

Learn Qt 5

Build modern, responsive cross-platform desktop applications
with Qt, C++, and QML

Nicholas Sherriff

BIRMINGHAM - MUMBAI

Learn Qt 5
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Kunal Chaudhari
Acquisition Editor: Siddharth Mandal
Content Development Editor: Flavian Vaz
Technical Editor: Akhil Nair
Copy Editor: Shaila Kusanale
Project Coordinator: Devanshi Doshi
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Jason Monteiro
Production Coordinator: Arvindkumar Gupta

First published: Febraury 2018

Production reference: 1060218

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78847-885-4

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Nicholas Sherriff (Nick) spent the majority of his career at a major utility company in the
UK, working predominantly on the Microsoft Windows platform with C#, ASP.NET, and
SQL Server. While leading the native application development function there, he
 experimented with C++ before eventually discovering Qt, utilizing it on a major greenfield
project serving several thousand users. He currently works for a communications recording
software house. At home, Nick enjoys music, video games, and half-hearted calisthenics.

About the reviewer
Marthala Vishnu Vardhan Reddy is an enthusiastic software engineer. He is a Qt software
developer and has been working in the automation industry since 2013. He completed his
master's in information technology from the University of Stuttgart, Germany. He is
currently working on the digitization of metal cutting tool data in the manufacturing
industry in the direction of Industry 4.0.

He has done his bachelor's thesis from Institut supérieur d’électronique de Paris, France,
where he published an IEEE publication on 5G networks as well.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Hello Qt 6

Installing Qt 7
Maintaining your installation 13
Qt Creator 13
Scratchpad project 17
qmake 19

Summary 25

Chapter 2: Project Structure 26

Projects, MVC, and unit testing 26
Project creation 28
cm-lib 33
cm-tests 34
cm-ui 34

Mastering MVC 37
QObject 40
QML 43
Project output 47

Summary 55

Chapter 3: User Interface 56

UX 56
Creating views 58
StackView 60
Anchors 62
Sizing 69
Navigation 76

Fixing conflicts 86
Summary 87

Chapter 4: Style 88

Style resource 89
Font Awesome 94
Components 100

Table of Contents

[ii]

Styling the navigation bar 104
Clicking 111
Commands 116
Command bar 122

Summary 128

Chapter 5: Data 129

JSON 129
Object hierarchy 131
DataDecorators 133
Entities 143
Entity collections 147
Data models 154
Custom TextBox 161
Summary 167

Chapter 6: Unit Testing 168

Unit testing 168
The default Qt approach 170
Custom approach 173
DataDecorator tests 181
Entity Tests 187
Mocking 193
Summary 199

Chapter 7: Persistence 201

SQLite 202
Primary keys 210
Creating clients 213

Panels 218
Finding clients 225
Editing clients 237
Deleting clients 241

Summary 245

Chapter 8: Web Requests 246

Network access 246
Web Requests 249

RSS View 255
RSS 259

Summary 277

Table of Contents

[iii]

Chapter 9: Wrapping Up 278

Object factory 278
UI scaling 281
Dashboard 283
Enumerator selectors 285
Contacts 294
Deployment preparation 300
OS X 302
Linux 307
Windows 313
Qt Installer framework 316
Installation 320

Summary 323

Other Books You May Enjoy 325

Index 328

Preface
Qt is a mature and powerful framework for delivering sophisticated applications across a
multitude of platforms. It is widely used in embedded devices, including TVs, satellite set-
top boxes, medical equipment, car dashboards, and much more. It also has a rich history in
the Linux world, with KDE and Sailfish OS using it extensively and many apps in the stores
being developed using Qt. It has also made great strides in the mobile arena over the past
few years. However, in the Microsoft Windows and Apple macOS X worlds, the dominance
of C#/.NET and Objective-C/Cocoa means that Qt is often overlooked.

This book aims to demonstrate the power and flexibility of the Qt framework and show
how you can write your application once and deploy it to multiple operating system
desktops. The reader will build a complete real-world Line of Business (LOB) solution
from scratch, with distinct library, user interface, and unit test projects.

We will cover building a modern and responsive user interface with QML and wiring it up
to rich C++ classes. We will control every aspect of our project configuration and output
with QMake, including platform detection and conditional expressions. We will build “self-
aware” data entities that can serialize themselves to and from JSON. We will persist those
data entities in a database and learn how to find and update them. We will reach out to the
internet and consume an RSS feed. Finally, we will produce an installation package so that
we can deploy our application onto other machines.

This is a suite of essential techniques that cover the core requirements for most LOB
applications and will empower the reader to progress from blank page to shipped
application.

Who this book is for
This book targets application developers looking for a powerful and flexible framework for
creating modern and responsive applications on Microsoft Windows, Apple Mac OS X, and
Linux desktop platforms. Although focused on desktop application development, the
techniques discussed are largely applicable to mobile development also.

Preface

[2]

What this book covers
Chapter 1, Hello Qt, covers how to install and configure the Qt Framework and associated
IDE, Qt Creator.

Chapter 2, Project Structure, showcases how to create a new multi-project solution that will
be the foundation of our example application.

Chapter 3, User Interface, explores the user interface markup language QML and sketches
out our UI's layout.

Chapter 4, Style, explains how to give our UI a modern look and feel with shared resources
and reusable components.

Chapter 5, Data, discusses managing the most critical part of any LOB application—the
data.

Chapter 6, Unit Testing, gets you started with integrating unit testing into our solution
using Qt's testing framework—QtTest.

Chapter 7, Persistence, focuses on persisting our data to disk in a SQLite database.

Chapter 8, Web Requests, assists in using HTTP requests to pull data from a live RSS feed.

Chapter 9, Wrapping Up, dives into packaging and deploying our application.

To get the most out of this book
The reader should be comfortable with C++, but no prior knowledge of Qt or QML is
required. On Mac OS X, you will need to install XCode and have launched it at least once.
On Windows, you may optionally install Visual Studio in order to have the MSVC compiler
available.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Preface

[3]

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Learn- ​Qt- ​5. We also have other code bundles from our rich catalog of
books and videos available at https:/ ​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Create the SplashView.qml file in cm-ui/ui/views".

A block of code is set as follows:

<RCC>
 <qresource prefix="/views">
 <file alias="MasterView">views/MasterView.qml</file>
 </qresource>
 <qresource prefix="/">
 <file>views/SplashView.qml</file>
 <file>views/DashboardView.qml</file>
 <file>views/CreateClientView.qml</file>
 <file>views/EditClientView.qml</file>
 <file>views/FindClientView.qml</file>
 </qresource>
</RCC>

http://www.packtpub.com/support
https://github.com/PacktPublishing/Learn-Qt-5
https://github.com/PacktPublishing/Learn-Qt-5
https://github.com/PacktPublishing/Learn-Qt-5
https://github.com/PacktPublishing/Learn-Qt-5
https://github.com/PacktPublishing/Learn-Qt-5
https://github.com/PacktPublishing/Learn-Qt-5
https://github.com/PacktPublishing/Learn-Qt-5
https://github.com/PacktPublishing/Learn-Qt-5
https://github.com/PacktPublishing/Learn-Qt-5
https://github.com/PacktPublishing/Learn-Qt-5
https://github.com/PacktPublishing/Learn-Qt-5
https://github.com/PacktPublishing/Learn-Qt-5
https://github.com/PacktPublishing/Learn-Qt-5
https://github.com/PacktPublishing/Learn-Qt-5
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

QT += sql network

Any command-line input or output is written as follows:

$ <Qt Installation Path> \Tools \QtInstallerFramework \3.0\ bin\
binarycreator.exe -c config\config.xml -p packages
ClientManagementInstaller.exe

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Replace the Hello World title with Client Management and insert a Text component
inside the body of the Window".

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

http://www.packtpub.com/submit-errata

Preface

[5]

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://authors.packtpub.com/
https://www.packtpub.com/

1
Hello Qt

Qt is a mature and powerful framework for delivering sophisticated applications across a
multitude of platforms. It is widely used in embedded devices including TVs, satellite set-
top boxes, medical equipment, car dashboards, and much more. It also has a rich history in
the Linux world, with KDE and Sailfish OS using it extensively and many apps in the stores
being developed using Qt. It has also made great strides in the Mobile arena over the past
several years. However, in the Microsoft Windows and Apple Mac OS X worlds, the
dominance of C#/.NET and Objective-C/Cocoa mean that Qt is often overlooked.

This book aims to demonstrate the power and flexibility of the Qt framework and show
how you can write your application once and deploy it to multiple operating system
desktops. We will build a complete real-world line of business (LOB) solution from
scratch, with distinct library, user interface, and unit test projects.

We will cover building a modern, responsive user interface with QML and wiring it up to
rich C++ classes. We will control every aspect of our project configuration and output with
QMake, including platform detection and conditional expressions. We will build “self-
aware” data entities that can serialize themselves to and from JSON. We will persist those
data entities in a database and learn how to find and update them. We will reach out to the
internet and consume an RSS feed. Finally, we will produce an installation package so that
we can deploy our application onto other machines.

In this chapter, we will install and configure the Qt framework and associated Integrated
Development Environment (IDE) Qt Creator. We will create a simple scratchpad
application that we will use throughout the remainder of the book to demonstrate
various techniques. We will cover the following topics:

Installing Qt
Maintaining your installation

Hello Qt Chapter 1

[7]

Qt Creator
Scratchpad project
qmake

Installing Qt
Let’s start things off by visiting the Qt website at https:/ ​/​www. ​qt. ​io:

https://www.qt.io/
https://www.qt.io/
https://www.qt.io/
https://www.qt.io/
https://www.qt.io/
https://www.qt.io/
https://www.qt.io/
https://www.qt.io/
https://www.qt.io/

Hello Qt Chapter 1

[8]

The site layout changes fairly frequently, but what you are looking for is to download Qt
Open Source for Desktop & Mobile:

From the top-level menu, select Products and then IDE & Tools1.
Click on Start for Free2.
Select Desktop & Mobile Applications3.
Click on Get your open source package4.

If you continue to use Qt beyond these personal projects, ensure that you
read the licensing information available on the Qt website (https:/ ​/​www.
qt.​io/ ​licensing/ ​). Upgrade to the commercial Qt license if the scope of
your projects requires it or if you want access to the official Qt support
and the benefits of a close strategic relationship with the Qt company.

The site will detect your operating system and suggest a recommended download:

https://www.qt.io/licensing/
https://www.qt.io/licensing/
https://www.qt.io/licensing/
https://www.qt.io/licensing/
https://www.qt.io/licensing/
https://www.qt.io/licensing/
https://www.qt.io/licensing/
https://www.qt.io/licensing/
https://www.qt.io/licensing/
https://www.qt.io/licensing/
https://www.qt.io/licensing/

Hello Qt Chapter 1

[9]

On Windows, you will be recommended the online installer *.exe file, while on Linux you
will be offered a *.run file, and a .dmg file if you are running Mac OS X. In all cases,
download and launch the installer:

On Linux, once downloaded, you may need to first navigate to the *.run
file and mark it as executable in order to be able to launch it. To do this,
right-click on the file in the file manager and click on Properties. Click on
the Permissions tab and tick the box that says Allow executing file as
program.

After the initial welcome dialog, the first thing you are presented with is the option to sign
up for or log in with a Qt account. Feel free to create one if you wish, but for now we’ll go
ahead and Skip:

Hello Qt Chapter 1

[10]

You are then asked to select which components you wish to install.

Your first decision is which version(s) of the Qt framework you want. You can have
multiple versions installed side by side. Let's select the latest and greatest (Qt 5.10 at the
time of writing) and leave all the older versions unchecked.

Hello Qt Chapter 1

[11]

Next, expand the selected version and you will see a secondary list of options. All the
options where the description reads “Qt 5.9.x Prebuilt Components for ...” are what is
known as a Kit. A Kit is essentially a toolset enabling you to build your application with a
specific compiler/linker and run it on a particular target architecture. Each kit comes with
Qt framework binaries compiled specifically for that particular toolset as well as necessary
supporting files. Note that kits do not come with the referenced compiler; you will need to
install those ahead of time. One exception to this on Windows is MinGW (which includes
GCC for Windows), which you can optionally install via the Tools component list at the
bottom.

On Windows, that is exactly what we’ll do, so we select the MinGW 5.3.0 32 bit kit and also
the MinGW 5.3.0 development environment from the Tools section. On my (64-bit)
machine, I already have Microsoft Visual Studio 2017 installed, so we will also select the
MSVC 2017 64-bit kit to help demonstrate some techniques later in the book. On Linux, we
select GCC 64-bit, while on Mac OS, we select macOS 64-bit (which uses the Clang
compiler). Note that on Mac OS, you must have XCode installed, and it's a good idea
to launch XCode at least once to give it an opportunity to complete its initialization and
configuration.

Feel free to press pause, go and install whatever other IDEs or compilers you want to use,
and then come back and pick the kits to match. It doesn’t matter too much which you go
for—the techniques explained throughout the book are applicable regardless of the kit, you
may just get slightly different results. Note that the available kits you are presented with
will differ depending on your operating system and chipset; for example, if you are on a 32
bit machine, you won’t be offered any 64 bit kits.

Below the kits are some optional Qt APIs (such as Qt Charts), which we
won’t need for the topics covered in this book, but feel free to add them in
if you want to explore their functionality. Note that they may have
different licensing agreements from the core Qt framework.

Regardless of kits and APIs, you will note in the Tools section that Qt Creator is installed by
default and that is the IDE we will be using throughout this book:

Hello Qt Chapter 1

[12]

Hello Qt Chapter 1

[13]

Once you are finished making your selections, click on Next and Update to kick off the
installation.

It's generally a good idea to leave the installation location as the default for
consistency across machines, but feel free to install it wherever you want.

Maintaining your installation
Once installed, you can update, add, and remove components (or even the entire Qt
installation) via the Maintenance Tool application that is located in the directory you
installed Qt to.

Launching this tool provides pretty much the same experience as when we first installed Qt.
The Add or remove components option is the one you want to add in items you may have
previously not needed, including kits and even entirely new releases of the framework.
Unless you actively uncheck them, components already installed on your system will not be
affected.

Qt Creator
While a detailed overview of Qt Creator is beyond the scope of this book (the Qt Creator
manual is accessible via the Help mode as described here), it’s worth having a quick whistle
stop tour before we get stuck to our first project, so launch the freshly installed application
and we’ll take a look:

Hello Qt Chapter 1

[14]

At the upper left-hand side (1) are the different areas or modes of the application:

Welcome mode is the default when Qt Creator is launched and is the jumping off
point to create or open projects. There is an extensive set of examples that help
showcase the various capabilities of the framework as well as a selection of
tutorial videos.
Edit mode is where you will be spending the vast majority of your time and is
used for editing all the various text-based files.
Design is accessible only when you have a UI file open and is a WYSIWYG editor
for views. Although useful for UX design and basic layout work, it can
get frustrating quite quickly and we will do all of our QML work in Edit mode
instead. Working this way promotes understanding of the QML (as you have to
write it) and also has the advantage that the editor is not adding code that you
don’t want.
Debug mode is used for debugging applications and is beyond the scope of this
book.
Projects mode is where configuration for the project is managed, including the
build settings. Changes made here will be reflected in the *.pro.user file.
Help mode takes you to the Qt Creator manual and Qt library reference.

Hello Qt Chapter 1

[15]

Pressing F1 while the cursor is on a recognized Qt symbol will
automatically open context sensitive help for that symbol.

Below that, we have the build/run tools (2):

Kit/Build lets you select your kit and set the build mode
Run builds and runs the application without debugging
Start Debugging builds and runs the application with a debugger (note that you
must have a debugger installed and configured in your selected kit for this to
work)
Build Project builds the application without running it

Along the bottom (3), we have a search box and then several output windows:

Issues displays any warnings or errors. For compiler errors relating to your code, double-
clicking on the item will navigate you to the relevant source code.

Search Results lets you find occurrences of text within various scopes. Ctrl + F
brings up a quick search, and from there selecting Advanced… also brings up the
Search Results console.
Application Output is the console window; all output from application code like
std:: cout and Qt’s equivalent qDebug() appears here, along with certain
messages from the Qt framework.
Compile Output contains output from the build process, from qmake through to
compilation and linking.
Debugger Console contains debugging information that we won’t be covering in
this book.
General Messages contains other miscellaneous output, the most useful of which
is from qmake parsing of *.pro files, which we will look at later.

The search box really is a hidden gem and saves you from clicking through endless files and
folders trying to find what you are looking for. You can start typing the name of a file you
are looking for in the box and a filtered list appears with all matching files. Simply click on
the file you want, and it opens in the editor. Not only that, there are a large number of filters
you can apply too. Click your cursor in the empty search box and it displays a list of
available filters. The filter m, for example, searches for C++ methods. So, say you remember
writing a method called SomeAmazingFunction() but can't remember where it is, just
head over to the search box, start typing m Some, and it will appear in the filtered list.

Hello Qt Chapter 1

[16]

In Edit mode, the layout changes slightly and some new panes appear. Initially, they will be
empty, but once you have a project open, they will resemble the following:

Next to the navigation bar is the project explorer, which you can use to navigate the files
and folders of your solution. The lower pane is a list of all of the documents you currently
have open. The larger area to the right is the editor pane where you write your code and
edit documents.

Double-clicking on a file in the project explorer will generally open it in the editor pane and
add it to the open documents list. Clicking on a document in the open documents list will
activate it in the editor pane, while clicking on the small x to the right of the filename closes
it.

Panes can be changed to display different information, resized, split, closed, and possibly
filtered or synchronized with the editor using the buttons in the headers. Experiment to get
a feel for what they can do.

Hello Qt Chapter 1

[17]

As you would expect with a modern IDE, the look and feel of the chrome and the text editor
is very customizable. Select Tools > Options… to see what is available. I generally edit the
following:

Environment > Interface > Theme > Flat

Text Editor > Fonts & Colors > Color Scheme > My own scheme

Text Editor > Completion > Surround text selection with
brackets > Off

Text Editor > Completion > Surround text selection with quotes
> Off

C++ > Code Style > Current Settings > Copy… then Edit…
Edit Code Style > Pointers and References > Bind to Type name >
On (other options Off)

Play around and get things how you like them.

Scratchpad project
To demonstrate how minimal a Qt project can be and to give us a programming sandpit to
play around in, we’ll create a simple scratchpad project. For this project, we won’t even use
the IDE to do it for us, so you can really see how projects are built up.

First, we need to create a root folder to store all of our Qt projects. On Windows, I use
c:\projects\qt, while I use ~/projects/qt on Linux and Mac OS. Create this folder
wherever works for you.

Note that file syncing tools (OneDrive, DropBox, and so on) can
sometimes cause problems with project folders, so keep your project files
in a regular unsynchronized folder and use version control with a remote
repository for backups and sharing.

For the remainder of the book, I will loosely refer to this folder as <Qt Projects> or
similar. We will also tend toward using the Unix style / separator for file paths, rather than
Windows style back slash \. So, for readers using Windows, <Qt
Projects>/scratchpad/amazing/code is equivalent to
c:\projects\qt\scratchpad\amazing\code. Qt tends to favor this convention too.

Equally, the majority of screenshots in the remainder of the book will be from Windows, so
Linux/Mac users should interpret any references to c:\projects\qt as ~/projects/qt.

Hello Qt Chapter 1

[18]

In our Qt projects folder, create a new folder scratchpad and navigate into it. Create a new
plain text file called scratchpad.pro, remembering to remove any .txt extension the
operating system may want to add for you.

Next, simply double-click on the file and it will open in Qt Creator:

Here, Qt Creator is asking us how we want our project to be configured, namely, which kits
we want to use when building and running our code. Pick one or more available kits and
click on Configure Project. You can easily add and remove kits later, so don’t worry about
which ones you select.

If you switch back to the filesystem, you will see that Qt Creator has created a new file
for us called scratchpad.pro.user. This is just an XML file containing configuration
information. If you delete this file and open the .pro file again, you will be prompted to
configure the project again. As its name suggests, the configuration settings are relevant to
the local user, so often if you load a project created by someone else, you will need to go
through the configure project step then too.

Hello Qt Chapter 1

[19]

With the project successfully configured, you will see the project has been opened, even
with a completely empty .pro file. That's about as minimal as a project can get!

Back in the filesystem, create the following plain text files:

main.cpp

main.qml

qml.qrc

I will go through each of these files, explain their purpose, and add their content soon. In a
real-world project, we would of course use the IDE to create the files for us. Indeed, that’s
exactly what we’ll do when we create our main solution files. However, the purpose of
doing it this way is to show you that when you boil it down, a project is just a bunch of text
files. Never be afraid to create and edit files manually. A lot of modern IDEs can confuse
and overcomplicate with menu after menu and never-ending option windows. Qt Creator
may miss some of the advanced bells and whistles of other IDEs but is refreshingly lean and
straightforward.

With those files created, double-click on the scratchpad.pro file in the Projects pane and
we’ll start editing our new project.

qmake
Our project (.pro) files are parsed by a utility called qmake, which in turn generates
Makefiles that drive the building of the application. We define the type of project output
we want, what source files are included as well as the dependencies and much more. Much
of this is achieved by simply setting variables as we will do in our project file now.

Add the following to scratchpad.pro:

TEMPLATE = app

QT += qml quick

CONFIG += c++14
SOURCES += main.cpp
RESOURCES += qml.qrc

Hello Qt Chapter 1

[20]

Let’s run through each of these lines in turn:

TEMPLATE = app

TEMPLATE tells qmake what type of project this is. In our case, it’s an executable application
that is represented by app. Other values we are interested in are lib for building library
binaries and subdirs for multi project solutions. Note that we set a variable with the =
operator:

QT += qml quick

Qt is a modular framework that allows you to pull in only the parts you need. The QT flag
specifies the Qt modules we want to use. The core and gui modules are included by default.
Note that we append additional values to a variable that expects a list with +=:

CONFIG += c++14

CONFIG allows you to add project configuration and compiler options. In this case, we are
specifying that we want to make use of C++14 features. Note that these language feature
flags will have no effect if the compiler you are using does not support them:

SOURCES += main.cpp

SOURCES is a list of all the *.cpp source files we want to include in the project. Here, we
add our empty main.cpp file, where we will implement our main() function. We don’t
have any yet, but when we do, our header files will be specified with a HEADERS variable:

RESOURCES += qml.qrc

RESOURCES is a list of all the resource collection files (*.qrc) included in the project.
Resource collection files are used for managing application resources such as images and
fonts, but most crucially for us, our QML files.

With the project file updated, save the changes.

Whenever you save a change to your *.pro files, qmake will parse the file. If all is well, you
will get a small green bar at the bottom-right of Qt Creator. A red bar indicates some kind
of issue, usually a syntax error. Any output from the process will be written out to the
General Messages window to help you diagnose and fix the problem. White space is
ignored, so don’t worry about matching up the blank lines exactly.

Hello Qt Chapter 1

[21]

To get qmake to take a fresh look at your project and generate new
Makefiles, right-click on your project in the Projects pane and select Run
qmake. It may be slightly tedious, but it’s a good habit to manually run
qmake in this way on each of your projects before building and running
your application. I’ve found that certain types of code changes can “slip
under the radar” and leave you scratching your head when you run your
application and they don’t seem to have had any effect. If you ever see
your application ignoring the changes you’ve just made, run qmake on
each of your projects and try again. The same applies if you get spurious
linker errors.

You will see that our other files have now magically appeared in the Projects pane:

Double-click on main.cpp to edit it, and we’ll write our first bit of code:

#include <QGuiApplication>
#include <QQmlApplicationEngine>

int main(int argc, char *argv[])
{
 QGuiApplication app(argc, argv);
 QQmlApplicationEngine engine;

 engine.load(QUrl(QStringLiteral("qrc:/main.qml")));

 return app.exec();
}

All we are doing here is instantiating a Qt GUI application object and asking it to load our
main.qml file. It’s very short and simple because the Qt framework does all the complex
low-level work for us. We don’t have to worry about platform detection or managing
window handles or OpenGL.

Hello Qt Chapter 1

[22]

Possibly one of the most useful things to learn is that placing the cursor in one of the Qt
objects and pressing F1 will open the help for that type. The same is true for methods and
properties on Qt objects. Poke around in the help files to see what QGuiApplication and
QQmlApplicationEngine are all about.

To edit the next file in our project—qml.qrc—you need to right-click and select the editor
you want to open it with. The default is Resource Editor:

I am personally not a fan of this editor. I don’t feel it makes editing any easier than just
writing plain text and isn’t particularly intuitive. Close this and instead choose Open with
> Plain Text Editor.

Add the following content:

<RCC>
 <qresource prefix="/">
 <file>main.qml</file>
 </qresource>
</RCC>

Hello Qt Chapter 1

[23]

Back in main.cpp, we asked Qt to load the qrc:/main.qml file. This essentially breaks
down as “look for the file in a qrc file with a prefix of / and a name of main.qml”. Now
here in our qrc file, we have created a qresource element with a prefix property of /.
Inside this element, we have a collection of resources (albeit only one of them) that has the
name main.qml. Think of qrc files as a portable filesystem. Note that the resource files are
located relative to the .qrc file that references them. In this case, our main.qml file is in the
same folder as our qml.qrc file. If it was in a subfolder called views, for example, then the
line in qml.qrc would read this way:

<file>views/main.qml</file>

Similarly, the string in main.cpp would be qrc:/views/main.qml.

Once those changes are saved, you will see our empty main.qml file appear as a child of
the qml.qrc file in the Projects pane. Double-click on that file to edit it, and we will finish
off our project:

import QtQuick 2.9
import QtQuick.Window 2.3

Window {
 visible: true
 width: 1024
 height: 768
 title: qsTr("Scratchpad")
 color: "#ffffff"

 Text {
 id: message
 anchors.centerIn: parent
 font.pixelSize: 44
 text: qsTr("Hello Qt Scratchpad!")
 color: "#008000"
 }
}

We will cover QML in detail in Chapter 2, Project Structure, but in brief, this file represents
the screen or view presented to the user when the application launches.

Hello Qt Chapter 1

[24]

The import lines are similar to #include statements in C++, though rather than including a
single header file, they import a whole module. In this case, we want the base QtQuick
module to give us access to all the core QML types and also the QtQuick window module to
give us access to the Window component. Modules are versioned and generally, you will
want to use the latest version for the release of Qt you are using. The current version
numbers can be found in the Qt documentation. Note that although you get code
completion when entering the version numbers, the options presented sometimes don’t
reflect the latest available versions.

As its name suggests, the Window element gives us a top-level window, inside which all of
our other content will be rendered. We give it a size of 1024 x 765 pixels, a title of
“scratchpad” and a background color of white represented as a hex RGB value.

Within that component (QML is a hierarchical markup language), we add a welcome
message with the Text component. We center the text in the screen and set its font size and
color, but other than that, we’re not concerned with fancy formatting or anything at this
stage, so that’s as complicated as we’ll make it. Again, we’ll cover this in more detail later, so
don’t worry if it seems a bit alien.

That’s it. To build and run our amazing new application, first select the Kit and Build
configuration you want using the monitor icon at the bottom-left:

Hello Qt Chapter 1

[25]

Next, right-click on the project name in the Projects pane and select Run qmake. When that
has completed, Run the application using the green play icon:

Summary
In this chapter, we downloaded, installed, and configured Qt. We’ve taken a whirlwind tour
of the Qt Creator IDE, played with its options, and seen how to edit a variety of files with it.
We’ve had a gentle introduction to qmake and seen how absurdly simple creating projects
can be, demystifying things in the process. Finally, we built our debut project up from
scratch (weak pun intended) and got the obligatory Hello World message on screen.

In Chapter 2, Project Structure, we will build on these basics and set up our main solution.

2
Project Structure

In this chapter, we will create a new multiproject solution that will be the foundation of our
example application. We will apply a Model View Controller pattern, separating the user
interface and business logic. We will also introduce Qt’s unit testing
framework—QtTest—and demonstrate how to integrate it into our solution. We will cover
these things in this chapter:

Projects, MVC, and unit testing
Creating a library project
Creating a unit tests project
Creating a user interface project
Mastering MVC
The QObject base class
QML
Controlling project output

Projects, MVC, and unit testing
The scratchpad application we built in the previous chapter is a Qt project, represented by a
.pro file. In a business environment, technical solutions are generally developed as part of
company initiatives, and these initiatives are generally also called projects. To try and
minimize confusion (and the number of times the word project appears!), we’ll use project
to mean a Qt project defined by a .pro file and the word initiative to refer to projects in the
business sense.

Project Structure Chapter 2

[27]

The initiative we will work on will be a generic client management system. It will be
something that can be tweaked and re purposed for multiple applications—for a supplier
managing customers, a health service managing patients, and so on. It will perform
common tasks found over and over in real-world Line of Business (LOB) applications,
principally adding, editing, and deleting data.

Our scratchpad application is entirely encapsulated within a single project. For smaller
applications, this is perfectly viable. However, with larger code bases, particularly with
several developers involved, it often pays to break things up into more manageable pieces.

We will be using a super lightweight implementation of the Model View Controller (MVC)
architectural pattern. If you haven’t come across MVC before, it is primarily used to
decouple business logic from the user interface. The user interface (View) relays commands
to a switchboard style class (Controller) to retrieve the data and perform actions it needs.
The controller in turn delegates the responsibility for the data, logic, and rules to data
objects (Models):

The key is that the View knows about the Controller and the Model, as it needs to send
commands to the Controller and display the data held in the Model. The Controller knows
about the Model as it needs to delegate work to it, but it doesn’t know about the View. The
Model knows nothing about either the Controller or the View.

Project Structure Chapter 2

[28]

A key benefit of designing the application this way in a business environment is that
dedicated UX specialists can work on the views while programmers work on the business
logic. A secondary boon is that because the business logic layer knows nothing about the
UI, you add, edit, and even totally replace user interfaces without affecting the logic layer.
A great use case would be to have a “full fat” UI for a desktop application and a companion
“half fat” UI for a mobile device, both of which can use the same business logic. With all this
in mind, we will physically segregate our UI and business logic into separate projects.

We will also look at integrating automated unit tests into our solution. Unit testing and Test
Driven Development (TDD) has really grown in popularity in recent times and when
developing applications in a business environment, you will more than likely be expected
to write unit tests alongside your code. If not, you should really propose doing it as it holds
a lot of value. Don’t worry if you haven’t done any unit testing before; it’s very
straightforward, and we’ll discuss it in more detail later in the book.

Finally, we need a way to aggregate these subprojects together so that we don’t have to
open them individually. We will achieve this with an umbrella solution project that does
nothing other than tying the other projects together. This is how we will lay out our
projects:

Project creation
In the previous chapter, we saw how easy it is to set up a new project just by creating a few
text files. However, we’ll create our new solution using Qt Creator. We will use the new
project wizard to guide us through creating a top-level solution and a single subproject.

Project Structure Chapter 2

[29]

From the top menu, select File > New File or Project and then Projects > Other Project >
Subdirs Project and click on Choose…:

Subdirs Project is the template we need for our top-level solution project. Give it the name
cm and create it in our qt projects folder:

Project Structure Chapter 2

[30]

On the Kit Selection pane, check the Desktop Qt 5.10.0 MinGW 32bit kit we installed. Feel
free to select additional kits you want to try out if you have them installed, but it’s not
necessary. Click on Next:

As discussed, version control is beyond the scope of this book, so in the Project
Management pane, select None from the Add to version control dropdown. Click
on Finish & Add Subproject:

Project Structure Chapter 2

[31]

We’ll add the user interface project as the first subproject. The wizard follows more or less
the same pattern as the steps we've just followed, so perform the following:

Select Projects > Application > Qt Quick Application - Empty and click on1.
Choose...
In the Project Location dialog, give it the name cm-ui (for Client Management -2.
User Interface), leave the location as our new cm folder, and click on Next.
In the Define Build System dialog, select the build system qmake and3.
click on Next.
In the Define Project Details dialog, leave the default minimal Qt version of4.
QT 5.9 and the Use Qt Virtual Keyboard box unchecked then click on Next.
In the Kit Selection dialog, pick the Desktop Qt 5.10.0 MinGW 32bit kit plus any5.
other kits you wish to try and click on Next.
Finally, in the Project Management dialog, skip version control (leave it as6.
<None>) and click on Finish.

Our top-level solution and UI projects are now up and running, so let’s add the other
subprojects. Add the business logic project next, as follows:

In the Projects pane, right-click on the top-level cm folder and select New1.
Subproject….
Select Projects > Library > C++ Library and click on Choose....2.
In the Introduction and Project Location dialog, pick Shared Library as the3.
Type, name it cm-lib, create it in <Qt Projects>/cm, and then click on Next.
In the Select Required Modules dialog, just accept the default of QtCore and4.
click on Next.
In the Class Information dialog, we get the opportunity to create a new class to5.
get us started. Give the class name Client, with the client.h header file and
the client.cpp source file, and then click on Next.
Finally, in the Project Management dialog, skip version control (leave it as6.
<None>) and click on Finish.

Finally, we will repeat the process to create our unit testing project:

New Subproject....1.
Projects > Other Project > Qt Unit Test.2.
Project name cm-tests.3.
Include QtCore and QtTest.4.

Project Structure Chapter 2

[32]

Create the ClientTests test class with the testCase1 test slot and the client-5.
tests.cpp filename. Set the Type as Test and check Generate initialization and
cleanup code.
Skip version control and Finish.6.

That was a lot of dialog boxes to get through, but we’ve now got our skeleton solution in
place. Your project folders should look as follows:

Project Structure Chapter 2

[33]

We’ll now take a look at each project in turn and make some tweaks before we start adding
our content.

cm-lib
First off, head to file explorer and create a new subfolder underneath cm-lib called
source; move cm-lib_global.h there. Create another subfolder in source called models
and move both the Client class files there.

Next, back in Qt Creator, open up cm-lib.pro and edit it as follows:

QT -= gui

TARGET = cm-lib
TEMPLATE = lib

CONFIG += c++14

DEFINES += CMLIB_LIBRARY

INCLUDEPATH += source

SOURCES += source/models/client.cpp

HEADERS += source/cm-lib_global.h \
 source/models/client.h

As this is a library project, we do not need to load the default GUI module, so we exclude it
using the QT variable. The TARGET variable is the name we wish to give our binary output
(for example, cm-lib.dll). It is optional and will default to the project name if not
provided, but we’ll be explicit. Next, rather than having a TEMPLATE of app as we saw in
our scratchpad application, this time we use lib to give us a library. We add c++14 features
via the CONFIG variable.

The cm-lib_global.h file is a helpful little bit of preprocessor boilerplate we can use to
export our shared library symbols, and you’ll see that put to use soon. We use the
CMLIB_LIBRARY flag in the DEFINES variable to trigger this export.

Finally, we have slightly rewritten the SOURCES and HEADERS variable lists to account for
the new file locations after we moved things around a bit, and we add the source folder
(which is where all of our code will live) to the INCLUDEPATH so that the path is searched
when we use #include statements.

Project Structure Chapter 2

[34]

Right-click on the cm-lib folder in the Projects pane and select Run qmake. When that has
finished, right-click again and select Rebuild. Everything should be green and happy.

cm-tests
Create new source/models subfolders and move client-tests.cpp there. Switch back
to Qt Creator and edit cm-tests.pro:

QT += testlib
QT -= gui

TARGET = client-tests
TEMPLATE = app

CONFIG += c++14
CONFIG += console
CONFIG -= app_bundle

INCLUDEPATH += source

SOURCES += source/models/client-tests.cpp

This follows pretty much the same approach as with cm-lib, with the exception that we
want a console app rather than a library. We don’t need the GUI module, but we will add
the testlib module to get access to the Qt Test features.

There really isn’t much to this subproject just yet, but you should be able to run qmake and
rebuild successfully.

cm-ui
Create two subfolders this time: source and views. Move main.cpp into source and
main.qml into views. Rename qml.qrc as views.qrc and edit cm-ui.pro:

QT += qml quick

TEMPLATE = app

CONFIG += c++14

INCLUDEPATH += source

SOURCES += source/main.cpp

Project Structure Chapter 2

[35]

RESOURCES += views.qrc

Additional import path used to resolve QML modules in Qt Creator's code
model
QML_IMPORT_PATH = $$PWD

Our UI is written in QML, which requires the qml and quick modules, so we add those. We
edit the RESOURCES variable to pick up our renamed resource file and also edit the
QML_IMPORT_PATH variable, which we will cover in detail when we get into custom QML
modules.

Next, edit views.qrc to account for the fact that we have moved the main.qml file into the
views folder. Remember to right-click and Open With > Plain Text Editor:

<RCC>
 <qresource prefix="/">
 <file>views/main.qml</file>
 </qresource>
</RCC>

Finally, we also need to edit a line in main.cpp to account for the file move:

engine.load(QUrl(QStringLiteral("qrc:/views/main.qml")));

You should now be able to run qmake and rebuild the cm-ui project. Before we run it, let’s
take a quick look at the build configuration button now that we have multiple projects
open:

Project Structure Chapter 2

[36]

Note that now, along with the Kit and Build options, we must also select the executable we
wish to run. Ensure that cm-ui is selected and then run the application:

Hello World indeed. It's fairly uninspiring stuff, but we have a multiproject solution
building and running happily, which is a great start. Close the application when you simply
can’t take any more fun!

Project Structure Chapter 2

[37]

Mastering MVC
Now that our solution structure is in place, we’ll get started on the MVC implementation.
As you’ll see, it is very minimal and incredibly easy to set up.

First, expand cm-ui > Resources > views.qrc > / > views, right-click on
main.qml, select Rename, and rename the file as MasterView.qml. If you get a message
about project editing, just select Yes to continue anyway:

If you do get the error message, the file will still appear as main.qml in the Projects pane,
but the file will have been renamed in the filesystem.

Next, edit views.qrc (right-click on it and select Open With > Plain Text Editor). Replace
the content as follows:

<RCC>
 <qresource prefix="/views">
 <file alias="MasterView.qml">views/MasterView.qml</file>
 </qresource>
</RCC>

If you recall how we load this QML file in main.cpp, the syntax is
qrc:<prefix><filename>. We previously had a / prefix and a views/main.qml relative
filename. This gave us qrc:/views/main.qml.

A prefix of / isn’t terribly descriptive. As you add more and more QML files, it’s really
helpful to organize them into blocks with meaningful prefixes. Having unstructured
resource blocks also makes the Projects pane ugly and more difficult to navigate, as you just
saw when you had to drill down through views.qrc > / > views. So, the first step is to
rename the prefix from / to /views.

However, with a prefix of /views and a relative filename of views/main.qml, our URL is
now qrc:/views/views/main.qml.

Project Structure Chapter 2

[38]

This is worse than it was before, and we still have a deep folder structure in views.qrc.
Fortunately, we can add an alias for our file to make both of these problems go away. You
can use the alias of a resource in place of the relative path, so if we assign an alias of
main.qml, we can replace views/main.qml with simply main.qml, giving
us qrc:/views/main.qml.

That’s concise and descriptive, and our Projects pane is neater too.

So, going back to our updated version of views.qrc, we have simply updated the name of
the file from main.qml to MasterView.qml, consistent with the file rename we performed,
and we have also provided a shortcut alias, so we don't have to specify views twice.

We now need to update our code in main.cpp to reflect these changes:

engine.load(QUrl(QStringLiteral("qrc:/views/MasterView.qml")));

You should be able to run qmake, and build and run to verify that nothing has broken.

Next, we’ll create a MasterController class, so right-click on the cm-lib project and
select Add New… > C++ > C++ Class > Choose…:

Project Structure Chapter 2

[39]

Use the Browse… button to create the source/controllers subfolder.

By selecting QObject as the base class and including it, Qt Creator will write some of the
boilerplate code for us. You can always add it yourself later, so don’t feel like it’s a necessary
part of creating a new class.

Once you’ve skipped version control and created the class, declare and define it as follows.
Our MasterController doesn’t do anything particularly exciting just yet, we’re just doing
the groundwork.

Here's master-controller.h:

#ifndef MASTERCONTROLLER_H
#define MASTERCONTROLLER_H

#include <QObject>

#include <cm-lib_global.h>

namespace cm {
namespace controllers {

class CMLIBSHARED_EXPORT MasterController : public QObject
{
 Q_OBJECT

public:
 explicit MasterController(QObject* parent = nullptr);
};

}}

#endif

All we’ve really added to the default implementation Qt Creator gave us is
the CMLIBSHARED_EXPORT macro Qt Creator wrote for us in cm-lib_global.h to take
care of our shared library exports, and to put the class inside a namespace.

I always have the project name as a root namespace and then additional
namespaces that reflect the physical location of the class files within the
source directory, so in this case, I use cm::controllers, as the class is
located in the directory source/controllers.

Project Structure Chapter 2

[40]

This is master-controller.cpp:

#include "master-controller.h"

namespace cm {
namespace controllers {

MasterController::MasterController(QObject* parent)
 : QObject(parent)
{
}

}}

I use a slightly unorthodox style in the implementation file—most people
just add using namespace cm::controllers; at the top of the .cpp
file. I often like to put the code within the scope of namespaces because it
becomes collapsible in the IDE. By repeating the innermost namespace
scope (controllers in this example), you can break your code up into
collapsible regions much like you can in C#, which helps with navigation
in larger files, as you can collapse the sections you’re not interested in. It
makes no functional difference, so use whichever style you prefer.

QObject
So, what is this funky QObject thingy we are inheriting from which keeps popping up?
Well, it’s the base class for all Qt objects, and it gives us some powerful features for free.

QObjects organize themselves into object hierarchies with a parent object assuming
ownership of their child objects, which means we don’t have to worry (as much!) about
memory management. For example, if we have an instance of a Client class derived from
QObject that is the parent of an Address also derived from QObject, then the address is
automatically destroyed when the client is destroyed.

