/oauth/check_token.
AuthorizationServerEndpointsConfigurer: This defines the authorization
and token endpoints and the token services.

This approach to the authorization server implementation gives us many more
opportunities. For example, we may define more than one client with an ID and a secret, as
shown in the following code fragment. I'll show you some more advanced samples in the
next part of this chapter:

@Configuration
@EnableAuthorizationServer
public class AuthServerConfig extends AuthorizationServerConfigurerAdapter
{

Securing an API Chapter 12

[297]

 @Override
 public void configure(AuthorizationServerSecurityConfigurer
oauthServer) throws Exception {
 oauthServer
 .tokenKeyAccess("permitAll()")
 .checkTokenAccess("isAuthenticated()");
 }

 @Override
 public void configure(ClientDetailsServiceConfigurer clients) throws
Exception {
 clients.inMemory()
 .withClient("piotr.minkowski").secret("123456")
 .scopes("read")
 .authorities("ROLE_CLIENT")
 .authorizedGrantTypes("authorization_code",
"refresh_token", "implicit")
 .autoApprove(true)
 .and()
 .withClient("john.smith").secret("123456")
 .scopes("read", "write")
 .authorities("ROLE_CLIENT")
 .authorizedGrantTypes("authorization_code",
"refresh_token", "implicit")
 .autoApprove(true);
 }
}

The last thing that has to be configured for our authorization server is web security. In the
class extending WebSecurityConfigurerAdapter, we have defined an in-memory user
credentials store and permissions to access specific resources, such as a login page:

@Configuration
public class SecurityConfig extends WebSecurityConfigurerAdapter {

 @Autowired
 private AuthenticationManager authenticationManager;

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.requestMatchers()
 .antMatchers("/login", "/oauth/authorize")
 .and()
 .authorizeRequests()
 .anyRequest().authenticated()
 .and()
 .formLogin().permitAll();

Securing an API Chapter 12

[298]

 }

 @Override
 protected void configure(AuthenticationManagerBuilder auth) throws
Exception {
 auth.parentAuthenticationManager(authenticationManager)
 .inMemoryAuthentication()
 .withUser("piotr.minkowski").password("123456").roles("USERS");
 }

}

Client configuration
Your application can use the OAuth2 client that is configured in two different ways. The
first of these ways is through the @EnableOAuth2Client annotation, which creates a filter
bean with an ID of oauth2ClientContextFilter that is responsible for storing the
request and context. It also manages communication between your application and an
authorization server. However, we will be looking at the second approach to OAuth2's
client-side implementation, through @EnableOAuth2Sso. Single sign-on (SSO) is a well-
known security pattern that allows a user to use one set of login credentials to access
multiple applications. There are two features provided by this annotation—the OAuth2
client and the authentication. The authentication piece aligns your application with the
typical Spring Security mechanisms, such as a form login. The client piece has the same
functionality as that provided by @EnableOAuth2Client. So, we may think of
@EnableOAuth2Sso as just a higher level annotation than @EnableOAuth2Client.

In the following sample code fragment, I have annotated the class that extends
WebSecurityConfigurerAdapter with @EnableOAuth2Sso. Thanks to this extension,
Spring Boot configures the security filter chain that carries the OAuth2 authentication
processor. In this case, requests to the /login page are permitted, while all other requests
require authentication. The form login page path may be overridden with
the security.oauth2.sso.login-path property. After overriding it there, we should
also remember to change the path pattern inside WebSecurityConfig:

@Configuration
@EnableOAuth2Sso
public class WebSecurityConfig extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.antMatcher("/**")

Securing an API Chapter 12

[299]

 .authorizeRequests()
 .antMatchers("/login**")
 .permitAll()
 .anyRequest()
 .authenticated();
 }

}

There are also some configuration settings that need to be set. First, we should disable basic
authentication, because we use the form login method enabled together with the
@EnableOAuth2Sso annotation. Then, we have to provide some basic OAuth2 client
properties, such as client credentials and the addresses of the HTTP API endpoints exposed
by the authorization server:

security:
 basic:
 enabled: false
 oauth2:
 client:
 clientId: piotr.minkowski
 clientSecret: 123456
 accessTokenUri: http://localhost:9999/oauth/token
 userAuthorizationUri: http://localhost:9999/oauth/authorize
 resource:
 userInfoUri: http://localhost:9999/user

The last property from the fragment of the application.yml file is
security.oauth2.resource.userInfoUri, which requires an additional endpoint on
the server side. The endpoint implemented by UserController returns the
java.security.Principal object, indicating the currently authenticated user:

@RestController
public class UserController {

 @RequestMapping("/user")
 public Principal user(Principal user) {
 return user;
 }

}

Securing an API Chapter 12

[300]

Now, if you invoke any endpoint exposed by one of our microservices, you will be
automatically redirected to the login page. Since we set an autoApprove option for our in-
memory clients' details store, the authorization grant and access token are generated
automatically without any interaction from the user. After providing your credentials in the
login page, you should get the response from the requested resource.

Using the JDBC backend store
In the previous sections, we configured an authentication server and client application,
which grants access to the resources protected by the resource server. However, the whole
authorization server configuration has been provided inside in-memory storage. Such a
solution meets our needs during development, but it is not the most desirable approach in
production mode. The target solution should store all the authentication credentials and
tokens in the database. We may choose between many relational databases supported by
Spring. In this case, I have decided to use MySQL.

So, the first step is to start the MySQL database locally. The most comfortable way to
achieve this is through a Docker container. In addition to starting the database, the
following command also creates a schema and a user called oauth2:

docker run -d --name mysql -e MYSQL_DATABASE=oauth2 -e MYSQL_USER=oauth2 -e
MYSQL_PASSWORD=oauth2 -e MYSQL_ALLOW_EMPTY_PASSWORD=yes -p 33306:3306 mysql

Once we have started MySQL, we now have to provide the connection settings on the client
side. MySQL is available under the host address 192.168.99.100 if you run Docker on a
Windows machine and on port 33306. Data source properties should be set in
the application.yml of auth-service. Spring Boot is also able to run some SQL scripts
on the selected data source on the application's startup. It's good news for us because we
have to create some tables on the schema dedicated for our OAuth2 process:

spring:
 application:
 name: auth-service
 datasource:
 url: jdbc:mysql://192.168.99.100:33306/oauth2?useSSL=false
 username: oauth2
 password: oauth2
 driver-class-name: com.mysql.jdbc.Driver
 schema: classpath:/script/schema.sql
 data: classpath:/script/data.sql

Securing an API Chapter 12

[301]

The created schema contains some tables used for storing OAuth2 credentials and
tokens—oauth_client_details, oauth_client_token, oauth_access_token,
oauth_refresh_token, oauth_code, and oauth_approvals. The full script with SQL -
creation commands is available inside /src/main/resources/script/schema.sql.
There is also a second SQL script, /src/main/resources/script/data.sql, with some
insert commands for test purposes. The most important thing is to add some client
ID/client secret pairs:

INSERT INTO `oauth_client_details` (`client_id`, `client_secret`, `scope`,
`authorized_grant_types`, `access_token_validity`,
`additional_information`) VALUES ('piotr.minkowski', '123456', 'read',
'authorization_code,password,refresh_token,implicit', '900', '{}');
INSERT INTO `oauth_client_details` (`client_id`, `client_secret`, `scope`,
`authorized_grant_types`, `access_token_validity`,
`additional_information`) VALUES ('john.smith', '123456', 'write',
'authorization_code,password,refresh_token,implicit', '900', '{}');

There are some differences in implementation between the current version of the
authentication server and the version described in the basic example. The first important
thing here is to set the default token storage to a database by providing a JdbcTokenStore
bean with the default data source as a parameter. Although all tokens are now stored in a
database, we still want to generate them in JWT format. That's why the second bean,
JwtAccessTokenConverter, has to be provided in that class. By overriding different
configure methods inherited from the base class, we can set a default storage for OAuth2
client details and configure the authorization server to always verify the API key submitted
in HTTP headers:

@Configuration
@EnableAuthorizationServer
public class OAuth2Config extends AuthorizationServerConfigurerAdapter {

 @Autowired
 private DataSource dataSource;
 @Autowired
 private AuthenticationManager authenticationManager;

 @Override
 public void configure(AuthorizationServerEndpointsConfigurer endpoints)
throws Exception {
 endpoints.authenticationManager(this.authenticationManager)
 .tokenStore(tokenStore())
 .accessTokenConverter(accessTokenConverter());
 }

 @Override

Securing an API Chapter 12

[302]

 public void configure(AuthorizationServerSecurityConfigurer
oauthServer) throws Exception {
 oauthServer.checkTokenAccess("permitAll()");
 }

 @Bean
 public JwtAccessTokenConverter accessTokenConverter() {
 return new JwtAccessTokenConverter();
 }

 @Override
 public void configure(ClientDetailsServiceConfigurer clients) throws
Exception {
 clients.jdbc(dataSource);
 }

 @Bean
 public JdbcTokenStore tokenStore() {
 return new JdbcTokenStore(dataSource);
 }

}

The Spring application provides a custom authentication mechanism. To use it in the
application, we must implement the UserDetailsService interface and override its
loadUserByUsername method. In our example application, user credentials and
authorities are also stored in the database, so we inject the UserRepository bean to the
custom UserDetailsService class:

@Component("userDetailsService")
public class UserDetailsServiceImpl implements UserDetailsService {

 private final Logger log =
LoggerFactory.getLogger(UserDetailsServiceImpl.class);

 @Autowired
 private UserRepository userRepository;

 @Override
 @Transactional
 public UserDetails loadUserByUsername(final String login) {
 log.debug("Authenticating {}", login);
 String lowercaseLogin = login.toLowerCase();
 User userFromDatabase;
 if(lowercaseLogin.contains("@")) {
 userFromDatabase = userRepository.findByEmail(lowercaseLogin);
 } else {

Securing an API Chapter 12

[303]

 userFromDatabase =
userRepository.findByUsernameCaseInsensitive(lowercaseLogin);
 }
 if (userFromDatabase == null) {
 throw new UsernameNotFoundException("User " + lowercaseLogin +
" was not found in the database");
 } else if (!userFromDatabase.isActivated()) {
 throw new UserNotActivatedException("User " + lowercaseLogin +
" is not activated");
 }
 Collection<GrantedAuthority> grantedAuthorities = new
ArrayList<>();
 for (Authority authority : userFromDatabase.getAuthorities()) {
 GrantedAuthority grantedAuthority = new
SimpleGrantedAuthority(authority.getName());
 grantedAuthorities.add(grantedAuthority);
 }
 return new
org.springframework.security.core.userdetails.User(userFromDatabase.getUser
name(), userFromDatabase.getPassword(), grantedAuthorities);
 }

}

Inter-service authorization
Inter-service communication in our sample is realized using Feign clients. Here's one of the
chosen implementations—in this case, from order-service—which calls the endpoint
from customer-service:

@FeignClient(name = "customer-service")
public interface CustomerClient {

 @GetMapping("/withAccounts/{customerId}")
 Customer findByIdWithAccounts(@PathVariable("customerId") Long
customerId);

}

Securing an API Chapter 12

[304]

In the same way as with the other services, all the available methods from customer-
service are protected by the preauthorization mechanism based on the OAuth token
scope. It allows us to annotate every method with @PreAuthorize, defining the required
scope:

@PreAuthorize("#oauth2.hasScope('write')")
@PutMapping
public Customer update(@RequestBody Customer customer) {
 return repository.update(customer);
}

@PreAuthorize("#oauth2.hasScope('read')")
@GetMapping("/withAccounts/{id}")
public Customer findByIdWithAccounts(@PathVariable("id") Long id) throws
JsonProcessingException {
 List<Account> accounts = accountClient.findByCustomer(id);
 LOGGER.info("Accounts found: {}", mapper.writeValueAsString(accounts));
 Customer c = repository.findById(id);
 c.setAccounts(accounts);
 return c;
}

Preauthorization is disabled by default. To enable it for API methods, we should use
the @EnableGlobalMethodSecurity annotation. We should also indicate that such a
preauthorization will be based on the OAuth2 token scope:

@Configuration
@EnableResourceServer
@EnableGlobalMethodSecurity(prePostEnabled = true)
public class OAuth2ResourceServerConfig extends
GlobalMethodSecurityConfiguration {

 @Override
 protected MethodSecurityExpressionHandler createExpressionHandler() {
 return new OAuth2MethodSecurityExpressionHandler();
 }

}

If you call the account service endpoint via the Feign client, you get the following exception:

feign.FeignException: status 401 reading
CustomerClient#findByIdWithAccounts();
content:{"error":"unauthorized","error_description":"Full authentication is
required to access this resource"}

Securing an API Chapter 12

[305]

Why does such an exception occur? Of course, customer-service is protected with a
OAuth2 token authorization, but the Feign client does not send an authorization token in
the request header. That approach may be customized by defining a custom configuration
class for the Feign client. It allows us to declare a request interceptor. In that case, we can
use an implementation for OAuth2 provided by OAuth2FeignRequestInterceptor from
the Spring Cloud OAuth2 library. For test purposes, I decided to use a resource owner
password grant type:

public class CustomerClientConfiguration {

 @Value("${security.oauth2.client.access-token-uri}")
 private String accessTokenUri;
 @Value("${security.oauth2.client.client-id}")
 private String clientId;
 @Value("${security.oauth2.client.client-secret}")
 private String clientSecret;
 @Value("${security.oauth2.client.scope}")
 private String scope;

 @Bean
 RequestInterceptor oauth2FeignRequestInterceptor() {
 return new OAuth2FeignRequestInterceptor(new
DefaultOAuth2ClientContext(), resource());
 }

 @Bean
 Logger.Level feignLoggerLevel() {
 return Logger.Level.FULL;
 }

 private OAuth2ProtectedResourceDetails resource() {
 ResourceOwnerPasswordResourceDetails resourceDetails = new
ResourceOwnerPasswordResourceDetails();
 resourceDetails.setUsername("root");
 resourceDetails.setPassword("password");
 resourceDetails.setAccessTokenUri(accessTokenUri);
 resourceDetails.setClientId(clientId);
 resourceDetails.setClientSecret(clientSecret);
 resourceDetails.setGrantType("password");
 resourceDetails.setScope(Arrays.asList(scope));
 return resourceDetails;
 }

}

Securing an API Chapter 12

[306]

Finally, we may test the implemented solution. This time, we will create a JUnit automated
test instead of clicking it in a web browser or sending requests using other tools. The test
method is shown in the following code snippet. We use OAuth2RestTemplate with
ResourceOwnerPasswordResourceDetails to perform a resource owner credentials
grant operation and call the POST / API method from order-service with an OAuth2
token sent in the request header. Of course, before running that test, you have to start all the
microservices, as well as the discovery and authorization server:

@Test
public void testClient() {
 ResourceOwnerPasswordResourceDetails resourceDetails = new
ResourceOwnerPasswordResourceDetails();
 resourceDetails.setUsername("root");
 resourceDetails.setPassword("password");
 resourceDetails.setAccessTokenUri("http://localhost:9999/oauth/token");
 resourceDetails.setClientId("piotr.minkowski");
 resourceDetails.setClientSecret("123456");
 resourceDetails.setGrantType("password");
 resourceDetails.setScope(Arrays.asList("read"));
 DefaultOAuth2ClientContext clientContext = new
DefaultOAuth2ClientContext();
 OAuth2RestTemplate restTemplate = new
OAuth2RestTemplate(resourceDetails, clientContext);
 restTemplate.setMessageConverters(Arrays.asList(new
MappingJackson2HttpMessageConverter()));
 Random r = new Random();
 Order order = new Order();
 order.setCustomerId((long) r.nextInt(3) + 1);
 order.setProductIds(Arrays.asList(new Long[] { (long) r.nextInt(10) +
1, (long) r.nextInt(10) + 1 }));
 order = restTemplate.postForObject("http://localhost:8090", order,
Order.class);
 if (order.getStatus() != OrderStatus.REJECTED) {
 restTemplate.put("http://localhost:8090/{id}", null,
order.getId());
 }
}

Securing an API Chapter 12

[307]

Enabling SSO on the API gateway
You may enable the single sign-on feature on the API gateway just by annotating the main
class with @EnableOAuth2Sso. Indeed, that is the best choice for your microservices
architecture to force Zuul to generate or get the access token for the currently authenticated
user:

@SpringBootApplication
@EnableOAuth2Sso
@EnableZuulProxy
public class GatewayApplication {

 public static void main(String[] args) {
 new
SpringApplicationBuilder(GatewayApplication.class).web(true).run(args);
 }

}

By including @EnableOAuth2Sso, you trigger an auto-configuration available for a
ZuulFilter. The filter is responsible for extracting an access token from the currently
authenticated user, and then putting it into the request header forwarded to the
microservices hidden behind the gateway. If @EnableResourceServer is activated for
those services, they will receive the expected token in the Authorization HTTP
header. The authorization behavior downstream of an @EnableZuulProxy may be
controlled by declaring proxy.auth.* properties.

When using a gateway in your architecture, you may hide an authorization server behind it.
In this case, you should provide the additional route in Zuul's configuration settings—for
example, uaa. Then, all the messages exchanged between OAuth2 clients and the server go
through the gateway. Here's the proper configuration in the gateway's application.yml
file:

security:
 oauth2:
 client:
 accessTokenUri: /uaa/oauth/token
 userAuthorizationUri: /uaa/oauth/authorize
 clientId: piotr.minkowski
 clientSecret: 123456
 resource:
 userInfoUri: http://localhost:9999/user

zuul:
 routes:

Securing an API Chapter 12

[308]

 account-service:
 path: /account/**
 customer-service:
 path: /customer/**
 order-service:
 path: /order/**
 product-service:
 path: /product/**
 uaa:
 sensitiveHeaders:
 path: /uaa/**
 url: http://localhost:9999
 add-proxy-headers: true

Summary
There wouldn't have been anything wrong if I had included a security section in every
single chapter from part two of this book. But I have decided to create a dedicated chapter
on this subject in order to show you a step-by-step process of how to secure the key
elements of a microservices-based architecture. The topics related to security are usually
more advanced than other topics, so I took a bit more time to explain some of the basic
concepts around the field. I have shown you samples illustrating a two-way SSL
authentication, encryption/decryption of sensitive data, Spring Security authentication, and
OAuth2 authorization with JWT tokens. I will leave it to you to decide which of them
should be used in your system architecture to provide your desired level of security.

After reading this chapter, you should be able to set up both the basic and the more
advanced security configurations for your application. You should also be able to secure
every component of your system's architecture. Of course, we have discussed only some of
the possible solutions and frameworks. For example, you don't have to only rely on Spring
as an authorization server provider. We may use third-party tools, such as Keycloak, which
can act as an authorization and authentication server in a microservices-based system. It can
also easily be integrated with Spring Boot applications. It provides support for all the most
popular protocols, such as OAuth2, OpenId Connect, and SAML. So, in fact, Keycloak is a
very powerful tool, and should be treated as an alternative to the Spring Authorization
Server, especially for large, corporate systems and other more advanced use cases.

In the next chapter we will discuss the different strategies of microservices testing.

13
Testing Java Microservices

While developing a new application, we should never forget about automated tests. These
are especially important if we are thinking about microservices-based architecture. Testing
microservices requires a different approach than the tests created for monolithic
applications. As far as monoliths are concerned, the main focus is on unit testing and
integration tests, together with the database layer. In the case of microservices, the most
important thing is to provide coverage for each of the communications at the finest possible
granularity. Although each microservice is independently developed and released, a change
in one of them can affect all of the others that are interacting with that service. The
communication between them is realized through messages. Usually, these are messages
that are sent via REST or AMQP protocols.

Topics we will cover in this chapter include the following:

Spring support for automated testing
Differences between a component and integration testing for Spring Boot
microservices
Implementing contract tests using Pact
Implementing contract tests using Spring Cloud Contract
Implementing performance tests using Gatling

Testing Java Microservices Chapter 13

[310]

Testing strategies
There are five different microservices testing strategies. The first three of them are the same
as for monolithic applications:

Unit tests: With unit tests, we test the smallest pieces of code, for example, a
single method or component, and mock every call of other methods and
components. There are many popular frameworks that support unit tests in Java,
such as JUnit, TestNG, and Mockito (for mocking). The main task of this type of
testing is to confirm that the implementation meets requirements. Unit testing
can be a powerful tool, especially when combined with test-driven development.
Integration tests: Using only unit testing doesn't guarantee that you will verify
the behavior of the whole system. Integration tests take the modules and try to
test them together. This approach gives you an opportunity to exercise
communication paths within the subsystem. We are testing the interaction and
communication between components based on their interfaces with external
services mocked-up. In a microservices-based system, integration tests can be
used in order to include other microservices, data sources, or caches.
End-to-end tests: End-to-end tests are also known as functional tests. The main
goal of these tests is to verify whether the system meets the external
requirements. It means that we should design test scenarios that test all the
microservices taking part in that process. The design of a good end-to-end test is
not a trivial task. Since we need to test the whole system, it is very important to
place a particular emphasis on the test's scenario design.
Contract tests: Contract tests are used to ensure that the explicit and implicit
contract of a microservice work as expected. A contract is always formed when a
consumer integrates with the interface of a component in order to use it. Usually,
in microservice-based systems, there are many consumers of a single component.
Each of them usually requires a different contract that meets its demands.
Following these assumptions, every consumer is responsible for a source
component's interface behavior.
Component tests: After we have completed unit testing of all the objects and
methods within a microservice, we should test the whole microservice in
isolation. In order to run the tests in isolation, we need to mock or stub the calls
of the other microservices. An external data store should be replaced with an
equivalent in-memory data store, which also provides significant test
performance improvements.

Testing Java Microservices Chapter 13

[311]

The differences between contract and component tests are obvious. The following
diagram illustrates those differences in our sample order-service microservice:

Now, there is a question of whether we really need two additional strategies for testing a
microservices-based system. Through the proper unit and integration tests, we may be
confident in the correctness of the implementation of the individual components that form
part of the microservice. However, without more specific test strategies for microservices,
we cannot be sure how they work together in order to meet our business requirements.
Therefore, component and contract tests have been added. This is a really important change
in order to help us understand the differences between component, contract, and
integration tests. Since component tests are performed in isolation from the outside world,
integration tests are responsible for verifying interactions with that world. That's why we
should provide stubs for an integration test in contrast with a components test. Contract
tests, much like integration tests, emphasize interactions between microservices, but they
treat them as a black box and verify only the format of the responses.

Testing Java Microservices Chapter 13

[312]

Once you provide functional tests for your microservices, you should also think about
performance testing. We can distinguish the following strategies of performance testing:

Load tests: These are used to determine a system's behavior under the normal
and anticipated load conditions. The main idea here is to identify some
weaknesses, such as response time latencies, aberrant outages, or too many
retries if network timeouts are not set properly.
Stress tests: These check the upper limits of your system to examine how it
behaves under an extremely heavy load. In addition to load testing, it also checks
out memory leaks, security issues, and data corruption. It may be using the same
tools as for load testing.

The following diagram illustrates the logical order of performing all of the test strategies on
your system. We are starting from the simplest unit testing, which verifies small pieces of
software, and going through the next stages to finally finish with stress testing that pushes
the whole system to the limit:

Testing Spring Boot applications
As you might have read in the previous section, there are some different strategies and
approaches to the tests in your application. I have briefly mentioned all of them, so now we
may proceed to the practical aspects. Spring Boot provides a set of utilities that help in the
implementation of automated tests. In order to enable these features in the project, you have
to include the spring-boot-starter-test starter to the dependencies. It imports not
only the spring-test and spring-boot-test artifacts, but also some other useful test
libraries, such as JUnit, Mockito, and AssertJ:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
</dependency>

Testing Java Microservices Chapter 13

[313]

Building the sample application
Before we start to work on automated tests, we need to prepare a sample business logic for
testing purposes. We may use the same example system from the previous chapters, but it
has to be modified a little. Until now, we have never used an external data source for
storing and collecting test data. In this chapter, it would be helpful to do this in order to
illustrate how the different strategies approach the issue of persistence testing. Now, each
service has its own database although, generally, it doesn't really matter which database is
chosen. There is a large choice of solutions supported by Spring Boot, including both
relational and NoSQL databases. I have decided to use Mongo. Let us remind ourselves of
the architecture of the sample system. The current model shown in the following diagram
takes into account the assumptions described previously regarding dedicated databases per
service:

Testing Java Microservices Chapter 13

[314]

Integration with the database
In order to enable Mongo support for our Spring Boot application, include the spring-
boot-starter-data-mongo starter to the dependencies. This project provides some
interesting features to simplify integration with MongoDB. Among these features, it is
worth mentioning particular rich object mapping, MongoTemplate, and of course support
for the repository writing style, well-known from other Spring Data projects. Here's the
required dependency declaration in pom.xml:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-mongodb</artifactId>
</dependency>

The instance of MongoDB may be easily started using its Docker image. Run the following
command to launch the Docker container that exposes the Mongo database on port 27017:

docker run --name mongo -p 27017:27017 -d mongo

In order to connect the application with a previously started data source, we should
override some auto-configured settings in application.yml. This can be achieved with
the spring.data.mongodb.* properties:

spring:
 application:
 name: account-service
 data:
 mongodb:
 host: 192.168.99.100
 port: 27017
 database: micro
 username: micro
 password: micro123

Testing Java Microservices Chapter 13

[315]

I have already mentioned the object mapping feature. Spring Data Mongo provides some
annotations that may be used for this. Every object stored in the database should be
annotated with @Document. The primary key of the target collection is a 12 byte string,
which should be indicated in every mapped class with Spring Data @Id. Here's the
fragment of Account object implementation:

@Document
public class Account {

 @Id
 private String id;
 private String number;
 private int balance;
 private String customerId;
 // ...

}

Unit tests
I have taken a lot of time to describe integration with MongoDB. However, testing
persistence is one of the key points of automated tests, so it is very important to configure it
properly. Now, we may proceed to the test's implementation. Spring Test provides support
for the most typical testing scenarios, such as integration with other services through a
REST client or integration with databases. We have a set of libraries available that allows us
to easily mock interactions with external services, which is especially important for unit
tests.

The following test class is a typical unit test implementation for a Spring Boot application.
We have used the JUnit framework, which is the de facto standard for Java. The Mockito
library is used here for replacing the real repository and controller with their stubs. Such an
approach allows us to easily verify the correctness of every method implemented by the
@Controller class. The test is performed in isolation from the external components, which
is the main assumption of unit testing:

@RunWith(SpringRunner.class)
@WebMvcTest(AccountController.class)
public class AccountControllerUnitTest {

 ObjectMapper mapper = new ObjectMapper();

 @Autowired

Testing Java Microservices Chapter 13

[316]

 MockMvc mvc;
 @MockBean
 AccountRepository repository;

 @Test
 public void testAdd() throws Exception {
 Account account = new Account("1234567890", 5000, "1");
 when(repository.save(Mockito.any(Account.class))).thenReturn(new
Account("1","1234567890", 5000, "1"));
mvc.perform(post("/").contentType(MediaType.APPLICATION_JSON).content(mappe
r.writeValueAsString(account)))
 .andExpect(status().isOk());
 }

 @Test
 public void testWithdraw() throws Exception {
 Account account = new Account("1", "1234567890", 5000, "1");
 when(repository.findOne("1")).thenReturn(account);
 when(repository.save(Mockito.any(Account.class))).thenAnswer(new
Answer<Account>() {
 @Override
 public Account answer(InvocationOnMock invocation) throws
Throwable {
 Account a = invocation.getArgumentAt(0, Account.class);
 return a;
 }
 });
 mvc.perform(put("/withdraw/1/1000"))
 .andExpect(status().isOk())
.andExpect(content().contentType(MediaType.APPLICATION_JSON_UTF8))
 .andExpect(jsonPath("$.balance", is(4000)));
 }

}

The good news, especially within the context of microservices, is that we may easily mock
Feign client communication. The following example test class verifies the endpoint from
order-service used for withdrawing money by calling the endpoint exposed by
account-service. As you have probably noticed, that endpoint has in turn been tested by
the previously introduced test class. Here's the class with unit test implementation for
order-service:

@RunWith(SpringRunner.class)
@WebMvcTest(OrderController.class)
public class OrderControllerTest {

 @Autowired

Testing Java Microservices Chapter 13

[317]

 MockMvc mvc;
 @MockBean
 OrderRepository repository;
 @MockBean
 AccountClient accountClient;

 @Test
 public void testAccept() throws Exception {
 Order order = new Order("1", OrderStatus.ACCEPTED, 2000, "1", "1",
null);
 when(repository.findOne("1")).thenReturn(order);
 when(accountClient.withdraw(order.getAccountId(),
order.getPrice())).thenReturn(new Account("1", "123", 0));
 when(repository.save(Mockito.any(Order.class))).thenAnswer(new
Answer<Order>() {
 @Override
 public Order answer(InvocationOnMock invocation) throws
Throwable {
 Order o = invocation.getArgumentAt(0, Order.class);
 return o;
 }
 });

 mvc.perform(put("/1"))
 .andExpect(status().isOk())
.andExpect(content().contentType(MediaType.APPLICATION_JSON_UTF8))
 .andExpect(jsonPath("$.status", is("DONE")));
 }

}

Component tests
If you have provided the unit tests for all the key classes and interfaces in the application,
you may proceed to the component tests. The main idea of component tests is to instantiate
the full microservice in memory using in-memory test doubles and data stores. This allows
us to skip the network connections. While for unit tests we were mocking all the database or
HTTP clients, here we do not mock anything. We provide an in-memory data source for the
database client and we simulate HTTP responses for the REST client.

