

Server Side Development with
Node.js and Koa.js Quick Start
Guide

Build robust and scalable web applications with modern
JavaScript techniques

Olayinka Omole

BIRMINGHAM - MUMBAI

Server Side Development with Node.js and
Koa.js Quick Start Guide
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amarabha Banerjee
Acquisition Editor: Reshma Raman
Content Development Editor: Smit Carvalho
Technical Editor: Sushmeeta Jena
Copy Editor: Safis Editing
Project Coordinator: Hardik Bhinde
Proofreader: Safis Editing
Indexer: Mariammal Chettiyar
Graphics: Alishon Mendonsa
Production Coordinator: Shraddha Falebhai

First published: November 2018

Production reference: 1291118

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78934-539-1

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Olayinka Omole is a software engineer currently based in London who grew up in Lagos,
Nigeria. He is self-taught and primarily enjoys building with JavaScript, Python, PHP, and
Java. He has written a lot about these technologies in multiple blogs and publications,
including Sitepoint, and Scotch.io. He spends most of his time doing the usual fun
things—writing code, learning how to write more code, and watching TV shows. His
background in electrical and electronic engineering ensures that his passion for embedded
engineering and DIY projects is also kept alive.

About the reviewer
Bhanu Pratap Chaudhary is a self-taught programmer who has been active in the
JavaScript ecosystem for around five years now.
After working as a consultant, freelancer, engineer, lead, and CTO in various start-ups, he
is working on an already profitable stealth-mode B2B start-up in the catering industry.

He can also be found boxing, listening to and writing music, and he loves to write simple
and readable code.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Introducing Koa 5
Technical requirements 6
What is Koa? 6
What can you do with Koa? 7
Why choose Koa? 7
When you should not use Koa 11
Koa versus Express 11
How can this book help you understand Koa better? 13
Summary 13

Chapter 2: Getting Started with Koa 14
Technical requirements 14
Modern JavaScript 15
A primer on Node 16
What is async… await? 17

The promise class 17
Introducing async 19
Introducing await 19

Installing Koa 20
Using Babel 21
Starting a server in Koa 21
Summary 23

Chapter 3: Koa Core Concepts 24
Technical requirements 24
The application object 25

Useful application methods 26
Settings 28

The context object 28
Context object API 29

Aliases 32
The request object 34

Content negotiation 40
The response object 41

Middleware 44
Cascading in Koa 44
Defining middleware 46
Registering middleware 46

Table of Contents

[ii]

Common middleware 48
Summary 48

Chapter 4: Handling Errors in Koa 49
Technical requirements 49
Catching errors in Koa 50

Koa's default error handler 51
Emitting errors 52
Error event listener 53

Throwing HTTP errors 53
Writing error handlers 56
Summary 58

Chapter 5: Building an API in Koa 59
Technical requirements 60
Project setup 60

Initialization 60
Installing dependencies 61
Structure 62

Building the application 62
Starting the server 63

Using Nodemon 64
Connecting to a database 64
Creating data models 66
Setting up the router 67
Setting up a logger 70
Creating contact endpoints and controller actions 71

Retrieving all contacts 71
Storing new contacts 72
Retrieving a single contact 75
Updating a contact 76
Deleting a contact 78

Validating requests 80
Useful notes 83
Summary 83

Chapter 6: Building an Application in Koa 84
Technical requirements 84
About the application 85
Setting up a project 86

Installing dependencies 86
Project structure 87

Building the application 88
Starting the server 88
Connecting to the database 89
Creating data models 90

Table of Contents

[iii]

The user model 91
The post model 92

Setting up the router 93
Setting up the views 95

Using partials 97
Setting up sessions 98
Handling authentication 99

User registration and login 99
Authentication middleware 104
Creating controller functions 105

Summary 111

Other Books You May Enjoy 112

Index 115

Preface
The release of modern versions of the JavaScript language has made it possible to build
more modular and scalable applications in Node.js. Koa is a next-generation Node.js
framework that has taken a lot of the newer JavaScript features to make development of
robust web applications in Node.js much easier.

You will learn how to efficiently build robust web applications in Koa using modern
paradigms and techniques in Node.js development.

Who this book is for
This book is for developers who are interested in building robust and scalable applications
using Koa—a modern, expressive, and nimble Node.js framework.

What this book covers
Chapter 1, Introduction to Koa, introduces Koa and talks about its benefits for server-side
web development. We will talk about the reasons why developers may choose to use Koa
for software development. We will also introduce the remainder of the book and talk about
how the book will help its readers to navigate the complex waters of Koa.

Chapter 2, Getting Started with Koa, explains how to get started with server-side
development with Koa. We will learn how to install Koa, create a simple server, and build
the obligatory Hello World app.

Chapter 3, Koa Core Concepts, discusses the application, context, and request and response
objects in Koa. We will also learn about how to create and use middleware. We will go into
detail about Koa's philosophy and show readers how the different parts of the framework
work.

Chapter 4, Handling Errors in Koa, goes into error handling in Koa. We will look at the
different methods of handling errors in Koa. The aim will be to make sure users have a
solid foundation and know how to build Koa applications that don't break at slight
exceptions.

Chapter 5, Building an API in Koa, dives into building a real-life application in Koa. We will
show readers how to create routes, handle requests, and send responses from their APIs.

Preface

[2]

Chapter 6, Building an Application in Koa, reinforces what we will have learned by building
a fully fledged web application in Koa. We will learn how to build a real-life application
with authentication and structure it properly in Koa. We will also share some information
on further reading to improve on the reader's knowledge of Koa.

To get the most out of this book
To get the most out of this book, having knowledge of JavaScript (ES6 syntax)would be
beneficial.

Readers who want to use Koa in tandem with Node.js effectively in order to create fast and
real-time backend applications will benefit from this book.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Server- Side- Development- with- Node. js- and- Koa.js- Quick- Start-
Guide. In case there's an update to the code, it will be updated on the existing GitHub
repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/Server-Side-Development-with-Node.js-and-Koa.js-Quick-Start-Guide
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[3]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/9781789345391_ ColorImages. pdf.

Code in action
Visit the following link to check out videos of the code being run:
http://bit.ly/2P9N0Fx

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

function logTimeUp() {
 console.log(“Time up!”);
}
setTimeout(logTimeUp, 1000);

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

dataPromise()
 .then(data => console.log(`Here is ${data}`));

// Here is some important data!

Any command-line input or output is written as follows:

npm install Koa

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

https://www.packtpub.com/sites/default/files/downloads/9781789345391_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789345391_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789345391_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789345391_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789345391_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789345391_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789345391_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789345391_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789345391_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789345391_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789345391_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789345391_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789345391_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789345391_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789345391_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789345391_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789345391_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789345391_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789345391_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789345391_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789345391_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789345391_ColorImages.pdf
http://bit.ly/2P9N0Fx
http://bit.ly/2P9N0Fx
http://bit.ly/2P9N0Fx
http://bit.ly/2P9N0Fx
http://bit.ly/2P9N0Fx
http://bit.ly/2P9N0Fx
http://bit.ly/2P9N0Fx
http://bit.ly/2P9N0Fx
http://bit.ly/2P9N0Fx

Preface

[4]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

1
Introducing Koa

Node.js, which was introduced in 2009, has become very popular for building applications
and APIs on the web. One of the major factors that influenced its increase in popularity is
the fact that developers can now use a single language for developing their applications,
both on the server side and client side. JavaScript developers who usually only worked on
client-side applications in the past could now work on server-side applications with the
same development stack. This increase in popularity and adoption has led to a lot of
community enthusiasm and support, which by extension has caused a lot of frameworks
and plugins being developed to optimize scripting and software development in Node.js.

Many of these frameworks are focused on different ideologies and functionalities.
Express.js, with over four million weekly downloads as at the time of writing, is one of the
more popular frameworks for Node.js. It was built to be a very simple and unopinionated
framework for quickly building out web applications in Node.js. Koa.js was built to be an
improvement on Express.js, with the same underlying philosophy.

Since its introduction, JavaScript has continually evolved and every iteration brings with it
advantages and upgrades. Koa leverages on a lot of new and shiny things in the newer
JavaScript versions, such as the async... await syntax. These features are part of what
makes Koa a fast and easy-to-use web development tool.

The topics that will be covered in this chapter are the following:

What is Koa?
What can you do with Koa?
Why choose Koa?
When you should not use Koa
Introducing Koa2
Koa versus Express
How can this book help you understand Koa better?

Introducing Koa Chapter 1

[6]

Technical requirements
To follow along with this chapter, you need the following installed locally:
Node.js (>= v7.6.0) and NPM: You can find download and installation instructions for this
on the Node.js official website (https:/ /nodejs. org/ en/).

If you use macOS, you can make use of the Homebrew package manager to install Node.js
easily.

The code files of this chapter can be found on GitHub:
https://github.com/ PacktPublishing/ Server- Side- development- with- Node. js- and-
Koa.js-Quick-Start- Guide/ tree/ master/ Chapter01

Check out the following video to see the code in action:
http://bit.ly/2BH8gz0

What is Koa?
Koa is a newly popular Node.js framework created by the team at Express. It was built to
be a more expressive, minimalist, and modern version of its predecessor. As a matter of
fact, because of its embrace of modern development techniques in JavaScript, it has been
referred to by some people as Express 5.0 in spirit.

Development on the Koa framework started sometime in late 2013 by the same team behind
Express. It was decided that adding too many breaking changes to Express would be
undesirable; hence, the team decided to take the new ideas it had to create a new
framework, while development continued on Express itself in parallel. Koa was initially
written to leverage the async goodness of the then-newly introduced JavaScript generators.
Since then, Koa has been rewritten using the more modern async...await, making the
code base even cleaner.

With around 2K LOC (lines of code), Koa can boast a very minimalistic code footprint. Koa
is also very unopinionated; in fact, it does not ship with any middleware out of the box.
Instead, it leaves these decisions to the developers. Developers can choose to either build
out the middleware they need or take advantage of the ones built by other developers that
are publicly available online.

https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter01
http://bit.ly/2BH8gz0
http://bit.ly/2BH8gz0
http://bit.ly/2BH8gz0
http://bit.ly/2BH8gz0
http://bit.ly/2BH8gz0
http://bit.ly/2BH8gz0
http://bit.ly/2BH8gz0
http://bit.ly/2BH8gz0
http://bit.ly/2BH8gz0

Introducing Koa Chapter 1

[7]

By making use of the modern JavaScript async… await syntax, Koa allows developers to
escape callback hell and handle errors better. Its futuristic approach to development in
JavaScript makes it a choice for developers who enjoy trying out new things. If you are
unfamiliar with what async… await is, not to worry, we will be covering it in following
chapters.

What can you do with Koa?
So, you have heard about Koa, and are trying to decide whether you should get into it.
What could be the deciding factor is the use case you have in mind. After all, in the world
of software development tools and frameworks, what really matters is what you are
capable of doing with these tools and frameworks.

If you want to build scalable web applications and APIs in JavaScript, then Koa is a good
fit. Koa can be used to create a range of web applications such as forums, e-commerce
websites, and social networks. You can use Koa to build something as simple as a to-do list
application or something as complicated as an e-commerce website.

Koa is also great for building services such as Representational State Transfer (REST) APIs
that could provide data to be used by frontend applications. REST APIs that are built in
Koa are a good choice for frontend applications written in plain JavaScript, Angular, React,
Vue.js, or any other User Interface (UI) framework.

Why choose Koa?
At this point, you may be thinking, "Why exactly should I use Koa, amid the myriad of Node.js
frameworks available? What exactly makes Koa special or different?" That would be an excellent
question. We will cover the answer to that in this section and list some reasons why Koa is
a great choice for your next web development project.

As mentioned earlier, Koa is highly unopinionated, which makes its capabilities limited
only by the developer's imagination. It is a framework that provides a light and highly
configurable base for developers to quickly get started building out their web applications
in JavaScript. Some of the things that make Koa a great choice include the following:

Embraces modern standards: Koa embraces the more modern JavaScript ES6
syntax and encourages its use. The more modern syntax brings with it some
advantages as the language evolves with every iteration.

Introducing Koa Chapter 1

[8]

Very light: Koa is one of the lightest frameworks out there with around 2K LOC.
It only comes with the bare minimum. This shows developers that the
framework is simply there to help do the bare minimum needed for them to
quickly develop their apps and not more or less.
Highly unopinionated: Koa tries as much as possible not to restrict developers.
It does not come with any middleware out of the box, not even for routing. Koa's
aim is to allow developers to be even more expressive. Koa encourages
developers to either develop any middleware they need or take advantage of the
publicly available ones. The Koa core team has developed a number of
middlewares that are available for developers to plug into their application if so
needed.
Ease of creating custom middleware: Middleware functions are functions that sit
between requests and responses in an application. They can usually manipulate
both the request and responses in an application. A key factor in middleware
function definition is also calling the next middleware to be executed. Koa's
middleware cascading pattern is also one of the reasons Koa is recommended.
The cascading pattern makes implementing and understanding the flow of
middleware in your applications very easy. Simple middleware in Koa can be
defined and registered in as few as three lines, as seen in the following code
snippet:

 app.use(async (context, next) => {
 console.log(`Time: ${Date.now()}`);
 await next();
 });

This code snippet is simple middleware for logging the time when a
request is made to the server in Koa.

Community support: As a result of its increase in popularity, a lot of plugins and
middleware have been built and made publicly available. There are also a lot of
JavaScript developers available to help answer questions and discuss issues
related to the framework on popular forums.

Introducing Koa Chapter 1

[9]

Ease to get started with: One of the things JavaScript developers who are
familiar with Express love about the framework is how easy it is to get started
with it. Koa also embraces that simplicity and makes it very easy for developers
to get started with it. Little configuration has to be done to cascade a simple Koa
application. To illustrate how easy it is to get started with Koa, here is a Koa
Hello World app, as seen on the Koa official website:

 // ./server.js

 const Koa = require('koa');
 const app = new Koa();

 app.use(asyncctx => {
 ctx.body = 'Hello World';
 });

 app.listen(3000);

Flexible: Koa does not enforce folder and file structure; hence, developers can
use their preferred file structures when developing applications in Koa.
Ease of error handling: Koa's embrace of the async… await JavaScript ES6
syntax makes error handling much easier. It is also easy to define middleware in
Koa to handle errors thrown at different points in your application.
Database and ORM agnostic: Developers can create web applications that will
use their database and Object Relation Mapper (ORM) of choice. They are not
forced to stick to a particular database or ORM as defined by the framework.
Databases such as MySQL, MongoDB, and PostgreSQL can be used with Koa.
ORMs such as Mongoose, Sequelize,and Knex are also easy to integrate with
the Koa framework.
The similarity to Express: If you are like many Node developers, you have at
one point or the other worked with Express. This familiarity with Express proves
to be an asset when working with Koa, as it makes it easier to get accustomed to
Koa and its philosophy. This also works the other way around too. If you get
familiar with Koa before Express, it becomes easier for you to pick up Express
projects and understand them.
Concise code: Writing code in Koa is generally more concise than in other
Node.js frameworks. This is because it ditches the use of callbacks and
encourages the modern ES6 syntax. It also has a number of HTTP utilities
bundled with it to make writing web applications an easier experience.

Introducing Koa Chapter 1

[10]

Escape callback hell: As a result of Koa's reliance on modern standards in
JavaScript development, we are able to avoid dealing with nested callbacks and
the phenomenon known as callback hell when developing our applications. To
illustrate this, here is an example of how an endpoint to retrieve all of the
products in a category from a database would look in Express with the use of
callbacks:

 // ./express-route.js

 app.get('/category/:slug', (req, res, next)) => {
 const { slug } = req.params;

 Category.findOne({ slug }, (err, category) => {
 if (err) {
 return next(err);
 }

 Product.find({ category: category.id }, (err, products)
 => {
 if (err) {
 return next(err);
 }

 res.send(products);
 });
 });
 });

The same endpoint can be written in Koa, as seen in the following code snippet:

// ./koa-route.js

app.get('/category/:slug', async ctx => {
 const { slug } = ctx.params;
 const category = await Category.findOne({ slug });
 const products = await Product.find({ category: category.id });
 ctx.body = products;
});

From these examples, we can see clearly how much more readable the code written in Koa
is. We can avoid nested callbacks with the use of promises and the async… await syntax.

Introducing Koa Chapter 1

[11]

When you should not use Koa
Although Koa is a great choice for building HTTP services and web applications, it is not
always the best option for all projects. Just like with every framework, language, and even
design pattern, the very things that are advantages become drawbacks when dealing with
certain use cases. It is best to judge the use of Koa on a case by case basis and make use of it
only when it is a good fit for the particular project.

Generally, Koa will not be a great choice for you if you are not willing to try out the newer
JavaScript ES6 syntax. Koa was built for the modern web. If, for some reason, your project
has a strict requirement to use an older version of JavaScript, Koa would not be suitable.

If you would also prefer a framework with a lot of boilerplate code and a defined structure,
you might have to look at other frameworks such as hapi.js and AdonisJs. Koa, much
like Express, prides itself on minimalism and allowing developers to be expressive. Having
a lot of boilerplate and a strict code structure are not philosophies Koa embraces.

It is also important to note that Koa is a framework built on top of JavaScript and Node.js.
As Koa inherits the advantages of Node, such as being fast at performing network and
asynchronous operations, it also inherits some of the drawbacks and limitations that are
present in Node. Koa would not be an ideal choice for a project where JavaScript is not the
language of choice.

Koa versus Express
Koa and Express share a lot of similarities, as the development of the two frameworks was
kickstarted by the same team. While a lot of the underlying philosophies between Koa and
Express are the same, clear differences exist as the creators of the frameworks attempted to
do things in a different way with the release of Koa.