QObjects carry metadata that allows a degree of type inspection and is the backbone for
interaction with QML. They can also communicate with each other via an event
subscription mechanism where the events are emitted as signals and the subscribed
delegates are known as slots.

Project Structure Chapter 2

[41]

All you need to remember for now is that for any custom classes you write where you want
to interact with it in the UI, ensure that it derives from QObject. Whenever you do derive
from QObject, ensure that you always add the magical Q_OBJECT macro to your class
before you do anything else. It injects a bunch of super complicated boilerplate code that
you don’t need to understand in order to use QObjects effectively.

We are now at the point where we need to reference code from one subproject
(MasterController in cm-lib) in another (cm-ui). We first need to be able to access the
declarations for our #include statements. Edit the INCLUDEPATH variable in cm-ui.pro as
follows:

INCLUDEPATH += source \
 ../cm-lib/source

The \ symbol is a “continue on to the next line” indicator, so you can set a variable to
multiple values spanning several lines. Just like console commands, ‘..’ means traverse up a
level, so here we are stepping up out of the local folder (cm-ui) and then down into the cm-
lib folder to get at its source code. You need to be careful that the project folders remain in
the same location relative to each other, else this won’t work.

Just below this, we’ll tell our UI project where to find the implementation (compiled binary)
of our library project. If you take a look at the filesystem alongside the top-level cm project
folder, you will see one or more build folders, for example, build-cm-
Desktop_Qt_5_9_0_MinGW_32bit-Debug. Each folder is created when we run qmake for a
given kit and configuration and is populated with the output when we build.

Next, navigate to the folder relevant to the kit and configuration you are using, and you will
find a cm-lib folder with another configuration folder inside it. Copy this file path; for
example, I am using the MinGW 32 bit kit in Debug configuration, so my path is <Qt
Projects>/build-cm-Desktop_Qt_5_10_0_MinGW_32bit-Debug/cm-lib/debug.

In that folder, you will find the compiled binaries relevant for your OS, for example, cm-
lib.dll on Windows. This is the folder we want our cm-ui project to reference for the cm-
lib library implementation. To set this up, add the following statement to cm-ui.pro:

LIBS += -L$$PWD/../../build-cm-Desktop_Qt_5_10_0_MinGW_32bit-Debug/cm-
lib/debug -lcm-lib

Project Structure Chapter 2

[42]

LIBS is the variable used to add referenced libraries to the project. The -L prefix denotes a
directory, while -l denotes a library file. Using this syntax allows us to ignore the file
extensions (.a, .o, .lib) and prefixes (lib...), which can vary between operating systems
and let qmake figure it out. We use the special $$ symbol to access the value of the PWD
variable, which contains the working directory of the current project (the full path to
cm/cm-ui in this case). From that location, we then drill up two directories with ../.. to
get us to the Qt projects folder. From there, we drill back down to the location where we
know the cm-lib binaries are built.

Now, this is painful to write, ugly as hell, and will fall over as soon as we switch kits or
configurations, but we will come back and tidy up all this later. With the project references
all wired up, we can head on over to main.cpp in cm-ui.

To be able to use a given class in QML, we need to register it, which we do in main() before
we create the QML Application Engine. First, include the MasterController:

#include <controllers/master-controller.h>

Then, right after the QGuiApplication is instantiated but before the
QQmlApplicationEngine is declared, add the following line:

qmlRegisterType<cm::controllers::MasterController>("CM", 1, 0,
"MasterController");

What we are doing here is registering the type with the QML engine. Note that the template
parameter must be fully qualified with all namespaces. We will add the type’s metadata
into a module called CM with a version number 1.0, and we want to refer to this type as
MasterController in QML markup.

Then, we instantiate an instance of MasterController and inject it into the root QML
context:

cm::controllers::MasterController masterController;
QQmlApplicationEngine engine;
engine.rootContext()->setContextProperty("masterController",
&masterController);
engine.load(QUrl(QStringLiteral("qrc:/views/MasterView")));

Note that you need to set the context property before loading the QML file, and you will
also need to add the following header:

#include <QQmlContext>

Project Structure Chapter 2

[43]

So, we’ve created a controller, registered it with the QML engine, and it’s good to go. What
now? Let’s do our first bit of QML.

QML
Qt Modeling Language (QML) is a hierarchical declarative language for user interface
layout with a syntax similar to JavaScript Object Notation (JSON). It can bind to C++
objects via Qt’s meta object system and also supports inline JavaScript. It’s much like HTML
or XAML but without the XMLness. If you are someone who likes JSON more than XML,
this can only be a good thing!

Go ahead and open up MasterView.qml, and we’ll see what’s going on.

The first thing you’ll see is a couple of import statements. They are similar to #include
statements in C++—they bring in pieces of functionality that we want to use in the view.
They can be packed and versioned modules as with QtQuick 2.9, or they can be relative
paths to local content.

Next, the QML hierarchy begins with a Window object. The scope of the object is
represented by the subsequent {}, so everything within the braces is either a property or
child of the object.

Properties follow JSON property syntax, of the form key: value. A notable difference is that
speech marks are not required unless you are providing a string literal as a value. Here, we
are setting the visible property of the Window object to be true and the size of the
window to be 640 x 480 pixels, and we are displaying Hello World in the title bar.

Let’s change the title and add a simple message. Replace the Hello World title with Client
Management and insert a Text component inside the body of the Window:

Window {
 visible: true
 width: 640
 height: 480
 title: qsTr("Client Management")

 Text {
 text: "Welcome to the Client Management system!"
 }
}

Project Structure Chapter 2

[44]

Save your changes, and Run qmake and Run the application:

Let’s make MasterController start earning its keep and rather than hard-coding our
welcome message in the UI, we’ll obtain it dynamically from our controller.

Edit master-controller.h and add a new public property of the QString type called
welcomeMessage, setting it to an initial value:

QString welcomeMessage = "This is MasterController to Major Tom";

Project Structure Chapter 2

[45]

You will also need to #include <QString>.

In order to be able to access this member from QML, we need to configure a new property.
After the Q_OBJECT macro but before the first public access modifier, add the following:

Q_PROPERTY(QString ui_welcomeMessage MEMBER welcomeMessage CONSTANT)

Here, we are creating a new property of the QString type that QML can access. QML will
refer to the property as ui_welcomeMessage and when called, will get (or set) the value in
the MEMBER variable called welcomeMessage. We are explicitly setting the value of the
variable up front and will not change it, so it will remain CONSTANT.

You can simply name the property welcomeMessage, rather than
ui_welcomeMessage. My personal preference is to explicitly name things
that are solely intended for UI consumption with a ui_ prefix to
differentiate them from member variables and methods. Do whatever
works for you.

Head back to MasterView.qml, and we will put this property to use. Change the text
property of the Text component to the following:

text: masterController.ui_welcomeMessage

Note how the QML editor recognizes masterController and even offers code completion
for it. Now, rather than displaying a string literal as the message, the QML will access the
ui_welcomeMessage property of the instance of MasterController we injected into the
root context in main(), which will, in turn, get the value of the welcomeMessage member
variable.

Project Structure Chapter 2

[46]

Build and Run, and you should now see the message coming from the
MasterController:

We now have a working mechanism for QML to call into C++ code and get hold of
whatever data and business logic we want to provide it. Here, an important thing to note is
that our MasterController knows nothing about the existence of MasterView, and this is
a key part of the MVC pattern.

Project Structure Chapter 2

[47]

Project output
In order to let our cm-ui project know where to find the implementation of cm-lib, we
used the LIBS variable in our project file. It was a pretty ugly folder name, but it’s only one
line and everything has worked perfectly well, so it could be tempting to leave things as
they are. However, look forward to when we are ready to produce our first build for testing
or even production. We’ve written some really clever code, and everything is building and
running beautifully. We switch the configuration from Debug to Release and...everything
falls over. The problem is that we’ve hard-coded the library path in our project file to look in
the Debug folder. Change to a different kit or another operating system and the problem is
even worse, as you will have binary compatibility issues from using different compilers.

Let’s set a few goals:

Get rid of the unwieldy build-cm… folders
Aggregate all the compiled binary output into one common folder cm/binaries
Hide all temporary build artifacts in their own folders cm/<project>/build
Create separate build and binary folders for different compilers and architectures
Detect those compilers and architectures automatically

So, where do these funny long folder names come from in the first place? In Qt Creator,
click on the Projects mode icon in the navigation bar. Down the left-hand side in the Build
& Run section, select Desktop Qt 5.9.0 MinGW 32 bit > Build. Here, you will see the Build
Settings for the MinGW kit in this solution and under the Shadow build checkbox, you will
recognize the long build directory.

We need to leave shadow builds enabled as this gives us the capability to perform builds to
alternative locations for different kits. We will control the exact output of our builds in the
.pro files, but we still need to specify a build directory here to keep Qt Creator happy.
Enter <Qt Projects>/shadow-builds. Repeat this setting for each build configuration
(Debug/Release/Profile) using the dropdown at the top of the pane, and for all the kits you
are using:

Project Structure Chapter 2

[48]

In your filesystem, delete any of the old build-cm… folders. Right-click on the solution
folder and Run qmake. After qmake has finished, you should see that shell cm-lib, cm-
tests, and cm-ui folders have been created in <Qt Projects>/shadow-builds and that the
long build-cm… folders have not reappeared.

The first step for dynamically setting any relative path is to know which path you are
currently on. We’ve already seen that in action in qmake when we used $$PWD to get the
project working directory. To help us visualize what is going on, let’s introduce our first
qmake function—message().

Add the following line to cm.pro—it doesn’t matter where in the file it goes:

message(cm project dir: $${PWD})

Add the following line to cm-lib.pro:

message(cm-lib project dir: $${PWD})

Project Structure Chapter 2

[49]

The message() is a test function supported by qmake that outputs the supplied string
parameter to the console. Note that you don’t need to surround the text with double quotes.
When you save the changes, you will see the Project Working Directory (PWD) of both the
solution project and the library project logged out to the General Messages console:

Project MESSAGE: cm project dir: C:/projects/qt/cm

Project MESSAGE: cm-lib project dir: C:/projects/qt/cm/cm-lib

qmake actually takes multiple passes over .pro files, so whenever you use
message(), you may see the same output several times over in the
console. You can filter out the majority of duplicates using message() in
conjunction with a scope—!build_pass:message(Here is my

message). This prevents the message() method from being called during
the build pass.

If we look back at the default behavior of Qt Creator for shadow builds, we’ll see that the
aim was to allow multiple builds to sit alongside each other. This is achieved by
constructing distinct folder names containing the kit, platform, and build configuration:

build-cm-solution-Desktop_Qt_5_10_0_MinGW_32bit-Debug

You can see just by looking at the folder name that the contents are from a build of the
cm project using the Qt 5.10.0 for Desktop MinGW 32bit kit in Debug mode. We’ll now
reimplement this approach in a cleaner and more flexible way.

Rather than concatenating the information into one long folder name, we'll prefer a
hierarchical structure consisting of the Operating System > Compiler > Processor
Architecture > Build Configuration folders.

Let’s first hard-code this path and then move on to automating it. Edit cm-lib.pro and
add this:

DESTDIR = $$PWD/../binaries/windows/gcc/x86/debug
message(cm-lib output dir: $${DESTDIR})

This is to reflect that we are building with the MinGW 32bit kit on Windows in Debug
mode. Replace Windows with osx or Linux if you are on a different OS. We’ve added another
call to message() to output this destination directory in the General Messages console.
Remember that $$PWD extracts the working directory of the .pro file being processed (cm-
lib.pro in this case), so this gives us <Qt Projects>/cm/cm-lib.

Project Structure Chapter 2

[50]

Right-click on the cm-lib project, run qmake, and build. Ensure that you have the MinGW
kit selected, along with Debug mode.

Navigate to <Qt Projects>/cm/binaries/<OS>/gcc/x86/debug in the filesystem, and
you will see our library binaries without the associated clutter of build artifacts. This is a
good first step, but if you now change the build configuration to Release or switch kits, the
destination directory will remain the same, which is not what we want.

The technique we are about to implement will be used in all three of our projects, so rather
than having to duplicate the configuration in all of our .pro files, let’s extract the
configuration to a shared file and include it instead.

In the root cm folder, create two new empty text files called qmake-target-platform.pri
and qmake-destination-path.pri. In cm-lib.pro, cm-tests.pro, and cm-
ui.pro, add these lines:

include(../qmake-target-platform.pri)
include(../qmake-destination-path.pri)

Add these lines somewhere near the top of the *.pro files. The exact order doesn’t matter
too much as long as they are before the DESTDIR variable is set.

Edit qmake-target-platform.pri as follows:

win32 {
 CONFIG += PLATFORM_WIN
 message(PLATFORM_WIN)
 win32-g++ {
 CONFIG += COMPILER_GCC
 message(COMPILER_GCC)
 }
 win32-msvc2017 {
 CONFIG += COMPILER_MSVC2017
 message(COMPILER_MSVC2017)
 win32-msvc2017:QMAKE_TARGET.arch = x86_64
 }
}

linux {
 CONFIG += PLATFORM_LINUX
 message(PLATFORM_LINUX)
 # Make QMAKE_TARGET arch available for Linux
 !contains(QT_ARCH, x86_64){
 QMAKE_TARGET.arch = x86
 } else {
 QMAKE_TARGET.arch = x86_64

Project Structure Chapter 2

[51]

 }
 linux-g++{
 CONFIG += COMPILER_GCC
 message(COMPILER_GCC)
 }
}

macx {
 CONFIG += PLATFORM_OSX
 message(PLATFORM_OSX)
 macx-clang {
 CONFIG += COMPILER_CLANG
 message(COMPILER_CLANG)
 QMAKE_TARGET.arch = x86_64
 }
 macx-clang-32{
 CONFIG += COMPILER_CLANG
 message(COMPILER_CLANG)
 QMAKE_TARGET.arch = x86
 }
}

contains(QMAKE_TARGET.arch, x86_64) {
 CONFIG += PROCESSOR_x64
 message(PROCESSOR_x64)
} else {
 CONFIG += PROCESSOR_x86
 message(PROCESSOR_x86)
}

CONFIG(debug, release|debug) {
 CONFIG += BUILD_DEBUG
 message(BUILD_DEBUG)
} else {
 CONFIG += BUILD_RELEASE
 message(BUILD_RELEASE)
}

Here, we are leveraging the platform detection capabilities of qmake to inject personalized
flags into the CONFIG variable. On each operating system, different platform variables
become available. For example, on Windows, the win32 variable is present, Linux is
represented by linux, and Mac OS X by macx. We can use these platform variables with
curly braces to act like if statements:

win32 {
 # This block will execute on Windows only…
}

Project Structure Chapter 2

[52]

We can consider different combinations of platform variables to figure out what compiler
and processor architecture the currently selected kit is using, and then add developer-
friendly flags to the CONFIG, which we can use later in our .pro files. Remember that we
are trying to construct a build path—Operating System > Compiler > Processor

Architecture > Build Configuration.

When you save these changes, you should see the flags similar to the following in the
General Message console:

Project MESSAGE: PLATFORM_WIN
Project MESSAGE: COMPILER_GCC
Project MESSAGE: PROCESSOR_x86
Project MESSAGE: BUILD_DEBUG

Try switching kits or changing the build configuration, and you should see different output.
When I switch my kit to Visual Studio 2017 64 bit in Release mode, I now get this:

Project MESSAGE: PLATFORM_WIN
Project MESSAGE: COMPILER_MSVC2017
Project MESSAGE: PROCESSOR_x64
Project MESSAGE: BUILD_RELEASE

With the same project on a Linux machine with the MinGW 64 bit kit, I get this:

Project MESSAGE: PLATFORM_LINUX
Project MESSAGE: COMPILER_GCC
Project MESSAGE: PROCESSOR_x64
Project MESSAGE: BUILD_DEBUG

On a Mac using Clang 64 bit, I get the following:

Project MESSAGE: PLATFORM_OSX
Project MESSAGE: COMPILER_CLANG
Project MESSAGE: PROCESSOR_x64
Project MESSAGE: BUILD_DEBUG

To get this to work on Windows, I had to make an
assumption as QMAKE_TARGET.arch is not correctly detected for
MSVC2017, so I assumed that if the compiler is MSVC2017, then it must be
x64 as there was no 32 bit kit available.

Project Structure Chapter 2

[53]

Now that all the platform detection is done, we can construct the destination path
dynamically. Edit qmake-destination-path.pri:

platform_path = unknown-platform
compiler_path = unknown-compiler
processor_path = unknown-processor
build_path = unknown-build

PLATFORM_WIN {
 platform_path = windows
}
PLATFORM_OSX {
 platform_path = osx
}
PLATFORM_LINUX {
 platform_path = linux
}

COMPILER_GCC {
 compiler_path = gcc
}
COMPILER_MSVC2017 {
 compiler_path = msvc2017
}
COMPILER_CLANG {
 compiler_path = clang
}

PROCESSOR_x64 {
 processor_path = x64
}
PROCESSOR_x86 {
 processor_path = x86
}

BUILD_DEBUG {
 build_path = debug
} else {
 build_path = release
}

DESTINATION_PATH =
$$platform_path/$$compiler_path/$$processor_path/$$build_path
message(Dest path: $${DESTINATION_PATH})

Project Structure Chapter 2

[54]

Here, we create four new variables—platform_path, compiler_path, processor_path, and
build_path—and assign default values to them all. We then use the CONFIG flags we created
in the previous file and construct our folder hierarchy, storing it in a variable of our own,
called DESTINATION_PATH. For example, if we detect Windows as the operating system, we
add the PLATFORM_WIN flag to CONFIG and as a result of that, set platform_path to
windows. Switching between kits and configurations on Windows, I now get these
messages:

Dest path: windows/gcc/x86/debug

Alternatively, I get this:

Dest path: windows/msvc2017/x64/release

On Linux, I get the following:

Dest path: linux/gcc/x64/debug

On Mac OS, this is what I get:

Dest path: osx/clang/x64/debug

You can just combine these platform detection and destination path creation tricks in one
file, but by keeping them separate, you can use the flags elsewhere in your project files. In
any case, we are now dynamically creating a path based on our build environment and
storing it in a variable for later use.

The next thing to do is to plug this DESTINATION_PATH variable into our project files. While
we’re here, we can also structure our build artifacts using the same mechanism by adding a
few more lines. Add the following to all three *.pro files, replacing the DESTDIR statement
already in cm-lib.pro:

DESTDIR = $$PWD/../binaries/$$DESTINATION_PATH
OBJECTS_DIR = $$PWD/build/$$DESTINATION_PATH/.obj
MOC_DIR = $$PWD/build/$$DESTINATION_PATH/.moc
RCC_DIR = $$PWD/build/$$DESTINATION_PATH/.qrc
UI_DIR = $$PWD/build/$$DESTINATION_PATH/.ui

Project Structure Chapter 2

[55]

Temporary build artifacts will now be placed into discreet directories within the build
folder.

Finally, we can fix the problem that brought us here in the first place. In cm-tests and cm-
ui, we can now set the LIBS variable using our new dynamic destination path:

LIBS += -L$$PWD/../binaries/$$DESTINATION_PATH -lcm-lib

You can now right-click on the cm project, run qmake, and build to automatically build all
three subprojects in one step. All the output will be sent to the correct place and the library
binaries can be easily located by the other projects. You can switch kits and configurations
and not have to worry about referencing the wrong libraries.

Summary
In this chapter, we took our project creation skills up to the next level, and our solution is
now starting to take shape. We implemented an MVC pattern and bridged the gap between
our UI and business logic projects. We dabbled with our first bit of QML and took a look at
the cornerstone of the Qt framework, QObject.

We removed all those unsightly build-cm… folders, flexed our qmake muscles, and took
control of where all of our files go. All binaries are now placed in the cm/binaries folder,
organized by platform, compiler, processor architecture, and build configuration. All
temporary build artifacts that aren’t required by the end user are now hidden away. We can
freely switch kits and build configurations, and have our output automatically rerouted to
the correct location.

In Chapter 3, User Interface, we will design our UI and get stuck in some more QML.

3
User Interface

In this chapter, we will take a more detailed look at QML and sketch out our user interface
layout. We’ll create placeholder views for all of our screens and implement a framework to
navigate between them. We will also discuss the content within those views, specifically
how to anchor and size elements in a flexible and responsive way. We will cover these
topics:

User interface design
Creating views
The StackView component
Anchoring elements
Sizing elements
Navigating between views

UX
If you’ve ever worked with other declarative UI technologies like HTML and XAML, they
often take a parent/child approach to UI, that is, there is a parent or root view that is ever
present and contains global functionality, such as top-level navigation. It then has dynamic
content or child views, which switch in and out as needed and present context sensitive
commands where necessary.

We will take the same approach, with our MasterView being the root of our UI. We will add
a global navigation bar and a content pane where we can add and remove content as
needed. Child views will optionally present a command bar for performing actions, for
example, saving a record to a database.

User Interface Chapter 3

[57]

Let’s take a look at the basic layout we are aiming for:

The Navigation Bar (1) will be ever present and contain buttons that will navigate the user
to key areas within the application. By default, the bar will be narrow and the commands
associated with the buttons will be represented by icons; however, pressing a toggle button
will expand the bar to display accompanying descriptive text for each button.

The Content Pane (2) will be a stack of child views. Navigating to different areas of the
application will be achieved by replacing the child view in the content pane. For example, if
we add a New Client button on the navigation bar and press it, we will push the New
Client View onto the content frame stack.

The Command Bar (3) is an optional element that will be used to present further command
buttons to the user. The key difference to the navigation bar is that these commands will be
context sensitive relating to the current view. For example, when creating a new client, we
will need a Save button, but when we are searching for clients, a Save button makes no
sense. Each child view will optionally present its own command bar. The commands will be
presented by icons with a short description underneath.

User Interface Chapter 3

[58]

Now let’s plan the flow of screens, or views as we’ll call them:

Creating views
In cm-ui, right-click on views.qrc and select Add New…. Select Qt > QML File and click
on Choose...:

User Interface Chapter 3

[59]

Create the SplashView.qml file in cm-ui/ui/views. Repeat this process until you’ve
created all the following views:

File Purpose

SplashView.qml Placeholder view displayed while the UI is loading.

DashboardView.qml The central “home” view.

CreateClientView.qml View for entering details of a new client.

EditClientView.qml View for reading/updating the existing client details.

FindClientView.qml View for searching for the existing clients.

Edit views.qrc in the Plain Text Editor as we have done previously. You will see that our
new views have been added to a new qresource block with the default prefix of the
following:

<RCC>
 <qresource prefix="/views">
 <file alias="MasterView">views/MasterView.qml</file>
 </qresource>
 <qresource prefix="/">
 <file>views/SplashView.qml</file>
 <file>views/DashboardView.qml</file>
 <file>views/CreateClientView.qml</file>
 <file>views/EditClientView.qml</file>
 <file>views/FindClientView.qml</file>
 </qresource>
</RCC>

Also note that the Projects navigator is a bit of a mess:

User Interface Chapter 3

[60]

Move all the new files into the “/views” prefix block and remove the “/” block. Add an
alias for each of the new files:

<RCC>
 <qresource prefix="/views">
 <file alias="MasterView.qml">views/MasterView.qml</file>
 <file alias="SplashView.qml">views/SplashView.qml</file>
 <file alias="DashboardView.qml">views/DashboardView.qml</file>
 <file
alias="CreateClientView.qml">views/CreateClientView.qml</file>
 <file alias="EditClientView.qml">views/EditClientView.qml</file>
 <file
alias="CreateAppointmentView.qml">views/CreateAppointmentView.qml</file>
 <file alias="FindClientView.qml">views/FindClientView.qml</file>
 </qresource>
</RCC>

As soon as you save these changes, you should see the navigator clean right up:

StackView
Our child views will be presented via a StackView component, which provides a stack-
based navigation model with built-in history. New views (and views in this context means
pretty much any QML) are pushed onto the stack when they are to be displayed and can be
popped off the stack in order to go back to the previous view. We won’t need to use the
history capabilities, but they are a very useful feature.

To gain access to the component, we first need to reference the module, so add the import to
MasterView:

import QtQuick.Controls 2.2

User Interface Chapter 3

[61]

With that done, let’s replace our Text element containing our welcome message with a
StackView:

StackView {
 id: contentFrame
 initialItem: "qrc:/views/SplashView.qml"
}

We assign the component a unique identifier contentFrame so that we can reference it
elsewhere in the QML, and we specify which child view we want to load by default—the
new SplashView.

Next, edit SplashView. Update the QtQuick module version to 2.9 so that it matches
MasterView (do this for all further QML files if not explicitly stated). This is not strictly
necessary, but it's a good practice to avoid inconsistencies across views. There is generally
not much in the way of breaking changes in minor releases of Qt, but the same code on two
views referencing different versions of QtQuick may exhibit different behavior that can
cause problems.

All we’ll do with this view, for now, is to make a rectangle 400 pixels wide by 200 pixels
high, which has a “vibrant” background color so that we can see that it has loaded:

import QtQuick 2.9

Rectangle {
 width: 400
 height: 200
 color: "#f4c842"
}

Colors can be specified using hexadecimal RGB values as we did here, or named SVG
colors. I generally find hex easier as I can never remember the names of the colors!

If you hover your cursor over the hex string in Qt Creator, you get a really
useful little pop-up color swatch.

User Interface Chapter 3

[62]

Now run the application, and you should see that the welcome message no longer displays
and instead, you are presented with a glorious orange-yellow rectangle, which is our
SplashView.

Anchors
One slight problem with our wonderful new SplashView is that it doesn’t actually fill the
window. Sure, we can change the 400 x 200 dimensions to 1024 x 768 so that it matches
MasterView, but then what happens if the user resizes the window? Modern UI is all about
responsive design—dynamic content that can adapt to the display it’s being presented on,
so hard-coding properties appropriate for only one platform aren’t ideal. Fortunately,
anchors come to our rescue.

User Interface Chapter 3

[63]

Let’s put our trusty old scratchpad project to use and take a look at anchors in action.

Right-click on qml.qrc and add a new AnchorsDemo.qml QML file alongside the existing
main.qml file in the scratchpad folder. Don’t worry about subfolders or .qrc prefixes,
aliases, or any of that jazz.

Dip into main.cpp and load our new file instead of main.qml:

engine.load(QUrl(QStringLiteral("qrc:/AnchorsDemo.qml")));

Next, paste the following code into AnchorsDemo:

import QtQuick 2.9
import QtQuick.Window 2.2

Window {
 visible: true
 width: 1024
 height: 768
 title: qsTr("Scratchpad")
 color: "#ffffff"
 Rectangle {
 id: paleYellowBackground
 anchors.fill: parent
 color: "#cece9e"
 }
 Rectangle {
 id: blackRectangleInTheCentre
 width: 120
 height: 120
 anchors.centerIn: parent
 color: "#000000"
 }
 Rectangle {
 id: greenRectangleInTheCentre
 width: 100
 height: 100
 anchors.centerIn: parent
 anchors.verticalCenterOffset: 20
 color: "#008000"
 }
 Rectangle {
 id: redRectangleTopLeftCorner
 width: 100
 height: 100
 anchors {
 top: parent.top

User Interface Chapter 3

[64]

 left: parent.left
 }
 color: "#800000"
 }
 Rectangle {
 id: blueRectangleTopLeftCorner
 width: 100
 height: 100
 anchors{
 top: redRectangleTopLeftCorner.bottom
 left: parent.left
 }
 color: "#000080"
 }
 Rectangle {
 id: purpleRectangleTopLeftCorner
 width: 100
 height: 100
 anchors{
 top: blueRectangleTopLeftCorner.bottom
 left: parent.left
 leftMargin: 20
 }
 color: "#800080"
 }
 Rectangle {
 id: turquoiseRectangleBottomRightCorner
 width: 100
 height: 100
 anchors{
 bottom: parent.bottom
 right: parent.right
 margins: 20
 }
 color: "#008080"
 }
}

User Interface Chapter 3

[65]

Build and run the application, and you’ll be presented with this rather bewildering sight:

This may all look a bit confusing at first and I apologize if your color perception is
suboptimal, but all we’ve done is draw a sequence of gaudily colored rectangles with
differing anchors values. Let’s walk through each rectangle one by one and see what is
going on:

Rectangle {
 id: paleYellowBackground
 anchors.fill: parent
 color: "#cece9e"
}

User Interface Chapter 3

[66]

Our first rectangle is the dull yellow brown background; anchors.fill: parent tells the
rectangle to fill its parent, however big that may be. The parent of any given QML
component is the QML component that contains it—the next level up in the hierarchy. In
this case, it is the Window element. The Window element is 1024 x 768 pixels, so that’s how
big the rectangle is. Note that we don’t need to specify width and height properties for the
rectangle because they are inferred from the anchors.

This is exactly the behavior we want for our SplashView, but let’s look at some other
capabilities of anchors before we return to our main project:

Rectangle {
 id: blackRectangleInTheCentre
 width: 120
 height: 120
 anchors.centerIn: parent
 color: "#000000"
}
Rectangle {
 id: greenRectangleInTheCentre
 width: 100
 height: 100
 anchors.centerIn: parent
 anchors.verticalCenterOffset: 20
 color: "#008000"
}

We’ll look at the next two rectangles together. First, we have a black rectangle that is 120
pixels square; anchors.centerIn: parent positions it at the center of its parent. We
must specify the width and height because we are only positioning it, not sizing it.

Next, we have a slightly smaller green rectangle, also centered in its parent. We then use the
anchors.verticalCenterOffset property to move it 20 pixels further down the screen.
The x, y coordinate system used for positioning has its root (0, 0) at the top-left of the screen;
verticalCenterOffset adds to the y coordinate. Positive numbers move the item down
the screen, and negative numbers move the item up the screen. Its sister
property—horizontalCenterOffset—is used for adjustments in the x axis.

User Interface Chapter 3

[67]

One last thing to note here is that the rectangles overlap, and it is the green rectangle that
wins out and is displayed in full. The black rectangle is pushed back and obscured.
Similarly, all of our small rectangles sit in front of the large background rectangle. QML is
rendered in a top-down fashion, so when the root element (Window) gets painted, its
children are processed one by one from the top of the file to the bottom. So, items at the
bottom of the file will be rendered in front of those rendered at the top of the file. The same
is true if you paint a wall white and then paint it black, the wall will appear black because
that’s what was painted (rendered) last:

Rectangle {
 id: redRectangleTopLeftCorner
 width: 100
 height: 100
 anchors {
 top: parent.top
 left: parent.left
 }
 color: "#800000"
}

Next, we draw a red rectangle and rather than positioning or sizing the whole rectangle at
once, we just anchor certain sides. We take the anchor on its top side and align it to the
anchor on the top side of its parent (Window). We anchor its left side to its parent’s left
side. Hence, it becomes “attached” to the top-left corner.

We have to type the following:

anchors.top: parent.top
anchors.left: parent.left

Another helpful piece of syntactic sugar at work here is rather than doing that, we can
remove the duplication and set the subproperties of the anchors group within curly braces:

anchors {
 top: parent.top
 left: parent.left
}

Next, the blue rectangle:

Rectangle {
 id: blueRectangleTopLeftCorner
 width: 100
 height: 100
 anchors{
 top: redRectangleTopLeftCorner.bottom

User Interface Chapter 3

[68]

 left: parent.left
 }
 color: "#000080"
}

This follows the same pattern, though this time rather than attaching only to its parent, we
also anchor to a sibling (the red rectangle), which we can reference though the id property:

Rectangle {
 id: purpleRectangleTopLeftCorner
 width: 100
 height: 100
 anchors{
 top: blueRectangleTopLeftCorner.bottom
 left: parent.left
 leftMargin: 20
 }
 color: "#800080"
}

The purple rectangle anchors to the bottom of the blue rectangle and to the left-hand side of
the Window, but here we introduce our first margin. Each side has its own margin and in
this case, we use leftMargin to give us an offset from the left anchor in exactly the same
way as we saw with verticalCenterOffset earlier:

Rectangle {
 id: turquoiseRectangleBottomRightCorner
 width: 100
 height: 100
 anchors{
 bottom: parent.bottom
 right: parent.right
 margins: 20
 }
 color: "#008080"
}

Finally, our turquoise rectangle uses some of that empty space over on the right-hand side
of the screen and demonstrates how we can set the margin on all four sides simultaneously
using the margins property.

Note that all of these bindings are dynamic. Try resizing the window, and all the rectangles
will adapt automatically. Anchors are a great tool for responsive UI design.

User Interface Chapter 3

[69]

Let’s head back to our SplashView in our cm-ui project and apply what we’ve just learned.
Replace the fixed width and height attributes with the more dynamic anchors.fill
property:

Rectangle {
 anchors.fill: parent
 color: "#f4c842"
}

Now, the SplashView will fill whatever its parent element is. Build and run, and you’ll see
that rather than our lovely colorful rectangle filling the screen as we expected, it has
disappeared altogether. Let’s take a look at why that is.

Sizing
Our rectangle will fill its parent, so the size of the rectangle depends entirely on the size of
its parent. Walking up the QML hierarchy, the component that contains the rectangle is the
StackView element back in MasterView:

StackView {
 id: contentFrame
 initialItem: Qt.resolvedUrl("qrc:/views/SplashView.qml")
}

Often, QML components are clever enough to size themselves based on their children.
Previously, we had set our rectangle to a fixed size of 400 x 200. The StackView could look
at that and say “I need to contain a single Rectangle that is 400 x 200, so I’ll make myself 400
x 200 too. Easy!”. We can always overrule that and set it to some other size using its width
and height properties, but it can work out what size it wanted to be.

Back in scratchpad, create a new SizingDemo.qml view and edit main.cpp to load it on
startup, just like we did with AnchorsDemo. Edit SizingDemo as follows:

import QtQuick 2.9
import QtQuick.Window 2.2

Window {
 visible: true
 width: 1024
 height: 768
 title: qsTr("Scratchpad")
 color: "#ffffff"
 Column {

User Interface Chapter 3

[70]

 id: columnWithText
 Text {
 id: text1
 text: "Text 1"
 }
 Text {
 id: text2
 text: "Text 2"
 width: 300
 height: 20
 }
 Text {
 id: text3
 text: "Text 3 Text 3 Text 3 Text 3 Text 3 Text 3 Text 3 Text 3
Text 3 Text 3 Text 3 Text 3 Text 3 Text 3 Text 3 Text 3 Text 3 Text 3 Text
3 Text 3 Text 3 Text 3 Text 3 Text 3 Text 3 Text 3 Text 3 Text 3 Text 3
Text 3 Text 3 Text 3 Text 3 Text 3 Text 3 Text 3 Text 3"
 }
 Text {
 id: text4
 text: "Text 4 Text 4 Text 4 Text 4 Text 4 Text 4 Text 4 Text 4
Text 4 Text 4 Text 4 Text 4 Text 4 Text 4 Text 4 Text 4 Text 4 Text 4 Text
4 Text 4 Text 4 Text 4 Text 4 Text 4 Text 4 Text 4 Text 4 Text 4 Text 4
Text 4 Text 4 Text 4 Text 4 Text 4 Text 4 Text 4 Text 4"
 width: 300
 }
 Text {
 id: text5
 text: "Text 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text 5
Text 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text
5 Text 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text 5
Text 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text 5"
 width: 300
 wrapMode: Text.Wrap
 }
 }
 Column {
 id: columnWithRectangle
 Rectangle {
 id: rectangle
 anchors.fill: parent
 }
 }
 Component.onCompleted: {
 console.log("Text1 - implicitWidth:" + text1.implicitWidth + "
implicitHeight:" + text1.implicitHeight + " width:" + text1.width + "
height:" + text1.height)
 console.log("Text2 - implicitWidth:" + text2.implicitWidth + "

User Interface Chapter 3

[71]

implicitHeight:" + text2.implicitHeight + " width:" + text2.width + "
height:" + text2.height)
 console.log("Text3 - implicitWidth:" + text3.implicitWidth + "
implicitHeight:" + text3.implicitHeight + " width:" + text3.width + "
height:" + text3.height)
 console.log("Text4 - implicitWidth:" + text4.implicitWidth + "
implicitHeight:" + text4.implicitHeight + " width:" + text4.width + "
height:" + text4.height)
 console.log("Text5 - implicitWidth:" + text5.implicitWidth + "
implicitHeight:" + text5.implicitHeight + " width:" + text5.width + "
height:" + text5.height)
 console.log("ColumnWithText - implicitWidth:" +
columnWithText.implicitWidth + " implicitHeight:" +
columnWithText.implicitHeight + " width:" + columnWithText.width + "
height:" + columnWithText.height)
 console.log("Rectangle - implicitWidth:" + rectangle.implicitWidth
+ " implicitHeight:" + rectangle.implicitHeight + " width:" +
rectangle.width + " height:" + rectangle.height)
 console.log("ColumnWithRectangle - implicitWidth:" +
columnWithRectangle.implicitWidth + " implicitHeight:" +
columnWithRectangle.implicitHeight + " width:" + columnWithRectangle.width
+ " height:" + columnWithRectangle.height)
 }
}

Run this, and you’ll get another screen full of nonsense:

User Interface Chapter 3

[72]

Of far more interest to us here is what is output to the console:

qml: Text1 - implicitWidth:30 implicitHeight:13 width:30 height:13

qml: Text2 - implicitWidth:30 implicitHeight:13 width:300 height:20

qml: Text3 - implicitWidth:1218 implicitHeight:13 width:1218 height:13

qml: Text4 - implicitWidth:1218 implicitHeight:13 width:300 height:13

qml: Text5 - implicitWidth:1218 implicitHeight:65 width:300 height:65

qml: ColumnWithText - implicitWidth:1218 implicitHeight:124 width:1218
height:124

qml: Rectangle - implicitWidth:0 implicitHeight:0 width:0 height:0

qml: ColumnWithRectangle - implicitWidth:0 implicitHeight:0 width:0
height:0

So, what’s going on? We’ve created two Column elements, which are invisible layout
components that arrange their child elements vertically. We’ve stuffed the first column with
various Text elements and added a single Rectangle to the second. At the bottom of the
view is a JavaScript function that will execute when the Window component has completed
(that is, finished loading). All the function does is write out the implicitWidth,
implicitHeight, width, and height properties of various elements on the view.

Let’s walk through the elements and the corresponding console lines:

Text {
 id: text1
 text: "Text 1"
}

User Interface Chapter 3

[73]

qml: Text1 - implicitWidth:30 implicitHeight:13 width:30 height:13

This Text element contains a short piece of text, and we have not specified any sizes. Its
implicitWidth and implicitHeight properties are the sizes the element wants to be
based on its content. Its width and height properties are the sizes the element actually is.
In this case, it will size itself however it wants to, because we haven’t specified otherwise, so
its width/height are the same as its implicitWidth/implicitHeight:

Text {
 id: text2
 text: "Text 2"
 width: 300
 height: 20
}

qml: Text2 - implicitWidth:30 implicitHeight:13 width:300 height:20

With text2, the implicit sizes are the same as text1 as the content is virtually identical.
However, this time, we have explicitly told it to be 300 wide and 20 high. The console tells
us that the element is doing as it’s told and is indeed that size:

Text {
 id: text3
 text: "Text 3 Text 3 Text 3 Text 3 Text 3 Text 3 Text 3 Text 3 Text 3
Text 3 Text 3 Text 3 Text 3 Text 3 Text 3 Text 3 Text 3 Text 3 Text 3 Text
3 Text 3 Text 3 Text 3 Text 3 Text 3 Text 3 Text 3 Text 3 Text 3 Text 3
Text 3 Text 3 Text 3 Text 3 Text 3 Text 3 Text 3"
}

qml: Text3 - implicitWidth:1218 implicitHeight:13 width:1218 height:13

This text3 takes the same hands-off approach as text1, but with a much longer piece of
text as its content. This time, implicitWidth is much larger as that is the amount of space
it needs to fit the long text in. Note that this is actually wider than the window and the text
gets cut off. Again, we haven’t instructed it otherwise, so it sizes itself:

Text {
 id: text4
 text: "Text 4 Text 4 Text 4 Text 4 Text 4 Text 4 Text 4 Text 4 Text 4
Text 4 Text 4 Text 4 Text 4 Text 4 Text 4 Text 4 Text 4 Text 4 Text 4 Text
4 Text 4 Text 4 Text 4 Text 4 Text 4 Text 4 Text 4 Text 4 Text 4 Text 4
Text 4 Text 4 Text 4 Text 4 Text 4 Text 4 Text 4"
 width: 300
}

User Interface Chapter 3

[74]

qml: Text4 - implicitWidth:1218 implicitHeight:13 width:300 height:13

The text4 has the same lengthy block of text, but we’ve told it what width we want this
time. You’ll notice on screen that even though the element is only 300 pixels wide, the text is
visible all the way across the window. The content is overflowing the bounds of its
container. You can set the clip property to true to prevent this, but we’re not too
concerned with that here:

Text {
 id: text5
 text: "Text 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text
 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text 5
 Text 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text
 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text 5 Text 5"
 width: 300
 wrapMode: Text.Wrap
}

qml: Text5 - implicitWidth:1218 implicitHeight:65 width:300 height:65

The text5 repeats the same long block of text and constrains the width to 300, but this time,
we bring a bit of order to proceedings by setting the wrapMode property to Text.Wrap.
With this setting, the enabled behavior is much more like what you would expect from a
block of text—it fills up the available width and then wraps onto the next line. The
implicitHeight and, consequently, the height of the element has increased to
accommodate the contents. Note, however, that the implicitHeight is still the same as
earlier; this is still the width the control wants to be in order to fit all of its content in, given
the constraints we have defined, and we have defined no height constraint.

We then print out the properties of the column containing all this text:

qml: ColumnWithText - implicitWidth:1218 implicitHeight:124 width:1218
height:124

The important thing to note is that the column is able to figure out how wide and high it
needs to be to accommodate all of its children.