Testing Java Microservices Chapter 13

[318]

Running tests with an in-memory database
One of the reasons I chose MongoDB is that it can be easily embedded with a Spring Boot
application for testing purposes. To enable an embedded MongoDB for your project,
include the following dependency in Maven pom.xml:

<dependency>
 <groupId>de.flapdoodle.embed</groupId>
 <artifactId>de.flapdoodle.embed.mongo</artifactId>
 <scope>test</scope>
</dependency>

Spring Boot provides auto-configuration for an embedded MongoDB, so we don't need to
do anything else other than setting the local address and port in application.yml.
Because, by default, we use Mongo running on Docker container, we should declare such a
configuration in an additional Spring profile. This specific profile is activated during test
case execution by annotating the test class with @ActiveProfiles. Here's a fragment of
application.yml, where we defined two profiles, dev and test, with different MongoDB
connection settings:

spring:
 profiles: dev
 data:
 mongodb:
 host: 192.168.99.100
 port: 27017
 database: micro
 username: micro
 password: micro123

spring:
 profiles: test
 data:
 mongodb:
 host: localhost
 port: 27017

Testing Java Microservices Chapter 13

[319]

If you use databases other than MongoDB, for example, MySQL or Postgres, you may easily
replace them with alternative, in-memory, embedded, relational databases, such as H2 or
Derby. Spring Boot supports them and provides auto-configuration for the tests that may be
activated with @DataJpaTest. Instead of using @SpringBootTest, you can also use the
@DataMongoTest annotation for embedded MongoDB. As well as an in-memory,
embedded MongoDB, this will configure a MongoTemplate, scan for @Document classes,
and configure Spring Data MongoDB repositories.

Handling HTTP clients and service discovery
The issue regarding testing persistence with an in-memory database is resolved. However,
we still need to consider some other aspects of the test, such as simulating HTTP responses
from other services or integration with a service discovery. When you implement some tests
for microservices, you may choose between two typical approaches to a service discovery.
The first of these is to embed the discovery server to the application during the test case
execution, and the second is just to disable discovery on the client side. The second option is
relatively easy to configure with Spring Cloud. For the Eureka Server, it can be disabled
using the eureka.client.enabled=false property.

This is only the first part of the exercise. We should also disable discovery for the Ribbon
client, which is responsible for load balancing in an interservice communication. If there is
more than one target service, we have to label every client with the service name. The value
of the last property in the following configuration, listOfServers, is strictly related to the
framework used for automated test implementation. I'm going to show you the sample
based on the Hoverfly Java library, which has already been introduced in Chapter 7,
Advanced Load Balancing and Circuit Breakers. It was used then for simulating delays in
calling target services in order to present how the Ribbon client and Hystrix deal with
network timeouts. Here, we will just use it to return prepared responses to make our
component tests to touch the network communications. Here's a fragment of the
configuration file with the profile responsible for disabling Eureka's discovery and setting
the test properties of the Ribbon client. That profile should also be activated for the test class
by annotating it with @ActiveProfiles:

spring:
 profiles: no-discovery
eureka:
 client:
 enabled: false
account-service:
 ribbon:

Testing Java Microservices Chapter 13

[320]

 eureka:
 enable: false
 listOfServers: account-service:8080
customer-service:
 ribbon:
 eureka:
 enable: false
 listOfServers: customer-service:8080
product-service:
 ribbon:
 eureka:
 enable: false
 listOfServers: product-service:8080

I wouldn't like to go into the details of Hoverfly usage because it has already been discussed
in Chapter 7, Advanced Load Balancing and Circuit Breakers. As you probably remember,
Hoverfly can be activated for the JUnit test by declaring @ClassRule with HoverflyRule,
defining the list of services and endpoints that should be simulated. The name of each
service has to be the same as its address defined with the listOfServers property. Here's
a definition of the Hoverfly test rule that simulates responses from three different services:

@ClassRule
public static HoverflyRule hoverflyRule = HoverflyRule
 .inSimulationMode(dsl(
 service("account-service:8080")
 .put(startsWith("/withdraw/"))
.willReturn(success("{\"id\":\"1\",\"number\":\"1234567890\",\"balance\":50
00}", "application/json")),
 service("customer-service:8080")
 .get("/withAccounts/1")
 .willReturn(success("{\"id\":\"{{ Request.Path.[1]
}}\",\"name\":\"Test1\",\"type\":\"REGULAR\",\"accounts\":[{\"id\":\"1\",\"
number\":\"1234567890\",\"balance\":5000}]}", "application/json")),
 service("product-service:8080")
 .post("/ids").anyBody()
 .willReturn(success("[{\"id\":\"1\",\"name\":\"Test1\",\"price\":1000}]",
"application/json"))))
 .printSimulationData();

Testing Java Microservices Chapter 13

[321]

Implementing sample tests
To conclude everything that has been said in the last two sections, we will now prepare
component tests using an in-memory, embedded MongoDB, Hoverfly (to simulate HTTP
responses), and disabled service discovery. The correct configuration settings prepared
especially for our testing purposes are available under profiles test and no-discovery.
Every component test is initialized by the TestRestTemplate, which calls order-
service HTTP endpoints. The test result verification may be performed based on the
HTTP response or data stored in the embedded MongoDB. Here's a sample implementation
of component tests for order-service:

@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment = WebEnvironment.RANDOM_PORT)
@FixMethodOrder(MethodSorters.NAME_ASCENDING)
@ActiveProfiles({"test", "no-discovery"})
public class OrderComponentTest {

 @Autowired
 TestRestTemplate restTemplate;
 @Autowired
 OrderRepository orderRepository;
 // ...
 @Test
 public void testAccept() {
 Order order = new Order(null, OrderStatus.ACCEPTED, 1000, "1", "1",
Collections.singletonList("1"));
 order = orderRepository.save(order);
 restTemplate.put("/{id}", null, order.getId());
 order = orderRepository.findOne(order.getId());
 Assert.assertEquals(OrderStatus.DONE, order.getStatus());
 }

 @Test
 public void testPrepare() {
 Order order = new Order(null, OrderStatus.NEW, 1000, "1", "1",
Collections.singletonList("1"));
 order = restTemplate.postForObject("/", order, Order.class);
 Assert.assertNotNull(order);
 Assert.assertEquals(OrderStatus.ACCEPTED, order.getStatus());
 Assert.assertEquals(940, order.getPrice());
 }

}

Testing Java Microservices Chapter 13

[322]

Integration tests
After creating unit and component tests, we have verified all the functionalities inside the
microservices. However, we still need to test the interaction with other services, external
data stores, and caches. In microservices-based architecture integration, tests are treated
differently than they are in monolithic applications. Because all the relationships between
internal modules have been tested through the component tests, we have tested only those
modules that interact with external components.

Categorizing tests
It also makes sense to separate integration tests in the CI pipeline so that external outages
don't block or break the build of the project. You should consider categorizing your tests by
annotating them with @Category. You may create the interface especially for integration
tests, for example, IntegrationTest:

public interface IntegrationTest { }

Then, you can mark your test with that interface using the @Category annotation:

@Category(IntegrationTest.class)
public class OrderIntegrationTest { ... }

Finally, you can configure Maven to run only the selected type of tests, for example, with
maven-failsafe-plugin:

<plugin>
 <artifactId>maven-failsafe-plugin</artifactId>
 <dependencies>
 <dependency>
 <groupId>org.apache.maven.surefire</groupId>
 <artifactId>surefire-junit47</artifactId>
 </dependency>
 </dependencies>
 <configuration>
 <groups>pl.piomin.services.order.IntegrationTest</groups>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>integration-test</goal>
 </goals>
 <configuration>
 <includes>

Testing Java Microservices Chapter 13

[323]

 <include>**/*.class</include>
 </includes>
 </configuration>
 </execution>
 </executions>
</plugin>

Capturing HTTP traffic
Categorization is one of the ways of dealing with problems in communication with external
microservices during automated tests. Another popular approach to that issue involves
recording outgoing requests and incoming responses in order to use them in the future
without establishing a connection to the external services.

In the previous examples, we have only used Hoverfly in simulation mode. However, it can
also be run in capture mode, which means that requests will be made to the real service as
normal, but they will be intercepted, recorded, and stored in the file by Hoverfly. The file
that stores the captured traffic in JSON format may then be used in simulation mode. You
can create a Hoverfly Rule in your JUnit test class, which is started in capture mode if the
simulation file does not exist and in simulate mode if it does exist. It is always stored inside
the src/test/resources/hoverfly directory.

This is a simple way of breaking dependencies to the external service. For example, if you
know that there were no changes there, it is not necessary to interact with the real service. If
such a service were to be modified, you can remove the JSON simulation file and thereby
switch to capture mode. If your test fails, it means that the modification affected your
service and you have to perform some fixes before moving back to capture mode.

Here's a sample integration test located inside order-service. It adds a new account and
then calls a method for withdrawing money from that account. Thanks to using the
inCaptureOrSimulationMode method, the real service is invoked only if the
account.json file does not exist or you change the input data passed to the services in the
test:

@RunWith(SpringRunner.class)
@SpringBootTest
@ActiveProfiles("dev")
@Category(IntegrationTest.class)
public class OrderIntegrationTest {

 @Autowired
 AccountClient accountClient;
 @Autowired

Testing Java Microservices Chapter 13

[324]

 CustomerClient customerClient;
 @Autowired
 ProductClient productClient;
 @Autowired
 OrderRepository orderRepository;

 @ClassRule
 public static HoverflyRule hoverflyRule =
HoverflyRule.inCaptureOrSimulationMode("account.json").printSimulationData(
);

 @Test
 public void testAccount() {
 Account account = accountClient.add(new Account(null, "123",
5000));
 account = accountClient.withdraw(account.getId(), 1000);
 Assert.notNull(account);
 Assert.equals(account.getBalance(), 4000);
 }

}

Contract tests
There are some interesting tools especially dedicated to contract testing. We will discuss
this concept by looking at two of the most popular tools—Pact and Spring Cloud Contract.

Using Pact
As we have already mentioned, the main concept around contract tests is to define a
contract between the consumer and provider, and then verify it independently for each
service. Since the responsibility for creating and maintaining a contract lies mainly on the
consumer side, this type of test is usually referred to as a consumer-driven test. The division
into a consumer and provider side is clearly visible in Pact JVM. It provides two separated
libraries, the first prefixed by pact-jvm-consumer and the second prefixed by pact-jvm-
provider. Of course, the contract is created by the consumer in agreement with the
provider, which has been illustrated in the following diagram:

Testing Java Microservices Chapter 13

[325]

Pact is, in fact, a collection of frameworks that provide support for consumer-driven
contract testing. These implementations are available for different languages and
frameworks. Fortunately, Pact may be used together with JUnit and Spring Boot. Let's
consider one of the integrations implemented in our sample system, namely the one
between customer-service and account-service. The microservice named customer-
service uses the Feign client for communication with account-service. The Feign client
definition on the consumer side de facto represents our contract:

@FeignClient(name = "account-service")
public interface AccountClient {

 @GetMapping("/customer/{customerId}")
 List<Account> findByCustomer(@PathVariable("customerId") String
customerId);

}

Consumer side
To enable Pact with JUnit support on the consumer side, include the following dependency
to your project:

<dependency>
 <groupId>au.com.dius</groupId>
 <artifactId>pact-jvm-consumer-junit_2.12</artifactId>
 <version>3.5.12</version>
 <scope>test</scope>
</dependency>

Testing Java Microservices Chapter 13

[326]

Now the only thing we have to do is to create the JUnit test class. We may implement it as a
standard Spring Boot test by annotating it with @SpringBootTest and running it using
Spring Runner. To perform the created test successfully, we first need to disable the
discovery client and ensure that the Ribbon client will communicate with the stub of the
account-service represented by @Rule PactProviderRuleMk2. The key point of the
test is the callAccountClient method, which is annotated with @Pact and returns a
RequestResponsePact. It defines the format of the request and the content of the
response. During the test case execution, Pact automatically generates the JSON
representation of that definition, which is available in the
target/pacts/addressClient-customerServiceProvider.json file. Finally, the
method implemented in the Feign client is invoked and the response returned by Pact
@Rule is verified in the test method annotated with @PactVerification. Here's a sample
implementation of a consumer-side contract test for customer-service:

@RunWith(SpringRunner.class)
@SpringBootTest(properties = {
 "account-service.ribbon.listOfServers: localhost:8092",
 "account-service.ribbon.eureka.enabled: false",
 "eureka.client.enabled: false",
})
public class CustomerConsumerContractTest {

 @Rule
 public PactProviderRuleMk2 stubProvider = new
PactProviderRuleMk2("customerServiceProvider", "localhost", 8092, this);
 @Autowired
 private AccountClient accountClient;

 @Pact(state = "list-of-3-accounts", provider =
"customerServiceProvider", consumer = "accountClient")
 public RequestResponsePact callAccountClient(PactDslWithProvider
builder) {
 return builder.given("list-of-3-accounts").uponReceiving("test-
account-service")
.path("/customer/1").method("GET").willRespondWith().status(200)
.body("[{\"id\":\"1\",\"number\":\"123\",\"balance\":5000},{\"id\":\"2\",\"
number\":\"124\",\"balance\":5000},{\"id\":\"3\",\"number\":\"125\",\"balan
ce\":5000}]", "application/json").toPact();
 }

 @Test
 @PactVerification(fragment = "callAccountClient")
 public void verifyAddressCollectionPact() {
 List<Account> accounts = accountClient.findByCustomer("1");
 Assert.assertEquals(3, accounts.size());

Testing Java Microservices Chapter 13

[327]

 }

}

The JSON test result file generated in the target/pacts directory has to be available on
the provider side. The simplest possible solution assumes that it can just access the
generated file using the @PactFolder annotation. Of course, it requires the provider to
have access to the target/pacts directory. Although it would work for our sample since
its source code is stored in the same Git repository, it is not our target solution. Fortunately,
we may publish the Pact test result in the network using Pact Broker. Pact Broker is a
repository server that provides an HTTP API for publication and consumption of Pact files.
We may start Pact Broker locally using its Docker image. It requires a Postgres database as a
backend store, so we also start the container with Postgres. Here are the required Docker
commands:

docker run -d --name postgres -p 5432:5432 -e POSTGRES_USER=oauth -e
POSTGRES_PASSWORD=oauth123 -e POSTGRES_DB=oauth postgres
docker run -d --name pact-broker --link postgres:postgres -e
PACT_BROKER_DATABASE_USERNAME=oauth -e
PACT_BROKER_DATABASE_PASSWORD=oauth123 -e
PACT_BROKER_DATABASE_HOST=postgres -e PACT_BROKER_DATABASE_NAME=oauth -p
9080:80 dius/pact_broker

After running Pact Broker on Docker, we have to publish our test report there. We may
easily perform this using the Maven plugin pact-jvm-provider-maven_2.12. If you run
the mvn clean install pack:publish command, all the files placed in the
/target/pacts directory will be sent to the broker's HTTP API:

<plugin>
 <groupId>au.com.dius</groupId>
 <artifactId>pact-jvm-provider-maven_2.12</artifactId>
 <version>3.5.12</version>
 <configuration>
 <pactBrokerUrl>http://192.168.99.100:9080</pactBrokerUrl>
 </configuration>
</plugin>

Testing Java Microservices Chapter 13

[328]

The full list of published Pacts can be displayed using the web console available at
http://192.168.99.100:9080. It also provides the information about the last
verification date and the details of every Pact in the list, as shown in the following
screenshot:

Producer side
Assuming the consumer has created a Pact and published it on the broker, we may proceed
to implement a verification test on the provider side. To enable Pact with JUnit support on
the provider side, include the pact-jvm-provider-junit dependency to your project.
There is also another framework available, pact-jvm-provider-spring. This library
allows you to run contract tests against a provider using Spring and JUnit. The list of
required dependencies is visible on the following fragment of Maven pom.xml:

<dependency>
 <groupId>au.com.dius</groupId>
 <artifactId>pact-jvm-provider-junit_2.12</artifactId>
 <version>3.5.12</version>
 <scope>test</scope>
</dependency>
<dependency>
 <groupId>au.com.dius</groupId>
 <artifactId>pact-jvm-provider-spring_2.12</artifactId>
 <version>3.5.12</version>
 <scope>test</scope>
</dependency>

Testing Java Microservices Chapter 13

[329]

Thanks to the dedicated library for Spring, we may use SpringRestPactRunner instead of
the default PactRunner. This, in turn, allows you to use the Spring test annotations, such as
@MockBean. In the following JUnit test, we mock the AccountRepository bean. It returns
three objects expected by the test on the consumer side. The test automatically starts the
Spring Boot application and calls the /customer/{customerId} endpoint. There are also
two other important things. By using the @Provider and @State annotations, we need to
set the same names as were set for the test on the consumer side inside the @Pact
annotation. Finally, by declaring @PactBroker on the test class, we provide the connection
settings to the Pact's repository. Here's sample test using Pact, that verifies contract
published by customer-service:

@RunWith(SpringRestPactRunner.class)
@Provider("customerServiceProvider")
@PactBroker(host = "192.168.99.100", port = "9080")
@SpringBootTest(webEnvironment =
SpringBootTest.WebEnvironment.DEFINED_PORT, properties = {
"eureka.client.enabled: false" })
public class AccountProviderContractTest {

 @MockBean
 private AccountRepository repository;
 @TestTarget
 public final Target target = new HttpTarget(8091);

 @State("list-of-3-accounts")
 public void toDefaultState() {
 List<Account> accounts = new ArrayList<>();
 accounts.add(new Account("1", "123", 5000, "1"));
 accounts.add(new Account("2", "124", 5000, "1"));
 accounts.add(new Account("3", "125", 5000, "1"));
 when(repository.findByCustomerId("1")).thenReturn(accounts);
 }

}

Testing Java Microservices Chapter 13

[330]

Using Spring Cloud Contract
Spring Cloud Contract presents a slightly different approach to contract testing than Pack.
While in Pack the consumer is responsible for publishing the contract, in Spring Cloud
Contract the initiator of this action is the provider. The contracts are stored in a Maven
repository as JARs, containing the stubs automatically generated based on the contract
definition file. These definitions may be created using the Groovy DSL syntax. Each of them
consists of two main parts: the request and the response specification. On the basis of these
files, Spring Cloud Contract generates JSON stub definitions, which are used by WireMock
for integration testing on the client side. In contrast to Pact, which is used as the tool
supporting consumer-driven contracts testing for REST APIs, it has been designed
especially for testing JVM-based microservices. It consists of three subprojects:

Spring Cloud Contract Verifier
Spring Cloud Contract Stub Runner
Spring Cloud Contract WireMock

Let's analyze how they should be used in our contract tests based on the same example that
was previously described in the section about the Pact framework.

WireMock is a simulator for HTTP-based APIs. Some might consider it a
service virtualization tool or a mock server. It is able to get up and running
quickly by capturing traffic to and from an existing API.

Defining contracts and generating stubs
As I have already mentioned in contrast to Pact, in Spring Cloud Contract, the provider
(server side) is responsible for publishing the contract specification. Therefore, we will
begin the implementation from account-service, which serves the endpoint invoked by
customer-service. But before proceeding to the implementation, take a look at the
following diagram. It illustrates the main components taking part in our testing process.
The source code of the sample application is available in the same GitHub repository as the
previous samples, but on a different branch contract:

Testing Java Microservices Chapter 13

[331]

To enable Spring Cloud Contract functionalities for the provider-side application, first you
have to include Spring Cloud Contract Verifier to your project dependencies:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-contract-verifier</artifactId>
 <scope>test</scope>
</dependency>

The next step is to add the Spring Cloud Contract Verifier Maven plugin, which generates
and runs your contract tests. It also produces and installs stubs in the local Maven
repository. The only parameter you have to define for it is the package where the base
classes extended by the generated test classes are located:

<plugin>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-contract-maven-plugin</artifactId>
 <version>1.2.0.RELEASE</version>
 <extensions>true</extensions>
 <configuration>
<packageWithBaseClasses>pl.piomin.services.account</packageWithBaseClasses>
 </configuration>
</plugin>

Testing Java Microservices Chapter 13

[332]

Now, we have to create a base class for the contract tests. It should be placed within the
pl.piomin.services.account package. In the following base class, we set up a Spring
Boot application with @SpringBootTest and then mock away the AccountRepository.
We also use RestAssured to mock Spring MVC and send requests only to our controller.
Thanks to all these mocks, the test does not interact with any external components, such as
a database or an HTTP endpoint, and tests only the contract:

@RunWith(SpringRunner.class)
@SpringBootTest(classes = {AccountApplication.class})
public abstract class AccountProviderTestBase {

 @Autowired
 private WebApplicationContext context;
 @MockBean
 private AccountRepository repository;

 @Before
 public void setup() {
 RestAssuredMockMvc.webAppContextSetup(context);
 List<Account> accounts = new ArrayList<>();
 accounts.add(new Account("1", "123", 5000, "1"));
 accounts.add(new Account("2", "124", 5000, "1"));
 accounts.add(new Account("3", "125", 5000, "1"));
 when(repository.findByCustomerId("1")).thenReturn(accounts);
 }

}

We have provided all the configuration and base classes needed for running tests with
Spring Cloud Contract. Therefore, we may proceed to the most important part, defining the
contract using the Spring Cloud Contract Groovy DSL. All the specifications of the contracts
should be located in the /src/test/resources/contracts directory. The specific
location under this directory, which contains stub definitions, is treated as a base test class
name. Each stub definition represents a single contract test. Based on this rule, spring-
cloud-contract-maven-plugin automatically finds the contract and assigns it to the
base test class. In the example we are currently discussing, I have placed my stub definition
in the /src/test/resources/contracts/accountService directory. So the generated
test class name is AccountServiceTest, and it also extends the AccountServiceBase
class.

Testing Java Microservices Chapter 13

[333]

Here's the sample contract specification that returns a list of accounts belonging to the
customer. This contract is not very trivial, so some things need to be explained. You can use
regular expressions to write your requests in Contract DSL. You can also provide different
values for every property depending on the communication side (consumer or producer).
Contract DSL also gives you the ability to reference a request in your response by using the
fromRequest method. The following contract returns a list of three accounts, taking the
customerId field from the request path and the id field, consisting of five digits:

org.springframework.cloud.contract.spec.Contract.make {
 request {
 method 'GET'
 url value(consumer(regex('/customer/[0-9]{3}')), producer('/customer/1'))
 }
 response {
 status 200
 body([
 [
 id: $(regex('[0-9]{5}')),
 number: '123',
 balance: 5000,
 customerId: fromRequest().path(1)
], [
 id: $(regex('[0-9]{5}')),
 number: '124',
 balance: 5000,
 customerId: fromRequest().path(1)
], [
 id: $(regex('[0-9]{5}')),
 number: '125',
 balance: 5000,
 customerId: fromRequest().path(1)
]
])
 headers {
 contentType(applicationJson())
 }
 }
}

Testing Java Microservices Chapter 13

[334]

Test classes are generated under the target/generated-test-sources directory during
the test phase of the Maven build. Here's the class generated from the contract specification
described earlier:

public class AccountServiceTest extends AccountServiceBase {

 @Test
 public void validate_customerContract() throws Exception {

 // given:
 MockMvcRequestSpecification request = given();

 // when:
 ResponseOptions response = given().spec(request)
 .get("/customer/1");

 // then:
 assertThat(response.statusCode()).isEqualTo(200);
 assertThat(response.header("Content-
Type")).matches("application/json.*");

 // and:
 DocumentContext parsedJson =
JsonPath.parse(response.getBody().asString());
assertThatJson(parsedJson).array().contains("['number']").isEqualTo("123");
assertThatJson(parsedJson).array().contains("['balance']").isEqualTo(5000);
assertThatJson(parsedJson).array().contains("['number']").isEqualTo("124");
assertThatJson(parsedJson).array().contains("['customerId']").isEqualTo("1"
);
assertThatJson(parsedJson).array().contains("['id']").matches("[0-9]{5}");
 }

 }

Verifying a contract on the consumer side
Assuming we have successfully built and run tests on the provider side, the stubs will have
been generated and then published in our local Maven repository. To be able to use them
during the consumer application test, we should include Spring Cloud Contract Stub
Runner to the project dependencies:

<dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-starter-contract-stub-runner</artifactId>
 <scope>test</scope>

Testing Java Microservices Chapter 13

[335]

</dependency>

Then we should annotate our test class with @AutoConfigureStubRunner. It takes two
input parameters—ids and workOffline. The Ids field is a concatenation of the
artifactId, groupId, version number, stubs qualifier, and port number, and generally
points out to the JAR which stubs are published by the provider. The workOffline flag
indicates where the repository with the stubs is located. By default, the consumer tries to
download artifacts automatically from Nexus or Artifactory. If you would like to force
Spring Cloud Contract Stub Runner to download stubs only from the local Maven
repository, you can switch the value of the workOffline parameter to true.

Here's a JUnit test class that uses the Feign client to invoke the endpoint from the stub
published by the provider side. Spring Cloud Contract looks for the newest version of the
pl.piomin.services:account-service artifact. It has been indicated by passing the +
sign as a version of the stub inside the @AutoConfigureStubRunner annotation. If you
would like to use the concrete version of that artifact, you may set the current version from
your pom.xml file instead of +, for example, @AutoConfigureStubRunner(ids =
{"pl.piomin.services:account-service:1.0-SNAPSHOT:stubs:8091"}):

@RunWith(SpringRunner.class)
@SpringBootTest(properties = {
 "eureka.client.enabled: false"
})
@AutoConfigureStubRunner(ids = {"pl.piomin.services:account-
service:+:stubs:8091"}, workOffline = true)
public class AccountContractTest {

 @Autowired
 private AccountClient accountClient;

 @Test
 public void verifyAccounts() {
 List<Account> accounts = accountClient.findByCustomer("1");
 Assert.assertEquals(3, accounts.size());
 }

}

Testing Java Microservices Chapter 13

[336]

The only thing left is to build the whole project using the mvn clean install command
in order to verify that tests are running successfully. However, we should remember that
the tests created before cover only integration between customer-service and account-
service. In our sample system, there are some other integrations between microservices
that should be verified. I'll show you one more example, which tests the whole system. It
tests methods exposed order-service, which communicates with all the other
microservices. For this, we are going to use another interesting feature of Spring Cloud
Contract scenarios.

Scenarios
Defining scenarios with Spring Cloud Contract is not difficult. The only thing you have to
do is to provide the proper naming convention while creating a contract. This convention
assumes that every contract's name that is a part of the scenario is prefixed by an order
number and an underscore. All the contracts included in a single scenario have to be located
in the same directory. Spring Cloud Contract scenarios are based on WireMock's scenarios.
Here's a directory structure with contracts defined for the needs of scenario that creates and
accepts an order:

src\main\resources\contracts
 orderService\
 1_createOrder.groovy
 2_acceptOrder.groovy

The following is the test's source code generated for this scenario:

@FixMethodOrder(MethodSorters.NAME_ASCENDING)
public class OrderScenarioTest extends OrderScenarioBase {

 @Test
 public void validate_1_createOrder() throws Exception {
 // ...
 }

 @Test
 public void validate_2_acceptOrder() throws Exception {
 // ...
 }

}

Testing Java Microservices Chapter 13

[337]

Now, let's imagine that we have a lot of microservices, and most of them communicate with
one or more other microservices. So, even if you test a single contract, you can't be sure that
all other contracts during interservice communication work as expected. However, with
Spring Cloud Contract, you may easily include all required stubs to your test class. That
gives you the ability to verify all the contracts in the defined scenarios. This is required to
include both spring-cloud-starter-contract-verifier and spring-cloud-
starter-contract-stub-runner dependencies to the project. The following class
definition acts as a base for the Spring Cloud Contract test class and includes stubs
generated by other microservices. The stub generated for order-service endpoints may
be used by any other external service that needs to verify the contract with order-
service. A test such as the following code will verify not only the contract between this
service and order-service, but also the contract between order-service and other
services used by that service:

@RunWith(SpringRunner.class)
@SpringBootTest(properties = {
 "eureka.client.enabled: false"
})
@AutoConfigureStubRunner(ids = {
 "pl.piomin.services:account-service:+:stubs:8091",
 "pl.piomin.services:customer-service:+:stubs:8092",
 "pl.piomin.services:product-service:+:stubs:8093"
}, workOffline = true)
public class OrderScenarioBase {

 @Autowired
 private WebApplicationContext context;
 @MockBean
 private OrderRepository repository;
 @Before
 public void setup() {
 RestAssuredMockMvc.webAppContextSetup(context);
when(repository.countByCustomerId(Matchers.anyString())).thenReturn(0);
 when(repository.save(Mockito.any(Order.class))).thenAnswer(new
Answer<Order>() {
 @Override
 public Order answer(InvocationOnMock invocation) throws
Throwable {
 Order o = invocation.getArgumentAt(0, Order.class);
 o.setId("12345");
 return o;
 }
 });
 }

Testing Java Microservices Chapter 13

[338]

}

Performance testing
We still have one last type of automated test to discuss. It has already been mentioned at the
beginning of the chapter. I am, of course, talking about performance tests. There are some
really interesting tools and frameworks that help you to create and run this kind of test.
There is a large choice of instruments, especially if we are talking about HTTP API tests. I
wouldn't like to discuss all of them, but I will talk about one framework that might be
helpful. It's Gatling. Let's take a closer look at it.

Gatling
Gatling is an open source performance testing tool written in Scala. It allows you to develop
the tests in an easily readable and writable domain-specific language (DSL). It stands out
from the competition by generating comprehensive, graphical load reports illustrating all
the metrics collected during a test case. There are plugins available for integrating Gatling
with Gradle, Maven, and Jenkins.

Enabling Gatling
To enable the Gatling framework for a project, we should include the
io.gatling.highcharts:gatling-charts-highcharts artifact in the dependencies.

Defining the test scenario
Every Gatling test suite should extend the Simulation class. In every test class, we may
declare a list of scenarios using the Gatling Scala DSL. We usually declare the number of
simultaneous threads that can call HTTP endpoints and the whole number of requests sent
per single thread. In the Gatling nomenclature, the number of threads is determined by the
number of users set using the atOnceUsers method. The test class should be placed in the
src/test/scala directory.

Testing Java Microservices Chapter 13

[339]

Assuming that we would like to test two endpoints that are exposed by order-service
running 20 clients, where each of them sends 500 requests sequentially, we would have
20,000 requests sent in total. By sending them all in a short period of time, we would be able
to test the performance of our application.