A major difference is in the philosophy of the two frameworks. Whereas Express
complements Node, Koa attempts to fix and replace many things in it. The major difference
is the fact that Koa tries to completely ditch callbacks and avoid callback hell by making use
of promises and async functions.

Unlike Express, which augments Node's request (req) and response (res) objects with
additional parameters and methods, Koa provides its own ctx.request and
ctx.response objects. According to the Koa documentation, the following is true:

"Koa can be viewed as an abstraction of Node.js's http modules, whereas Express is an
application framework for Node.js."

Introducing Koa Chapter 1

[12]

Koa tries to fix some of the things wrong with Node and provides a simple, lightweight,
and unopinionated framework for building out HTTP services.

Some other differences between Koa and Express include the following:

Router: Koa does not include a router out of the box; instead, external
middleware is available to be used as routers such as koa-router and koa-
route. Express, on the other hand, comes bundled with a router out of the box.
Templating: Express has support for various popular templating engines out of
the box, including Jade, Pug, EJS,and Mustache. In contrast, Koa requires
installing an external plugin/middleware to support templating engines. A
popular plugin for templating in Koa is koa-views.
Convenience utilities: Express includes some convenience utilities (https:/ /
expressjs. com/ en/ resources/ utils. html) to help programmers handle regular
tasks such as file streaming and URL parsing. Koa does not include these
utilities.
Promise-based control flow: Koa has the advantage of ditching callbacks and
avoiding callback hell by making heavy use of promises, unlike its predecessor,
Express. This ensures that errors are easier to handle without many try...
catch statements.
Cascading middleware pattern of flow in Koa.js: This allows middleware to
take action exactly twice for each request whereas express middleware allows for
only single execution per request. This flexibility allows Koa
middleware developers to use the patterns established in other languages and
systems such as Ruby's Rack.

Here is a table from the Koa documentation, comparing it to Express:

Feature Koa Express

Middleware Kernel

Routing

Templating

Sending files

JSONP

https://expressjs.com/en/resources/utils.html
https://expressjs.com/en/resources/utils.html
https://expressjs.com/en/resources/utils.html
https://expressjs.com/en/resources/utils.html
https://expressjs.com/en/resources/utils.html
https://expressjs.com/en/resources/utils.html
https://expressjs.com/en/resources/utils.html
https://expressjs.com/en/resources/utils.html
https://expressjs.com/en/resources/utils.html
https://expressjs.com/en/resources/utils.html
https://expressjs.com/en/resources/utils.html
https://expressjs.com/en/resources/utils.html
https://expressjs.com/en/resources/utils.html
https://expressjs.com/en/resources/utils.html

Introducing Koa Chapter 1

[13]

How can this book help you understand Koa
better?
This book takes a practical approach to teach JavaScript developers how to understand the
Koa framework. In the course of this book, we will examine important concepts in Koa,
such as the request, response, and context objects. We will also look at other concepts that
will be helpful for building real-world applications such as request and error handling.

We will build two applications to reinforce the concepts we learned about Koa. These
applications will include a REST API and a fully-fledged web application.

As we build the REST API, we will learn how to create routes, handle requests, and send
responses from their APIs. We will also learn practically how the context object works for
API creation. We will build an API that will have CRUD (Create, Read, Update, and
Delete) functionality; hence, we will also be interacting with a database. Building a real-life
application will also afford us the chance to learn about how you can decide to structure
your Koa applications.

Building the fully-fledged web application will allow us to learn how to build an
application in Koa with views and templates. We will also learn how to authenticate,
handle forms, handle sessions, and so on, in the framework.

Summary
In this chapter, we introduced Koa and talked about its benefits for server-side web
development. We talked about what developers can build with Koa and established some
of its many advantages. We were also able to talk about cases when using Koa might not be
ideal.

Finally, we talked about how this book is structured and how it will help you learn and
understand the Koa framework better.

The next chapter will cover getting started with Koa. In the next chapter, we will learn how
to get started with server-side development with Koa. We will learn how to install Koa,
create a simple server, and build the obligatory Hello World app. The chapter will
introduce us to some hands-on work in Koa, and we will begin to explore why Koa is so
highly recommended.

2
Getting Started with Koa

One of the things that makes Koa so desirable to work with is the ease of getting started
with it. Taking after Express, all of the logic for a simple web application can be contained
in a single JavaScript file with Koa. This works to our benefit and is especially great if you
are just willing to test the framework out before taking a deep dive.

In this chapter, we are going to get our hands dirty and get into the code. We will be
exploring the basic concepts of Koa and will build our first server-side application in Koa.

Some of the topics we will cover in this chapter include the following:

Modern JavaScript
A primer on Node
What is async… await?
Using Babel
Installing Koa
Starting a server in Koa

Technical requirements
To follow along with this chapter, you need the following installed locally:

Node.js (>= v7.6.0) and NPM: You can find download and installation
instructions for this on the Node.js official website (https:/ / nodejs. org/ en/).

https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/

Getting Started with Koa Chapter 2

[15]

If you use macOS, you can make use of the Homebrew package manager to install Node.js
and MongoDB easily.

The code files of this chapter can be found on GitHub:
https://github.com/ PacktPublishing/ Server- Side- development- with- Node. js- and-
Koa.js-Quick-Start- Guide/ tree/ master/ Chapter02

Check out the following video to see the code in action:
http://bit.ly/2Q2gRoV

Modern JavaScript
Before we get into Node.js and writing code in Koa, we should take a quick look at the
modern JavaScript ES6, ES7 (and beyond) syntaxes and the advantages they bring. ES6 (or
ES 2015) and ES7 (or ES 2016) are major updates to the JavaScript language that brought a
lot of new features and optimized the language for readability and simplicity.

Some of the key features introduced by ES6 include let, const, object destructuring, the
spread operator, and so on. The async... await syntax, which is heavily used by Koa, is
a new feature introduced in ES7. Some other key features introduced by ES7 are
destructuring assignment (https:/ /developer. mozilla. org/en- US/ docs/ Web/
JavaScript/Reference/ Operators/ Destructuring_ assignment) and Observables (https:/
/developer.mozilla. org/ en- US/ docs/ Web/ JavaScript/ Reference/ Global_ Objects/
Object/observe). Beyond ES6 and Es7, a lot of new features are continually being
implemented in JavaScript. Embracing these new features helps to keep up with the best
practices and constantly improve the quality of the code we write.

The introduction of modern syntaxes and functions have made it possible for JavaScript
developers to write concise and maintainable code, without the need to sacrifice
performance. On the contrary, a lot of the new features make it possible to do more things
in the language. Some of these things were done in the past using external libraries that
exposed helper functions. Examples of such libraries include Lodash and Underscore.js.

Most code examples in this book use the newer ES6/ES7 JavaScript
features. Ensure you have a recent version of JavaScript running on your
machine so as to be able to follow along adequately.

https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter02
http://bit.ly/2Q2gRoV
http://bit.ly/2Q2gRoV
http://bit.ly/2Q2gRoV
http://bit.ly/2Q2gRoV
http://bit.ly/2Q2gRoV
http://bit.ly/2Q2gRoV
http://bit.ly/2Q2gRoV
http://bit.ly/2Q2gRoV
http://bit.ly/2Q2gRoV
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Destructuring_assignment
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/observe

Getting Started with Koa Chapter 2

[16]

A primer on Node
As JavaScript developers who may or may not have experience working with Node.js, a
brief introduction to Node.js and its core ideology will help get everyone up to speed.
Node.js, or simply Node, is a run-time environment that executes JavaScript outside a
browser. In simpler terms, and as it relates to web developers, Node is a platform that
allows developers to write JavaScript applications that can also act as servers.

JavaScript became popular for being a language used to manipulate the DOM (Document
Object Model) on web pages. It was a language typically used for client-side scripting.
Node, which was built on Chrome's open source v8 JavaScript engine, made it possible to
run JavaScript both on the browser and the server. This was highly accepted, as developers
could now develop applications with the same language on servers and web browsers.

Node is very fast and is a great choice for building HTTP applications. It processes
incoming requests in a loop, called the event loop, which allows the development of fast
web servers in JavaScript. Its event-driven architecture allows asynchronous operations.
This means that developers can create highly scalable applications capable of processing
requests asynchronously without using threading.

Asynchronous programming in Node is one of the reasons the language is so widely
adopted. If you are unfamiliar with asynchronous programming or its benefits and how it
compares to synchronous programming, here is a good example of a program that needs to
make a request to get data from two external sources:

In a synchronous program: The logical thing to do would be to make a request to
the first external source, get a response, and then make another request to the
second external source and merge the results. While this is a flow that is logical
and easy to follow, it means that the wait time to service another request will be
at least the sum of the wait times for each individual request. Since synchronous
code leads to resource and event blocking, it does not lead an efficient solution
and effectively slows down our application due to poor resource utilization.
In an asynchronous program: Both requests can be made in parallel. When each
request is completed, it notifies the main program and the results can be
combined after the request that took the longest is completed. In this case, the
wait time is only the time it takes for the slower request to be completed. Also,
neither of the requests cause resource/event blocking, which would allow our
program to respond to more new requests while waiting for results for the initial
task.

Getting Started with Koa Chapter 2

[17]

Managing asynchronous actions can get quite complicated, especially in programs where
the flow of logic should be synchronous. Callback functions can be used to manage
asynchronous operations. Callback functions are functions that are passed to another
function (the main function) to be executed inside the main function. Here's a simple
example of using a callback function with the setTimeout() function:

function logTimeUp() {
 console.log(“Time up!”);
}

setTimeout(logTimeUp, 1000);

The setTimeout function in JavaScript waits a given number of milliseconds and then
executes the callback function passed to it. In the previous code example, we define a
callback function called logTimeUp that simply prints Time up! to stdout. We then pass
this function as a parameter to the setTimeout function, which will execute the callback
function after 1000 milliseconds (one second). This is a classic example of how callbacks
work.

In modern JavaScript, asynchronous actions can be modeled using Promises, which can be
managed and consumed in multiple ways. One of these ways is using the async… await

syntax.

What is async… await?
Asynchronous functions are functions that work asynchronously. They return a Promise
class implicitly and can run concurrently. We will be discussing two major ways to define
asynchronous functions. These include the following:

Using the native Promise class
Using the modern Async keyword

The await keyword is used inside an asynchronous function to resolve a promise. Async
and await are usually used together for managing the control of flow in a modern
asynchronous JavaScript application. Koa relies heavily on async.. await to avoid
callback hell and provide a more convenient method for handling errors.

Getting Started with Koa Chapter 2

[18]

The promise class
Before introducing async, let's discuss a little about the native Promise class in JavaScript.
As mentioned, promises are the way modern JavaScript manages asynchronous actions.
The standard Promise class can be used for creating promises. A promise can be defined as
seen in the following code snippet:

const dataPromise = new Promise((resolve, reject) => resolve("some
important data!"));

From the preceding code block, we can see that a function is passed to
the Promise constructor—this function is called an executor function. This executor has
two arguments passed into it, which are used to determine two important properties of the
resulting promise—its state and result properties.

The default value of state is pending, which then changes to either fulfilled or
rejected. The default value of result is undefined, which then changes to any value of
your choosing.

The two functions an executor receives as arguments are resolve(value) and
reject(error). The resolve(value) function indicates that the promise was
successfully completed, and hence it sets the state of the promise to fulfilled and
assigns value to its result property. The reject function indicates that a promise failed (an
error occurred) and accordingly sets the state propertyof the promise to rejected and
assigns error to its result property.

The result of the promise defined previously can be obtained using its .then() function, as
seen here:

dataPromise()
 .then(data => console.log(`Here is ${data}`));

// Here is some important data!

In the case of failures, promises can also be rejected in a like manner. Here's a promise
definition that throws an error or rejection:

const dataPromise = new Promise((resolve, reject) => reject(new Error('data
failure!')));

Getting Started with Koa Chapter 2

[19]

When retrieving results for the previous promise, the error can be handled with the
.catch() function:

dataPromise()
 .catch(error => console.log(`Data retrieval failed. ${error}`));

// Data retrieval failed. Error: data failure!

Introducing async
Another way to create and resolve promises is to use the async… await syntax. Async is
basically syntactical sugar around the Promise class. The dataPromise promise we
defined earlier with the Promise class can be defined with async as follows:

async dataPromise() {
 return "some important data!";
}

Rejections can also be defined simply by throwing errors within the async function:

async dataPromise() {
 throw new Error('data failure');
}

Introducing await
The await keyword helps us manage promises in a more procedural manner. The await
keyword can be only used inside an async (asynchronous) function to resolve a promise. It
helps us resolve promises just like the .then() function we saw earlier. Async... await
is the cleanest way to control the flow of a modern asynchronous JavaScript application. An
example can be seen here:

async function getPostCategory() {
 const postId = 123;
 const post = await Post.findById(postId);
 return post.category;
}

Getting Started with Koa Chapter 2

[20]

The preceding code block is essentially the same as the one shown here, using the .then()
function:

function getPostCategory() {
 const postId = 123;

 return Post.findById(postId).then(post => {
 return post.category;
 });
}

Note: The await keyword can only be used in async functions.

As seen in the preceding code examples, using async and await, we are able to clearly
follow the flow of data in an asynchronous application. Koa takes advantage of this,
hence making middleware definition and error handling much easier.

Installing Koa
To install Koa, you need to have the following installed locally:

Node (preferably > 7.6): This can be obtained from the Node homepage (https:/
/nodejs. org/ en).
NPM: This is the official package manager for JavaScript and is usually installed
along with the Node installation.

With Node and NPM installed, you only need to run this command on your Terminal to
install Koa to your application:

npm install Koa

Note: If you are using an npm of 5 and above, you do not need to use the
--save flag to save installs as dependencies in your package.json. If
you are using a lesser version, you will need to add the flag. You can also
simply run npm i koa to install Koa and save it as a dependency in
newer versions of npm.

https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/

Getting Started with Koa Chapter 2

[21]

Using Babel
If you're using an older version of Node (< 7.6), you will need to use a transpiler such as
Babel to make async functions compatible with your version of Node. Koa recommends
using Babel's require hook, as seen in the example in the following code snippet (https:/ /
babeljs.io/docs/ en/ babel- register/):

require('babel-register');

// require the rest of the app that needs to be transpiled after the hook

const app = require('./app');

You can then install the transforms you would need, depending on your version of Node. If
you are using V6 of Node, you would not need most of the transforms, since it already
supports a lot of ES6 features. At the minimum though, you would need the transform-
async-to-generator plugin. You can define this in your .babelrc file, as follows:

{
 "plugins": ["transform-async-to-generator"]
}

According to the Koa documentation, you can also use the env preset with a target
option "node": "current" instead.

Starting a server in Koa
To get started with starting a server in Koa, we should first create a project directory and
enter that directory. We can do so with the following commands:

mkdir koa-server
cd koa-server

Next, we initialize a project in npm with the following command:

npm init

After running this command, follow the prompts to help create a package.json file for
your project.

https://babeljs.io/docs/en/babel-register/
https://babeljs.io/docs/en/babel-register/
https://babeljs.io/docs/en/babel-register/
https://babeljs.io/docs/en/babel-register/
https://babeljs.io/docs/en/babel-register/
https://babeljs.io/docs/en/babel-register/
https://babeljs.io/docs/en/babel-register/
https://babeljs.io/docs/en/babel-register/
https://babeljs.io/docs/en/babel-register/
https://babeljs.io/docs/en/babel-register/
https://babeljs.io/docs/en/babel-register/
https://babeljs.io/docs/en/babel-register/
https://babeljs.io/docs/en/babel-register/
https://babeljs.io/docs/en/babel-register/
https://babeljs.io/docs/en/babel-register/

Getting Started with Koa Chapter 2

[22]

You can run npm init –y to create a package.json file for your project
with default values.

Next, we can install Koa to our project with the following command:

npm i koa

Now that we have Koa installed, we can create our server file. Let's call the file index.js.
If you are using a Unix-based operating system such as Linux or macOS, you can create the
file with the following command:

touch index.js

This file will serve as the entry point to our application, and we will write the main logic for
our simple server in this file. Using your code or text editor of choice, write the following
into the index.js file:

// ./index.js

const Koa = require('koa');
const app = new Koa();

app.use(async ctx => {
 ctx.body = 'Hello World';
});

app.listen(1234, () => {
 console.log('Server is running on port 1234')
});

In the preceding code snippet, first, we require the needed Koa application class and assign
it to the Koa variable. Next, we initialize a new Koa application instance with new Koa()
and assign it to app. One interesting thing we see next is the definition of a simple
middleware.

The middleware we define simply sends back the text Hello World as a response to every
request. We define the middleware using the .use() method available in Koa. The .use()
method accepts the middleware function as its only argument. The middleware function
also takes the context object (defined as ctx) as its only argument, which it uses to process
requests and send responses. It specifically uses the context.body method to send the
Hello World response. If you feel a little lost at this point, don't worry. We will discuss
more Koa core concepts and the context object in Chapter 3, Koa Core Concepts.

Getting Started with Koa Chapter 2

[23]

Finally, we start the server with the app.listen() function, which takes the port to run
the server as its first argument. In our case, we defined 1234 as the port to run our server
on. The second argument is a callback function, which is called once the server starts.

We can now start the app with the following command:

node index.js

This starts our server, and if we visit http://localhost:1234, we will see the Hello
World response. We can also test this in the Terminal using the curl command:

curl -i http://localhost:1234

It should send back a response similar to this:

HTTP/1.1 200 OK
Content-Type: text/plain; charset=utf-8
Content-Length: 11
Connection: keep-alive
Hello World

Summary
In this chapter, we learned about Node and how asynchrony in JavaScript works. We also
learned about the different ways asynchronous actions in JavaScript are handled, including
the async… await syntax.