User Interface Chapter 3

[75]

Next, we get to the issue we encountered back in SplashView:

Column {
 id: columnWithRectangle
 Rectangle {
 id: rectangle
 anchors.fill: parent
 }
}

Here, we have a chicken and egg scenario. The Column tries to work out how large it needs
to be to contain its children, so it takes a look at Rectangle. Rectangle has no explicit size
information and no children of its own, it is just set to fill its parent, the Column. Neither
element can figure out how big they are supposed to be, so they both default to 0x0, which
renders them invisible.

qml: Rectangle - implicitWidth:0 implicitHeight:0 width:0 height:0

qml: ColumnWithRectangle - implicitWidth:0 implicitHeight:0 width:0
height:0

Sizing of elements is probably the thing that has caught me out the most
with QML over the years. As a general guideline, if you write some QML
but then can’t see it rendered on screen, it’s probably a sizing issue. I
usually find that giving everything an arbitrary fixed width and height is
a good start when debugging, and then one by one, make the sizes
dynamic until you recreate the problem.

Armed with this knowledge, let’s head back to MasterView and fix our earlier problem.

Add anchors.fill: parent to the StackView component:

StackView {
 id: contentFrame
 anchors.fill: parent
 initialItem: Qt.resolvedUrl("qrc:/views/SplashView.qml")
}

The StackView will now fill its parent Window, which we have explicitly given a fixed size
of 1024 x 768. Run the app again, and you should now have a lovely orange-yellow
SplashView that fills the screen and happily resizes itself if you resize the window:

User Interface Chapter 3

[76]

Navigation
Lets make a quick addition to our SplashView:

Rectangle {
 anchors.fill: parent
 color: "#f4c842"
 Text {
 anchors.centerIn: parent
 text: "Splash View"
 }
}

User Interface Chapter 3

[77]

This just adds the name of the view to the screen, so when we start moving between views,
we know which one we are looking at. With that done, copy the content of SplashView
into all the other new views, updating the text in each to reflect the name of the view, for
example, in DashboardView, the text could say “Dashboard View”.

The first piece of navigation we want to do is when the MasterView has finished loading
and we’re ready for action, load the DashboardView. We achieve this using one of the QML
component slots we’ve just seen—Component.onCompleted().

Add the following line to the root Window component in MasterView:

Component.onCompleted:
contentFrame.replace("qrc:/views/DashboardView.qml");

Now when you build and run, as soon as the MasterView has finished loading, it switches
the child view to DashboardView. This probably happens so fast that you no longer even
see SplashView, but it is still there. Having a splash view like this is great if you’ve got an
application with quite a lot of initialization to do, and you can’t really have non-blocking UI.
It’s a handy place to put the company logo and a “Reticulating splines...” loading message.
Yes, that was a Sims reference!

The StackView is just like the history in your web browser. If you visit www.google.com and
then www.packtpub.com, you are pushing www.packtpub.com onto the stack. If you click on
Back on the browser, you return to www.google.com. This history can consist of several
pages (or views), and you can navigate backward and forward through them. Sometimes
you don't need the history and sometimes you actively don't want users to be able to go
back. The replace() method we called, as its name suggests, pushes a new view onto the
stack and clears any history so that you can't go back.

In the Component.onCompleted slot, we've seen an example of how to navigate between
views directly from QML. We can use this approach for all of our application
navigation. For example, we can add a button for the user to create a new client and when
it’s clicked on, push the CreateClientView straight on to the stack, as follows:

Button {
 onClicked: contentFrame.replace("qrc:/views/CreateClientView.qml")
}

http://www.google.com
http://www.packtpub.com
http://www.packtpub.com
http://www.google.com

User Interface Chapter 3

[78]

For UX designs or simple UI heavy applications with little business logic, this is a perfectly
valid approach. The trouble is that your QML views and components become very tightly
coupled, and the business logic layer has no visibility of what the user is doing. Quite often,
moving to a new screen of the application isn’t as simple as just displaying a new view. You
may need to update a state machine, set some models up, or clear out some data from the
previous view. By routing all of our navigation requests through our MasterController
switchboard, we decouple our components and gain an intercept point for our business
logic to take any actions it needs to as well as validate that the requests are appropriate.

We will request navigation to these views by emitting signals from our business logic layer
and having our MasterView respond to them and perform the transition. Rather than
cluttering up our MasterController, we’ll delegate the responsibility for navigation to a new
controller in cm-lib, so create a new header file (there is no implementation as such, so we
don’t need a .cpp file) called navigation-controller.h in cm/cm-
lib/source/controllers and add the following code:

#ifndef NAVIGATIONCONTROLLER_H
#define NAVIGATIONCONTROLLER_H

#include <QObject>

#include <cm-lib_global.h>
#include <models/client.h>

namespace cm {
namespace controllers {

class CMLIBSHARED_EXPORT NavigationController : public QObject
{
 Q_OBJECT

public:
 explicit NavigationController(QObject* _parent = nullptr)
 : QObject(_parent)
 {}

signals:
 void goCreateClientView();
 void goDashboardView();
 void goEditClientView(cm::models::Client* client);
 void goFindClientView();
};

}
}

User Interface Chapter 3

[79]

#endif

We have created a minimal class that inherits from QObject and implements a signal for
each of our new views. Note that we don’t need to navigate to the MasterView or the
SplashView, so there is no corresponding signal for those. When we navigate to the
EditClientView, we will need to inform the UI which Client we want to edit, so we will
pass it through as a parameter. Calling one of these methods from anywhere within our
business logic code fires a request into the ether saying “I want to go to the so-and-so view,
please”. It is then up to the MasterView over in the UI layer to monitor those requests and
respond accordingly. Note that the business logic layer still knows nothing about the UI
implementation. It's fine if nobody responds to the signal; it is not a two-way
communication.

Whenever you inherit from QObject, always remember the Q_OBJECT
macro and also an overloaded constructor that takes a QObject parent. As
we want to use this class outside of this project (in the UI project), we must
also remember the CMLIBSHARED_EXPORT macro.

We've looked forward a little bit here and assumed that our Client class will be in the
cm::models namespace, but the default Client class that Qt added for us when we
created the project is not, so let's fix that before we move on:

client.h:

#ifndef CLIENT_H
#define CLIENT_H

#include "cm-lib_global.h"

namespace cm {
namespace models {

class CMLIBSHARED_EXPORT Client
{
public:
 Client();
};

}}

#endif

client.cpp:

#include "client.h"

User Interface Chapter 3

[80]

namespace cm {
namespace models {

Client::Client()
{
}

}}

We need to be able to create an instance of a NavigationController and have our UI interact
with it. For unit testing reasons, it is good practice to hide object creation behind some sort
of object factory interface, but we’re not concerned with that at this stage, so we'll simply
create the object in MasterController. Let’s take this opportunity to add the Private
Implementation (PImpl) idiom to our MasterController too. If you haven't come across
PImpl before, it is simply a technique to move all private implementation details out of the
header file and into the definition. This helps keep the header file as short and clean as
possible, with only the includes necessary for consumers of the public API. Replace the
declaration and implementation as follows:

master-controller.h:

#ifndef MASTERCONTROLLER_H
#define MASTERCONTROLLER_H

#include <QObject>
#include <QScopedPointer>
#include <QString>

#include <cm-lib_global.h>
#include <controllers/navigation-controller.h>

namespace cm {
namespace controllers {

class CMLIBSHARED_EXPORT MasterController : public QObject
{
 Q_OBJECT
 Q_PROPERTY(QString ui_welcomeMessage READ welcomeMessage CONSTANT)
 Q_PROPERTY(cm::controllers::NavigationController*
ui_navigationController READ navigationController CONSTANT)

public:
 explicit MasterController(QObject* parent = nullptr);
 ~MasterController();
 NavigationController* navigationController();
 const QString& welcomeMessage() const;

User Interface Chapter 3

[81]

private:
 class Implementation;
 QScopedPointer<Implementation> implementation;
};

}}
#endif

master-controller.cpp:

#include "master-controller.h"

namespace cm {
namespace controllers {

class MasterController::Implementation
{
public:
 Implementation(MasterController* _masterController)
 : masterController(_masterController)
 {
 navigationController = new NavigationController(masterController);
 }

 MasterController* masterController{nullptr};
 NavigationController* navigationController{nullptr};
 QString welcomeMessage = "This is MasterController to Major Tom";
};

MasterController::MasterController(QObject* parent)
 : QObject(parent)
{
 implementation.reset(new Implementation(this));
}

MasterController::~MasterController()
{
}

NavigationController* MasterController::navigationController()
{
 return implementation->navigationController;
}

const QString& MasterController::welcomeMessage() const
{
 return implementation->welcomeMessage;
}

User Interface Chapter 3

[82]

}}

You may have noted that we don’t specify the cm::controllers namespace
for the NavigationController accessor method, but we do for the
Q_PROPERTY. This is because the property is accessed by the UI QML,
which is not executing within the scope of the cm namespace, so we have
to explicitly specify the fullyqualified name. As a general rule of thumb, be
explicit about namespaces for anything that QML interacts with directly,
including parameters in signals and slots.

Next, we need to register the new NavigationController class with the QML system in
the cm-ui project, so in main.cpp, add the following registration next to the existing one for
MasterController:

qmlRegisterType<cm::controllers::NavigationController>("CM", 1, 0,
"NavigationController");

We’re now ready to wire up MasterView to react to these navigation signals. Add the
following element before the StackView:

Connections {
 target: masterController.ui_navigationController
 onGoCreateClientView:
contentFrame.replace("qrc:/views/CreateClientView.qml")
 onGoDashboardView: contentFrame.replace("qrc:/views/DashboardView.qml")
 onGoEditClientView:
contentFrame.replace("qrc:/views/EditClientView.qml", {selectedClient:
client})
 onGoFindClientView:
contentFrame.replace("qrc:/views/FindClientView.qml")
}

User Interface Chapter 3

[83]

We are creating a connection component bound to our new instance of
NavigationController, which reacts to each of the go signals we added and navigates to the
relevant view via the contentFrame, using the same replace() method we used
previously to move to the Dashboard. So whenever the goCreateClientView() signal
gets fired on the NavigationController, the onGoCreateClientView() slot gets called on
our Connections component and the CreateClientView is loaded into the StackView
named contentFrame. In the case of onGoEditClientView where a client parameter is
passed from the signal, we pass that object along to a property named
selectedClient, which we will add to the view later.

Some signals and slots in QML components are automatically generated
and connected for us and are convention based. Slots are named
on[CapitalisedNameOfRelatedSignal]. So, for example, if you have a
signal called mySplendidSignal(), then the corresponding slot will be
named onMySplendidSignal. These conventions are in play with our
NavigationController and Connections components.

Next, let’s add a navigation bar to MasterView with some placeholder buttons so that we
can try these signals out.

Add a Rectangle to form the background for our bar:

Rectangle {
 id: navigationBar
 anchors {
 top: parent.top
 bottom: parent.bottom
 left: parent.left
 }
 width: 100
 color: "#000000"
}

User Interface Chapter 3

[84]

This draws a black strip 100 pixels wide anchored to the left-hand side of the view.

We also need to adjust our StackView so that it allows some space for our bar. Rather than
filling its parent, let’s anchor three of its four sides to its parent, but attach the left-hand side
to the right-hand side of our bar:

StackView {
 id: contentFrame
 anchors {
 top: parent.top
 bottom: parent.bottom
 right: parent.right
 left: navigationBar.right
 }
 initialItem: Qt.resolvedUrl("qrc:/views/SplashView.qml")
}

Now, let’s add some buttons to our navigation Rectangle:

 Rectangle {
 id: navigationBar
 …

 Column {
 Button {
 text: "Dashboard"
 onClicked:
masterController.ui_navigationController.goDashboardView()
 }
 Button {
 text: "New Client"
 onClicked:
masterController.ui_navigationController.goCreateClientView()
 }
 Button {
 text: "Find Client"
 onClicked:
masterController.ui_navigationController.goFindClientView()
 }
 }

}

User Interface Chapter 3

[85]

We use the Column component to lay out our buttons for us, rather than having to
individually anchor the buttons to each other. Each button displays some text and when
clicked on, calls a signal on the NavigationController. Our Connection component reacts
to the signals and performs the view transition for us:

Great stuff, we have a functional navigation framework! However, when you click on one
of the navigation buttons, the navigation bar disappears momentarily and comes back
again. We are also getting “conflicting anchors” messages in our Application Output
console, which suggest that we’re doing something that’s not quite right. Let’s address those
issues before we move on.

User Interface Chapter 3

[86]

Fixing conflicts
The navigation bar problem is a simple one. As explained previously, QML is hierarchical
in structure. This bears out in the way the elements are rendered—child elements that
appear first are rendered first. In our case, we draw the navigation bar and then we draw
the content frame. When the StackView component loads new content, by default it applies
funky transitions to make it look nice. Those transitions can result in content moving out of
bounds of the control and drawing over any content below it. There are a couple of ways to
address this.

Firstly, we can rearrange the order that the components are rendered in and put the
navigation bar after the content frame. This will draw the navigation bar over the top of the
StackView, regardless of what was going on with it. The second option and the one we will
implement is to simply set the clip property of the StackView:

clip: true

This clips any content that overlaps the boundary of the control and doesn’t render it.

The next problem is a little more esoteric. As we’ve discussed, the number one cause of
confused head scratching I’ve encountered over the past few years of QML development is
the sizing of components. Some components we’ve used, such as Rectangle, are intrinsically
visual elements. If their size is not defined, either directly with the width/height
properties or indirectly with anchors, then they will not render. Other elements such as
Connections are not visual at all and size properties are redundant. Layout elements such
as Column may have a fixed size in one axis, but be dynamic in the other by nature.

One thing that most components have in common is that they inherit from Item, which in
turn inherits directly from QtObject, which is just a plain QObject. In much the same way
that the Qt Framework on the C++ side implements a lot of default behavior for plain old
QObject*, QML components often implement default behavior for Item components that
we can leverage here.

In our child views, we have used Rectangle as our root object. This makes sense as we want
to display a rectangle of a fixed size and color. However, this causes problems for the
StackView as it doesn’t know what size it should be. To provide this information, we try
and anchor it to its parent (the StackView), but then that causes problems of its own by
conflicting with the transitions the StackView is trying to perform when we switch views.

User Interface Chapter 3

[87]

Our way out of this dilemma is to instead have the root of our child views be a plain old
Item. StackView components have internal logic to handle Item components and will just
size it for us. Our Rectangle component then becomes the child of an Item component that
has already been sized automatically, and we can anchor to that instead:

Item {
 Rectangle {
 ...
 }
}

This is all a bit confusing and feels like Voodoo, but the takeaway here is that having Item
as the root element in your custom QML is often a good thing. Go ahead and add a root
Item component in this way to all the child views (but not MasterView).

Run the application again, and you should now have nice smooth transitions and no
warning messages in the console.

Summary
We have a flexible, decoupled navigation mechanism in place and are successfully
transitioning between different views. We have the basics of a navigation bar in place and a
working content pane as designed at the beginning of the chapter.

Having the UI call the business logic layer to emit a signal that the UI then reacts to may
seem like a bit of a roundabout way of navigating between views, but this business logic
signal/UI slot design brings benefits. It keeps the UI modular as the views don't need to
know about each other. It keeps the logic for navigation in the business logic layer and
enables that layer to request that the UI navigate the user to a particular view without
needing to know anything about the UI or the view itself. Crucially, it also gives us
intercept points so that when the user requests navigation to a given view, we can handle it
and perform any additional processing we need, such as state management or cleanup.

In Chapter 4, Style, we will introduce a shared style component, and QML modules and
icons before we complete our UI design with a dynamic command bar.

4
Style

It’s generally a good idea to aim for function before form in the development process, but
the UI is the part of the application our users interact with and is a key ingredient of a
successful solution. In this chapter, we will introduce a CSS-like style resource and build on
the responsive design principles we introduced in the last chapter.

We will create custom QML components and modules to maximize code reuse. We will
integrate Font Awesome into our solution to provide us with a suite of scalable icons and
help give our UI a modern graphical look. We will tidy up the navigation bar, introduce the
concept of commands, and build the framework for a dynamic, context-sensitive command
bar.

We will cover the following topics in this chapter:

Custom style resource
Font Awesome
Custom components
Navigation bar styling
Commands

Style Chapter 4

[89]

Style resource
First off, let’s create a new resource file to contain the non-QML visual elements we will
need. In the cm-ui project, Add New... > Qt > Qt Resource File:

Name the file assets.qrc and place it in cm/cm-ui. Your new file will automatically open
in the Resource Editor, which I don’t find to be a particularly helpful editor, so close it. You
will see that the assets.qrc file has been added to the Resources section of the cm-ui
project. Right-click on it and select Add New… > Qt > QML File. Call the file Style.qml
and save it to cm/cm-ui/assets.

Edit the assets.qrc file in the Plain Text Editor in the same way we did for the views:

<RCC>
 <qresource prefix="/assets">
 <file alias="Style.qml">assets/Style.qml</file>
 </qresource>
</RCC>

Style Chapter 4

[90]

Now, edit Style.qml and we’ll add a single style property to use for the background color
of our views:

pragma Singleton
import QtQuick 2.9

Item {
 readonly property color colourBackground: "#f4c842"
}

What we are doing here in C++ terms is creating a singleton class with a public member
variable of type const color called colourBackground with an initialized value of a hex
RGB code for (very) light grey.

Now, we need to perform a little bit of a manual fudge to wire this up. We need to create a
Module Definition file named qmldir (with no file extension) in the same folder as
Style.qml (cm/cm-ui/assets). There is no built-in template for this type of file, so we
need to create it ourselves. File Explorer in older versions of Windows used to make this a
painful exercise as it always insisted on a file extension. A console command was required
to forcibly rename the file. Windows 10 will happily create the file without an extension. In
the Unix world, files without an extension are more common.

With the qmldir file created, edit assets.qrc and insert a new entry for it right next to
Style.qml inside the /assets prefix:

<file alias="qmldir">assets/qmldir</file>

Double-click on the newly added qmldir file and enter the following lines:

module assets
singleton Style 1.0 Style.qml

We have already seen modules when we import QtQuick 2.9. This makes version 2.9 of the
QtQuick module available for use in our views. In our qmldir file, we are defining a new
module of our own called assets and telling Qt that there is a Style object within version
1.0 of that module, for which the implementation is in our Style.qml file.

With our new style module created and wired up, let’s now put that modern off-white color
to use. Start with the first child view we see, SplashView, and add the following to get
access to our new module:

import assets 1.0

Style Chapter 4

[91]

You’ll note that we’re presented with an angry red underline, suggesting that all is not well.
Hover over the line with the mouse pointer, and a tooltip will tell us that we need to add
the import path to our new qmldir definition file.

There are a couple of ways to do this. The first option is to go to the Projects mode and
select the current kit’s Build settings and then Debug mode. At the bottom in the Build
Environment section, click on Details. Here, you can see a list of all the environment
variables for the current kit and configuration. Add a new variable called
QML2_IMPORT_PATH and set its value to the cm-ui folder:

Style Chapter 4

[92]

This adds the project working directory of the cm-ui project (/projects/qt/cm/cm-ui) to
the QML Import Path. Note that our module name must reflect the relative path to the
qmldir file from this import path.

The problem with this approach is that this environment variable is tied to the
cm.pro.user file. If you share the project with other developers, they will have their own
cm.pro.user files, and they will have to remember to add this variable too. Furthermore,
it's tied to an absolute path and if you copy the project code to another machine, it may not
be at that location.

The second, and preferred, option is to add the following line to main.cpp immediately
after instantiating QQmlApplicationEngine:

engine.addImportPath("qrc:/");

So why qrc:/ and not the absolute path to our qmldir file? You'll remember that we
added our views.qrc resource bundle to a RESOURCES variable in cm-ui.pro. What this
does is it takes all the files from views.qrc and compiles them into the application binary
in a kind of virtual filesystem, where the prefixes act as virtual folders. The root of this
virtual filesystem is referenced as qrc:/ and by using this in the import path, we are
essentially asking Qt to look inside all of our bundled resource files for any modules. Head
over to cm-ui.pro and ensure that our new assets.qrc has also been added to
RESOURCES:

RESOURCES += views.qrc \
 assets.qrc

This can be a bit confusing, so to reiterate, we have added the following folder to search for
new modules, either using the QML2_IMPORT_PATH environment variable to search our
cm-ui project folder on our local physical filesystem, or the addImportPath() method to
search the root of our virtual resource filesystem at runtime.

In both cases, our qmldir file that defines our new module is in a folder called assets a
level below that, that is, either <Qt Projects>/cm/cm-ui/assets in the physical
filesystem or qrc:/assets in the virtual.

This gives us the module name assets. If our folder structure was deeper, like
stuff/badgers/assets, then our module would need to be called stuff.badgers.assets, as
that is the path relative to our defined import path. Similarly, if we wanted to add another
module for our existing views, we would create a qmldir file in cm-ui/views and call the
module views.

Style Chapter 4

[93]

If you see that Qt Creator is still a bit confused and the red line still
persists, ensure that cm-ui.pro contains the QML_IMPORT_PATH +=
$$PWD line.

With all this in place, we can now use our new module. Including the module means we
can now access our singleton Style object and read properties from it. Replace the color
property of our SplashView:

Rectangle {
 ...
 color: Style.colourBackground
 ...
}

Repeat this to set the background color for all of our views except MasterView. Remember
to include ui.assets 1.0 in each view too.

When you build and run the application, you may wonder why we’ve gone through all of
that rigmarole when the views look exactly the same as they did before. Well, let’s say that
we’ve just had a meeting with the guys from marketing where they told us that yellowy
orange is not a good fit for the brand any more, and we need to change all the views to be a
clean off-white color. We would previously have had to go into every view and change the
color from #f4c842 to #efefef. Now, there are only seven of them, so it’s not a big deal,
but imagine if we had to change all the colors for all the components in 50 complex views;
that would be a very painful exercise.

However, go to Style.qml and change the colourBackground property from #f4c842 to
#efefef. Build and run the application and bask in the glory of our rebranded app! By
setting up our shared style component early, we can add the properties as we go and then
restyling our app later becomes much easier. We can add properties of all types here, not
just colors, so we’ll be adding sizes, fonts, and other things as we progress further through
our development.

Style Chapter 4

[94]

Font Awesome
With our styling framework in place, let’s review what our navigation bar looks like and
figure out what we want to achieve:

The buttons we want to display on our navigation bar are Dashboard View (the Home
view), New Client View, and Find Client View, along with a toggle button at the top to
expand and collapse the bar.

Style Chapter 4

[95]

A common UI design pattern is to represent simple commands with icons. Further
information about the command can be obtained by a variety of means; for example, when
you hover over the button, information can be displayed in a tooltip or a status bar at the
bottom of the screen. Our approach will be to have a collapsible bar. The default state of the
bar will be collapsed and will display an icon representing each command. In expanded
state, the bar will display both the icon and a textual description of the command. The user
will be able to toggle the states with an additional button. This is a pattern particularly
prevalent in mobile application development, where you want to consume as little screen
space as possible by default.

There are a few options for displaying the icons for our buttons. Older desktop applications
would more than likely use image files of some description. This gives you full artistic
control over how your icons look, but carries several drawbacks. Image files tend to be
comparatively large in size, and they are a fixed size. If you need to draw them at a different
size, then they can look bad, particularly if they are scaled up or if the aspect ratio changes.

Scalable Vector Graphics (SVG) are much smaller files and scale very well. They are more
difficult to create and can be a bit more limited artistically, but they can be very useful for
the purpose of icons. However, from experience, they can be quite tricky to work with in
Qt/QML.

The third option that gives you the small file size and scalability benefits of SVG but are
much easier to work with are symbol font files. This is a very common solution in web
development, and this is the approach we will take.

There are numerous symbol fonts available but perhaps the most popular for development
is Font Awesome. It provides a wide range of terrific symbols and has a very helpful
website; check out: http:/ ​/​fontawesome. ​io/​.

Check any licensing applicable for fonts you choose to use, especially if
you are using them commercially.

Download the kit and open up the archive file. The file we are interested in is
fonts/fontawesome-webfont.ttf. Copy this file into our project folder in cm/cm-
ui/assets.

http://fontawesome.io/
http://fontawesome.io/
http://fontawesome.io/
http://fontawesome.io/
http://fontawesome.io/
http://fontawesome.io/
http://fontawesome.io/
http://fontawesome.io/

Style Chapter 4

[96]

In our cm-ui project, edit assets.qrc and add the font to our resources:

<file alias="fontawesome.ttf">assets/fontawesome-webfont.ttf</file>

Remember that our alias doesn’t have to be the same as the original filename, and we’ve
taken the opportunity to shorten it a bit.

Next up, edit Style.qml and we'll wire the font up to our custom style for easy use. We
first need the font to be loaded and made available for use, which we achieve using a
FontLoader component. Add the following inside the root Item element:

FontLoader {
 id: fontAwesomeLoader
 source: "qrc:/assets/fontawesome.ttf"
}

In the source property, we use the /assets prefix (or virtual folder) we defined in our
assets.qrc file along with the fontawesome.ttf alias. Now, we have loaded the font but
as it stands, we won’t be able to reference it from outside of Style.qml. This is because
only properties at root component level are accessible outside of the file. Child components
are deemed effectively private. The way we get around this is by creating a property
alias for the element we want to expose:

Item {
 property alias fontAwesome: fontAwesomeLoader.name
 readonly property color colourBackground: "#efefef"
 FontLoader {
 id: fontAwesomeLoader
 source: "qrc:/assets/fontawesome.ttf"
 }
}

This creates a publicly available property called fontAwesome, which when called, simply
redirects the caller to the name property of the internal fontAwesomeLoader element.

Style Chapter 4

[97]

With the wiring done, let’s find the icons we want to use. Back on the Font Awesome
website, navigate to the Icons page. Here, you can see all the available icons. Clicking on
one will display further information about it, and it is from here that we can get the key
piece of information we need in order to display it, and that is the unicode character. I’ll
select the following icons for our menu, but feel free to choose whichever icons you want:

Command Icon Unicode character

Toggle Menu bars f0c9

Dashboard home f015

New Client user-plus f234

Find Client search f002

Now, let’s replace the Button components on our MasterView with a Text component for
each of our icons:

Column {
 Text {
 font {
 family: Style.fontAwesome
 pixelSize: 42
 }
 color: "#ffffff"
 text: "\uf0c9"
 }
 Text {
 font {
 family: Style.fontAwesome
 pixelSize: 42
 }
 color: "#ffffff"
 text: "\uf015"
 }
 Text {
 font {
 family: Style.fontAwesome
 pixelSize: 42
 }
 color: "#ffffff"
 text: "\uf234"
 }
 Text {
 font {

Style Chapter 4

[98]

 family: Style.fontAwesome
 pixelSize: 42
 }
 color: "#ffffff"
 text: "\uf002"
 }
}

You will also need to add the assets 1.0 import if you haven’t already:

Next, we’ll add the descriptive text for the client commands. Wrap each of the Text
components in a Row and add a further Text component for the description, as follows:

Row {
 Text {
 font {
 family: Style.fontAwesome
 pixelSize: 42

Style Chapter 4

[99]

 }
 color: "#ffffff"
 text: "\uf234"
 }
 Text {
 color: "#ffffff"
 text: "New Client"
 }
}

The Row component will lay out its children horizontally—first the icon and then the
descriptive text. Repeat this for the other commands. Add the descriptions Dashboard and
Find Client for the other buttons and simply an empty string for the toggle command:

Before we get too carried away making further changes, we’ll take a breath, do some
refactoring, and look at introducing components.

Style Chapter 4

[100]

Components
The QML, what we’ve just written, is functional enough, but it's already becoming difficult
to maintain. Our MasterView is getting a little long and difficult to read. When we come to
change how our command buttons look, for example, aligning the icon and text, we will
have to change it in four places. If we want to add a fifth button, we have to copy, paste,
and edit a whole bunch of QML to do so. This is where reusable components come into
play.

Components are exactly the same as the views we have already created—just snippets of
QML. The difference is purely semantic. Throughout this book, views represent screens that
lay out content while components are the content.

The easiest way to create a new component is when you have already written the QML that
you want to form the basis for your component, which we have done. Right-click on any of
the Row elements we added for our commands and select Refactoring > Move Component
into Separate File.

Name the new component NavigationButton and save it to a new folder—cm/cm-

ui/components:

Style Chapter 4

[101]

The Row element will be moved to our new file and in MasterView, you will be left with
an empty NavigationButton component:

NavigationButton {
}

Unfortunately, it comes with a big red squiggly, and our app will no longer run. While the
refactoring step has happily created a new NavigationButton.qml file for us, it's not
actually included in our project anywhere, so Qt doesn't know where it is. It’s easy enough
to resolve though, and we just need to set up our resources bundle as we did with our
views and assets:

Create a new Qt Resource File called components.qrc in the cm/cm-ui1.
folder
Create an empty qmldir file in cm/cm-ui/components as we did for our assets2.
Edit components.qrc to include both of our new files within a /components3.
prefix:

<RCC>
 <qresource prefix="/components">
 <file alias="qmldir">components/qmldir</file>
 <file
alias="NavigationButton.qml">components/NavigationButton.qml</file>
 </qresource>
</RCC>

Edit qmldir to set up our module and add our NavigationButton component4.
to it:

module components
NavigationButton 1.0 NavigationButton.qml

Ensure that components.qrc has been added to the RESOURCES variable in cm-5.
ui.pro

In MasterView, include our new components module to get access to our new6.
component:

import components 1.0

Sometimes, getting our module to be fully recognized and banishing the
red squigglies may only be accomplished by restarting Qt Creator, as that
forces the reload of all the QML modules.

Style Chapter 4

[102]

We now have a reusable component that hides away the implementation details, reduces
code duplication, and makes it much easier to add new commands and maintain the old
ones. However, there are a few changes we need to make to it before we can leverage it for
our other commands.

Currently, our NavigationButton has hard-coded icon and description text values that
will be the same whenever we use the component. We need to expose both the text
properties so that we can set them to be different for each of our commands. As we saw, we
can achieve this using property aliases, but we need to add unique identifiers to our Text
elements for that to work. Let’s set the default values to be something generic and also
implement advice from earlier in the book to have an Item component as the root element:

import QtQuick 2.9
import assets 1.0

Item {
 property alias iconCharacter: textIcon.text
 property alias description: textDescription.text

 Row {
 Text {
 id: textIcon
 font {
 family: Style.fontAwesome
 pixelSize: 42
 }
 color: "#ffffff"
 text: "\uf11a"
 }
 Text {
 id: textDescription
 color: "#ffffff"
 text: "SET ME!!"
 }
 }
}

Now that our component is configurable with properties, we can replace our commands in
MasterView:

Column {
 NavigationButton {
 iconCharacter: "\uf0c9"
 description: ""
 }
 NavigationButton {

Style Chapter 4

[103]

 iconCharacter: "\uf015"
 description: "Dashboard"
 }
 NavigationButton {
 iconCharacter: "\uf234"
 description: "New Client"
 }
 NavigationButton {
 iconCharacter: "\uf002"
 description: "Find Client"
 }
}

This is much more concise and manageable than all of the duplicated QML we had earlier.
Now, if you run the application, you’ll see that while we’ve taken a couple of steps forward,
and that we’ve also taken one step back:

Style Chapter 4

[104]

As you can see, all of our components are drawn on top of each other. The root cause of this
is the issue we’ve touched on previously regarding sizing. We have a visual component
with a root Item element, and we haven’t explicitly defined its size. Another thing we are
neglecting is our custom style. Let’s fix those next.

Styling the navigation bar
Starting with the easy part, let’s first move our hard-coded colors and icon pixel size from
NavigationButton into Style.qml:

readonly property color colourNavigationBarBackground: "#000000"
readonly property color colourNavigationBarFont: "#ffffff"
readonly property int pixelSizeNavigationBarIcon: 42

We now need to think about how we want to size the elements of our button. We have an
icon which we want to be square, so the width and height will be the same. Next, to that, we
have a text description that will be the same height as the icon but will be wider:

The width of the entire component is the width of the icon plus the width of the description.
The height of the entire component is the same as both the height of the icon and
description; however, it gives us more flexibility to make the height the same as whichever
is the larger of the two. That way, if we ever decide to make one item larger than the other,
we know that the component will be large enough to contain them both. Let’s pick starter
sizes of 80 x 80 for the icon and 80 x 240 for the description and define the properties:

readonly property real widthNavigationButtonIcon: 80
readonly property real heightNavigationButtonIcon:
widthNavigationButtonIcon
readonly property real widthNavigationButtonDescription: 240
readonly property real heightNavigationButtonDescription:
heightNavigationButtonIcon
readonly property real widthNavigationButton: widthNavigationButtonIcon +
widthNavigationButtonDescription
readonly property real heightNavigationButton:
Math.max(heightNavigationButtonIcon, heightNavigationButtonDescription)

Style Chapter 4

[105]

There are a couple of things to note here. Properties can be bound directly to other
properties, which reduces the amount of duplication and makes the whole setup much
more dynamic. We know that we want our icon to be square, so by binding the height to be
the same as the width, if we want to change the total size of the icon, we just need to update
the width, and the height will automatically update. QML also has strong integration with a
JavaScript engine, so we can use the Math.max() function to help us figure out which is the
larger height.

Another thing we would like the navigation buttons to do is to provide some kind of visual
cue when the user hovers the mouse over a button to indicate that it is an interactive
element. To do that, we need each button to have its own background rectangle.

In the NavigationButton, wrap the Row element in a new Rectangle and plug the sizes
into our component:

Item {
 property alias iconCharacter: textIcon.text
 property alias description: textDescription.text

 width: Style.widthNavigationButton
 height: Style.heightNavigationButton

 Rectangle {
 id: background
 anchors.fill: parent
 color: Style.colourNavigationBarBackground

 Row {
 Text {
 id: textIcon
 width: Style.widthNavigationButtonIcon
 height: Style.heightNavigationButtonIcon
 font {
 family: Style.fontAwesome
 pixelSize: Style.pixelSizeNavigationBarIcon
 }
 color: Style.colourNavigationBarFont
 text: "\uf11a"
 }
 Text {
 id: textDescription
 width: Style.widthNavigationButtonDescription
 height: Style.heightNavigationButtonDescription
 color: Style.colourNavigationBarFont
 text: "SET ME!!"
 }

Style Chapter 4

[106]

 }
 }
}

Run again, and you’ll see a slight improvement:

We’re getting part of the description cut off because our navigation bar is hard-coded to be
100 pixels wide. We need to change this and also implement the toggle expanded/collapsed
functionality. We have already calculated the sizes we need, so let’s prepare by adding a
couple of new properties to Style.qml:

readonly property real widthNavigationBarCollapsed:
widthNavigationButtonIcon
readonly property real heightNavigationBarExpanded: widthNavigationButton

Style Chapter 4

[107]

The collapsed state will be just wide enough for the icon, while the expanded state will
contain the entire button, including description.

Next, let’s encapsulate our navigation bar in a new component. There won’t be any reuse
benefits in this case as there will only ever be one, but it helps keep our QML organized and
makes MasterView more concise and easy to read.

You can right-click on the Rectangle component in MasterView and refactor our
navigation bar into a new QML file, as we did for our NavigationButton. However, let’s
do it manually so that you are comfortable with both approaches. Right-click on
components.qrc and select Add New… > Qt > QML File. Add NavigationBar.qml to
cm/cm-ui/components:

Edit components.qrc and move our new NavigationBar into the /components prefix
section with an alias:

<file alias="NavigationBar.qml">components/NavigationBar.qml</file>

Style Chapter 4

[108]

Add the component to our components module by editing qmldir:

NavigationBar 1.0 NavigationBar.qml

Cut the Rectangle and its child elements from MasterView and paste it into
NavigationBar.qml inside the root Item element. Update the QtQuick module import to
version 2.9 if it has been initialized to some older version. Add an import for our assets
module to gain access to our Style object. Move the Rectangle's anchors and width
properties to the root Item and set the Rectangle to fill its parent:

import QtQuick 2.9
import assets 1.0

Item {
 anchors {
 top: parent.top
 bottom: parent.bottom
 left: parent.left
 }
 width: 100

 Rectangle {
 anchors.fill: parent
 color: "#000000"

 Column {
 NavigationButton {
 iconCharacter: "\uf0c9"
 description: ""
 }
 NavigationButton {
 iconCharacter: "\uf015"
 description: "Dashboard"
 }
 NavigationButton {
 iconCharacter: "\uf234"
 description: "New Client"
 }
 NavigationButton {
 iconCharacter: "\uf002"
 description: "Find Client"
 }
 }
 }
}

Style Chapter 4

[109]

Back in MasterView, you can now add the new NavigationBar component in where the
Rectangle used to be:

NavigationBar {
 id: navigationBar
}

Although you get the dreaded red squigglies again, you will actually be able to run the
application and verify that the refactoring hasn’t broken anything.

The anchoring of our new NavigationBar component is fine, but the width is a little more
complicated—how do we know whether it should be
Style.widthNavigationBarCollapsed or Style.heightNavigationBarExpanded?
We’ll control this with a publicly accessible Boolean property that indicates whether the bar
is collapsed or not. We can then use the value of this property to decide which width we
want using the conditional ? operator syntax. Set the property to be true initially, so the bar
will render in its collapsed state by default:

property bool isCollapsed: true

With that in place, replace the hard-coded width of 100, as follows:

width: isCollapsed ? Style.widthNavigationBarCollapsed :
Style.heightNavigationBarExpanded

Next, update the color property of Rectangle to
Style.colourNavigationBarBackground:

Style Chapter 4

[110]

We’re getting there now, but one key thing we’ve missed along the way is that clicking on
the buttons now doesn’t actually do anything anymore. Let’s fix that next.

Style Chapter 4

[111]

Clicking
Early on in this book, we looked at a component called MouseArea. This was soon
superseded by our use of Button components, which provide the clicking functionality for
us. However, now that we are rolling our own form of buttons, we need to implement the
clicking functionality ourselves. Much like the Button components, our
NavigationButton shouldn’t really do anything when they are clicked on, other than
informing their parent that the event has occurred. Components should be as generic and
ignorant about context as possible so that you can use them in multiple places. What we
need to do is add a MouseArea component and simply pass on the onClicked event via a
custom signal.

In NavigationButton, we first add the signal that we want to emit whenever the
component has been clicked on. Add this just after the properties:

signal navigationButtonClicked()

Try and give the signals quite specific names, even if they are a little long.
If you simply call everything clicked(), then things can get a little
confusing and sometimes you may find yourself referencing a different
signal to the one you intended.

Next, we’ll add another property to support some mouse hover magic we’ll implement. This
will be a color type, and we’ll default it to be the regular background color:

property color hoverColour: Style.colourNavigationBarBackground

We’ll use this color in conjunction with the states property of Rectangle:

states: [
 State {
 name: "hover"
 PropertyChanges {
 target: background
 color: hoverColour
 }
 }
]

Style Chapter 4

[112]

Think of each state in the array as a named configuration. The default configuration has no
name ("") and consists of the properties we have already set within the Rectangle element.
The “hover” state applies changes to the properties specified in the PropertyChanges
element, that is, it will change the color property of the element with ID background to be
whatever the value of hoverColour is.

Next, inside the Rectangle but below the Row, add our MouseArea:

MouseArea {
 anchors.fill: parent
 cursorShape: Qt.PointingHandCursor
 hoverEnabled: true
 onEntered: background.state = "hover"
 onExited: background.state = ""
 onClicked: navigationButtonClicked()
}

We use the anchors property to fill the whole button background area, including icon and
description. Next, we’ll jazz things up a bit by changing the mouse cursor to a pointing
hand when it enters the button area and enabling hovering with the hoverEnabled flag.
When enabled, the entered and exited signals are emitted when the cursor enters and exits
the area, and we can use the corresponding slots to change the appearance of our
background Rectangle by switching between the hover state we’ve just implemented and
the default (""). Finally, we respond to the clicked() signal of MouseArea with the
onClicked() slot and simply emit our own signal.

We can now react to the navigationButtonClicked() signal in our NavigationBar
component and add some hover colors while we’re at it. Implement the toggle button first:

NavigationButton {
 iconCharacter: "\uf0c9"
 description: ""
 hoverColour: "#993333"
 onNavigationButtonClicked: isCollapsed = !isCollapsed
}

We implement the <MyCapitalisedSignalName> convention to create a slot for our signal
and when it fires, we simply toggle the value of isCollapsed between true and false.

Style Chapter 4

[113]

You can now run the application. Click on the Toggle button to expand and collapse the
navigation bar:

Note how because of our use of anchors, the child views dynamically resize themselves to
accommodate the navigation bar. You will also see the pointing hand cursor and a flash of
color when you hover over the button, which helps the user understand that it is an
interactive element and visualizes the boundaries.

For the remaining navigation buttons, what we want to do in reaction to the clicked event is
to emit the goDashboardView(), goCreateClientView(), and goFindClientView()
signals on the NavigationCoordinator.

Style Chapter 4

[114]

Add the onNavigationButtonClicked slots to the other buttons and drill down through
the masterController object to get to the signals we want to call. Add some fancy colors
of your choice too:

NavigationButton {
 iconCharacter: "\uf015"
 description: "Dashboard"
 hoverColour: "#dc8a00"
 onNavigationButtonClicked:
masterController.ui_navigationController.goDashboardView();
}
NavigationButton {
 iconCharacter: "\uf234"
 description: "New Client"
 hoverColour: "#dccd00"
 onNavigationButtonClicked:
masterController.ui_navigationController.goCreateClientView();
}
NavigationButton {
 iconCharacter: "\uf002"
 description: "Find Client"
 hoverColour: "#8aef63"
 onNavigationButtonClicked:
masterController.ui_navigationController.goFindClientView();
}

You can now click on the buttons to navigate to the different child views.