The following test scenario is written in Scala. Let's take a closer look at it. Before running
this test, I created some accounts and products by calling the HTTP API, exposed by
account-service and product-service. Because they are connected to an external
database, IDs are automatically generated. In order to provide some test data, I have copied
them into the test class. Both the lists with the account and product IDs are passed to the
test scenario as feeds. Then, during every iteration, the required values are randomly picked
from the lists. Our test scenario is named AddAndConfirmOrder. It consists of two exec
methods. The first of them creates a new order by calling the POST /order HTTP method.
The order's ID is automatically generated by the service, so it should be saved as an
attribute. Then it can be used in the next exec method, which confirms the order by calling
the PUT /order/{id} endpoint. The only thing that is validated after the test is the HTTP
status:

class OrderApiGatlingSimulationTest extends Simulation {

 val rCustomer = Iterator.continually(Map("customer" ->
List("5aa8f5deb44f3f188896f56f", "5aa8f5ecb44f3f188896f570",
"5aa8f5fbb44f3f188896f571",
"5aa8f620b44f3f188896f572").lift(Random.nextInt(4)).get))
 val rProduct = Iterator.continually(Map("product" ->
List("5aa8fad2b44f3f18f8856ac9","5aa8fad8b44f3f18f8856aca","5aa8fadeb44f3f1
8f8856acb","5aa8fae3b44f3f18f8856acc","5aa8fae7b44f3f18f8856acd","5aa8faedb
44f3f18f8856ace","5aa8faf2b44f3f18f8856acf").lift(Random.nextInt(7)).get))

 val scn =
scenario("AddAndConfirmOrder").feed(rCustomer).feed(rProduct).repeat(500,
"n") {
 exec(
 http("AddOrder-API")
 .post("http://localhost:8090/order")
 .header("Content-Type", "application/json")
.body(StringBody("""{"productIds":["${product}"],"customerId":"${customer}"
,"status":"NEW"}"""))
 .check(status.is(200), jsonPath("$.id").saveAs("orderId"))
)
 .
 exec(
 http("ConfirmOrder-API")
 .put("http://localhost:8090/order/${orderId}")
 .header("Content-Type", "application/json")

Testing Java Microservices Chapter 13

[340]

 .check(status.is(200))
)
 }

 setUp(scn.inject(atOnceUsers(20))).maxDuration(FiniteDuration.apply(10,
"minutes"))

}

Running a test scenario
There are a few different ways of running a Gatling performance test on your machine. One
of them is through one of the available through Gradle plugins, which provide support for
running tests during the building of a project. You may also use Maven plugins or just try
to run it from your IDE. If you build your project with Gradle, you can also define simple
tasks that just run tests by launching the io.gatling.app.Gatling main class. Here's a
definition of such a task in the gradle.build file:

task loadTest(type: JavaExec) {
 dependsOn testClasses
 description = "Load Test With Gatling"
 group = "Load Test"
 classpath = sourceSets.test.runtimeClasspath
 jvmArgs = [
 "-
Dgatling.core.directory.binaries=${sourceSets.test.output.classesDir.toStri
ng()}"
]
 main = "io.gatling.app.Gatling"
 args = [
 "--simulation",
"pl.piomin.services.gatling.OrderApiGatlingSimulationTest",
 "--results-folder", "${buildDir}/gatling-results",
 "--binaries-folder", sourceSets.test.output.classesDir.toString(),
 "--bodies-folder",
sourceSets.test.resources.srcDirs.toList().first().toString() +
"/gatling/bodies",
]
}

Testing Java Microservices Chapter 13

[341]

Now you can run that task just by calling the gradle loadTest command. Of course, you
need to have all the sample microservices, MongoDB, and discovery-service started
before running those tests. By default, Gatling will print all the requests sent, the received
responses, and the final test result, with time statistics and the number of success and
failure API calls. If you need more detailed information, you should refer to the files
generated after the test, which are available under the build/gatling-results directory.
You might find that the HTML files there provide visualization in the form of diagrams and
graphs. The first of them (shown in the following diagram) shows a summary with the total
number of generated requests and the maximum response time broken down by
percentiles. For example, you may see that the maximum response time in 95% of responses
for the AddOrder API is 835 ms:

Testing Java Microservices Chapter 13

[342]

There are also some other interesting statistics visualized. Let's pay particular attention to
the following two reports. The first of them shows a graph displaying the percentage of
requests grouped by the average response time, while the second shows the timeline with
the average response time by percentile:

Testing Java Microservices Chapter 13

[343]

Summary
In this chapter, I have introduced some frameworks that can help you effectively test your
REST-based applications written in Java. Each of these solutions has been assigned to a
particular type of test. I focused on tests strictly related to microservices, such as contract
and component tests. The main goal of this chapter was to compare the two most popular
frameworks used for contract testing, namely Pact and Spring Cloud Contract. Despite
appearances, there are some significant differences between them. I tried to show you the
most important similarities and differences based on the same sample applications that we
looked at in previous chapters.

Microservices are strictly related to automation. Remember that migration from monolith to
microservices gives you an opportunity to refactor your code, and, moreover, to improve
the quality and code coverage of your automated tests. Frameworks such as Mockito,
Spring Test, Spring Cloud Contract, and Pact, when used together, give you a really
powerful solution to develop tests for REST-based Java microservices. Automated tests are
a significant part of the CI/CD process, which will be discussed in the next chapter.

14
Docker Support

We have already discussed the basics of microservices architecture and Spring Cloud
projects in the first part of this book. In the second part, we looked at the most common
elements of that architecture and we discussed how to implement them using Spring Cloud.
So far, we have talked about some important topics related to microservice migration, such
as centralized logging, distributed tracing, security, and automated testing. Now, as we are
armed with that knowledge, we may proceed to the final part of the book, where we will
discuss the real power of microservices as a cloud-native development approach. The
ability to isolate applications from each other using containerization tools, implementing
continuous deployment in the software delivery process and the ability to easily scale an
application are things that all contribute to the rapidly growing popularity of microservices.

As you will probably remember from earlier chapters, we have used Docker images for
running third-party tools and solutions on the local machine. With that in mind, I would
like to introduce you to the main concepts of Docker, such as its basic commands and use
cases. This information will help you to run the samples presented in previous chapters. We
will then discuss how to build images with our example Spring Boot application, as well as
how to run them inside the containers on the local machine. We will use simple Docker
commands for that, as well as more advanced tools such as the Jenkins server, which helps
you to perform full, continuous delivery and enables a Continuous Integration process in
your organization. Finally, we will introduce one of the most popular tools used for the
automation of deploying, scaling, and managing containerized applications: Kubernetes.
All of our examples will be run locally on a single-node Kubernetes cluster via Minikube.

The topics we will cover in this chapter are as follows:

Most useful Docker commands
Building Docker containers with Spring Boot microservices
Running Spring Cloud components on Docker
Continuous Integration/Continuous Delivery with Jenkins and Docker
Deploying and running microservices on Minikube

Docker Support Chapter 14

[345]

Introducing Docker
Docker is a tool that helps you to create, deploy, and run applications by using containers. It
was designed with the view to benefit both developers and system administrators in
accordance with the DevOps philosophy. Docker helps to improve the software delivery
process by solving some important concerns related with it. One of those concerns is the
idea of immutable delivery, which is related to something called it works for me. It is
especially important that a developer uses the same image for their tests as the one that is
used in production when working in Docker. The only difference that should be seen is
during configuration. Software delivery in an immutable delivery pattern seems to be
particularly important for a microservices-based system as there are many applications
deployed independently. Thanks to Docker, developers can now focus on writing code
without worrying about the target OS (where the application would be launched). The
operation can, therefore, use the same interface for deploying, starting, and maintaining all
the applications.

There are also many other reasons for Docker's growing popularity. After all, the
containerization idea is nothing new in the Information Technology world. Linux containers
were introduced many years ago and have been a part of the kernel since 2008. However,
Docker has introduced several new things and solutions that other technologies haven't.
Firstly, it provides a simple interface that allows you to easily package an application with
dependencies to a single container before running it across different versions and
implementations of Linux kernel. The container may be run locally or remotely on any
Docker-enabled server, and every container starts in seconds. We can also easily run every
command on it without going inside a container. In addition, the sharing and distribution
mechanisms of Docker images allows developers to commit their changes and push and
pull images in the same way they share source code, for example, using Git. Currently,
almost all of the most popular software tools are published on Docker Hub as an image,
some we have successfully used for running the tools required for our sample applications.

There are some essential definitions and elements that Docker architecture is composed of;
the most important is a container. Containers run on a single machine and share the OS
kernel with that machine. They contain everything you need to run specific software on
your machine code: runtime, system tools, system libraries, and settings. Containers are
created from the instructions found within a Docker image. Images are like a kind of recipe
or template that defines the steps for installing and running necessary software on a
container. Containers can also be compared to virtual machines as they have similar
resource isolation and allocation benefits. However, they virtualize the operating system
instead of the hardware, making them more portable and efficient than VMs. The following
diagram illustrates the architectural differences between a Docker container and a virtual
machine:

Docker Support Chapter 14

[346]

All containers are launched on a physical or virtual machine that is called a Docker host.
Docker hosts, in turn, run a Docker daemon, which listens for the commands sent by the
Docker client through a Docker API. Docker clients may be command-line tools or other
software such as Kinematic. Besides running a daemon, a Docker host is responsible for
storing cached images and containers created from those images. Every image is built from
a set of layers. Each layer contains only the incremental differences from the parent layer.
Such an image is not small and needs to be stored elsewhere. This place is called the Docker
registry. You may create your own private repository or use the existing public repository
available on the web. The most popular repository is Docker Hub, which contains almost all
of the required images.

Installing Docker
Docker installation instructions for Linux are specific to each distribution (https:/ /docs.
docker.com/install/ #supported- platforms). However, sometimes you have to run a
Docker daemon after installation, which you can do by calling the following command:

dockerd --host=unix:///var/run/docker.sock --host=tcp://0.0.0.0:2375

https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms
https://docs.docker.com/install/#supported-platforms

Docker Support Chapter 14

[347]

In this section, we will focus on instructions for the Windows platform. Generally, you have
two available options when installing Docker Community Edition (CE) on Windows or
Mac. The fastest and easiest way is by using Docker for Windows, which is available
at https://www.docker. com/ docker- windows. This is a native Windows application that
provides an easy-to-use development environment for building, shipping, and running
containerized applications. This is definitely the best option to utilize, because it uses
Windows-native Hyper-V virtualization and networking. There is, however, one
disadvantage—it is available only for Microsoft Windows 10 Professional or Enterprise 64-
bit. Earlier versions of Windows should use Docker Toolbox, which can be downloaded
here at, https://docs. docker. com/ toolbox/ toolbox_ install_ windows/ . This includes the
Docker platform, the command-line with Docker Machine, Docker Compose, Kitematic,
and VirtualBox. Note that you can’t run Docker Engine natively on Windows using Docker
Toolbox because it uses Linux-specific kernel features. Instead, you must use the Docker
Machine command (docker-machine), which creates a Linux VM on the local machine
and runs it using Virtual Box. This VM may be accessed by your machine using a virtual
address that is, by default, 192.168.99.100. All previously discussed examples were
integrating with the Docker tools available at that IP address.

Commonly used Docker commands
After installing Docker Toolbox on Windows you should run Docker Quickstart Terminal.
It does everything that is needed, including creating and starting Docker Machine and
providing the command line interface. If you type a Docker command without any
parameters, you should now be able to see the full list of available Docker client commands
with descriptions. These are the types of commands we will look at:

Running and stopping a container
List and remove container
Pull and push images
Building an image
Networking

https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://www.docker.com/docker-windows
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/
https://docs.docker.com/toolbox/toolbox_install_windows/

Docker Support Chapter 14

[348]

Running and stopping a container
The first Docker command that is usually run after installation is docker run. As you may
remember, this command is one of the most commonly used in previous examples. This
command does two things: it pulls and downloads the image definition from the registry, in
case it is not cached locally, and starts the container. There are many options that can be set
for this command, which you can easily check by running docker run --help. Some
options have one-letter shortcuts, which are often the most commonly used options. Option
–d runs a container in the background, while –i keeps stdin open even if it is not attached.
If your container has to expose any ports outside, you can use the activate option –p with
the definition <port_outside_container>:<port_inside_container>. Some images
need additional configurations that are usually done through environment variables that
can be overridden with the –e option. It is also often useful to set a friendly name for the
container using the --name option in order to run other commands on it with ease. Take a
look at the example Docker command visible here. It starts the container with Postgres,
creates a database user with a password, and exposes it on port 55432. Now, the Postgres
database is available at the address 192.168.99.100:55432:

$ docker run -d --name pg -e POSTGRES_PASSWORD=123456 -e
POSTGRES_USER=piomin -e POSTGRES_DB=example -p 55432:5432 postgres

The container with Postgres persists data. The recommended mechanism for containers that
store data accessed by outside applications is via volumes. A volume may be passed to the
container with the –v option, where the value consists of fields separated by a colon, :. The
first field is the name of the volume, while the second is the path where the file or directory
is mounted in the container. The next interesting option is the ability to limit the maximum
RAM allocated for the container using the –m option. The following are the commands that
create new volumes and mount them to the launched container. The maximum amount of
RAM is set to 500 MB. The container is automatically removed after stopping using the
activated option --rm, shown as follows:

$ docker volume create pgdata
$ docker run --rm -it -e -m 500M -v pgdata:/var/lib/postgresql/data -p
55432:5432 postgres

Every running container can be stopped using the docker stop command. We have
already set a name for our container so we can easily use it as a label, shown as follows:

$ docker stop pg

Docker Support Chapter 14

[349]

The entire state of the container is written to the disk, so we may run it again with exactly
the same set of data as we did before stopping, for example:

$ docker start pg

If you only want to restart a container, you can use the following command instead of
stopping/starting container:

$ docker restart pg

Listing and removing containers
If you have started some containers, you may want to consider displaying a list of all the
running containers on your Docker machine. The docker ps command should be used for
that. This command displays some basic information about the container, such as a list of
exposed ports and the name of the source image. This command prints only the currently
started containers. If you would like to see containers that have been stopped or are
inactive, use option -a on the Docker command, as follows:

If a container is no longer needed, it can be removed using the docker rm command.
Sometimes it is necessary that you remove a running container, which is not allowed by
default. To force this option, set the -f option on Docker with the following command:

$ docker rm -f pg

You should remember that the docker ps command removes only the container. The
image from which it has been created is still cached locally. Such images can take up a
significant amount of space, ranging from a megabyte to several hundred megabytes. You
may remove every image by using the docker rmi command with the image ID or name
as a parameter, as follows:

$ docker rmi 875263695ab8

Docker Support Chapter 14

[350]

We haven’t created any Docker images yet, but it's not unusual to generate a large amount
of unwanted or unnamed images during image creation. These images can be easily
recognized, as they are denoted with a name of <none>. In Docker nomenclature, these are
called dangling images and can be easily removed with the following command. The list of
all currently cached images can be displayed with the docker images command, shown as
follows:

$ docker rmi $(docker images -q -f dangling=true)

Pulling and pushing images
We've already discussed Docker Hub. It is the biggest and most popular Docker repository
available on the web. It is available at https:/ /hub. docker. com. The Docker client, by
default, tries to pull all the images for that repository. There are many certified official
images for common software such as Redis, Java, Nginx, or Mongo, but you may also find
hundreds of thousands of images created by other people as well. If you use the command
docker run , the image is pulled from the repository in case it is not cached locally. You
may also run the following command docker pull, which is only responsible for
downloading an image:

$ docker pull postgres

The preceding command downloads the newest version of an image (with the latest tag's
name). If you would like to use an older version of a Postgres Docker image, you should
append the tag with the specific version's number. The full list of available versions is
usually published on the image's site, and is no different in this case. Visit https:/ /hub.
docker.com/r/library/ postgres/ tags/ for a list of the available tags.

$ docker pull postgres:9.3

Once you have run and validated your image, you should think about saving it remotely.
The most appropriate place for it is, of course, Docker Hub. However, sometimes you might
want to store images in alternative storage, such as a private repository. Before pushing an
image, you have to tag it with your registry username, image name, and its version number.
The following command creates a new image from a Postgres source image with the name
piomin/postgres and the 1.0 version tag:

$ docker tag postgres piomin/postgres:1.0

https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://hub.docker.com
https://clicktime.symantec.com/a/1/Im1LdWl8NQ4ddISjfwL_OxcUojdkW-H3fP-oquj1vZs=?d=zKV7R9H5uhYC7J5kAN4WlSdYuV7w56mec0MwOxbVt-onFGmsM6Sx37HIaVHJUb3QiEeB2UoRmfzGJLL2nbKFa0anD4Lnn9-ximh393HGo36BjpeP0FoTIe_ikOi5QeJ1AeoMYVgQp_eESUZZNBRlDtcfYxSSkGpgZ_sGge1ts1DBD0AiZXddlCKygZL3ttJma9imoX-dIYGhyIi7l13N-8Y_5N5OYuthQeHXR4cE3e6ZicVVMyrnPGOm4nPLOHZiFzLZsTnDT0QQgFKRuqd4dsZekUaglgG9Y90wlN16gLc1DewmmCqRs_KiE1hwsBfCnFIku3QSPBvVa8e7YWJmMEGwuCxlybf2ywMx81HkC4uMHvQfq1EiVA0PYg5arA%3D%3D&u=https%3A%2F%2Fhub.docker.com%2Fr%2Flibrary%2Fpostgres%2Ftags%2F
https://clicktime.symantec.com/a/1/Im1LdWl8NQ4ddISjfwL_OxcUojdkW-H3fP-oquj1vZs=?d=zKV7R9H5uhYC7J5kAN4WlSdYuV7w56mec0MwOxbVt-onFGmsM6Sx37HIaVHJUb3QiEeB2UoRmfzGJLL2nbKFa0anD4Lnn9-ximh393HGo36BjpeP0FoTIe_ikOi5QeJ1AeoMYVgQp_eESUZZNBRlDtcfYxSSkGpgZ_sGge1ts1DBD0AiZXddlCKygZL3ttJma9imoX-dIYGhyIi7l13N-8Y_5N5OYuthQeHXR4cE3e6ZicVVMyrnPGOm4nPLOHZiFzLZsTnDT0QQgFKRuqd4dsZekUaglgG9Y90wlN16gLc1DewmmCqRs_KiE1hwsBfCnFIku3QSPBvVa8e7YWJmMEGwuCxlybf2ywMx81HkC4uMHvQfq1EiVA0PYg5arA%3D%3D&u=https%3A%2F%2Fhub.docker.com%2Fr%2Flibrary%2Fpostgres%2Ftags%2F
https://clicktime.symantec.com/a/1/Im1LdWl8NQ4ddISjfwL_OxcUojdkW-H3fP-oquj1vZs=?d=zKV7R9H5uhYC7J5kAN4WlSdYuV7w56mec0MwOxbVt-onFGmsM6Sx37HIaVHJUb3QiEeB2UoRmfzGJLL2nbKFa0anD4Lnn9-ximh393HGo36BjpeP0FoTIe_ikOi5QeJ1AeoMYVgQp_eESUZZNBRlDtcfYxSSkGpgZ_sGge1ts1DBD0AiZXddlCKygZL3ttJma9imoX-dIYGhyIi7l13N-8Y_5N5OYuthQeHXR4cE3e6ZicVVMyrnPGOm4nPLOHZiFzLZsTnDT0QQgFKRuqd4dsZekUaglgG9Y90wlN16gLc1DewmmCqRs_KiE1hwsBfCnFIku3QSPBvVa8e7YWJmMEGwuCxlybf2ywMx81HkC4uMHvQfq1EiVA0PYg5arA%3D%3D&u=https%3A%2F%2Fhub.docker.com%2Fr%2Flibrary%2Fpostgres%2Ftags%2F
https://clicktime.symantec.com/a/1/Im1LdWl8NQ4ddISjfwL_OxcUojdkW-H3fP-oquj1vZs=?d=zKV7R9H5uhYC7J5kAN4WlSdYuV7w56mec0MwOxbVt-onFGmsM6Sx37HIaVHJUb3QiEeB2UoRmfzGJLL2nbKFa0anD4Lnn9-ximh393HGo36BjpeP0FoTIe_ikOi5QeJ1AeoMYVgQp_eESUZZNBRlDtcfYxSSkGpgZ_sGge1ts1DBD0AiZXddlCKygZL3ttJma9imoX-dIYGhyIi7l13N-8Y_5N5OYuthQeHXR4cE3e6ZicVVMyrnPGOm4nPLOHZiFzLZsTnDT0QQgFKRuqd4dsZekUaglgG9Y90wlN16gLc1DewmmCqRs_KiE1hwsBfCnFIku3QSPBvVa8e7YWJmMEGwuCxlybf2ywMx81HkC4uMHvQfq1EiVA0PYg5arA%3D%3D&u=https%3A%2F%2Fhub.docker.com%2Fr%2Flibrary%2Fpostgres%2Ftags%2F
https://clicktime.symantec.com/a/1/Im1LdWl8NQ4ddISjfwL_OxcUojdkW-H3fP-oquj1vZs=?d=zKV7R9H5uhYC7J5kAN4WlSdYuV7w56mec0MwOxbVt-onFGmsM6Sx37HIaVHJUb3QiEeB2UoRmfzGJLL2nbKFa0anD4Lnn9-ximh393HGo36BjpeP0FoTIe_ikOi5QeJ1AeoMYVgQp_eESUZZNBRlDtcfYxSSkGpgZ_sGge1ts1DBD0AiZXddlCKygZL3ttJma9imoX-dIYGhyIi7l13N-8Y_5N5OYuthQeHXR4cE3e6ZicVVMyrnPGOm4nPLOHZiFzLZsTnDT0QQgFKRuqd4dsZekUaglgG9Y90wlN16gLc1DewmmCqRs_KiE1hwsBfCnFIku3QSPBvVa8e7YWJmMEGwuCxlybf2ywMx81HkC4uMHvQfq1EiVA0PYg5arA%3D%3D&u=https%3A%2F%2Fhub.docker.com%2Fr%2Flibrary%2Fpostgres%2Ftags%2F
https://clicktime.symantec.com/a/1/Im1LdWl8NQ4ddISjfwL_OxcUojdkW-H3fP-oquj1vZs=?d=zKV7R9H5uhYC7J5kAN4WlSdYuV7w56mec0MwOxbVt-onFGmsM6Sx37HIaVHJUb3QiEeB2UoRmfzGJLL2nbKFa0anD4Lnn9-ximh393HGo36BjpeP0FoTIe_ikOi5QeJ1AeoMYVgQp_eESUZZNBRlDtcfYxSSkGpgZ_sGge1ts1DBD0AiZXddlCKygZL3ttJma9imoX-dIYGhyIi7l13N-8Y_5N5OYuthQeHXR4cE3e6ZicVVMyrnPGOm4nPLOHZiFzLZsTnDT0QQgFKRuqd4dsZekUaglgG9Y90wlN16gLc1DewmmCqRs_KiE1hwsBfCnFIku3QSPBvVa8e7YWJmMEGwuCxlybf2ywMx81HkC4uMHvQfq1EiVA0PYg5arA%3D%3D&u=https%3A%2F%2Fhub.docker.com%2Fr%2Flibrary%2Fpostgres%2Ftags%2F
https://clicktime.symantec.com/a/1/Im1LdWl8NQ4ddISjfwL_OxcUojdkW-H3fP-oquj1vZs=?d=zKV7R9H5uhYC7J5kAN4WlSdYuV7w56mec0MwOxbVt-onFGmsM6Sx37HIaVHJUb3QiEeB2UoRmfzGJLL2nbKFa0anD4Lnn9-ximh393HGo36BjpeP0FoTIe_ikOi5QeJ1AeoMYVgQp_eESUZZNBRlDtcfYxSSkGpgZ_sGge1ts1DBD0AiZXddlCKygZL3ttJma9imoX-dIYGhyIi7l13N-8Y_5N5OYuthQeHXR4cE3e6ZicVVMyrnPGOm4nPLOHZiFzLZsTnDT0QQgFKRuqd4dsZekUaglgG9Y90wlN16gLc1DewmmCqRs_KiE1hwsBfCnFIku3QSPBvVa8e7YWJmMEGwuCxlybf2ywMx81HkC4uMHvQfq1EiVA0PYg5arA%3D%3D&u=https%3A%2F%2Fhub.docker.com%2Fr%2Flibrary%2Fpostgres%2Ftags%2F
https://clicktime.symantec.com/a/1/Im1LdWl8NQ4ddISjfwL_OxcUojdkW-H3fP-oquj1vZs=?d=zKV7R9H5uhYC7J5kAN4WlSdYuV7w56mec0MwOxbVt-onFGmsM6Sx37HIaVHJUb3QiEeB2UoRmfzGJLL2nbKFa0anD4Lnn9-ximh393HGo36BjpeP0FoTIe_ikOi5QeJ1AeoMYVgQp_eESUZZNBRlDtcfYxSSkGpgZ_sGge1ts1DBD0AiZXddlCKygZL3ttJma9imoX-dIYGhyIi7l13N-8Y_5N5OYuthQeHXR4cE3e6ZicVVMyrnPGOm4nPLOHZiFzLZsTnDT0QQgFKRuqd4dsZekUaglgG9Y90wlN16gLc1DewmmCqRs_KiE1hwsBfCnFIku3QSPBvVa8e7YWJmMEGwuCxlybf2ywMx81HkC4uMHvQfq1EiVA0PYg5arA%3D%3D&u=https%3A%2F%2Fhub.docker.com%2Fr%2Flibrary%2Fpostgres%2Ftags%2F
https://clicktime.symantec.com/a/1/Im1LdWl8NQ4ddISjfwL_OxcUojdkW-H3fP-oquj1vZs=?d=zKV7R9H5uhYC7J5kAN4WlSdYuV7w56mec0MwOxbVt-onFGmsM6Sx37HIaVHJUb3QiEeB2UoRmfzGJLL2nbKFa0anD4Lnn9-ximh393HGo36BjpeP0FoTIe_ikOi5QeJ1AeoMYVgQp_eESUZZNBRlDtcfYxSSkGpgZ_sGge1ts1DBD0AiZXddlCKygZL3ttJma9imoX-dIYGhyIi7l13N-8Y_5N5OYuthQeHXR4cE3e6ZicVVMyrnPGOm4nPLOHZiFzLZsTnDT0QQgFKRuqd4dsZekUaglgG9Y90wlN16gLc1DewmmCqRs_KiE1hwsBfCnFIku3QSPBvVa8e7YWJmMEGwuCxlybf2ywMx81HkC4uMHvQfq1EiVA0PYg5arA%3D%3D&u=https%3A%2F%2Fhub.docker.com%2Fr%2Flibrary%2Fpostgres%2Ftags%2F
https://clicktime.symantec.com/a/1/Im1LdWl8NQ4ddISjfwL_OxcUojdkW-H3fP-oquj1vZs=?d=zKV7R9H5uhYC7J5kAN4WlSdYuV7w56mec0MwOxbVt-onFGmsM6Sx37HIaVHJUb3QiEeB2UoRmfzGJLL2nbKFa0anD4Lnn9-ximh393HGo36BjpeP0FoTIe_ikOi5QeJ1AeoMYVgQp_eESUZZNBRlDtcfYxSSkGpgZ_sGge1ts1DBD0AiZXddlCKygZL3ttJma9imoX-dIYGhyIi7l13N-8Y_5N5OYuthQeHXR4cE3e6ZicVVMyrnPGOm4nPLOHZiFzLZsTnDT0QQgFKRuqd4dsZekUaglgG9Y90wlN16gLc1DewmmCqRs_KiE1hwsBfCnFIku3QSPBvVa8e7YWJmMEGwuCxlybf2ywMx81HkC4uMHvQfq1EiVA0PYg5arA%3D%3D&u=https%3A%2F%2Fhub.docker.com%2Fr%2Flibrary%2Fpostgres%2Ftags%2F
https://clicktime.symantec.com/a/1/Im1LdWl8NQ4ddISjfwL_OxcUojdkW-H3fP-oquj1vZs=?d=zKV7R9H5uhYC7J5kAN4WlSdYuV7w56mec0MwOxbVt-onFGmsM6Sx37HIaVHJUb3QiEeB2UoRmfzGJLL2nbKFa0anD4Lnn9-ximh393HGo36BjpeP0FoTIe_ikOi5QeJ1AeoMYVgQp_eESUZZNBRlDtcfYxSSkGpgZ_sGge1ts1DBD0AiZXddlCKygZL3ttJma9imoX-dIYGhyIi7l13N-8Y_5N5OYuthQeHXR4cE3e6ZicVVMyrnPGOm4nPLOHZiFzLZsTnDT0QQgFKRuqd4dsZekUaglgG9Y90wlN16gLc1DewmmCqRs_KiE1hwsBfCnFIku3QSPBvVa8e7YWJmMEGwuCxlybf2ywMx81HkC4uMHvQfq1EiVA0PYg5arA%3D%3D&u=https%3A%2F%2Fhub.docker.com%2Fr%2Flibrary%2Fpostgres%2Ftags%2F
https://clicktime.symantec.com/a/1/Im1LdWl8NQ4ddISjfwL_OxcUojdkW-H3fP-oquj1vZs=?d=zKV7R9H5uhYC7J5kAN4WlSdYuV7w56mec0MwOxbVt-onFGmsM6Sx37HIaVHJUb3QiEeB2UoRmfzGJLL2nbKFa0anD4Lnn9-ximh393HGo36BjpeP0FoTIe_ikOi5QeJ1AeoMYVgQp_eESUZZNBRlDtcfYxSSkGpgZ_sGge1ts1DBD0AiZXddlCKygZL3ttJma9imoX-dIYGhyIi7l13N-8Y_5N5OYuthQeHXR4cE3e6ZicVVMyrnPGOm4nPLOHZiFzLZsTnDT0QQgFKRuqd4dsZekUaglgG9Y90wlN16gLc1DewmmCqRs_KiE1hwsBfCnFIku3QSPBvVa8e7YWJmMEGwuCxlybf2ywMx81HkC4uMHvQfq1EiVA0PYg5arA%3D%3D&u=https%3A%2F%2Fhub.docker.com%2Fr%2Flibrary%2Fpostgres%2Ftags%2F
https://clicktime.symantec.com/a/1/Im1LdWl8NQ4ddISjfwL_OxcUojdkW-H3fP-oquj1vZs=?d=zKV7R9H5uhYC7J5kAN4WlSdYuV7w56mec0MwOxbVt-onFGmsM6Sx37HIaVHJUb3QiEeB2UoRmfzGJLL2nbKFa0anD4Lnn9-ximh393HGo36BjpeP0FoTIe_ikOi5QeJ1AeoMYVgQp_eESUZZNBRlDtcfYxSSkGpgZ_sGge1ts1DBD0AiZXddlCKygZL3ttJma9imoX-dIYGhyIi7l13N-8Y_5N5OYuthQeHXR4cE3e6ZicVVMyrnPGOm4nPLOHZiFzLZsTnDT0QQgFKRuqd4dsZekUaglgG9Y90wlN16gLc1DewmmCqRs_KiE1hwsBfCnFIku3QSPBvVa8e7YWJmMEGwuCxlybf2ywMx81HkC4uMHvQfq1EiVA0PYg5arA%3D%3D&u=https%3A%2F%2Fhub.docker.com%2Fr%2Flibrary%2Fpostgres%2Ftags%2F
https://clicktime.symantec.com/a/1/Im1LdWl8NQ4ddISjfwL_OxcUojdkW-H3fP-oquj1vZs=?d=zKV7R9H5uhYC7J5kAN4WlSdYuV7w56mec0MwOxbVt-onFGmsM6Sx37HIaVHJUb3QiEeB2UoRmfzGJLL2nbKFa0anD4Lnn9-ximh393HGo36BjpeP0FoTIe_ikOi5QeJ1AeoMYVgQp_eESUZZNBRlDtcfYxSSkGpgZ_sGge1ts1DBD0AiZXddlCKygZL3ttJma9imoX-dIYGhyIi7l13N-8Y_5N5OYuthQeHXR4cE3e6ZicVVMyrnPGOm4nPLOHZiFzLZsTnDT0QQgFKRuqd4dsZekUaglgG9Y90wlN16gLc1DewmmCqRs_KiE1hwsBfCnFIku3QSPBvVa8e7YWJmMEGwuCxlybf2ywMx81HkC4uMHvQfq1EiVA0PYg5arA%3D%3D&u=https%3A%2F%2Fhub.docker.com%2Fr%2Flibrary%2Fpostgres%2Ftags%2F
https://clicktime.symantec.com/a/1/Im1LdWl8NQ4ddISjfwL_OxcUojdkW-H3fP-oquj1vZs=?d=zKV7R9H5uhYC7J5kAN4WlSdYuV7w56mec0MwOxbVt-onFGmsM6Sx37HIaVHJUb3QiEeB2UoRmfzGJLL2nbKFa0anD4Lnn9-ximh393HGo36BjpeP0FoTIe_ikOi5QeJ1AeoMYVgQp_eESUZZNBRlDtcfYxSSkGpgZ_sGge1ts1DBD0AiZXddlCKygZL3ttJma9imoX-dIYGhyIi7l13N-8Y_5N5OYuthQeHXR4cE3e6ZicVVMyrnPGOm4nPLOHZiFzLZsTnDT0QQgFKRuqd4dsZekUaglgG9Y90wlN16gLc1DewmmCqRs_KiE1hwsBfCnFIku3QSPBvVa8e7YWJmMEGwuCxlybf2ywMx81HkC4uMHvQfq1EiVA0PYg5arA%3D%3D&u=https%3A%2F%2Fhub.docker.com%2Fr%2Flibrary%2Fpostgres%2Ftags%2F
https://clicktime.symantec.com/a/1/Im1LdWl8NQ4ddISjfwL_OxcUojdkW-H3fP-oquj1vZs=?d=zKV7R9H5uhYC7J5kAN4WlSdYuV7w56mec0MwOxbVt-onFGmsM6Sx37HIaVHJUb3QiEeB2UoRmfzGJLL2nbKFa0anD4Lnn9-ximh393HGo36BjpeP0FoTIe_ikOi5QeJ1AeoMYVgQp_eESUZZNBRlDtcfYxSSkGpgZ_sGge1ts1DBD0AiZXddlCKygZL3ttJma9imoX-dIYGhyIi7l13N-8Y_5N5OYuthQeHXR4cE3e6ZicVVMyrnPGOm4nPLOHZiFzLZsTnDT0QQgFKRuqd4dsZekUaglgG9Y90wlN16gLc1DewmmCqRs_KiE1hwsBfCnFIku3QSPBvVa8e7YWJmMEGwuCxlybf2ywMx81HkC4uMHvQfq1EiVA0PYg5arA%3D%3D&u=https%3A%2F%2Fhub.docker.com%2Fr%2Flibrary%2Fpostgres%2Ftags%2F
https://clicktime.symantec.com/a/1/Im1LdWl8NQ4ddISjfwL_OxcUojdkW-H3fP-oquj1vZs=?d=zKV7R9H5uhYC7J5kAN4WlSdYuV7w56mec0MwOxbVt-onFGmsM6Sx37HIaVHJUb3QiEeB2UoRmfzGJLL2nbKFa0anD4Lnn9-ximh393HGo36BjpeP0FoTIe_ikOi5QeJ1AeoMYVgQp_eESUZZNBRlDtcfYxSSkGpgZ_sGge1ts1DBD0AiZXddlCKygZL3ttJma9imoX-dIYGhyIi7l13N-8Y_5N5OYuthQeHXR4cE3e6ZicVVMyrnPGOm4nPLOHZiFzLZsTnDT0QQgFKRuqd4dsZekUaglgG9Y90wlN16gLc1DewmmCqRs_KiE1hwsBfCnFIku3QSPBvVa8e7YWJmMEGwuCxlybf2ywMx81HkC4uMHvQfq1EiVA0PYg5arA%3D%3D&u=https%3A%2F%2Fhub.docker.com%2Fr%2Flibrary%2Fpostgres%2Ftags%2F