After the primer, we dug into writing some code and started a very light server in Koa. This
showed us the prerequisites of Koa, how to install the framework, and how to get started
on it.

In the next chapter, we will learn about the core concepts of Koa. We will learn about the
application, context, request, and response objects in Koa. We will also learn how to create
and use middleware. We will go into details about Koa's philosophy and show readers how
the different parts of the framework work.

3
Koa Core Concepts

In this chapter, we will learn about core concepts in Koa, including the application and
context objects. We will also dig further into the context object that houses the request and
response objects. We will see how Koa provides methods around its request and response
facilities.

The concept of middlewares in Koa will also be properly discussed in this chapter. We will
introduce and explain middleware definition and functionality in Koa. We will use code
examples to show clearly how the flow of logic with middleware works in Koa.

The topics we will cover in the chapter include the following:

The application object
The context object
The request object
The response object
Middleware

Technical requirements
You need the following installed locally:

Node.js (>= v7.6.0) and NPM: You can find download and installation
instructions for this on the Node.js official website (https:/ / nodejs. org/ en/).
MongoDB: This is one of the most popular NoSQL databases in the world. It is
open source, and you can find download instructions on its official website
(https:/ / www. mongodb. com/) as well.

If you use macOS, you can make use of the Homebrew package manager to install Node.js
and MongoDB easily.

https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/

Koa Core Concepts Chapter 3

[25]

The code files of this chapter can be found on GitHub:
https://github.com/ PacktPublishing/ Server- Side- development- with- Node. js- and-
Koa.js-Quick-Start- Guide/ tree/ master/ Chapter03

Check out the following video to see the code in action:
http://bit.ly/2QssJ2J

The application object
The application object in Koa is an object containing the Koa application instance. It also
contains a list of the middleware functions in the application. It is responsible for managing
and executing the middleware in a cascaded manner. It is also responsible for managing
some key aspects of the application, as we will soon see in some of the following examples.
Here is an excerpt from the Koa official documentation:

"A Koa application is an object containing an array of middleware functions which are
composed and executed in a stack-like manner upon request. Koa is similar to many other
middleware systems that you may have encountered such as Ruby's Rack, Connect, and so
on—however, a key design decision was made to provide high level sugar at the otherwise
low-level middleware layer. This improves interoperability, robustness, and makes writing
middleware much more enjoyable."

The application object also exposes methods for common tasks such as content-negotiation,
cache freshness, proxy support, and so on. A useless Koa application that runs on port
1234 can be easily created in just a few lines of code, as shown here:

const Koa = require('koa');
const app = new Koa();

const port = 1234;
app.listen(port, () => {
 console.log(`The app is running on port ${port}`);
});

In the preceding application, the application object is referenced by the app variable by
instantiating the application with new Koa(). We then use the application object to start
the server with app.listen(), one of the various methods exposed on the application
object.

https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter03
http://bit.ly/2QssJ2J

Koa Core Concepts Chapter 3

[26]

Useful application methods
As mentioned earlier, the application object exposes some methods to make development
easier and make some tasks easier to do. In this section, we will discuss some of the
methods available in the application method:

app.listen(...): The app.listen() method is used to create and return an
HTTP Server. It is syntactical sugar around the native Node server.listen()
method. It can be used as seen here:

 const Koa = require('koa');
 const app = new Koa();
 app.listen(3000);

The preceding code block is essentially the same as the following one:

const http = require('http');
const Koa = require('koa');
const app = new Koa();
http.createServer(app.callback()).listen(3000);

One or more Koa applications can be mounted on the same HTTP server, as creating a Koa
application does not directly map to starting a server. Here is an example where a single
Koa application is started as HTTP and HTTPS on two different ports:

const http = require('http');
const https = require('https');
const Koa = require('koa');
const app = new Koa();
http.createServer(app.callback()).listen(3000);
https.createServer(app.callback()).listen(3001);

app.callback(): The app.callback() method returns a callback function to
be used by the http.createServer() method for handling a request. Its usage
can be seen in the preceding examples, when we start a simple Koa app with the
http.createServer() or https.createServer() methods.

app.use(function): This is used for registering middleware to the application.
It is similar to the app.use() method implemented in Express. It takes the
middleware function as its only argument.

Koa Core Concepts Chapter 3

[27]

A simple middleware for logging the time a request is made can be defined with
app.use() as seen here:

app.use(async ctx => {
 const currentDateTime = new Date().toLocaleString();
 console.log(`${ctx.method} request made to ${ctx.url} at
${currentDateTime}`;
 await next();
});

app.keys=: This is used to set signed cookie keys. The keys are passed to
KeyGrip, and can be set in the following ways:

 app.keys = ['first secret key', 'second secret key']; // passing
 an array of keys

 app.keys = new KeyGrip(['first secret key', 'second secret key'],
 'sha256'); // passing KeyGrip instance

Keygrip is a library for signing and verifying data through a rotating credential system in
Node.js. With KeyGrip, new server keys can be added and old ones removed regularly,
without invalidating the client credentials.

Passing the KeyGrip instance as opposed to passing in an array of keys to app.keys= gives
you the flexibility to set other options such as the hmacAlgorithm and encoding for your
signed keys. The documentation for KeyGrip and what these options mean can be found
here: https://www. npmjs. com/ package/ keygrip.

The keys may be rotated and are used when signing cookies with the signed: true
option:

context.cookies.set('color', 'red', { signed: true });

app.context: This is the prototype from which the context object (usually
referred to as ctx) is created. It can be used to append more methods to the
context object, so as to make them available throughout your application. This
can be seen in this example, where a logger is attached:

 app.context.logger = logger();

 app.use(async ctx => {
 ctx.logger.info('Accessing middleware...')
 });

https://www.npmjs.com/package/keygrip
https://www.npmjs.com/package/keygrip
https://www.npmjs.com/package/keygrip
https://www.npmjs.com/package/keygrip
https://www.npmjs.com/package/keygrip
https://www.npmjs.com/package/keygrip
https://www.npmjs.com/package/keygrip
https://www.npmjs.com/package/keygrip
https://www.npmjs.com/package/keygrip
https://www.npmjs.com/package/keygrip
https://www.npmjs.com/package/keygrip
https://www.npmjs.com/package/keygrip
https://www.npmjs.com/package/keygrip

Koa Core Concepts Chapter 3

[28]

Settings
The application settings are properties set on the application instance. The following are
currently supported:

app.env: This defaults to the NODE_ENV or development.
app.proxy: When set to true, proxy header fields will be trusted. This simply
means that the X-Forwarded-* header fields may be trusted.
app.subdomainOffset offset of .subdomains to ignore. Its value is 2 by
default. The use of this can be illustrated with an example taken from the Koa
documentation:

"...if the domain is "tobi.ferrets.example.com": If
app.subdomainOffset is not set, ctx.subdomains is
["ferrets", "tobi"]. If app.subdomainOffset is 3,
ctx.subdomains is ["tobi"]."

The context object
The Koa context object usually referred to as ctx is a combination of Node's request and
response objects into a single object. A new context is created per request. It can be accessed
in a middleware function as the first argument in the function.

It is often referenced in middleware as the ctx identifier, as seen in the following example:

app.use(async ctx => {
 ctx; // context object
 ctx.request; // Request object
 ctx.response; // Response object
});

The context object contains methods and properties which either belong specifically to the
object or are aliases of methods and properties in the request and response objects.

Both the request and response objects will be discussed in detail in later
sections

Koa Core Concepts Chapter 3

[29]

Context object API
The context object exposes various methods and properties to help with HTTP application
development and middleware creation. In this way, Koa varies from its predecessor,
Express, in that the many functions needed for development can be accessed simply via the
context object instead of needing to access the request (req) and response (res) objects
separately.

Some of the methods and properties exposed on the Context object include the following:

ctx.req: This serves as a reference to the request object in Node. Note that this
differs from the Koa request object.

For example, you can access an object containing the request headers by using the
req.headers property, as seen here:

console.log(ctx.req.headers);

// => { host: 'localhost:1234',
// 'user-agent': 'curl/7.54.0',
// accept: '*/*' }

ctx.res: Similar to ctx.req, this serves as a reference to the response object in
Node. Note that bypassing Koa's response handling is not supported by Koa
currently. Hence, Node response methods that directly attempt to write or
manipulate the response body should be avoided, such as the following:

res.statusCode

res.writeHead()

res.write()

res.end()

The ctx.res object can be used in the following manner:

ctx.res.setHeader('Content-Type', 'text/html');

console.log(ctx.res.getHeader('Content-Type'));
// => text/html

Koa Core Concepts Chapter 3

[30]

ctx.request:This is an instance of the Koa request object. It provides access to
all the request related methods and properties needed for HTTP application
development. This object will be discussed in further details in later sections.

The request object can be used, for example, to retrieve the origin of a request, as seen in the
example here:

console.log(ctx.request.origin);

// => http://localhost:1234

ctx.response: This is an instance of the Koa response object. Similar to the Koa
request object, it provides everyday functionality for building out HTTP
applications. It will also be discussed in more detail in later sections of this
chapter.

Here is an example of how you can use the response object to set the HTTP status for a
response in Koa:

ctx.response.status = 200;

console.log(ctx.response.message);
// => Ok

ctx.state: This is the namespace recommend by Koa for passing data
throughout your application. A good use case of this is passing some data across
middleware and to your views, as seen in this example:

 // middleware for retrieving user details
 app.use(async ctx => {
 ctx.state.user = await User.find(id);
 });

 // middleware to send response back to user
 app.use(async ctx => {
 const { user } = ctx.state;
 ctx.body = `Hello, ${user.name}`;
 });

Koa Core Concepts Chapter 3

[31]

ctx.app: This is a reference to the Koa application instance discussed earlier in
this chapter. This reference allows us to make use of the application object in our
middleware. For example, this is a middleware we can use to log information
depending on the environment our application is running in:

 app.use(async (ctx, next) => {
 const { env } = ctx.app;
 if (env === 'development') {
 console.log(`request made to ${ctx.request.url}`);
 }
 await next();
 });

ctx.cookies: This object consists of two methods for interacting with cookies.
Koa uses the cookies module and simply passes the options. The two methods
available for use are:

ctx.cookies.get(name, [options]): This returns the value of
a cookie named name with options.
ctx.cookies.set(name, [options]): This sets cookie name
with options.

These methods can be used in the following manner:

ctx.cookies.set('SESSION_ID', '1234');

// after response has been sent and the
// cookie has been set on the client
console.log(ctx.cookies.get('SESSION_ID'));
// => 1234

ctx.throw([status], [msg], [properties]): This is a helper method that
throws an HTTP error with a status as a response. This makes use of the http-
errors module. Here are some simple example usages of the method:

 ctx.throw(401);
 ctx.throw(401, 'Unauthorized');
 ctx.throw(401, 'Unathourized', { user });

ctx.assert(value, [status], [msg], [properties]): This is a helper
method that throws an error similar to the ctx.throw method when value is a
false value. Koa makes use of http-assert for assertions.

Koa Core Concepts Chapter 3

[32]

ctx.respond: Koa's default response handling can be turned off by explicitly
setting ctx.respond to false. This can be used if a decision is made to
manually write to the res object, instead of utilizing Koa's response handling.
This behavior is currently not supported by Koa and could cause unexpected
results.

Aliases
The context object exposes aliases for common-use properties and methods the request and
response objects. These are present to make development faster and reduce the amount of
code developers need to write.

For example, the .header property that exists in the request object can be accessed directly
from the context object, as seen in the code block as follows:

console.log(ctx.header);

// => { host: 'localhost:1234',
// 'user-agent': 'curl/7.54.0',
// accept: '*/

Similarly, the .body setter that exists in the response object can be accessed directly via the
context object, as seen in the following code block:

ctx.body = 'Hello, World';

These are the aliases present for the Request object:

ctx.header

ctx.headers

ctx.method

ctx.method=

ctx.url

ctx.url=

ctx.originalUrl

ctx.origin

ctx.href

ctx.path

Koa Core Concepts Chapter 3

[33]

ctx.path=

ctx.query

ctx.query=

ctx.querystring

ctx.querystring=

ctx.host

ctx.hostname

ctx.fresh

ctx.stale

ctx.socket

ctx.protocol

ctx.secure

ctx.ip

ctx.ips

ctx.subdomains

ctx.is()

ctx.accepts()

ctx.acceptsEncodings()

ctx.acceptsCharsets()

ctx.acceptsLanguages()

ctx.get()

These are the aliases present for the Response object:

ctx.body

ctx.body=

ctx.status

ctx.status=

ctx.message

ctx.message=

ctx.length=

ctx.length

ctx.type=

Koa Core Concepts Chapter 3

[34]

ctx.type

ctx.headerSent

ctx.redirect()

ctx.attachment()

ctx.set()

ctx.append()

ctx.remove()

ctx.lastModified=

ctx.etag=

The request object
The Koa request object is similar to the request object in Node and Express. It can be
described as an abstraction of Node's request object. It provides added functionality with
its properties and methods for building out everyday HTTP servers.

The methods and properties it exposes include the following:

request.header: This returns an object containing the request headers. This is
aliased in the context object, and can also be accessed with ctx.header. The
following code block shows example usage of how the request.header
property can be used to retrieve and log the headers from a request:

 // log the request headers

 console.log(ctx.header);
 // or
 console.log(ctx.request.header);

request.header=: This can be used to set the request header object. This can
also be accessed with the ctx.header= alias. In the following code block, we
create a middleware to set the request header before passing control to the next
middleware:

 // set request header
 app.use(async (ctx, next) => {
 const header = {
 'accept-encoding': 'gzip'
 // .. other header values
 };
 ctx.request.header = header;

Koa Core Concepts Chapter 3

[35]

 await next();
 });

 // send response back
 app.use(async ctx => {
 console.log(ctx.request.header)
 ctx.body = 'Hello World';
 });

request.headers: This is used to access the request header object. It is an alias
of the request.header property. It can be used in a similar manner to the
request.header property as seen here:

 console.log(ctx.request.headers);

 // => { host: 'localhost:1234',
 // 'user-agent': 'curl/7.54.0',
 // accept: '*/*' }

request.headers=: This is used to set the request header object. It is an alias of
the request.header= method. It can also be used to set request headers as seen
here:

 ctx.request.headers = {
 'accept-encoding': 'gzip'
 };

request.method: This is used to access the request method. This is particularly
useful for situations where you need to decide on whether to carry out an action
based on the HTTP method used. An example can be seen in the code block here:

 app.use(async ctx => {
 const { method } = ctx.request;
 if (method === 'POST') {
 // carry out validation
 }
 });

Koa Core Concepts Chapter 3

[36]

request.method=: This is used to set the request method. A good use case of
this is to implement the popular methodOverrides() middleware. With this,
you can modify request methods to fit what you have defined in your
application. This is especially useful when you have a client that only supports
simple HTTP verbs such as GET and POST. Here is an example of its usage:

 // override request method
 app.use(async (ctx, next) => {
 const { method } = ctx.request.query;
 if (method) {
 ctx.request.method = method;
 }
 await next();
 });

The preceding example code checks whether a custom method type has been passed in the
request query string, then overrides the request to fit the desired method.

request.length: This returns the request Content-Length as a number, or
undefined when the Content-Length is absent. A request with some data in
the request body will show how this property works in the example here:

 // curl -X POST --data "test data" http://localhost:1234

 console.log(ctx.request.length);
 // => 9

request.url: This returns the request URL.

request.url=: This sets the request URL. The following block can be used for
URL rewriting:

 // url rewrite middleware
 app.use(async (ctx, next) => {
 ctx.request.url = '/hello';
 await next();
 });

request.originalUrl: This returns the request original URL. For a simple app
that implements a rewrite to the /hello route, a visit to the base / route would
produce the following results:

 // rewrite url
 app.use(async (ctx, next) => {
 ctx.request.url = '/hello';
 await next();

Koa Core Concepts Chapter 3

[37]

 });

 app.use(async ctx => {
 console.log(ctx.request.url);
 // => /hello
 console.log(ctx.request.originalUrl);
 // => /
 ctx.body = 'Hello World';
 });

request.origin: This returns the origin of URL, including the host and
protocol. For a local app running on port 1234:

 console.log(ctx.request.origin);
 // => http://localhost:1234

request.href: This returns the full request URL with the protocol, host, and
url:

 console.log(ctx.request.href);
 // => http://localhost:1234/?param=1

request.path: This returns the request pathname. An example request
to http://localhost:1234/hello would give the following:

 console.log(ctx.request.path);
 // => /hello

request.querystring: This returns the raw query string without the
prepending ?.
request.querystring=: This sets the request raw query string.
request.search: This returns the request raw query string, along with the
prepending ?.

request.search=: This sets the request raw query string.

request.host: This returns the request host (hostname:port). It supports
the X-Forwarded-Host header when app.proxy is set to true; otherwise, it
defaults to the Host header:

 console.log(ctx.request.host);
 // => localhost:1234

Koa Core Concepts Chapter 3

[38]

request.hostname: This returns the request hostname when present. This also
supports the X-Forwarded-Host header when app.proxy is set to true. If the
host is IPv6, Koa delegates the parsing to the WHATWG URL API (https:/ /
nodejs.org/ dist/ latest- v8. x/ docs/ api/ url.html#url_ the_ whatwg_ url_ api).
Delegating the parsing to the WHATWG URL API may affect performance.

request.URL: This returns the WHATWG (https:/ /nodejs. org/ dist/ latest-
v8.x/docs/ api/ url. html#url_ the_whatwg_ url_ api) parsed URL object.
request.type

This returns the value of the Content-Type header, if present, without parameters such as
charset:

request.charset

This returns the request charset if present. Its default value is undefined:

request.query: This returns the parsed query string from a request. A request
to http://localhost:1234/?param1=1¶m2=2 would give the following:

 console.log(ctx.request.query);
 // => { param1: '1', param2: '2' }

This getter does not support nested object parsing.

request.query=: This method is used to set the query string to a supplied
object:

 ctx.query = Object.assign(ctx.query, { param3: 3 });
 console.log(ctx.request.query);
 // => { param1: '1', param2: '2', param3: '3' }

This setter does not support nested objects.

https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api
https://nodejs.org/dist/latest-v8.x/docs/api/url.html#url_the_whatwg_url_api

Koa Core Concepts Chapter 3

[39]

request.fresh: This is used to check whether the contents of a request cache
have not changed, as shown here:

 // check if cache is fresh
 if (ctx.request.fresh) {
 ctx.status = 304;
 return;
 }

 // cache is stale, return data
 ctx.body = "some data";

request.stale: This is the inverse of the request.fresh method. It checks
whether the contents of a request cache have changed.

request.protocol: This returns the request protocol—http or https. This
supports the X-Forwarded-Host header when app.proxy is set to true.

request.secure: This simply returns a Boolean that is true when the request
protocol is https and false when it's http as shown here:

 // https://example.com
 console.log(ctx.request.secure);
 // => true

 // http://example.com
 console.log(ctx.request.secure);
 // => false

request.ip: This returns the request remote address. This supports X-
Forwarded-Host when app.proxy is set to true.

request.ips: This returns an array of IPs from upstream to downstream, when
the X-Forwarded-Host header is set and app.proxy is set to true. It returns an
empty array otherwise.

request.subdomains: This returns the sub-domains on the request as an array.
A good illustration of the behavior of this getter can be seen in the Koa docs:

"For example, if the domain is "tobi.ferrets.example.com": If
app.subdomainOffset is not set, ctx.subdomains is ["ferrets", "tobi"]. If
app.subdomainOffset is 3, ctx.subdomains is ["tobi"]."