A few last little tweaks to finish the navigation bar are to align the content of our buttons a
little better and resize a few things.

The description text should align vertically with the center of the icon rather than the top,
and our icons should be centered rather than pinned up against the edge of the window.
The first issue is easy to solve, because we’ve already been consistent and explicit with our
sizings. Simply add the following property to both the Text components in
NavigationButton:

verticalAlignment: Text.AlignVCenter

Both the Text elements were sized to take up the full height of the button, so we simply
need to align the text vertically within that space.

Style Chapter 4

[115]

Fixing the alignment of the icons is just the same, but this time in the horizontal axis. Add
the following to the Text component of the icon:

horizontalAlignment: Text.AlignHCenter

As for the sizings, our description text is a little small and there is a lot of empty space after
the text. Add a new property to our Style object:

readonly property int pixelSizeNavigationBarText: 22

Use the new property in the description Text element:

font.pixelSize: Style.pixelSizeNavigationBarText

Next, reduce the widthNavigationButtonDescription property in Style to 160.

Run the app and we’re nearly there. The sizing and alignment is much better now:

Style Chapter 4

[116]

However, one thing you may not note is that when the bar is collapsed and only the icon is
displayed, the MouseArea is still the full width of the button including the description. Try
moving the mouse where the description would be, and you can see the pointing hand
cursor appear. You can even click on the components and the transition happens. What we
need to do to fix this is rather than the root Item element in NavigationButton being a
fixed width (Style.widthNavigationButton), we need to make it dynamic and set it to
parent.width instead. In order for that to work, we then need to walk up the QML
hierarchy and ensure that its parent has a width too. Its parent is the Column element in
NavigationBar. Set the width property of Column to be parent.width too.

With those changes in place, the navigation bar now behaves as expected.

Commands
The next thing on our to-do list is to implement a context-sensitive command bar. While our
navigation bar is a constant presence with the same buttons regardless of what the user is
doing, the command bar will come and go and will contain different buttons depending on
the context. For example, if the user is adding or editing a client, we will need a Save button
to commit any changes to the database. However, if we are searching for a client, then
saving makes no sense and a Find button is more relevant. While the techniques for
creating our command bar are broadly similar to the navigation bar, the additional
flexibility required poses more of a challenge.

To help us overcome these obstacles, we will implement commands. An additional benefit
of this approach is that we get to move the logic out of the UI layer and into the business
logic layer. I like the UI to be as dumb and as generic as possible. This makes your
application more flexible, and bugs in C++ code are easier to identify and resolve than those
in QML.

A command object will encapsulate an icon, descriptive text, a function to determine
whether the button is enabled or not, and finally, an executed() signal that will be emitted
when the related button is pressed. Each button in our command bar will then be bound to
a command object.

Each of our child view may have a list of commands and an associated command bar. For
the views that do, we will present the list of commands to the UI via a command controller.

Style Chapter 4

[117]

Create two new C++ classes in the cm-lib project, both of which should inherit from
QObject:

Command in a new folder cm-lib/source/framework
Command Controller in the existing folder cm-lib/source/controllers

command.h:

#ifndef COMMAND_H
#define COMMAND_H

#include <functional>

#include <QObject>
#include <QScopedPointer>
#include <QString>

#include <cm-lib_global.h>

namespace cm {
namespace framework {

class CMLIBSHARED_EXPORT Command : public QObject
{
 Q_OBJECT
 Q_PROPERTY(QString ui_iconCharacter READ iconCharacter CONSTANT)
 Q_PROPERTY(QString ui_description READ description CONSTANT)
 Q_PROPERTY(bool ui_canExecute READ canExecute NOTIFY canExecuteChanged
)

public:
 explicit Command(QObject* parent = nullptr,
 const QString& iconCharacter = "",
 const QString& description = "",
 std::function<bool()> canExecute = [](){ return
 true; });
 ~Command();

 const QString& iconCharacter() const;
 const QString& description() const;
 bool canExecute() const;

signals:
 void canExecuteChanged();
 void executed();

private:

Style Chapter 4

[118]

 class Implementation;
 QScopedPointer<Implementation> implementation;
};

}}

#endif

command.cpp:

#include "command.h"

namespace cm {
namespace framework {

class Command::Implementation
{
public:
 Implementation(const QString& _iconCharacter, const QString&
 _description, std::function<bool()> _canExecute)
 : iconCharacter(_iconCharacter)
 , description(_description)
 , canExecute(_canExecute)
 {
 }

 QString iconCharacter;
 QString description;
 std::function<bool()> canExecute;
};

Command::Command(QObject* parent, const QString& iconCharacter, const
QString& description, std::function<bool()> canExecute)
 : QObject(parent)
{
 implementation.reset(new Implementation(iconCharacter, description,
canExecute));
}

Command::~Command()
{
}

const QString& Command::iconCharacter() const
{
 return implementation->iconCharacter;
}

Style Chapter 4

[119]

const QString& Command::description() const
{
 return implementation->description;
}

bool Command::canExecute() const
{
 return implementation->canExecute();
}

}
}

The QObject, namespaces, and dll export code should be familiar by now. We represent the
icon character and description values we want to display on the UI buttons as strings. We
hide the member variables away in the private implementation and provide accessor
methods for them. We could have represented the canExecute member as a simple bool
member that calling code could set to true or false as required; however, a much more
elegant solution is to pass in a method that calculates the value for us on the fly. By default,
we set it to a lambda that returns true, which means that the button will be enabled. We
provide a canExecuteChanged() signal to go along with this, which we can fire whenever
we want the UI to reassess whether the button is enabled or not. The last element is the
executed() signal that will be fired by the UI when the corresponding button is pressed.

command-controller.h:

#ifndef COMMANDCONTROLLER_H
#define COMMANDCONTROLLER_H

#include <QObject>
#include <QtQml/QQmlListProperty>
#include <cm-lib_global.h>
#include <framework/command.h>

namespace cm {
namespace controllers {

class CMLIBSHARED_EXPORT CommandController : public QObject
{
 Q_OBJECT
 Q_PROPERTY(QQmlListProperty<cm::framework::Command>
 ui_createClientViewContextCommands READ
 ui_createClientViewContextCommands CONSTANT)

public:
 explicit CommandController(QObject* _parent = nullptr);

Style Chapter 4

[120]

 ~CommandController();

 QQmlListProperty<framework::Command>
 ui_createClientViewContextCommands();

public slots:
 void onCreateClientSaveExecuted();

private:
 class Implementation;
 QScopedPointer<Implementation> implementation;
};

}}

#endif

command-controller.cpp:

#include "command-controller.h"

#include <QList>
#include <QDebug>

using namespace cm::framework;

namespace cm {
namespace controllers {

class CommandController::Implementation
{
public:
 Implementation(CommandController* _commandController)
 : commandController(_commandController)
 {
 Command* createClientSaveCommand = new Command(
 commandController, QChar(0xf0c7), "Save");
 QObject::connect(createClientSaveCommand, &Command::executed,
 commandController, &CommandController::onCreateClientSaveExecuted);
 createClientViewContextCommands.append(createClientSaveCommand);
 }

 CommandController* commandController{nullptr};

 QList<Command*> createClientViewContextCommands{};
};

CommandController::CommandController(QObject* parent)

Style Chapter 4

[121]

 : QObject(parent)
{
 implementation.reset(new Implementation(this));
}

CommandController::~CommandController()
{
}

QQmlListProperty<Command>
CommandController::ui_createClientViewContextCommands()
{
 return QQmlListProperty<Command>(this,
implementation->createClientViewContextCommands);
}

void CommandController::onCreateClientSaveExecuted()
{
 qDebug() << "You executed the Save command!";
}

}}

Here, we introduce a new type—QQmlListProperty. It is essentially a wrapper that
enables QML to interact with a list of custom objects. Remember that we need to fully
qualify the templated type in the Q_PROPERTY statements. The private member that actually
holds the data is a QList, and we have implemented an accessor method that takes the
QList and converts it into a QQmlListProperty of the same templated type.

As per the documentation for QQmlListProperty, this method of object
construction should not be used in production code, but we’ll use it to
keep things simple.

We have created a single command list for our CreateClientView. We’ll add command
lists for other views later. Again, we’ll keep things simple for now; we just create a single
command to save a newly created client. When creating the command, we parent it to the
command coordinator so that we don’t have to worry about memory management. We
assign it a floppy disk icon (unicode f0c7) and the Save label. We leave the canExecute
function as the default for now so it will always be enabled. Next, we connect the
executed() signal of the command to the onCreateClientSaveExecuted() slot of the
CommandController. With the wiring done, we then add the command to the list.

Style Chapter 4

[122]

The intention is that we present the user with a command button bound to a Command
object. When the user presses the button, we will fire the executed() signal from the UI.
The connection we’ve set up will cause the slot on the command controller to be called, and
we will execute our business logic. For now, we’ll simply print out a line to the console
when the button is pressed.

Next, let’s register both of our new types in main.cpp (remember the #includes):

qmlRegisterType<cm::controllers::CommandController>("CM", 1, 0,
"CommandController");
qmlRegisterType<cm::framework::Command>("CM", 1, 0, "Command");

Finally, we need to add the CommandCoordinator property to MasterController:

Q_PROPERTY(cm::controllers::CommandController* ui_commandController READ
commandController CONSTANT)

Then, we add an accessor method:

CommandController* commandController();

Finally, in master-controller.cpp, instantiate the object in the private implementation
and implement the accessor method in exactly the same way as we did for
NavigationController.

We now have a (very short!) list of commands ready for our CreateClientView to
consume.

Command bar
Let’s begin by adding some more properties to Style for our command components:

readonly property color colourCommandBarBackground: "#cecece"
readonly property color colourCommandBarFont: "#131313"
readonly property color colourCommandBarFontDisabled: "#636363"
readonly property real heightCommandBar: heightCommandButton
readonly property int pixelSizeCommandBarIcon: 32
readonly property int pixelSizeCommandBarText: 12

readonly property real widthCommandButton: 80
readonly property real heightCommandButton: widthCommandButton

Style Chapter 4

[123]

Next, create two new QML components in our UI project: CommandBar.qml and
CommandButton.qml in cm-ui/components. Update components.qrc and move the new
components into the /components prefix with aliases. Edit qmldir and append the new
components:

CommandBar 1.0 CommandBar.qml
CommandButton 1.0 CommandButton.qml

For our button design, we want to lay out the description below the icon. The icon should
be positioned slightly above centre. The component should be square, as follows:

CommandButton.qml:

import QtQuick 2.9
import CM 1.0
import assets 1.0

Item {
 property Command command
 width: Style.widthCommandButton
 height: Style.heightCommandButton

 Rectangle {
 id: background
 anchors.fill: parent
 color: Style.colourCommandBarBackground

 Text {
 id: textIcon

Style Chapter 4

[124]

 anchors {
 centerIn: parent
 verticalCenterOffset: -10
 }
 font {
 family: Style.fontAwesome
 pixelSize: Style.pixelSizeCommandBarIcon
 }
 color: command.ui_canExecute ? Style.colourCommandBarFont :
 colourCommandBarFontDisabled
 text: command.ui_iconCharacter
 horizontalAlignment: Text.AlignHCenter
 }

 Text {
 id: textDescription
 anchors {
 top: textIcon.bottom
 bottom: parent.bottom
 left: parent.left
 right: parent.right
 }
 font.pixelSize: Style.pixelSizeNavigationBarText
 color: command.ui_canExecute ? Style.colourCommandBarFont :
 colourCommandBarFontDisabled
 text: command.ui_description
 horizontalAlignment: Text.AlignHCenter
 verticalAlignment: Text.AlignVCenter
 }

 MouseArea {
 anchors.fill: parent
 cursorShape: Qt.PointingHandCursor
 hoverEnabled: true
 onEntered: background.state = "hover"
 onExited: background.state = ""
 onClicked: if(command.ui_canExecute) {
 command.executed();
 }
 }

 states: [
 State {
 name: "hover"
 PropertyChanges {
 target: background
 color: Qt.darker(Style.colourCommandBarBackground)
 }

Style Chapter 4

[125]

 }
]
 }
}

This is largely similar to our NavigationButton component. We pass in a Command object,
which is where we will obtain the icon character and description to display in the Text
elements as well as the signal to emit when the button is pressed, so long as the command
can execute.

We use an alternative to the Row/Column based layout and use anchors to position our
icon and description instead. We center the icon in the parent Rectangle and then apply a
vertical offset to move it up and allow space for the description. We anchor the top of the
description to the bottom of the icon.

Rather than propagating a signal when the button is pressed, we emit the executed()
signal of the Command object, first verifying that the command can execute. We also use this
flag to selectively color our text elements, using a paler grey font if the command is
disabled.

We implement some more hover functionality with our MouseArea, but rather than
exposing a property to pass in the hover color, we simply take the default and darken it a
few shades using the built-in Qt.darker() method. We also only apply the state change in
the onEntered() slot of the MouseArea if the command can be executed.

CommandBar.qml:

import QtQuick 2.9
import assets 1.0

Item {
 property alias commandList: commandRepeater.model

 anchors {
 left: parent.left
 bottom: parent.bottom
 right: parent.right
 }
 height: Style.heightCommandBar

 Rectangle {
 anchors.fill: parent
 color: Style.colourCommandBarBackground

 Row {

Style Chapter 4

[126]

 anchors {
 top: parent.top
 bottom: parent.bottom
 right: parent.right
 }

 Repeater {
 id: commandRepeater
 delegate: CommandButton {
 command: modelData
 }
 }
 }
 }
}

Again, this is largely the same as NavigationBar, but with a dynamic list of commands
rather than hard-coded QML buttons. We introduce another new component—the
Repeater. Given a list of objects via the model property, Repeater will instantiate a QML
component defined in the delegate property for each item in the list. The object from the
list is made available via the built-in modelData variable. Using this mechanism, we can
automatically generate a CommandButton element for each command we have in a given
list. We use another property alias so that the caller can set the command list.

Let’s put this to use in CreateClientView. First, import components 1.0, and then add
the following inside the root Item and after the Rectangle:

CommandBar {
 commandList:
masterController.ui_commandController.ui_createClientViewContextCommands
}

We drill down through our property hierarchy to get the command list for the create client
view and pass that list to the command bar which takes care of the rest. Don’t worry if the
CommandBar has red squiggles, Qt Creator just needs to catch up with our blistering pace.

Style Chapter 4

[127]

Run the app and navigate to Create Client View:

Click on the button, and you will see the message output to the console. Adding new
commands is as simple as appending a new Command object to the QList inside
CommandController—no UI changes needed! The command bar will automatically create
a new button for every command it finds in the list. Also note that this command bar is only
present on the CreateClientView, so it is context sensitive. We can easily add command
bars to other views by simply adding extra lists and properties to the
CommandController, as we will later.

Style Chapter 4

[128]

Summary
In this chapter, we gave the navigation bar a much needed overhaul. We added our first
few components and leveraged our new custom style object, with Font Awesome providing
some lovely scalable graphics for us. We also introduced commands and have the
framework in place to be able to add context-sensitive command buttons to our views.

In Chapter 5, Data, we’ll get stuck into the business logic layer and flesh out our first data
models.

5
Data

In this chapter, we will implement classes to handle the most critical part of any Line of
Business application—the data. We will introduce self-aware data entities, which can
automatically serialize to and from JavaScript Object Notation (JSON), a popular
serialization format used a lot in web communications. We will create the core models we
need for our application and wire them up to our UI for reading and writing via custom
controls. We will cover the following topics:

JSON
Data decorators
Abstract data entities
Collections of data entities
Concrete data models
UI controls and data binding

JSON
In case you have never come across JSON before, let’s have a quick crash course. It is a
simple and lightweight way to express hierarchies of objects and their properties. It is a
very popular choice when sending data in HTTP requests. It is similar to XML in intent but
is much less verbose.

Data Chapter 5

[130]

A JSON object is encapsulated in curly braces {}, while properties are denoted in the format
key: value. Strings are delimited with double quotes "". We can represent a single client
object as follows:

{
 "reference": "CLIENT0001",
 "name": "Dale Cooper"
}

Note that white space and control characters such as tab and newline are ignored—the
indented properties are to simply make things more readable.

It's usually a good idea to strip extraneous characters out of JSON when
transmitting over the network (for example, in an HTTP request) in order
to reduce the size of the payload; every byte counts!

Property values can be one of the following types: String, Number, JSON Object, JSON
Array, and the literal values true, false, and null.

We can add the supply address and billing address to our client as child JSON objects,
providing a unique key for each. While keys can be in any format as long as they are
unique, it is common practice to use camel case, for example, myAwesomeJsonKey. We can
express an empty address object with null:

{
 "reference": "CLIENT0001",
 "name": "Dale Cooper",
 "supplyAddress": {
 "number": 7,
 "name": "White Lodge",
 "street": "Lost Highway",
 "city": "Twin Peaks",
 "postcode": "WS119"
 },
 "billingAddress": null
}

Data Chapter 5

[131]

A collection (array) of objects is enclosed in square brackets [] separated by commas. We
can express no scheduled appointments by simply leaving the square brackets empty:

{
 "reference": "CLIENT0001",
 "name": "Dale Cooper",
 "supplyAddress": {
 "number": 7,
 "name": "White Lodge",
 "street": "Lost Highway",
 "city": "Twin Peaks",
 "postcode": "WS119"
 },
 "billingAddress": null,
 "contacts": [
 {
 "type": 1,
 "address": "+12345678"
 },
 {
 "type": 2,
 "address": "dale.cooper@fbi.com"
 }
],
 "appointments": []
}

Object hierarchy
Most real-world applications represent data in a hierarchical or relational manner, with the
data rationalized into discrete objects. There is often a central "root" object, which parents
several other child objects, either as singular objects or as a collection. Each discrete object
has its own set of data items that can be any number of types. The key principles we want to
cover are as listed:

A range of data types (string, integer, datetime) and an enumerated value
Object hierarchy
Multiple single child entities of the same type
Collections of entities

Data Chapter 5

[132]

Balancing these goals with simplicity, the data diagram we will work toward is as follows:

The purpose of each of these models is described in the following table:

Model Description

Client
This is the root of our object hierarchy and represents an individual or
party our company has a relationship with, for example, a customer or a
patient.

Contact
A collection of addresses that we can use to contact the client. The
possible types of contact will be a telephone, email, and fax. There may be
one or more contacts per client.

Appointment A collection of scheduled appointments with the client, for example, a site
visit or consultation. There may be zero or more appointments per client.

Supply address
The address central to the relationship with the client, for example, the
site our company supplies energy to or the home address of a patient.
There must be one supply address per client.

Billing address
An optional address different to the supply address used for invoicing,
for example, the head office of a corporation. There may be zero or one
billing address per client.

Data Chapter 5

[133]

Another perfectly valid approach would be to aggregate the addresses
into a collection, much like we have done with our contacts, but I want to
demonstrate using the same type of object (Address) in multiple
properties.

With the high-level design in place, we are now in a position to write our classes. However,
before we start on our data entities, let’s take a look at the data items.

DataDecorators
A simple implementation of the name property of our client model would be to add it as a
QString; however, this approach has some shortcomings. Whenever we display this
property in the UI, we will probably want to display an informative label next to the textbox
so that the user knows what it is for, saying “Name” or something similar. Whenever we
want to validate a name entered by the user, we have to manage that in the code
somewhere else. Finally, if we want to serialize the value to or from JSON, again there
needs to be some other component that does it for us.

To solve all of these problems we will introduce the concept of a DataDecorator, which
will lift a given base data type and give us a label, validation capabilities, and JSON
serialization out of the box. Our models will maintain a collection of DataDecorators,
allowing them to validate and serialize themselves to JSON too by simply walking through
the data items and performing the relevant action.

In our cm-lib project, create the following classes in a new folder cm-lib/source/data:

Class Purpose

DataDecorator Base class for our data items

StringDecorator Derived class for string properties

IntDecorator Derived class for integer properties

DateTimeDecorator Derived class for date/time properties

EnumeratorDecorator Derived class for enumerated properties

Data Chapter 5

[134]

Our DataDecorator base class will house the features shared across all of our data items.

data-decorator.h:

#ifndef DATADECORATOR_H
#define DATADECORATOR_H

#include <QJsonObject>
#include <QJsonValue>
#include <QObject>
#include <QScopedPointer>

#include <cm-lib_global.h>

namespace cm {
namespace data {

class Entity;

class CMLIBSHARED_EXPORT DataDecorator : public QObject
{
 Q_OBJECT
 Q_PROPERTY(QString ui_label READ label CONSTANT)

public:
 DataDecorator(Entity* parent = nullptr, const QString& key =
 "SomeItemKey", const QString& label = "");
 virtual ~DataDecorator();

 const QString& key() const;
 const QString& label() const;
 Entity* parentEntity();

 virtual QJsonValue jsonValue() const = 0;
 virtual void update(const QJsonObject& jsonObject) = 0;

private:
 class Implementation;
 QScopedPointer<Implementation> implementation;
};

}}

#endif

Data Chapter 5

[135]

We inherit from QObject, add our dllexport macro and wrap the whole thing in
namespaces as usual. Also, because this is an abstract base class, we ensure that we’ve
implemented a virtual destructor.

We know that because we are inheriting from QObject, we want to receive a pointer to a
parent in our constructor. We also know that all data items will be children of an Entity
(which we will write soon and have forward declared here), which will itself be derived
from QObject. We can leverage these two facts to parent our DataDecorator directly to an
Entity.

We construct the decorator with a couple of strings. All of our data decorators must have a
key that will be used when serializing to and from JSON, and they will also share a label
property that the UI can use to display descriptive text next to the data control. We tuck
these members away in the private implementation and implement some accessor methods
for them.

Finally, we begin implementing our JSON serialization by declaring virtual methods to
represent the value as a QJsonValue and to update the value from a provided
QJsonObject. As the value is not known in the base class and will instead be implemented
in the derived classes, both these methods are pure virtual functions.

data-decorator.cpp:

#include "data-decorator.h"

namespace cm {
namespace data {

class DataDecorator::Implementation
{
public:
 Implementation(Entity* _parent, const QString& _key, const QString&
 _label)
 : parentEntity(_parent)
 , key(_key)
 , label(_label)
 {
 }
 Entity* parentEntity{nullptr};
 QString key;
 QString label;
};

DataDecorator::DataDecorator(Entity* parent, const QString& key, const
QString& label)

Data Chapter 5

[136]

 : QObject((QObject*)parent)
{
 implementation.reset(new Implementation(parent, key, label));
}

DataDecorator::~DataDecorator()
{
}

const QString& DataDecorator::key() const
{
 return implementation->key;
}

const QString& DataDecorator::label() const
{
 return implementation->label;
}

Entity* DataDecorator::parentEntity()
{
 return implementation->parentEntity;
}

}}

The implementation is very straightforward, essentially just managing some data members.

Next, we'll implement our derived decorator class for handling strings.

string-decorator.h:

#ifndef STRINGDECORATOR_H
#define STRINGDECORATOR_H

#include <QJsonObject>
#include <QJsonValue>
#include <QObject>
#include <QScopedPointer>
#include <QString>

#include <cm-lib_global.h>
#include <data/data-decorator.h>

namespace cm {
namespace data {

class CMLIBSHARED_EXPORT StringDecorator : public DataDecorator

Data Chapter 5

[137]

{
 Q_OBJECT
 Q_PROPERTY(QString ui_value READ value WRITE setValue NOTIFY
 valueChanged)
public:
 StringDecorator(Entity* parentEntity = nullptr, const QString& key =
"SomeItemKey", const QString& label = "", const QString& value = "");
 ~StringDecorator();

 StringDecorator& setValue(const QString& value);
 const QString& value() const;

 QJsonValue jsonValue() const override;
 void update(const QJsonObject& jsonObject) override;

signals:
 void valueChanged();

private:
 class Implementation;
 QScopedPointer<Implementation> implementation;
};

}}

#endif

There isn’t much else going on here—we’re just adding a strongly typed QString value
property to hold our value. We also override the virtual JSON-related methods.

When deriving from a class that inherits from QObject, you need to add
the Q_OBJECT macro to the derived class as well as the base class if the
derived class implements its own signals or slots.

string-decorator.cpp:

#include "string-decorator.h"

#include <QVariant>

namespace cm {
namespace data {

class StringDecorator::Implementation
{
public:

Data Chapter 5

[138]

 Implementation(StringDecorator* _stringDecorator, const QString&
 _value)
 : stringDecorator(_stringDecorator)
 , value(_value)
 {
 }

 StringDecorator* stringDecorator{nullptr};
 QString value;
};

StringDecorator::StringDecorator(Entity* parentEntity, const QString& key,
const QString& label, const QString& value)
 : DataDecorator(parentEntity, key, label)
{
 implementation.reset(new Implementation(this, value));
}

StringDecorator::~StringDecorator()
{
}

const QString& StringDecorator::value() const
{
 return implementation->value;
}

StringDecorator& StringDecorator::setValue(const QString& value)
{
 if(value != implementation->value) {
 // ...Validation here if required...
 implementation->value = value;
 emit valueChanged();
 }
 return *this;
}

QJsonValue StringDecorator::jsonValue() const
{
 return QJsonValue::fromVariant(QVariant(implementation->value));
}

void StringDecorator::update(const QJsonObject& _jsonObject)
{
 if (_jsonObject.contains(key())) {
 setValue(_jsonObject.value(key()).toString());
 } else {
 setValue("");

Data Chapter 5

[139]

 }
}
}}

Again, there is nothing particularly complicated here. By using the READ and WRITE
property syntax rather than the simpler MEMBER keyword, we now have a way of
intercepting values being set by the UI, and we can decide whether or not we want to apply
the change to the member variable. The mutator can be as complex as you need it to be, but
all we’re doing for now is setting the value and emitting the signal to tell the UI that it has
been changed. We wrap the operation in an equality check, so we don’t take any action if
the new value is the same as the old one.

Here, the mutator returns a reference to self (*this), which is helpful
because it enables method chaining, for example,
myName.setValue(“Nick”).setSomeNumber(1234).setSomeOtherPr
operty(true). However, this is not necessary for the property bindings,
so feel free to use the more common void return type if you prefer.

We use a two-step conversion process, converting our QString value into a QVariant
before converting it into our target QJsonValue type. The QJsonValue will be plugged
into the parent Entity JSON object using the key from the DataDecorator base class. We
will cover that in more detail when we write the Entity related classes.

An alternative approach would be to simply represent the value of our
various data items as a QVariant member in the DataDecorator base
class, removing the need to have separate classes for QString, int, and so
on. The problem with this approach is that you end up having to write lots
of nasty code that says “if you have a QVariant containing a string then
run this code if it contains an int then run this code...”. I prefer the
additional overhead of writing the extra classes in exchange for having
known types and cleaner, simpler code. This will become particularly
helpful when we look at data validation. Validating a string is completely
different from validating a number and different again from validating a
date.

Data Chapter 5

[140]

IntDecorator and DateTimeDecorator are virtually identical to StringDecorator,
simply substituting QString values for int or QDateTime. However, we can supplement
DateTimeDecorator with a few additional properties to help us out. Add the following
properties and an accessor method to go with each:

Q_PROPERTY(QString ui_iso8601String READ toIso8601String NOTIFY
valueChanged)
Q_PROPERTY(QString ui_prettyDateString READ toPrettyDateString NOTIFY
valueChanged)
Q_PROPERTY(QString ui_prettyTimeString READ toPrettyTimeString NOTIFY
valueChanged)
Q_PROPERTY(QString ui_prettyString READ toPrettyString NOTIFY valueChanged
)

The purpose of these properties is to make the UI easily access the date/time value as a
QString preformatted to a few different styles. Let's run through the implementation for
each of the accessors.

Qt has inbuilt support for ISO8601 format dates, which is a very common format when
transmitting datetime values between systems, for example, in HTTP requests. It is a
flexible format that supports several different representations but generally follows the
format yyyy-MM-ddTHH:mm:ss.zt, where T is a string literal, z is milliseconds, and t is the
timezone information:

QString DateTimeDecorator::toIso8601String() const
{
 if (implementation->value.isNull()) {
 return "";
 } else {
 return implementation->value.toString(Qt::ISODate);
 }
}

Next, we provide a method to display a full datetime in a long human readable format, for
example, Sat 22 Jul 2017 @ 12:07:45:

QString DateTimeDecorator::toPrettyString() const
{
 if (implementation->value.isNull()) {
 return "Not set";
 } else {
 return implementation->value.toString("ddd d MMM yyyy @ HH:mm:ss"
);
 }
}

Data Chapter 5

[141]

The final two methods display either the date or time component, for example, 22 Jul 2017
or 12:07 pm:

QString DateTimeDecorator::toPrettyDateString() const
{
 if (implementation->value.isNull()) {
 return "Not set";
 } else {
 return implementation->value.toString("d MMM yyyy");
 }
}

QString DateTimeDecorator::toPrettyTimeString() const
{
 if (implementation->value.isNull()) {
 return "Not set";
 } else {
 return implementation->value.toString("hh:mm ap");
 }
}

Our final type, EnumeratorDecorator, is broadly the same as IntDecorator, but it also
accepts a mapper. This container helps us map the stored int value to a string
representation. If we consider the Contact.type enumerator we plan to implement, the
enumerated value will be 0, 1, 2, so on; however, when it comes to the UI, that number
won't mean anything to the user. We really need to present Email, Telephone, or some
other string representation, and the map allows us to do just that.

enumerator-decorator.h:

#ifndef ENUMERATORDECORATOR_H
#define ENUMERATORDECORATOR_H

#include <map>

#include <QJsonObject>
#include <QJsonValue>
#include <QObject>
#include <QScopedPointer>

#include <cm-lib_global.h>
#include <data/data-decorator.h>

namespace cm {
namespace data {

Data Chapter 5

[142]

class CMLIBSHARED_EXPORT EnumeratorDecorator : public DataDecorator
{
 Q_OBJECT
 Q_PROPERTY(int ui_value READ value WRITE setValue NOTIFY
 valueChanged)
 Q_PROPERTY(QString ui_valueDescription READ valueDescription
 NOTIFY valueChanged)

public:
 EnumeratorDecorator(Entity* parentEntity = nullptr, const QString&
 key = "SomeItemKey", const QString& label = "", int value = 0,
 const std::map<int, QString>& descriptionMapper = std::map<int,
 QString>());
 ~EnumeratorDecorator();

 EnumeratorDecorator& setValue(int value);
 int value() const;
 QString valueDescription() const;

 QJsonValue jsonValue() const override;
 void update(const QJsonObject& jsonObject) override;

signals:
 void valueChanged();

private:
 class Implementation;
 QScopedPointer<Implementation> implementation;
};

}}

#endif

We store the map as another member variable in our private implementation class and then
use it to provide the string representation of the enumerated value:

QString EnumeratorDecorator::valueDescription() const
{
 if (implementation->descriptionMapper.find(implementation->value)
 != implementation->descriptionMapper.end()) {
 return implementation->descriptionMapper.at(implementation-
 >value);
 } else {
 return {};
 }
}

Data Chapter 5

[143]

Now that we have covered the data types we need for our entities, let’s move on to the
entities themselves.

Entities
As we have a lot of functionality we want to share across our data models, we'll implement
an Entity base class. We need to be able to represent parent/child relationships so that a
client can have supply and billing addresses. We also need to support collections of entities
for our contacts and appointments. Finally, each entity hierarchy must be able to serialize
itself to and from a JSON object.

Create a new class Entity in cm-lib/source/data.

entity.h:

#ifndef ENTITY_H
#define ENTITY_H

#include <map>

#include <QObject>
#include <QScopedPointer>

#include <cm-lib_global.h>
#include <data/data-decorator.h>

namespace cm {
namespace data {

class CMLIBSHARED_EXPORT Entity : public QObject
{
 Q_OBJECT

public:
 Entity(QObject* parent = nullptr, const QString& key =
 "SomeEntityKey");
 Entity(QObject* parent, const QString& key, const QJsonObject&
 jsonObject);
 virtual ~Entity();

public:
 const QString& key() const;
 void update(const QJsonObject& jsonObject);
 QJsonObject toJson() const;

Data Chapter 5

[144]

signals:
 void childEntitiesChanged();
 void dataDecoratorsChanged();

protected:
 Entity* addChild(Entity* entity, const QString& key);
 DataDecorator* addDataItem(DataDecorator* dataDecorator);

protected:
 class Implementation;
 QScopedPointer<Implementation> implementation;
};

}}

#endif

entity.cpp:

#include "entity.h"

namespace cm {
namespace data {

class Entity::Implementation
{
public:
 Implementation(Entity* _entity, const QString& _key)
 : entity(_entity)
 , key(_key)
 {
 }
 Entity* entity{nullptr};
 QString key;
 std::map<QString, Entity*> childEntities;
 std::map<QString, DataDecorator*> dataDecorators;
};

Entity::Entity(QObject* parent, const QString& key)
 : QObject(parent)
{
 implementation.reset(new Implementation(this, key));
}

Entity::Entity(QObject* parent, const QString& key, const QJsonObject&
 jsonObject) : Entity(parent, key)
{
 update(jsonObject);

Data Chapter 5

[145]

}

Entity::~Entity()
{
}

const QString& Entity::key() const
{
 return implementation->key;
}

Entity* Entity::addChild(Entity* entity, const QString& key)
{
 if(implementation->childEntities.find(key) ==
 std::end(implementation->childEntities)) {
 implementation->childEntities[key] = entity;
 emit childEntitiesChanged();
 }
 return entity;
}

DataDecorator* Entity::addDataItem(DataDecorator* dataDecorator)
{
 if(implementation->dataDecorators.find(dataDecorator->key()) ==
 std::end(implementation->dataDecorators)) {
 implementation->dataDecorators[dataDecorator->key()] =
 dataDecorator;
 emit dataDecoratorsChanged();
 }
 return dataDecorator;
}

void Entity::update(const QJsonObject& jsonObject)
{
 // Update data decorators
 for (std::pair<QString, DataDecorator*> dataDecoratorPair :
 implementation->dataDecorators) {
 dataDecoratorPair.second->update(jsonObject);
 }
 // Update child entities
 for (std::pair<QString, Entity*> childEntityPair : implementation-
 >childEntities)
{childEntityPair.second>update(jsonObject.value(childEntityPair.first).toOb
ject());
 }
}

QJsonObject Entity::toJson() const

Data Chapter 5

[146]

{
 QJsonObject returnValue;
 // Add data decorators
 for (std::pair<QString, DataDecorator*> dataDecoratorPair :
 implementation->dataDecorators) {
 returnValue.insert(dataDecoratorPair.first,
 dataDecoratorPair.second->jsonValue());
 }
 // Add child entities
 for (std::pair<QString, Entity*> childEntityPair :
implementation->childEntities) {
 returnValue.insert(childEntityPair.first,
childEntityPair.second->toJson());
 }
 return returnValue;
}

}}

Much like our DataDecorator base class, we assign all entities a unique key, which will be
used in JSON serialization. We also add an overloaded constructor to which we can pass a
QJsonObject so that we can instantiate an entity from JSON. On a related note, we also
declare a pair of methods to serialize an existing instance to and from JSON.

Our entity will maintain a few collections—a map of data decorators representing the
properties of the model, and a map of entities representing individual children. We map the
key of each item to the instance.

We expose a couple of protected methods that are derived classes will use to add its data
items and children; for example, our client model will add a name data item along
with the supplyAddress and billingAddress children. To complement these methods,
we also add signals to tell any interested observers that the collections have changed.

In both cases, we check that the key doesn’t already exist on the map before adding it. We
then return the supplied pointer so that the consumer can use it for further actions. You’ll
see the value of this when we come to implement the data models.

Data Chapter 5

[147]

We use our populated maps for the JSON serialization methods. We’ve already declared an
update() method on our DataDecorator base class, so we simply iterate through all the
data items and pass the JSON object down to each in turn. Each derived decorator class has
its own implementation to take care of the parsing. Similarly, we recursively call
Entity::update() on each of the child entities.

Serializing to a JSON object follows the same pattern. Each data item can convert its value
to a QJsonValue object, so we get each value in turn and append it to a root JSON object
using the key of each item. We recursively call Entity::toJson() on each of the children,
and this cascades down the hierarchy tree.

Before we can finish off our Entity, we need to declare a group of classes to represent an
entity collection.

Entity collections
To implement entity collections, we need to leverage some more advanced C++ techniques,
and we will take a brief break from our conventions so far, implementing multiple classes in
a single header file.

Create entity-collection.h in cm-lib/source/data, and in it, add our namespaces as
normal and forward declare Entity:

#ifndef ENTITYCOLLECTION_H
#define ENTITYCOLLECTION_H

namespace cm {
namespace data {
 class Entity;
}}

#endif

Next, we’ll walk through the necessary classes in turn, each of which must be added in
order inside the namespaces.

Data Chapter 5

[148]

We first define the root class, which does nothing more than inheriting from QObject and
giving us access to all the goodness that it brings, such as object ownership and signals. This
is required because classes deriving directly from QObject cannot be templated:

class CMLIBSHARED_EXPORT EntityCollectionObject : public QObject
{
 Q_OBJECT

public:
 EntityCollectionObject(QObject* _parent = nullptr) : QObject(_parent)
{}
 virtual ~EntityCollectionObject() {}

signals:
 void collectionChanged();
};

You will need to add includes for QObject and our DLL export macros. Next, we need a
type agnostic interface to use with our entities, much the same as we have with the
DataDecorator and Entity maps we’ve implemented. However, things are a little more
complicated here, as we will not derive a new class for each collection we have, so we need
some way of getting typed data. We have two requirements. Firstly, the UI needs a QList
of derived types (for example, Client*) so that it can access all the properties specific to a
client and display all the data. Secondly, our Entity class needs a vector of base types
(Entity*) so that it can iterate its collections without caring exactly which type it is dealing
with. The way we achieve this is to declare two template methods but delay defining them
until later. derivedEntities() will be used when the consumer wants a collection of the
derived type, while baseEntities() will be used when the consumer just wants access to
the base interface:

class EntityCollectionBase : public EntityCollectionObject
{
public:
 EntityCollectionBase(QObject* parent = nullptr, const QString& key
 = "SomeCollectionKey")
 : EntityCollectionObject(parent)
 , key(key)
 {}

 virtual ~EntityCollectionBase()
 {}

 QString getKey() const
 {
 return key;

Data Chapter 5

[149]

 }

 virtual void clear() = 0;
 virtual void update(const QJsonArray& json) = 0;
 virtual std::vector<Entity*> baseEntities() = 0;

 template <class T>
 QList<T*>& derivedEntities();

 template <class T>
 T* addEntity(T* entity);

private:
 QString key;
};

Next, we declare a full template class where we store our collection of derived types and
implement all of our methods, except for the two template methods we just discussed:

template <typename T>
class EntityCollection : public EntityCollectionBase
{
public:
 EntityCollection(QObject* parent = nullptr, const QString& key =
 "SomeCollectionKey")
 : EntityCollectionBase(parent, key)
 {}

 ~EntityCollection()
 {}

 void clear() override
 {
 for(auto entity : collection) {
 entity->deleteLater();
 }
 collection.clear();
 }

 void update(const QJsonArray& jsonArray) override
 {
 clear();
 for(const QJsonValue& jsonValue : jsonArray) {
 addEntity(new T(this, jsonValue.toObject()));
 }
 }

 std::vector<Entity*> baseEntities() override

Data Chapter 5

[150]

 {
 std::vector<Entity*> returnValue;
 for(T* entity : collection) {
 returnValue.push_back(entity);
 }
 return returnValue;
 }

 QList<T*>& derivedEntities()
 {
 return collection;
 }

 T* addEntity(T* entity)
 {
 if(!collection.contains(entity)) {
 collection.append(entity);
 EntityCollectionObject::collectionChanged();
 }
 return entity;
 }

private:
 QList<T*> collection;
};

You will need #include <QJsonValue> and <QJsonArray> for these
classes.

The clear() method simply empties the collection and tidies up the memory; update() is
conceptually the same as the JSON methods we implemented in Entity, except that we are
dealing with a collection of entities, so we take a JSON array instead of an object.
addEntity() adds an instance of a derived class to the collection, and
derivedEntities() returns the collection; baseEntities() does a little more work,
creating a new vector on request and populating it with all the items in the collection. It is
just implicitly casting pointers, so we’re not concerned about expensive object instantiation.

Data Chapter 5

[151]

Finally, we provide the implementation for our magic templated methods:

template <class T>
QList<T*>& EntityCollectionBase::derivedEntities()
{
 return dynamic_cast<const
EntityCollection<T>&>(*this).derivedEntities();
}

template <class T>
T* EntityCollectionBase::addEntity(T* entity)
{
 return dynamic_cast<const
EntityCollection<T>&>(*this).addEntity(entity);
}

What we’ve achieved by delaying our implementation of these methods is that we’ve now
fully declared our templated EntityCollection class. We can now "route" any calls to the
templated methods through to the implementation in the templated class. It’s a tricky
technique to wrap your head around, but it will hopefully make more sense when we start
implementing these collections in our real-world models.

With our entity collections now ready, we can return to our Entity class and add them to the
mix.

In the header, #include <data/entity-collection.h>, add the signal:

void childCollectionsChanged(const QString& collectionKey);

Also, add the protected method:

EntityCollectionBase* addChildCollection(EntityCollectionBase*
entityCollection);

In the implementation file, add the private member:

std::map<QString, EntityCollectionBase*> childCollections;

Data Chapter 5

[152]

Then, add the method:

EntityCollectionBase* Entity::addChildCollection(EntityCollectionBase*
entityCollection)
{
 if(implementation->childCollections.find(entityCollection-
 >getKey()) == std::end(implementation->childCollections)) {
 implementation->childCollections[entityCollection->getKey()] =
 entityCollection;
 emit childCollectionsChanged(entityCollection->getKey());
 }
 return entityCollection;
}

This works in exactly the same way as the other maps, associating a key with a pointer to a
base class.