Docker Support Chapter 14

[351]

Now if you run the docker images command you will see two images with the same ID.
The first has the name Postgres and the latest tag, while the second has the name
piomin/postgres and the tag 1.0. What is important is that piomin is my username on
Docker Hub. So, before proceeding any further we should first register the image there.
After, we should also log in to our Docker client using the docker login command. Here,
you will be prompted for a username, password, and the email address you used for
registration. Finally, you can push a tagged image with the following docker push
command:

$ docker push piomin/postgres:1.0

Now all that's left to do is log in to your Docker Hub account using a web browser to check
if the pushed image has appeared. If everything worked correctly, you will see a new public
repository with your image on-site. The following screenshot shows the image currently
pushed to my Docker Hub account:

Docker Support Chapter 14

[352]

Building an image
In the previous section, we pushed the copy of the Postgres Docker image to a Docker Hub
registry. Usually, we push our own images created from the file Dockerfile, which
defines all the instructions required when installing and configuring software on the
container. The details related to the structure of Dockerfile will be discussed later. What
is important for now, though, is the command used for building a Docker image, docker
build. This command should be run in the same directory where Dockerfile is located.
When building a new image it is recommended to set its name and tag using the -t option.
The following command creates the image piomin/order-service , tagged with a 1.0
version. The image may be pushed to your Docker Hub account in the same way as the
previous image was with Postgres, as follows:

$ docker build -t piomin/order-service:1.0 .

Networking
Networking is an important aspect of Docker architecture since we often have to provide
communication between applications running on different containers. A common use case
may be a web application that needs access to a database. We're now going to refer to
another example that has already been introduced in Chapter 11, Message Driven
Microservices. It is communication between Apache Kafka and ZooKeeper. Kafka requires
ZooKeeper because it stores a variety of configuration as a key/value pair in the ZK data
tree and uses it across the cluster. As you may remember, we first had to create a custom
network and run those two containers there. The following command is used to create a
user-defined network on a Docker host:

$ docker network create kafka-network

After the previous command has finished running, you can check out the list of available
networks using the following command. By default, Docker creates three networks for you,
so you should see four networks with the names bridge, host, none, and kafka-network:

$ docker network ls

Docker Support Chapter 14

[353]

The next step is to pass the network name to the container created with the docker run
command. It can be achieved through the --network parameter, as you can see in the
following example. If you set the same network's name for two different containers, they
will be started on the same network. Let's analyze what this means in practice. If you were
inside one container, you could call it its name instead of using its IP address, which is why
we could have set the environment variable ZOOKEEPER_IP to ZooKeeper when starting a
container with Apache Kafka. Kafka, which starts inside this container, connects the
ZooKeeper instance on the default port as follows:

$ docker run -d --name zookeeper --network kafka-net zookeeper:3.4
$ docker run -d --name kafka --network kafka-net -e
ZOOKEEPER_IP=zookeeper ches/kafka

Creating a Docker image with microservices
We have already discussed the basic Docker commands that are available for running,
creating, and managing containers. It's now time to create and build our first Docker image
that starts the sample microservice that we introduced in the previous chapter. For that, we
should move back to the repository available at the address https:/ / github. com/ piomin/
sample-spring-cloud- comm. git and then switch to the branch feign_with_discovery
on https://github. com/ piomin/ sample- spring- cloud- comm/ tree/ feign_ with_ discovery.
There, you will find a Dockerfile for every single microservice, gateway, and discovery.
Before discussing these examples however we should refer to the Dockerfile reference to
understand the basic commands that we can place there. In fact, Dockerfile is not the only
way to build Docker images; we're also going to show you how to create an image with a
microservice using the Maven plugin.

https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm.git
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery
https://github.com/piomin/sample-spring-cloud-comm/tree/feign_with_discovery

Docker Support Chapter 14

[354]

Dockerfiles
Docker can build images automatically by reading the instructions provided in a
Dockerfile, a document that contains all the commands that are invoked on the
command line to assemble an image. All of those commands have to be preceded by the
keywords defined in the Dockerfile specification. The following is a list of the most
commonly used instructions. They are executed in the order in which they are found in the
Dockerfile. Here, we can also append some comments that have to be followed by the #
character:

Instruction Description

FROM
This initializes a new build stage and sets the base image for subsequent
instructions. In fact, every valid Dockerfile has to start with a FROM
instruction.

MAINTAINER

This sets author identities of the generated images. This instruction is
deprecated, so you may find it in many older images. We should use
the LABEL instruction instead of MAINTAINER , as follows:LABEL
maintainer="piotr.minkowski@gmail.com".

RUN

This executes Linux commands for configuring and installing the required
software in a new layer on top of the current image and then commits the
results. It can have two forms:RUN <command> or RUN ["executable",
"param1", "param2"].

ENTRYPOINT

This configures a final script that is used when bootstrapping the container
that will run as an executable. It overrides all elements specified using CMD
and has two forms: ENTRYPOINT ["executable", "param1",
"param2"] and ENTRYPOINT the command param1 param2. It is worth
noticing that only the last ENTRYPOINT instruction in the Dockerfile will
have an affect.

CMD
Dockerfile can contain only one CMD instruction. This instruction
provides the default arguments to ENTRYPOINT using a JSON array format.

ENV This sets the environment variable for a container in key/value form.

COPY

This copies new files or directories from a given source path to the
filesystem inside the container at the path defined by the target path. It has
the following form: COPY [--chown=<user>:<group>] <src>...
<dest>.

Docker Support Chapter 14

[355]

Instruction Description

ADD
This is an alternative to a COPY instruction. It is allowed to do a little more
than COPY, for example, it allows <src> to be a URL address.

WORKDIR This sets the working directory for RUN, CMD, ENTRYPOINT, COPY, and ADD.

EXPOSE

This is responsible for informing Docker that the container listens on the
specified network ports at runtime. It does not actually publish the port.
The ports are published through the -p option on the docker run
command.

VOLUME
This creates a mount point with the specified name. Volumes are the
preferred mechanism for persisting data inside Docker containers.

USER
This sets the username and, optionally, the user group used when running
the image, as well as for the RUN, CMD, and ENTRYPOINT instructions.

Let’s take a look how this works in practice. We should define a Dockerfile for every
microservice and place it in the root directory of its Git project. The following is a
Dockerfile created for account-service:

FROM openjdk:8u151-jdk-slim-stretch
MAINTAINER Piotr Minkowski <piotr.minkowski@gmail.com>
ENV SPRING_PROFILES_ACTIVE zone1
ENV EUREKA_DEFAULT_ZONE http://localhost:8761/eureka/
ADD target/account-service-1.0-SNAPSHOT.jar app.jar
ENTRYPOINT ["java", "-Xmx160m", "-jar", "-
Dspring.profiles.active=${SPRING_PROFILES_ACTIVE}", "-
Deureka.client.serviceUrl.defaultZone=${EUREKA_DEFAULT_ZONE}",
"/app.jar"]
EXPOSE 8091

The preceding example is not very complicated. It only adds the microservice-generated fat
JAR file to the Docker container and uses the java -jar command as ENTRYPOINT. Even
so, let's analyze it step-by-step. Our example Dockerfile performs the following
instructions:

The image extends an existing OpenJDK image that is an official, open-source
implementation of the Java Platform Standard Edition. OpenJDK images come in
many flavors. The main difference between available images' variants is in their
size. The image tagged with 8u151-jdk-slim-stretch provides JDK 8 and
includes all the libraries needed to run the Spring Boot microservice. It is also
much smaller than a basic image with this version of Java (8u151-jdk).

Docker Support Chapter 14

[356]

Here, we defined two environment variables that can be overridden during
runtime that have the -e option of the docker run command. The first is the
active Spring profile name, which is by default initialized with a zone1 value.
The second is the discovery server's address, which is by default equal to http:/ /
localhost:8761/ eureka/ .
The fat JAR file contains all the required dependencies together with an
application's binaries. So, we have to put a generated JAR file inside the container
using the ADD instruction.
We configure our container to run as an executable Java application. The defined
ENTRYPOINT is equivalent to running the following command on a local machine:

java -Xmx160m -jar –Dspring.profiles.active=zone1 -
Deureka.client.serviceUrl.defaultZone=http://localhost:8761/eureka/
app.jar

Using the EXPOSE instruction we have informed Docker that it may expose our
application's HTTP API, which is available inside the container on port 8091.

Running containerized microservices
Assuming we have prepared a valid Dockerfile for each service, the next step is to build
the whole Maven project with the mvn clean install command, before building a
Docker image for every service.

When building a Docker image, you should always be in the root directory of every
microservice source code. The first container that has to be run in our microservices-based
system is a discovery server. Its Docker image has been named piomin/discovery-
service. Before running Docker's build command, go to the module discovery-
service. This Dockerfile is a little simpler than other microservices, because there is no
environment variables to set inside the container, shown as follows:

FROM openjdk:8u151-jdk-slim-stretch
MAINTAINER Piotr Minkowski <piotr.minkowski@gmail.com>
ADD target/discovery-service-1.0-SNAPSHOT.jar app.jar
ENTRYPOINT ["java", "-Xmx144m", "-jar", "/app.jar"]
EXPOSE 8761

Docker Support Chapter 14

[357]

There are only five steps to perform here, which you can see in the logs generated during
the target image's build, just after running the docker build command. If everything
works correctly, you should see the progress of all five steps as defined in Dockerfile and
the following final messages telling you that the image has been successfully built and
tagged:

$ docker build -t piomin/discovery-service:1.0 .
Sending build context to Docker daemon 39.9MB
Step 1/5 : FROM openjdk:8u151-jdk-slim-stretch
8u151-jdk-slim-stretch: Pulling from library/openjdk
8176e34d5d92: Pull complete
2208661344b7: Pull complete
99f28966f0b2: Pull complete
e991b55a8065: Pull complete
aee568884a84: Pull complete
18b6b371c215: Pull complete
Digest:
sha256:bd394fdc76e8aa73adba2a7547fcb6cde3281f70d6b3cae6fa62ef1fbde327e3
Status: Downloaded newer image for openjdk:8u151-jdk-slim-stretch
 ---> 52de5d98a41d
Step 2/5 : MAINTAINER Piotr Minkowski <piotr.minkowski@gmail.com>
 ---> Running in 78fc78cc21f0
 ---> 0eba7a369e43
Removing intermediate container 78fc78cc21f0
Step 3/5 : ADD target/discovery-service-1.0-SNAPSHOT.jar app.jar
 ---> 1c6a2e04c4dc
Removing intermediate container 98138425b5a0
Step 4/5 : ENTRYPOINT java -Xmx144m -jar /app.jar
 ---> Running in 7369ba693689
 ---> c246470366e4
Removing intermediate container 7369ba693689
Step 5/5 : EXPOSE 8761
 ---> Running in 74493ae54220
 ---> 06af6a3c2d41
Removing intermediate container 74493ae54220
Successfully built 06af6a3c2d41
Successfully tagged piomin/discovery-service:1.0

Docker Support Chapter 14

[358]

Once we have successfully built an image, we should run it. We recommend creating a
network where all the containers with our microservices will be launched. To launch a
container inside a newly created network, we have to pass its name to the docker run
command using the --network parameter. In order to check if a container has been
successfully started, run the docker logs command. This command prints all the lines
logged by the application to the console, as follows:

$ docker network create sample-spring-cloud-network
$ docker run -d --name discovery -p 8761:8761 --network sample-spring-
cloud-network piomin/discovery-service:1.0
de2fac673806e134faedee3c0addaa31f2bbadcffbdff42a53f8e4ee44ca0674
$ docker logs -f discovery

The next step is to build and run the containers with our four microservices—account-

service, customer-service, order-service, and product-service. The procedure is
the same for each service. For example, if you would like to build account-service, first
go to that directory within the example project's source code. The build command is the
same here as it is for the discovery service; the only difference is in the image name, as
shown in the following snippet:

$ docker build -t piomin/account-service:1.0 .

The command to run the Docker image is a little more complicated for discovery-
service. In this case, we have to pass the address of the Eureka server to the starting
container. Because this container is running in the same network as the discovery service
container, we may use its name instead of its IP address or any other identifier. Optionally,
we can also set the container's memory limit by using the -m parameter, for example, to 256
MB. Finally, we can see the logs generated by the application running on the container by
using the docker logs command as follows:

$ docker run -d --name account -p 8091:8091 -e
EUREKA_DEFAULT_ZONE=http://discovery:8761/eureka -m 256M --network
sample-spring-cloud-network piomin/account-service:1.0
$ docker logs -f account

The same steps as described previously should be repeated for all other microservices. The
final result is the five running containers that can be displayed using the docker ps
command, as shown in the following screenshot:

Docker Support Chapter 14

[359]

All the microservices are registered in the Eureka server. The Eureka dashboard is available
at the address http://192.168.99.100:8761/, as shown in the following screenshot:

There is one more interesting Docker command that we mention here: docker stats. This
command prints some statistics related to the started container, such as memory or CPU
usage. If you use the --format parameter of that command you can customize the way it
prints the statistics; for example, you can print the container name rather than its ID. Before
running that command you may perform some tests in order to check that everything is
working as it should. It's worth checking whether the communication between
microservices that was started on the containers has finished successfully. You may also
want to try to call the endpoint GET /withAccounts/{id} from customer-service ,
which calls an endpoint exposed by account-service. We run the following command:

docker stats --format "table
{{.Name}}\t{{.Container}}\t{{.CPUPerc}}\t{{.MemUsage}}"

The following screenshot is visible:

Docker Support Chapter 14

[360]

Building an image using the Maven plugin
As we've mentioned previously, Dockerfile is not the only way of creating and building
containers. There are some other approaches available, for example, by using Maven
plugin. We have many available plugins dedicated to building images, which are used
with mvn commands. One of the more popular among them is com.spotify:docker-
maven-plugin. This has the equivalent tags in its configuration that can be used instead of
Dockerfile instructions. The configuration of the plugin inside pom.xml for account-
service is as follows:

<plugin>
 <groupId>com.spotify</groupId>
 <artifactId>docker-maven-plugin</artifactId>
 <version>1.0.0</version>
 <configuration>
 <imageName>piomin/${project.artifactId}</imageName>
 <imageTags>${project.version}</imageTags>
 <baseImage>openjdk:8u151-jdk-slim-stretch</baseImage>
 <entryPoint>["java", "-Xmx160m", "-jar", "-
Dspring.profiles.active=${SPRING_PROFILES_ACTIVE}", "-
Deureka.client.serviceUrl.defaultZone=${EUREKA_DEFAULT_ZONE}",
"/${project.build.finalName}.jar"] </entryPoint>
 <env>
 <SPRING_PROFILES_ACTIVE>zone1</SPRING_PROFILES_ACTIVE>
<EUREKA_DEFAULT_ZONE>http://localhost:8761/eureka/</EUREKA_DEFAULT_ZONE
>
 </env>
 <exposes>8091</exposes>
 <maintainer>piotr.minkowski@gmail.com</maintainer>
 <dockerHost>https://192.168.99.100:2376</dockerHost>
<dockerCertPath>C:\Users\Piotr\.docker\machine\machines\default</docker
CertPath>
 <resources>
 <resource>
 <directory>${project.build.directory}</directory>
 <include>${project.build.finalName}.jar</include>
 </resource>
 </resources>
 </configuration>
</plugin>

Docker Support Chapter 14

[361]

This plugin can be invoked during Maven's build command. If you would like to build a
Docker image just after building the application, use the following Maven command:

$ mvn clean install docker:build

Alternatively, you can also set the dockerDirectory tag in order to perform a build based
on Dockerfile. No matter which method you choose, the effect is the same. Any new
image that is built with an application will be available on your Docker machine. When
using docker-maven-plugin, you can force the automated image to push to the repository
by setting pushImage to true, shown as follows:

<plugin>
 <groupId>com.spotify</groupId>
 <artifactId>docker-maven-plugin</artifactId>
 <version>1.0.0</version>
 <configuration>
 <imageName>piomin/${project.artifactId}</imageName>
 <imageTags>${project.version}</imageTags>
 <pushImage>true</pushImage>
 <dockerDirectory>src/main/docker</dockerDirectory>
 <dockerHost>https://192.168.99.100:2376</dockerHost>
<dockerCertPath>C:\Users\Piotr\.docker\machine\machines\default</docker
CertPath>
 <resources>
 <resource>
 <directory>${project.build.directory}</directory>
 <include>${project.build.finalName}.jar</include>
 </resource>
 </resources>
 </configuration>
</plugin>

Docker Support Chapter 14

[362]

Advanced Docker images
Until now, we have built rather simple Docker images. However, it is sometimes necessary
to create a more advanced image. We will need such an image for the purpose of
Continuous Delivery presentation. This Docker image will be run as a Jenkins slave and
would be connected to the Jenkins master, which is started as a Docker container. We have
not found such an image on Docker Hub, so we created in by ourselves. Here, the image
has to contain Git, Maven, JDK8, and Docker. These are all the tools required for building
our example microservices using the Jenkins slave. I will give you a brief summary of the
basics related to Continuous Delivery using the Jenkins server in a later section of this
chapter. For now, we will focus on just building the required image. The following is the
full definition of the image provided inside Dockerfile:

FROM docker:18-dind
MAINTAINER Piotr Minkowski <piotr.minkowski@gmail.com>
ENV JENKINS_MASTER http://localhost:8080
ENV JENKINS_SLAVE_NAME dind-node
ENV JENKINS_SLAVE_SECRET ""
ENV JENKINS_HOME /home/jenkins
ENV JENKINS_REMOTING_VERSION 3.17
ENV DOCKER_HOST tcp://0.0.0.0:2375

RUN apk --update add curl tar git bash openjdk8 sudo

ARG MAVEN_VERSION=3.5.2
ARG USER_HOME_DIR="/root"
ARG
SHA=707b1f6e390a65bde4af4cdaf2a24d45fc19a6ded00fff02e91626e3e42ceaff
ARG
BASE_URL=https://apache.osuosl.org/maven/maven-3/${MAVEN_VERSION}/binar
ies
RUN mkdir -p /usr/share/maven /usr/share/maven/ref \
 && curl -fsSL -o /tmp/apache-maven.tar.gz ${BASE_URL}/apache-maven-
${MAVEN_VERSION}-bin.tar.gz \
 && echo "${SHA} /tmp/apache-maven.tar.gz" | sha256sum -c - \
 && tar -xzf /tmp/apache-maven.tar.gz -C /usr/share/maven --strip-
components=1 \
 && rm -f /tmp/apache-maven.tar.gz \
 && ln -s /usr/share/maven/bin/mvn /usr/bin/mvn
ENV MAVEN_HOME /usr/share/maven
ENV MAVEN_CONFIG "$USER_HOME_DIR/.m2"

RUN adduser -D -h $JENKINS_HOME -s /bin/sh jenkins jenkins && chmod
a+rwx $JENKINS_HOME
RUN echo "jenkins ALL=(ALL) NOPASSWD: /usr/local/bin/dockerd" >
/etc/sudoers.d/00jenkins && chmod 440 /etc/sudoers.d/00jenkins

Docker Support Chapter 14

[363]

RUN echo "jenkins ALL=(ALL) NOPASSWD: /usr/local/bin/docker" >
/etc/sudoers.d/01jenkins && chmod 440 /etc/sudoers.d/01jenkins
RUN curl --create-dirs -sSLo /usr/share/jenkins/slave.jar
http://repo.jenkins-ci.org/public/org/jenkins-ci/main/remoting/$JENKINS
_REMOTING_VERSION/remoting-$JENKINS_REMOTING_VERSION.jar && chmod 755
/usr/share/jenkins && chmod 644 /usr/share/jenkins/slave.jar

COPY entrypoint.sh /usr/local/bin/entrypoint
VOLUME $JENKINS_HOME
WORKDIR $JENKINS_HOME
USER jenkins
ENTRYPOINT ["/usr/local/bin/entrypoint"]

Let's analyze what's happened. Here, we have extended the Docker base image. This is a
pretty smart solution, because that image now provides Docker inside Docker. Although
running Docker inside Docker is generally not recommended, there are some desirable use
cases, such as Continuous Delivery with Docker. Besides Docker, there is other software
installed on the image using the RUN instruction, such as Git, JDK, Maven, or Curl. We have
also added an OS user, which has sudoers permission in the dockerd script, which is
responsible for running the Docker daemon on the machine. This is not the only process
that has to be started in the running container; launching JAR with the Jenkins slave is also
required. Those two commands are executed inside entrypoint.sh, which is set as an
ENTRYPOINT of the image. The full source code of this Docker image is available on GitHub
at https://github. com/ piomin/ jenkins- slave- dind- jnlp. git. You can omit building it
from source code and just download a ready image from my Docker Hub account by using
the following command:

docker pull piomin/jenkins-slave-dind-jnlp

Here's the script entrypoint.sh inside Docker image that starts Docker deamon and
Jenkins slave:

#!/bin/sh
set -e
echo "starting dockerd..."
sudo dockerd --host=unix:///var/run/docker.sock --
host=tcp://0.0.0.0:2375 --storage-driver=vfs &
echo "starting jnlp slave..."
exec java -jar /usr/share/jenkins/slave.jar \
 -jnlpUrl $JENKINS_URL/computer/$JENKINS_SLAVE_NAME/slave-agent.jnlp \
 -secret $JENKINS_SLAVE_SECRET

https://github.com/piomin/jenkins-slave-dind-jnlp.git
https://github.com/piomin/jenkins-slave-dind-jnlp.git
https://github.com/piomin/jenkins-slave-dind-jnlp.git
https://github.com/piomin/jenkins-slave-dind-jnlp.git
https://github.com/piomin/jenkins-slave-dind-jnlp.git
https://github.com/piomin/jenkins-slave-dind-jnlp.git
https://github.com/piomin/jenkins-slave-dind-jnlp.git
https://github.com/piomin/jenkins-slave-dind-jnlp.git
https://github.com/piomin/jenkins-slave-dind-jnlp.git
https://github.com/piomin/jenkins-slave-dind-jnlp.git
https://github.com/piomin/jenkins-slave-dind-jnlp.git
https://github.com/piomin/jenkins-slave-dind-jnlp.git
https://github.com/piomin/jenkins-slave-dind-jnlp.git
https://github.com/piomin/jenkins-slave-dind-jnlp.git
https://github.com/piomin/jenkins-slave-dind-jnlp.git
https://github.com/piomin/jenkins-slave-dind-jnlp.git
https://github.com/piomin/jenkins-slave-dind-jnlp.git
https://github.com/piomin/jenkins-slave-dind-jnlp.git
https://github.com/piomin/jenkins-slave-dind-jnlp.git

Docker Support Chapter 14

[364]

Continuous Delivery
One of the key benefits of migrating to microservice-based architecture is the ability to
deliver software quickly. This should be the main motivation for implementing continuous
delivery or a continuous deployment process in your organization. In short, the continuous
delivery process is an approach that tries to automate all the stages of software delivery
such as building, testing a code, and releasing an application. There are many tools that
empower that process. One of them is Jenkins, an open source automation server written in
Java. Docker is something that can take your Continuous Integration (CI) or Continuous
Delivery (CD) processes to a higher level. Immutable delivery, for example, is one of the
most important advantages of Docker.