Koa Core Concepts Chapter 3

[40]

request.is(types...): This checks the value of the Content-Type header
and compares it to the values of the types supplied to find a match. If it finds a
match, it returns the matching Content-Type. If no request body is not present,
it returns null. If no Content-Type is present, or the match fails, then it returns
false:

 // With Content-Type as text/html
 console.log(ctx.is('html'));
 // => 'html'
 console.log(ctx.is('text/html'));
 // => 'text/html'
 console.log(ctx.is('text/*', 'text/html'));
 // => 'text/html'

Content negotiation
The Koa request object includes some helper methods for content negotiation, powered
by accepts and negotiator. These include the following:

request.accepts(types...): This checks whether the given types are
acceptable, then returns the best match when true. It returns false if the types are
not acceptable. The types value may be a comma separated list of mime type
strings or extension names, or an array. This is shown in the following block:

 // Accept: text/*, application/json
 ctx.accepts('text/html');
 // => "text/html"
 ctx.accepts(['html', 'json']);
 // => "json"
 ctx.accepts('png');
 // => false

request.acceptsEncodings(encodings): This checks whether the
encodings supplied are acceptable and returns the best match when true. It
returns false when no match exists. It returns all the accepted encodings as an
array when no argument is given, as shown here:

 // Accept-Encoding: gzip, deflate, br
 ctx.acceptsEncodings()
 // => ['gzip', 'deflate', 'br', 'identity']

Koa Core Concepts Chapter 3

[41]

request.acceptsLanguages(langs): This checks whether the langs
supplied are accepted and returns the best match when true. It returns false
when no match exists. It returns all the accepted languages as an array when no
argument is given:

 // Accept-Language: en-US,en;q=0.9,cy;q=0.8

 console.log(ctx.acceptsLanguages('en'));
 // => en

 console.log(ctx.acceptsLanguages('en', 'cy'));
 // => en
 console.log(ctx.acceptsLanguages(['en', 'cy']));
 // => en

 ctx.acceptsLanguages();
 // => ['en-US', 'en', 'cy']

 console.log(ctx.acceptsLanguages('es'));
 // => false

request.idempotent: This returns a Boolean specifying whether the request is
idempotent or not.

A request is idempotent if multiple identical requests with that method
have the same effect on the server as the effect for a single such request.

request.socket: This returns the request socket.

request.get(field): This returns the request header value for a specified
field:

 // Accept-Language: en-US,en;q=0.9,cy;q=0.8

 ctx.request.get('Accept-Language');
 // => en-US,en;q=0.9,cy;q=0.8

The response object
The Koa response object is an abstraction of Node's response object. Like the request object,
it provides added functionality with its properties and methods for building out everyday
HTTP servers.

Koa Core Concepts Chapter 3

[42]

The methods and properties it exposes include the following:

response.header: This returns the response header object.

response.headers: This returns the response header object. It is an alias of
response.header.

response.socket: This returns the request socket.

response.status: This returns the response status code, which is 404 by
default. This is in contrast to Vanilla Node, where the default status for
res.statusCode is 200.

response.status=: This is used to set the response status code to a valid HTTP
numeric status code.

response.message: This returns the response status message. By default, this is
associated with the response.status:

 ctx.response.status = 202;
 console.log(ctx.response.message);
 // => Accepted

response.message=: This is used to set the response status message to the
supplied value.

response.length=: This is used to set the response Content-Length header
value to the given value.

response.length: This returns the Content-Length as a number when
available. It can also return the length by evaluating the content from the
ctx.body when possible. It returns undefined when both the Content-Length
and ctx.body are unavailable.

response.body: This returns the response body. Popularly aliased as
ctx.body.

response.body=: This sets the response body to one of the following:
String
Buffer
Stream
Object/Array
Null

Koa Core Concepts Chapter 3

[43]

response.get(field): This returns the value of the field header. The field
comparison is case-insensitive, as shown:

 ctx.body = 'Hello World';
 console.log(ctx.response.get('content-length'));
 // => 11

response.set(field, value): This is used to set the response header field
to a defined value as shown here:

 ctx.set('Content-Language', 'en');

response.append(field, value): This appends an additional header field
with a value.

response.set(fields): This sets several response header fields as an object
as shown:

 ctx.set({
 'Content-Language': 'en',
 'Retry-After': 120
 });

response.remove(field): This removes a header field.

response.type: This returns the response Content-Type.

response.type=: This sets the Content-Type via mime string or file extension.

response.is(types...): This checks whether the response type is one of the
types specified.

response.redirect(url, [alt]): This performs a 302 permanent redirect to
a specified url. The string back provides referrer support. When the referrer is
not present, alt or / is used.

To alter the default 302 status, assign the status before or after the redirect call. To alter the
response body, assign it after the call:

ctx.response.status = 301;
ctx.redirect('back');
ctx.body = "redirecting you to the previous page...";

Koa Core Concepts Chapter 3

[44]

response.attachment([filename]): This sets the Content-Disposition to
attachment and optionally specifies the filename. Setting the Content-
Disposition to attachment readies the client to receive the response as a
download.
response.headerSent: This returns a Boolean specifying if a response header
has already been sent.

response.lastModified: This returns the Last-Modified header as a Date if
it exists.

response.lastModified=: This sets the last-modified to a UTC string. This
method can either be supplied a Date object or a simple date string.

response.etag=: This sets the ETag header to a specified value.

response.vary(field): This is used to set the value of the Vary header to a
specified field.

response.flushHeaders(): This method flushes any set headers and begins
the response body.

Middleware
Middleware functions are a common concept in modern web development. A middleware
function is one that has access to both the request and response objects in an application
and can run the subsequent middleware after it is processed.

Middleware creation and registration in Koa is straightforward and is one of the reasons
the framework is so widely adopted.

Cascading in Koa
Koa takes advantage of async functions to make middleware functions run in a truly
cascaded fashion. The registered middlewares run in a stack-like manner and run from one
level to the other until there is no other middleware to run.

Koa Core Concepts Chapter 3

[45]

The use of async functions is an improvement over other frameworks that have tried to
implement stack-like middleware, as callbacks in Node made it much harder. Koa contrasts
Connect, for example, in that Connect simply passes control through a series of functions
until one returns. In Koa, the middleware functions are invoked downstream, and the
control flows back upstream.

Here is an example from the Koa documentation showing the use of middleware:

const Koa = require('koa');
const app = new Koa();

// logger
app.use(async (ctx, next) => {
 await next();
 const rt = ctx.response.get('X-Response-Time');
 console.log(`${ctx.method} ${ctx.url} - ${rt}`);
});

// x-response-time
app.use(async (ctx, next) => {
 const start = Date.now();
 await next();
 const ms = Date.now() - start;
 ctx.set('X-Response-Time', `${ms}ms`);
});

// response
app.use(async ctx => {
 ctx.body = 'Hello World';
});

app.listen(3000);

In the preceding code block, the request first flows through the logger middleware, and
then the x-response-time middleware, which marks when the request started, and
finally the response middleware, which sends the Hello World response. When a
middleware calls next(), the middleware function suspends and passes control to the next
middleware defined. Once no other middleware exists to execute downstream, the stack
will unwind and each middleware is resumed to perform its upstream behavior.

Koa Core Concepts Chapter 3

[46]

Defining middleware
Defining a middleware function in Koa involves creating an asynchronous function with
two arguments—the context object (ctx), and the next method (next), which invokes the
next middleware function to be called. This is similar to the way middleware functions are
defined in Express. One major difference in their approach is that Koa implements the
context object in place of the individual request (req) and response (res) objects provided
by Node. Another difference is that Koa makes use of the async... await paradigm in
place of callback functions.

Let's define a simple middleware to log how long it takes our application to process
requests. In the following code block, we define a middleware function, and in the next
section, we will register it and get to see it in action:

const responseTimer = async (ctx, next) => {
 const { method, path } = ctx.request;
 const start = Date.now();
 await next();
 const timeTaken = (Date.now() - start) / 1000; // divide by 1000 to get
time in seconds
 console.log(`${method} request to ${path} took ${timeTaken}s`);
};

Registering middleware
Registering middleware in Koa is done with the .use() method found in the application
object. To register the middleware defined in the previous section:

app.use(responseTimer);

Ensure you pass in the function reference when registering the
middleware, and not call the function instead. A common mistake is to
pass in responseTimer() instead of responseTimer.

Next, we can define and register a middleware to send a response back for every route as
shown here:

// ...

app.use(async ctx => {
 ctx.body = 'Hello World';
});

Koa Core Concepts Chapter 3

[47]

The complete application will look like this:

// koa-middleware.js

// initialize Koa
const Koa = require('koa');
const app = new Koa();

// create middleware function
const responseTimer = async (ctx, next) => {
 const { method, path } = ctx.request;
 const start = Date.now();
 await next();
 const timeTaken = (Date.now() - start) / 1000; // divide by 1000 to get
time in seconds
 console.log(`${method} request to ${path} took ${timeTaken}s`);
};

// register middleware
app.use(responseTimer);

// send response back
app.use(async ctx => {
 ctx.body = 'Hello World';
});

// start application
app.listen(1234, () => {
 console.log('Server is running on port 1234')
});

Next, we can run the app with the following command:

node koa-middleware.js

Making a request to an endpoint on the application would produce logs such as this on
your console:

GET request to / took 0.023s
GET request to /robots.txt took 0s

Koa Core Concepts Chapter 3

[48]

Common middleware
Some common middleware used in everyday application development in Koa includes the
following:

koa-router: RESTful resource router for Koa
koa-connect: For mounting connect/express middleware
kcors: For CORS support
koa-body: For parsing HTTP request body
koa-logger: Development style logger for Koa

A comprehensive list of supported middleware can be found on Koa's middleware wiki.

Summary
In this chapter, we took a comprehensive look into the inner workings of Koa with a focus
on its context, request, and response objects. We learned about the APIs for these objects
and the methods and properties that they expose.

We also discussed middleware functions in Koa. We learned how to create and register
middleware functions. We also looked into some popular middleware already available in
the Koa ecosystem.

In the next chapter, we will learn about errors in Koa and discuss the best methods for error
handling.

https://github.com/koajs/koa/wiki#middleware

4
Handling Errors in Koa

Error handling describes how your application responds to errors that occur in your
application. It is an important part of software development; hence, developers spend a lot
of time trying to handle errors properly. It is important to note that these errors may either
be asynchronous or synchronous. Proper error handling by developers makes use of their
applications more seamless.

Koa's use of asynchronous functions makes error handling easier than it is in other Node
frameworks, which implement callbacks.

In this chapter, we will learn about error handling in Koa and how we can take advantage
of the tooling in Koa for proper error handling. Some of the things we will learn in this
chapter include the following:

Catching errors in Koa
The error event and listener
Throwing HTTP errors
Writing error handlers

Technical requirements
Similarly to the previous chapter, to follow along with this chapter, you need the following
installed locally:

Node.js (>= v7.6.0) and NPM: You can find download and installation
instructions for this on the Node.js official website (https:/ / nodejs. org/ en/).
MongoDB: This is one of the most popular NoSQL databases in the world. It is
open source, and you can find download instructions on its official website
(https:/ / www. mongodb. com/) as well.

If you use macOS, you can make use of the Homebrew package manager to install Node.js
and MongoDB easily.

https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/

Handling Errors in Koa Chapter 4

[50]

The code files of this chapter can be found on GitHub:
https://github.com/ PacktPublishing/ Server- Side- development- with- Node. js- and-
Koa.js-Quick-Start- Guide/ tree/ master/ Chapter04

Check out the following video to see the code in action:
http://bit.ly/2P8pfxv

Catching errors in Koa
One of the great things about error handling in Koa is that, by default, the framework
handles all errors, either asynchronous or synchronous. This is made possible by the fact
that Koa has a cascading middleware stack and an error handler can be added at the very
top of the stack, which will unwind last. This makes it possible for Koa to handle all
uncaught errors in applications by default.

Koa's default behavior is to output all errors to stderr unless app.silent is set to true.

To catch errors that occur in Koa, you can define an error-handling middleware to run as
one of the first middleware. This is in contrast to Express, where error-handling
middleware has to be defined as the last in the stack, with the signature (err, req, res,
next).

In Koa, error-handling middleware can be defined as any other middleware, with the
notable exception that it has to be registered as one of the first middleware. This ensures
that the handler catches all errors in subsequent middleware.

A simple handler can be defined as seen as follows:

// catch all error in preceding middleware
app.use(async (ctx, next) => {
 try {
 await next();
 } catch(err) {
 ctx.status = err.status || 500;
 ctx.body = err.message;
 }
});

// throw error in response middleware
app.use(async ctx => {
 throw new Error('An error occurred');
 ctx.body = 'Hello, world';
});

https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter04
http://bit.ly/2P8pfxv
http://bit.ly/2P8pfxv
http://bit.ly/2P8pfxv
http://bit.ly/2P8pfxv
http://bit.ly/2P8pfxv
http://bit.ly/2P8pfxv
http://bit.ly/2P8pfxv
http://bit.ly/2P8pfxv
http://bit.ly/2P8pfxv

Handling Errors in Koa Chapter 4

[51]

In the code block, first, we define and register a middleware that wraps the call to the next
middleware function in a try block. Hence, all errors that are thrown in subsequent
middleware cascade up and will flow into the corresponding catch block.

Running the preceding code in a Koa app and visiting any route in the app will write a text
response back to the client with the An error occurred message:

curl http://localhost:1234

// => An error occurred

Koa makes it possible to use simple try... catch statements for error handling, unlike in
Express where the error in asynchronous functions has to be explicitly passed to the next
middleware, using the next() method.

Errors can also be caught and transformed by implementing error-handling middleware.
This is particularly useful for transforming errors of a particular kind and can help to
reduce multiple try... catch statements. Here is an example of this use case:

app.use(async (ctx, next) => {
 try {
 await next();
 } catch(err) {
 if (err.status === 409 || err.statusCode === 409) {
 err.message = "Conflict with current data exists!"
 }
 throw err;
 }
});

In the preceding example, the error is modified and throw again to be handled by Koa's
default response handler.

Koa's default error handler
Koa implements a default error handler, which works well for many situations. It is
essentially middleware with a try...catch statement defined at the very top of the Koa
middleware stack. If no other error handler is defined, all errors thrown when the
application is running will flow into Koa's default error handler.

The default handler uses the status code of err.status when available, else it uses 500
(for Internal Server Error). It also sends back err.message as the response if
err.expose is set to true.

Handling Errors in Koa Chapter 4

[52]

If err.expose is set to false, then it generates a message from the error code of the error
thrown. For example, for the 400 Bad Request error, the message generated will be
Invalid Request.

When sending back a response, the default error handler clears all headers, except for the
ones present in err.headers. We can set headers for errors using a try...
catch statement in another middleware, as seen here:

app.use(async (ctx, next) => {
 try {
 await next();
 } catch(err) {
 if (err.status === 503) {
 err.headers = Object.assign({}, err.headers, {
 'Retry-After': 30
 });
 }

 throw err;
 }
});

The preceding code shows how we set the Retry-After header value for 503 Service
Unavailable errors.

When an error occurs, and it is still possible to respond back to the client (no data has been
written to the socket), as expected, Koa responds with 500 Internal Server Error.
Either way, the error event is still emitted.