Next, add the collections to the update() method:

void Entity::update(const QJsonObject& jsonObject)
{
 // Update data decorators
 for (std::pair<QString, DataDecorator*> dataDecoratorPair :
 implementation->dataDecorators) {
 dataDecoratorPair.second->update(jsonObject);
 }

 // Update child entities
 for (std::pair<QString, Entity*> childEntityPair : implementation-
 >childEntities) { childEntityPair.second-
 >update(jsonObject.value(childEntityPair.first).toObject());
 }

 // Update child collections
 for (std::pair<QString, EntityCollectionBase*> childCollectionPair
 : implementation->childCollections) {
 childCollectionPair.second-
 >update(jsonObject.value(childCollectionPair.first).toArray());
 }
}

Finally, add the collections to the toJson() method:

QJsonObject Entity::toJson() const
{
 QJsonObject returnValue;

 // Add data decorators

Data Chapter 5

[153]

 for (std::pair<QString, DataDecorator*> dataDecoratorPair :
 implementation->dataDecorators) {
 returnValue.insert(dataDecoratorPair.first,
 dataDecoratorPair.second->jsonValue());
 }

 // Add child entities
 for (std::pair<QString, Entity*> childEntityPair : implementation-
 >childEntities) {
 returnValue.insert(childEntityPair.first,
 childEntityPair.second->toJson());
 }

 // Add child collections
 for (std::pair<QString, EntityCollectionBase*> childCollectionPair
 : implementation->childCollections) {
 QJsonArray entityArray;
 for (Entity* entity : childCollectionPair.second-
 >baseEntities()) {
 entityArray.append(entity->toJson());
 }
 returnValue.insert(childCollectionPair.first, entityArray);
 }

 return returnValue;
}

You will need #include <QJsonArray> for that last snippet.

We use the baseEntities() method to give us a collection of Entity*. We then append
the JSON object from each entity to a JSON array and when complete, add that array to our
root JSON object with the collection’s key.

The past few sections have been quite long and complex and may seem like a lot of work
just to implement some data models. However, it’s all code that you write once, and it gives
you a lot of functionality for free with every entity you go on and make, so it’s worth the
investment in the long run. We’ll go ahead and look at how to implement these classes in
our data models.

Data Chapter 5

[154]

Data models
Now that we have the infrastructure in place to be able to define data objects (entities and
entity collections) and properties of various types (data decorators), we can move on and
build the object hierarchy we laid out earlier in the chapter. We already have a default
Client class created by Qt Creator, so supplement that in cm-lib/source/models with the
following new classes:

Class Purpose

Address Represents a supply or billing address

Appointment Represents an appointment with a client

Contact Represents a method of contacting a client

We’ll start with the simplest of the models—the address.

address.h:

#ifndef ADDRESS_H
#define ADDRESS_H

#include <QObject>

#include <cm-lib_global.h>
#include <data/string-decorator.h>
#include <data/entity.h>

namespace cm {
namespace models {

class CMLIBSHARED_EXPORT Address : public data::Entity
{
 Q_OBJECT
 Q_PROPERTY(cm::data::StringDecorator* ui_building MEMBER building
 CONSTANT)
 Q_PROPERTY(cm::data::StringDecorator* ui_street MEMBER street
 CONSTANT)
 Q_PROPERTY(cm::data::StringDecorator* ui_city MEMBER city CONSTANT)
 Q_PROPERTY(cm::data::StringDecorator* ui_postcode MEMBER postcode
 CONSTANT)
 Q_PROPERTY(QString ui_fullAddress READ fullAddress CONSTANT)

public:
 explicit Address(QObject* parent = nullptr);

Data Chapter 5

[155]

 Address(QObject* parent, const QJsonObject& json);

 data::StringDecorator* building{nullptr};
 data::StringDecorator* street{nullptr};
 data::StringDecorator* city{nullptr};
 data::StringDecorator* postcode{nullptr};

 QString fullAddress() const;
};

}}

#endif

We define the properties we designed at the beginning of the chapter, but instead of using
regular QString objects, we use our new StringDecorators. To protect the integrity of
our data, we should really use the READ keyword and return a StringDecorator* const
via an accessor method, but for simplicity, we’ll use MEMBER instead. We also provide an
overloaded constructor that we can use to construct an address from a QJsonObject.
Finally, we add a helper fullAddress() method and property to concatenate the address
elements into a single string for use in the UI.

address.cpp:

#include "address.h"

using namespace cm::data;

namespace cm {
namespace models {

Address::Address(QObject* parent)
 : Entity(parent, "address")
{
 building = static_cast<StringDecorator*>(addDataItem(new
StringDecorator(this, "building", "Building")));
 street = static_cast<StringDecorator*>(addDataItem(new
StringDecorator(this, "street", "Street")));
 city = static_cast<StringDecorator*>(addDataItem(new
StringDecorator(this, "city", "City")));
 postcode = static_cast<StringDecorator*>(addDataItem(new
StringDecorator(this, "postcode", "Post Code")));
}

Address::Address(QObject* parent, const QJsonObject& json)
 : Address(parent)

Data Chapter 5

[156]

{
 update(json);
}

QString Address::fullAddress() const
{
 return building->value() + " " + street->value() + "\n" + city->value()
+ "\n" + postcode->value();
}

}}

This is where all of our hard work starts to come together. We need to do two things with
each of our properties. Firstly, we need a pointer to the derived type (StringDecorator),
which we can present to the UI in order to display and edit the value. Secondly, we need to
make the base Entity class aware of the base type (DataDecorator) so that it can iterate the
data items and perform the JSON serialization work for us. We can use the addDataItem()
method to achieve both these goals in a one-line statement:

building = static_cast<StringDecorator*>(addDataItem(new
StringDecorator(this, "building", "Building")));

Breaking this down, we create a new StringDecorator* with the building key and
Building UI label. This is immediately passed to addDataItem(), which adds it to the
dataDecorators collection in the Entity and returns the data item as a DataDecorator*.
We can then cast it back to a StringDecorator* before storing it in the building member
variable.

The only other piece of implementation here is to take a JSON object, construct the address
as normal by calling the default constructor, and then update the model using the
update() method.

The Appointment and Contact models follow the same pattern, just with different
properties and the appropriate variation of DataDecorator for each of their data types.
Where Contact varies more significantly is in its use of an EnumeratorDecorator for the
contactType property. To support this, we first define an enumerator in the header file
that contains all the possible values we want:

enum eContactType {
 Unknown = 0,
 Telephone,
 Email,
 Fax
};

Data Chapter 5

[157]

Note that we have a default value of Unknown represented by 0. This is important as it
allows us to accommodate an initial unset value. Next, we define a mapper container that
allows us to map each of the enumerated types to a descriptive string:

std::map<int, QString> Contact::contactTypeMapper = std::map<int, QString>
{
 { Contact::eContactType::Unknown, "" }
 , { Contact::eContactType::Telephone, "Telephone" }
 , { Contact::eContactType::Email, "Email" }
 , { Contact::eContactType::Fax, "Fax" }
};

When creating the new EnumeratorDecorator, we supply the default value (0 for
eContactType::Unknown) along with the mapper:

contactType = static_cast<EnumeratorDecorator*>(addDataItem(new
EnumeratorDecorator(this, "contactType", "Contact Type", 0,
contactTypeMapper)));

Our client model is a little more complex, as it not only has data items but has child entities
and collections too. However, the way we create and expose these things is very similar to
what we have already seen.

client.h:

#ifndef CLIENT_H
#define CLIENT_H

#include <QObject>
#include <QtQml/QQmlListProperty>

#include <cm-lib_global.h>
#include <data/string-decorator.h>
#include <data/entity.h>
#include <data/entity-collection.h>
#include <models/address.h>
#include <models/appointment.h>
#include <models/contact.h>

namespace cm {
namespace models {

class CMLIBSHARED_EXPORT Client : public data::Entity
{
 Q_OBJECT
 Q_PROPERTY(cm::data::StringDecorator* ui_reference MEMBER
 reference CONSTANT)

Data Chapter 5

[158]

 Q_PROPERTY(cm::data::StringDecorator* ui_name MEMBER name CONSTANT)
 Q_PROPERTY(cm::models::Address* ui_supplyAddress MEMBER
 supplyAddress CONSTANT)
 Q_PROPERTY(cm::models::Address* ui_billingAddress MEMBER
 billingAddress CONSTANT)
 Q_PROPERTY(QQmlListProperty<Appointment> ui_appointments READ
 ui_appointments NOTIFY appointmentsChanged)
 Q_PROPERTY(QQmlListProperty<Contact> ui_contacts READ ui_contacts
 NOTIFY contactsChanged)

public:
 explicit Client(QObject* parent = nullptr);
 Client(QObject* parent, const QJsonObject& json);

 data::StringDecorator* reference{nullptr};
 data::StringDecorator* name{nullptr};
 Address* supplyAddress{nullptr};
 Address* billingAddress{nullptr};
 data::EntityCollection<Appointment>* appointments{nullptr};
 data::EntityCollection<Contact>* contacts{nullptr};

 QQmlListProperty<cm::models::Appointment> ui_appointments();
 QQmlListProperty<cm::models::Contact> ui_contacts();

signals:
 void appointmentsChanged();
 void contactsChanged();
};

}}

#endif

We expose the child entities as pointers to the derived type and the collections as pointers to
a templated EntityCollection.

client.cpp:

#include "client.h"

using namespace cm::data;

namespace cm {
namespace models {

Client::Client(QObject* parent)
 : Entity(parent, "client")

Data Chapter 5

[159]

{
 reference = static_cast<StringDecorator*>(addDataItem(new
 StringDecorator(this, "reference", "Client Ref")));
 name = static_cast<StringDecorator*>(addDataItem(new
 StringDecorator(this, "name", "Name")));
 supplyAddress = static_cast<Address*>(addChild(new Address(this),
 "supplyAddress"));
 billingAddress = static_cast<Address*>(addChild(new Address(this),
 "billingAddress"));
 appointments = static_cast<EntityCollection<Appointment>*>
 (addChildCollection(new EntityCollection<Appointment>(this,
 "appointments")));
 contacts =
static_cast<EntityCollection<Contact>*>(addChildCollection(new
EntityCollection<Contact>(this, "contacts")));
}

Client::Client(QObject* parent, const QJsonObject& json)
 : Client(parent)
{
 update(json);
}

QQmlListProperty<Appointment> Client::ui_appointments()
{
 return QQmlListProperty<Appointment>(this,
appointments->derivedEntities());
}

QQmlListProperty<Contact> Client::ui_contacts()
{
 return QQmlListProperty<Contact>(this, contacts->derivedEntities());
}

}}

Adding child entities follows the same pattern as data items, but using the addChild()
method. Note that we add more than one child of the same address type, but ensure that
they have different key values to avoid duplicates and invalid JSON. Entity collections are
added with addChildCollection() and other than being templated, they follow the same
approach.

While it was a lot of work to create our entities and data items, creating models is really
quite straightforward and now they all come packed with features that we wouldn’t
otherwise have had.

Data Chapter 5

[160]

Before we can use our fancy new models in the UI, we need to register the types in
main.cpp in cm-ui, including the data decorators that represent the data items. Remember
to add the relevant #include statements first:

qmlRegisterType<cm::data::DateTimeDecorator>("CM", 1, 0,
"DateTimeDecorator");
qmlRegisterType<cm::data::EnumeratorDecorator>("CM", 1, 0,
"EnumeratorDecorator");
qmlRegisterType<cm::data::IntDecorator>("CM", 1, 0, "IntDecorator");
qmlRegisterType<cm::data::StringDecorator>("CM", 1, 0, "StringDecorator");

qmlRegisterType<cm::models::Address>("CM", 1, 0, "Address");
qmlRegisterType<cm::models::Appointment>("CM", 1, 0, "Appointment");
qmlRegisterType<cm::models::Client>("CM", 1, 0, "Client");
qmlRegisterType<cm::models::Contact>("CM", 1, 0, "Contact");

With that done, we’ll create an instance of a client in MasterController, which we will
use to populate data for new clients. This follows exactly the same pattern that we’ve used
for adding the other controllers.

First, add the member variable to the private implementation of MasterController:

Client* newClient{nullptr};

Then, initialize it in the Implementation constructor:

newClient = new Client(masterController);

Third, add the accessor method:

Client* MasterController::newClient()
{
 return implementation->newClient;
}

Finally, add Q_PROPERTY:

Q_PROPERTY(cm::models::Client* ui_newClient READ newClient CONSTANT)

We now have an empty instance of a client available for consumption by the UI, specifically
CreateClientView, which we will edit next. Begin by adding a shortcut property for the
new client instance:

property Client newClient: masterController.ui_newClient

Data Chapter 5

[161]

Remember that the properties should all be defined at the root Item level and that you need
to import CM 1.0 to get access to the registered types. This just enables us to use
newClient as shorthand to access the instance rather than having to type out
masterController.ui_newClient every time.

At this point, everything is hooked up ready for use, and you should be able to run the
application and navigate to the new client view with no problems. The view isn’t doing
anything with the new client instance just yet, but it’s happily sitting there ready for action.
Now, let’s look at how we can interact with it.

Custom TextBox
We’ll start with the name data item of our client. Back when we worked with another
QString property in our UI with the welcome message, we displayed it with the basic text
component. This component is read only, so to view and edit our property, we will need to
reach for something else. There are a couple of options in the base QtQuick module:
TextInput and TextEdit. TextInput is for a single line of editable plain text, while
TextEdit handles multiline blocks of text and also supports rich text. TextInput is ideal
for our name.

Importing the QtQuick.Controls module makes additional text-based
components like Label, TextField, and TextArea available. Label
inherits and extends Text, TextField inherits and extends TextInput
and TextArea inherits and extends TextEdit. The basic controls are
enough for us at this stage, but be aware that these alternatives exist. If
you find yourself trying to do something with one of the basic controls
which it doesn’t seem to support, then import QtQuick.Controls and
take a look at its more powerful cousin. It may well have the functionality
you are looking for.

Let's build on what we've learned and create a new reusable component. As usual, we'll
begin by preparing the Style properties we'll need:

readonly property real sizeScreenMargin: 20

readonly property color colourDataControlsBackground: "#ffffff"
readonly property color colourDataControlsFont: "#131313"
readonly property int pixelSizeDataControls: 18
readonly property real widthDataControls: 400
readonly property real heightDataControls: 40

Data Chapter 5

[162]

Next, create StringEditorSingleLine.qml in cm/cm-ui/components. It’s not the most
beautiful of names, but at least it’s descriptive!

It's generally helpful to use a prefix with custom QML views and
components to help distinguish them from the built-in Qt components and
avoid naming conflicts. If we were using that approach with this project,
we could have called this component CMTextBox or something equally
short and simple. Use whatever approach and conventions work for you,
it makes no functional difference.

Edit components.qrc and qmldir as we did previously to make the new component
available in our components module.

What we're trying to achieve with this component is as follows:

To be able to pass in any StringDecorator property from any data model and
view/edit the value
View a descriptive label for the control as defined in the ui_label property of
the StringDecorator
View/edit the ui_value property of the StringDecorator in a TextBox
If the window is wide enough, then the label and textbox are laid out horizontally
If the window is not wide enough, then the label and textbox are laid out
vertically

With these goals in mind, implement StringEditorSingleLine, as follows:

import QtQuick 2.9
import CM 1.0
import assets 1.0

Item {
 property StringDecorator stringDecorator

 height: width > textLabel.width + textValue.width ?
 Style.heightDataControls : Style.heightDataControls * 2

 Flow {
 anchors.fill: parent

 Rectangle {
 width: Style.widthDataControls
 height: Style.heightDataControls
 color: Style.colourBackground
 Text {

Data Chapter 5

[163]

 id: textLabel
 anchors {
 fill: parent
 margins: Style.heightDataControls / 4
 }
 text: stringDecorator.ui_label
 color: Style.colourDataControlsFont
 font.pixelSize: Style.pixelSizeDataControls
 verticalAlignment: Qt.AlignVCenter
 }
 }

 Rectangle {
 id: background
 width: Style.widthDataControls
 height: Style.heightDataControls
 color: Style.colourDataControlsBackground
 border {
 width: 1
 color: Style.colourDataControlsFont
 }
 TextInput {
 id: textValue
 anchors {
 fill: parent
 margins: Style.heightDataControls / 4
 }
 text: stringDecorator.ui_value
 color: Style.colourDataControlsFont
 font.pixelSize: Style.pixelSizeDataControls
 verticalAlignment: Qt.AlignVCenter
 }
 }

 Binding {
 target: stringDecorator
 property: "ui_value"
 value: textValue.text
 }
 }
}

Data Chapter 5

[164]

We begin with a public StringDecorator property (public because it is in the root Item
element), which we can set from outside of the component.

We introduce a new kind of element—Flow—to lay out our label and textbox for us. Rather
than always laying out content in a single direction like row or column, the Flow item will
lay out its child elements side by side until it runs out of available space and then wraps
them like words on a page. We tell it how much available space it has to play with by
anchoring it to the root Item.

Next comes our descriptive label in a Text control and the editable value in a TextInput
control. We embed both controls in explicitly sized rectangles. The rectangles help us align
the elements and give us the opportunity to draw backgrounds and borders.

The Binding component establishes a dependency between the properties of two different
objects; in our case, the TextInput control called textValue and the StringDecorator
instance called stringDecorator. The target property defines the object we want to
update, the property is the Q_PROPERTY we want to set, and value is the value we want
to set it to. This is a key element that gives us true two-way binding. Without this, we will
be able to view the value from the StringDecorator, but any changes we make in the UI
will not update the value.

Back in CreateClientView, replace the old Text element with our new component and
pass in the ui_name property:

StringEditorSingleLine {
 stringDecorator: newClient.ui_name
}

Data Chapter 5

[165]

Now build and run the app, navigate to the Create Client view, and try editing the name:

If you switch to the Find Client view and back again, you will see that the value is retained,
demonstrating the updates are successfully being set in the string decorator.

Our newly bound view isn't exactly overflowing with data just yet, but over the coming
chapters, we will add more and more to this view, so let's add a few finishing touches to
prepare us.

Firstly, we only need to add another three or four properties to the view, and we'll run out
of space as the default size we’ve set for the window is very small, so in MasterView bump
the window size up to something comfortable for your display. I'll treat myself and go full
HD at 1920 x 1080.

Even with a larger window to work with, we still need to prepare for the possibility of
overflow, so we'll add our content to another new element called ScrollView. As its name
suggests, it works in a similar way to flow and manages its content based on the space it has
available to it. If the content exceeds the available space, it will present scrollbars for the
user. It's also a very finger friendly control and on a touch screen, the user can just drag the
content rather than having to fiddle around with a tiny scrollbar.

Data Chapter 5

[166]

Although we only have one property currently, when we add more, we will need to lay
them out so we'll add a column.

Finally, the controls are stuck to the bounds of the view, so we'll add a little gutter around
the view and some spacing in the column.

The revised view should look as follows:

import QtQuick 2.9
import QtQuick.Controls 2.2
import CM 1.0
import assets 1.0
import components 1.0

Item {
 property Client newClient: masterController.ui_newClient

 Rectangle {
 anchors.fill: parent
 color: Style.colourBackground
 }

 ScrollView {
 id: scrollView
 anchors {
 left: parent.left
 right: parent.right
 top: parent.top
 bottom: commandBar. top
 margins: Style.sizeScreenMargin
 }
 clip: true
 Column {
 spacing: Style.sizeScreenMargin
 width: scrollView.width
 StringEditorSingleLine {
 stringDecorator: newClient.ui_name
 anchors {
 left: parent.left
 right: parent.right
 }
 }
 }
 }

 CommandBar {
 id: commandBar

Data Chapter 5

[167]

 commandList:
masterController.ui_commandController.ui_createClientViewContextCommands
 }
}

Build and run, and you should see the nice neat screen margin. You should also be able to
resize the window from wide to narrow and see the string editor automatically adjust its
layout accordingly.

Summary
This was a fairly hefty chapter, but we’ve covered arguably the most important element of
any Line of Business application, and that is the data. We’ve implemented a framework of
self-aware entities that can serialize themselves to and from JSON and started building data
bound controls. We’ve designed and created our data models and are now entering the
homeward stretch. In Chapter 6, Unit Testing, we’ll show some love to our so far neglected
unit test project and check that our entities are behaving as expected.

6
Unit Testing

In this chapter, we will take a look at a process that has really grown in popularity in the
recent years—unit testing. We’ll briefly talk about what it is and why we would want to do
it before covering how to integrate it into our solution using Qt’s very own unit testing tool,
Qt Test. We will cover the following topics:

Unit Testing principles
The default Qt approach
An alternative approach
DataDecorator tests
Entity tests
Mocking

Unit testing
The essence of unit testing is to break an application down into its smallest functional
blocks (units) and then test each unit with real-world scenarios within the scope of the
initiative. For example, take a simple method that takes two signed integers and adds them
together:

int add(intx, int y);

Unit Testing Chapter 6

[169]

Some example scenarios can be as listed:

Adding two positive numbers
Adding two negative numbers
Adding two zeroes
Adding one positive and one negative number
Adding zero and a positive number
Adding zero and a negative number

We can write a test for each of these scenarios and then every time our code base changes
(any code, not just our add() method), these tests can be executed to ensure that the code
still behaves as expected. It is a really valuable tool to give you confidence that any code
changes you make aren’t having a detrimental effect on the existing functionality.

Historically, these tests would have been performed manually, but tooling exists that can
enable us to write code to test code automatically, which sounds like a bit of a paradox, but
it really works. Qt provides a tailored framework for unit testing Qt-based applications,
called Qt Test, and that is what we will use.

You can use other C++ testing frameworks such as Google test, which
arguably offer more power and flexibility, particularly when used with
Google mock, but can be a bit more fiddly to set up.

Test-driven development (TDD) takes unit testing to the next level and actually changes
the way you write code in the first place. In essence, you write a test first. The test will
initially fail (indeed, probably it won’t even build) because you have no implementation.
You then write the bare minimum of code it takes to make the test pass and then move on
to writing the next test. You iteratively build out your implementation in this way until you
have delivered the block of functionality required. Finally, you refactor the code to the
required standard, using the completed unit tests to validate that the refactored code still
behaves as expected. This is sometimes referred to as Red-Green-Refactor.

This isn’t a book about unit testing, and it is certainly not about TDD, so we will be very
loose with our approach, but it is a key part of modern application development, and it is
important to know how it fits into your Qt projects.

We’ve demonstrated the mechanism for passing a simple piece of data (the welcome
message) from our business logic project to our UI, so as always, starting as simply as
possible, our first goal for this chapter is to write a rudimentary unit test for that behavior.
Once done, we’ll move on to test the data classes we implemented in the previous chapter.

Unit Testing Chapter 6

[170]

The default Qt approach
When we created our cm-tests project, Qt Creator helpfully created a ClientTests class
for us to use a starting point, containing a single test named testCase1. Let's dive straight
in and execute this default test and see what happens. We'll then take a look at the code and
discuss what's going on.

Switch the Run output to cm-tests, and compile and run:

You won’t see any fancy applications spring to life this time, but you will see some text in
the Application Output pane in Qt Creator:

********* Start testing of ClientTests *********
Config: Using QtTest library 5.10.0, Qt 5.10.0 (i386-little_endian-ilp32
shared (dynamic) debug build; by GCC 5.3.0)
PASS : ClientTests::initTestCase()
PASS : ClientTests::testCase1()
PASS : ClientTests::cleanupTestCase()
Totals: 3 passed, 0 failed, 0 skipped, 0 blacklisted, 0ms
********* Finished testing of ClientTests *********

Unit Testing Chapter 6

[171]

We can see that three methods have been called, the second of which is our default unit
test. The other two functions—initTestCase() and cleanupTestCase()—are special
methods that execute before and after the suite of tests in the class, allowing you to set up
any preconditions required to execute the tests and then perform any clean up afterward.
All the three steps pass.

Now, in client-tests.cpp, add another method—testCase2()—which is the same
as testCase1() but substitute the true condition for false. Note that the class
declaration and method definitions are all in the same .cpp file, so you need to add the
method in both places. Run the tests again:

********* Start testing of ClientTests *********
Config: Using QtTest library 5.10.0, Qt 5.10.0 (i386-little_endian-ilp32
shared (dynamic) debug build; by GCC 5.3.0)
PASS : ClientTests::initTestCase()
PASS : ClientTests::testCase1()
FAIL! : ClientTests::testCase2() 'false' returned FALSE. (Failure)
..\..\cm\cm-tests\source\models\client-tests.cpp(37) : failure location
PASS : ClientTests::cleanupTestCase()
Totals: 3 passed, 1 failed, 0 skipped, 0 blacklisted, 0ms
********* Finished testing of ClientTests *********

This time, you can see that testCase2() tried to verify that false was true, which of course
it isn’t, and our test fails, outputting our failure message in the
process. initTestCase() and cleanupTestCase() are still executed at the beginning
and end of the suite of tests.

Now we've seen what passing and failing tests look like, but what is actually going on?

We have a QObject derived class ClientTests, which implements an empty default
constructor. We then have some methods declared as private Q_SLOTS. Much
like Q_OBJECT, this is a macro that injects a bunch of clever boilerplate code for us, and
much like Q_OBJECT, you don’t need to worry about understanding its inner workings in
order to use it. Each method in the class defined as one of these private slots is executed as a
unit test.

The unit test methods then use the QVERIFY2 macro to verify a given boolean condition,
namely that true is, well, true. If this fails, which we have engineered in testCase2, the
helpful message failure will be output to the console.

Unit Testing Chapter 6

[172]

If there is a QVERIFY2, then presumably there must be a QVERIFY1, right? Well, nearly,
there is QVERIFY, which performs the same test but does not have the failure message
parameter. Other commonly used macros are QCOMPARE, which verifies that two
parameters of the same type are equivalent, and QVERIFY_EXCEPTION_THROWN, which
verifies that an exception is thrown when a given expression is executed. This may sound
odd, as we don’t ideally want our code to throw exceptions. However, things aren’t always
ideal, and we should always write negative tests that verify how the code behaves when
something does go wrong. A common example of this is where we have a method that
accepts a pointer to an object as a parameter. We should write a negative test that verifies
what happens if we pass in a nullptr (which is always a possibility, regardless of how
careful you are). We may expect the code to happily ignore it and take no further action or
we may want some sort of null argument exception to throw, which is
where QVERIFY_EXCEPTION_THROWN comes in.

After the test case definitions, another macro QTEST_APPLESS_MAIN stubs out
a main() hook to execute the tests and the final #include statement pulls in the .moc file
produced by the build process. Every class that inherits from QObject will have a
companion .moc file generated, containing all the magic metadata code created
by Q_OBJECT and other associated macros.

Now, if you’re thinking “why would you test if true is true and false is true?”, then you
absolutely wouldn’t, this is a totally pointless pair of tests. The purpose of this exercise is
just to look at how the default approach that Qt Creator has pulled together for us works,
and it does work, but it has a few key failings that we will need to work to fix before we
write a real test.

The first issue is that QTEST_APPLESS_MAIN creates a main() method in order to run our
test cases in ClientTests. What happens when we write another test class? We’ll have
two main() methods and things won’t go well. Another issue is that our test output is just
piped to the Application Output pane. In a business environment, it is common to have
build servers that pull application code, perform a build, run the unit test suite, and flag
any test failures for investigation. In order for this to work, the build tool needs to be able to
access the test output and can’t read the Application Output pane in the IDE like a human
can. Let’s look at an alternative approach that solves these issues.

Unit Testing Chapter 6

[173]

Custom approach
The custom approach we will take still applies the same basic concepts we've just
discussed. At the heart of it, we will still have a test class that contains a suite of unit test
methods to be executed. All we will do is supplement this with some additional boilerplate
code to allow us to easily accommodate multiple test classes and pipe the output to files
rather than the console.

Let’s begin by adding a new class TestSuite to cm-tests in the source folder:

test-suite.h:

#ifndef TESTSUITE_H
#define TESTSUITE_H

#include <QObject>
#include <QString>
#include <QtTest/QtTest>

#include <vector>

Unit Testing Chapter 6

[174]

namespace cm {

class TestSuite : public QObject
{
 Q_OBJECT
public:
 explicit TestSuite(const QString& _testName = "");
 virtual ~TestSuite();

 QString testName;
 static std::vector<TestSuite*>& testList();
};

}

#endif

test-suite.cpp:

#include "test-suite.h"

#include <QDebug>

namespace cm {

TestSuite::TestSuite(const QString& _testName)
 : QObject()
 , testName(_testName)
{
 qDebug() << "Creating test" << testName;
 testList().push_back(this);
 qDebug() << testList().size() << " tests recorded";
}

TestSuite::~TestSuite()
{
 qDebug() << "Destroying test";
}

std::vector<TestSuite*>& TestSuite::testList()
{
 static std::vector<TestSuite*> instance = std::vector<TestSuite*>();
 return instance;
}

}

Unit Testing Chapter 6

[175]

Here, we are creating a base class that will be used for each of our test classes. There is
generally a one-to-one relationship between a regular class and a test suite class, for
example, the Client and ClientTests classes. Each derived instance of TestSuite adds
itself to a shared vector. This can be a little confusing at first glance, so we are also writing
some information out to the console using qDebug() so that you can follow what’s going
on. It will make more sense when we create our first class deriving from TestSuite.

Next, add a new C++ Source File main.cpp, again to the source folder:

main.cpp:

#include <QtTest/QtTest>
#include <QDebug>

#include "test-suite.h"

using namespace cm;

int main(int argc, char *argv[])
{
 Q_UNUSED(argc);
 Q_UNUSED(argv);

 qDebug() << "Starting test suite...";
 qDebug() << "Accessing tests from " << &TestSuite::testList();
 qDebug() << TestSuite::testList().size() << " tests detected";

 int failedTestsCount = 0;

 for(TestSuite* i : TestSuite::testList()) {
 qDebug() << "Executing test " << i->testName;
 QString filename(i->testName + ".xml");
 int result = QTest::qExec(i, QStringList() << " " << "-o" <<
 filename << "-xunitxml");
 qDebug() << "Test result " << result;
 if(result != 0) {
 failedTestsCount++;
 }
 }

 qDebug() << "Test suite complete - " <<
 QString::number(failedTestsCount) << " failures detected.";

 return failedTestsCount;
}

Unit Testing Chapter 6

[176]

This looks more complicated than it actually is because of the qDebug() statements added
for information. We iterate through each of the registered test classes and use the static
QTest::qExec() method to detect and run all tests discovered within them. A key
addition, however, is that we create an XML file for each class and pipe out the results to it.

This mechanism solves our two problems. We now have a single main() method that will
detect and run all of our tests, and we get a separate XML file containing output for each of
our test suites. However, before you can build the project, you will need to revisit client-
tests.cpp and either comment out or remove the QTEST_APPLESS_MAIN line, or we'll be
back to the problem of multiple main() methods. Don’t worry about the rest of client-
tests.cpp for now; we’ll revisit it later when we start testing our data classes.

Build and run now, and you’ll get a different set of text in Application Output:

Starting test suite...
Accessing tests from 0x40b040
0 tests detected
Test suite complete - "0" failures detected.

Let’s go ahead and implement our first TestSuite. We have a MasterController class
that presents a message string to the UI, so let's write a simple test that verifies that the
message is correct. We will need to reference code from cm-lib in the cm-tests project, so
ensure that the relevant INCLUDE directives are added to cm-tests.pro:

INCLUDEPATH += source \
 ../cm-lib/source

Create a new companion test class called MasterControllerTests in cm-
tests/source/controllers.

master-controller-tests.h:

#ifndef MASTERCONTROLLERTESTS_H
#define MASTERCONTROLLERTESTS_H

#include <QtTest>

#include <controllers/master-controller.h>
#include <test-suite.h>

namespace cm {
namespace controllers {

class MasterControllerTests : public TestSuite
{

Unit Testing Chapter 6

[177]

 Q_OBJECT

public:
 MasterControllerTests();

private slots:
 /// @brief Called before the first test function is executed
 void initTestCase();
 /// @brief Called after the last test function was executed.
 void cleanupTestCase();
 /// @brief Called before each test function is executed.
 void init();
 /// @brief Called after every test function.
 void cleanup();

private slots:
 void welcomeMessage_returnsCorrectMessage();

private:
 MasterController masterController;
};

}}

#endif

We’ve explicitly added the initTestCase() and cleanupTestCase() scaffolding
methods so that there is no mystery as to where they come from. We've also added another
couple of special scaffolding methods for completeness: init() and cleanup(). The
difference is that these methods are executed before and after each individual test, as
opposed to before and after the entire suite of tests.

None of these methods are doing anything for us and are there just for
future reference. They can safely be removed if you want to streamline
things.

master-controller-tests.cpp:

#include "master-controller-tests.h"

namespace cm {
namespace controllers { // Instance

static MasterControllerTests instance;

Unit Testing Chapter 6

[178]

MasterControllerTests::MasterControllerTests()
 : TestSuite("MasterControllerTests")
{
}

}

namespace controllers { // Scaffolding

void MasterControllerTests::initTestCase()
{
}

void MasterControllerTests::cleanupTestCase()
{
}

void MasterControllerTests::init()
{
}

void MasterControllerTests::cleanup()
{
}

}

namespace controllers { // Tests

void MasterControllerTests::welcomeMessage_returnsCorrectMessage()
{
 QCOMPARE(masterController.welcomeMessage(), QString("Welcome to the
Client Management system!"));
}

}}

We again have a single test, but this time, it actually serves some meaningful purpose. We
want to test that when we instantiate a MasterController object and access its
welcomeMessage method, it returns the message that we want, which will be Welcome to
the Client Management system!.

Unit Testing Chapter 6

[179]

Unlike the scaffolding methods, the naming of your tests is entirely down to preference. I
tend to loosely follow
the methodIAmTesting_givenSomeScenario_doesTheCorrectThing format, for
example:

divideTwoNumbers_givenTwoValidNumbers_returnsCorrectResult()
divideTwoNumbers_givenZeroDivisor_throwsInvalidArgumentException()

We construct an instance of MasterController as a private member variable that we will
use to test against. In the implementation, we specify the name of the test suite via the
constructor, and we also create a static instance of the test class. This is the trigger that adds
MasterControllerTests to the static vector we saw in the TestSuite class.

Finally, for the implementation of our test, we test the value of the welcomeMessage of our
masterController instance with the message we want using the QCOMPARE macro. Note
that because QCOMPARE is a macro, you won’t get implicit typecasting, so you need to ensure
that the types of the expected and actual results are the same. Here, we’ve achieved that by
constructing a QString object from the literal text.

Run qmake, and build and run to see the results of our test in the Application Output pane:

Creating test "MasterControllerTests"
1 tests recorded
Starting test suite...
Accessing tests from 0x40b040
1 tests detected
Executing test "MasterControllerTests"
Test result 1
Test suite complete - "1" failures detected.
Destroying test

This begins with the registration of the MasterControllerTests class via the static
instance. The main() method iterates the collection of registered test suites and finds one,
then executes all the unit tests within that suite. The test suite contains one unit test that
runs and promptly fails. This may seem to be less helpful than earlier as there is no
indication as to which test failed or why. However, remember that this output is simply
from the qDebug() statements we added for extra information; it is not the true output
from the test execution. In master-controller-tests.cpp we instantiated the
TestSuite with a testName parameter of MasterControllerTests, so the output will
have been piped to a file named MasterControllerTests.xml.

Unit Testing Chapter 6

[180]

Navigate to the cm/binaries folder and drill down through the folders to where we direct
our project output for the selected configuration and in there, you will see
MasterControllerTests.xml:

<testsuite name="cm::controllers::MasterControllerTests" tests="3"
failures="1" errors="0">
 <properties>
 <property name="QTestVersion" value="5.10.0"/>
 <property name="QtVersion" value="5.10.0"/>
 <property name="QtBuild" value="Qt 5.10.0 (i386-little_endian-
 ilp32 shared (dynamic) debug build; by GCC 5.3.0)"/>
 </properties>
 <testcase name="initTestCase" result="pass"/>
 <testcase name="welcomeMessage_returnsCorrectMessage"
 result="fail">
 <failure result="fail" message="Compared values are not the same Actual
(masterController.welcomeMessage) : "This is MasterController to Major Tom"
Expected (QString("Welcome to the Client Management system!")): "Welcome to
the Client Management system!""/>
 </testcase>
 <testcase name="cleanupTestCase" result="pass"/>
 <system-err/>
</testsuite>

Here, we have the full output from the tests, and you can see that the failure was because
the welcome message we got from masterController was This is MasterController to
Major Tom, and we expected Welcome to the Client Management system!.

MasterController is not behaving as expected, and we’ve found a bug, so head over to
master-controller.cpp and fix the problem:

QString welcomeMessage = "Welcome to the Client Management system!";

Rebuild both projects, execute the tests again, and bask in the glory of a 100% pass rate:

Creating test "MasterControllerTests"
1 tests recorded
Starting test suite...
Accessing tests from 0x40b040
1 tests detected
Executing test "MasterControllerTests"
Test result 0
Test suite complete - "0" failures detected.
Destroying test

Unit Testing Chapter 6

[181]

Now that we have the testing framework set up, let’s test something a little more complex
than a simple string message and validate the work we did in the last chapter.

DataDecorator tests
In Chapter 5, Data, we created various classes deriving from DataDecorator. Let's create
companion test classes for each of those and test the following functionalities:

Object construction
Setting the value
Getting the value as JSON
Updating the value from JSON

In cm-tests/source/data, create the DateTimeDecoratorTests,
EnumeratorDecoratorTests, IntDecoratorTests, and StringDecoratorTests
classes.

Let’s begin with the simplest suite, IntDecoratorTests. The tests will be broadly similar
across the suites, so once we’ve written one suite, we will be able to copy most of it across to
the other suites and then supplement as necessary.

int-decorator-tests.h:

#ifndef INTDECORATORTESTS_H
#define INTDECORATORTESTS_H

#include <QtTest>

#include <data/int-decorator.h>
#include <test-suite.h>

namespace cm {
namespace data {

class IntDecoratorTests : public TestSuite
{
 Q_OBJECT

public:
 IntDecoratorTests();

private slots:
 void constructor_givenNoParameters_setsDefaultProperties();

Unit Testing Chapter 6

[182]

 void constructor_givenParameters_setsProperties();
 void setValue_givenNewValue_updatesValueAndEmitsSignal();
 void setValue_givenSameValue_takesNoAction();
 void jsonValue_whenDefaultValue_returnsJson();
 void jsonValue_whenValueSet_returnsJson();
 void update_whenPresentInJson_updatesValue();
 void update_whenNotPresentInJson_updatesValueToDefault();
};

}}

#endif

A common approach is to follow a “method as a unit” approach, where each method is the
smallest testable unit in a class and then that unit is tested in multiple ways. So we begin by
testing the constructor, both with and without parameters. The setValue() method should
only do anything when we actually change the value, so we test both setting a different
value and the same value. Next, we test that we can convert the decorator to a JSON value,
both with a default value (0 in the case of an int) and with a set value. Finally, we perform
a couple of tests against the update() method. If we pass in a JSON that contains the
property, then we expect the value to be updated as per the JSON value. However, if the
property is missing from the JSON, we expect the class to handle it gracefully and reset to a
default value instead.

Note that we aren’t explicitly testing the value() method. This is just a simple accessor
method with no side effects, and we will be calling it in the other unit tests, so we will be
indirectly testing it there. Feel free to create additional tests for it if you wish.

int-decorator-tests.cpp:

#include "int-decorator-tests.h"

#include <QSignalSpy>

#include <data/entity.h>

namespace cm {
namespace data { // Instance

static IntDecoratorTests instance;

IntDecoratorTests::IntDecoratorTests()
 : TestSuite("IntDecoratorTests")
{
}

Unit Testing Chapter 6

[183]

}

namespace data { // Tests

void
IntDecoratorTests::constructor_givenNoParameters_setsDefaultProperties()
{
 IntDecorator decorator;
 QCOMPARE(decorator.parentEntity(), nullptr);
 QCOMPARE(decorator.key(), QString("SomeItemKey"));
 QCOMPARE(decorator.label(), QString(""));
 QCOMPARE(decorator.value(), 0);
}

void IntDecoratorTests::constructor_givenParameters_setsProperties()
{
 Entity parentEntity;
 IntDecorator decorator(&parentEntity, "Test Key", "Test Label",
 99);
 QCOMPARE(decorator.parentEntity(), &parentEntity);
 QCOMPARE(decorator.key(), QString("Test Key"));
 QCOMPARE(decorator.label(), QString("Test Label"));
 QCOMPARE(decorator.value(), 99);
}

void IntDecoratorTests::setValue_givenNewValue_updatesValueAndEmitsSignal()
{
 IntDecorator decorator;
 QSignalSpy valueChangedSpy(&decorator,
 &IntDecorator::valueChanged);
 QCOMPARE(decorator.value(), 0);
 decorator.setValue(99);
 QCOMPARE(decorator.value(), 99);
 QCOMPARE(valueChangedSpy.count(), 1);
}

void IntDecoratorTests::setValue_givenSameValue_takesNoAction()
{
 Entity parentEntity;
 IntDecorator decorator(&parentEntity, "Test Key", "Test Label",
 99);
 QSignalSpy valueChangedSpy(&decorator,
 &IntDecorator::valueChanged);
 QCOMPARE(decorator.value(), 99);
 decorator.setValue(99);
 QCOMPARE(decorator.value(), 99);
 QCOMPARE(valueChangedSpy.count(), 0);
}

Unit Testing Chapter 6

[184]

void IntDecoratorTests::jsonValue_whenDefaultValue_returnsJson()
{
 IntDecorator decorator;
 QCOMPARE(decorator.jsonValue(), QJsonValue(0));
}
void IntDecoratorTests::jsonValue_whenValueSet_returnsJson()
{
 IntDecorator decorator;
 decorator.setValue(99);
 QCOMPARE(decorator.jsonValue(), QJsonValue(99));
}

void IntDecoratorTests::update_whenPresentInJson_updatesValue()
{
 Entity parentEntity;
 IntDecorator decorator(&parentEntity, "Test Key", "Test Label", 99);
 QSignalSpy valueChangedSpy(&decorator,
 &IntDecorator::valueChanged);
 QCOMPARE(decorator.value(), 99);
 QJsonObject jsonObject;
 jsonObject.insert("Key 1", "Value 1");
 jsonObject.insert("Test Key", 123);
 jsonObject.insert("Key 3", 3);
 decorator.update(jsonObject);
 QCOMPARE(decorator.value(), 123);
 QCOMPARE(valueChangedSpy.count(), 1);
}

void IntDecoratorTests::update_whenNotPresentInJson_updatesValueToDefault()
{
 Entity parentEntity;
 IntDecorator decorator(&parentEntity, "Test Key", "Test Label",
 99);
 QSignalSpy valueChangedSpy(&decorator,
 &IntDecorator::valueChanged);
 QCOMPARE(decorator.value(), 99);
 QJsonObject jsonObject;
 jsonObject.insert("Key 1", "Value 1");
 jsonObject.insert("Key 2", 123);
 jsonObject.insert("Key 3", 3);
 decorator.update(jsonObject);
 QCOMPARE(decorator.value(), 0);
 QCOMPARE(valueChangedSpy.count(), 1);
}

}}

Unit Testing Chapter 6

[185]

Unit tests tend to follow an Arrange > Act > Assert pattern. Preconditions for the test are
fulfilled first: variables are initialized, classes are configured, and so on. Then, an action is
performed, generally calling the function being tested. Finally, the results of the action are
checked. Sometimes one or more of these steps will not be necessary or may be merged
with another, but that is the general pattern.