Integrating Jenkins with Docker
The main goal here is to design and run the continuous delivery process locally using
Jenkins and Docker. There are four elements that have a part in this process. The first of
them is already prepared: the source code repository of our microservices, which is
available on GitHub. The second element, Jenkins, needs to be run and configured. Jenkins
is a key element of our continuous delivery system. It has to download the application's
source code from the GitHub repository, build it, and then place the resulting JAR file in
Docker image, push that image to Docker Hub, and finally run the container with a
microservice. All of the tasks within this process are directly performed on a Jenkins master
but on its slave node. Both Jenkins and its slave are launched as Docker containers. The
architecture of this solution is illustrated as follows:

Docker Support Chapter 14

[365]

It's worth mentioning that Jenkins is built on the basis of the concept of plugins. The core is
too simple an engine for automated builds. The real power of Jenkins is in its plugins, and
there are hundreds of them in the Update Center. For now, we will only discuss a few
opportunities available to us thanks to the Jenkins server. We will need the following
plugins installed to be able to build and run our microservices in Docker containers:

Pipeline: This is a suite of plugins that lets you create automation using Groovy
scripts following the idea Pipeline as code (https:/ /wiki. jenkins. io/display/
JENKINS/ Pipeline+Plugin)
Docker Pipeline: This allows you to build Docker containers in pipelines
(https:/ / wiki. jenkins. io/ display/ JENKINS/ Docker+Pipeline+Plugin)
Git: This integrates Git with Jenkins (https:/ /wiki. jenkins. io/ display/
JENKINS/ Git+Plugin)
Maven integration: This provides some useful commands when building an
application with Maven and Jenkins (https:/ /plugins. jenkins. io/ maven-
plugin)

The required plugins can be configured using the UI dashboard, either after startup or via
Manage Jenkins | Manage Plugins. To run Jenkins locally, we will use its Docker image.
The following commands create the network called jenkins and start the Jenkins master
container, exposing the UI dashboard on port 38080. Notice that when you start the Jenkins
container and use its web console for the first time you need to set it up using the initial
generated password. You can easily retrieve this password from Jenkins logs by invoking
the docker logs jenkins command as follows:

$ docker network create jenkins
$ docker run -d --name jenkins -p 38080:8080 -p 50000:50000 --network
jenkins jenkins/jenkins:lts

https://clicktime.symantec.com/a/1/4g9YbrLxE43FYJrIE5v0J-RjoqlfXZm5h2piohXV60o=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FPipeline%2BPlugin
https://clicktime.symantec.com/a/1/4g9YbrLxE43FYJrIE5v0J-RjoqlfXZm5h2piohXV60o=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FPipeline%2BPlugin
https://clicktime.symantec.com/a/1/4g9YbrLxE43FYJrIE5v0J-RjoqlfXZm5h2piohXV60o=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FPipeline%2BPlugin
https://clicktime.symantec.com/a/1/4g9YbrLxE43FYJrIE5v0J-RjoqlfXZm5h2piohXV60o=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FPipeline%2BPlugin
https://clicktime.symantec.com/a/1/4g9YbrLxE43FYJrIE5v0J-RjoqlfXZm5h2piohXV60o=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FPipeline%2BPlugin
https://clicktime.symantec.com/a/1/4g9YbrLxE43FYJrIE5v0J-RjoqlfXZm5h2piohXV60o=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FPipeline%2BPlugin
https://clicktime.symantec.com/a/1/4g9YbrLxE43FYJrIE5v0J-RjoqlfXZm5h2piohXV60o=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FPipeline%2BPlugin
https://clicktime.symantec.com/a/1/4g9YbrLxE43FYJrIE5v0J-RjoqlfXZm5h2piohXV60o=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FPipeline%2BPlugin
https://clicktime.symantec.com/a/1/4g9YbrLxE43FYJrIE5v0J-RjoqlfXZm5h2piohXV60o=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FPipeline%2BPlugin
https://clicktime.symantec.com/a/1/4g9YbrLxE43FYJrIE5v0J-RjoqlfXZm5h2piohXV60o=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FPipeline%2BPlugin
https://clicktime.symantec.com/a/1/4g9YbrLxE43FYJrIE5v0J-RjoqlfXZm5h2piohXV60o=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FPipeline%2BPlugin
https://clicktime.symantec.com/a/1/4g9YbrLxE43FYJrIE5v0J-RjoqlfXZm5h2piohXV60o=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FPipeline%2BPlugin
https://clicktime.symantec.com/a/1/4g9YbrLxE43FYJrIE5v0J-RjoqlfXZm5h2piohXV60o=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FPipeline%2BPlugin
https://clicktime.symantec.com/a/1/4g9YbrLxE43FYJrIE5v0J-RjoqlfXZm5h2piohXV60o=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FPipeline%2BPlugin
https://clicktime.symantec.com/a/1/3BcsCubSP1UZ0ssSZFCe2iSCQQ_b1asMBhlt_0nQFKI=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FDocker%2BPipeline%2BPlugin
https://clicktime.symantec.com/a/1/3BcsCubSP1UZ0ssSZFCe2iSCQQ_b1asMBhlt_0nQFKI=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FDocker%2BPipeline%2BPlugin
https://clicktime.symantec.com/a/1/3BcsCubSP1UZ0ssSZFCe2iSCQQ_b1asMBhlt_0nQFKI=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FDocker%2BPipeline%2BPlugin
https://clicktime.symantec.com/a/1/3BcsCubSP1UZ0ssSZFCe2iSCQQ_b1asMBhlt_0nQFKI=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FDocker%2BPipeline%2BPlugin
https://clicktime.symantec.com/a/1/3BcsCubSP1UZ0ssSZFCe2iSCQQ_b1asMBhlt_0nQFKI=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FDocker%2BPipeline%2BPlugin
https://clicktime.symantec.com/a/1/3BcsCubSP1UZ0ssSZFCe2iSCQQ_b1asMBhlt_0nQFKI=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FDocker%2BPipeline%2BPlugin
https://clicktime.symantec.com/a/1/3BcsCubSP1UZ0ssSZFCe2iSCQQ_b1asMBhlt_0nQFKI=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FDocker%2BPipeline%2BPlugin
https://clicktime.symantec.com/a/1/3BcsCubSP1UZ0ssSZFCe2iSCQQ_b1asMBhlt_0nQFKI=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FDocker%2BPipeline%2BPlugin
https://clicktime.symantec.com/a/1/3BcsCubSP1UZ0ssSZFCe2iSCQQ_b1asMBhlt_0nQFKI=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FDocker%2BPipeline%2BPlugin
https://clicktime.symantec.com/a/1/3BcsCubSP1UZ0ssSZFCe2iSCQQ_b1asMBhlt_0nQFKI=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FDocker%2BPipeline%2BPlugin
https://clicktime.symantec.com/a/1/3BcsCubSP1UZ0ssSZFCe2iSCQQ_b1asMBhlt_0nQFKI=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FDocker%2BPipeline%2BPlugin
https://clicktime.symantec.com/a/1/3BcsCubSP1UZ0ssSZFCe2iSCQQ_b1asMBhlt_0nQFKI=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FDocker%2BPipeline%2BPlugin
https://clicktime.symantec.com/a/1/3BcsCubSP1UZ0ssSZFCe2iSCQQ_b1asMBhlt_0nQFKI=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FDocker%2BPipeline%2BPlugin
https://clicktime.symantec.com/a/1/3BcsCubSP1UZ0ssSZFCe2iSCQQ_b1asMBhlt_0nQFKI=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FDocker%2BPipeline%2BPlugin
https://clicktime.symantec.com/a/1/3BcsCubSP1UZ0ssSZFCe2iSCQQ_b1asMBhlt_0nQFKI=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FDocker%2BPipeline%2BPlugin
https://clicktime.symantec.com/a/1/Zbv8hM_2L26s_PMbntThO-9W_A4uUxsqo7UyU5nbae8=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FGit%2BPlugin
https://clicktime.symantec.com/a/1/Zbv8hM_2L26s_PMbntThO-9W_A4uUxsqo7UyU5nbae8=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FGit%2BPlugin
https://clicktime.symantec.com/a/1/Zbv8hM_2L26s_PMbntThO-9W_A4uUxsqo7UyU5nbae8=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FGit%2BPlugin
https://clicktime.symantec.com/a/1/Zbv8hM_2L26s_PMbntThO-9W_A4uUxsqo7UyU5nbae8=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FGit%2BPlugin
https://clicktime.symantec.com/a/1/Zbv8hM_2L26s_PMbntThO-9W_A4uUxsqo7UyU5nbae8=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FGit%2BPlugin
https://clicktime.symantec.com/a/1/Zbv8hM_2L26s_PMbntThO-9W_A4uUxsqo7UyU5nbae8=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FGit%2BPlugin
https://clicktime.symantec.com/a/1/Zbv8hM_2L26s_PMbntThO-9W_A4uUxsqo7UyU5nbae8=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FGit%2BPlugin
https://clicktime.symantec.com/a/1/Zbv8hM_2L26s_PMbntThO-9W_A4uUxsqo7UyU5nbae8=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FGit%2BPlugin
https://clicktime.symantec.com/a/1/Zbv8hM_2L26s_PMbntThO-9W_A4uUxsqo7UyU5nbae8=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FGit%2BPlugin
https://clicktime.symantec.com/a/1/Zbv8hM_2L26s_PMbntThO-9W_A4uUxsqo7UyU5nbae8=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FGit%2BPlugin
https://clicktime.symantec.com/a/1/Zbv8hM_2L26s_PMbntThO-9W_A4uUxsqo7UyU5nbae8=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FGit%2BPlugin
https://clicktime.symantec.com/a/1/Zbv8hM_2L26s_PMbntThO-9W_A4uUxsqo7UyU5nbae8=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FGit%2BPlugin
https://clicktime.symantec.com/a/1/Zbv8hM_2L26s_PMbntThO-9W_A4uUxsqo7UyU5nbae8=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FGit%2BPlugin
https://clicktime.symantec.com/a/1/Zbv8hM_2L26s_PMbntThO-9W_A4uUxsqo7UyU5nbae8=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fwiki.jenkins.io%2Fdisplay%2FJENKINS%2FGit%2BPlugin
https://clicktime.symantec.com/a/1/jmIwLdZZ-wtodkRm1Goje_nuKFV98VcZYPHn5cWj1KM=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fplugins.jenkins.io%2Fmaven-plugin
https://clicktime.symantec.com/a/1/jmIwLdZZ-wtodkRm1Goje_nuKFV98VcZYPHn5cWj1KM=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fplugins.jenkins.io%2Fmaven-plugin
https://clicktime.symantec.com/a/1/jmIwLdZZ-wtodkRm1Goje_nuKFV98VcZYPHn5cWj1KM=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fplugins.jenkins.io%2Fmaven-plugin
https://clicktime.symantec.com/a/1/jmIwLdZZ-wtodkRm1Goje_nuKFV98VcZYPHn5cWj1KM=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fplugins.jenkins.io%2Fmaven-plugin
https://clicktime.symantec.com/a/1/jmIwLdZZ-wtodkRm1Goje_nuKFV98VcZYPHn5cWj1KM=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fplugins.jenkins.io%2Fmaven-plugin
https://clicktime.symantec.com/a/1/jmIwLdZZ-wtodkRm1Goje_nuKFV98VcZYPHn5cWj1KM=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fplugins.jenkins.io%2Fmaven-plugin
https://clicktime.symantec.com/a/1/jmIwLdZZ-wtodkRm1Goje_nuKFV98VcZYPHn5cWj1KM=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fplugins.jenkins.io%2Fmaven-plugin
https://clicktime.symantec.com/a/1/jmIwLdZZ-wtodkRm1Goje_nuKFV98VcZYPHn5cWj1KM=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fplugins.jenkins.io%2Fmaven-plugin
https://clicktime.symantec.com/a/1/jmIwLdZZ-wtodkRm1Goje_nuKFV98VcZYPHn5cWj1KM=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fplugins.jenkins.io%2Fmaven-plugin
https://clicktime.symantec.com/a/1/jmIwLdZZ-wtodkRm1Goje_nuKFV98VcZYPHn5cWj1KM=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fplugins.jenkins.io%2Fmaven-plugin
https://clicktime.symantec.com/a/1/jmIwLdZZ-wtodkRm1Goje_nuKFV98VcZYPHn5cWj1KM=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fplugins.jenkins.io%2Fmaven-plugin
https://clicktime.symantec.com/a/1/jmIwLdZZ-wtodkRm1Goje_nuKFV98VcZYPHn5cWj1KM=?d=GiSMteljxw-3ox0rf3cMazK9IOHzeSrn0vm9sus4y_n0hehkoAHvPijqT9dNXanC2Z3KtWbAm0BF-YDyp2HFvxXpFa6IkS_tvoddqdWrcb2R6vx-7YEpFHbt4IzErozigZnPecmyLha58i_mX_GOqw8nGcIkFmptcNTdFqB6DA-shedWhYxMv5VpzsTWPmDZA52S7fjMHuYvrTP5MOqqgejXYWvZr4d9OaWe0jeXJ-MEIccIx-UiD_tYy9OK2eYpd4eiaegTQb9XhbUR0ZNPGlpo4vSShb3yAI2Kf9JPcQ4hOSXoj5JpZSvnKhm1C9Yn68IsYCIBmwjYZZYyuS3y9uUI9zHbgSpVOx8ehvCmMWx0MAwCJ5gDR1ZIXXNcnw%3D%3D&u=https%3A%2F%2Fplugins.jenkins.io%2Fmaven-plugin

Docker Support Chapter 14

[366]

Once we have successfully configured the Jenkins master with its required plugins, we need
to add new slaves' nodes. To do this, you should go to the section Manage Jenkins |
Manage Nodes and then select New Node. In the displayed form, you have to set
/home/jenkins as a remote root directory, and the launch agent via Java Web Start as the
launch method. Now you may start the Docker container with a Jenkins slave, as previously
discussed. Note that you will have to override two environment variables indicating the
slave's name and secret. The name parameter is set during node creation, while the secret is
automatically generated by the server. You can take a look at the node's details page for
more information, as shown in the following screenshot:

The following is the Docker command that starts a container with the Jenkins slave with
Docker in Docker:

$ docker run --privileged -d --name slave --network jenkins -e
JENKINS_SLAVE_SECRET=5664fe146104b89a1d2c78920fd9c5eebac3bd7344432e0668
e366e2d3432d3e -e JENKINS_SLAVE_NAME=dind-node-1 -e
JENKINS_URL=http://jenkins:38080 piomin/jenkins-slave-dind-jnlp

This short introduction to the configuration of Jenkins should help you to repeat the
discussed continuous delivery process on your own machine. Remember that we have only
looked at a few aspects related to Jenkins, including settings, which will allow you to set up
a CI or CD environment for your own microservices-based system. If you are interested in
pursuing this topic in greater depth, you should refer to the documentation available
at https://jenkins. io/ doc.

Building pipelines
In older versions of Jenkins server, the basic unit of work was a job. Currently, its main
feature is the ability to define pipelines as code. This change is related to more modern
trends in IT architecture that consider application delivery as critical as the application
that's being delivered. Since all the components of the application stack are already
automated and represented as code in the version control system, the same benefits can be
leveraged for CI or CD pipelines.

https://jenkins.io/doc
https://jenkins.io/doc
https://jenkins.io/doc
https://jenkins.io/doc
https://jenkins.io/doc
https://jenkins.io/doc
https://jenkins.io/doc
https://jenkins.io/doc
https://jenkins.io/doc

Docker Support Chapter 14

[367]

The Jenkins Pipeline provides a set of tools designed for modeling simple and more
advanced delivery pipelines as code. The definition of such a pipeline is typically written
into a text file called a Jenkinsfile. It supports the domain-specific language with
additional, specific steps available through the Shared Libraries feature. Pipeline supports
two syntaxes: Declarative (introduced in Pipeline 2.5) and Scripted Pipeline. No matter
which syntax is used, it will be logically divided into stages and steps. Steps are the most
fundamental part of a pipeline as they tell Jenkins what to do. Stages logically group a
couple of steps, which are then displayed on the pipeline's result screen. The following code
is an example of a scripted pipeline and defines a build process for account-service.
Similar definitions have to be created for other microservices. All of these definitions are
located in the root directory of every application's source code as Jenkinsfile:

node('dind-node-1') {
 withMaven(maven:'M3') {
 stage('Checkout') {
 git url: 'https://github.com/piomin/sample-spring-cloud-comm.git',
credentialsId: 'github-piomin', branch: 'master'
 }

 stage('Build') {
 dir('account-service') {
 sh 'mvn clean install'
 }
 def pom = readMavenPom file:'pom.xml'
 print pom.version
 env.version = pom.version
 currentBuild.description = "Release: ${env.version}"
 }

 stage('Image') {
 dir ('account-service') {
 def app = docker.build "piomin/account-service:${env.version}"
 app.push()
 }
 }

 stage ('Run') {
 docker.image("piomin/account-service:${env.version}").run('-p
8091:8091 -d --name account --network sample-spring-cloud-network')
 }

 }
}

Docker Support Chapter 14

[368]

The previous definition is divided into four stages. In the first, Checkout, we clone the Git
repository with the source code of all the example applications. In the second stage, Build ,
we build an application from the account-service module and then read the whole
Maven project's version number from root's pom.xml. In the Image stage we build an
image from Dockerfile and push it to the Docker repository. Finally, we run a container
with the account-service application inside the Run stage. All the described stages are
executed on dind-node-1 following the definition of a node element, which is a root for all
the other elements in the pipeline definition.

Now we can proceed to defining the pipeline in Jenkins' web console. Select New Item, then
check the Pipeline item type and enter its name. After confirmation you should be
redirected to the pipeline's configuration page. The only thing you have to do once there is
to provide the location of Jenkinsfile in the Git repository and then set the SCM
authentication credentials as shown in the following screenshot:

Docker Support Chapter 14

[369]

After saving the changes, the configuration of the pipeline is ready. In order to start the
build, click the Build Now button. There are two things that should be clarified at this
stage. In the production mode you can use the webhook mechanism, which is provided by
the most popular Git host vendors, including GitHub, BitBucket, and GitLab. This
mechanism automatically triggers your build on Jenkins after pushing the changes to the
repository. In order to demonstrate this, we would have to run the version control system
locally with Docker, for example using GitLab. There is also another simplified way of
testing. The containerized application is run directly on Jenkins' Docker in Docker slave;
under normal circumstances, we would launch on the separated remote machine dedicated
only to the deployment of applications. The following screenshot is Jenkins' web console
illustrating the build process, divided into different stages, for product-service:

Docker Support Chapter 14

[370]

We should now create one pipeline per microservice. The list of all the created pipelines is
as follows:

Working with Kubernetes
We have already launched our example microservices on Docker containers. We have even
used CI and CD automated pipelines in order to run them on the local machine. You may,
however, be asking an important question. How can we organize our environment on a
larger scale and in production mode where we have to run multiple containers across
multiple machines? Well, this is exactly what we have to do when implementing
microservices in accordance with the idea of cloud native development. It turns out that
many challenges still remain in this instance. Assuming that we have many microservices
launched in multiple instances, there will be plenty of containers to manage. Doing things
such as starting the correct containers at the correct time, handling storage considerations,
scaling up or down, and dealing with failures manually would be a nightmare. Fortunately,
there are some platforms available that help in clustering and orchestrating Docker
containers at scale. Currently, the leader in this field is Kubernetes.

Kubernetes is an open-source platform for managing containerized workloads and services.
It can act as a container platform, as a microservices platform, as a cloud platform, and a lot
more. It automates such actions as running containers across different machines, scaling up
and down, distributing load between containers, and keeping storage consistency between
multiple instances of an application. It also has a number of additional features, including
service discovery, load balancing, configuration management, service naming, and rolling
updates. Not all of these features would be useful for us however as many similar features
are provided by Spring Cloud.

It is worth mentioning that Kubernetes is not the only container management tool out there.
There is also Docker Swarm, the native tool provided within Docker. However, since
Docker has announced native support for Kubernetes, it seems to be a natural choice. There
are several important concepts and components regarding Kubernetes that we should know
before we move on to any practical examples.

Docker Support Chapter 14

[371]

Concepts and components
The first term you will probably have to deal with when using Kubernetes is pod, which is a
basic building block in Kubernetes. A pod represents a running process in the cluster. It
can consist of one or more containers that are guaranteed to be co-located on the host
machine and will share the same resources. One container per pod is the most common
Kubernetes use case. Each pod has a unique IP address within the cluster but all containers
deployed inside the same pod can communicate with others via localhost.

Another common component is a service. A service logically groups a set of pods and
defines a policy of access to it; it is sometimes called a microservice. By default, a service is
exposed inside a cluster but it can also be exposed onto an external IP address. We can
expose a service using one of the four available behaviors: ClusterIP, NodePort,
LoadBalancer , and ExternalName. The default option is ClusterIP. This exposes the
service on a cluster-internal IP, which makes it reachable only from within the cluster.
NodePort exposes the service on each Node's IP at a static port, and automatically
create ClusterIP for exposing service inside a cluster. In turn, LoadBalancer exposes the
service externally using a cloud provider’s load balancer, and ExternalName maps the
service to the contents of the externalName field. We should also take a few moments to
discuss Kubernetes's replication controller. This handles replication and scaling by running
a specified number of copies of a pod across the cluster. It is also responsible for replacing
pods if the underlying node fails. Every controller in Kubernetes is a separate process run
by kube-controller-manager. You can also find node controller, endpoints controller,
and service account and token controllers in Kubernetes.

Kubernetes uses an etcd key/value store as a backing store for all cluster data. Inside every
node of the cluster is an agent called kubelet, which is responsible for ensuring that
containers are running in a pod. Every command sent to Kubernetes by a user is processed
by Kubernetes API exposed by kubeapi-server.

Of course, this is a really simplified explanation of Kubernetes's architecture. There are
more components and tools available that have to be configured properly in order to run
highly available Kubernetes clusters successfully. This is not a trivial task to perform, and it
requires a significant amount of knowledge about this platform. Fortunately, there is a tool
out there that makes it easy to run a Kubernetes cluster locally—Minikube.

Docker Support Chapter 14

[372]

Running Kubernetes locally via Minikube
Minikube is a tool that makes it easy to run Kubernetes locally. It runs a single-node
Kubernetes cluster inside a VM on the local machine. It is definitely the most suitable choice
in development mode. Of course, Minikube does not support all of the features provided by
Kubernetes; only the most important ones, including DNS, NodePorts, Config Map,
Dashboard, and Ingress.
To run Minikube on Windows, we need to have a virtualization tool installed. However, if
you have already run Docker, you will have probably installed Oracle VM VirtualBox. In
this case, you don't have to do anything other than download and install the latest release of
Minikube, which you can check at https:/ /github. com/ kubernetes/ minikube/ releases ,
and kubectl.exe , as described at https:/ / storage. googleapis. com/ kubernetes-
release/release/ stable. txt. Both files minikube.exe and kubectl.exe should be
included in the PATH environment variable. In addition, Minikube provides its own
installer, minikube-installer.exe , which will automatically add minikube.exe to
your path. You may then start Minikube from your command line by running the following
command:

$ minikube start

The preceding command initializes a kubectl context called minikube. It contains the
configuration that allows you to communicate with the Minikube cluster. You can now use
kubectl commands in order to maintain your local cluster created by Minikube and
deploy your containers there. An alternative solution to a command-line interface is
Kubernetes dashboard. Kubernetes dashboard can be enabled for your node by calling
minikube dashboard. You can create, update, or delete deployment using this dashboard,
as well as list and view a configuration of all pods, services, ingresses, and replication
controllers. It is possible to easily stop and remove a local cluster by invoking the following
commands:

$ minikube stop
$ minikube delete

https://clicktime.symantec.com/a/1/eXr_fIrvCIRYzEHt0YvbtkptTqcVd9nJzBV28fxoaTY=?d=7tChM-hIl54SsiVoHKrovXbmLIi8ouu38bfWFa5LjYebKneJvW_c2_HMgDdoq431rSiEnNRRoWc7WI40qLP-zxO_svn7BtB5YkP7_3z6XE1bc9UDw_gg4B_LUQLmxfklfTjgbs0J-dnBHLc3GOsVYjvBMyOE-nmJR1SuKthIzdMfxP8oasaAGIamKBmwy-pKxDOZYKGzKE4iEAO1nFo15LHQ7enPYrMhvcEhb3LDIMsYYwnwVTe52q36t77MaAeAFdq7DgkU1BLlVMydfq9vglCYhLnhnOOzSDesZnjGR3spuBjVhNyCD3pcc73yC-ARPXPUpScKDxqUYA8pZg40QrbDOyzuC95KNm-9vIqcPXR6iDgu8QK_SscvFxnDi4A%3D&u=https%3A%2F%2Fgithub.com%2Fkubernetes%2Fminikube%2Freleases
https://clicktime.symantec.com/a/1/eXr_fIrvCIRYzEHt0YvbtkptTqcVd9nJzBV28fxoaTY=?d=7tChM-hIl54SsiVoHKrovXbmLIi8ouu38bfWFa5LjYebKneJvW_c2_HMgDdoq431rSiEnNRRoWc7WI40qLP-zxO_svn7BtB5YkP7_3z6XE1bc9UDw_gg4B_LUQLmxfklfTjgbs0J-dnBHLc3GOsVYjvBMyOE-nmJR1SuKthIzdMfxP8oasaAGIamKBmwy-pKxDOZYKGzKE4iEAO1nFo15LHQ7enPYrMhvcEhb3LDIMsYYwnwVTe52q36t77MaAeAFdq7DgkU1BLlVMydfq9vglCYhLnhnOOzSDesZnjGR3spuBjVhNyCD3pcc73yC-ARPXPUpScKDxqUYA8pZg40QrbDOyzuC95KNm-9vIqcPXR6iDgu8QK_SscvFxnDi4A%3D&u=https%3A%2F%2Fgithub.com%2Fkubernetes%2Fminikube%2Freleases
https://clicktime.symantec.com/a/1/eXr_fIrvCIRYzEHt0YvbtkptTqcVd9nJzBV28fxoaTY=?d=7tChM-hIl54SsiVoHKrovXbmLIi8ouu38bfWFa5LjYebKneJvW_c2_HMgDdoq431rSiEnNRRoWc7WI40qLP-zxO_svn7BtB5YkP7_3z6XE1bc9UDw_gg4B_LUQLmxfklfTjgbs0J-dnBHLc3GOsVYjvBMyOE-nmJR1SuKthIzdMfxP8oasaAGIamKBmwy-pKxDOZYKGzKE4iEAO1nFo15LHQ7enPYrMhvcEhb3LDIMsYYwnwVTe52q36t77MaAeAFdq7DgkU1BLlVMydfq9vglCYhLnhnOOzSDesZnjGR3spuBjVhNyCD3pcc73yC-ARPXPUpScKDxqUYA8pZg40QrbDOyzuC95KNm-9vIqcPXR6iDgu8QK_SscvFxnDi4A%3D&u=https%3A%2F%2Fgithub.com%2Fkubernetes%2Fminikube%2Freleases
https://clicktime.symantec.com/a/1/eXr_fIrvCIRYzEHt0YvbtkptTqcVd9nJzBV28fxoaTY=?d=7tChM-hIl54SsiVoHKrovXbmLIi8ouu38bfWFa5LjYebKneJvW_c2_HMgDdoq431rSiEnNRRoWc7WI40qLP-zxO_svn7BtB5YkP7_3z6XE1bc9UDw_gg4B_LUQLmxfklfTjgbs0J-dnBHLc3GOsVYjvBMyOE-nmJR1SuKthIzdMfxP8oasaAGIamKBmwy-pKxDOZYKGzKE4iEAO1nFo15LHQ7enPYrMhvcEhb3LDIMsYYwnwVTe52q36t77MaAeAFdq7DgkU1BLlVMydfq9vglCYhLnhnOOzSDesZnjGR3spuBjVhNyCD3pcc73yC-ARPXPUpScKDxqUYA8pZg40QrbDOyzuC95KNm-9vIqcPXR6iDgu8QK_SscvFxnDi4A%3D&u=https%3A%2F%2Fgithub.com%2Fkubernetes%2Fminikube%2Freleases
https://clicktime.symantec.com/a/1/eXr_fIrvCIRYzEHt0YvbtkptTqcVd9nJzBV28fxoaTY=?d=7tChM-hIl54SsiVoHKrovXbmLIi8ouu38bfWFa5LjYebKneJvW_c2_HMgDdoq431rSiEnNRRoWc7WI40qLP-zxO_svn7BtB5YkP7_3z6XE1bc9UDw_gg4B_LUQLmxfklfTjgbs0J-dnBHLc3GOsVYjvBMyOE-nmJR1SuKthIzdMfxP8oasaAGIamKBmwy-pKxDOZYKGzKE4iEAO1nFo15LHQ7enPYrMhvcEhb3LDIMsYYwnwVTe52q36t77MaAeAFdq7DgkU1BLlVMydfq9vglCYhLnhnOOzSDesZnjGR3spuBjVhNyCD3pcc73yC-ARPXPUpScKDxqUYA8pZg40QrbDOyzuC95KNm-9vIqcPXR6iDgu8QK_SscvFxnDi4A%3D&u=https%3A%2F%2Fgithub.com%2Fkubernetes%2Fminikube%2Freleases
https://clicktime.symantec.com/a/1/eXr_fIrvCIRYzEHt0YvbtkptTqcVd9nJzBV28fxoaTY=?d=7tChM-hIl54SsiVoHKrovXbmLIi8ouu38bfWFa5LjYebKneJvW_c2_HMgDdoq431rSiEnNRRoWc7WI40qLP-zxO_svn7BtB5YkP7_3z6XE1bc9UDw_gg4B_LUQLmxfklfTjgbs0J-dnBHLc3GOsVYjvBMyOE-nmJR1SuKthIzdMfxP8oasaAGIamKBmwy-pKxDOZYKGzKE4iEAO1nFo15LHQ7enPYrMhvcEhb3LDIMsYYwnwVTe52q36t77MaAeAFdq7DgkU1BLlVMydfq9vglCYhLnhnOOzSDesZnjGR3spuBjVhNyCD3pcc73yC-ARPXPUpScKDxqUYA8pZg40QrbDOyzuC95KNm-9vIqcPXR6iDgu8QK_SscvFxnDi4A%3D&u=https%3A%2F%2Fgithub.com%2Fkubernetes%2Fminikube%2Freleases
https://clicktime.symantec.com/a/1/eXr_fIrvCIRYzEHt0YvbtkptTqcVd9nJzBV28fxoaTY=?d=7tChM-hIl54SsiVoHKrovXbmLIi8ouu38bfWFa5LjYebKneJvW_c2_HMgDdoq431rSiEnNRRoWc7WI40qLP-zxO_svn7BtB5YkP7_3z6XE1bc9UDw_gg4B_LUQLmxfklfTjgbs0J-dnBHLc3GOsVYjvBMyOE-nmJR1SuKthIzdMfxP8oasaAGIamKBmwy-pKxDOZYKGzKE4iEAO1nFo15LHQ7enPYrMhvcEhb3LDIMsYYwnwVTe52q36t77MaAeAFdq7DgkU1BLlVMydfq9vglCYhLnhnOOzSDesZnjGR3spuBjVhNyCD3pcc73yC-ARPXPUpScKDxqUYA8pZg40QrbDOyzuC95KNm-9vIqcPXR6iDgu8QK_SscvFxnDi4A%3D&u=https%3A%2F%2Fgithub.com%2Fkubernetes%2Fminikube%2Freleases
https://clicktime.symantec.com/a/1/eXr_fIrvCIRYzEHt0YvbtkptTqcVd9nJzBV28fxoaTY=?d=7tChM-hIl54SsiVoHKrovXbmLIi8ouu38bfWFa5LjYebKneJvW_c2_HMgDdoq431rSiEnNRRoWc7WI40qLP-zxO_svn7BtB5YkP7_3z6XE1bc9UDw_gg4B_LUQLmxfklfTjgbs0J-dnBHLc3GOsVYjvBMyOE-nmJR1SuKthIzdMfxP8oasaAGIamKBmwy-pKxDOZYKGzKE4iEAO1nFo15LHQ7enPYrMhvcEhb3LDIMsYYwnwVTe52q36t77MaAeAFdq7DgkU1BLlVMydfq9vglCYhLnhnOOzSDesZnjGR3spuBjVhNyCD3pcc73yC-ARPXPUpScKDxqUYA8pZg40QrbDOyzuC95KNm-9vIqcPXR6iDgu8QK_SscvFxnDi4A%3D&u=https%3A%2F%2Fgithub.com%2Fkubernetes%2Fminikube%2Freleases
https://clicktime.symantec.com/a/1/eXr_fIrvCIRYzEHt0YvbtkptTqcVd9nJzBV28fxoaTY=?d=7tChM-hIl54SsiVoHKrovXbmLIi8ouu38bfWFa5LjYebKneJvW_c2_HMgDdoq431rSiEnNRRoWc7WI40qLP-zxO_svn7BtB5YkP7_3z6XE1bc9UDw_gg4B_LUQLmxfklfTjgbs0J-dnBHLc3GOsVYjvBMyOE-nmJR1SuKthIzdMfxP8oasaAGIamKBmwy-pKxDOZYKGzKE4iEAO1nFo15LHQ7enPYrMhvcEhb3LDIMsYYwnwVTe52q36t77MaAeAFdq7DgkU1BLlVMydfq9vglCYhLnhnOOzSDesZnjGR3spuBjVhNyCD3pcc73yC-ARPXPUpScKDxqUYA8pZg40QrbDOyzuC95KNm-9vIqcPXR6iDgu8QK_SscvFxnDi4A%3D&u=https%3A%2F%2Fgithub.com%2Fkubernetes%2Fminikube%2Freleases
https://clicktime.symantec.com/a/1/eXr_fIrvCIRYzEHt0YvbtkptTqcVd9nJzBV28fxoaTY=?d=7tChM-hIl54SsiVoHKrovXbmLIi8ouu38bfWFa5LjYebKneJvW_c2_HMgDdoq431rSiEnNRRoWc7WI40qLP-zxO_svn7BtB5YkP7_3z6XE1bc9UDw_gg4B_LUQLmxfklfTjgbs0J-dnBHLc3GOsVYjvBMyOE-nmJR1SuKthIzdMfxP8oasaAGIamKBmwy-pKxDOZYKGzKE4iEAO1nFo15LHQ7enPYrMhvcEhb3LDIMsYYwnwVTe52q36t77MaAeAFdq7DgkU1BLlVMydfq9vglCYhLnhnOOzSDesZnjGR3spuBjVhNyCD3pcc73yC-ARPXPUpScKDxqUYA8pZg40QrbDOyzuC95KNm-9vIqcPXR6iDgu8QK_SscvFxnDi4A%3D&u=https%3A%2F%2Fgithub.com%2Fkubernetes%2Fminikube%2Freleases
https://clicktime.symantec.com/a/1/eXr_fIrvCIRYzEHt0YvbtkptTqcVd9nJzBV28fxoaTY=?d=7tChM-hIl54SsiVoHKrovXbmLIi8ouu38bfWFa5LjYebKneJvW_c2_HMgDdoq431rSiEnNRRoWc7WI40qLP-zxO_svn7BtB5YkP7_3z6XE1bc9UDw_gg4B_LUQLmxfklfTjgbs0J-dnBHLc3GOsVYjvBMyOE-nmJR1SuKthIzdMfxP8oasaAGIamKBmwy-pKxDOZYKGzKE4iEAO1nFo15LHQ7enPYrMhvcEhb3LDIMsYYwnwVTe52q36t77MaAeAFdq7DgkU1BLlVMydfq9vglCYhLnhnOOzSDesZnjGR3spuBjVhNyCD3pcc73yC-ARPXPUpScKDxqUYA8pZg40QrbDOyzuC95KNm-9vIqcPXR6iDgu8QK_SscvFxnDi4A%3D&u=https%3A%2F%2Fgithub.com%2Fkubernetes%2Fminikube%2Freleases
https://clicktime.symantec.com/a/1/eXr_fIrvCIRYzEHt0YvbtkptTqcVd9nJzBV28fxoaTY=?d=7tChM-hIl54SsiVoHKrovXbmLIi8ouu38bfWFa5LjYebKneJvW_c2_HMgDdoq431rSiEnNRRoWc7WI40qLP-zxO_svn7BtB5YkP7_3z6XE1bc9UDw_gg4B_LUQLmxfklfTjgbs0J-dnBHLc3GOsVYjvBMyOE-nmJR1SuKthIzdMfxP8oasaAGIamKBmwy-pKxDOZYKGzKE4iEAO1nFo15LHQ7enPYrMhvcEhb3LDIMsYYwnwVTe52q36t77MaAeAFdq7DgkU1BLlVMydfq9vglCYhLnhnOOzSDesZnjGR3spuBjVhNyCD3pcc73yC-ARPXPUpScKDxqUYA8pZg40QrbDOyzuC95KNm-9vIqcPXR6iDgu8QK_SscvFxnDi4A%3D&u=https%3A%2F%2Fgithub.com%2Fkubernetes%2Fminikube%2Freleases
https://clicktime.symantec.com/a/1/eXr_fIrvCIRYzEHt0YvbtkptTqcVd9nJzBV28fxoaTY=?d=7tChM-hIl54SsiVoHKrovXbmLIi8ouu38bfWFa5LjYebKneJvW_c2_HMgDdoq431rSiEnNRRoWc7WI40qLP-zxO_svn7BtB5YkP7_3z6XE1bc9UDw_gg4B_LUQLmxfklfTjgbs0J-dnBHLc3GOsVYjvBMyOE-nmJR1SuKthIzdMfxP8oasaAGIamKBmwy-pKxDOZYKGzKE4iEAO1nFo15LHQ7enPYrMhvcEhb3LDIMsYYwnwVTe52q36t77MaAeAFdq7DgkU1BLlVMydfq9vglCYhLnhnOOzSDesZnjGR3spuBjVhNyCD3pcc73yC-ARPXPUpScKDxqUYA8pZg40QrbDOyzuC95KNm-9vIqcPXR6iDgu8QK_SscvFxnDi4A%3D&u=https%3A%2F%2Fgithub.com%2Fkubernetes%2Fminikube%2Freleases
https://storage.googleapis.com/kubernetes-release/release/stable.txt
https://storage.googleapis.com/kubernetes-release/release/stable.txt
https://storage.googleapis.com/kubernetes-release/release/stable.txt
https://storage.googleapis.com/kubernetes-release/release/stable.txt
https://storage.googleapis.com/kubernetes-release/release/stable.txt
https://storage.googleapis.com/kubernetes-release/release/stable.txt
https://storage.googleapis.com/kubernetes-release/release/stable.txt
https://storage.googleapis.com/kubernetes-release/release/stable.txt
https://storage.googleapis.com/kubernetes-release/release/stable.txt
https://storage.googleapis.com/kubernetes-release/release/stable.txt
https://storage.googleapis.com/kubernetes-release/release/stable.txt
https://storage.googleapis.com/kubernetes-release/release/stable.txt
https://storage.googleapis.com/kubernetes-release/release/stable.txt
https://storage.googleapis.com/kubernetes-release/release/stable.txt
https://storage.googleapis.com/kubernetes-release/release/stable.txt
https://storage.googleapis.com/kubernetes-release/release/stable.txt
https://storage.googleapis.com/kubernetes-release/release/stable.txt
https://storage.googleapis.com/kubernetes-release/release/stable.txt