Emitting errors
It is recommended that you emit an error on the application itself. This is useful for
centralized error reporting or logging. This also helps to retain the default behavior of Koa
for errors. Errors can be emitted using the ctx.app.emit() method:

app.use(async (ctx, next) => {
 try {
 await next();
 } catch (err) {
 ctx.status = err.status || 500;
 ctx.body = err.message;
 ctx.app.emit('error', err, ctx);
 }
});

Handling Errors in Koa Chapter 4

[53]

Error event listener
Error event listeners can be defined with app.on('error'). They are particularly useful
for centralized logging and error reporting. The error listeners receive all errors that are
thrown in the middleware chain, except the ones that are caught and are neither rethrown
or emitted using app.emit(). To define an error handler, refer to this code:

app.on('error', err => {
 // log errors
 console.error("server error", err);
});

If no event listener is defined, then app.onerror is used. This simply outputs the error to
stdout unless app.silent is true, err.status is 404, or err.expose is set to true.

If an error is thrown in the middleware chain and it is not possible to respond to the client,
the context object is also passed to the event listener:

app.on('error', (err, ctx) => {
 console.error("server error", err, ctx);
});

It is important to note that these are user-level errors and are therefore safe to expose to the
user (err.expose is set to true). This is usually not the case for all error messages,
especially with 50x errors, where we do not want to show the client sensitive information
from failures.

Throwing HTTP errors
Koa provides a helper method for easily throwing errors with appropriate HTTP status
codes. It uses http-errors for error creation. The ctx.throw() method throws an error
with a .status property, which is 500 (Internal Server Error) by default. This error
with the status property enables Koa to respond properly when different errors occur. The
method has the signature, ctx.throw([status], [error], [properties]). The
following different usages are permitted:

ctx.throw(401);
ctx.throw(401, 'Access denied to the resource');
ctx.throw(401, 'Access denied to the resource', { user });

Handling Errors in Koa Chapter 4

[54]

Throwing ctx.throw(401, 'Access denied to the resource'), for example, is
shorthand for the following:

const err = new Error('Access denied to the resource');
err.status = 401;
err.expose = true;
throw err;

It is important to note that these errors are OK for sending to the user, meaning
err.expose is set to true. This is usually not the case, especially for 50x errors, where we
would not want sensitive details about our app failures to be shown to users, who could
possibly be malicious.

The .throw() method also optionally take a properties object that is merged into the error
as is. This can be used for passing extra information, which is reported to the requested
upstream and can also be used for creating better error messages:

app.use(async ctx => {
 ctx.throw(401, 'Access denied to the resource', { user });
});

The error thrown in the preceding code block can be used for creating better error
messages, as seen in the following example:

app.use(async (ctx, next) => {
 try {
 await next();
 } catch(err) {
 ctx.body = err.message;
 if (err.status === 401) {
 const { email } = err.user;
 ctx.body = `user with email ${email} does not have access to
 resource`;
 }
 }
});

Handling Errors in Koa Chapter 4

[55]

Note that you can only throw error status codes. These include 4xx and
5xx status code.

Here is a list of the supported status codes:

400: Bad Request
401: Unauthorized
402: Payment Required
403: Forbidden
404: Not Found
405: Method Not Allowed
406: Not Acceptable
407: Proxy Authentication Required
408: Request Timeout
409: Conflict
410: Gone
411: Length Required
412: Precondition Failed
413: Payload Too Large
414: URI Too Long
415: Unsupported Media Type
416: Range Not Satisfiable
417: Expectation Failed
418: I'm A Teapot
421: Misdirected Request
422: UnprocessableEntity
423: Locked
424: FailedDependency
425: Unordered Collection
426: Upgrade Required
428: Precondition Required
429: Too Many Requests

Handling Errors in Koa Chapter 4

[56]

431: Request Header Fields Too Large
451: Unavailable For Legal Reasons
500: Internal Server Error
501: Not Implemented
502: Bad Gateway
503: Service Unavailable
504: Gateway Timeout
505: HTTP Version Not Supported
506: Variant Also Negotiates
507: Insufficient Storage
508: Loop Detected
509: Bandwidth Limit Exceeded
510: Not Extended
511: Network Authentication Required

Note that 5xx status code errors do not expose the error message to the
response body in Koa.

Writing error handlers
To register custom error handlers in Koa, we simply need to define middleware with
a try... catch statement to capture the errors, then send responses back to the client.
This should be done at the top of the stack.

We can define error handlers based on various requirements to handle different types of
errors for different types of clients. These error handlers can be used independently or
combined, depending on the needs of the application. Let's define a set of error handlers
and register them in our application:

const jsonErrorHandler = async (ctx, next) => {
 try {
 await next();
 } catch (err) {
 const isJson = ctx.get('Accept') === 'application/json';
 if (isJson) {
 ctx.body = {
 error: 'An error just occurred'
 }

Handling Errors in Koa Chapter 4

[57]

 } else {
 throw err;
 }
 }
}

app.use(jsonErrorHandler);

The first error handler defined is for catching errors on Ajax requests or requests that only
accept JSON responses.

Next, we can define a catch-all error handler. This can be substituted with an error page in
a real-life application:

const errorHandler = async (ctx, next) => {
 try {
 await next();
 } catch (err) {
 ctx.status = err.status || 500;
 ctx.body = err.expose ? err.message : 'An error occurred!';
 }
}

app.use(errorHandler);

Putting both error handlers together, they will look like the code block below:

// define generic error handler
const errorHandler = async (ctx, next) => {
 try {
 await next();
 } catch (err) {
 ctx.status = err.status || 500;
 ctx.body = err.expose ? err.message : 'An error occurred!';
 }
}

// register generic error handler middleware
app.use(errorHandler);

// define json request error handler
const jsonErrorHandler = async (ctx, next) => {
 try {
 await next();
 } catch (err) {
 const isJson = ctx.get('Accept') === 'application/json';
 if (isJson) {
 ctx.status = err.status || 500;

Handling Errors in Koa Chapter 4

[58]

 ctx.body = {
 error: `An error just occurred`
 }
 } else {
 throw err;
 }
 }
}

// register json error handler middleware
app.use(jsonErrorHandler);

Note: We register the generic handler first, as it will be the last
middleware to be executed as the middleware stack unwinds.

Summary
In this chapter, we have learned how error handling in Koa works out of the box. We have
learned, with code examples, how to define and register our own custom error-handling
middleware. We also learned about the error event in Koa and how to define listeners for
centralized logging and other purposes.

The use of async... await in Koa makes error handling a lot easier than in traditional
middleware-based frameworks, as we simply have to define try... catch statements to
do most of the heavy lifting.

Proper error handling is a must-have for almost all applications going into production. This
is another reason why Koa is such a great choice for production-grade HTTP applications.

In the next chapter, we will be building a Koa application from scratch, and we will utilize
all the information we have learned from the previous lessons.

5
Building an API in Koa

Web application programming interfaces (APIs) have become more and more popular, as
more people have started to recognize the need to separate their server-side applications
from their client-side applications. APIs give developers the opportunity to offer the same
web services to multiple clients, while also reducing the coupling between their systems.

In this chapter, we will build a REST API using Koa. We will make use of the different Koa
concepts that we covered in the previous chapters in order to build a full-fledged API.

The API that we will build will be for managing contacts. We will be able to perform create,
read, update, and delete (CRUD) operations on contacts in our database via the API. We
will persist and retrieve data to and from a MongoDB database, using Mongoose. We will
also make use of Nodemon to debug our applications, and Postman to test our APIs.

Through building the API, you will learn about the following topics:

How to build a CRUD service in Koa
How to send JSON data back as a response
How to structure an API in Koa
How to implement logging for all requests that are made
How to set up routing in a Koa application
How to retrieve and process request body data in Koa
How to implement validation in Node APIs
How to define and implement custom middleware in a real-world application

All of the code written in this chapter uses the modern JavaScript ES6
syntax.

Building an API in Koa Chapter 5

[60]

Technical requirements
To follow along with this chapter, you will need the following installed on your local
machine:

Node.js (version 7.6.0, or higher) and NPM: You can find download and
installation instructions on the Node.js official website (https:/ /nodejs. org/ en/
).
MongoDB: This is one of the most popular NoSQL databases in the world. It is
open source, and you can find download instructions on its official website, as
well (https:/ / www. mongodb. com/).
Postman: This is a tool for testing web APIs. It is available for download on
different platforms (https:/ / www. getpostman. com/ apps).

Note: If you use macOS, you can make use of the Homebrew package
manager to easily install Node.js and MongoDB.

The code files of this chapter can be found on GitHub:
https://github.com/ PacktPublishing/ Server- Side- development- with- Node. js- and-
Koa.js-Quick-Start- Guide/ tree/ master/ Chapter05

Check out the following video to see the code in action:
http://bit.ly/2zveHnq

Project setup
Once we have all of the prerequisite software installed, we can start to develop our project
locally. The first thing that we need to do is initialize our Node.js project.

Initialization
Most modern JavaScript projects and packages have a package.json file. This file specifies
various metadata about the project, including the following:

Dependencies
Descriptions
Repository information

https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://nodejs.org/en/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.getpostman.com/apps
https://www.getpostman.com/apps
https://www.getpostman.com/apps
https://www.getpostman.com/apps
https://www.getpostman.com/apps
https://www.getpostman.com/apps
https://www.getpostman.com/apps
https://www.getpostman.com/apps
https://www.getpostman.com/apps
https://www.getpostman.com/apps
https://www.getpostman.com/apps
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter05
http://bit.ly/2zveHnq
http://bit.ly/2zveHnq
http://bit.ly/2zveHnq
http://bit.ly/2zveHnq
http://bit.ly/2zveHnq
http://bit.ly/2zveHnq
http://bit.ly/2zveHnq
http://bit.ly/2zveHnq
http://bit.ly/2zveHnq

Building an API in Koa Chapter 5

[61]

Config information
Common scripts

To initialize our project and create a package.json file, we will run the following
command:

npm init

After running the command, a prompt will show up, asking us to fill in some details about
the project.

Note: To initialize a project with default values, you can run the
npm init command with the -y flag: npm init -y.

Installing dependencies
To run our application properly, we need some external dependencies. We can get these
dependencies by using a package manager, like npm or yarn.

Some of the packages that we need are as follows:

koa: Our base framework
koa-router: RESTful routing middleware for Koa
koa-logger: Development-style logger middleware for Koa
koa-body: Request body parser middleware for Koa
mongoose: Object data modelling (ODM) library for MongoDB and Node.js
joi: Object schema validation library

To install these dependencies into our application using npm, we use the following
command:

npm install --save koa koa-router koa-logger koa-body mongoose joi

The --save flag specifies that we want to save these packages as dependencies in our
package.json file.

Building an API in Koa Chapter 5

[62]

With newer versions of npm, you do not need to specify the --save flag
for installed packages to be added as dependencies in the
package.json file. You can simply install and save dependencies with
npm install or npm i.

Structure
We will structure our application in a simple and modular manner, following a slight
modification of the MVC architectural pattern.

We will create controllers in a controllers folder, which will house the business logic for
our application. Our data objects will also sit in a similarly named models folder. We will
also create a middleware folder to house our application's middleware functions.

An index.js file will be created to serve as the entry point for our server. We will load up
the required dependencies, configure our middleware, and start our server from this file.

To create the required folders, we can run the following command in the Terminal:

mkdir controllers middleware models

To create the entry point file, we can run the following command in the Terminal:

touch index.js

After initialization, and having created the required folders and files, the structure should
look as follows:

├── controllers
├── index.js
├── middleware
├── models
├── package-lock.json
└── package.json

Building the application
In this section, we will get right into the code and start to build our application. We will
need to follow these steps:

Starting the server1.
Connecting to a database2.

Building an API in Koa Chapter 5

[63]

Creating data models3.
Setting up a router4.
Setting up a logger5.
Creating contact endpoints and controller actions6.
Validating requests7.

Starting the server
First, let's start a simple server in our index.js entry file. In the following code block, we
simply require Koa as a dependency, then start a Koa server by using
the app.listen() method:

// ./index.js

const Koa = require('koa');
const app = new Koa();

const port = process.env.PORT || 3000;
app.listen(port, () =>
 console.log(`Server running on http://localhost:${port}`)
);

The server either runs on a specified port with the PORT environmental variable, or on the
default 3000 port.

To start our application, you can run the following command from the project root:

node index.js

You should see the following message in your console after running this: Server running
on http://localhost:3000.

To start the application on a different port, you can specify the following PORT environment
variable when starting the application:

PORT=1234 node index.js

Running this will produce the following message: Server running on
http://localhost:1234.

Building an API in Koa Chapter 5

[64]

Using Nodemon
Nodemon is a command-line tool that helps with the speedy development of Node.js
applications. It monitors your project directory and automatically restarts your node
application when it detects any changes.

This means that you do not have to stop and restart your applications in order for your
changes to take effect. You can simply write code, and test your application a few seconds
later.

To install nodemon locally, we can run the following in the Terminal::

npm install -g nodemon

Nodemon serves as a replacement for node, and does not require any code changes within
your application. Once it has installed, we can start our application with auto-restart, using
the following command:

nodemon index.js

You can also try to run the following command:

PORT=1234 nodemon index.js

Now, after making a change to any file in your project directory, nodemon will
automatically restart your server, and you will get to see the changes in effect.

Connecting to a database
MongoDB, the NoSQL database, which is popular for being a part of the MEAN stack
(MongoDB, Express, Angular, and Node.js), will be used to persist all of our contact data
into our API. Its ability to easily save JSON objects without needing a strict schema setup is
great for our purposes.

We will be making use of Mongoose, a popular ODM library, for all of our database
interactions. Mongoose manages our interactions with the database, does object schema
validation, and also maps objects in our code into their corresponding MongoDB document
representations.

Building an API in Koa Chapter 5

[65]

Let's update our index.js file, in order to allow our app to connect to the database with
Mongoose, as follows:

// ./index.js
// ...

const mongoose = require('mongoose');
mongoose.connect(
 'mongodb://localhost:27017/koa-contact',
 { useNewUrlParser: true }
);

const db = mongoose.connection;
db.on('error', error => {
 throw new Error(`error connecting to db: ${error}`);
});
db.once('open', () => console.log('database connected'));

// ...

In the preceding code block, first, we require the mongoose dependency as the mongoose
object. Then, we use the mongoose.connect() method to connect our Mongo database.
The connect method takes the MongoDB connection URL as its first argument, then an
object with connection options as its second. The only option that we specify is for
mongoose to use the new URL parser for the mongo connection string.

Next, we define listeners to alert us when there's an error connecting to the DB, and once
the database is successfully connected to.

At this point, the complete index.js file should look as follows:

// ./index.js

// require needed dependencies
const Koa = require('koa');
const app = new Koa();

// connect to mongodb with mongoose
const mongoose = require('mongoose');
mongoose.connect(
 'mongodb://localhost:27017/koa-contact',
 { useNewUrlParser: true }
);

// listen for successful connection, or error
const db = mongoose.connection;
db.on('error', error => {

Building an API in Koa Chapter 5

[66]

 throw new Error(`error connecting to db: ${error}`);
});
db.once('open', () => console.log('database connected'));

// start server
const port = process.env.PORT || 3000;
app.listen(port, () =>
 console.log(`Server running on http://localhost:${port}`)
);

Running this, you should see a database connected message on your console or
Terminal, right after the server starts.

Creating data models
To communicate with our database, we need to define a data model for the contacts.
Mongoose models serve as wrappers around schema definitions. A Mongoose schema
defines the object structure, constraints, default values, and so on. Models are responsible
for CRUD operations for an object with the underlying database.

To create a simple data model, let's create a Contact.js file in the models folder, and
insert the following code into it:

// ./models/Contact.js

const Koa = require('koa');
const app = new Koa();

const mongoose = require('mongoose');
mongoose.connect(
 'mongodb://localhost:27017/koa-contact',
 { useNewUrlParser: true }
);

const db = mongoose.connection;
db.on('error', error => {
 throw new Error(`error connecting to db: ${error}`);
});
db.once('open', () => console.log('database connected'));

const port = process.env.PORT || 3000;
app.listen(port, () =>
 console.log(`Server running on http://localhost:${port}`)
);

Building an API in Koa Chapter 5

[67]

In the preceding code block, first, we require the mongoose dependency. The mongoose
reference that is created here will be the same as the one that was returned when we
initially connected to the database. This means that we do not need to create any other
connections for interacting with our database.

Next, we define our schema by using the mongoose.Schema object. Our contact object will
have the following properties:

name: The name of a contact. This should be a string. This is a required value,
and the schema validation will fail if a contact object without a name is persisted
to the database.
company: The company that a contact works at. This should be a string value.
position: The position that a contact holds at a company. Also a string value.
address: The contact's address. Also a string value.
phoneNumber: The contact's phone number. This is also specified as a string
value, to cater to special characters, such as a country code or parentheses.
createdAt: The date that the document was created. This can be saved as a
JavaScript date object. The default value is the current date.
updatedAt: The date that the document was most recently updated. This can be
saved as a JavaScript date object. The default value is the current date.

Finally, we will create the mongoose model and export it, so that it can be used elsewhere
in our application.

Setting up the router
In order to be able to visit different endpoints, we need to set up some form of a router, to
route different URL oath visits to different actions. Koa does not come bundled with an out-
of-the-box router like Express does; hence, we will be making use of koa-router, which is
an open source RESTful router for use with Koa.

Building an API in Koa Chapter 5

[68]

Let's start off by creating a router.js file in the middleware folder, and inserting the
following contents:

// ./middleware/router.js

const KoaRouter = require('koa-router');
const router = new KoaRouter();

router
 .get('/', async ctx => (ctx.body = 'Welcome to the contacts API!'));

module.exports = router;

In the preceding code block, we require the koa-router dependency, and we initialize it.
After that, we register an index route, which sends the Welcome to the contacts API!
text response. Then, we export it to be registered as a middleware in our index file.

To define a route, we call the HTTP verb method of the router, which takes the route path
as the first parameter, and a callback function as the second. For example, for a GET route,
we use router.get(); for a POST route, we use router.post(); and so on.