We begin testing the constructor by initializing a new IntDecorator without passing in
any parameters and then test that the various properties of the object have been initialized
to expected default values using QCOMPARE to match actual against expected values. We
then repeat the test, but this time, we pass in values for each of the parameters and verify
that they have been updated in the instance.

When testing the setValue() method, we need to check whether or not the
valueChanged() signal is emitted. We can do this by connecting a lambda to the signal
that sets a flag when called, as follows:

bool isCalled = false;
QObject::connect(&decorator, &IntDecorator::valueChanged, [&isCalled](){
 isCalled = true;
});

/*...Perform action...*/

QVERIFY(isCalled);

However, a much simpler solution we’ve used here is to use Qt’s QSignalSpy class that
keeps track of calls to a specified signal. We can then check how many times a signal has
been called using the count() method.

The first setValue() test ensures that when we provide a new value that is different to the
existing one, the value is updated and the valueChanged() signal is emitted once. The
second test ensures that when we set the same value, no action is taken and the signal is not
emitted. Note that we use an additional QCOMPARE call in both cases to assert that the value
is what we expect it to be before the action is taken. Consider the following pseudo test:

Set up your class.1.
Perform an action.2.
Test that the value is 99.3.

Unit Testing Chapter 6

[186]

If everything works as expected, step 1 sets the value to 0, step 2 takes the correct action and
updates the value to 99, and step 3 passes because the value is 99. However, step 1 could be
faulty and wrongly sets the value to 99, step 2 is not even implemented and takes no action,
and yet step 3 (and the test) passes because the value is 99. With a QCOMPARE precondition
after step 1, this is avoided.

The jsonValue() tests are simple equality checks, both with a default value and a set
value.

Finally, with the update() tests, we construct a couple of JSON objects. In one object, we
add an item that has the same key as our decorator object (“Test Key”), which we expect to
be matched and the associated value (123) passed through to setValue(). In the second
object, the key is not present. In both cases, we also add other extraneous items to ensure
that the class can correctly ignore them. The post action checks are the same as for the
setValue() tests.

The StringDecoratorTests class is essentially the same as IntDecoratorTests, just
with a different value data type and default values of empty string "" rather than 0.

DateTimeDecorator also follows the same pattern, but with additional tests for the string
formatting helper methods toIso8601String() and so on.

EnumeratorDecoratorTests performs the same tests but requires a little more setup
because of the need for an enumerator and associated mapper. In the body of the tests,
whenever we test value(), we also need to test valueDescription() to ensure that the
two remain aligned. For example, whenever the value is eTestEnum::Value2, the
valueDescription() must be Value 2. Note that we always use the enumerated values
in conjunction with the value() checks and static_cast them to an int. Consider the
following example:

QCOMPARE(decorator.value(), static_cast<int>(eTestEnum::Value2));

It may be tempting to make this much shorter by just using the raw int value:

QCOMPARE(decorator.value(), 2);

Unit Testing Chapter 6

[187]

The problem with this approach, other than the number 2 having much less meaning to
readers of the code than the enumerated Value2, is that the values of eTestEnum can
change and render the test invalid. Consider this example:

enum eTestEnum {
 Unknown = 0,
 MyAmazingNewTestValue,
 Value1,
 Value2,
 Value3
};

Due to the insertion of MyAmazingNewTestValue, the numeric equivalent of Value2 is
actually now 3. Any tests that used the number 2 to represent Value2 are now wrong,
whereas those that use the more long-winded static_cast<int>(eTestEnum::Value2)
are still correct.

Rebuild and run the new test suites, and they should all happily pass and give us renewed
confidence in the code we wrote earlier. With the data decorators tested, let's move on to
our data models next.

Entity Tests
Now that we have some confidence that our data decorators are working as expected, let’s
move up a level and test our data entities. The Client class is the root of our model
hierarchy and by testing that, we can test our other models in the process.

We already have client-tests.cpp in cm-tests/source/models that Qt Creator
added for us when we created the project, so go ahead and add a companion header file
client-tests.h.

client-tests.h:

#ifndef CLIENTTESTS_H
#define CLIENTTESTS_H

#include <QtTest>
#include <QJsonObject>

#include <models/client.h>
#include <test-suite.h>

namespace cm {

Unit Testing Chapter 6

[188]

namespace models {

class ClientTests : public TestSuite
{
 Q_OBJECT

public:
 ClientTests();

private slots:
 void constructor_givenParent_setsParentAndDefaultProperties();
 void constructor_givenParentAndJsonObject_setsParentAndProperties();
 void toJson_withDefaultProperties_constructsJson();
 void toJson_withSetProperties_constructsJson();
 void update_givenJsonObject_updatesProperties();
 void update_givenEmptyJsonObject_updatesPropertiesToDefaults();

private:
 void verifyBillingAddress(const QJsonObject& jsonObject);
 void verifyDefaultBillingAddress(const QJsonObject& jsonObject);
 void verifyBillingAddress(Address* address);
 void verifyDefaultBillingAddress(Address* address);
 void verifySupplyAddress(const QJsonObject& jsonObject);
 void verifyDefaultSupplyAddress(const QJsonObject& jsonObject);
 void verifySupplyAddress(Address* address);
 void verifyDefaultSupplyAddress(Address* address);
 void verifyAppointments(const QJsonObject& jsonObject);
 void verifyDefaultAppointments(const QJsonObject& jsonObject);
 void verifyAppointments(const QList<Appointment*>& appointments);
 void verifyDefaultAppointments(const QList<Appointment*>&
appointments);
 void verifyContacts(const QJsonObject& jsonObject);
 void verifyDefaultContacts(const QJsonObject& jsonObject);
 void verifyContacts(const QList<Contact*>& contacts);
 void verifyDefaultContacts(const QList<Contact*>& contacts);

 QByteArray jsonByteArray = R"(
 {
 "reference": "CM0001",
 "name": "Mr Test Testerson",
 "billingAddress": {
 "building": "Billing Building",
 "city": "Billing City",
 "postcode": "Billing Postcode",
 "street": "Billing Street"
 },
 "appointments": [
 {"startAt": "2017-08-20T12:45:00", "endAt": "2017-08-

Unit Testing Chapter 6

[189]

 20T13:00:00", "notes": "Test appointment 1"},
 {"startAt": "2017-08-21T10:30:00", "endAt": "2017-08-
 21T11:30:00", "notes": "Test appointment 2"}
],
 "contacts": [
 {"contactType": 2, "address":"email@test.com"},
 {"contactType": 1, "address":"012345678"}
],
 "supplyAddress": {
 "building": "Supply Building",
 "city": "Supply City",
 "postcode": "Supply Postcode",
 "street": "Supply Street"
 }
 })";
};

}}

#endif

There are three main areas we want to test here:

Object construction
Serialization to JSON
Deserialization from JSON

As with previous suites, we have a couple of different flavors of test for each area—one
with default data and one with specified data. In the private section, you will see numerous
verify methods. They are to encapsulate the functionality required to test a particular subset
of our data. The advantages of doing this are the same as with regular code: they make the
unit tests much more concise and readable, and they allow easy reuse of the validation
rules. Also, in the private section, we define a blob of JSON we can use to construct our
Client instances. A QByteArray, as its name suggests, is simply an array of bytes that
comes with numerous associated helpful functions:

void ClientTests::constructor_givenParent_setsParentAndDefaultProperties()
{
 Client testClient(this);
 QCOMPARE(testClient.parent(), this);
 QCOMPARE(testClient.reference->value(), QString(""));
 QCOMPARE(testClient.name->value(), QString(""));

 verifyDefaultBillingAddress(testClient.billingAddress);
 verifyDefaultSupplyAddress(testClient.supplyAddress);

Unit Testing Chapter 6

[190]

 verifyDefaultAppointments(testClient.appointments-
 >derivedEntities());
 verifyDefaultContacts(testClient.contacts->derivedEntities());
}

void
ClientTests::constructor_givenParentAndJsonObject_setsParentAndProperties()
{
 Client testClient(this,
QJsonDocument::fromJson(jsonByteArray).object());
 QCOMPARE(testClient.parent(), this);
 QCOMPARE(testClient.reference->value(), QString("CM0001"));
 QCOMPARE(testClient.name->value(), QString("Mr Test Testerson"));

 verifyBillingAddress(testClient.billingAddress);
 verifySupplyAddress(testClient.supplyAddress);
 verifyAppointments(testClient.appointments->derivedEntities());
 verifyContacts(testClient.contacts->derivedEntities());
}

Starting with the constructor tests, we instantiate a new Client, both with and without a
JSON object. Note that in order to convert our JSON byte array to a QJsonObject, we need
to pass it through a QJsonDocument. Once we have our initialized client, we check the
name property and utilize the verify methods to test the state of the child objects for us.
Regardless of whether or not we supply any initial data via a JSON object, we expect
the supplyAddress and billingAddress objects to be created for us automatically as
well as the appointments and contacts collections. By default, the collections should be
empty:

void ClientTests::toJson_withDefaultProperties_constructsJson()
{
 Client testClient(this);
 QJsonDocument jsonDoc(testClient.toJson());
 QVERIFY(jsonDoc.isObject());
 QJsonObject jsonObject = jsonDoc.object();
 QVERIFY(jsonObject.contains("reference"));
 QCOMPARE(jsonObject.value("reference").toString(), QString(""));
 QVERIFY(jsonObject.contains("name"));
 QCOMPARE(jsonObject.value("name").toString(), QString(""));
 verifyDefaultBillingAddress(jsonObject);
 verifyDefaultSupplyAddress(jsonObject);
 verifyDefaultAppointments(jsonObject);
 verifyDefaultContacts(jsonObject);
}

void ClientTests::toJson_withSetProperties_constructsJson()

Unit Testing Chapter 6

[191]

{
 Client testClient(this,
QJsonDocument::fromJson(jsonByteArray).object());
 QCOMPARE(testClient.reference->value(), QString("CM0001"));
 QCOMPARE(testClient.name->value(), QString("Mr Test Testerson"));

 verifyBillingAddress(testClient.billingAddress);
 verifySupplyAddress(testClient.supplyAddress);
 verifyAppointments(testClient.appointments->derivedEntities());
 verifyContacts(testClient.contacts->derivedEntities());
 QJsonDocument jsonDoc(testClient.toJson());
 QVERIFY(jsonDoc.isObject());
 QJsonObject jsonObject = jsonDoc.object();
 QVERIFY(jsonObject.contains("reference"));
 QCOMPARE(jsonObject.value("reference").toString(), QString("CM0001"));
 QVERIFY(jsonObject.contains("name"));
 QCOMPARE(jsonObject.value("name").toString(), QString("Mr Test
 Testerson"));
 verifyBillingAddress(jsonObject);
 verifySupplyAddress(jsonObject);
 verifyAppointments(jsonObject);
 verifyContacts(jsonObject);
}

The toJson() tests follow much the same pattern. We construct an object without a JSON
object so that we get default values for all the properties and child objects. We then
immediately construct a QJsonDocument using a call to toJson() in the constructor to get
the serialized JSON object for us. The name property is tested, and then we utilize the verify
methods once more. When constructing a Client using JSON, we add precondition checks
to ensure that our properties have been set correctly before we again call toJson() and test
the results:

void ClientTests::update_givenJsonObject_updatesProperties()
{
 Client testClient(this);
 testClient.update(QJsonDocument::fromJson(jsonByteArray).object());
 QCOMPARE(testClient.reference->value(), QString("CM0001"));
 QCOMPARE(testClient.name->value(), QString("Mr Test Testerson"));

 verifyBillingAddress(testClient.billingAddress);
 verifySupplyAddress(testClient.supplyAddress);
 verifyAppointments(testClient.appointments->derivedEntities());
 verifyContacts(testClient.contacts->derivedEntities());
}

void ClientTests::update_givenEmptyJsonObject_updatesPropertiesToDefaults()

Unit Testing Chapter 6

[192]

{
 Client testClient(this,
QJsonDocument::fromJson(jsonByteArray).object());
 QCOMPARE(testClient.reference->value(), QString("CM0001"));
 QCOMPARE(testClient.name->value(), QString("Mr Test Testerson"));
 verifyBillingAddress(testClient.billingAddress);
 verifySupplyAddress(testClient.supplyAddress);
 verifyAppointments(testClient.appointments->derivedEntities());
 verifyContacts(testClient.contacts->derivedEntities());
 testClient.update(QJsonObject());
 QCOMPARE(testClient.reference->value(), QString(""));
 QCOMPARE(testClient.name->value(), QString(""));

 verifyDefaultBillingAddress(testClient.billingAddress);
 verifyDefaultSupplyAddress(testClient.supplyAddress);
 verifyDefaultAppointments(testClient.appointments-
 >derivedEntities());
 verifyDefaultContacts(testClient.contacts->derivedEntities());
}

The update() tests are the same as toJson(), but the other way around. This time, we
construct a JSON object using our byte array and pass it in to update(), checking the state
of the model afterward.

The various private verification methods are all simply sets of checks that save us having to
repeat the same code over and over. Consider the given example:

void ClientTests::verifyDefaultSupplyAddress(Address* address)
{
 QVERIFY(address != nullptr);
 QCOMPARE(address->building->value(), QString(""));
 QCOMPARE(address->street->value(), QString(""));
 QCOMPARE(address->city->value(), QString(""));
 QCOMPARE(address->postcode->value(), QString(""));
}

Build and run the unit tests again and the new Client tests should all happily pass.

Unit Testing Chapter 6

[193]

Mocking
The unit tests we’ve written so far have all been pretty straightforward. While our Client
class isn’t totally independent, its dependencies are all other data models and decorators
that it can own and change at will. However, looking forward, we will want to persist client
data in a database. Let's look at a few examples of how this can work and discuss how the
design decisions we make impact the testability of the Client class.

Open up the scratchpad project and create a new header mocking.h file, where we’ll
implement a dummy Client class to play around with.

mocking.h:

#ifndef MOCKING_H
#define MOCKING_H

#include <QDebug>

class Client
{
public:
 void save()
 {
 qDebug() << "Saving Client";
 }
};

#endif

In main.cpp, #include <mocking.h>, update the engine.load() line to load the
default main.qml if it doesn’t already and add a few lines to spin up and save a dummy
Client object:

engine.load(QUrl(QStringLiteral("qrc:/main.qml")));

Client client;
client.save();

Build and run the app, ignore the window, and take a look at the Application Output
console:

Saving Client

Unit Testing Chapter 6

[194]

We have a way to ask a client to save itself, but it needs a database to save itself too. Let’s
encapsulate our database management functionality into a DatabaseController class. In
mocking.h, add the following implementation before the Client class. Note that you need to
forward declare Client:

class Client;

class DatabaseController
{
public:
 DatabaseController()
 {
 qDebug() << "Creating a new database connection";
 }

 void save(Client* client)
 {
 qDebug() << "Saving a Client to the production database";
 }
};

Now, edit the Client class:

class Client
{
 DatabaseController databaseController;

public:
 void save()
 {
 qDebug() << "Saving Client";
 databaseController.save(this);
 }
};

Back in main.cpp, replace the Client lines with the following:

qDebug() << "Running the production code...";

Client client1;
client1.save();
Client client2;
client2.save();

Unit Testing Chapter 6

[195]

Now we create and save two clients rather than just one. Build, run, and check the console
again:

Running the production code…
Creating a new database connection
Saving Client
Saving a Client to the production database
Creating a new database connection
Saving Client
Saving a Client to the production database

Okay, now we’re saving our clients to the production database, but we’re creating a new
database connection for every client, which seems a bit wasteful. The Client class needs an
instance of a DatabaseController to function, and this is known as a dependency.
However, we do not need the Client to be responsible for creating that instance; we can
instead pass—or inject—the instance in via the constructor and manage the lifetime of the
DatabaseController elsewhere. This technique of Dependency Injection is a form of a
broader design pattern known as Inversion of Control. Let's pass a reference to a shared
DatabaseController into our Client class instead:

class Client
{
 DatabaseController& databaseController;

public:
 Client(DatabaseController& _databaseController)
 : databaseController(_databaseController)
 {
 }

 void save()
 {
 qDebug() << "Saving Client";
 databaseController.save(this);
 }
};

Unit Testing Chapter 6

[196]

Over in main.cpp:

qDebug() << "Running the production code...";

DatabaseController databaseController;

Client client1(databaseController);
client1.save();
Client client2(databaseController);
client2.save();

Build and run the following:

Running the production code…
Creating a new database connection
Saving Client
Saving a Client to the production database
Saving Client
Saving a Client to the production database

Great, we’ve got a highly-efficient decoupled system architecture in place; let’s test it.

In mocking.h, add a pretend test suite after the Client class:

class ClientTestSuite
{
public:
 void saveTests()
 {
 DatabaseController databaseController;
 Client client1(databaseController);
 client1.save();
 Client client2(databaseController);
 client2.save();

 qDebug() << "Test passed!";
 }
};

In main.cpp, after saving client2, add the following to run our tests:

qDebug() << "Running the test code...";

ClientTestSuite testSuite;
testSuite.saveTests();

Unit Testing Chapter 6

[197]

Build and run this:

Running the production code...
Creating a new database connection
Saving Client
Saving a Client to the production database
Saving Client
Saving a Client to the production database
Running the test code...
Creating a new database connection
Saving Client
Saving a Client to the production database
Saving Client
Saving a Client to the production database
Test passed!

Our test passed, fantastic! What’s not to love about that? Well, the fact that we’ve just saved
some test data to our production database.

If you don’t already implement interfaces for the majority of your classes, you soon will
after you start unit testing for this precise reason. It’s not used solely to avoid nasty side
effects like writing test data to a production database; it allows you to simulate all kinds of
behaviors that make unit testing so much easier.

So, let’s move our DatabaseController behind an interface. Replace the plain
DatabaseController in mocking.h with a supercharged interface-driven version:

class IDatabaseController
{
public:
 virtual ~IDatabaseController(){}
 virtual void save(Client* client) = 0;
};

class DatabaseController : public IDatabaseController
{
public:
 DatabaseController()
 {
 qDebug() << "Creating a new database connection";
 }

 void save(Client* client) override
 {
 qDebug() << "Saving a Client to the production database";
 }

Unit Testing Chapter 6

[198]

};

With the interface in place, we can now create a fake or mock implementation:

class MockDatabaseController : public IDatabaseController
{
public:
 MockDatabaseController()
 {
 qDebug() << "Absolutely not creating any database connections
 at all";
 }

 void save(Client* client) override
 {
 qDebug() << "Just testing - not saving any Clients to any
 databases";
 }
};

Next, tweak our Client to hold a reference to the interface rather than the concrete
implementation:

class Client
{
 IDatabaseController& databaseController;

public:
 Client(IDatabaseController& _databaseController)
 : databaseController(_databaseController)
 {
 }

 void save()
 {
 qDebug() << "Saving Client";
 databaseController.save(this);
 }
};

Finally, change our test suite to create a mock controller to pass into the clients:

void saveTests()
{
 MockDatabaseController databaseController;
 ...
}

Unit Testing Chapter 6

[199]

Build and run this:

Running the production code...
Creating a new database connection
Saving Client
Saving a Client to the production database
Saving Client
Saving a Client to the production database
Running the test code...
Absolutely not creating any database connections at all
Saving Client
Just testing - not saving any Clients to any databases
Saving Client
Just testing - not saving any Clients to any databases
Test passed!

Perfect. By programming to interfaces and injecting dependencies, we can safely test in
isolation. We can create as many mock implementations as we need and use them to
simulate whatever behavior we want, enabling us to test multiple different scenarios. Once
you get more involved in mocking, it really pays to use a dedicated framework like google
mock, as they save you the hassle of having to write a bunch of boilerplate mock classes.
You can easily mock the interface once using helper macros and then specify behaviors for
individual methods on the fly.

Summary
In this chapter, we’ve taken our first proper look at the unit testing project, and you’ve seen
how to implement unit testing using the Qt Test framework. We’ve also discussed the
importance of programming to interfaces to enable mocking. Now we have unit tests in
place for our main data classes, so if we ever accidentally change the behavior, the unit tests
will fail and highlight a potential problem for us.

As we discussed, this is not a book about test driven development, and we will sometimes
cut corners and go against the advice in this chapter to keep the explanation of other
concepts as simple as possible, but I do urge you to implement unit testing of some kind in
your projects if you can, as it is a very valuable practice that is always worth the additional
time investment. Some developers like the rigor of full-blown TDD, whereas others prefer
to write unit test after the fact to verify the work they have done. Find an approach that
works for you and your coding style.

Unit Testing Chapter 6

[200]

We will return to the test project occasionally to demonstrate certain behaviors. but we’ll
certainly not be achieving 100% code coverage. Now that you have the test project and
scaffolding in place, it’s just a case of adding further test classes for each class you want to
test. As long as you inherit from TestSuite in the same way as we have in this chapter,
they will be automatically detected and executed when you run the test project.

In Chapter 7, Persistence, we’ll go ahead and implement the functionality we just
discussed—persisting our data to a database.

7
Persistence

In Chapter 5, Data, we created a framework for capturing and holding data in memory.
However, this is only half of the story, as without persisting the data to some external
destination, it will be lost as soon as we close the application. In this chapter, we will build
on our earlier work and save our data to disk in a SQLite database so that it can live on
beyond the lifetime of the application. Once saved, we will also build methods for finding,
editing, and deleting our data. To get all these operations for free in our various data
models, we will extend our data entities so that they can load and save to our database
automatically, without us having to write boilerplate code in each class. We will cover the
following topics:

SQLite
Primary keys
Creating clients
Finding clients
Editing clients
Deleting clients

Persistence Chapter 7

[202]

SQLite
General purpose database technology has fragmented in the recent years with the explosion
of NoSQL and Graph databases. However, SQL databases are still fighting fit and
absolutely an appropriate choice in a lot of applications. Qt comes with built-in support for
several SQL database driver types, and can be extended with custom drivers. MySQL and
PostgreSQL are very popular open source SQL database engines and are both supported by
default, but are intended for use on servers and require administration, which makes them
a bit unnecessarily complicated for our purposes. Instead, we will use the much more
lightweight SQLite, which is commonly used as a client-side database and is very popular
in mobile applications due to its small footprint.

According to the official website at https:/ ​/​www. ​sqlite. ​org, "SQLite is a self-contained,
high-reliability, embedded, full-featured, public-domain, SQL database engine. SQLite is
the most used database engine in the world". Paired with Qt's SQL related classes, it's a
snap to create a database and store your data.

The first thing we need to do is add the SQL module to our library project to get access to all
of Qt’s SQL goodness. In cm-lib.pro, add the following:

QT += sql

Next, we’ll take onboard what we discussed in the previous chapter and implement our
database-related functionality behind an interface. Create a new i-database-
controller.h header file in cm-lib/source/controllers:

#ifndef IDATABASECONTROLLER_H
#define IDATABASECONTROLLER_H

#include <QJsonArray>
#include <QJsonObject>
#include <QList>
#include <QObject>
#include <QString>

#include <cm-lib_global.h>

namespace cm {
namespace controllers {

class CMLIBSHARED_EXPORT IDatabaseController : public QObject
{
 Q_OBJECT

public:

https://www.sqlite.org/
https://www.sqlite.org/
https://www.sqlite.org/
https://www.sqlite.org/
https://www.sqlite.org/
https://www.sqlite.org/
https://www.sqlite.org/
https://www.sqlite.org/
https://www.sqlite.org/

Persistence Chapter 7

[203]

 IDatabaseController(QObject* parent) : QObject(parent){}
 virtual ~IDatabaseController(){}

 virtual bool createRow(const QString& tableName, const QString& id,
 const QJsonObject& jsonObject) const = 0;
 virtual bool deleteRow(const QString& tableName, const QString& id)
 const = 0;
 virtual QJsonArray find(const QString& tableName, const QString&
 searchText) const = 0;
 virtual QJsonObject readRow(const QString& tableName, const
 QString& id) const = 0;
 virtual bool updateRow(const QString& tableName, const QString& id,
 const QJsonObject& jsonObject) const = 0;
};

}}

#endif

Here, we are implementing the four basic functions of (Create, Read, Update, and Delete)
CRUD, which are relevant to persistent storage in general, not just SQL databases. We
supplement these functions with an additional find() method that we will use to find an
array of matching clients based on supplied search text.

Now, let’s create a concrete implementation of the interface. Create a new
DatabaseController class in cm-lib/source/controllers.

database-controller.h:

#ifndef DATABASECONTROLLER_H
#define DATABASECONTROLLER_H

#include <QObject>
#include <QScopedPointer>

#include <controllers/i-database-controller.h>

#include <cm-lib_global.h>

namespace cm {
namespace controllers {

class CMLIBSHARED_EXPORT DatabaseController : public IDatabaseController
{
 Q_OBJECT

public:

Persistence Chapter 7

[204]

 explicit DatabaseController(QObject* parent = nullptr);
 ~DatabaseController();

 bool createRow(const QString& tableName, const QString& id, const
 QJsonObject& jsonObject) const override;
 bool deleteRow(const QString& tableName, const QString& id) const
 override;
 QJsonArray find(const QString& tableName, const QString&
 searchText) const override;
 QJsonObject readRow(const QString& tableName, const QString& id)
 const override;
 bool updateRow(const QString& tableName, const QString& id, const
 QJsonObject& jsonObject) const override;

private:
 class Implementation;
 QScopedPointer<Implementation> implementation;
};

}}

#endif

Now, let's walk through each of the key implementation details in database-
controller.cpp:

class DatabaseController::Implementation
{
public:
 Implementation(DatabaseController* _databaseController)
 : databaseController(_databaseController)
 {
 if (initialise()) {
 qDebug() << "Database created using Sqlite version: " +
 sqliteVersion();
 if (createTables()) {
 qDebug() << "Database tables created";
 } else {
 qDebug() << "ERROR: Unable to create database tables";
 }
 } else {
 qDebug() << "ERROR: Unable to open database";
 }
 }

 DatabaseController* databaseController{nullptr};
 QSqlDatabase database;

Persistence Chapter 7

[205]

private:
 bool initialise()
 {
 database = QSqlDatabase::addDatabase("QSQLITE", "cm");
 database.setDatabaseName("cm.sqlite");
 return database.open();
 }

 bool createTables()
 {
 return createJsonTable("client");
 }

 bool createJsonTable(const QString& tableName) const
 {
 QSqlQuery query(database);
 QString sqlStatement = "CREATE TABLE IF NOT EXISTS " +
 tableName + " (id text primary key, json text not null)";

 if (!query.prepare(sqlStatement)) return false;

 return query.exec();
 }

 QString sqliteVersion() const
 {
 QSqlQuery query(database);

 query.exec("SELECT sqlite_version()");

 if (query.next()) return query.value(0).toString();

 return QString::number(-1);
 }
};

Starting with the private implementation, we’ve broken the initialization into two
operations: initialise() instantiates a connection to a SQLite database with a file named
cm.sqlite, and this operation will first create the database file for us if it doesn’t already
exist. The file will be created in the same folder as the application
executable, createTables(), then creates any tables that we need which don’t already
exist in the database. Initially, we only need a single table named client, but this can
be easily extended later. We delegate the actual work of creating the named table to the
createJsonTable() method so that we can reuse it for multiple tables.

Persistence Chapter 7

[206]

A conventional normalized relational database approach would be to persist each of our
data models in their own table, with fields that match the properties of the class. Recall the
model diagram back in Chapter 5, Data, which is as follows:

We could create a Client table with the "reference" and "name" fields, a contact table with
the "type", "address", and other fields. However, we will instead leverage the JSON
serialization code we’ve already implemented and implement a pseudo document-style
database. We will utilize a single client table that will store a unique ID for the client along
with the whole client object hierarchy serialized to JSON.

Finally, we've also added a sqliteVersion() utility method to identify which version of
SQLite the database is using:

bool DatabaseController::createRow(const QString& tableName, const QString&
id, const QJsonObject& jsonObject) const
{
 if (tableName.isEmpty()) return false;
 if (id.isEmpty()) return false;
 if (jsonObject.isEmpty()) return false;

 QSqlQuery query(implementation->database);

 QString sqlStatement = "INSERT OR REPLACE INTO " + tableName + "
 (id, json) VALUES (:id, :json)";

Persistence Chapter 7

[207]

 if (!query.prepare(sqlStatement)) return false;

 query.bindValue(":id", QVariant(id));
 query.bindValue(":json",
 QVariant(QJsonDocument(jsonObject).toJson(QJsonDocument::Compact)));

 if(!query.exec()) return false;

 return query.numRowsAffected() > 0;
}

bool DatabaseController::deleteRow(const QString& tableName, const QString&
id) const
{
 if (tableName.isEmpty()) return false;
 if (id.isEmpty()) return false;

 QSqlQuery query(implementation->database);

 QString sqlStatement = "DELETE FROM " + tableName + " WHERE
 id=:id";

 if (!query.prepare(sqlStatement)) return false;

 query.bindValue(":id", QVariant(id));

 if(!query.exec()) return false;

 return query.numRowsAffected() > 0;
}

QJsonObject DatabaseController::readRow(const QString& tableName, const
QString& id) const
{
 if (tableName.isEmpty()) return {};
 if (id.isEmpty()) return {};

 QSqlQuery query(implementation->database);

 QString sqlStatement = "SELECT json FROM " + tableName + " WHERE
 id=:id";

 if (!query.prepare(sqlStatement)) return {};

 query.bindValue(":id", QVariant(id));

 if (!query.exec()) return {};

Persistence Chapter 7

[208]

 if (!query.first()) return {};

 auto json = query.value(0).toByteArray();
 auto jsonDocument = QJsonDocument::fromJson(json);

 if (!jsonDocument.isObject()) return {};

 return jsonDocument.object();
}

bool DatabaseController::updateRow(const QString& tableName, const QString&
id, const QJsonObject& jsonObject) const
{
 if (tableName.isEmpty()) return false;
 if (id.isEmpty()) return false;
 if (jsonObject.isEmpty()) return false;

 QSqlQuery query(implementation->database);

 QString sqlStatement = "UPDATE " + tableName + " SET json=:json
 WHERE id=:id";

 if (!query.prepare(sqlStatement)) return false;

 query.bindValue(":id", QVariant(id));
 query.bindValue(":json",
 QVariant(QJsonDocument(jsonObject).toJson(QJsonDocument::Compact)));

 if(!query.exec()) return false;

 return query.numRowsAffected() > 0;
}

The CRUD operations are all based around the QSqlQuery class and prepared
sqlStatements. In all cases, we first perform some perfunctory checks on the parameters
to ensure that we’re not trying to do something silly. We then concatenate the table name
into a SQL string, representing parameters with the :myParameter syntax. After preparing
the statement, parameters are subsequently substituted in using the bindValue() method
on the query object.

Persistence Chapter 7

[209]

When creating, deleting, or updating rows, we simply return a true/false success
indicator on query execution. Assuming that the query prepares and executes without error,
we check that the number of rows affected by the operation is greater than 0. The read
operation returns a JSON object parsed from the JSON text stored in the matching record. If
no record is found or if the JSON cannot be parsed, then we return a default JSON object:

QJsonArray DatabaseController::find(const QString& tableName, const
QString& searchText) const
{
 if (tableName.isEmpty()) return {};
 if (searchText.isEmpty()) return {};

 QSqlQuery query(implementation->database);

 QString sqlStatement = "SELECT json FROM " + tableName + " where
 lower(json) like :searchText";

 if (!query.prepare(sqlStatement)) return {};

 query.bindValue(":searchText", QVariant("%" + searchText.toLower()
 + "%"));

 if (!query.exec()) return {};

 QJsonArray returnValue;

 while (query.next()) {
 auto json = query.value(0).toByteArray();
 auto jsonDocument = QJsonDocument::fromJson(json);
 if (jsonDocument.isObject()) {
 returnValue.append(jsonDocument.object());
 }
 }

 return returnValue;
}

Finally, the find() method does essentially the same thing as the CRUD operations but
compiles an array of JSON objects as there may be more than one match. Note that we use
the like keyword in the SQL statement, combined with the % wildcard character, to find
any JSON that contains the search text. We also convert both sides of the comparison to
lowercase to make the search effectively case-insensitive.

Persistence Chapter 7

[210]

Primary keys
Integral to most of these operations is an ID parameter used as the primary key in our table.
To support the persistence of our entities using this new database controller, we need to
add a property to our Entity class that uniquely identifies an instance of that entity.

In entity.cpp, add a member variable to Entity::Implementation:

QString id;

Then, initialize it in the constructor:

Implementation(Entity* _entity, IDatabaseController* _databaseController,
const QString& _key)
 : entity(_entity)
 , databaseController(_databaseController)
 , key(_key)
 , id(QUuid::createUuid().toString())
{
}

When we instantiate a new Entity, we need to generate a new unique ID, and we use the
QUuid class to this for us with the createUuid() method. A Universally Unique
Identifier (UUID) is essentially a randomly generated number that we then convert to a
string in the “{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}" format, where "x" is a hex digit.
You will need to #include <QUuid>.

Next, provide a public accessor method for it:

const QString& Entity::id() const
{
 return implementation->id;
}

Persistence Chapter 7

[211]

The challenge now is that if we are creating an Entity that already has an ID (for example,
loading a client from the database), we need some mechanism for overwriting the generated
ID value with the known value. We’ll do this in the update() method:

void Entity::update(const QJsonObject& jsonObject)
{
 if (jsonObject.contains("id")) {
 implementation->id = jsonObject.value("id").toString();
 }

 …

}

Similarly, when we serialize the object to JSON, we need to include the ID too:

QJsonObject Entity::toJson() const
{
 QJsonObject returnValue;
 returnValue.insert("id", implementation->id);
 …
}

Great! This gives us automatically generated unique IDs for all of our data models, which
we can use as the primary key in our database table. However, a common usecase with
database tables is that there is actually an existing field that is a great candidate for use as a
primary key, for example, a National Insurance or Social Security number, an account
reference, or site ID. Let’s add a mechanism for specifying a data decorator to use as the ID
that will override the default UUID, if set.

In our Entity class, add a new private member in Implementation:

class Entity::Implementation
{
 ...
 StringDecorator* primaryKey{nullptr};
 ...
}

Persistence Chapter 7

[212]

You will need to #include the StringDecorator header. Add a protected mutator
method to set it:

void Entity::setPrimaryKey(StringDecorator* primaryKey)
{
 implementation->primaryKey = primaryKey;
}

We can then tweak our id() method to return us the primary key value if appropriate,
otherwise default to the generated UUID value:

const QString& Entity::id() const
{
 if(implementation->primaryKey != nullptr &&
!implementation->primaryKey->value().isEmpty()) {
 return implementation->primaryKey->value();
 }
 return implementation->id;
}

Then, in the client.cpp constructor, after we have instantiated all the data decorators, we
can specify that we want to use the reference field as our primary key:

Client::Client(QObject* parent)
 : Entity(parent, "client")
{
 ...

 setPrimaryKey(reference);
}

Let’s add a couple of tests to verify this behavior. We’ll verify that if a reference value is set,
the id() method returns that value, otherwise it returns a generated UUID loosely of the
“{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}" format.

In client-tests.h of the cm-tests project, add two new tests in the private slots scope:

void id_givenPrimaryKeyWithNoValue_returnsUuid();
void id_givenPrimaryKeyWithValue_returnsPrimaryKey();

Then, implement the tests in client-tests.cpp:

void ClientTests::id_givenPrimaryKeyWithNoValue_returnsUuid()
{
 Client testClient(this);

 // Using individual character checks

Persistence Chapter 7

[213]

 QCOMPARE(testClient.id().left(1), QString("{"));
 QCOMPARE(testClient.id().mid(9, 1), QString("-"));
 QCOMPARE(testClient.id().mid(14, 1), QString("-"));
 QCOMPARE(testClient.id().mid(19, 1), QString("-"));
 QCOMPARE(testClient.id().mid(24, 1), QString("-"));
 QCOMPARE(testClient.id().right(1), QString("}"));

 // Using regular expression pattern matching
 QVERIFY(QRegularExpression("\\{.{8}-(.{4})-(.{4})-(.{4})-(.
 {12})\\}").match(testClient.id()).hasMatch());
}

void ClientTests::id_givenPrimaryKeyWithValue_returnsPrimaryKey()
{
 Client testClient(this,
QJsonDocument::fromJson(jsonByteArray).object());
 QCOMPARE(testClient.reference->value(), QString("CM0001"));
 QCOMPARE(testClient.id(), testClient.reference->value());
}

Note that the checks are effectively performed twice in the first test just to demonstrate a
couple of different approaches you can take. First, we check using individual character
matches (‘{‘, ‘-’, and ‘}’), which is quite long-winded but easy for other developers to read
and understand. Then, we perform the check again using Qt’s regular expression helper
class. This is much shorter but more difficult to parse for normal humans who don’t speak
regular expression syntax.

Build and run the tests, and they should validate the changes we have just implemented.

Creating clients
Let’s put our new infrastructure to use and wire up the CreateClientView. If you
remember, we present a save command that when clicked on, calls
onCreateClientSaveExecuted() on CommandController. In order to be able to
perform anything useful, CommandController needs visibility of the client instance to be
serialized and saved, and an implementation of the IDatabaseController interface to
perform the create operation for us.

Persistence Chapter 7

[214]

Inject them into the constructor in command-controller.h, including any necessary
headers:

explicit CommandController(QObject* _parent = nullptr, IDatabaseController*
databaseController = nullptr, models::Client* newClient = nullptr);

As we’ve seen a few times now, add the member variables to Implementation:

IDatabaseController* databaseController{nullptr};
Client* newClient{nullptr};

Pass them through the CommandController constructor to the Implementation
constructor:

Implementation(CommandController* _commandController, IDatabaseController*
_databaseController, Client* _newClient)
 : commandController(_commandController)
 , databaseController(_databaseController)
 , newClient(_newClient)
{
 ...
}

CommandController::CommandController(QObject* parent, IDatabaseController*
databaseController, Client* newClient)
 : QObject(parent)
{
 implementation.reset(new Implementation(this, databaseController,
newClient));
}

Now we can update the onCreateClientSaveExecuted() method to create our new
client:

void CommandController::onCreateClientSaveExecuted()
{
 qDebug() << "You executed the Save command!";

implementation->databaseController->createRow(implementation->newClient->ke
y(), implementation->newClient->id(), implementation->newClient->toJson());

 qDebug() << "New client saved.";
}

Persistence Chapter 7

[215]

Our client instance provides us with all the information we need to be able to save it to the
database, and the database controller performs the database interactions.

Our CommandController is now ready, but we’re not actually injecting the database
controller or new client in yet, so head over to master-controller.cpp and add an
instance of a DatabaseController as we did with CommandController and
NavigationController. Add a private member, accessor method, and Q_PROPERTY.

In the Implementation constructor, we need to ensure that we initialize the new client and
DatabaseController before we initialize the CommandController, and then pass the
pointers through:

Implementation(MasterController* _masterController)
 : masterController(_masterController)
{
 databaseController = new DatabaseController(masterController);
 navigationController = new NavigationController(masterController);
 newClient = new Client(masterController);
 commandController = new CommandController(masterController,
databaseController, newClient);
}

Build and run cm-ui, and you should see messages in the Application Output from the
newly instantiated DatabaseController, telling you that it has created the database and
table:

Database created using Sqlite version: 3.20.1
Database tables created

Take a look at the output folder where your binaries are, and you will see a new cm.sqlite
file.