Docker Support Chapter 14

[373]

Deploying an application
Every configuration existing on a Kubernetes cluster is represented by Kubernetes objects.
These objects can be managed through the Kubernetes API and should be expressed in a
YAML format. You may use that API directly, but will probably decide to leverage
the kubectl command-line interface to make all the necessary calls for you. The
description of a newly created object in Kubernetes has to provide specification that
describes its desired state, as well as some basic information about the object. The following
are some required fields in the YAML configuration file that should always be set:

apiVersion: This indicates the version of the Kubernetes API used to create an
object. An API always requires the JSON format in a request but kubectl
automatically converts YAML input into JSON.
kind: This sets the kind of object to create. There are some predefined types
available such as Deployment, Service, Ingress, or ConfigMap.
metadata: This allows you to identify the object by name, UID or, optional
namespace.
spec: This is the proper definition of an object. The precise format of a
specification depends on an object's kind and contains nested fields specific to
that object.

Usually, when creating new objects on Kubernetes, its kind is deployment. In the
Deployment YAML file, shown as follows, there are two important fields set. The first of,
replicas, specifies the number of desired pods. In practice, this means that we run two
instances of the containerized application. The second,
spec.template.spec.containers.image, sets the name and version of the Docker
image that will be launched inside a pod. The container will be exposed on port 8090, on
which order-service listens for HTTP connections:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: order-service
spec:
 replicas: 2
 selector:
 matchLabels:
 app: order-service
 template:
 metadata:
 labels:
 app: order-service

Docker Support Chapter 14

[374]

 spec:
 containers:
 - name: order-service
 image: piomin/order-service:1.0
 env:
 - name: EUREKA_DEFAULT_ZONE
 value: http://discovery-service:8761/eureka
 ports:
 - containerPort: 8090
 protocol: TCP

Assuming the preceding code is stored in the file order-deployment.yaml, we can now
deploy our containerized application on Kubernetes using imperative management as
follows:

$ kubectl create -f order-deployment.yaml

Alternatively, you can perform the same action based on the declarative management
approach, illustrated as follows:

$ kubectl apply -f order-deployment.yaml

We now have to create the same deployment file for all the microservices and discovery-
service. The subject of discovery-service is a very curious matter. We have the option
to use built-in Kubernetes discovery based on pods and services, but our main goal here is
to deploy and run Spring Cloud components on that platform. So, before deploying any
microservices, we should first deploy, run, and expose Eureka on Kubernetes. The
following is a deployment file of discovery-service that can also can be applied to
Kubernetes by calling the kubectl apply command:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: discovery-service
 labels:
 run: discovery-service
spec:
 replicas: 1
 selector:
 matchLabels:
 app: discovery-service
 template:
 metadata:
 labels:
 app: discovery-service
 spec:

Docker Support Chapter 14

[375]

 containers:
 - name: discovery-service
 image: piomin/discovery-service:1.0
 ports:
 - containerPort: 8761
 protocol: TCP

If you create a Deployment, Kubernetes automatically creates pods for you. Their number is
equal to the value set in the replicas field. A pod is not able to expose the API provided
by the application deployed on the container, it just represents a running process on your
cluster. To access the API provided by the microservices running inside pods, we have to
define a service. Let's remind ourselves what a service is. A service is an abstraction that
defines a logical set of pods and a policy by which to access them. The set of pods targeted
by a service is usually determined by a label selector. There are four types of service
available in Kubernetes. The simplest and default one is ClusterIP, which exposes a
service internally. If you would like to access a service from outside the cluster, you should
define the type NodePort. This option has been set out in the following example YAML
file; now, all the microservices can communicate with Eureka using its Kubernetes service
name:

apiVersion: v1
kind: Service
metadata:
 name: discovery-service
 labels:
 app: discovery-service
spec:
 type: NodePort
 ports:
 - protocol: TCP
 port: 8761
 targetPort: 8761
 selector:
 app: discovery-service

In fact, all of our microservices deployed on Minikube should be available outside the
cluster, as we would like to access the API exposed by them. To do this, you need to
provide the similar YAML configuration to that in the preceding example, changing only
the service's name, labels and port.

Docker Support Chapter 14

[376]

There is only one last component that should be present in our architecture: API Gateway.
We could deploy a container with the Zuul proxy, however we need to introduce the
popular Kubernetes object, Ingress. This component is responsible for managing external
access to services that are typically exposed via HTTP. Ingress provides load balancing, SSL
termination, and name-based virtual hosting. The Ingress configuration YAML file is shown
as follows; note that all the services can be accessed on the same port, 80, on different URL
paths:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 name: gateway-ingress
spec:
 backend:
 serviceName: default-http-backend
 servicePort: 80
 rules:
 - host: microservices.example.pl
 http:
 paths:
 - path: /account
 backend:
 serviceName: account-service
 servicePort: 8091
 - path: /customer
 backend:
 serviceName: customer-service
 servicePort: 8092
 - path: /order
 backend:
 serviceName: order-service
 servicePort: 8090
 - path: /product
 backend:
 serviceName: product-service
 servicePort: 8093

Docker Support Chapter 14

[377]

Maintaining a cluster
Maintaining a Kubernetes cluster is rather complex. In this section, we will show you how
to use some basic commands and the UI dashboard in order to view the object currently
existing on the cluster. Let's first list the elements that have been created for the purpose of
running our example microservices-based system. First, we display a list of deployments by
running the command kubectl get deployments, which should result in the following:

One deployment can create a number of pods. You can check the list of pods by calling
the kubectl get pods command as follows:

The same list can be viewed using the UI dashboard. You can view these details by clicking
on the selected row, or check out the container logs by clicking the icon available on the
right-hand side of each row, as shown in the following screenshot:

Docker Support Chapter 14

[378]

The full list of available services can be displayed using the command kubectl get
services. There are some interesting fields here, including one that indicates an IP address
on which a service is available inside a cluster (CLUSTER-IP), and a pair of ports
(PORT(S)) on which services are exposed internally and externally. We can also call the
HTTP API exposed on account-service at the address
http://192.168.99.100:31099, or the Eureka UI dashboard at the
address http://192.168.99.100:31931, as follows:

Similar to previous objects, services can also be displayed using the Kubernetes dashboard,
as shown in the following screenshot:

Summary
In this chapter, we discussed a lot of topics not obviously related to Spring Cloud, but the
tools explained in this chapter will allow you to take advantage of migrating to
microservices-based architecture. When using Docker, Kubernetes, or tools for CI or CD,
there is an obvious advantage to cloud-native development with Spring Cloud. Of course,
all of the presented examples have been launched on the local machine, but you can refer to
these to imagine how that process could be designed in a production environment across a
cluster of remote machines.

Docker Support Chapter 14

[379]

In this chapter, we wanted to show you how simple and quick it can be to move from
running Spring microservices manually on the local machine to a fully-automated process
that builds the application from source code, creates and runs a Docker image with your
application, and deploys it on a cluster consisting of multiple machines. It is not easy to
describe all of the features provided by such complex tools as Docker, Kubernetes, or
Jenkins in a single chapter. Instead, the main purpose here was to give you a look at the
bigger picture of how to design and maintain a modern architecture based on concepts such
as containerization, automated deploying, scaling, and a private, on-premise cloud.

We're now getting very close to the end of the book. We have already discussed most of the
planned topics related to the Spring Cloud framework. In the next chapter, we will show
you how to use two of the most popular cloud platforms available on the web, allowing you
to continuously deliver Spring Cloud applications.

15
Spring Microservices on Cloud

Platforms
Pivotal defines Spring Cloud as a framework that accelerates cloud-native application
development. Today, when we talk about cloud-native applications, the first thing that
comes to mind is the ability to deliver software quickly. To meet these demands, we should
be able to quickly build new applications and design architectures that are scalable,
portable, and prepared to be frequently updated. The tools that provide the mechanisms for
containerization and orchestration help us in setting up and maintaining such an
architecture. In fact, tools such as Docker or Kubernetes, which we have looked at in
previous chapters, allow us to create our own private cloud and run Spring Cloud
microservices on it. Although an application does not have to be deployed on a public
cloud, it contains all of the most important characteristics of cloud software.

Deploying your Spring application on a public cloud is just a possibility, not a necessity.
However, there are some really interesting cloud platforms that allow you to easily run
microservices and expose them on the web in just a few minutes. One of those platforms is
Pivotal Cloud Foundry (PCF); its advantage over other platforms is its native support for
Spring Cloud services, including discovery with Eureka, Config Server, and circuit breaker
with Hystrix. You can also easily set up a full microservices environment just by enabling
brokered services provided by Pivotal.

Spring Microservices on Cloud Platforms Chapter 15

[381]

Another cloud platform that we should mention is Heroku. In contrast to PCF, it does not
favor any programming framework. Heroku is a fully-managed, multi-language platform
that allows you to quickly deliver software. It can build and run applications automatically
once you have pushed changes in the source code stored on the GitHub repository. It also
offers many add-on services that can be provisioned and scaled with a single command.

The topics covered in this chapter are as follows:

Introduction to Pivotal Web Services platform
Deploying and managing applications on Pivotal Cloud Foundry using CLI, the
Maven plugin, and the UI dashboard
Using Spring Cloud Foundry libraries to prepare an application to work properly
on the platform
Deploying Spring Cloud microservices on the Heroku platform
Managing brokered services

Pivotal Cloud Foundry
Although the Pivotal platform can run applications written in many languages, including
Java, .NET, Ruby, JavaScript, Python, PHP, and Go, it has the best support for Spring Cloud
Services and Netflix OSS tools. It makes perfect sense because they are the ones who
developed Spring Cloud. Take a look at the following diagram, which is also available on
Pivotal's official website. The following diagram illustrates the microservices-based
architecture provided by the Pivotal Cloud platform. You can use Spring Cloud on Cloud
Foundry to quickly leverage common microservice patterns, including distributed
configuration management, service discovery, dynamic routing, load balancing, and fault
tolerance:

Spring Microservices on Cloud Platforms Chapter 15

[382]

Usage models
You can use the Pivotal platform in three different models. Models are distinguished based
on the host, which is where the applications are deployed. The following is a list of the
available solutions:

PCF Dev: This instance of the Pivotal platform can be run locally on a single
virtual machine. It is designed for experimental and developmental needs. It does
not offer all possible features and services. For example, there are only some
built-in services, such as Redis, MySQL, and RabbitMQ. However, PCF Dev also
supports Spring Cloud Services (SCS), as well as all the languages supported in
the full version of PCF. It is worth noting that if you want to run PCF Dev locally
with SCS, you need more than 6 GB of RAM available.
Pivotal Web Services: This is a cloud-native platform available online at https:/
/run.pivotal. io/ . It's like Pivotal Cloud Foundry with hosted, pay-by-the-hour
pricing. It does not offer all the features and services available in Pivotal Cloud
Foundry. For example, we may only enable services offered by SaaS partners of
Pivotal. Pivotal Web Services is best suited for startups or individual teams. We
will use this model of Pivotal platform hosting for presentation purposes in
upcoming sections of this chapter.

https://run.pivotal.io/
https://run.pivotal.io/
https://run.pivotal.io/
https://run.pivotal.io/
https://run.pivotal.io/
https://run.pivotal.io/
https://run.pivotal.io/
https://run.pivotal.io/
https://run.pivotal.io/

Spring Microservices on Cloud Platforms Chapter 15

[383]

Pivotal Cloud Foundry: This is a full-featured cloud-native platform that runs on
any major public IaaS, including AWS, Azure, and Google Cloud Platform, or on
a private cloud based on OpenStack or VMware vSphere. It's a commercial
solution for large enterprise environments.

Preparing the application
Since Pivotal Web Services has native support for Spring Cloud applications, the
deployment process is very straightforward. However, it does require specific
dependencies and configuration on the application side—especially if your microservices
have to integrate with built-in services provided by Pivotal platforms such as Service
Registry, Config Server, or Circuit Breaker. Besides standard dependency management for
Spring Cloud, we should also include spring-cloud-services-dependencies in
pom.xml with the newest version working with the Edgware.SR2 release train, shown as
follows:

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.springframework.cloud</groupId>
 <artifactId>spring-cloud-dependencies</artifactId>
 <version>Edgware.SR2</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 <dependency>
 <groupId>io.pivotal.spring.cloud</groupId>
 <artifactId>spring-cloud-services-dependencies</artifactId>
 <version>1.6.1.RELEASE</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

Spring Microservices on Cloud Platforms Chapter 15

[384]

Depending on the chosen services for integration you may want to include the following
artifacts in your project. We decided to use all of the Spring Cloud features provided by the
Pivotal platform, so our microservices fetch properties for a configuration server, register
themselves in Eureka, and wrap inter-service communication with Hystrix commands.
Here are the dependencies required for enabling discovery client, config client, and circuit
breaker for an application deployed on the Pivotal platform:

<dependency>
 <groupId>io.pivotal.spring.cloud</groupId>
 <artifactId>spring-cloud-services-starter-circuit-breaker</artifactId>
</dependency>
<dependency>
 <groupId>io.pivotal.spring.cloud</groupId>
 <artifactId>spring-cloud-services-starter-config-client</artifactId>
</dependency>
<dependency>
 <groupId>io.pivotal.spring.cloud</groupId>
 <artifactId>spring-cloud-services-starter-service-registry</artifactId>
</dependency>

We will provide one more integration for our sample microservices. All of them will store
data in MongoDB, which is also available as a service on the Pivotal platform. To achieve it,
we should first include starter spring-boot-starter-data-mongodb in the project
dependencies:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-mongodb</artifactId>
</dependency>

A MongoDB address should be provided in configuration settings using the
spring.data.mongodb.uri property. In order to allow an application to connect with
MongoDB, we have to create a Pivotal's service mLab and then bind it to the application. By
default, metadata related to the bound services are exposed to the application as the
environment variable $VCAP_SERVICES. The main motivation for such an approach is that
Cloud Foundry has been designed to be a polyglot, meaning that any language and
platform can be supported as a buildpack. All Cloud Foundry properties may be injected
using the vcap prefix. If you would like to access Pivotal's service, you should use
the vcap.services prefix and then pass the service's name shown as follows:

spring:
 data:
 mongodb:
 uri: ${vcap.services.mlab.credentials.uri}

Spring Microservices on Cloud Platforms Chapter 15

[385]

In fact, this is all that needs to be done on the application side to make them work properly
with the components created on the Pivotal platform. Now we just have to enable Spring
Cloud features in the same way as we did for a standard microservice written in Spring, as
shown in the following example:

@SpringBootApplication
@EnableDiscoveryClient
@EnableFeignClients
@EnableCircuitBreaker
public class OrderApplication {

 public static void main(String[] args) {
 SpringApplication.run(OrderApplication.class, args);
 }

}

Deploying the application
Applications can be managed on the Pivotal Web Service (PWS) platform in three different
ways. The first is through a web console available at https:/ /console. run. pivotal. io. We
may monitor, scale, restart deployed applications, enable and disable services, define new
quotas, and change account settings in this way. However, it is not possible to do this using
a web console—in other words, an initial application deployment. It may be performed
using a CLI (command-line interface). You can download the required installer from
the pivotal.io website. After installation, you should be able to invoke the Cloud Foundry
CLI on your machine by typing cf, for example, cf help.

Using CLI
CLI provides a set of commands that allows you to manage your applications, brokered
services, spaces, domains, and other components on Cloud Foundry. Let me show you the
most important commands you should know to be able to run your application on PWS:

In order to deploy the application, you must first navigate to its directory. You1.
should then sign in to PWS using the cf login command as follows:

$ cf login -a https://api.run.pivotal.io

https://console.run.pivotal.io
https://console.run.pivotal.io
https://console.run.pivotal.io
https://console.run.pivotal.io
https://console.run.pivotal.io
https://console.run.pivotal.io
https://console.run.pivotal.io
https://console.run.pivotal.io
https://console.run.pivotal.io
https://console.run.pivotal.io
https://console.run.pivotal.io
https://pivotal.io

Spring Microservices on Cloud Platforms Chapter 15

[386]

The next step is to push the application to PWS with the cf push command,2.
passing the service's name:

$ cf push account-service -p target/account-service-1.0.0-
SNAPSHOT.jar

Alternatively, you can provide manifest.yml in the application's root directory3.
with all the required deployment settings. In that case, all you need is to run
the cf push command without any additional parameters, as follows:

applications:
- name: account-service
 memory: 300M
 random-route: true
 path: target/account-service-1.0-SNAPSHOT.jar

Deployment with the configuration settings provided in manifest.yml as4.
shown in the preceding example will fail. To see why, run the command cf
logs. The reason is an insufficient memory limit for heap:

$ cf logs account-service --recent

By default, the platform allocates 240 MB for the code cache, 140 MB for metaspace, and 1
MB for every thread, with an assumption that there is a maximum of 200 threads for the
Tomcat connector. It is easy to calculate that, with these settings, every application needs
around 650 MB of allocated memory. We may change these settings by calling the cf set-
env command and passing the JAVA_OPTS parameter, as you can see in the following
sample. Such a memory limit would not be enough in production mode but would be okay
for testing purposes. To ensure that these changes take affect, use the cf restage
command as follows:

$ cf set-env account-service JAVA_OPTS "-Xmx150M -Xss250K -
XX:ReservedCodeCacheSize=70M -XX:MaxMetaspaceSize=90M"
$ cf restage account-service

Allocated memory is important, especially if there is only 2 GB RAM available for a free
account. With the default memory settings applied, we can only deploy two applications on
the Pivotal platform, as each of them takes up 1 GB of RAM. Although we have fixed the
problems described previously, our application still does not work properly.

Spring Microservices on Cloud Platforms Chapter 15

[387]

Binding to services
During boot, the applications were not able to connect with the required services. The
problem occurs because services are not bound by default to the applications. You can
display all of the services created in your space by running the command cf services,
and bind each of them to a given microservice by invoking the command cf bind-
service. In the following example command's executions, we have bound Eureka,
configuration server, and MongoDB to account-service. Finally, we can run cf
restage once more and everything should work fine, shown as follows:

$ cf bind-service account-service discovery-service
$ cf bind-service account-service config-service
$ cf bind-service account-service sample-db

Using the Maven plugin
As we have mentioned before, CLI and the web console are not the only ways to manage
your application on the Pivotal platform. The Cloud Foundry team has implemented the
Maven plugin in order to facilitate and speed up application deployment. What's
interesting is that the same plugin can be used to manage pushes and updates to any Cloud
Foundry instance, not only those provided by Pivotal.

When using Cloud Foundry's Maven plugin you can easily integrate cloud deployments
into their Maven projects' life cycles. This allows you to push, remove, and update projects
in Cloud Foundry. If you would like to push your project together with Maven, just run the
following command:

$ mvn clean install cf:push

Generally, the commands provided by the Maven plugin are pretty similar to the
commands offered by CLI. For example, you can display a list of applications by executing
the command mvn cf:apps. In order to delete an application, run the following command:

$ mvn cf:delete -Dcf.appname=product-service

If you would like to upload some changes to the existing application, use the cf:update
command as follows:

$ mvn clean install cf:update

Spring Microservices on Cloud Platforms Chapter 15

[388]

Before running any commands, we have to configure the plugin properly. First, it is
required to pass Cloud Foundry login credentials. It is recommended to store them
separately in Maven's settings.xml. A typical entry inside a server tag might look like the
following:

<settings>
 ...
 <servers>
 <server>
 <id>cloud-foundry-credentials</id>
 <username>piotr.minkowski@play.pl</username>
 <password>123456</password>
 </server>
 </servers>
 ...
</settings>

Using the Maven plugin instead of CLI commands has one important advantage: you can
configure all the necessary configuration settings in one place and can apply them using a
single command during application build. The full configuration of the plugin is shown in
the following snippet. Besides some basic settings including space, memory, and a number
of instances, it's also possible to change memory limits with the JAVA_OPTS environment
variable and by binding the required services to the application. After running the cf:push
command, product-service is ready to use at the address
https://product-service-piomin.cfapps.io/:

<plugin>
 <groupId>org.cloudfoundry</groupId>
 <artifactId>cf-maven-plugin</artifactId>
 <version>1.1.3</version>
 <configuration>
 <target>http://api.run.pivotal.io</target>
 <org>piotr.minkowski</org>
 <space>development</space>
 <appname>${project.artifactId}</appname>
 <memory>300</memory>
 <instances>1</instances>
 <server>cloud-foundry-credentials</server>
 <url>https://product-service-piomin.cfapps.io/</url>
 <env>
 <JAVA_OPTS>-Xmx150M -Xss250K -XX:ReservedCodeCacheSize=70M -
XX:MaxMetaspaceSize=90M</JAVA_OPTS>
 </env>
 <services>
 <service>
 <name>sample-db</name>

Spring Microservices on Cloud Platforms Chapter 15

[389]

 <label>mlab</label>
 <plan>sandbox</plan>
 </service>
 <service>
 <name>discovery-service</name>
 <label>p-service-registry</label>
 <plan>standard</plan>
 </service>
 <service>
 <name>config-service</name>
 <label>p-config-server</label>
 <plan>standard</plan>
 </service>
 </services>
 </configuration>
</plugin>

Maintenance
Assuming all of the applications forming our example microservices-based system have
been successfully deployed, we can easily manage and monitor them using the Pivotal Web
Services dashboard, or even just CLI commands. The free trial provided by the Pivotal
platform gives us a lot of possibilities and tools for maintaining applications, so let's
discover some of its most interesting features.