Update the index.js file, as follows:

// ./index.js

// ...
const router = require('./middleware/router');

// router
app.use(router.routes());
app.use(router.allowedMethods());

// ...

After requiring the router middleware, we register it with the router.routes() and
router.allowedMethods() methods. The .routes() method registers the routes that
we define via the router, and the .allowedMethods() method returns a separate
middleware for responding to the OPTIONS requests, with the Allow header containing the
allowed methods.

Building an API in Koa Chapter 5

[69]

Our complete index.js file will now look as follows:

const Koa = require('koa');
const router = require('./middleware/router');
const app = new Koa();

const mongoose = require('mongoose');
mongoose.connect(
 'mongodb://localhost:27017/koa-contact',
 { useNewUrlParser: true }
);

const db = mongoose.connection;
db.on('error', error => {
 throw new Error(`error connecting to db: ${error}`);
});
db.once('open', () => console.log('database connected'));

// router
app.use(router.routes());
app.use(router.allowedMethods());

const port = process.env.PORT || 3000;
app.listen(port, () =>
 console.log(`Server running on http://localhost:${port}`)
);

With the router middleware and the routes registered, we can test the GET / route with
Postman or a browser; we should see the Welcome to the contacts API! response, as shown
in the following screenshot:

Building an API in Koa Chapter 5

[70]

Setting up a logger
Sometimes, we need a logger to help with debugging during development. In this section,
we will implement a simple Koa console logger, in order to log our requests to the console
or Terminal.

It is recommended that the logger middleware be registered close to the top of the
middleware stack, so that it can wrap all subsequent middleware.

To register the koa-logger middleware, refer to the following code block:

// ./index.js

// ...
const logger = require('koa-logger');

app.use(logger());

// ...

We can configure the logger with a custom transporter, as seen in the koa-logger
documentation (https:/ /github. com/ koajs/ logger).

Now, the index.js file, with the logger implemented, will look as follows:

// ./index.js

const Koa = require('koa');
const router = require('./middleware/router');
const app = new Koa();

const logger = require('koa-logger');

// logger
app.use(logger());

const mongoose = require('mongoose');
mongoose.connect(
 'mongodb://localhost:27017/koa-contact',
 { useNewUrlParser: true }
);

const db = mongoose.connection;
db.on('error', error => {
 throw new Error(`error connecting to db: ${error}`);
});
db.once('open', () => console.log('database connected'));

https://github.com/koajs/logger
https://github.com/koajs/logger
https://github.com/koajs/logger
https://github.com/koajs/logger
https://github.com/koajs/logger
https://github.com/koajs/logger
https://github.com/koajs/logger
https://github.com/koajs/logger
https://github.com/koajs/logger
https://github.com/koajs/logger
https://github.com/koajs/logger

Building an API in Koa Chapter 5

[71]

// router
app.use(router.routes());
app.use(router.allowedMethods());

const port = process.env.PORT || 3000;
app.listen(port, () =>
 console.log(`Server running on http://localhost:${port}`)
);

Now, when we run our app and hit the GET / endpoint, we will see the logs in the
Terminal, showing request and response log data:

Server running on http://localhost:3000
database connected
 <-- GET /
 --> GET / 200 11ms

Creating contact endpoints and controller actions
Now that we have our model, our database connection, our router, and a logger setup, we
can start to write the business logic for our application. This will mainly consist of different
controller actions, to handle CRUD operations for the contacts in our database.

We will start by creating a ContactController.js file in the controllers folder, as
follows:

touch controllers/ContactController.js

Next, we can define the different route actions in our controller.

Retrieving all contacts
The index route will retrieve all of the contacts from the database and send them back to
the client in a JSON object. We can use the mongoose .find() method to retrieve all of the
entries of a model from the database.

Insert the following code into the ContactController.js file:

// ./controllers/ContactController.js

const Contact = require('../models/Contact');

module.exports = {
 async index(ctx) {

Building an API in Koa Chapter 5

[72]

 const contacts = await Contact.find();
 ctx.body = {
 status: 'success',
 data: contacts
 };
 }
};

Next, we head over to the ./middleware/router.js file, in order to add the
corresponding route, as follows:

// ./middleware/router.js
// ...
const contactController = require('../controllers/ContactController');

router
 .get('/', async ctx => (ctx.body = 'Welcome to the contacts API!'))
 .get('/contact', contactController.index);

//...

Calling the GET /contact endpoint should send a JSON object with a success status and
an empty array as the data property. The data property, which is meant to hold a list of
contacts, is empty, as we have not yet inserted any records into the database. An example
response object can be seen as follows:

{
 "status": "success",
 "data": []
}

Storing new contacts
The store route will create new contact documents and save them to the database. It will
send the created contacts back as a JSON response.

The store action will receive the JSON request body as data to use for creating the contact
document. In order to be able to read the request body properly, we need to register koa-
body, a body parser middleware for Koa.

Building an API in Koa Chapter 5

[73]

According to its documentation, koa-body is the following:

"A full-featured Koa body parser middleware. Supports multipart, urlencoded and
json request bodies. Provides same functionality as Express's bodyParser - multer. And
all that is wrapped only around co-body and formidable."

The koa-body documentation (https:/ /github. com/ dlau/ koa-bod)
shows a lot of example usages and configuration options for
implementing the middleware.

To register the koa-body middleware, we can update our index.js with the following
content:

// ./index.js

// ...

const bodyParser = require('koa-body');

app.use(bodyParser());

// ...

To add the store route, we will update the controller actions, as follows:

// ./controllers/ContactController.js

// ...

module.exports = {
 // ...

 async store(ctx) {
 const { body } = ctx.request;
 let contact = new Contact(body);
 contact = await contact.save();
 ctx.body = {
 status: 'success',
 data: contact
 };
 }
};

https://github.com/dlau/koa-bod
https://github.com/dlau/koa-bod
https://github.com/dlau/koa-bod
https://github.com/dlau/koa-bod
https://github.com/dlau/koa-bod
https://github.com/dlau/koa-bod
https://github.com/dlau/koa-bod
https://github.com/dlau/koa-bod
https://github.com/dlau/koa-bod
https://github.com/dlau/koa-bod
https://github.com/dlau/koa-bod
https://github.com/dlau/koa-bod
https://github.com/dlau/koa-bod

Building an API in Koa Chapter 5

[74]

Then, we register the corresponding route, as follows:

// ./middleware/router.js
// ...

router
 .get('/', async ctx => (ctx.body = 'Welcome to the contacts API!'))
 .get('/contact', contactController.index)
 .post('/contact', contactController.store);

// ...

Now, we can call the POST /contact endpoint to create a contact with Postman, as seen in
the following screenshot:

Building an API in Koa Chapter 5

[75]

Retrieving a single contact
The show route will retrieve a single contact from the database, via a specified id, and send
it back as a response to the client. We can get the required id from the route parameter, and
easily pass it to the mongoose .findById() method, in order to retrieve the required
contact. We update the controller, as follows:

// ./controllers/ContactController.js

// ...

module.exports = {
 // ...

 async show(ctx) {
 const { id } = ctx.params;
 const contact = await Contact.findById(id);
 ctx.body = {
 status: 'success',
 data: contact
 };
 }
};

We then add the corresponding route, as follows:

// ./middleware/router.js
// ...

router
 .get('/', async ctx => (ctx.body = 'Welcome to the contacts API!'))
 .get('/contact', contactController.index)
 .post('/contact', contactController.store)
 .get('/contact/:id', contactController.show);

// ...

Building an API in Koa Chapter 5

[76]

Making a request to retrieve a contact that we have already saved by calling GET
/contact/{contactId} should return a response similar to the following:

{
 "status": "success",
 "data": {
 "_id": "5be8e3028053210ddc1d162b",
 "name": "Test name",
 "address": "Street 5",
 "company": "test company",
 "createdAt": "2018-11-12T02:18:42.377Z",
 "updatedAt": "2018-11-12T02:18:42.377Z",
 "__v": 0
 }
}

Updating a contact
The update route will update an existing contact with new details. We can achieve this by
getting the required id as a route parameter, along with the updated content from the
request body, then using the mongoose .findByIdAndUpdate() method to update the
specified contact. The route will return the updated contact as a response on a successful
update:

// ./controllers/ContactController.js

// ...

module.exports = {
 async index(ctx) {
 const contacts = await Contact.find();
 ctx.body = {
 status: 'success',
 data: contacts
 };
 },

 async store(ctx) {
 const { body } = ctx.request;
 let contact = new Contact(body);
 contact = await contact.save();
 ctx.body = {
 status: 'success',
 data: contact
 };
 },

Building an API in Koa Chapter 5

[77]

 async show(ctx) {
 const { id } = ctx.params;
 const contact = await Contact.findById(id);
 ctx.body = {
 status: 'success',
 data: contact
 };
 },

 async update(ctx) {
 const { id } = ctx.params;
 const { body } = ctx.request;
 await Contact.findByIdAndUpdate(id, body);
 const contact = await Contact.findById(id);
 ctx.body = {
 status: 'success',
 message: 'contact successfully updated',
 data: contact
 };
 }
};

The corresponding router definition is shown as follows:

// ./middleware/router.js
// ...

router
 .get('/', async ctx => (ctx.body = 'Welcome to the contacts API!'))
 .get('/contact', contactController.index)
 .post('/contact', contactController.store)
 .get('/contact/:id', contactController.show)
 .put('/contact/:id', contactController.update);

// ...

Building an API in Koa Chapter 5

[78]

An example request to PUT /contact/{contactId} to update a contact is shown in the
following screenshot:

Deleting a contact
The destroy route will take an id route parameter and delete the contact with that id
from the database, using the mongoose .findByAndDelete() method:

// ./controllers/ContactController.js

// ...

module.exports = {
 async index(ctx) {
 const contacts = await Contact.find();
 ctx.body = {
 status: 'success',
 data: contacts
 };
 },

Building an API in Koa Chapter 5

[79]

 async store(ctx) {
 const { body } = ctx.request;
 let contact = new Contact(body);
 contact = await contact.save();
 ctx.body = {
 status: 'success',
 data: contact
 };
 },

 async show(ctx) {
 const { id } = ctx.params;
 const contact = await Contact.findById(id);
 ctx.body = {
 status: 'success',
 data: contact
 };
 },

 async update(ctx) {
 const { id } = ctx.params;
 const { body } = ctx.request;
 await Contact.findByIdAndUpdate(id, body);
 const contact = await Contact.findById(id);
 ctx.body = {
 status: 'success',
 message: 'contact successfully updated',
 data: contact
 };
 },

 async destroy(ctx) {
 const { id } = ctx.params;
 await Contact.findByIdAndDelete(id);
 ctx.body = {
 status: 'success',
 message: 'contact successfully deleted'
 };
 }
};

We add the corresponding router definition, as follows:

// ./middleware/router.js
// ...

router
 .get('/', async ctx => (ctx.body = 'Welcome to the contacts API!'))

Building an API in Koa Chapter 5

[80]

 .get('/contact', contactController.index)
 .post('/contact', contactController.store)
 .get('/contact/:id', contactController.show)
 .put('/contact/:id', contactController.update)
 .delete('/contact/:id', contactController.destroy);

// ...

Making a request to DELETE /contact/{contactId} with the specified id should return
a response similar to the following:

{
 "status": "success",
 "message": "contact successfully deleted"
}

Validating requests
A great way to ensure that we always get the data that we need is to validate requests
before persisting them to the database. Mongoose already does schema validation, but we
can also implement an extra layer of validation, to ensure that we are in full control of our
data.

A popular JSON schema validation library that we can make use of in Node.js is Joi. Joi is
an object schema validator, and it will work well for ensuring that we have the proper data
coming through from our requests.

We will create a custom middleware for validating requests on selected routes, and register
it in our app.

First, let's create the middleware function. Creating a validator.js file in the
middleware folder can be done by using the following command:

touch middleware/validator.js

Now, we can insert the following content into the file:

// ./middleware/validator.js

const Joi = require('joi');

const schema = Joi.object({
 name: Joi.string().required(),
 address: Joi.string(),
 company: Joi.string(),

Building an API in Koa Chapter 5

[81]

 position: Joi.string(),
 phoneNumber: Joi.number().required()
});

const ALLOWED_METHODS = ['PUT', 'POST'];

module.exports = () => {
 return async (ctx, next) => {
 const { method } = ctx;
 const { body } = ctx.request;

 if (ALLOWED_METHODS.includes(method)) {
 const { error } = Joi.validate(body, schema);
 if (error) {
 ctx.status = 422;
 ctx.body = {
 status: 'error',
 message: 'validation error',
 errors: error.details.map(e => e.message)
 };
 } else {
 await next();
 }
 } else {
 await next();
 }
 };
};

In the preceding code block, we specify the methods that we would like to validate against
in the ALLOWED_METHODS variable. This ensures that we only validate against POST and
PUT requests that contain request body data, and not GET requests, which do not. If a
request matches any of these methods, we then validate the request body against a defined
schema.

Joi possesses various methods for schema validation. Notably, we make use of the
.required() method, to ensure that the name and phoneNumber properties are always
present.

Note that we only specify one validation schema in our application, as we
only have one data model. In more complex applications, which possess
multiple data models, multiple schemas need to be implemented, where
the correct schema to use for validation can be decided based on the route.

If an error occurs from Joi during validation, we set the response status code to 422
(Unprocessable Entity) and send back the error messages from Joi.

Building an API in Koa Chapter 5

[82]

To register the middleware, let's update the index.js file, as follows:

// ./index.js
// ...

const validator = require('./middleware/validator');

app.use(validator());

// ...

At this point, the complete index.js file looks as follows:

const Koa = require('koa');
const logger = require('koa-logger');
const bodyParser = require('koa-body');
const router = require('./middleware/router');
const validator = require('./middleware/validator');
const app = new Koa();

const mongoose = require('mongoose');
mongoose.connect(
 'mongodb://localhost:27017/koa-contact',
 { useNewUrlParser: true }
);

const db = mongoose.connection;
db.on('error', error => {
 throw new Error(`error connecting to db: ${error}`);
});
db.once('open', () => console.log('database connected'));

app.use(logger());

app.use(bodyParser());

app.use(validator());

app.use(router.routes());
app.use(router.allowedMethods());

const port = process.env.PORT || 3000;
app.listen(port, () =>
 console.log(`Server running on http://localhost:${port}`)
);

Building an API in Koa Chapter 5

[83]

If we try to save a contact without specifying a name, the following is an example response
that we might receive:

{
 "status": "error",
 "message": "validation error",
 "errors": [
 "\"name\" is required"
]
}

Useful notes
Some other important concepts to be conscious of when building APIs with Koa include the
following:

Cross-origin resource sharing (CORS): Koa-cors is a great middleware that
helps to enable CORS on Koa-built APIs. This ensures that you are able to
connect to your API from other origins.
Environment variables: You can environment variables, such as the port that you
want the application to run in, database credentials, and so on, in a separate file,
and load them into your variables by using the popular dotenv JavaScript
module (https:/ /www. npmjs. com/package/ dotenv).

Summary
In this chapter, you learned how to build an API in Koa, from the ground up. You learned
how to structure your projects in a modular manner when developing APIs in Koa. You
also learned how to implement logging, routing, and validation on a CRUD API.

Koa shows us how easy it is to get started in API development, and we are really only
limited by our imagination when it comes to building robust APIs with the framework.

In the next chapter, we will focus on building a blog with Koa. This will enable us to
explore templating and authentication in Koa.

https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/dotenv
https://www.npmjs.com/package/dotenv

6
Building an Application in Koa

In this final chapter, we will be building a complete web application from scratch with Koa.
This will help us to reinforce our learning and make use of concepts we have learned in a
real-world application.

We will make use of all the concepts learned in previous chapters to build an end-to-end
monolithic application in Koa.

Some of the things we will learn in this chapter include:

How to build an end-to-end application from scratch with Koa
How to handle sessions in Koa
How to handle authentication in Koa
How to create views and work with templates in Koa
How to work with form data in Koa

Technical requirements
Similar to the previous chapter, to follow along with this chapter, you need the following
installed locally:

Node.js (>= v7.6.0) and NPM: You can find download and installation
instructions for this on the Node.js official website.
MongoDB: This is one of the most popular NoSQL databases in the world. It is
open source, and you can find download instructions on its official website
(https:/ / www. mongodb. com/) as well.

https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/
https://www.mongodb.com/

Building an Application in Koa Chapter 6

[85]

If you use macOS, you can make use of the Homebrew package manager
to install Node.js and MongoDB easily.

If you use macOS, you can make use of the Homebrew package manager to install Node.js
and MongoDB easily.

The code files of this chapter can be found on GitHub:
https://github.com/ PacktPublishing/ Server- Side- development- with- Node. js- and-
Koa.js-Quick-Start- Guide/ tree/ master/ Chapter06

Check out the following video to see the code in action:
http://bit.ly/2zzJcIN

About the application
Some of the features our application will have include the following:

Authentication to restrict access to some parts of the app
The ability for users to log in, register, and logout
Ability to serve HTML pages to users
Ability to CRUD (create, read, update, and delete) blog posts for signed-in users

If you haven't already, it is highly recommended to go through Chapter 5, Building an API
in Koa. This will help provide more background information on some of the things we will
do in this chapter.

All the code written in this chapter uses the modern JavaScript ES6 syntax.