If you navigate to Create Client View, enter a name, and click on the Save button, you will
see further output, confirming that the new client has been saved successfully:

You executed the Save command!
New client saved

Persistence Chapter 7

[216]

Let’s take a look inside our database and see what work has been done for us. There are
several SQLite browsing applications and web browser plugins available, but the one I tend
to use is found at http:/ ​/​sqlitebrowser. ​org/​. Download and install this, or any other
client of your choice for your operating system, and open the cm.sqlite file:

You will see that we have a client table, just as we asked for, with two fields: id and json.
Browse Data for the client table, and you will see our newly created record with the name
property we entered on the UI:

http://sqlitebrowser.org/
http://sqlitebrowser.org/
http://sqlitebrowser.org/
http://sqlitebrowser.org/
http://sqlitebrowser.org/
http://sqlitebrowser.org/
http://sqlitebrowser.org/
http://sqlitebrowser.org/

Persistence Chapter 7

[217]

Fantastic, we have created our first client in the database. Note that the
DatabaseController initialization methods are idempotent, so you can launch the
application again and the existing database will not be affected. Similarly, if you manually
delete the cm.sqlite file, then launching the application will create a new version for you
(without the old data), which is a simple way of deleting test data.

Let’s make a quick tweak to add the reference property of the client. In
CreateClientView, duplicate the StringEditorSingleLine component bound to
ui_name, and bind the new control to ui_reference. Build, run, and create a new client:

Persistence Chapter 7

[218]

Our new client happily uses the specified client reference as the unique primary key:

Panels
Now, let's flesh out our CreateClientView a little so that we can actually save some
meaningful data rather than just a bunch of empty strings. We still have lots of fields to add
in, so we'll break things up a little, and also visually separate the data from the different
models, by encapsulating them in discreet panels with descriptive titles and a drop shadow
to give our UI a bit of pizzazz:

Persistence Chapter 7

[219]

We’ll begin by creating a generic panel component. Create a new QML file in cm-
ui/components named Panel.qml. Update components.qrc and qmldir, as we have
done for all the other components:

import QtQuick 2.9
import assets 1.0

Item {
 implicitWidth: parent.width
 implicitHeight: headerBackground.height +
 contentLoader.implicitHeight + (Style.sizeControlSpacing * 2)
 property alias headerText: title.text
 property alias contentComponent: contentLoader.sourceComponent

 Rectangle {
 id: shadow
 width: parent.width
 height: parent.height
 x: Style.sizeShadowOffset
 y: Style.sizeShadowOffset
 color: Style.colourShadow
 }

 Rectangle {
 id: headerBackground
 anchors {
 top: parent.top
 left: parent.left
 right: parent.right
 }
 height: Style.heightPanelHeader
 color: Style.colourPanelHeaderBackground

 Text {
 id: title
 text: "Set Me!"
 anchors {
 fill: parent
 margins: Style.heightDataControls / 4
 }
 color: Style.colourPanelHeaderFont
 font.pixelSize: Style.pixelSizePanelHeader
 verticalAlignment: Qt.AlignVCenter
 }
 }

 Rectangle {

Persistence Chapter 7

[220]

 id: contentBackground
 anchors {
 top: headerBackground.bottom
 left: parent.left
 right: parent.right
 bottom: parent.bottom
 }
 color: Style.colourPanelBackground

 Loader {
 id: contentLoader
 anchors {
 left: parent.left
 right: parent.right
 top: parent.top
 margins: Style.sizeControlSpacing
 }
 }
 }
}

This is an extremely dynamic component. Unlike our other components, where we pass in a
string or maybe even a custom class, here we are passing in the entire contents of the panel.
We achieve this using a Loader component, which loads a QML subtree on demand. We
alias the sourceComponent property so that calling elements can inject their desired
content at runtime.

Due to the dynamic nature of the content, we can’t set the component to be a fixed size, so
we leverage the implicitWidth and implicitHeight properties to tell parent elements
how large the component wants to be based on the size of the title bar plus the size of the
dynamic content.

To render the shadow, we draw a simple Rectangle, ensuring that it is rendered first by
placing it near the top of the file. We then use the x and y properties to offset it from the rest
of the elements, moving it slightly across and down. The remaining Rectangle elements
for the header strip and panel background are then drawn over the top of the shadow.

Persistence Chapter 7

[221]

To support the styling here, we need to add a collection of new Style properties:

readonly property real sizeControlSpacing: 10

readonly property color colourPanelBackground: "#ffffff"
readonly property color colourPanelBackgroundHover: "#ececec"
readonly property color colourPanelHeaderBackground: "#131313"
readonly property color colourPanelHeaderFont: "#ffffff"
readonly property color colourPanelFont: "#131313"
readonly property int pixelSizePanelHeader: 18
readonly property real heightPanelHeader: 40
readonly property real sizeShadowOffset: 5
readonly property color colourShadow: "#dedede"

Next, let’s add a component for address editing so that we can reuse it for both the supply
and billing addresses. Create a new QML file in cm-ui/components named
AddressEditor.qml. Update components.qrc and qmldir as earlier.

We’ll use our new Panel component as the root element and add an Address property, so
that we can pass in an arbitrary data model to bind to:

import QtQuick 2.9
import CM 1.0
import assets 1.0

Panel {
 property Address address

 contentComponent:
 Column {
 id: column
 spacing: Style.sizeControlSpacing
 StringEditorSingleLine {
 stringDecorator: address.ui_building
 anchors {
 left: parent.left
 right: parent.right
 }
 }
 StringEditorSingleLine {
 stringDecorator: address.ui_street
 anchors {
 left: parent.left
 right: parent.right
 }
 }
 StringEditorSingleLine {

Persistence Chapter 7

[222]

 stringDecorator: address.ui_city
 anchors {
 left: parent.left
 right: parent.right
 }
 }
 StringEditorSingleLine {
 stringDecorator: address.ui_postcode
 anchors {
 left: parent.left
 right: parent.right
 }
 }
 }
}

Here, you can see the flexibility of our new Panel component in action, thanks to the
embedded Loader element. We can pass in whatever QML content we want, and it will be
presented in the panel.

Finally, we can update our CreateClientView to add our new refactored address
components. We’ll also move the client controls onto their own panel:

import QtQuick 2.9
import QtQuick.Controls 2.2
import CM 1.0
import assets 1.0
import components 1.0

Item {
 property Client newClient: masterController.ui_newClient

 Column {
 spacing: Style.sizeScreenMargin
 anchors {
 left: parent.left
 right: parent.right
 top: parent.top
 margins: Style.sizeScreenMargin
 }
 Panel {
 headerText: "Client Details"
 contentComponent:
 Column {
 spacing: Style.sizeControlSpacing
 StringEditorSingleLine {
 stringDecorator: newClient.ui_reference

Persistence Chapter 7

[223]

 anchors {
 left: parent.left
 right: parent.right
 }
 }
 StringEditorSingleLine {
 stringDecorator: newClient.ui_name
 anchors {
 left: parent.left
 right: parent.right
 }
 }
 }
 }
 AddressEditor {
 address: newClient.ui_supplyAddress
 headerText: "Supply Address"
 }
 AddressEditor {
 address: newClient.ui_billingAddress
 headerText: "Billing Address"
 }
 }
 CommandBar {
 commandList:
masterController.ui_commandController.ui_createClientViewContextCommands
 }
}

Persistence Chapter 7

[224]

Before we build and run, we just need to tweak the background color of our
StringEditorSingleLine textLabel so that it matches the panels they are now
displayed on:

Rectangle {
 width: Style.widthDataControls
 height: Style.heightDataControls
 color: Style.colourPanelBackground
 Text {
 id: textLabel
 …
 }
}

Persistence Chapter 7

[225]

Go ahead and create a new client and check the database. You should now see the supply
and billing address details successfully saved. We’ve now got the C in our CRUD
operational, so let’s move on to the ‘R’.

Finding clients
We've just successfully saved our first clients to the database, so let's now look at how we
can find and view that data. We’ll encapsulate our searching functionality in a dedicated
class in cm-lib, so go ahead and create a new class named ClientSearch in cm-
lib/source/models.

client-search.h:

#ifndef CLIENTSEARCH_H
#define CLIENTSEARCH_H

#include <QScopedPointer>

#include <cm-lib_global.h>
#include <controllers/i-database-controller.h>
#include <data/string-decorator.h>
#include <data/entity.h>
#include <data/entity-collection.h>
#include <models/client.h>

namespace cm {
namespace models {

class CMLIBSHARED_EXPORT ClientSearch : public data::Entity
{
 Q_OBJECT
 Q_PROPERTY(cm::data::StringDecorator* ui_searchText READ
 searchText CONSTANT)
 Q_PROPERTY(QQmlListProperty<cm::models::Client> ui_searchResults
 READ ui_searchResults NOTIFY searchResultsChanged)

public:
 ClientSearch(QObject* parent = nullptr,
 controllers::IDatabaseController* databaseController = nullptr);
 ~ClientSearch();

 data::StringDecorator* searchText();
 QQmlListProperty<Client> ui_searchResults();
 void search();

Persistence Chapter 7

[226]

signals:
 void searchResultsChanged();

private:
 class Implementation;
 QScopedPointer<Implementation> implementation;
};

}}

#endif

client-search.cpp:

#include "client-search.h"
#include <QDebug>

using namespace cm::controllers;
using namespace cm::data;

namespace cm {
namespace models {

class ClientSearch::Implementation
{
public:
 Implementation(ClientSearch* _clientSearch, IDatabaseController*
 _databaseController)
 : clientSearch(_clientSearch)
 , databaseController(_databaseController)
 {
 }

 ClientSearch* clientSearch{nullptr};
 IDatabaseController* databaseController{nullptr};
 data::StringDecorator* searchText{nullptr};
 data::EntityCollection<Client>* searchResults{nullptr};
};

ClientSearch::ClientSearch(QObject* parent, IDatabaseController*
databaseController)
 : Entity(parent, "ClientSearch")
{
 implementation.reset(new Implementation(this, databaseController));
 implementation->searchText =
static_cast<StringDecorator*>(addDataItem(new StringDecorator(this,
"searchText", "Search Text")));
 implementation->searchResults =

Persistence Chapter 7

[227]

static_cast<EntityCollection<Client>*>(addChildCollection(new
EntityCollection<Client>(this, "searchResults")));

 connect(implementation->searchResults,
&EntityCollection<Client>::collectionChanged, this,
&ClientSearch::searchResultsChanged);
}

ClientSearch::~ClientSearch()
{
}

StringDecorator* ClientSearch::searchText()
{
 return implementation->searchText;
}

QQmlListProperty<Client> ClientSearch::ui_searchResults()
{
 return QQmlListProperty<Client>(this,
implementation->searchResults->derivedEntities());
}

void ClientSearch::search()
{
 qDebug() << "Searching for " << implementation->searchText->value() <<
"...";
}

}}

We need to capture some text from the user, search the database using that text, and display
the results as a list of matching clients. We accommodate the text using a
StringDecorator, implement a search() method to perform the search for us, and
finally, add an EntitityCollection<Client> to store the results. One additional point of
interest here is that we need to signal to the UI when the search results have changed so that
it knows that it needs to rebind the list. To do this, we notify using the signal
searchResultsChanged(), and we connect this signal directly to the
collectionChanged() signal built into EntityCollection. Now, whenever the list that
is hidden away in EntityCollection is updated, the UI will be automatically notified of
the change and will redraw itself as needed.

Persistence Chapter 7

[228]

Next, add an instance of ClientSearch to MasterController, just as we did for the new
client model. Add a private member variable of the ClientSearch* type named
clientSearch, and initialize it in the Implementation constructor. Remember to pass the
databaseController dependency to the constructor. Now that we are passing more and
more dependencies, we need to be careful about the initialization order. ClientSearch has
a dependency on DatabaseController, and when we come to implement our search
commands in CommandController, that will have a dependency on ClientSearch. So
ensure that you initialize DatabaseController before ClientSearch and that
CommandController comes after both of them. To finish off the changes to
MasterController, add a clientSearch() accessor method and a Q_PROPERTY named
ui_clientSearch.

As usual, we need to register the new class in the QML subsystem before we can use it in
the UI. In main.cpp, #include <models/client-search.h> and register the new type:

qmlRegisterType<cm::models::ClientSearch>("CM", 1, 0, "ClientSearch");

With all that in place, we can wire up our FindClientView:

import QtQuick 2.9
import assets 1.0
import CM 1.0
import components 1.0

Item {
 property ClientSearch clientSearch: masterController.ui_clientSearch

 Rectangle {
 anchors.fill: parent
 color: Style.colourBackground

 Panel {
 id: searchPanel
 anchors {
 left: parent.left
 right: parent.right
 top: parent.top
 margins: Style.sizeScreenMargin
 }
 headerText: "Find Clients"
 contentComponent:
 StringEditorSingleLine {
 stringDecorator: clientSearch.ui_searchText
 anchors {
 left: parent.left

Persistence Chapter 7

[229]

 right: parent.right
 }
 }
 }
 }
}

We access the ClientSearch instance via MasterController and create a shortcut to it
with a property. We also utilize our new Panel component again, which gives us a nice
consistent look and feel across views with very little work:

Persistence Chapter 7

[230]

The next step is to add a command button for us to be able to instigate a search. We do this
back over in CommandController. Before we get into the commands, we have an
additional dependency on the ClientSearch instance, so add a parameter to the
constructor:

CommandController::CommandController(QObject* parent, IDatabaseController*
databaseController, Client* newClient, ClientSearch* clientSearch)
 : QObject(parent)
{
 implementation.reset(new Implementation(this, databaseController,
newClient, clientSearch));
}

Pass the parameter through to the Implementation class and store it in a private member
variable, just as we did with newClient. Hop back to MasterController briefly and add
the clientSearch instance into the CommandController initialization:

commandController = new CommandController(masterController,
databaseController, newClient, clientSearch);

Next, in CommandController, duplicate and rename the private member variable,
accessor, and Q_PROPERTY that we added for the create client view so that you end up with
a ui_findClientViewContextCommands property for the UI to use.

Create an additional public slot, onFindClientSearchExecuted(), which will be called
when we hit the search button:

void CommandController::onFindClientSearchExecuted()
{
 qDebug() << "You executed the Search command!";

 implementation->clientSearch->search();
}

Now we have an empty command list for our find view and a delegate to be called when
we click on the button; all we need to do now is add a search button to the
Implementation constructor:

Command* findClientSearchCommand = new Command(commandController, QChar(
0xf002), "Search");
QObject::connect(findClientSearchCommand, &Command::executed,
commandController, &CommandController::onFindClientSearchExecuted);
findClientViewContextCommands.append(findClientSearchCommand);

Persistence Chapter 7

[231]

That’s it for the command plumbing; we can now easily add a command bar to
FindClientView. Insert the following as the last element within the root item:

CommandBar {
 commandList:
masterController.ui_commandController.ui_findClientViewContextCommands
}

Enter some search text and click on the button, and you will see in the Application Output
console that everything triggers as expected:

You executed the Search command!
Searching for "Testing"...

Persistence Chapter 7

[232]

Great, now what we need to do is take the search text, query the SQLite database for a list of
results, and display those results on screen. Fortunately, we’ve already done the
groundwork for querying the database, so we can easily implement that:

void ClientSearch::search()
{
 qDebug() << "Searching for " << implementation->searchText->value()
 << "...";

 auto resultsArray = implementation->databaseController-
 >find("client", implementation->searchText->value());
 implementation->searchResults->update(resultsArray);

 qDebug() << "Found " << implementation->searchResults-
 >baseEntities().size() << " matches";
}

There is a bit more work to do on the UI side to display the results. We need to bind to the
ui_searchResults property and dynamically display some sort of QML subtree for each
of the clients in the list. We will use a new QML component, ListView, to do the heavy
lifting for us. Let’s start simple to demonstrate the principle and then build out from there.
In FindClientView, immediately after the Panel element, add the following:

ListView {
 id: itemsView
 anchors {
 top: searchPanel.bottom
 left: parent.left
 right: parent.right
 bottom: parent.bottom
 margins: Style.sizeScreenMargin
 }
 clip: true
 model: clientSearch.ui_searchResults
 delegate:
 Text {
 text: modelData.ui_reference.ui_label + ": " +
 modelData.ui_reference.ui_value
 font.pixelSize: Style.pixelSizeDataControls
 color: Style.colourPanelFont
 }
}

Persistence Chapter 7

[233]

The two key properties of a ListView are as listed:

The model, which is the list of items that you want to display
The delegate, which is how you want to visually represent each item

In our case, we bind the model to our ui_searchResults and represent each item with a
simple Text element displaying the client reference number. Of particular importance here
is the modelData property, which is magically injected into the delegate for us and exposes
the underlying item (which is a client object, in this case).

Build, run, and perform a search for a piece of text you know exists in the JSON for one of
the test clients you have created so far, and you will see that the reference number is
displayed for each of the results. If you get more than one result and they lay out
incorrectly, don’t worry, as we will replace the delegate anyway:

Persistence Chapter 7

[234]

To keep things neat and tidy, we’ll write a new custom component to use as the delegate.
Create SearchResultDelegate in cm-ui/components, and update components.qrc
and qmldir as usual:

import QtQuick 2.9
import assets 1.0
import CM 1.0

Item {
 property Client client

 implicitWidth: parent.width
 implicitHeight: Math.max(clientColumn.implicitHeight,
 textAddress.implicitHeight) + (Style.heightDataControls / 2)

 Rectangle {
 id: background
 width: parent.width
 height: parent.height
 color: Style.colourPanelBackground

 Column {
 id: clientColumn
 width: parent / 2
 anchors {
 left: parent.left
 top: parent.top
 margins: Style.heightDataControls / 4
 }
 spacing: Style.heightDataControls / 2

 Text {
 id: textReference
 anchors.left: parent.left
 text: client.ui_reference.ui_label + ": " +
 client.ui_reference.ui_value
 font.pixelSize: Style.pixelSizeDataControls
 color: Style.colourPanelFont
 }
 Text {
 id: textName
 anchors.left: parent.left
 text: client.ui_name.ui_label + ": " +
 client.ui_name.ui_value
 font.pixelSize: Style.pixelSizeDataControls
 color: Style.colourPanelFont
 }

Persistence Chapter 7

[235]

 }

 Text {
 id: textAddress
 anchors {
 top: parent.top
 right: parent.right
 margins: Style.heightDataControls / 4
 }
 text: client.ui_supplyAddress.ui_fullAddress
 font.pixelSize: Style.pixelSizeDataControls
 color: Style.colourPanelFont
 horizontalAlignment: Text.AlignRight
 }

 Rectangle {
 id: borderBottom
 anchors {
 bottom: parent.bottom
 left: parent.left
 right: parent.right
 }
 height: 1
 color: Style.colourPanelFont
 }

 MouseArea {
 anchors.fill: parent
 cursorShape: Qt.PointingHandCursor
 hoverEnabled: true
 onEntered: background.state = "hover"
 onExited: background.state = ""
 onClicked: masterController.selectClient(client)
 }

 states: [
 State {
 name: "hover"
 PropertyChanges {
 target: background
 color: Style.colourPanelBackgroundHover
 }
 }
]
 }
}

Persistence Chapter 7

[236]

There isn’t really anything new here, we’ve just combined techniques covered in other
components. Note that the MouseArea element will trigger a method on
masterController that we haven’t implemented yet, so don’t worry if you run this and
get an error when you click on one of the clients.

Replace the old Text delegate in FindClientView with our new component using the
modelData property to set the client:

ListView {
 id: itemsView
 ...
 delegate:
 SearchResultDelegate {
 client: modelData
 }
}

Persistence Chapter 7

[237]

Now, let’s implement the selectClient() method on MasterController:

We can just emit the goEditClientView() signal directly from the
SearchResultDelegate and bypass MasterController entirely. This is
a perfectly valid approach and is indeed simpler; however, I prefer to
route all the interactions through the business logic layer, even if all the
business logic does is to emit the navigation signal. This means that if you
need to add any further logic later on, everything is already wired up and
you don’t need to change any of the plumbing. It’s also much easier to
debug C++ than QML.

In master-controller.h, we need to add our new method as a public slot as it will be
called directly from the UI, which won’t have visibility of a regular public method:

public slots:
 void selectClient(cm::models::Client* client);

Provide the implementation in master-controller.cpp, simply calling the relevant
signal on the navigation coordinator and passing through the client:

void MasterController::selectClient(Client* client)
{
 implementation->navigationController->goEditClientView(client);
}

With the searching and selection in place, we can now turn our attention to editing clients.

Editing clients
With an existing client now located and loaded from the database, we need a mechanism to
be able to view and edit the data. Let’s prepare by first creating the context commands we
will use in the edit view. Repeat the steps we took for the Find Client View and in
CommandController, add a new list of commands named
editClientViewContextCommands, along with an accessor method and Q_PROPERTY.

Create a new slot to be called when the user saves their changes on the edit view:

void CommandController::onEditClientSaveExecuted()
{
 qDebug() << "You executed the Save command!";
}

Persistence Chapter 7

[238]

Add a new save command to the list that calls the slot when executed:

Command* editClientSaveCommand = new Command(commandController, QChar(
0xf0c7), "Save");
QObject::connect(editClientSaveCommand, &Command::executed,
commandController, &CommandController::onEditClientSaveExecuted);
editClientViewContextCommands.append(editClientSaveCommand);

We now have a list of commands we can present to the Edit Client View; however, a
challenge that we now need to overcome is that when we execute this command, the
CommandController has no idea which client instance it needs to work with. We can’t pass
in the selected client as a dependency to the constructor like we do with the new client,
because we have no idea which client the user will select. One option would be to move the
list of edit commands out of the CommandController and into the client model. Then, each
client instance can present its own commands to the UI. However, this means that
command functionality is fractured, and we lose the nice encapsulation that the command
controller gives us. It also bloats the client model with functionality it shouldn’t care about.
Instead, we will add the currently selected client as a member within CommandController
and set it whenever the user navigates to the editClientView. In
CommandController::Implementation, add the following:

Client* selectedClient{nullptr};

Add a new public slot:

void CommandController::setSelectedClient(cm::models::Client* client)
{
 implementation->selectedClient = client;
}

Now that we have the selected client available, we can go ahead and complete the
implementation of the save slot. Again, we’ve already done the hard work in the
DatabaseController and client classes, so this method is really straightforward:

void CommandController::onEditClientSaveExecuted()
{
 qDebug() << "You executed the Save command!";

implementation->databaseController->updateRow(implementation->selectedClien
t->key(), implementation->selectedClient->id(),
implementation->selectedClient->toJson());

 qDebug() << "Updated client saved.";
}

Persistence Chapter 7

[239]

From the UI point of view, editing an existing client will essentially be the same as creating
a new client. So much so, in fact, that we can even probably use the same view and just pass
in a different client object in each case. However, we’ll keep the two functions separate and
just copy and tweak the QML we’ve already written for creating a client. Update
EditClientView:

import QtQuick 2.9
import QtQuick.Controls 2.2
import CM 1.0
import assets 1.0
import components 1.0

Item {
 property Client selectedClient
 Component.onCompleted:
masterController.ui_commandController.setSelectedClient(selectedClient)

 Rectangle {
 anchors.fill: parent
 color: Style.colourBackground
 }

 ScrollView {
 id: scrollView
 anchors {
 left: parent.left
 right: parent.right
 top: parent.top
 bottom: commandBar. top
 margins: Style.sizeScreenMargin
 }
 clip: true

 Column {
 spacing: Style.sizeScreenMargin
 width: scrollView.width

 Panel {
 headerText: "Client Details"
 contentComponent:
 Column {
 spacing: Style.sizeControlSpacing
 StringEditorSingleLine {
 stringDecorator:
 selectedClient.ui_reference
 anchors {
 left: parent.left

Persistence Chapter 7

[240]

 right: parent.right
 }
 }
 StringEditorSingleLine {
 stringDecorator: selectedClient.ui_name
 anchors {
 left: parent.left
 right: parent.right
 }
 }
 }
 }

 AddressEditor {
 address: selectedClient.ui_supplyAddress
 headerText: "Supply Address"
 }

 AddressEditor {
 address: selectedClient.ui_billingAddress
 headerText: "Billing Address"
 }
 }
 }

 CommandBar {
 id: commandBar
 commandList:
masterController.ui_commandController.ui_editClientViewContextCommands
 }
}

We change the client property to match the selectedClient property MasterView sets in
the Connections element. We use the Component.onCompleted slot to call through to
CommandController and set the currently selected client. Finally, we update CommandBar
to reference the new context command list we just added.

Build and run, and you should now be able to make changes to a selected client and use the
Save button to update the database.

Persistence Chapter 7

[241]

Deleting clients
The final part of our CRUD operations is deleting an existing client. Let’s trigger this via a
new button on EditClientView. We’ll begin by adding the slot that will be called when
the button is pressed to CommandController:

void CommandController::onEditClientDeleteExecuted()
{
 qDebug() << "You executed the Delete command!";

implementation->databaseController->deleteRow(implementation->selectedClien
t->key(), implementation->selectedClient->id());
 implementation->selectedClient = nullptr;

 qDebug() << "Client deleted.";

 implementation->clientSearch->search();
}

This follows the same pattern as the other slots, except this time we also clear the
selectedClient property as although the client instance still exists in application
memory, it has been semantically deleted by the user. We also refresh the search so that the
deleted client is removed from the search results. As this method stands, we’ve performed
the correct database interaction but the user will be left on editClientView for a client
that they have just asked to be deleted. What we want is for the user to be navigated back to
the dashboard. In order to do this, we need to add NavigationController as an
additional dependency to our CommandController class. Replicate what we did for the
DatabaseController dependency so that we can inject it into the constructor. Remember
to update MasterController and pass in the navigation controller instance.

Persistence Chapter 7

[242]

With an instance of a database controller available, we can then send the user to the
Dashboard View:

void CommandController::onEditClientDeleteExecuted()
{
 ...

 implementation->navigationController->goDashboardView();
}

Now that we have the navigation controller available, we can also improve the experience
when creating new clients. Rather than leaving the user on the new client view, let’s
perform a search for the newly created client ID and navigate them to the results. They can
then easily select the new client if they wish to view or edit:

void CommandController::onCreateClientSaveExecuted()
{
 ...

 implementation->clientSearch->searchText()-
 >setValue(implementation->newClient->id());
 implementation->clientSearch->search();
 implementation->navigationController->goFindClientView();
}

With the deletion slot complete, we can now add a new delete command to the
editClientContextCommands list in CommandController:

Command* editClientDeleteCommand = new Command(commandController, QChar(
0xf235), "Delete");
QObject::connect(editClientDeleteCommand, &Command::executed,
commandController, &CommandController::onEditClientDeleteExecuted);
editClientViewContextCommands.append(editClientDeleteCommand);

Persistence Chapter 7

[243]

We are now presented with the option to delete an existing client:

If you delete a client, you will see that the row is removed from the database and the user is
successfully navigated back to the dashboard. However, you will also see that the
Application Output window is full of QML warnings along the lines
of qrc:/views/EditClientView:62: TypeError: Cannot read property
'ui_billingAddress' of null.

Persistence Chapter 7

[244]

The reason for this is that the edit view is bound to a client instance that is part of the search
results. When we refresh the search, we delete the old search results, which means that the
edit view is now bound to nullptr and can no longer access the data. This continues to
happen even if you navigate to the dashboard before refreshing the search, because of the
asynchronous nature of the signals/slots used to perform the navigation. One way of fixing
these warnings is to add null checks on all the bindings in the view and bind to local
temporary objects if the main object is null. Consider the following example:

StringEditorSingleLine {
 property StringDecorator temporaryObject
 stringDecorator: selectedClient ? selectedClient.ui_reference :
 temporaryObject
 anchors {
 left: parent.left
 right: parent.right
 }
}

So, if selectedClient is not null, bind to the ui_reference property of that, otherwise
bind to temporaryObject. You can even add a level of indirection to the root Client
property and substitute the entire client object:

property Client selectedClient
property Client localTemporaryClient
property Client clientToBindTo: selectedClient ? selectedClient :
localTemporaryClient

Here, selectedClient will be set by the parent as normal; localTemporaryClient will
not be set, so a default instance will be created locally. clientToBindTo will then pick the
appropriate object to use and all the child controls can bind to that. As these bindings are
dynamic, if selectedClient was deleted after loading the view (as in our case), then
clientToBindTo will automatically switch over.

As this is just a demonstration project, it is safe for us to ignore the warnings, so we will
take no action here to keep things simple.

Persistence Chapter 7

[245]

Summary
In this chapter, we added database persistence for our client models. We made it generic
and flexible so that we can easily persist other model hierarchies by simply adding a new
table to our DatabaseController class. We covered all the core CRUD operations,
including a free text search capability that matches against the entire JSON object.

In Chapter 8, Web Requests, we will continue the theme of reaching outside of our
application for data and look at another extremely common Line of Business application
requirement making HTTP requests to web services.

8
Web Requests

This chapter takes us worldwide as we venture even further out from our application to the
internet. Beginning with writing some helper classes to manage web requests for us, we will
pull data from a live RSS feed and interpret it via some XML processing. With the parsed
data at hand, we can then put our QML skills to use and display the items on a new view.
Clicking on one of the RSS items will launch a web browser window in order to view the
related article in more detail. We will cover the following topics:

Network access
Web Requests
RSS View
RSS

Network access
The low-level networking protocol negotiation is all handled internally by Qt, and we can
easily get connected to the outside world via the QNetworkAccessManager class. To be
able to access this functionality, we need to add the network module to cm-lib.pro:

QT += sql network

One of Qt's weaknesses is the lack of interfaces, making unit testing difficult in some cases.
If we just use QNetworkAccessManager directly, we won’t be able to test our code without
making real calls to the network, which is undesirable. However, a quick and easy solution
to this problem is to hide the Qt implementation behind an interface of our own, and we
will do that here.

Web Requests Chapter 8

[247]

For the purposes of this chapter, all we need to be able to do with the network is check that
we have connectivity and send a HTTP GET request. With this in mind, create a header file
i-network-access-manager.h in a new folder cm-lib/source/networking and
implement the interface:

#ifndef INETWORKACCESSMANAGER_H
#define INETWORKACCESSMANAGER_H

#include <QNetworkReply>
#include <QNetworkRequest>

namespace cm {
namespace networking {

class INetworkAccessManager
{
public:
 INetworkAccessManager(){}
 virtual ~INetworkAccessManager(){}

 virtual QNetworkReply* get(const QNetworkRequest& request) = 0;
 virtual bool isNetworkAccessible() const = 0;
};

}}

#endif

QNetworkRequest is another Qt class that represents a request to be sent over the network,
and QNetworkReply represents a response received over the network. We will ideally hide
these implementations behind interfaces too, but let’s make do with the network access
interface for now. With that in place, go ahead and create a concrete implementation class
NetworkAccessManager in the same folder:

network-access-manager.h:

#ifndef NETWORKACCESSMANAGER_H
#define NETWORKACCESSMANAGER_H

#include <QObject>
#include <QScopedPointer>
#include <networking/i-network-access-manager.h>

namespace cm {
namespace networking {

Web Requests Chapter 8

[248]

class NetworkAccessManager : public QObject, public INetworkAccessManager
{
 Q_OBJECT

public:
 explicit NetworkAccessManager(QObject* parent = nullptr);
 ~NetworkAccessManager();

 QNetworkReply* get(const QNetworkRequest& request) override;
 bool isNetworkAccessible() const override;

private:
 class Implementation;
 QScopedPointer<Implementation> implementation;
};

}}

#endif

network-access-manager.cpp:

#include "network-access-manager.h"
#include <QNetworkAccessManager>

namespace cm {
namespace networking {

class NetworkAccessManager::Implementation
{
public:
 Implementation()
 {}
 QNetworkAccessManager networkAccessManager;
};

NetworkAccessManager::NetworkAccessManager(QObject *parent)
 : QObject(parent)
 , INetworkAccessManager()
{
 implementation.reset(new Implementation());
}

NetworkAccessManager::~NetworkAccessManager()
{
}

QNetworkReply* NetworkAccessManager::get(const QNetworkRequest& request)

Web Requests Chapter 8

[249]

{
 return implementation->networkAccessManager.get(request);
}

bool NetworkAccessManager::isNetworkAccessible() const
{
 return implementation->networkAccessManager.networkAccessible() ==
QNetworkAccessManager::Accessible;
}

}}

All we are doing is holding a private instance of QNetworkAccessManager and passing
calls to our interface through to it. The interface can easily be extended to include additional
functionality like HTTP POST requests with the same approach.

Web Requests
If you haven't worked with the HTTP protocol before, it boils down to a conversation
between a client and a server consisting of requests and responses. For example, we can
make a request to www.bbc.co.uk in our favorite web browser, and we will receive a
response containing various news items and articles. In the get() method of our
NetworkAccessManager wrapper, we reference a QNetworkRequest (our request to a
server) and a QNetworkReply (the server's response back to us). While we won’t directly
hide QNetworkRequest and QNetworkReply behind their own independent interfaces, we
will take the concept of a web request and corresponding response and create an interface
and implementation for that interaction. Still in cm-lib/source/networking, create
an interface header file i-web-request.h:

#ifndef IWEBREQUEST_H
#define IWEBREQUEST_H

#include <QUrl>

namespace cm {
namespace networking {

class IWebRequest
{
public:
 IWebRequest(){}
 virtual ~IWebRequest(){}

http://www.bbc.co.uk

Web Requests Chapter 8

[250]

 virtual void execute() = 0;
 virtual bool isBusy() const = 0;
 virtual void setUrl(const QUrl& url) = 0;
 virtual QUrl url() const = 0;
};

}}

#endif

The key piece of information for an HTTP request is the URL the request is to be sent to,
represented by the QUrl Qt class. We provide an url() accessor and setUrl() mutator for
the property. The other two methods are to check whether the isBusy() web request
object is making a request or receiving a response and also to execute() or send the
request to the network. Again, with the interface in place, let’s move on straight to the
implementation with a new WebRequest class in the same folder.

web-request.h:

#ifndef WEBREQUEST_H
#define WEBREQUEST_H

#include <QList>
#include <QObject>
#include <QSslError>
#include <networking/i-network-access-manager.h>
#include <networking/i-web-request.h>

namespace cm {
namespace networking {

class WebRequest : public QObject, public IWebRequest
{
 Q_OBJECT

public:
 WebRequest(QObject* parent, INetworkAccessManager*
networkAccessManager, const QUrl& url);
 WebRequest(QObject* parent = nullptr) = delete;
 ~WebRequest();

public:
 void execute() override;
 bool isBusy() const override;
 void setUrl(const QUrl& url) override;
 QUrl url() const override;

Web Requests Chapter 8

[251]

signals:
 void error(QString message);
 void isBusyChanged();
 void requestComplete(int statusCode, QByteArray body);
 void urlChanged();

private slots:
 void replyDelegate();
 void sslErrorsDelegate(const QList<QSslError>& _errors);

private:
 class Implementation;
 QScopedPointer<Implementation> implementation;
};

}}

#endif

web-request.cpp:

#include "web-request.h"

#include <QMap>
#include <QNetworkReply>
#include <QNetworkRequest>

namespace cm {
namespace networking { // Private Implementation

static const QMap<QNetworkReply::NetworkError, QString> networkErrorMapper
= {
 {QNetworkReply::ConnectionRefusedError, "The remote server refused the
connection (the server is not accepting requests)."},
 /* ...section shortened in print for brevity...*/
 {QNetworkReply::UnknownServerError, "An unknown error related to the
server response was detected."}
};

class WebRequest::Implementation
{
public:
 Implementation(WebRequest* _webRequest, INetworkAccessManager*
_networkAccessManager, const QUrl& _url)
 : webRequest(_webRequest)
 , networkAccessManager(_networkAccessManager)
 , url(_url)
 {

Web Requests Chapter 8

[252]

 }

 WebRequest* webRequest{nullptr};
 INetworkAccessManager* networkAccessManager{nullptr};
 QUrl url {};
 QNetworkReply* reply {nullptr};

public:
 bool isBusy() const
 {
 return isBusy_;
 }

 void setIsBusy(bool value)
 {
 if (value != isBusy_) {
 isBusy_ = value;
 emit webRequest->isBusyChanged();
 }
 }

private:
 bool isBusy_{false};
};
}

namespace networking { // Structors
WebRequest::WebRequest(QObject* parent, INetworkAccessManager*
networkAccessManager, const QUrl& url)
 : QObject(parent)
 , IWebRequest()
{
 implementation.reset(new WebRequest::Implementation(this,
networkAccessManager, url));
}

WebRequest::~WebRequest()
{
}
}

namespace networking { // Methods
void WebRequest::execute()
{
 if(implementation->isBusy()) {
 return;
 }

Web Requests Chapter 8

[253]

 if(!implementation->networkAccessManager->isNetworkAccessible()) {
 emit error("Network not accessible");
 return;
 }

 implementation->setIsBusy(true);
 QNetworkRequest request;
 request.setUrl(implementation->url);
 implementation->reply =
implementation->networkAccessManager->get(request);

 if(implementation->reply != nullptr) {
 connect(implementation->reply, &QNetworkReply::finished, this,
&WebRequest::replyDelegate);
 connect(implementation->reply, &QNetworkReply::sslErrors, this,
&WebRequest::sslErrorsDelegate);
 }
}

bool WebRequest::isBusy() const
{
 return implementation->isBusy();
}

void WebRequest::setUrl(const QUrl& url)
{
 if(url != implementation->url) {
 implementation->url = url;
 emit urlChanged();
 }
}

QUrl WebRequest::url() const
{
 return implementation->url;
}
}

namespace networking { // Private Slots
void WebRequest::replyDelegate()
{
 implementation->setIsBusy(false);

 if (implementation->reply == nullptr) {
 emit error("Unexpected error - reply object is null");
 return;
 }

Web Requests Chapter 8

[254]

 disconnect(implementation->reply, &QNetworkReply::finished, this,
&WebRequest::replyDelegate);
 disconnect(implementation->reply, &QNetworkReply::sslErrors, this,
&WebRequest::sslErrorsDelegate);

 auto statusCode =
implementation->reply->attribute(QNetworkRequest::HttpStatusCodeAttribute).
toInt();
 auto responseBody = implementation->reply->readAll();
 auto replyStatus = implementation->reply->error();
 implementation->reply->deleteLater();

 if (replyStatus != QNetworkReply::NoError) {
 emit error(networkErrorMapper[implementation->reply->error()]);
 }

 emit requestComplete(statusCode, responseBody);
}

void WebRequest::sslErrorsDelegate(const QList<QSslError>& errors)
{
 QString sslError;
 for (const auto& error : errors) {
 sslError += error.errorString() + "\n";
 }
 emit error(sslError);
}

}}

The implementation looks more complicated than it is purely because of the lengthy error
code map. In the event of some sort of problem, Qt will report the error using an
enumerator. The purpose of the map is simply to match the enumerator to a human
readable error description that we can present to the user or write to the console or a log
file.

In addition to the interface methods, we also have a handful of signals that we can use to
tell any interested observers about events that have happened:

error() will be emitted in the event of a problem and will pass the error
description as a parameter
isBusyChanged() is fired when a request starts or finishes and the request
becomes either busy or idle

Web Requests Chapter 8

[255]

requestComplete() is emitted when the response has been received and
processed and will contain the HTTP status code and an array of bytes
representing the response body
urlChanged() will be fired when the URL is updated

We also have a couple of private slots that will be the delegates for processing a reply and
handling any SSL errors. They are connected to signals on the QNetworkReply object when
we execute a new request and disconnected again when we receive the reply.

The meat of the implementation is really two methods—execute() to send the request and
replyDelegate() to process the response.

When executing, we first ensure that we are not already busy executing another request and
then check with the network access manager that we have an available connection.
Assuming that we do, we then set the busy flag and construct a QNetworkRequest using
the currently set URL. We then pass the request onto our network access manager (injected
as an interface, so we can change its behavior) and finally, we connect our delegate slots
and wait for a response.

When we receive the reply, we unset the busy flag and disconnect our slots before reading
the response details we are interested in, principally the HTTP status code and response
body. We check that the reply completed successfully (note that a “negative” HTTP
response code in the ranges 4xx or 5xx still count as successfully complete requests in this
context) and emit the details for any interested parties to capture and process.

RSS View
Let’s add a new view to our app where we can display some information from a web
service using our new classes.

There is nothing new or complicated here, so I won’t show all the code, but there are a few
steps to remember:

Create a new RssView.qml view in cm-ui/views and copy the QML from1.
SplashView for now, replacing the "Splash View" text with "Rss View"
Add the view to views.qrc in the /views prefix block and with an alias2.
RssView.qml

Add the goRssView() signal to NavigationController3.

Web Requests Chapter 8

[256]

In MasterView, add the onGoRssView slot to the Connections element and use it4.
to navigate to RssView
In NavigationBar, add a new NavigationButton with iconCharacter5.
\uf09e, description RSS Feed, and hoverColour as #8acece, and use the
onNavigationButtonClicked slot to call goRssView() on the
NavigationController

With just a few simple steps, we’ve now got a brand new view wired up that we can access
using the navigation bar:

Next, we’ll add a context command bar to the view with the following steps:

In CommandController, add a new private member list1.
rssViewContextCommands

Add an accessor method ui_rssViewContextCommands()2.

Web Requests Chapter 8

[257]

Add a Q_PROPERTY named ui_rssViewContextCommands3.
Add a new slot onRssRefreshExecuted() that simply writes a debug message4.
to the console; for now to indicate it has been called
Append a new command called rssRefreshCommand to5.
rssViewContextCommands with the 0xf021 icon character and “Refresh”
label and connect it to the onRssRefreshExecuted() slot
In RssView, add a CommandBar component with the commandList wired up to6.
ui_rssViewContextCommands on the command controller

All the hard work from earlier chapters is really paying dividends now; our new view has
got its own command bar and a fully functional refresh button. When you click on it, it
should write out the debug message you added to the console:

Web Requests Chapter 8

[258]

Next, we need to create instances of our NetworkAccessManager and WebRequest classes.
As usual, we will add these to MasterController and inject a dependency to
CommandController.