Accessing deployment details
We can list all of the deployed applications by running the command cf apps or by
navigating to the main site of our space in the web console. You can see that list in the
following screenshot. Each row of the table represents a single application. Besides its name,
there is also information about its status, the number of instances, allocated memory,
deployment time, and a URL at which a service is available outside the platform. If you
didn't specify a URL address during application deployment, it is automatically generated:

Spring Microservices on Cloud Platforms Chapter 15

[390]

You can click each row in order to discover details about the application. Similar
information can be accessed using the CLI commands cf app <app-name> or cf app
order-service. The following screenshot shows the main panel of an application's
detailed view that contains the history of events, summary, as well as memory, disk, and
CPU usage of every instance. In this panel, you may scale an application by clicking
the Scale button. There are also several other tabs available. By switching to one of them,
you can check out all bounded services (Services), external URLs assigned (Rules), display
logs (Logs), and incoming requests history (Trace):

Spring Microservices on Cloud Platforms Chapter 15

[391]

Of course, you can always use the CLI to collect the same details as shown in the previous
example. If you execute the command cf logs <app-name>, you would be attached to
stdout , which is generated by the application. You can also display the list of activated
Pivotal managed services with the list of bound applications, as shown in the following
screenshot:

Managing application life cycles
Another really helpful feature provided by Pivotal Web Services is the ability to manage an
application's life cycle. In other words, we can easily stop, start, and restart an application
with just one click. Before executing the requested command, you will be prompted for
confirmation, as shown in the following screenshot:

The same result can be achieved by running one of the following CLI commands:

$ cf stop <app-name>
$ cf restart <app-name>
$ cf start <app-name>

Spring Microservices on Cloud Platforms Chapter 15

[392]

Scaling
One of the most important reasons for using cloud solutions is the ability to scale your
applications easily. The Pivotal platform deals with these issues in a very intuitive way.
Firstly, you may decide how many instances of an application are started at each stage of
deployment. For example, if you decided to use manifest.yml and deploy it with the cf
push command, the number of created instances will be determined by field instances, as
shown in the following code snippet:

applications:
- name: account-service
 memory: 300M
 instances: 2
 host: account-service-piomin
 domain: cfapps.io
 path: target/account-service-1.0-SNAPSHOT.jar

The number of running instances, as well as memory and CPU limits, can be modified on
the started application. In fact, there are two available approaches to scaling. You can either
manually set how many instances should be launched or enable autoscaling, where you
only need to define a criteria based on a selected metric's thresholds. Autoscaling on the
Pivotal platform is realized by a tool called PCF App Autoscaler. We can choose from the
following five available rules, and they are as follows:

CPU utilization
Memory utilization
HTTP latency
HTTP throughput
RabbitMQ depth

Spring Microservices on Cloud Platforms Chapter 15

[393]

You can define more than one active rule. Each of these rules has a minimum value per
every single metric for scaling down and a maximum value for scaling up. Autoscale
settings for customer-service are shown in the following screenshot. Here, we decided
to apply HTTP throughput and HTTP latency rules. If latency for 99% of traffic is lower
than 20 ms, one instance of an application should be disabled in case there is more than one
instance. Analogously, if a latency is greater than 200 ms, the platform should attach one
more instance:

Spring Microservices on Cloud Platforms Chapter 15

[394]

We can also control the number of running instances manually. Autoscaling has many
advantages but a manual approach gives you more control over that process. Thanks to
limited memory for each application, there is still space for other instances. The most
overloaded application in our example system is account-service, because it is called
during an order's creation as well as order's confirmation. So, let's add one more instance of
that microservice. To do so, go to the account-service details panel and click on Scale
under Processes and Instances. You should then increase the number of instances and
apply the necessary changes; you should then see two instances of account-service
available, as shown in the following screenshot:

Provisioning brokered services
We have already looked at how to bind an application to a service using the cf bind-
service command and the Maven plugin. However, we should now look at how to enable
and configure our service. You can easily display a list of all the available services and then
enable them using Pivotal's dashboard; this can be found under Marketplace.

Spring Microservices on Cloud Platforms Chapter 15

[395]

The provisioning of a brokered service with Pivotal Web Services is very easy. After
installation, some services are already available to use without any additional
configuration. All we have to do is to bind them to selected applications and properly pass
their network addresses in the application's settings. Every application can be easily bound
to a service using the UI dashboard. First, navigate to the main page of the service. There,
you will see a list of the currently bound applications. You can bind a new application to the
service by clicking BIND APP and then choosing one from the list displayed, as shown in
the following screenshot:

You don't have to do anything more than enable the registry service in the marketplace and
bind it to the application in order to enable the discovery feature on Pivotal Web Services.
Of course, you can override some configuration settings on the client-side if needed. A full
list of registered applications can be displayed in the Eureka dashboard under Manage in
the main configuration panel of the service. There are two running instances of account-
service because we scaled it up in the previous section; the other microservices however
have only one running instance, shown as follows:

Spring Microservices on Cloud Platforms Chapter 15

[396]

In contrast to a discovery service, a configuration server needs to include additional
settings. As before, you should navigate to its main panel and then select Manage. Here,
you will be redirected to the configuration form. The configuration parameters have to be
provided there as a JSON object. The count parameter specifies the number of nodes
needed for provision, upgrade options if an instance can be upgraded, and force forces
that upgrade even if the instance is already the latest available version. Other configuration
parameters are dependent on a type of backend used to store property sources. As you may
remember from Chapter 5, Distributed Configuration with Spring Cloud Config, the most
popular solution for Spring Cloud Config Server is based on the Git repository. We have
created an example repository on GitHub, where all the required sources have been
committed. The following are the parameters in a JSON format that should be provided for
a Config Server on Pivotal Web Services:

{
 "count": 1,
 "git": {
 "password": "****",
 "uri":
"https://github.com/piomin/sample-spring-cloud-pcf-config.git",
 "username": "piomin"
 }
}

The last brokered service used by the example application provided hosted an instance of
MongoDB. After navigating to Manage on the main panel of that service, you should be
redirected to https:/ / mlab. com/ home , where you will be able to use the database's node.

The Heroku platform
Heroku is one of the oldest cloud platforms created using the PaaS (Platform as a Service)
model. In comparison to Pivotal Cloud Foundry, Heroku doesn't have built-in support for
Spring Cloud applications. It complicates our model a little because we can't use a
platform's services to enable typical microservices components, including service discovery,
a configuration server, or a circuit breaker. In spite of this, Heroku contains some really
interesting features that are not provided by Pivotal Web Services.

https://mlab.com/home
https://mlab.com/home
https://mlab.com/home
https://mlab.com/home
https://mlab.com/home
https://mlab.com/home
https://mlab.com/home
https://mlab.com/home
https://mlab.com/home

Spring Microservices on Cloud Platforms Chapter 15

[397]

Deployment methods
We can manage our application using the CLI, web console or a dedicated Maven plugin.
Deploying Heroku is pretty similar to deploying the Pivotal platform, however, the
methods are slightly different. The main approach assumes that you deploy the application
by building it from the source code stored in your local Git repository or on GitHub. The
build is executed by the Heroku platform automatically after you have pushed some
changes in a branch to a repository, or on demand from the newest version of the code in
the selected branch. Another interesting way to deploy an application is by pushing your
Docker image to Heroku's container registry.

Using the CLI
You can begin by installing Heroku Command Line Interface (CLI) available at https:/ /
cli-assets.heroku. com/ heroku- cli/ channels/ stable/ heroku- cli- x64. exe (for
Windows). In order to deploy and run your application on Heroku using CLI you have to
perform the following steps:

After installation, you can use the command Heroku from your shell. First, log in1.
to Heroku using your credentials, as follows:

$ heroku login
Enter your Heroku credentials:
Email: piotr.minkowski@play.pl
Password: ********
Logged in as piotr.minkowski@play.pl

Next, navigate to the application's root directory and create an application on2.
Heroku. After running the following command, not only will the application be
created, but a Git remote called heroku will as well. This is associated with your
local Git repository, shown as follows:

$ heroku create
Creating app... done, aqueous-retreat-66586
https://aqueous-retreat-66586.herokuapp.com/ |
https://git.heroku.com/aqueous-retreat-66586.git
Git remote heroku added

Now you can deploy your application by pushing the code to Heroku's Git3.
remote. Heroku will then do all the work for you, as follows:

$ git push heroku master

https://cli-assets.heroku.com/heroku-cli/channels/stable/heroku-cli-x64.exe
https://cli-assets.heroku.com/heroku-cli/channels/stable/heroku-cli-x64.exe
https://cli-assets.heroku.com/heroku-cli/channels/stable/heroku-cli-x64.exe
https://cli-assets.heroku.com/heroku-cli/channels/stable/heroku-cli-x64.exe
https://cli-assets.heroku.com/heroku-cli/channels/stable/heroku-cli-x64.exe
https://cli-assets.heroku.com/heroku-cli/channels/stable/heroku-cli-x64.exe
https://cli-assets.heroku.com/heroku-cli/channels/stable/heroku-cli-x64.exe
https://cli-assets.heroku.com/heroku-cli/channels/stable/heroku-cli-x64.exe
https://cli-assets.heroku.com/heroku-cli/channels/stable/heroku-cli-x64.exe
https://cli-assets.heroku.com/heroku-cli/channels/stable/heroku-cli-x64.exe
https://cli-assets.heroku.com/heroku-cli/channels/stable/heroku-cli-x64.exe
https://cli-assets.heroku.com/heroku-cli/channels/stable/heroku-cli-x64.exe
https://cli-assets.heroku.com/heroku-cli/channels/stable/heroku-cli-x64.exe
https://cli-assets.heroku.com/heroku-cli/channels/stable/heroku-cli-x64.exe
https://cli-assets.heroku.com/heroku-cli/channels/stable/heroku-cli-x64.exe
https://cli-assets.heroku.com/heroku-cli/channels/stable/heroku-cli-x64.exe
https://cli-assets.heroku.com/heroku-cli/channels/stable/heroku-cli-x64.exe
https://cli-assets.heroku.com/heroku-cli/channels/stable/heroku-cli-x64.exe
https://cli-assets.heroku.com/heroku-cli/channels/stable/heroku-cli-x64.exe
https://cli-assets.heroku.com/heroku-cli/channels/stable/heroku-cli-x64.exe
https://cli-assets.heroku.com/heroku-cli/channels/stable/heroku-cli-x64.exe
https://cli-assets.heroku.com/heroku-cli/channels/stable/heroku-cli-x64.exe
https://cli-assets.heroku.com/heroku-cli/channels/stable/heroku-cli-x64.exe
https://cli-assets.heroku.com/heroku-cli/channels/stable/heroku-cli-x64.exe
https://cli-assets.heroku.com/heroku-cli/channels/stable/heroku-cli-x64.exe
https://cli-assets.heroku.com/heroku-cli/channels/stable/heroku-cli-x64.exe

Spring Microservices on Cloud Platforms Chapter 15

[398]

If the application is started successfully, you will be able to manage it using some4.
basic commands. In accordance with the order presented as follows, you can
display logs, change the number of running dynos (in other words, scale the
application), assign new add-ons, and list all of the enabled add-ons:

$ heroku logs --tail
$ heroku ps:scale web=2
$ heroku addons:create mongolab
$ heroku addons

Connecting to the GitHub repository
Personally, I prefer to deploy my applications to Heroku by connecting to the projects using
the GitHub repository. There are two possible approaches related to this deployment
method: manual and automatic. You can choose either by navigating to the Deploy tab on
the application's details panel and then connect it to the specified GitHub repository, as you
can see in the following screenshot. If you click the Deploy Branch button, the building of
and the deployment to Heroku would immediately start on the given Git
branch. Alternatively, you can also enable automatic deploys on the chosen branch by
clicking Enable Automatic Deploys. Additionally, you can configure Heroku to wait for a
Continuous Integration build result if it is enabled for your GitHub repository; this is a
really helpful feature because it allows you to run automated tests on your project and
ensure they have passed before it is pushed:

Spring Microservices on Cloud Platforms Chapter 15

[399]

Docker Container Registry
Following the newest trends, Heroku allows you to deploy a containerized application
using Docker. In order to be able to do that, you should have Docker and the Heroku CLI
installed on your local machine:

First, log in to Heroku Cloud by running the command heroku login. The next1.
step is to log in to the Container Registry:

$ heroku container:login

Next, make sure that your current directory contains Dockerfile. If present, you2.
can proceed to building and pushing the image to Heroku's Container Registry
by executing the following command:

$ heroku container:push web

If you have an existing built image, you may only be interested in tagging and3.
pushing it to Heroku. In order to do that, you need to use Docker's command line
by executing the following commands (assuming your application's name
is piomin-order-service):

$ docker tag piomin/order-service registry.heroku.app/piomin-order-
service/web
$ docker push registry.heroku.app/piomin-order-service/web

After the image has been successfully pushed, the new application should be visible in the
Heroku dashboard.

Preparing an application
When deploying an application based on Spring Cloud components to Heroku, we no
longer have to perform any extra changes in its source code or add any additional libraries,
which we do when running it locally. The only difference here is in the configuration
settings, where we should set an address in order to integrate the application with service
discovery, databases, or any other add-on that can be enabled for your microservice. The
current example, which is the same as the examples provided for Pivotal's deployment, is to
store data in MongoDB that is assigned to the application as an mLab service. Additionally,
here, each client registers itself on the Eureka server, which is deployed as piomin-
discovery-service. The following screenshot displays a list of the applications deployed
on Heroku for our examples:

Spring Microservices on Cloud Platforms Chapter 15

[400]

I deployed the previous applications on Heroku by connecting them with the GitHub
repository. This, in turn, requires you to create a separate repository per microservice. For
example, the repository of order-service is available at https:/ /github. com/ piomin/
sample-heroku-order- service. git; other microservices may be at under similar
addresses. You can easily fork these microservices and deploy them on your Heroku
account in order to perform tests.

Now let's take a look at the configuration settings provided for one of our example
applications: account-service. First, we have to override the auto-configured address of
MongoDB using the MONGODB_URI environment variable provided by the Heroku platform.
There is also a necessity to provide the correct address of a Eureka server, as well as
override the hostname and port sent by a discovery client during registration. This is
required because, by default, each application will try to register using an internal address
that is not available for other applications. Without overriding these values, inter-service
communication with the Feign client would be unsuccessful:

spring:
 application:
 name: account-service
 data:
 mongodb:
 uri: ${MONGODB_URI}
 eureka:
 instance:
 hostname: ${HEROKU_APP_NAME}.herokuapp.com
 nonSecurePort: 80
 client:
 serviceUrl:
 defaultZone: http://piomin-discovery-service.herokuapp.com/eureka

https://clicktime.symantec.com/a/1/T35T4GHVxyO3_yEnmgYJzEOMwTYVoyfmLx2ONL0JOmM=?d=Em-4WZBG8KjUF8i64GiOj94xj1zxN6a1uB0eVZ0nPiAMBASzKXYmiNLpRNEcgxEQ7bHQ6AzvMbnrWHqhusJvYyZqTNMHlShDuReFC57yByy3O9bujQaWuS_jFkuW-GXlbAc9l9L2CmOU0k0c7iCbz4TP6gxYzTpi3F2ZhiR4yOGU_aIfM0-ImE4VjE3Zwu5hcRLW6fRjQIpA00TbvIfq03qKyXpN4rOeSy-uW8xOD3AifhkEun4HB33yo6UpNlLAVK45YxrUxZn2iT_VdnO336VCgrUe4QGzCEoQEtzN_eTC5eSH0FHDXyXwW0Aj4Px9YTY5asaj9oWluYR6xuKHwLEyHqyAWSKmRhRVXDNsi3pF13hLo94F&u=https%3A%2F%2Fgithub.com%2Fpiomin%2Fsample-heroku-order-service.git
https://clicktime.symantec.com/a/1/T35T4GHVxyO3_yEnmgYJzEOMwTYVoyfmLx2ONL0JOmM=?d=Em-4WZBG8KjUF8i64GiOj94xj1zxN6a1uB0eVZ0nPiAMBASzKXYmiNLpRNEcgxEQ7bHQ6AzvMbnrWHqhusJvYyZqTNMHlShDuReFC57yByy3O9bujQaWuS_jFkuW-GXlbAc9l9L2CmOU0k0c7iCbz4TP6gxYzTpi3F2ZhiR4yOGU_aIfM0-ImE4VjE3Zwu5hcRLW6fRjQIpA00TbvIfq03qKyXpN4rOeSy-uW8xOD3AifhkEun4HB33yo6UpNlLAVK45YxrUxZn2iT_VdnO336VCgrUe4QGzCEoQEtzN_eTC5eSH0FHDXyXwW0Aj4Px9YTY5asaj9oWluYR6xuKHwLEyHqyAWSKmRhRVXDNsi3pF13hLo94F&u=https%3A%2F%2Fgithub.com%2Fpiomin%2Fsample-heroku-order-service.git
https://clicktime.symantec.com/a/1/T35T4GHVxyO3_yEnmgYJzEOMwTYVoyfmLx2ONL0JOmM=?d=Em-4WZBG8KjUF8i64GiOj94xj1zxN6a1uB0eVZ0nPiAMBASzKXYmiNLpRNEcgxEQ7bHQ6AzvMbnrWHqhusJvYyZqTNMHlShDuReFC57yByy3O9bujQaWuS_jFkuW-GXlbAc9l9L2CmOU0k0c7iCbz4TP6gxYzTpi3F2ZhiR4yOGU_aIfM0-ImE4VjE3Zwu5hcRLW6fRjQIpA00TbvIfq03qKyXpN4rOeSy-uW8xOD3AifhkEun4HB33yo6UpNlLAVK45YxrUxZn2iT_VdnO336VCgrUe4QGzCEoQEtzN_eTC5eSH0FHDXyXwW0Aj4Px9YTY5asaj9oWluYR6xuKHwLEyHqyAWSKmRhRVXDNsi3pF13hLo94F&u=https%3A%2F%2Fgithub.com%2Fpiomin%2Fsample-heroku-order-service.git
https://clicktime.symantec.com/a/1/T35T4GHVxyO3_yEnmgYJzEOMwTYVoyfmLx2ONL0JOmM=?d=Em-4WZBG8KjUF8i64GiOj94xj1zxN6a1uB0eVZ0nPiAMBASzKXYmiNLpRNEcgxEQ7bHQ6AzvMbnrWHqhusJvYyZqTNMHlShDuReFC57yByy3O9bujQaWuS_jFkuW-GXlbAc9l9L2CmOU0k0c7iCbz4TP6gxYzTpi3F2ZhiR4yOGU_aIfM0-ImE4VjE3Zwu5hcRLW6fRjQIpA00TbvIfq03qKyXpN4rOeSy-uW8xOD3AifhkEun4HB33yo6UpNlLAVK45YxrUxZn2iT_VdnO336VCgrUe4QGzCEoQEtzN_eTC5eSH0FHDXyXwW0Aj4Px9YTY5asaj9oWluYR6xuKHwLEyHqyAWSKmRhRVXDNsi3pF13hLo94F&u=https%3A%2F%2Fgithub.com%2Fpiomin%2Fsample-heroku-order-service.git
https://clicktime.symantec.com/a/1/T35T4GHVxyO3_yEnmgYJzEOMwTYVoyfmLx2ONL0JOmM=?d=Em-4WZBG8KjUF8i64GiOj94xj1zxN6a1uB0eVZ0nPiAMBASzKXYmiNLpRNEcgxEQ7bHQ6AzvMbnrWHqhusJvYyZqTNMHlShDuReFC57yByy3O9bujQaWuS_jFkuW-GXlbAc9l9L2CmOU0k0c7iCbz4TP6gxYzTpi3F2ZhiR4yOGU_aIfM0-ImE4VjE3Zwu5hcRLW6fRjQIpA00TbvIfq03qKyXpN4rOeSy-uW8xOD3AifhkEun4HB33yo6UpNlLAVK45YxrUxZn2iT_VdnO336VCgrUe4QGzCEoQEtzN_eTC5eSH0FHDXyXwW0Aj4Px9YTY5asaj9oWluYR6xuKHwLEyHqyAWSKmRhRVXDNsi3pF13hLo94F&u=https%3A%2F%2Fgithub.com%2Fpiomin%2Fsample-heroku-order-service.git
https://clicktime.symantec.com/a/1/T35T4GHVxyO3_yEnmgYJzEOMwTYVoyfmLx2ONL0JOmM=?d=Em-4WZBG8KjUF8i64GiOj94xj1zxN6a1uB0eVZ0nPiAMBASzKXYmiNLpRNEcgxEQ7bHQ6AzvMbnrWHqhusJvYyZqTNMHlShDuReFC57yByy3O9bujQaWuS_jFkuW-GXlbAc9l9L2CmOU0k0c7iCbz4TP6gxYzTpi3F2ZhiR4yOGU_aIfM0-ImE4VjE3Zwu5hcRLW6fRjQIpA00TbvIfq03qKyXpN4rOeSy-uW8xOD3AifhkEun4HB33yo6UpNlLAVK45YxrUxZn2iT_VdnO336VCgrUe4QGzCEoQEtzN_eTC5eSH0FHDXyXwW0Aj4Px9YTY5asaj9oWluYR6xuKHwLEyHqyAWSKmRhRVXDNsi3pF13hLo94F&u=https%3A%2F%2Fgithub.com%2Fpiomin%2Fsample-heroku-order-service.git
https://clicktime.symantec.com/a/1/T35T4GHVxyO3_yEnmgYJzEOMwTYVoyfmLx2ONL0JOmM=?d=Em-4WZBG8KjUF8i64GiOj94xj1zxN6a1uB0eVZ0nPiAMBASzKXYmiNLpRNEcgxEQ7bHQ6AzvMbnrWHqhusJvYyZqTNMHlShDuReFC57yByy3O9bujQaWuS_jFkuW-GXlbAc9l9L2CmOU0k0c7iCbz4TP6gxYzTpi3F2ZhiR4yOGU_aIfM0-ImE4VjE3Zwu5hcRLW6fRjQIpA00TbvIfq03qKyXpN4rOeSy-uW8xOD3AifhkEun4HB33yo6UpNlLAVK45YxrUxZn2iT_VdnO336VCgrUe4QGzCEoQEtzN_eTC5eSH0FHDXyXwW0Aj4Px9YTY5asaj9oWluYR6xuKHwLEyHqyAWSKmRhRVXDNsi3pF13hLo94F&u=https%3A%2F%2Fgithub.com%2Fpiomin%2Fsample-heroku-order-service.git
https://clicktime.symantec.com/a/1/T35T4GHVxyO3_yEnmgYJzEOMwTYVoyfmLx2ONL0JOmM=?d=Em-4WZBG8KjUF8i64GiOj94xj1zxN6a1uB0eVZ0nPiAMBASzKXYmiNLpRNEcgxEQ7bHQ6AzvMbnrWHqhusJvYyZqTNMHlShDuReFC57yByy3O9bujQaWuS_jFkuW-GXlbAc9l9L2CmOU0k0c7iCbz4TP6gxYzTpi3F2ZhiR4yOGU_aIfM0-ImE4VjE3Zwu5hcRLW6fRjQIpA00TbvIfq03qKyXpN4rOeSy-uW8xOD3AifhkEun4HB33yo6UpNlLAVK45YxrUxZn2iT_VdnO336VCgrUe4QGzCEoQEtzN_eTC5eSH0FHDXyXwW0Aj4Px9YTY5asaj9oWluYR6xuKHwLEyHqyAWSKmRhRVXDNsi3pF13hLo94F&u=https%3A%2F%2Fgithub.com%2Fpiomin%2Fsample-heroku-order-service.git
https://clicktime.symantec.com/a/1/T35T4GHVxyO3_yEnmgYJzEOMwTYVoyfmLx2ONL0JOmM=?d=Em-4WZBG8KjUF8i64GiOj94xj1zxN6a1uB0eVZ0nPiAMBASzKXYmiNLpRNEcgxEQ7bHQ6AzvMbnrWHqhusJvYyZqTNMHlShDuReFC57yByy3O9bujQaWuS_jFkuW-GXlbAc9l9L2CmOU0k0c7iCbz4TP6gxYzTpi3F2ZhiR4yOGU_aIfM0-ImE4VjE3Zwu5hcRLW6fRjQIpA00TbvIfq03qKyXpN4rOeSy-uW8xOD3AifhkEun4HB33yo6UpNlLAVK45YxrUxZn2iT_VdnO336VCgrUe4QGzCEoQEtzN_eTC5eSH0FHDXyXwW0Aj4Px9YTY5asaj9oWluYR6xuKHwLEyHqyAWSKmRhRVXDNsi3pF13hLo94F&u=https%3A%2F%2Fgithub.com%2Fpiomin%2Fsample-heroku-order-service.git
https://clicktime.symantec.com/a/1/T35T4GHVxyO3_yEnmgYJzEOMwTYVoyfmLx2ONL0JOmM=?d=Em-4WZBG8KjUF8i64GiOj94xj1zxN6a1uB0eVZ0nPiAMBASzKXYmiNLpRNEcgxEQ7bHQ6AzvMbnrWHqhusJvYyZqTNMHlShDuReFC57yByy3O9bujQaWuS_jFkuW-GXlbAc9l9L2CmOU0k0c7iCbz4TP6gxYzTpi3F2ZhiR4yOGU_aIfM0-ImE4VjE3Zwu5hcRLW6fRjQIpA00TbvIfq03qKyXpN4rOeSy-uW8xOD3AifhkEun4HB33yo6UpNlLAVK45YxrUxZn2iT_VdnO336VCgrUe4QGzCEoQEtzN_eTC5eSH0FHDXyXwW0Aj4Px9YTY5asaj9oWluYR6xuKHwLEyHqyAWSKmRhRVXDNsi3pF13hLo94F&u=https%3A%2F%2Fgithub.com%2Fpiomin%2Fsample-heroku-order-service.git
https://clicktime.symantec.com/a/1/T35T4GHVxyO3_yEnmgYJzEOMwTYVoyfmLx2ONL0JOmM=?d=Em-4WZBG8KjUF8i64GiOj94xj1zxN6a1uB0eVZ0nPiAMBASzKXYmiNLpRNEcgxEQ7bHQ6AzvMbnrWHqhusJvYyZqTNMHlShDuReFC57yByy3O9bujQaWuS_jFkuW-GXlbAc9l9L2CmOU0k0c7iCbz4TP6gxYzTpi3F2ZhiR4yOGU_aIfM0-ImE4VjE3Zwu5hcRLW6fRjQIpA00TbvIfq03qKyXpN4rOeSy-uW8xOD3AifhkEun4HB33yo6UpNlLAVK45YxrUxZn2iT_VdnO336VCgrUe4QGzCEoQEtzN_eTC5eSH0FHDXyXwW0Aj4Px9YTY5asaj9oWluYR6xuKHwLEyHqyAWSKmRhRVXDNsi3pF13hLo94F&u=https%3A%2F%2Fgithub.com%2Fpiomin%2Fsample-heroku-order-service.git
https://clicktime.symantec.com/a/1/T35T4GHVxyO3_yEnmgYJzEOMwTYVoyfmLx2ONL0JOmM=?d=Em-4WZBG8KjUF8i64GiOj94xj1zxN6a1uB0eVZ0nPiAMBASzKXYmiNLpRNEcgxEQ7bHQ6AzvMbnrWHqhusJvYyZqTNMHlShDuReFC57yByy3O9bujQaWuS_jFkuW-GXlbAc9l9L2CmOU0k0c7iCbz4TP6gxYzTpi3F2ZhiR4yOGU_aIfM0-ImE4VjE3Zwu5hcRLW6fRjQIpA00TbvIfq03qKyXpN4rOeSy-uW8xOD3AifhkEun4HB33yo6UpNlLAVK45YxrUxZn2iT_VdnO336VCgrUe4QGzCEoQEtzN_eTC5eSH0FHDXyXwW0Aj4Px9YTY5asaj9oWluYR6xuKHwLEyHqyAWSKmRhRVXDNsi3pF13hLo94F&u=https%3A%2F%2Fgithub.com%2Fpiomin%2Fsample-heroku-order-service.git
https://clicktime.symantec.com/a/1/T35T4GHVxyO3_yEnmgYJzEOMwTYVoyfmLx2ONL0JOmM=?d=Em-4WZBG8KjUF8i64GiOj94xj1zxN6a1uB0eVZ0nPiAMBASzKXYmiNLpRNEcgxEQ7bHQ6AzvMbnrWHqhusJvYyZqTNMHlShDuReFC57yByy3O9bujQaWuS_jFkuW-GXlbAc9l9L2CmOU0k0c7iCbz4TP6gxYzTpi3F2ZhiR4yOGU_aIfM0-ImE4VjE3Zwu5hcRLW6fRjQIpA00TbvIfq03qKyXpN4rOeSy-uW8xOD3AifhkEun4HB33yo6UpNlLAVK45YxrUxZn2iT_VdnO336VCgrUe4QGzCEoQEtzN_eTC5eSH0FHDXyXwW0Aj4Px9YTY5asaj9oWluYR6xuKHwLEyHqyAWSKmRhRVXDNsi3pF13hLo94F&u=https%3A%2F%2Fgithub.com%2Fpiomin%2Fsample-heroku-order-service.git
https://clicktime.symantec.com/a/1/T35T4GHVxyO3_yEnmgYJzEOMwTYVoyfmLx2ONL0JOmM=?d=Em-4WZBG8KjUF8i64GiOj94xj1zxN6a1uB0eVZ0nPiAMBASzKXYmiNLpRNEcgxEQ7bHQ6AzvMbnrWHqhusJvYyZqTNMHlShDuReFC57yByy3O9bujQaWuS_jFkuW-GXlbAc9l9L2CmOU0k0c7iCbz4TP6gxYzTpi3F2ZhiR4yOGU_aIfM0-ImE4VjE3Zwu5hcRLW6fRjQIpA00TbvIfq03qKyXpN4rOeSy-uW8xOD3AifhkEun4HB33yo6UpNlLAVK45YxrUxZn2iT_VdnO336VCgrUe4QGzCEoQEtzN_eTC5eSH0FHDXyXwW0Aj4Px9YTY5asaj9oWluYR6xuKHwLEyHqyAWSKmRhRVXDNsi3pF13hLo94F&u=https%3A%2F%2Fgithub.com%2Fpiomin%2Fsample-heroku-order-service.git
https://clicktime.symantec.com/a/1/T35T4GHVxyO3_yEnmgYJzEOMwTYVoyfmLx2ONL0JOmM=?d=Em-4WZBG8KjUF8i64GiOj94xj1zxN6a1uB0eVZ0nPiAMBASzKXYmiNLpRNEcgxEQ7bHQ6AzvMbnrWHqhusJvYyZqTNMHlShDuReFC57yByy3O9bujQaWuS_jFkuW-GXlbAc9l9L2CmOU0k0c7iCbz4TP6gxYzTpi3F2ZhiR4yOGU_aIfM0-ImE4VjE3Zwu5hcRLW6fRjQIpA00TbvIfq03qKyXpN4rOeSy-uW8xOD3AifhkEun4HB33yo6UpNlLAVK45YxrUxZn2iT_VdnO336VCgrUe4QGzCEoQEtzN_eTC5eSH0FHDXyXwW0Aj4Px9YTY5asaj9oWluYR6xuKHwLEyHqyAWSKmRhRVXDNsi3pF13hLo94F&u=https%3A%2F%2Fgithub.com%2Fpiomin%2Fsample-heroku-order-service.git
https://clicktime.symantec.com/a/1/T35T4GHVxyO3_yEnmgYJzEOMwTYVoyfmLx2ONL0JOmM=?d=Em-4WZBG8KjUF8i64GiOj94xj1zxN6a1uB0eVZ0nPiAMBASzKXYmiNLpRNEcgxEQ7bHQ6AzvMbnrWHqhusJvYyZqTNMHlShDuReFC57yByy3O9bujQaWuS_jFkuW-GXlbAc9l9L2CmOU0k0c7iCbz4TP6gxYzTpi3F2ZhiR4yOGU_aIfM0-ImE4VjE3Zwu5hcRLW6fRjQIpA00TbvIfq03qKyXpN4rOeSy-uW8xOD3AifhkEun4HB33yo6UpNlLAVK45YxrUxZn2iT_VdnO336VCgrUe4QGzCEoQEtzN_eTC5eSH0FHDXyXwW0Aj4Px9YTY5asaj9oWluYR6xuKHwLEyHqyAWSKmRhRVXDNsi3pF13hLo94F&u=https%3A%2F%2Fgithub.com%2Fpiomin%2Fsample-heroku-order-service.git
https://clicktime.symantec.com/a/1/T35T4GHVxyO3_yEnmgYJzEOMwTYVoyfmLx2ONL0JOmM=?d=Em-4WZBG8KjUF8i64GiOj94xj1zxN6a1uB0eVZ0nPiAMBASzKXYmiNLpRNEcgxEQ7bHQ6AzvMbnrWHqhusJvYyZqTNMHlShDuReFC57yByy3O9bujQaWuS_jFkuW-GXlbAc9l9L2CmOU0k0c7iCbz4TP6gxYzTpi3F2ZhiR4yOGU_aIfM0-ImE4VjE3Zwu5hcRLW6fRjQIpA00TbvIfq03qKyXpN4rOeSy-uW8xOD3AifhkEun4HB33yo6UpNlLAVK45YxrUxZn2iT_VdnO336VCgrUe4QGzCEoQEtzN_eTC5eSH0FHDXyXwW0Aj4Px9YTY5asaj9oWluYR6xuKHwLEyHqyAWSKmRhRVXDNsi3pF13hLo94F&u=https%3A%2F%2Fgithub.com%2Fpiomin%2Fsample-heroku-order-service.git
https://clicktime.symantec.com/a/1/T35T4GHVxyO3_yEnmgYJzEOMwTYVoyfmLx2ONL0JOmM=?d=Em-4WZBG8KjUF8i64GiOj94xj1zxN6a1uB0eVZ0nPiAMBASzKXYmiNLpRNEcgxEQ7bHQ6AzvMbnrWHqhusJvYyZqTNMHlShDuReFC57yByy3O9bujQaWuS_jFkuW-GXlbAc9l9L2CmOU0k0c7iCbz4TP6gxYzTpi3F2ZhiR4yOGU_aIfM0-ImE4VjE3Zwu5hcRLW6fRjQIpA00TbvIfq03qKyXpN4rOeSy-uW8xOD3AifhkEun4HB33yo6UpNlLAVK45YxrUxZn2iT_VdnO336VCgrUe4QGzCEoQEtzN_eTC5eSH0FHDXyXwW0Aj4Px9YTY5asaj9oWluYR6xuKHwLEyHqyAWSKmRhRVXDNsi3pF13hLo94F&u=https%3A%2F%2Fgithub.com%2Fpiomin%2Fsample-heroku-order-service.git