At the end of this chapter, we will have built a simple blog from scratch in Koa, as seen in
this screenshot:

https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
https://github.com/PacktPublishing/Server-Side-development-with-Node.js-and-Koa.js-Quick-Start-Guide/tree/master/Chapter06
http://bit.ly/2zzJcIN
http://bit.ly/2zzJcIN
http://bit.ly/2zzJcIN
http://bit.ly/2zzJcIN
http://bit.ly/2zzJcIN
http://bit.ly/2zzJcIN
http://bit.ly/2zzJcIN
http://bit.ly/2zzJcIN
http://bit.ly/2zzJcIN

Building an Application in Koa Chapter 6

[86]

Setting up a project
As usual, we will begin development locally by initializing a project with npm. We can run
the following command to initialize our project:

npm init
// or npm init -y

Running npm init -y initializes the project with default values in the
package.json file.

Installing dependencies
We will be making use of the external dependencies listed here:

koa: Our base framework.
koa-router: RESTful Routing middleware for Koa
koa-logger: Development style logger middleware for Koa
koa-body: Request body parser middleware for Koa
koa-session: Session middleware for Koa
koa-views: Template rendering middleware for Koa

Building an Application in Koa Chapter 6

[87]

mongoose: Object data modeling (ODM) library for MongoDB and Node.js
mongoose-unique-validator: Unique constraint validator plugin for
mongoose
ejs: Templating language for JavaScript
bcrypt: Password-hashing library for Node

To install the required dependencies, we can run the following command:

npm install --save koa koa-router koa-logger koa-body koa-views koa-session
mongoose mongoose-unique-validator ejs bcrypt

With newer versions of npm, you do not need to specify the --save flag
for installed packages to be added as dependencies in
the package.json file. You can simply install and save dependencies
with npm install or npm i.

Project structure
We will be using a similar modular file and folder structure as seen in the previous chapter.
Initially, we will create the following folders and files:

controllers: This folder will house the files that will contain our application's
main business logic.
middleware: This folder will contain all our custom middleware.
models: This folder will contain our data objects and mongoose schemas.
views: This folder will contain the template files for our application.
index.js: This is the entry point for our application. Here, we will initialize the
application, register all the required middleware, and start the server.
db.js: This is where we will connect to our MongoDB database using
Mongoose.

To create the needed folders, you can run the following command in the terminal:

mkdir controllers middleware models views

To create the needed files, you can run this command in the terminal:

touch index.js db.js

Building an Application in Koa Chapter 6

[88]

After initializing the project, installing the needed dependencies, and creating the required
files and folders, we should have the following structure:

├── controllers
├── db.js
├── index.js
├── middleware
├── models
├── package-lock.json
├── package.json
└── views

Building the application
In this section, we will build our blog. We will be able to achieve this by following the steps
given:

Starting the server1.
Connecting to the database2.
Creating data models3.
Setting up the router4.
Setting up the views5.
Handling authentication6.
Creating controller functions7.

Starting the server
We will not go into much detail on this, as it was covered in the previous chapter. To start
our server, we will simply insert the following content into the index.js entry file:

// ./index.js

const Koa = require('koa');
const app = new Koa();

const port = process.env.PORT || 3000;
app.listen(port, () => console.log(`Server running on
http://localhost:${port}`));

The server either runs on a specified port with the PORT environmental variable or on the
default 3000 port.

Building an Application in Koa Chapter 6

[89]

To start our application, you can run this command from the project root:

node index.js

You can also use nodemon to start the app for automatic reloads anytime a
change is made to a file in the project folder, nodemon index.js

Connecting to the database
We will define our MongoDB connection in a ./db.js file. This will help keep our
index.js file neat and allow us to keep our configurations modular.

To connect to our database, if you haven't already, create a db.js file in the root directory
as given:

touch db.js

Then, insert the following into the file:

// ./db.js

const mongoose = require('mongoose');

module.exports = () => {
 mongoose.connect(
 'mongodb://localhost:27017/koa-blog',
 { useNewUrlParser: true }
);

 const db = mongoose.connection;
 db.on('error', error => {
 throw new Error(`error connecting to db: ${error}`);
 });
 db.once('open', () => console.log('database connected'));
};

In the preceding code block, first, we require the mongoose ODM library, then we export a
simple function that creates a connection to our database using the
mongoose.connect(dbUrl, [options]) method. We are creating a connection to the
koa-blog database.

Building an Application in Koa Chapter 6

[90]

It should also be noted that we set up listeners in our database connection function. The
db.on('error') listener is for when an error occurs when a connection is trying to be
established. The db.on('open') listener is called when a successful connection occurs.

Now that we have exported our database connection function, we can make use of it in the
index.js file as seen here:

// ./index.js

// ...
const initDb = require('./db');

// initialize database
initDb();

// ...

The complete index.js file will now look like this:

const Koa = require('koa');
const initDb = require('./db');

// initialize database
initDb();

// create app instance
const app = new Koa();

// start server
const port = process.env.PORT || 3000;
app.listen(port, () => console.log(`Server running on
http://localhost:${port}`));

The next time our application starts, we should see messages similar to this one:

Server running on http://localhost:3000
database connected

This indicates that the connection to the database was successful.

Creating data models
Now that we have a successful database connection, we can go ahead to create data models
that will control our interaction with our database.

Building an Application in Koa Chapter 6

[91]

In our application, we will need two data models:

The User model: This will contain the schema for our user collection
The Post model: This will contain the schema for our post collection

The user model
This is responsible for handling our database interactions with registered users of our
application. It will contain the following fields:

fullName: This is a string value. The full name of the registered user. This is a
required field, and should not be empty.
email: This is also a string value. It is the email address of the registered user.
Note that this value should be unique. We will make use of the mongoose-
unique-validator plugin here to ensure the value is unique across all our
app's users. This is a required field, and should not be empty.
password: This is a hash of the user password. This should also be a string
value. This is a required field, and should also not be empty.
createdAt: The date the document was created. This can be saved as a
JavaScript date object. The default value is the current date.
updatedAt: The date the document was most recently updated. This can be
saved as a JavaScript Date object. The default value is the current date.

To create the data model, let us create a User.js file in the ./models folder, and insert the
following code into it:

const mongoose = require('mongoose');
const uniqueValidator = require('mongoose-unique-validator');

const schema = new mongoose.Schema({
 fullName: {
 type: String,
 required: true
 },
 email: {
 unique: true,
 type: String,
 required: true
 },
 password: {
 type: String,
 required: true
 },

Building an Application in Koa Chapter 6

[92]

 createdAt: { type: Date, default: Date.now },
 updatedAt: { type: Date, default: Date.now }
});

schema.plugin(uniqueValidator);
module.exports = mongoose.model('User', schema);

The mongoose reference created in the preceding code block when we
require('mongoose') will be the same as the one that was returned
when we initially connected to the database.

The mongoose-unique-validator plugin is used to add pre-save validation for unique
fields within a Mongoose schema. After defining our schema, we export the model to be
used in other places in our application.

The post model
This model handles the interaction of our application with blog posts in the database. We
will keep things very simple, so it will only have the following fields mentioned:

title: This is the title of the post. It is a string value. It should not be empty,
which means it is a required field.
content: This is the body or content of the blog post. It should be a string value.
image: This is a link to the featured image for the post. It should also be a string
value.
author: This the user who created the post. It is a reference to the ObjectId of
the user who created this post on the user collection.
createdAt: The date the document was created. This can be saved as a
JavaScript date object. The default value is the current date.
updatedAt: The date the document was most recently updated. This can be
saved as a JavaScript date object. The default value is the current date.

To create the post model, let's create a Post.js file in the ./models folder, and insert the
following code into it:

const mongoose = require('mongoose');

const schema = new mongoose.Schema({
 title: {
 type: String,
 required: true
 },

Building an Application in Koa Chapter 6

[93]

 content: String,
 image: String,
 author: {
 type: mongoose.Schema.Types.ObjectId,
 ref: 'User'
 },
 createdAt: { type: Date, default: Date.now },
 updatedAt: { type: Date, default: Date.now }
});

module.exports = mongoose.model('Post', schema);

As usual, after our schema definition, we export the model to be used elsewhere in our
application.

Setting up the router
Next, we will set up our router to handle routing to different pages of our application. We
will use koa-router, the popular RESTful routing middleware for Koa.

Let's create a router.js file as shown, which will contain all our route definitions in the
middleware folder:

touch middleware/router.js

After creating the file, we can insert the following content into it:

// ./middleware/router.js

const KoaRouter = require('koa-router');

const router = new KoaRouter();
router.get('/', ctx => (ctx.body = 'Welcome to the Koa Blog!'));

module.exports = router;

In the preceding code block, we require koa-router, and then create a new instance of the
middleware and register a simple route for the index route.

Next, we register our middleware in our entry file, updating ./index.js as shown:

// ./index.js

// ...
const router = require('./middleware/router');

Building an Application in Koa Chapter 6

[94]

// router
app.use(router.routes());

// ...

After the addition, at this point, the complete index.js will look like this:

const Koa = require('koa');
const router = require('./middleware/router');
const initDb = require('./db');

// initialize database
initDb();

// create app instance
const app = new Koa();

// register middlware
app.use(router.routes());

// start server
const port = process.env.PORT || 3000;
app.listen(port, () => console.log(`Server running on
http://localhost:${port}`));

Now that we have the router defined and registered, a request to http://localhost:3000
should produce a result similar to what is seen in this screenshot:

Remember to replace the port when visiting the app on your browser if
you are using a different one than 3000.

Building an Application in Koa Chapter 6

[95]

Setting up the views
To serve HTML pages, we will need to implement a view middleware and a templating
engine. The templating engine will help us pass and use data from our application in
our views and make the views reusable. We will be making use of the koa-views publicly
available middleware as our template rendering middleware. We will also use ejs along
with it as the templating engine of choice.

To register our view renderer and templating engine, add the following line to the
./index.js file as shown here:

// ./index.js

// ...
const views = require('koa-views');

app.use(views(`${__dirname}/views`, {
 extension: 'ejs'
}));

In the preceding code block, first, we require the koa-views middleware. Next, we register
it using the views(dirName, [options]) middleware function.

Ensure the views middleware is registered before the router middleware.
This ensures that the ctx.render() method is available for use within
our route definitions.

The middleware function takes the directory name containing the views as the first
parameter, then an object of options as its second parameter. We pass in the { extension:
'ejs' } option to specify that our views are ejs files; hence, we do not have to explicitly
write the file extensions when using the ctx.render() function later. For the full list of
options accepted by koa-views, you can check its documentation (https:/ / www.npmjs.
com/package/koa- views).

Next, let's create a simple view to serve as our application's home page. We will create an
index.ejs file in the views folder and insert the following content into it:

<!-- ./views/index.ejs -->

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">

https://www.npmjs.com/package/koa-views
https://www.npmjs.com/package/koa-views
https://www.npmjs.com/package/koa-views
https://www.npmjs.com/package/koa-views
https://www.npmjs.com/package/koa-views
https://www.npmjs.com/package/koa-views
https://www.npmjs.com/package/koa-views
https://www.npmjs.com/package/koa-views
https://www.npmjs.com/package/koa-views
https://www.npmjs.com/package/koa-views
https://www.npmjs.com/package/koa-views
https://www.npmjs.com/package/koa-views
https://www.npmjs.com/package/koa-views
https://www.npmjs.com/package/koa-views

Building an Application in Koa Chapter 6

[96]

 <title>Welcome - KoaBlog</title>
 <link rel="stylesheet"
href="https://cdnjs.cloudflare.com/ajax/libs/bulma/0.7.2/css/bulma.min.css"
>
</head>
<body>
 <section class="section">
 <div class="container">
 <div class="columns">
 <div class="column">
 <h1 class="title">KoaBlog</h1>
 <p class="subtitle">Blog built with Koa!</p>
 </div>
 </div>
 </div>
 </section>
</body>
</html>

In the preceding markup, we include bulma, a popular CSS framework, to
give us access to some pre-made styles out of the box. This helps to make
our views look a bit prettier.

Finally, in our router middleware, we can specify that the file should be served using the
now-available ctx.render() method as seen here:

// ./middleware/router.js

router.get('/', ctx => ctx.render('index'));

Now when we visit our index route, instead of plain text we should see the index.ejs file
rendered as HTML as seen here:

Building an Application in Koa Chapter 6

[97]

Using partials
To keep our template code reusable, we can introduce partials. We will essentially create
two partials given here:

header.ejs: to contain all the markup common to our application's header
footer.ejs: similarly, to contain all common footer specific markup

Both partials will be placed in a partials folder within the views folder. We can create
both files and place the required contents in them. For the header file, use the code given:

<!-- ./views/partials/header.ejs -->

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>Welcome - KoaBlog</title>
 <link rel="stylesheet"
href="https://cdnjs.cloudflare.com/ajax/libs/bulma/0.7.2/css/bulma.min.css"
>
</head>
<body>
 <section class="section">
 <div class="container">
 <div class="columns">
 <div class="column">
 <h1 class="title">KoaBlog</h1>
 <p class="subtitle">Blog built with Koa!</p>
 </div>
 </div>

We should also insert the following code block into the footer.ejs file:

<!-- ./views/partials/footer.ejs -->

 </div>
 </section>
</body>
</html>

Building an Application in Koa Chapter 6

[98]

Next, we can include them in the index.ejs file using the include helper function
available within ejs as shown:

<!-- ./views/index.ejs -->

<%- include('partials/header.ejs') -%>

<%- include('partials/footer.ejs') -%>

Now that we have our views implemented, we can go ahead to set up authentication on
our app to protect some of the views that we will create.

Setting up sessions
Before implementing authentication, we need to set up a session middleware for our
application. This will help us store data relating to each browser session, and we will be
using to store user details for each logged-in user.

To help us handle sessions, we will be using the koa-session middleware. To register it,
let's update the ./index.js file as shown:

// ./index.js

// ...
const session = require('koa-session');

app.keys = ['secret key'];

app.use(session(app));

// ...

Registering the koa-session middleware makes the ctx.session object available
throughout our app, making it possible for us to use it to store and retrieve session data per
user.

Building an Application in Koa Chapter 6

[99]

Handling authentication
In this section, we will implement authentication on our app, to ensure that only registered
users can carry out certain operations. To set up authentication, we need to implement the
following:

User registration and login: This involves creating views and actions for users to
sign up and then log in to the application
Authentication middleware: This involves implementing middleware to restrict
and grant access to certain resources based on the visitor's authentication status

Before we can implement registration and login, however, we need to register our body
parser plugin, which will enable us to retrieve form data. We can easily do this in the
index.js file, as shown here:

// ./index.js

// ...
const bodyParser = require('koa-body');

app.use(bodyParser());

// ...

User registration and login
To implement user registration and login, first, we will create an auth page that will house
the two forms that we will use for registration and login. We can create the form view in the
views folder and name it auth.ejs. Insert the following content into the file:

<%- include('partials/header.ejs') -%>
<div class="columns">
 <div class="column">
 <h1 class="title">Register</h1>

 <form action="/auth/register" method="POST">
 <div class="field">
 <label class="label">Full Name</label>
 <div class="control">
 <input class="input" type="text" placeholder="e.g Alex Smith"
 name="fullName">
 </div>
 </div>

 <div class="field">

Building an Application in Koa Chapter 6

[100]

 <label class="label">Email</label>
 <div class="control">
 <input class="input" type="email" placeholder="e.g.
 alexsmith@gmail.com" name="email">
 </div>
 </div>

 <div class="field">
 <label class="label">Password</label>
 <div class="control">
 <input class="input" type="password" name="password">
 </div>
 </div>

 <div class="control">
 <button class="button is-primary">Submit</button>
 </div>
 </form>
 </div>

 <div class="column">
 <h1 class="title">Login</h1>

 <form action="/auth/login" method="POST">
 <div class="field">
 <label class="label">Email</label>
 <div class="control">
 <input class="input" type="email" placeholder="e.g.
 alexsmith@gmail.com" name="email">
 </div>
 </div>

 <div class="field">
 <label class="label">Password</label>
 <div class="control">
 <input class="input" type="password" name="password">
 </div>
 </div>

 <div class="control">
 <button class="button is-primary">Submit</button>
 </div>
 </form>
 </div>
</div>
<%- include('partials/footer.ejs') -%>

Building an Application in Koa Chapter 6

[101]

Now that we have our forms created, let's create the controller actions for serving and
handling the forms. We will create an AuthController file in the controllers folder to
hold all the actions needed. Insert the following content into the file:

// ./controllers/AuthController.js

const User = require('../models/User');
const bcrypt = require('bcrypt');
const BCRYPT_SALT_ROUNDS = 12;

module.exports = {
 async index(ctx) {
 ctx.state = { title: 'Login or Register' };
 await ctx.render('auth');
 },

 async register(ctx) {
 const { body } = ctx.request;
 const userData = {
 ...body,
 password: await bcrypt.hash(body.password, BCRYPT_SALT_ROUNDS)
 };
 const user = await new User(userData).save();
 ctx.session.user = user;
 ctx.redirect('/');
 },

 async login(ctx) {
 const { body } = ctx.request;
 const user = await User.findOne({ email: body.email });
 if (!user) ctx.throw(404, 'user not found');
 const isValid = await bcrypt.compare(body.password, user.password);
 if (isValid) {
 ctx.session.user = user;
 ctx.redirect('/');
 } else {
 ctx.redirect('/auth');
 }
 },

 async logout(ctx) {
 delete ctx.session.user;
 ctx.redirect('/auth');
 }
};

Building an Application in Koa Chapter 6

[102]

The controller created contains three methods that are given here:

index: This loads the auth page and shows the register and login forms.
register: This handles registration by doing the following:

Getting the user data submitted in the form.
Generating a hash of the user password using the bcrypt library.
Saving the user to the database.
Setting the user in the current session.
Redirecting the user to the home page.

login: This handles user login by doing the following:
Getting the user data submitted via the form.
Retrieving a user matching the email address from the database.
Comparing the password supplied to the one in the database using
the bcrypt library.
Setting the user in the current session if the password supplied is
correct.
Redirecting the user based on the correctness of the password
supplied.

logout: This removes the user object from the session object. This means our
application will no longer recognize the user as logged in.