Spring Microservices on Cloud Platforms Chapter 15

[401]

Notice that the environment variable HEROKU_APP_NAME is the name of the current
application deployed on Heroku, as seen in the preceding snippet. This is not available by
default. To enable a variable for your application, for example, customer-service, run the
following command with the experimental add-on runtime-dyno-metadata:

$ heroku labs:enable runtime-dyno-metadata -a piomin-customer-service

Testing deployments
After deployment, every application is available at an address made up of its name and a
platform's domain name, for example, http:/ /piomin- order- service. herokuapp. com. You
are able to call the Eureka dashboard exposes using the URL, http:/ /piomin- discovery-
service.herokuapp. com/ , which will allow you to check whether our example
microservices have been registered. If everything worked correctly, you should see
something similar to the following screenshot:

Each microservice exposes API documentation automatically generated by Swagger2, so
you can easily test every endpoint by calling it from the Swagger UI dashboard, available
on /swagger-ui.html; for example, http:/ /piomin- order- service. herokuapp. com/
swagger-ui.html. The HTTP API visualization for order-service is as follows:

http://piomin-order-service.herokuapp.com
http://piomin-order-service.herokuapp.com
http://piomin-order-service.herokuapp.com
http://piomin-order-service.herokuapp.com
http://piomin-order-service.herokuapp.com
http://piomin-order-service.herokuapp.com
http://piomin-order-service.herokuapp.com
http://piomin-order-service.herokuapp.com
http://piomin-order-service.herokuapp.com
http://piomin-order-service.herokuapp.com
http://piomin-order-service.herokuapp.com
http://piomin-order-service.herokuapp.com
http://piomin-order-service.herokuapp.com
http://piomin-discovery-service.herokuapp.com/
http://piomin-discovery-service.herokuapp.com/
http://piomin-discovery-service.herokuapp.com/
http://piomin-discovery-service.herokuapp.com/
http://piomin-discovery-service.herokuapp.com/
http://piomin-discovery-service.herokuapp.com/
http://piomin-discovery-service.herokuapp.com/
http://piomin-discovery-service.herokuapp.com/
http://piomin-discovery-service.herokuapp.com/
http://piomin-discovery-service.herokuapp.com/
http://piomin-discovery-service.herokuapp.com/
http://piomin-discovery-service.herokuapp.com/
http://piomin-discovery-service.herokuapp.com/
http://piomin-order-service.herokuapp.com/swagger-ui.html
http://piomin-order-service.herokuapp.com/swagger-ui.html
http://piomin-order-service.herokuapp.com/swagger-ui.html
http://piomin-order-service.herokuapp.com/swagger-ui.html
http://piomin-order-service.herokuapp.com/swagger-ui.html
http://piomin-order-service.herokuapp.com/swagger-ui.html
http://piomin-order-service.herokuapp.com/swagger-ui.html
http://piomin-order-service.herokuapp.com/swagger-ui.html
http://piomin-order-service.herokuapp.com/swagger-ui.html
http://piomin-order-service.herokuapp.com/swagger-ui.html
http://piomin-order-service.herokuapp.com/swagger-ui.html
http://piomin-order-service.herokuapp.com/swagger-ui.html
http://piomin-order-service.herokuapp.com/swagger-ui.html
http://piomin-order-service.herokuapp.com/swagger-ui.html
http://piomin-order-service.herokuapp.com/swagger-ui.html
http://piomin-order-service.herokuapp.com/swagger-ui.html
http://piomin-order-service.herokuapp.com/swagger-ui.html
http://piomin-order-service.herokuapp.com/swagger-ui.html

Spring Microservices on Cloud Platforms Chapter 15

[402]

Each microservice stores data in MongoDB. This database can be enabled for your project
by adding add-ons provided by Heroku, for example, mLab. As you may remember, we
have already used an example of the same service for storing data in applications deployed
on the Pivotal platform. Add-ons can be enabled for an application by provisioning it with
the selected plan in the Resources tab of every application's details panel. Once done, you
can manage every plugin by simply clicking on it. For mLab, you will be redirected to the
mLab (mlab.com) site, where you are able to see a list of all the collections, users, and
generated statistics. The following screenshot illustrates the mLab dashboard for our
examples:

https://mlab.com/

Spring Microservices on Cloud Platforms Chapter 15

[403]

Summary
We have reached the end of our Spring Cloud microservices journey! Our exercises began
with simple deployments on the local machine, but in the last chapter we deployed our
microservices in an environment fully-managed by the cloud vendor, which also
automatically built, started, and exposed HTTP APIs on specified domains. I personally
think that it is amazing how easily we can run, scale, and expose data outside an
application using any of the most popular programming languages or third-party tools,
such as a database or a message broker. In fact, each one of us can now implement and
launch a production-ready application to the web within a few hours without worrying
about the software that has to be installed.

This chapter has shown you how easily you can run Spring Cloud microservices on
different platforms. The given examples illustrate the real power of cloud-native
applications. No matter whether you launch an application locally on your laptop, inside a
Docker Container, using Kubernetes, or on an online cloud platform such as Heroku or
Pivotal Web Services, you don't have to change anything in the application's source code;
the modifications have to be performed only in its properties. (Assuming you use Config
Server in your architecture, these changes are not invasive.)

In the last two chapters, we looked at some of the most recent trends seen in the IT world.
Such topics as CI and CD, containerization with Docker, orchestration using Kubernetes,
and cloud platforms are increasingly used by many organizations. In fact, these solutions
are partly responsible for the increasing popularity of microservices. Currently, there is one
leader in this area of programming—Spring Cloud. There is no other Java framework with
as many features, or that can implement so many patterns related to microservices, as
Spring Cloud. I hope this book will help you to use this framework effectively when
building and honing your microservice-based enterprise system.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Spring: Microservices with Spring Boot
Ranga Rao Karanam

ISBN: 978-1-78913-258-8

Use Spring Initializr to create a basic spring project
Build a basic microservice with Spring Boot
Implement caching and exception handling
Secure your microservice with Spring security and OAuth2
Deploy microservices using self-contained HTTP server
Monitor your microservices with Spring Boot actuator
Learn to develop more effectively with developer tools

https://www.packtpub.com/application-development/spring-microservices-spring-boot

Other Books You May Enjoy

[405]

Spring Security - Third Edition
Mick Knutson, Robert Winch, Peter Mularien

ISBN: 978-1-78712-951-1

Understand common security vulnerabilities and how to resolve them
Learn to perform initial penetration testing to uncover common security
vulnerabilities
Implement authentication and authorization
Learn to utilize existing corporate infrastructure such as LDAP, Active Directory,
Kerberos, CAS, OpenID, and OAuth
Integrate with popular frameworks such as Spring, Spring-Boot, Spring-Data, JSF,
Vaaden, jQuery, and AngularJS.
Gain deep understanding of the security challenges with RESTful webservices
and microservice architectures
Integrate Spring with other security infrastructure components like LDAP,
Apache Directory server and SAML

https://www.packtpub.com/application-development/spring-security-third-edition

Other Books You May Enjoy

[406]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

@
@RefreshScope
 used, for configuration reload 113

A
Advanced Message Queueing Protocol (AMQP)

115

advanced programming model
 about 272
 message consumption 274
 pending messages 273
 transformation 273
Apache Kafka
 application settings, customizing 276
 configuration properties 277
 executing 275
 Streams API support 277
 using 275
application deployment, PCF
 about 385
 CLI, using 385, 386
 Maven plugin, using 387, 388
 services, binding to 387
application development, with Spring Boot
 about 22, 24
 configuration files, customizing 24, 27
 RESTful Web Services, creating 28
application integration, with ELK Stack
 AMQP appender, using 209
 LogstashTCPAppender, using 204, 208
 message broker, using 209, 211
application
 building 41, 44
 executing 44, 47
 integrating, with database 41
automatic configuration reload

 @RefreshScope, using 113
 about 111
 events, consuming from message broker 115
 repository changes, monitoring on Config Server

118

 solution architecture 112

B
binder 278
binding properties
 consumer 272
 producer 272
BOM (bill of materials) 62

C
circuit breaker pattern
 about 17
 tripping circuit breaker 154
 using, with Feign 168
 using, with Hystrix 150
client 125
client-side application
 building 98
 Eureka Server, adding 99
client-side bootstrap approaches
 about 100
 Config Server discovery 100
cloud platform support 59
cloud-native development 9
communication
 styles 124
 synchronous communication, with Spring Cloud

124

component tests
 about 310, 317
 HTTP clients and service discovery, handling

[408]

319

 running, with in-memory database 318, 319
 sample test, implementing 321
config branch
 reference 95
Config First Bootstrap 100
Config Server discovery
 reference 100
config_vault branch
 reference 109
configuration options, Spring Cloud Stream
 about 270
 binding properties 271
 properties 270
configuration settings, Eureka
 client 72
 instance 72
 server 72
Continuous Delivery (CD)
 about 364
 Jenkins, integrating with Docker 364, 365, 366
 pipelines, building 366, 367, 368, 369, 370
Continuous Integration (CI) 364
contract tests
 about 310, 324
 Pact, using 324
 Spring Cloud Contract, using 330
correlation IT 211

D
deployment methods, Heroku
 CLI, using 397, 398
 Docker Container Registry 399
 GitHub repository, connecting to 398
developer tools 40
discovery branch
 reference 106
Discovery First Bootstrap 100
distributed configuration, Spring Cloud Consul
 client customization 237
 configuration changes, viewing 239
 distributed configuration 236
 properties, managing 236
distributed tracing
 with Sleuth 56, 57

Docker commands
 container, running 348
 container, stopping 348
 containers, listing 349
 containers, removing 350
 image, building 352
 images, pulling 350
 images, pushing 351
 networking 352, 353
 using 347
Docker Container Registry 399
Docker host 346
Docker image, creating with microservices
 about 353
 advanced Docker images 362
 containerized microservices, running 356, 357,

358, 359
 Dockerfiles 354, 356
 image building, with Maven plugin 360, 361
docker images command 350
Docker Pipeline 365
docker ps command 349
Docker registry 346
docker run command 348
docker stop command 348
Docker
 about 345
 installing 346, 347
domain-specific language (DSL) 338

E
ElasticCache 59
ELK Stack
 setting, up on machine 202
 used, for centralizing logs 201
 used, for integrating application 203
end-to-end tests 310
Enterprise Integration Patterns (EIP) 249
Etcd 225
Eureka API 80
Eureka, serving over HTTPS
 about 284
 keystore generation 285
 SSL configuration, for microservices and Eureka

server 286

[409]

Eureka
 about 65
 change instance identificator 75
 configuration settings 72
 deregistration, on shutdown 69, 71
 discovery client, using programmatically 71
 enabling, on client side 67
 example application, building 82, 86
 failover 87
 high availability 81
 IP address 76
 registry, refreshing 73
 replication 81
 response cache 77
 running, on server side 66
 sample solution, architecture 81
EurekaClientConfigBean class
 reference 72

F
FaaS (Function-as-a-Service) 60
fallback 17
fat JARs 23
fault tolerance
 monitoring 157
features, libraries
 automated testing 60
 Cluster features 61
 security 60
features, Spring Boot Actuator
 about 34
 application information 35
 health information 37
 metrics 38, 40
features, Spring Cloud Config
 retry 111
 secure client 111
Feign client
 creating, manual method 139
 customization 139
 enabling, for application 134
 inheritance support 138
 interfaces, building 135
 microservices, launching 136
 support, for different zones 133

 using 133
Feign inheritance
 reference 139
Feign
 failures 168
 Hystrix's support 169, 171
feign_with_discovery
 reference 136
filesystem backend 102
functional tests 310

G
Gatling
 about 338
 enabling 338
 test scenario, defining 338, 339
 test scenario, running 340, 341, 342
Git 365
Git backend
 about 103
 client-side configuration 107
 different protocols 104
 multiple repositories 107
 placeholders, using in URIs 104
 server application, building 104

H
Heroku Command Line Interface (CLI)
 URL 397
Heroku platform
 about 396
 application, preparing 399, 401
 deployment methods 397
 deployments, testing 401, 402
HTTP API resources
 about 94
 native profile support 95, 96
HTTPS
 enabling, for Spring Boot 282
Hystrix
 application, building with dashboard 160
 circuit breaker pattern, using 150
 commands, implementing 151
 dashboard 160

[410]

 fallback implementation, with cached data 153
 fault tolerance, maintaining 157
 latency, monitoring 157
 metrics stream, exposing 159
 metrics, monitoring on dashboard 162
 streams, aggregating with Turbine 164
 used, for building application 151

I
integration 57
integration tests
 about 310, 322
 categorizing 322
 HTTP traffic, capturing 323

J
Java Cryptography Extension (JCE) 288
Java Web Tokens (JWT) 292

K
Kibana
 about 202
 used, for searching events 213
kubelet 371
Kubernetes
 about 225
 application, deploying 373, 376
 cluster, maintaining 377, 378
 components 371
 concepts 371
 running locally, via Minikube 372
 working with 370

L
latency
 monitoring 157
libraries
 features 60
load balancer 15
load balancing rules
 about 144
 WeightedResponseTime rule 145
Logstash 201

M
maintenance, PCF application
 about 389
 application life cycles, managing 391
 brokered services, provisioning 394, 395, 396
 deployment details, accessing 389, 391
 scaling 392, 393, 394
mapped diagnostic context (MDC) 204
Maven integration 365
messaging 57
messaging system
 building 249
 channels, binding 251
 channels, declaring 251
 connectivity customization, with RabbitMQ broker

254, 257
 integration, with Spring Cloud projects 259, 262
 Spring Cloud Stream, enabling 250
microservices architecture
 about 10, 12
 circuit breakers 17
 communication, between services 15
 failures 17
 service discovery, need for 13
microservices performance testing
 load tests 312
 stress tests 312
microservices-testing strategies
 about 311
 component tests 310
 contract tests 310
 end-to-end tests 310
 integration tests 310
 unit tests 310
microservices
 building, with Spring Framework 8
 features 7
 logging, best practices 197
modules
 about 59
 Spring Cloud AWS Core 59
mutual authentication 284

[411]

N
Netflix OSS
 about 51
 configuration management, with Archaius 53
 Java HTTP clients, writing 53
 latency and fault, tolerance with Hystrix 53
 load balancing, with Ribbon 52
 routing, with Zuul 52
 service discovery with Eureka 52

O
OAuth2
 about 293
 access token 293
 authentication 292
 authorization grant 293
 authorization server 293
 authorization server, building 294, 297
 client configuration 298
 interservice authorization 303
 JDBC backend store, using 300
 resource owner 293
 resource server 293
 SSO, enabling on API gateway 307

P
PaaS (Platform as a Service) model 396
Pact
 about 324
 consumer side 325, 326, 328
 producer side 328, 329
 using 325
PCF App Autoscaler 392
performance testing
 about 338
 Gatling 338
Pipeline 365
Pivotal Cloud Foundry (PCF)
 about 380, 381, 383
 application, deploying 385
 application, preparing 383, 384, 385
 maintenance 389
 usage models 382
publish/subscribe model

 about 263
 consumer groups 266
 grouping 265
 multiple instances, executing 265
 partitioning 267
 sample system, executing 263
 scaling 265

R
Relational Database Service (RDS) 59
release trains 62, 63
repository backend types
 about 102
 filesystem backend 102
 Git backend 103
 vault backend 108
repository changes
 change events, manually simulating 119
 local testing, with GitLab instance 120
RestTemplate
 example application, building 130
 using, with service discovery 125, 130
Ribbon client
 configuration 126
 customizing 148, 150
 other services, calling 127
 used, for enabling communication between

microservices 125
Ribbon
 used, for retrying connection 168
route configuration, Spring Cloud Netflix Zuul
 connection settings and timeouts 179
 explicity set service name 178
 prefix, adding to path 179
 registered services, ignoring 177
 route definition, with Ribbon client 178
 secure headers 180

S
secure application
 Eureka, serving over HTTPS 284
 issues 283
 registering 283
secure communication

[412]

 enabling, between client and server 78
secure configuration server
 about 288
 authentication, configuring for client and server

290

 decryption 288
 encryption 289
secure service
 registering 79
self-preservation mode 71
server-side application
 building 97
service discovery and distributed configuration

management
 about 54
 Apache Zookeeper 55
 Consul 55
 miscellaneous projects 56
service discovery, Spring Cloud Consul
 client settings customization 233
 executing, in clustered mode 234
 health status, checking 230
 zones 231
service discovery, Spring Cloud Zookeeper
 client implementation 242
 dependencies 243
service discovery
 RestTemplate, using 125
service-oriented architecture (SOA) 7
Simple Notification Service (SNS) 59
Simple Queueing Service (SQS) 59
single sign-on (SSO) 298
Sleuth
 used, for distributed tracing 56
Software as a Service (SaaS) 49
Spring Boot Actuator
 features 34
Spring Boot applications
 database integration 314, 315
 sample application, building 313
 testing 312
Spring Boot
 about 20, 22
 and Swagger 2, using 31
 HTTPS, enabling 282

 used, for developing applications 22
 used, for logging 199
Spring Cloud Config
 features 111
Spring Cloud Consul
 about 224
 agent 225
 client side, integration 227
 service discovery 228
 using 225
Spring Cloud Contract
 about 330
 contracts, defining 330, 332, 333, 334
 scenarios, defining 336, 337
 stubs, generating 330, 332, 333, 334
 subprojects 330
 using 330
 verifying, on consumer side 334, 336
Spring Cloud Gateway
 built-in predicates and filters 188
 enabling, for project 187
 filters 186
 integration, with service discovery 194
 route 186
 using 186
 using, for microservices 192
Spring Cloud Incubator
 reference 56
Spring Cloud Netflix Zuul
 gateway application, building 174
 Hystrix fallback, providing 182
 integration, with service discovery 176
 management endpoints 181
 route configuration, customizing 177
 using 174
Spring Cloud Services (SCS) 382
Spring Cloud Sleuth and Zipkin integration
 about 216
 client application, building 217
 data analyzing with Zipkin UI 218
 via message broker 222
 Zipkin server, executing 216
Spring Cloud Sleuth
 about 211
 events, searching with Kibana 213

 integrating, with application 212
 integrating, with Zipkin 216
Spring Cloud Stream 248
Spring Cloud Zookeeper
 about 224
 distributed configuration 245
 executing 241
 operations 241
 service discovery 242
 using 240
Spring Cloud Zuul filters
 custom implementations 185
 error filters 184
 post filters 184
 pre filter 184
 predefined filters 184
 route filter 184
Spring Cloud
 about 50, 60
 Netflix OSS 51
 project overview 61
 used, for synchronous communication 124
Spring Expression Language (SpEL) 274
Spring Framework
 used, for building microservices 8
Spring Initializr website
 reference 27
starter 20
Swagger 2
 using, with Spring Boot 31
Swagger UI
 used, for testing API 32, 34
Swagger
 documentation 30

T
The Twelve-Factor App
 reference 49
Turbine
 enabling 165
 enabling, with streaming 167
two-way SSL 284

U
unit tests 310, 315
usage models, PCF
 PCF Dev 382
 Pivotal Web Services 382

V
vault backend
 client-side configuration 110
 integration, with Spring Cloud Config 109
 using 108

W
Web Application Description Language (WADL) 30
WeightedResponseTime rule
 Hoverfly, for testing 145
 testing 146, 148

Z
Zipkin
 Sleuth, integrating with 216
zones
 about 88
 example application, building 89, 91
 standalone server 89
Zuul filters 184

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction to Microservices
	The blessings of microservices
	Building microservices with Spring Framework
	Cloud-native development
	Learning the microservices architecture
	Understanding the need for service discovery
	Communication between services
	Failures and circuit breakers

	Summary

	Chapter 2: Spring for Microservices
	Introducing Spring Boot
	Developing applications with Spring Boot
	Customizing configuration files
	Creating RESTful Web Services

	API Documentation
	Using Swagger 2 together with Spring Boot
	Testing API with Swagger UI

	Spring Boot Actuator features
	Application information
	Health information
	Metrics

	Developer tools
	Integrating application with database
	Building a sample application

	Running the application
	Summary

	Chapter 3: Spring Cloud Overview
	Beginning with the basics
	Netflix OSS
	Service discovery with Eureka
	Routing with Zuul
	Load balancing with Ribbon
	Writing Java HTTP clients
	Latency and fault tolerance with Hystrix
	Configuration management with Archaius

	Discovery and distributed configuration
	An alternative – Consul
	Apache Zookeeper
	Miscellaneous projects

	Distributed tracing with Sleuth
	Messaging and integration
	Cloud platform support
	Other useful libraries
	Security
	Automated testing
	Cluster features

	Projects overview
	Release trains
	Summary

	Chapter 4: Service Discovery
	Running Eureka on the server side
	Enabling Eureka on the client side
	Deregistration on shutdown
	Using discovery client programmatically

	Advanced configuration settings
	Refreshing the registry
	Changing the instance identificator
	Preferring the IP address
	Response cache

	Enabling secure communication between client and server
	Registering a secure service

	Eureka API
	Replication and high availability
	Architecture of the sample solution
	Building the example application
	Failover

	Zones
	Zones with a standalone server
	Building an example application

	Summary

	Chapter 5: Distributed Configuration with Spring Cloud Config
	Introduction to HTTP API resources
	Native profile support

	Building a server-side application
	Building a client-side application
	Adding a Eureka Server

	Client-side bootstrap approaches
	Config Server discovery

	Repository backend types
	Filesystem backend
	Git backend
	Different protocols
	Using placeholders in URIs
	Building a server application
	Client-side configuration
	Multiple repositories

	Vault backend
	Getting started with Vault
	Integration with Spring Cloud Config
	Client-side configuration

	Additional features
	Fail on start and retry
	Secure client

	Reload configuration automatically
	Solution architecture
	Reload configuration with @RefreshScope
	Consuming events from a message broker
	Monitoring repository changes on a Config Server
	Simulating change events manually
	Testing locally with a GitLab instance

	Summary

	Chapter 6: Communication Between Microservices
	Different styles of communication
	Synchronous communication with Spring Cloud
	Load balancing with Ribbon
	Enabling communication between microservices using the Ribbon client
	Static load balancing configuration
	Calling other services

	Using RestTemplate together with service discovery
	Building example application

	Using Feign client
	Support for different zones
	Enabling Feign for an application
	Building Feign interfaces
	Launching microservices

	Inheritance support
	Creating a client manually
	Client customization

	Summary

	Chapter 7: Advanced Load Balancing and Circuit Breakers
	Load balancing rules
	The WeightedResponseTime rule
	Introducing Hoverfly for testing
	Testing the rule

	Customizing the Ribbon client
	The circuit breaker pattern with Hystrix
	Building an application with Hystrix
	Implementing Hystrix's commands
	Implementing fallback with cached data

	The tripping circuit breaker

	Monitoring latency and fault tolerance
	Exposing Hystrix's metrics stream
	Hystrix dashboard
	Building an application with the dashboard
	Monitoring metrics on the dashboard
	Aggregating Hystrix's streams with Turbine
	Enabling Turbine
	Enabling Turbine with streaming

	Failures and the circuit breaker pattern with Feign
	Retrying the connection with Ribbon
	Hystrix's support for Feign

	Summary

	Chapter 8: Routing and Filtering with API Gateway
	Using Spring Cloud Netflix Zuul
	Building a gateway application
	Integration with service discovery
	Customizing route configuration
	Ignoring registered services
	Explicity set service name
	Route definition with the Ribbon client
	Adding a prefix to the path
	Connection settings and timeouts
	Secure headers

	Management endpoints
	Providing Hystrix fallback
	Zuul filters
	Predefined filters
	Custom implementations

	Using Spring Cloud Gateway
	Enable Spring Cloud Gateway for a project
	Built-in predicates and filters
	Gateway for microservices
	Integration with service discovery

	Summary

	Chapter 9: Distributed Logging and Tracing
	Best logging practices for microservices
	Logging with Spring Boot
	Centralizing logs with ELK Stack
	Setting up ELK Stack on the machine
	Integrating an application with ELK Stack
	Using LogstashTCPAppender
	Using AMQP appender and a message broker

	Spring Cloud Sleuth
	Integrating Sleuth with an application
	Searching events using Kibana
	Integrating Sleuth with Zipkin
	Running the Zipkin server
	Building the client application
	Analyze data with the Zipkin UI
	Integration via message broker

	Summary

	Chapter 10: Additional Configuration and Discovery Features
	Using Spring Cloud Consul
	Running Consul agent
	Integration on the client side
	Service discovery
	Health check
	Zones
	Client settings customization
	Running in clustered mode

	Distributed configuration
	Managing properties in Consul
	Client customization
	Watching configuration changes

	Using Spring Cloud Zookeeper
	Running Zookeeper
	Service discovery
	Client implementation
	Zookeeper dependencies

	Distributed configuration

	Summary

	Chapter 11: Message-Driven Microservices
	Learning about Spring Cloud Stream
	Building a messaging system
	Enabling Spring Cloud Stream
	Declaring and binding channels
	Customizing connectivity with the RabbitMQ broker
	Integration with other Spring Cloud projects

	The publish/subscribe model
	Running a sample system
	Scaling and grouping
	Running multiple instances
	Consumer groups
	Partitioning

	Configuration options
	Spring Cloud Stream properties
	Binding properties
	The consumer
	The producer

	The advanced programming model
	Producing messages
	Transformation
	Consuming messages conditionally

	Using Apache Kafka
	Running Kafka
	Customizing application settings
	Kafka Streams API support
	Configuration properties

	Multiple binders
	Summary

	Chapter 12: Securing an API
	Enabling HTTPS for Spring Boot
	Secure discovery
	Registering a secure application
	Serving Eureka over HTTPS
	Keystore generation
	Configurating SSL for microservices and Eureka server

	Secure configuration server
	Encryption and decryption
	Configuring authentication for a client and a server

	Authorization with OAuth2
	Introduction to OAuth2
	Building an authorization server
	Client configuration
	Using the JDBC backend store
	Inter-service authorization
	Enabling SSO on the API gateway

	Summary

	Chapter 13: Testing Java Microservices
	Testing strategies
	Testing Spring Boot applications
	Building the sample application
	Integration with the database

	Unit tests
	Component tests
	Running tests with an in-memory database
	Handling HTTP clients and service discovery
	Implementing sample tests

	Integration tests
	Categorizing tests
	Capturing HTTP traffic

	Contract tests
	Using Pact
	Consumer side
	Producer side

	Using Spring Cloud Contract
	Defining contracts and generating stubs
	Verifying a contract on the consumer side
	Scenarios

	Performance testing
	Gatling
	Enabling Gatling
	Defining the test scenario
	Running a test scenario

	Summary

	Chapter 14: Docker Support
	Introducing Docker
	Installing Docker
	Commonly used Docker commands
	Running and stopping a container
	Listing and removing containers
	Pulling and pushing images
	Building an image
	Networking

	Creating a Docker image with microservices
	Dockerfiles
	Running containerized microservices
	Building an image using the Maven plugin
	Advanced Docker images

	Continuous Delivery
	Integrating Jenkins with Docker
	Building pipelines

	Working with Kubernetes
	Concepts and components
	Running Kubernetes locally via Minikube
	Deploying an application
	Maintaining a cluster

	Summary

	Chapter 15: Spring Microservices on Cloud Platforms
	Pivotal Cloud Foundry
	Usage models
	Preparing the application
	Deploying the application
	Using CLI
	Binding to services
	Using the Maven plugin

	Maintenance
	Accessing deployment details
	Managing application life cycles
	Scaling
	Provisioning brokered services

	The Heroku platform
	Deployment methods
	Using the CLI
	Connecting to the GitHub repository
	Docker Container Registry

	Preparing an application
	Testing deployments

	Summary

	Other Books You May Enjoy
	Index