Next, we register these actions in our router.js file:

// ./middleware/router.js

// ...

// we are passing the title variable to the view now
router.get('/', ctx => ctx.render('index', { title: 'Welcome' }));

const authController = require('../controllers/AuthController');

// auth routes
const auth = new KoaRouter()
 .get('/', authController.index)
 .post('/login', authController.login)
 .post('/register', authController.register)
 .get('/logout', authController.logout);
router.use('/auth', auth.routes());

// ...

Building an Application in Koa Chapter 6

[103]

In the preceding code block, we create a new router instance for the auth routes and
register them as sub-routes under our main router using router.use('/auth',
auth.routes()). This means that all the auth routes will be accessible under
the '/auth' group.

We will also make changes to our header file to show our page title, include a link to the
login/register page, and show the current user if the person is logged in. Update the
header file as shown:

<!-- ./views/partials/header.ejs -->

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title><%= title %> - KoaBlog</title>
 <link rel="stylesheet"
href="https://cdnjs.cloudflare.com/ajax/libs/bulma/0.7.2/css/bulma.min.css"
>
 <script defer
src="https://use.fontawesome.com/releases/v5.3.1/js/all.js"></script>
</head>
<body>
 <section class="section">
 <div class="container">
 <div class="columns">
 <div class="column">
 <h1 class="title">KoaBlog</h1>
 <p class="subtitle">Blog built with Koa!</p>
 </div>

 <div class="column">
 <div class="has-text-grey-dark has-text-right">
 <% if (locals.user) { %>
 <p>
 Hi, <%= user.fullName %>. Logout

 </p>
 <% } else { %>
 <p>Login/Register</p>
 <% } %>
 </div>
 </div>
 </div>
 <hr>

Building an Application in Koa Chapter 6

[104]

Note that the user variable used in the preceding template has not yet been passed to the
view. We will do that in the next step when we define authentication middleware.

Authentication middleware
We will be defining three simple middlewares to help with authentication. They are
explained here:

authenticated: This is the middleware that ensures a user is signed in before
they can have access to a resource. We define it by creating an
authenticated.js file and putting the following content in it:

// ./middleware/authenticated.js

module.exports = () => {
 return async (ctx, next) => {
 const { user } = ctx.session;
 if (user) await next();
 else ctx.redirect('/auth');
 };
};

guest: This middleware ensures that only not logged-in users can access a
resource. We can define it by creating a guest.js in the middleware folder and
putting the following content in it:

 // ./middleware/guest.js

 module.exports = () => {
 return async (ctx, next) => {
 const { user } = ctx.session;
 if (user) ctx.redirect('/');
 else await next();
 };
 };

user: This middleware simply takes the current user in the session and makes it
available in ctx.state, which is then passed to the views. We can define it by
creating user.js in the middleware folder and putting the following content in
it:

 // ./middleware/user.js

 module.exports = () => {
 return async (ctx, next) => {

Building an Application in Koa Chapter 6

[105]

 const { user } = ctx.session;
 if (user) ctx.state = { ...ctx.state, user };
 await next();
 };
 };

Next, we can register all three middlewares by updating our router file as shown:

// ./middleware/router.js

const authenticated = require('./authenticated');
const guest = require('./guest');
const user = require('./user');

router.use(user());

const auth = new KoaRouter()
 .get('/', guest(), authController.index)
 .post('/login', authController.login)
 .post('/register', authController.register)
 .get('/logout', authController.logout);
router.use('/auth', auth.routes());

Now we can register, sign in, and sign out of our app! Next, we will implement the
different actions needed for our blog posts.

Creating controller functions
Finally, we will create controller methods for the various actions we want our application
to be able to carry out. These include the following:

Index: View all blog posts
Create: View a form to create a new blog post
Store: Save a new blog post to the database
Show: View a single blog post
Edit: View a form to edit a blog post
Update: Update a blog post in the database

Let's create a controller file for our post actions name PostController in the
controllers folder, and insert the following contents into it:

// ./controllers/PostController.js

const Post = require('../models/Post');

Building an Application in Koa Chapter 6

[106]

module.exports = {
 async index(ctx) {
 const posts = await Post.find()
 .populate('author');
 ctx.state.posts = posts;
 ctx.state.title = 'Home';
 await ctx.render('index');
 },

 async create(ctx) {
 ctx.state.title = 'Create Post';
 await ctx.render('post/create');
 },

 async store(ctx) {
 const { body } = ctx.request;
 const postData = {
 ...body,
 author: ctx.session.user,
 image: 'https://picsum.photos/300/?random'
 };
 const post = await new Post(postData).save();
 ctx.redirect(`/post/${post.id}`);
 },

 async show(ctx) {
 const { id } = ctx.params;
 try {
 const post = await Post.findById(id).populate('author');
 ctx.state.post = post;
 ctx.state.title = post.title;
 } catch(e) {
 ctx.throw(404, "Post not found");
 }
 await ctx.render('post/show');
 },

 async edit(ctx) {
 const { id } = ctx.params;
 try {
 const post = await Post.findById(id).populate('author');
 ctx.state.post = post;
 ctx.state.title = `Edit Post - ${post.title}`;
 } catch(e) {
 ctx.throw(404, "Post not found");
 }
 await ctx.render('post/edit');
 },

Building an Application in Koa Chapter 6

[107]

 async update(ctx) {
 const { id } = ctx.params;
 const { body } = ctx.request;
 try {
 const postData = { ...body, createdAt: new Date() }
 const post = await Post.findByIdAndUpdate(id, postData);
 ctx.redirect(`/post/${post.id}`);
 } catch(e) {
 ctx.throw(e);
 }
 }
};

We also need to create the corresponding template files for the needed actions. Let's create a
post folder in the views folder to house the post specific views needed. This will contain
the following files:

create.ejs:

 <%- include('../partials/header.ejs') -%>
 <div class="columns">
 <div class="column is-three-quarters">
 <h1 class="title">Create Post</h1>

 <form action="/post/" method="POST">
 <div class="field">
 <label class="label">Title</label>
 <div class="control">
 <input class="input" type="text" placeholder="e.g Koa is
 awesome" name="title">
 </div>
 </div>

 <div class="field">
 <label class="label">Content</label>
 <div class="control">
 <textarea rows="12" class="textarea" placeholder="e.g.
 Hello world" name="content"></textarea>
 </div>
 </div>

 <div class="control">
 <button class="button is-primary">Submit</button>
 </div>
 </form>
 </div>

 <div class="column">

Building an Application in Koa Chapter 6

[108]

 </div>
 </div>
 <%- include('../partials/footer.ejs') -%>

edit.ejs:

 <%- include('../partials/header.ejs') -%>
 <div class="columns">
 <div class="column is-three-quarters">
 <h1 class="title">Create Post</h1>

 <form action="/post/<%= post.id %>/" method="POST">
 <input type="hidden" name="method" value="PUT">
 <div class="field">
 <label class="label">Title</label>
 <div class="control">
 <input value="<%= post.title %>" class="input"
 type="text" placeholder="e.g Koa is awesome"
 name="title">
 </div>
 </div>

 <div class="field">
 <label class="label">Content</label>
 <div class="control">
 <textarea rows="12" class="textarea" placeholder="e.g.
 Hello world" name="content"><%= post.content %>
 </textarea>
 </div>
 </div>

 <div class="control">
 <button class="button is-primary">Submit</button>
 </div>
 </form>
 </div>

 <div class="column">
 </div>
 </div>
 <%- include('../partials/footer.ejs') -%>

show.ejs:

 <%- include('../partials/header.ejs') -%>
 <h2 class="title"><%= post.title %></h2>

 <div class="columns">

Building an Application in Koa Chapter 6

[109]

 <div class="column is-2">
 <img src="<%= post.image %>" alt="<%= post.title %>">
 <h5 class="subtitle">
 <small>by <%= post.author.fullName %></small>
 </h5>
 <% if (locals.user && (post.author.id == user._id)) { -%>
 <p><small><a href="/post/<%= post.id %>/edit">Edit Post
 </small></p>
 <% } -%>
 </div>

 <div class="column">
 <p><%= post.content %></p>
 </div>
 </div>
 <%- include('../partials/footer.ejs') -%>

We also need to update our index.ejs file, as shown, to show the blog posts:

<!-- ./views/index.ejs -->

<%- include('partials/header.ejs') -%>
<div class="columns">
 <% posts.forEach(post => { %>

 <div class="column is-one-third">
 <div class="card">
 <div class="card-content">
 <p class="title">
 <%= post.title %>
 </p>
 <p class="subtitle">
 <small>by <%= post.author.fullName %></small>
 </p>
 </div>
 <footer class="card-footer">
 <p class="card-footer-item">

 <a href="/post/<%= post.id %>">View Post

 </p>
 </footer>
 </div>
 </div>

 <% }); %>
</div>
<%- include('partials/footer.ejs') -%>

Building an Application in Koa Chapter 6

[110]

Next, let's register these actions in our router file. We will also make the index route of our
application point to the index method defined previously. Update the router as shown:

// ./middleware/router.js

const KoaRouter = require('koa-router');
const authenticated = require('./authenticated');
const guest = require('./guest');
const user = require('./user');
const authController = require('../controllers/AuthController');
const postController = require('../controllers/PostController');

const router = new KoaRouter();
router.use(user());

// base routes.
// authentication not required
router
 .get('/', postController.index)
 .get('/post/:id', postController.show);

// auth routes
const auth = new KoaRouter()
 .get('/', guest(), authController.index)
 .post('/login', authController.login)
 .post('/register', authController.register)
 .get('/logout', authController.logout);
router.use('/auth', auth.routes());

// blog post routes
const posts = new KoaRouter();
posts
 .use(authenticated())
 .post('/', postController.store)
 .get('/create', postController.create)
 .put('/:id', postController.update)
 .get('/:id/edit', postController.edit);
router.use('/post', posts.routes());

module.exports = router;

Building an Application in Koa Chapter 6

[111]

To make put requests work, we need to implement a method overriding middleware. This
will help us change the request method for the post request to update a post to be
converted to a put request. We do this by creating a method-override.js file and putting
the following contents as shown:

// ./middleware/method-override.js

module.exports = () => {
 return async (ctx, next) => {
 const { method } = ctx.request.body;
 if (method) ctx.method = method;
 await next();
 };
};

Then, we register the middleware in our index.js as given:

// ./index.js

// ...

const methodOverride = require('./middleware/method-override');

app.use(methodOverride());

// ...

And that's it! Our blog post built from scratch in Koa is complete.

Summary
In this chapter, we learned about how we can build web applications entirely from scratch
in Koa. We also learned how to implement session-based authentication, implement views,
and handle forms for various purposes.

You can decide to expand on the current app and implement things such as custom error
handling, logging, and even the delete action for posts.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Node Cookbook - Third Edition
David Mark Clements, Mathias Buus, Et al

ISBN: 978-1-78588-008-7

Debug Node.js programs
Write and publish your own Node.js modules
Detailed coverage of Node.js core APIs
Use web frameworks such as Express, Hapi and Koa for accelerated web
application development
Apply Node.js streams for low-footprint data processing
Fast-track performance knowledge and optimization abilities
Persistence strategies, including database integrations with MongoDB,
MySQL/MariaDB, Postgres, Redis, and LevelDB
Apply critical, essential security concepts
Use Node with best-of-breed deployment technologies: Docker, Kubernetes and
AWS

https://india.packtpub.com/in/web-development/node-cookbook-third-edition

Other Books You May Enjoy

[113]

Node.js Design Patterns - Second Edition
Mario Casciaro, Luciano Mammino

ISBN: 978-1-78588-558-7

Design and implement a series of server-side JavaScript patterns so you
understand why and when to apply them in different use case scenarios
Become comfortable with writing asynchronous code by leveraging constructs
such as callbacks, promises, generators and the async-await syntax
Identify the most important concerns and apply unique tricks to achieve higher
scalability and modularity in your Node.js application
Untangle your modules by organizing and connecting them coherently
Reuse well-known techniques to solve common design and coding issues
Explore the latest trends in Universal JavaScript, learn how to write code that
runs on both Node.js and the browser and leverage React and its ecosystem to
implement universal applications

https://india.packtpub.com/in/web-development/nodejs-design-patterns-second-edition

Other Books You May Enjoy

[114]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
application object
 about 25
 application methods 26, 27
 settings 28
application programming interfaces (APIs) 59
application
 building 62
 contact endpoints, creating 71
 controller actions, creating 71
 data models, creating 66, 67
 database, connecting 64, 65, 66
 logger, setting up 70, 71
 requests, validating 80, 81, 83
 router, setting up 67, 68, 69
 server, starting 63
async function 19
asynchronous function
 defining 17
 promise class 18, 19
asynchronous program
 example 16
authentication, end-to-end application
 authentication middleware, defining 99, 104,

105

 controller functions, creating 105, 107, 109, 111
 handling 99
 login, implementing 99, 101, 102, 103, 104
 user registration, implementing 99, 101, 102,

103, 104
await keyword
 about 17
 using 19, 20

B
Babel
 reference 21
 using 21

C
callback hell 10
cascading 44, 45
contact endpoints, application
 contact, deleting 78
 contact, updating 76
 contacts, retrieving 71
 contacts, storing 72
 creating 71
 single contact, retrieving 75
context object
 about 28
 aliases 32, 33
 methods 29, 30, 31
 properties 29
convenience utilities
 reference 12
Cross-origin resource sharing (CORS) 83
CRUD (Create, Read, Update, and Delete)

functionality 13

D
data models, end-to-end application
 creating 90
 post model 92, 93
 user model 91, 92
default error handler 51, 52
destructuring assignment
 reference 15
DOM (document object model) 16
dotenv JavaScript module

[116]

 reference 83

E
end-to-end application
 authentication, handling 99
 building 88
 data models, creating 90
 database, connecting 89, 90
 dependencies, installing 86
 features 85
 project structure 87, 88
 project, setting up 86
 router, setting up 93, 94
 server, starting 88
 sessions, setting up 98
 views, setting up 95, 96
environment variables 83
error handlers
 writing 56
error handling
 about 50, 51
 default error handler 51, 52
 error event listener 53
 errors, emitting 52
event loop 16
Express
 versus Koa 11, 12

H
HTTP errors
 throwing 53, 54, 56

J
JavaScript
 modern syntax 15

K
KeyGrip
 about 27
 reference 27
koa-body
 reference 73
Koa
 about 6, 7

 advantages 7, 8, 9, 10
 avoiding 11
 errors, handling 50, 51
 installing 20
 server, starting 21, 22, 23
 usage 7
 versus Express 11, 12

L
LOC (lines of code) 6

M
middleware
 about 44
 cascading 44, 45
 defining 46
 kcors 48
 koa-body 48
 koa-connect 48
 koa-logger 48
 koa-router 48
 reference 48
 registering 46, 47
MongoDB
 about 49
 reference 49, 84

N
Node.js project
 dependencies, installing 61
 initialization 60
 setting up 60
 structure 62
Node.js
 about 16, 17
 reference 20, 49
NPM
 about 20
 reference 49

O
object data modeling (ODM) library 61, 87
Object Relation Mapper (ORM) 9
Observables

 reference 15

P
Postman
 about 60
 reference 60

R
representational state transfer (REST) 7
request object
 about 34
 content negotiation 40, 41
 methods 34, 35, 36, 38, 39, 40
 properties 34, 35, 36, 38, 39, 40
response object
 about 41

 methods 42, 43
 properties 42, 43

S
server
 starting, in Koa 21, 22, 23
synchronous program
 example 16

U
user interface (UI) framework 7

V
views, end-to-end application
 partials, using 97, 98
 setting up 95, 96

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introducing Koa
	Technical requirements
	What is Koa?
	What can you do with Koa?
	Why choose Koa?
	When you should not use Koa
	Koa versus Express
	How can this book help you understand Koa better?
	Summary

	Chapter 2: Getting Started with Koa
	Technical requirements
	Modern JavaScript
	A primer on Node
	What is async… await?
	The promise class
	Introducing async
	Introducing await

	Installing Koa
	Using Babel
	Starting a server in Koa
	Summary

	Chapter 3: Koa Core Concepts
	Technical requirements
	The application object
	Useful application methods
	Settings

	The context object
	Context object API
	Aliases

	The request object
	Content negotiation

	The response object

	Middleware
	Cascading in Koa
	Defining middleware
	Registering middleware
	Common middleware

	Summary

	Chapter 4: Handling Errors in Koa
	Technical requirements
	Catching errors in Koa
	Koa's default error handler
	Emitting errors
	Error event listener

	Throwing HTTP errors
	Writing error handlers
	Summary

	Chapter 5: Building an API in Koa
	Technical requirements
	Project setup
	Initialization
	Installing dependencies
	Structure

	Building the application
	Starting the server
	Using Nodemon

	Connecting to a database
	Creating data models
	Setting up the router
	Setting up a logger
	Creating contact endpoints and controller actions
	Retrieving all contacts
	Storing new contacts
	Retrieving a single contact
	Updating a contact
	Deleting a contact

	Validating requests

	Useful notes
	Summary

	Chapter 6: Building an Application in Koa
	Technical requirements
	About the application
	Setting up a project
	Installing dependencies
	Project structure

	Building the application
	Starting the server
	Connecting to the database
	Creating data models
	The user model
	The post model

	Setting up the router
	Setting up the views
	Using partials

	Setting up sessions
	Handling authentication
	User registration and login
	Authentication middleware
	Creating controller functions

	Summary

	Other Books You May Enjoy
	Index