In MasterController, add two new private members:

NetworkAccessManager* networkAccessManager{nullptr};
WebRequest* rssWebRequest{nullptr};

Remember to include the relevant headers. Instantiate these new members in the
Implementation constructor, ensuring that they are created before commandController:

networkAccessManager = new NetworkAccessManager(masterController);
rssWebRequest = new WebRequest(masterController, networkAccessManager,
QUrl("http://feeds.bbci.co.uk/news/rss.xml?edition=uk"));

Here we are using the URL for a BBC RSS feed relevant to the UK; feel free to swap this for
another feed of your choice simply by replacing the hyperlink text.

Next, pass rssWebRequest as a new parameter to the commandController constructor:

commandController = new CommandController(masterController,
databaseController, navigationController, newClient, clientSearch,
rssWebRequest);

Next, edit CommandController to take this new parameter as a pointer to the interface:

explicit CommandController(QObject* _parent = nullptr, IDatabaseController*
databaseController = nullptr, NavigationController* navigationController =
nullptr, models::Client* newClient = nullptr, models::ClientSearch*
clientSearch = nullptr, networking::IWebRequest* rssWebRequest = nullptr);

Pass this pointer through the Implementation constructor and store it in a private member
variable as we do for all the other dependencies:

IWebRequest* rssWebRequest{nullptr};

We can now update the onRssRefreshExecuted() slot to execute the web request:

void CommandController::onRssRefreshExecuted()
{
 qDebug() << "You executed the Rss Refresh command!";

 implementation->rssWebRequest->execute();
}

Web Requests Chapter 8

[259]

The command controller now reacts to the user pressing the refresh button and executes the
web request. However, we don’t currently do anything when we receive the response. Let’s
add a delegate to MasterController in the public slots section:

void MasterController::onRssReplyReceived(int statusCode, QByteArray body)
{
 qDebug() << "Received RSS request response code " << statusCode << ":";
 qDebug() << body;
}

Now, after we instantiate rssWebRequest in Implementation, we can wire up the
requestComplete signal to our new delegate:

QObject::connect(rssWebRequest, &WebRequest::requestComplete,
masterController, &MasterController::onRssReplyReceived);

Now build and run the application, navigate to the RSS View, and click on Refresh. After a
brief delay, while the request is executed, you will see all sorts of nonsense printed to the
Application Output console:

Received RSS request response code 200 :
"<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<?xml-stylesheet title=...”

Congratulations! You’ve got an RSS feed! Now, what is it?

RSS
Rich Site Summary (RSS) is a format for delivering regularly changing web content and is
essentially an entire website, news broadcast, blog, or similar condensed down to bullet
points. Each item consists of bare-bones information like the date and a descriptive title and
is supplied with a hyperlink to the website page that contains the full article.

The data is extended from XML and must adhere to defined standards as described at
http:/​/​www.​rssboard. ​org/ ​rss- ​specification.

Boiling it down to the basics for the purposes of this example, the XML looks as follows:

<rss>
 <channel>
 <title></title>
 <description></description>
 <link></link>
 
 <item>
 <title></title>
 <description></description>
 <link></link>
 <pubDate></pubDate>
 </item>
 <item>
 …
 </item>
 </channel>
</rss>

Inside the root <rss> node, we have a <channel> node, which in turn contains an
<image> node and a collection of one or more <item> nodes.

We’ll model these nodes as classes, but first we need to pull in the XML module and write a
small helper class to do some parsing for us. In cm-lib.pro and cm-ui.pro, add the xml
module to the modules in the QT variable; consider this example:

QT += sql network xml

Next, create a new XmlHelper class in a new folder cm-lib/source/utilities.

xml-helper.h:

#ifndef XMLHELPER_H
#define XMLHELPER_H

#include <QDomNode>
#include <QString>

namespace cm {
namespace utilities {

class XmlHelper
{
public:
 static QString toString(const QDomNode& domNode);

private:
 XmlHelper(){}
 static void appendNode(const QDomNode& domNode, QString& output);

Web Requests Chapter 8

[261]

};

}}

#endif

xml-helper.cpp:

#include "xml-helper.h"

namespace cm {
namespace utilities {

QString XmlHelper::toString(const QDomNode& domNode)
{
 QString returnValue;
 for(auto i = 0; i < domNode.childNodes().size(); ++i) {
 QDomNode subNode = domNode.childNodes().at(i);
 appendNode(subNode, returnValue);
 }
 return returnValue;
}

void XmlHelper::appendNode(const QDomNode& domNode, QString& output)
{
 if(domNode.nodeType() == QDomNode::TextNode) {
 output.append(domNode.nodeValue());
 return;
 }

 if(domNode.nodeType() == QDomNode::AttributeNode) {
 output.append(" ");
 output.append(domNode.nodeName());
 output.append("=\"");
 output.append(domNode.nodeValue());
 output.append("\"");
 return;
 }

 if(domNode.nodeType() == QDomNode::ElementNode) {
 output.append("<");
 output.append(domNode.nodeName());
 // Add attributes
 for(auto i = 0; i < domNode.attributes().size(); ++i) {
 QDomNode subNode = domNode.attributes().item(i);
 appendNode(subNode, output);
 }
 output.append(">");

Web Requests Chapter 8

[262]

 for(auto i = 0; i < domNode.childNodes().size(); ++i) {
 QDomNode subNode = domNode.childNodes().at(i);
 appendNode(subNode, output);
 }
 output.append("</" + domNode.nodeName() + ">");
 }
}

}}

I won’t go into too much detail about what this class does as it isn't the focus of the chapter,
but essentially, if we receive an XML node that contains HTML markup (which is quite
common in RSS), the XML parser gets a bit confused and breaks up the HTML into XML
nodes too, which isn’t what we want. Consider this example:

<xmlNode>
 Here is something from a website that has a <a href=”http:/ ​/ ​www.​bbc. ​co.
uk”>hyperlink in it.
</xmlNode>

In this case, the XML parser will see <a> as XML and break up the content into three child
nodes similar to this:

<xmlNode>
 <textNode1>Here is something from a website that has a </textNode1>
 hyperlink
 <textNode2>in it.</textNode2>
</xmlNode>

This makes it difficult to display the contents of xmlNode to the user on the UI. Instead, we
use XmlHelper to parse the contents manually and construct a single string, which is much
easier to work with.

Now, let’s move on to the RSS classes. In a new cm-lib/source/rss folder, create new
RssChannel, RssImage, and RssItem classes.

rss-image.h:

#ifndef RSSIMAGE_H
#define RSSIMAGE_H

#include <QObject>
#include <QScopedPointer>
#include <QtXml/QDomNode>
#include <cm-lib_global.h>

http://www.bbc.co.uk/
http://www.bbc.co.uk/
http://www.bbc.co.uk/
http://www.bbc.co.uk/
http://www.bbc.co.uk/
http://www.bbc.co.uk/
http://www.bbc.co.uk/
http://www.bbc.co.uk/
http://www.bbc.co.uk/
http://www.bbc.co.uk/
http://www.bbc.co.uk/
http://www.bbc.co.uk/
http://www.bbc.co.uk/
http://www.bbc.co.uk/
http://www.bbc.co.uk/
http://www.bbc.co.uk/
http://www.bbc.co.uk/
http://www.bbc.co.uk/
http://www.bbc.co.uk/
http://www.bbc.co.uk/
http://www.bbc.co.uk/

Web Requests Chapter 8

[263]

namespace cm {
namespace rss {

class CMLIBSHARED_EXPORT RssImage : public QObject
{
 Q_OBJECT
 Q_PROPERTY(quint16 ui_height READ height CONSTANT)
 Q_PROPERTY(QString ui_link READ link CONSTANT)
 Q_PROPERTY(QString ui_title READ title CONSTANT)
 Q_PROPERTY(QString ui_url READ url CONSTANT)
 Q_PROPERTY(quint16 ui_width READ width CONSTANT)

public:
 explicit RssImage(QObject* parent = nullptr, const QDomNode& domNode =
QDomNode());
 ~RssImage();

 quint16 height() const;
 const QString& link() const;
 const QString& title() const;
 const QString& url() const;
 quint16 width() const;

private:
 class Implementation;
 QScopedPointer<Implementation> implementation;
};

}}

#endif

rss-image.cpp:

#include "rss-image.h"

namespace cm {
namespace rss {

class RssImage::Implementation
{
public:
 QString url; // Mandatory. URL of GIF, JPEG or PNG that represents
the channel.
 QString title; // Mandatory. Describes the image.
 QString link; // Mandatory. URL of the site.
 quint16 width; // Optional. Width in pixels. Max 144, default
 88.

Web Requests Chapter 8

[264]

 quint16 height; // Optional. Height in pixels. Max 400, default
 31

 void update(const QDomNode& domNode)
 {
 QDomElement imageUrl = domNode.firstChildElement("url");
 if(!imageUrl.isNull()) {
 url = imageUrl.text();
 }
 QDomElement imageTitle = domNode.firstChildElement("title");
 if(!imageTitle.isNull()) {
 title = imageTitle.text();
 }
 QDomElement imageLink = domNode.firstChildElement("link");
 if(!imageLink.isNull()) {
 link = imageLink.text();
 }
 QDomElement imageWidth = domNode.firstChildElement("width");
 if(!imageWidth.isNull()) {
 width = static_cast<quint16>(imageWidth.text().toShort());
 } else {
 width = 88;
 }
 QDomElement imageHeight = domNode.firstChildElement("height");
 if(!imageHeight.isNull()) {
 height = static_cast<quint16>
 (imageHeight.text().toShort());
 } else {
 height = 31;
 }
 }
};

RssImage::RssImage(QObject* parent, const QDomNode& domNode)
 : QObject(parent)
{
 implementation.reset(new Implementation());
 implementation->update(domNode);
}

RssImage::~RssImage()
{
}

quint16 RssImage::height() const
{
 return implementation->height;
}

Web Requests Chapter 8

[265]

const QString& RssImage::link() const
{
 return implementation->link;
}

const QString& RssImage::title() const
{
 return implementation->title;
}

const QString& RssImage::url() const
{
 return implementation->url;
}

quint16 RssImage::width() const
{
 return implementation->width;
}

}}

This class is just a regular plain data model with the exception that it will be constructed
from an XML <image> node represented by Qt’s QDomNode class. We use the
firstChildElement() method to locate the <url>, <title>, and <link> mandatory
child nodes and then access the value of each node via the text() method. The <width> and
<height> nodes are optional and if they are not present, we use the default image size of
88 x 31 pixels.

rss-item.h:

#ifndef RSSITEM_H
#define RSSITEM_H

#include <QDateTime>
#include <QObject>
#include <QscopedPointer>
#include <QtXml/QDomNode>
#include <cm-lib_global.h>

namespace cm {
namespace rss {

class CMLIBSHARED_EXPORT RssItem : public QObject
{
 Q_OBJECT
 Q_PROPERTY(QString ui_description READ description CONSTANT)

Web Requests Chapter 8

[266]

 Q_PROPERTY(QString ui_link READ link CONSTANT)
 Q_PROPERTY(QDateTime ui_pubDate READ pubDate CONSTANT)
 Q_PROPERTY(QString ui_title READ title CONSTANT)

public:
 RssItem(QObject* parent = nullptr, const QDomNode& domNode =
QDomNode());
 ~RssItem();

 const QString& description() const;
 const QString& link() const;
 const QDateTime& pubDate() const;
 const QString& title() const;

private:
 class Implementation;
 QScopedPointer<Implementation> implementation;
};

}}

#endif

rss-item.cpp:

#include "rss-item.h"
#include <QTextStream>
#include <utilities/xml-helper.h>

using namespace cm::utilities;

namespace cm {
namespace rss {
class RssItem::Implementation
{
public:
 Implementation(RssItem* _rssItem)
 : rssItem(_rssItem)
 {
 }

 RssItem* rssItem{nullptr};
 QString description; // This or Title mandatory. Either the
 synopsis or full story. HTML is allowed.
 QString link; // Optional. Link to full story. Populated
 if Description is only the synopsis.
 QDateTime pubDate; // Optional. When the item was published.
 RFC 822 format e.g. Sun, 19 May 2002 15:21:36 GMT.

Web Requests Chapter 8

[267]

 QString title; // This or Description mandatory.

 void update(const QDomNode& domNode)
 {
 for(auto i = 0; i < domNode.childNodes().size(); ++i) {
 QDomNode childNode = domNode.childNodes().at(i);
 if(childNode.nodeName() == "description") {
 description = XmlHelper::toString(childNode);
 }
 }
 QDomElement itemLink = domNode.firstChildElement("link");
 if(!itemLink.isNull()) {
 link = itemLink.text();
 }
 QDomElement itemPubDate = domNode.firstChildElement("pubDate");
 if(!itemPubDate.isNull()) {
 pubDate = QDateTime::fromString(itemPubDate.text(),
 Qt::RFC2822Date);
 }
 QDomElement itemTitle = domNode.firstChildElement("title");
 if(!itemTitle.isNull()) {
 title = itemTitle.text();
 }
 }
};

RssItem::RssItem(QObject* parent, const QDomNode& domNode)
{
 implementation.reset(new Implementation(this));
 implementation->update(domNode);
}

RssItem::~RssItem()
{
}

const QString& RssItem::description() const
{
 return implementation->description;
}

const QString& RssItem::link() const
{
 return implementation->link;
}

const QDateTime& RssItem::pubDate() const
{

Web Requests Chapter 8

[268]

 return implementation->pubDate;
}

const QString& RssItem::title() const
{
 return implementation->title;
}

}}

This class is much the same as the last. This time we put our XMLHelper class to use when
parsing the <description> node as that has a good chance of containing HTML tags. Also
note that Qt also helpfully contains the Qt::RFC2822Date format specifier when
converting a string to a QDateTime object using the static QDateTime::fromString()
method. This is the format used in the RSS specification and saves us from having to
manually parse the dates ourselves.

rss-channel.h:

#ifndef RSSCHANNEL_H
#define RSSCHANNEL_H

#include <QDateTime>
#include <QtXml/QDomElement>
#include <QtXml/QDomNode>
#include <QList>
#include <QObject>
#include <QtQml/QQmlListProperty>
#include <QString>

#include <cm-lib_global.h>
#include <rss/rss-image.h>
#include <rss/rss-item.h>

namespace cm {
namespace rss {

class CMLIBSHARED_EXPORT RssChannel : public QObject
{
 Q_OBJECT
 Q_PROPERTY(QString ui_description READ description CONSTANT)
 Q_PROPERTY(cm::rss::RssImage* ui_image READ image CONSTANT)
 Q_PROPERTY(QQmlListProperty<cm::rss::RssItem> ui_items READ
 ui_items CONSTANT)
 Q_PROPERTY(QString ui_link READ link CONSTANT)
 Q_PROPERTY(QString ui_title READ title CONSTANT)

Web Requests Chapter 8

[269]

public:
 RssChannel(QObject* parent = nullptr, const QDomNode& domNode =
QDomNode());
 ~RssChannel();

 void addItem(RssItem* item);
 const QString& description() const;
 RssImage* image() const;
 const QList<RssItem*>& items() const;
 const QString& link() const;
 void setImage(RssImage* image);
 const QString& title() const;
 QQmlListProperty<RssItem> ui_items();

 static RssChannel* fromXml(const QByteArray& xmlData, QObject*
 parent = nullptr);

private:
 class Implementation;
 QScopedPointer<Implementation> implementation;
};

}}

#endif

rss-channel.cpp:

#include "rss-channel.h"
#include <QtXml/QDomDocument>

namespace cm {
namespace rss {

class RssChannel::Implementation
{
public:
 QString description; // Mandatory. Phrase or sentence
describing the channel.
 RssImage* image{nullptr}; // Optional. Image representing the
channel.
 QList<RssItem*> items; // Optional. Collection representing
stories.
 QString link; // Mandatory. URL to the corresponding
HTML website.
 QString title; // Mandatory. THe name of the Channel.

 void update(const QDomNode& domNode)

Web Requests Chapter 8

[270]

 {
 QDomElement channelDescription =
domNode.firstChildElement("description");
 if(!channelDescription.isNull()) {
 description = channelDescription.text();
 }
 QDomElement channelLink = domNode.firstChildElement("link");
 if(!channelLink.isNull()) {
 link = channelLink.text();
 }
 QDomElement channelTitle = domNode.firstChildElement("title");
 if(!channelTitle.isNull()) {
 title = channelTitle.text();
 }
 }
};

RssChannel::RssChannel(QObject* parent, const QDomNode& domNode)
 : QObject(parent)
{
 implementation.reset(new Implementation());
 implementation->update(domNode);
}

RssChannel::~RssChannel()
{
}

void RssChannel::addItem(RssItem* item)
{
 if(!implementation->items.contains(item)) {
 item->setParent(this);
 implementation->items.push_back(item);
 }
}

const QString& RssChannel::description() const
{
 return implementation->description;
}

RssImage* RssChannel::image() const
{
 return implementation->image;
}

const QList<RssItem*>& RssChannel::items() const
{

Web Requests Chapter 8

[271]

 return implementation->items;
}

const QString& RssChannel::link() const
{
 return implementation->link;
}

void RssChannel::setImage(RssImage* image)
{
 if(implementation->image) {
 implementation->image->deleteLater();
 implementation->image = nullptr;
 }
 image->setParent(this);
 implementation->image = image;
}

const QString& RssChannel::title() const
{
 return implementation->title;
}
QQmlListProperty<RssItem> RssChannel::ui_items()
{
 return QQmlListProperty<RssItem>(this, implementation->items);
}

RssChannel* RssChannel::fromXml(const QByteArray& xmlData, QObject* parent)
{
 QDomDocument doc;
 doc.setContent(xmlData);
 auto channelNodes = doc.elementsByTagName("channel");
 // Rss must have 1 channel
 if(channelNodes.size() != 1) return nullptr;
 RssChannel* channel = new RssChannel(parent, channelNodes.at(0));
 auto imageNodes = doc.elementsByTagName("image");
 if(imageNodes.size() > 0) {
 channel->setImage(new RssImage(channel, imageNodes.at(0)));
 }
 auto itemNodes = doc.elementsByTagName("item");
 for (auto i = 0; i < itemNodes.size(); ++i) {
 channel->addItem(new RssItem(channel, itemNodes.item(i)));
 }
 return channel;
}

}}

Web Requests Chapter 8

[272]

This class is broadly the same as the previous classes, but because this is the root object of
our XML tree, we also have a static fromXml() method. The goal here is to take the byte
array from the RSS web request response containing the RSS feed XML and have the
method create an RSS Channel, Image, and Items hierarchy for us.

We pass the XML byte array into the Qt QDomDocument class, much like we have done
previously with JSON and the QJsonDocument class. We find the <channel> tag using the
elementsByTagName() method and then construct a new RssChannel object using that
tag as the QDomNode parameter of the constructor. The RssChannel populates its own
properties, thanks to the update() method. We then locate the <image> and <item> child
nodes and create new RssImage and RssItem instances that are added to the root
RssChannel object. Again, the classes are capable of populating their own properties from
the supplied QDomNode.

Before we forget, let’s also register the classes in main():

qmlRegisterType<cm::rss::RssChannel>("CM", 1, 0, "RssChannel");
qmlRegisterType<cm::rss::RssImage>("CM", 1, 0, "RssImage");
qmlRegisterType<cm::rss::RssItem>("CM", 1, 0, "RssItem");

We can now add an RssChannel to our MasterController for the UI to bind to:

In MasterController, add a new rssChannel private member variable of1.
the RssChannel* type
Add an rssChannel() accessor method2.
Add a rssChannelChanged() signal3.
Add a Q_PROPERTY named ui_rssChannel using the accessor for READ and4.
signal for NOTIFY

Rather than creating one construction when we don’t have any RSS data to feed it, we’ll do
it in the RSS reply delegate:

void MasterController::onRssReplyReceived(int statusCode, QByteArray body)
{
 qDebug() << "Received RSS request response code " << statusCode << ":";
 qDebug() << body;

 if(implementation->rssChannel) {
 implementation->rssChannel->deleteLater();
 implementation->rssChannel = nullptr;
 emit rssChannelChanged();
 }

Web Requests Chapter 8

[273]

 implementation->rssChannel = RssChannel::fromXml(body, this);
 emit rssChannelChanged();
}

We perform some housekeeping that checks whether we already have an old channel object
in memory and if we do, it safely deletes it using the deleteLater() method of QObject.
We then go ahead and construct a new channel using the XML data from the web request.

Always use deleteLater() on QObject derived classes rather than the
standard C++ delete keyword as the destruction will be synchronized
with the event loop and you will minimize the risk of unexpected
exceptions.

We will display the RSS items in the response in a similar way to how we managed the
search results, with a ListView and associated delegate. Add RssItemDelegate.qml to
cm-ui/components and perform the usual steps of editing the components.qrc and
qmldir files:

import QtQuick 2.9
import assets 1.0
import CM 1.0

Item {
 property RssItem rssItem
 implicitWidth: parent.width
 implicitHeight: background.height

 Rectangle {
 id: background
 width: parent.width
 height: textPubDate.implicitHeight + textTitle.implicitHeight +
 borderBottom.height + (Style.sizeItemMargin * 3)
 color: Style.colourPanelBackground

 Text {
 id: textPubDate
 anchors {
 top: parent.top
 left: parent.left
 right: parent.right
 margins: Style.sizeItemMargin
 }
 text: Qt.formatDateTime(rssItem.ui_pubDate, "ddd, d MMM
 yyyy @ h:mm ap")
 font {
 pixelSize: Style.pixelSizeDataControls

Web Requests Chapter 8

[274]

 italic: true
 weight: Font.Light
 }
 color: Style.colorItemDateFont
 }

 Text {
 id: textTitle
 anchors {
 top: textPubDate.bottom
 left: parent.left
 right: parent.right
 margins: Style.sizeItemMargin
 }
 text: rssItem.ui_title
 font {
 pixelSize: Style.pixelSizeDataControls
 }
 color: Style.colorItemTitleFont
 wrapMode: Text.Wrap
 }

 Rectangle {
 id: borderBottom
 anchors {
 top: textTitle.bottom
 left: parent.left
 right: parent.right
 topMargin: Style.sizeItemMargin
 }
 height: 1
 color: Style.colorItemBorder
 }

 MouseArea {
 anchors.fill: parent
 cursorShape: Qt.PointingHandCursor
 hoverEnabled: true
 onEntered: background.state = "hover"
 onExited: background.state = ""
 onClicked: if(rssItem.ui_link !== "") {
 Qt.openUrlExternally(rssItem.ui_link);
 }
 }

 states: [
 State {
 name: "hover"

Web Requests Chapter 8

[275]

 PropertyChanges {
 target: background
 color: Style.colourPanelBackgroundHover
 }
 }
]
 }
}

To support this component, we will need to add a few more Style properties:

readonly property color colourItemBackground: "#fefefe"
readonly property color colourItemBackgroundHover: "#efefef"
readonly property color colorItemBorder: "#efefef"
readonly property color colorItemDateFont: "#636363"
readonly property color colorItemTitleFont: "#131313"
readonly property real sizeItemMargin: 5

We can now utilize this delegate in RssView:

import QtQuick 2.9
import assets 1.0
import components 1.0

Item {
 Rectangle {
 anchors.fill: parent
 color: Style.colourBackground
 }

 ListView {
 id: itemsView
 anchors {
 top: parent.top
 left: parent.left
 right: parent.right
 bottom: commandBar.top
 margins: Style.sizeHeaderMargin
 }
 clip: true
 model: masterController.ui_rssChannel ?
masterController.ui_rssChannel.ui_items : 0
 delegate: RssItemDelegate {
 rssItem: modelData
 }
 }

 CommandBar {

Web Requests Chapter 8

[276]

 id: commandBar
 commandList:
masterController.ui_commandController.ui_rssViewContextCommands
 }
}

Build and run, navigate to the RSS View, and click on the Refresh button to make the web
request and display the response:

Hover over the items to see the cursor effects and click on an item to open it in your default
web browser. Qt handles this action for us in the Qt.openUrlExternally() method, to
which we pass the RSS Item link property.

Web Requests Chapter 8

[277]

Summary
In this chapter, we extended our reach outside of our application and began interacting
with external APIs using HTTP requests over the internet. We abstracted the Qt
functionality using our own interfaces to improve decoupling and make our components
more test friendly. We took a quick look at RSS and its structure and how to process XML
node trees using Qt’s XML module. Finally, we reinforced the great UI work we’ve been
doing and added an interactive view to display an RSS feed and launch the default web
browser for a given URL.

In Chapter 9, Wrapping Up, we will take a look at the steps required to package our
application for deployment to other computers.

9
Wrapping Up

In this chapter, we will mop up a couple of subjects that didn't quite make it into the earlier
chapters. We’ll make our application more testable by moving object creation into an object
factory. We’ll make our UI even more dynamic by adding scaling capabilities.
EnumeratorDecorator properties get their own UI components, and we’ll put them to use
when we add contact management. Finally, we’ll wrap everything up by packaging and
deploying our application. We will cover the following topics:

Object factories
Dynamic UI scaling
Adding an image to the Dashboard
Enumerator selectors
Managing Contacts
Deployment and installation of our application

Object factory
In a larger system with more comprehensive MasterController tests in place, having all
of that object creation hard-coded inside the private implementation will cause problems
because of the tight coupling between the MasterController and its dependencies. One
option will be to create all the other objects in main() instead and inject them into the
MasterController constructor as we have done with the other controllers. This will mean
injecting a lot of constructor parameters, and it is handy to be able to keep the
MasterController instance as the parent of all the other objects, so we will inject a single
object factory that the controller can use for all of its object creation needs instead.

Wrapping Up Chapter 9

[279]

The critical part of this factory pattern is to hide everything behind interfaces, so when
testing MasterController, you can pass in a mock factory and control all the object
creation. In cm-lib, create a new i-object-factory.h header file in
source/framework:

#ifndef IOBJECTFACTORY_H
#define IOBJECTFACTORY_H

#include <controllers/i-command-controller.h>
#include <controllers/i-database-controller.h>
#include <controllers/i-navigation-controller.h>
#include <models/client.h>
#include <models/client-search.h>
#include <networking/i-network-access-manager.h>
#include <networking/i-web-request.h>

namespace cm {
namespace framework {

class IObjectFactory
{
public:
 virtual ~IObjectFactory(){}

 virtual models::Client* createClient(QObject* parent) const = 0;
 virtual models::ClientSearch* createClientSearch(QObject* parent,
controllers::IDatabaseController* databaseController) const = 0;
 virtual controllers::ICommandController*
createCommandController(QObject* parent, controllers::IDatabaseController*
databaseController, controllers::INavigationController*
navigationController, models::Client* newClient, models::ClientSearch*
clientSearch, networking::IWebRequest* rssWebRequest) const = 0;
 virtual controllers::IDatabaseController*
createDatabaseController(QObject* parent) const = 0;
 virtual controllers::INavigationController*
createNavigationController(QObject* parent) const = 0;
 virtual networking::INetworkAccessManager*
createNetworkAccessManager(QObject* parent) const = 0;
 virtual networking::IWebRequest* createWebRequest(QObject* parent,
networking::INetworkAccessManager* networkAccessManager, const QUrl& url)
const = 0;
};

}}

#endif

Wrapping Up Chapter 9

[280]

All the objects we will create will be moved behind interfaces apart from the models. This is
because they are essentially just data containers, and we can easily create real instances in a
test scenario with no side effects.

We will skip that exercise here for brevity and leave it as an exercise for
the reader. Use IDatabaseController as an example or refer to the code
samples.

With the factory interface available, change the MasterController constructor to take an
instance as a dependency:

MasterController::MasterController(QObject* parent, IObjectFactory*
objectFactory)
 : QObject(parent)
{
 implementation.reset(new Implementation(this, objectFactory));
}

We pass the object through to Implementation and store it in a private member variable
as we have done numerous times before. With the factory available, we can now move all
the new based object creation statements into a concrete implementation of the
IObjectFactory interface (the ObjectFactory class) and replace those statements in
MasterController with something more abstract and testable:

Implementation(MasterController* _masterController, IObjectFactory*
_objectFactory)
 : masterController(_masterController)
 , objectFactory(_objectFactory)
{
 databaseController =
objectFactory->createDatabaseController(masterController);
 clientSearch = objectFactory->createClientSearch(masterController,
databaseController);
 navigationController =
objectFactory->createNavigationController(masterController);
 networkAccessManager =
objectFactory->createNetworkAccessManager(masterController);
 rssWebRequest = objectFactory->createWebRequest(masterController,
networkAccessManager,
QUrl("http://feeds.bbci.co.uk/news/rss.xml?edition=uk"));
 QObject::connect(rssWebRequest, &IWebRequest::requestComplete,
masterController, &MasterController::onRssReplyReceived);
 newClient = objectFactory->createClient(masterController);
 commandController =
objectFactory->createCommandController(masterController,

Wrapping Up Chapter 9

[281]

databaseController, navigationController, newClient, clientSearch,
rssWebRequest);
}

Now, when testing MasterController, we can pass in a mock implementation of the
IObjectFactory interface and control the creation of objects. In addition to implementing
ObjectFactory and passing it to MasterController when we instantiate it, one further
change is that in main.cpp, we now need to register the interfaces to
NavigationController and CommandController, rather than the concrete
implementations. We do this by simply swapping out the qmlRegisterType statements
with the qmlRegisterUncreatableType companion:

qmlRegisterUncreatableType<cm::controllers::INavigationController>("CM", 1,
0, "INavigationController", "Interface");
qmlRegisterUncreatableType<cm::controllers::ICommandController>("CM", 1, 0,
"ICommandController", "Interface");

UI scaling
We’ve focused a lot on responsive UI in this book, using anchors and relative positioning
where possible so that when the user resizes the window, the contents scale and adjust
themselves appropriately. We’ve also pulled all the “hard-coded” properties like sizes and
colors into a centralized Style object.

If we pick a property concerned with sizing, for example, sizeScreenMargin, it currently
has a fixed value of 20. If we decide to increase the starting size of our Window element in
MasterView, this screen margin size will remain the same. Now, it’s really easy to increase
the screen margin too, thanks to the Style object, but it would be nice if all the hard-coded
properties could scale up and down dynamically along with our Window element. That
way, we can try out different window sizes without having to update Style each time.

As we’ve already seen, the flexibility of QML is extended even further with the built-in
JavaScript support, and we can do just that.

First, let’s create new width and height properties for the window in Style:

readonly property real widthWindow: 1920
readonly property real heightWindow: 1080

Wrapping Up Chapter 9

[282]

Use these new properties in MasterView:

Window {
 width: Style.widthWindow
 height: Style.heightWindow
 ….
}

All the size properties in Style that we’ve created so far are relevant to this window size of
1920 x 1080, so let’s record that as new properties in Style:

readonly property real widthWindowReference: 1920
readonly property real heightWindowReference: 1080

We can then use the reference sizes and the actual sizes to calculate scaling factors in the
horizontal and vertical axes. So in simple terms, if we design everything with a window
width of 1,000 in mind and then we set the window to be 2,000 wide, we want everything to
scale horizontally by a factor of 2. Add the following functions to Style:

function hscale(size) {
 return Math.round(size * (widthWindow / widthWindowReference))
}
function vscale(size) {
 return Math.round(size * (heightWindow / heightWindowReference))
}
function tscale(size) {
 return Math.round((hscale(size) + vscale(size)) / 2)
}

The hscale and vscale functions calculate the horizontal and vertical scaling factors
respectively. For certain size properties like pixel size for fonts, there is no independent
width and height, so we can calculate an average of the horizontal and vertical scales using
the tscale function.

We can then wrap any properties we want to scale in the appropriate function. For example,
our screen margin can use the tscale function:

readonly property real sizeScreenMargin: tscale(20)

Now, not only can you increase the initial size of the window in Style, but your selected
properties will automatically scale to the new size.

Wrapping Up Chapter 9

[283]

A really useful module you can add to help with sizing is
QtQuick.Window. We already added this to MasterView in order to
access the Window element. There is another object in that module,
Screen, which makes available information regarding the user’s display. It
contains properties for things like the width and height of the screen, and
orientation and pixel density, which can be useful if you’re working with
high DPI displays such as the Microsoft Surface or Macbook. You can use
these values in conjunction with your Style properties to do things such as
making your window fullscreen, or make it 50% of the screen size and
positioning it in the center of the display.

Dashboard
A Dashboard or “home page” is a great place to welcome users and present the current state
of play. Daily messages, facts and figures, performance charts, or simply some company
branding can all help orient and focus the user. Let’s jazz up our Dashboard view a little
and demonstrate how to display images to boot.

Grab an image of your choice that has a 1:1 aspect ratio, which means that the width is the
same as the height. It’s not necessary to be square, it’s just simpler to manage the scaling for
the purposes of this example. I have picked the Packt logo, which is 500 x 500 pixels, and
which I have saved as packt-logo-500x500.jpg. Save it to cm/cm-ui/assets and add it
to our assets.qrc resources:

<file alias="packt-logo-500x500">assets/packt-logo-500x500.jpg</file>

Add some new Style properties, leveraging our new scaling capabilities:

readonly property color colourDashboardBackground: "#f36f24"
readonly property color colourDashboardFont: "#ffffff"
readonly property int pixelSizeDashboard: tscale(36)
readonly property real sizeDashboardLogo: tscale(500)

Then, we can add our image to DashboardView:

Item {
 Rectangle {
 anchors.fill: parent
 color: Style.colourDashboardBackground

 Image {
 id: logo
 source: "qrc:/assets/packt-logo-500x500"

Wrapping Up Chapter 9

[284]

 anchors.centerIn: parent
 width: Style.sizeDashboardLogo
 height: Style.sizeDashboardLogo
 }

 Text {
 anchors {
 top: logo.bottom
 horizontalCenter: logo.horizontalCenter
 }
 text: "Client Management System"
 color: Style.colourDashboardFont
 font.pixelSize: Style.pixelSizeDashboard
 }
 }
}

Now, when we go to the Dashboard, we can see something a bit more stimulating:

Wrapping Up Chapter 9

[285]

Enumerator selectors
Back in Chapter 5, Data, we created a Contact model where we implemented a
ContactType property with an EnumeratorDecorator. For the other string-based
properties we’ve worked with in the book, a simple textbox is a fine solution for capturing
data, but how can we capture an enumerated value? The user can’t be expected to know the
underlying integer values of the enumerator, and asking them to type in a string
representation of the option they want is asking for trouble. What we really want is a drop-
down list that somehow utilizes the contactTypeMapper container we added to the class.
We’d like to present the string descriptions to the user to pick from but then store the
integer value in the EnumeratorDecorator object.

Desktop applications generally present drop-down lists in a particular way, with some kind
of selector you press that then pops out (or more accurately, drops down!) a scrollable list of
options to choose from. However, QML is geared toward not only cross-platform, but cross-
device applications, too. Many laptops have touch capable screens, and more and more
hybrid devices are appearing in the market that act as both laptops and tablets. As such, it’s
important to consider how “finger friendly” our application is, even if we’re not planning on
building the next big thing for the mobile stores, and the classic drop-down list can be
difficult to work with on a touch screen. Let’s instead use a button-based approach as used
on mobile devices.

Unfortunately, we can’t really work directly with our existing std::map in QML, so we will
need to add a few new classes to bridge the gap for us. We’ll represent each key/value pair
as a DropDownValue and hold a collection of these objects in a DropDown object. A
DropDown object should take a std::map<int, QString> in its constructor and create the
DropDownValue collection for us.

Create the DropDownValue class first in cm-lib/source/data.

dropdown-value.h:

#ifndef DROPDOWNVALUE_H
#define DROPDOWNVALUE_H

#include <QObject>
#include <cm-lib_global.h>

namespace cm {
namespace data {

class CMLIBSHARED_EXPORT DropDownValue : public QObject
{

Wrapping Up Chapter 9

[286]

 Q_OBJECT
 Q_PROPERTY(int ui_key MEMBER key CONSTANT)
 Q_PROPERTY(QString ui_description MEMBER description CONSTANT)

public:
 DropDownValue(QObject* parent = nullptr, int key = 0, const QString&
description = "");
 ~DropDownValue();

public:
 int key{0};
 QString description{""};
};

}}

#endif

dropdown-value.cpp:

#include "dropdown-value.h"

namespace cm {
namespace data {

DropDownValue::DropDownValue(QObject* parent, int _key, const QString&
_description)
 : QObject(parent)
{
 key = _key;
 description = _description;
}

DropDownValue::~DropDownValue()
{
}

}}

There's nothing complicated here, it’s just a QML friendly wrapper for an integer value and
associated string description.

Wrapping Up Chapter 9

[287]

Next, create the DropDown class, again in cm-lib/source/data.

dropdown.h:

#ifndef DROPDOWN_H
#define DROPDOWN_H

#include <QObject>
#include <QtQml/QQmlListProperty>

#include <cm-lib_global.h>
#include <data/dropdown-value.h>

namespace cm {
namespace data {

class CMLIBSHARED_EXPORT DropDown : public QObject
{
 Q_OBJECT
 Q_PROPERTY(QQmlListProperty<cm::data::DropDownValue> ui_values READ
ui_values CONSTANT)

public:
 explicit DropDown(QObject* _parent = nullptr, const std::map<int,
QString>& values = std::map<int, QString>());
 ~DropDown();

public:
 QQmlListProperty<DropDownValue> ui_values();

public slots:
 QString findDescriptionForDropdownValue(int valueKey) const;

private:
 class Implementation;
 QScopedPointer<Implementation> implementation;
};

}}

#endif

dropdown.cpp:

#include "dropdown.h"

namespace cm {
namespace data {

Wrapping Up Chapter 9

[288]

class DropDown::Implementation
{
public:
 Implementation(DropDown* _dropdown, const std::map<int, QString>&
_values)
 : dropdown(_dropdown)
 {
 for(auto pair : _values) {
 values.append(new DropDownValue(_dropdown, pair.first,
pair.second));
 }
 }
 DropDown* dropdown{nullptr};
 QList<DropDownValue*> values;
};

DropDown::DropDown(QObject* parent, const std::map<int, QString>& values)
 : QObject(parent)
{
 implementation.reset(new DropDown::Implementation(this, values));
}

DropDown::~DropDown()
{
}

QString DropDown::findDescriptionForDropdownValue(int valueKey) const
{
 for (auto value : implementation->values) {
 if (value->key == valueKey) {
 if(!value->description.isEmpty()) {
 return value->description;
 }
 break;
 }
 }

 return "Select >";
}

QQmlListProperty<DropDownValue> DropDown::ui_values()
{
 return QQmlListProperty<DropDownValue>(this, implementation->values);
}

}}

Wrapping Up Chapter 9

[289]

As discussed, we implement a constructor that takes the same kind of std::map that we
use in our EnumeratorDecorator class and create a collection of DropDownValue objects
based on it. The UI can then access that collection via the ui_values property. The other
capability we provide for the UI is via the findDescriptionForDropdownValue public
slot, and this allows the UI to take a selected integer value from an EnumeratorDecorator
and get the corresponding text description. If there is no current selection (that is, the
description is an empty string), then we will return Select > to denote to the user that
they need to make a selection.

As we will use these new types in QML, we need to register them in main.cpp:

qmlRegisterType<cm::data::DropDown>("CM", 1, 0, "DropDown");
qmlRegisterType<cm::data::DropDownValue>("CM", 1, 0, "DropDownValue");

Add a new DropDown property to the Contact named ui_contactTypeDropDown and in
the constructor, instantiate the member variable with the contactTypeMapper. Now,
whenever a Contact is presented in the UI, the associated DropDown will be available. This
can quite easily go into a dedicated component like a drop-down manager instead, if you
wanted to reuse drop-downs throughout the application, but for this example, let’s avoid
the additional complexity.

We will also need to be able to add a new contact object from the UI, so add a new public
slot to Client:

void Client::addContact()
{
 contacts->addEntity(new Contact(this));
 emit contactsChanged();
}

With the C++ done, we can move on to the UI implementation.

We will need a couple of components for the dropdown selection. When presenting an
EnumeratorDecorator property, we want to display the currently selected value, just as
we do with our string editor. Visually, it will resemble a button with the associated string
description as its label and when pressed, the user will be transitioned to the second
component that is essentially a view. This subview will take up the whole of the content
frame and present a list of all the available enumerated options, again represented as
buttons. When the user makes their selection by pressing one of the buttons, they will be
transitioned back to the original view, and their selection will be updated in the original
component.

Wrapping Up Chapter 9

[290]

First, we’ll create the view the user will transition to, which will list all the available options.
To support this, we need a few additional properties in Style:

readonly property color colourDataSelectorBackground: "#131313"
readonly property color colourDataControlsBackgroundSelected: "#f36f24"
readonly property color colourDataSelectorFont: "#ffffff"
readonly property int sizeDataControlsRadius: tscale(5)

Create EnumeratorSelectorView.qml in cm-ui/components:

import QtQuick 2.9
import QtQuick.Controls 2.2
import CM 1.0
import assets 1.0

Item {
 id: stringSelectorView
 property DropDown dropDown
 property EnumeratorDecorator enumeratorDecorator
 property int selectedValue

 ScrollView {
 id: scrollView
 visible: true
 anchors.fill: parent
 anchors {
 top: parent.bottom
 left: parent.left
 right: parent.right
 bottom: parent.top
 margins: Style.sizeScreenMargin
 }

 Flow {
 flow: Grid.TopToBottom
 spacing: Style.sizeControlSpacing
 height: scrollView.height

 Repeater {
 id: repeaterAnswers
 model: dropDown.ui_values
 delegate:
 Rectangle {
 property bool isSelected: modelData.ui_key.ui_value
=== enumeratorDecorator.ui_value
 width: Style.widthDataControls
 height: Style.heightDataControls

Wrapping Up Chapter 9

[291]

 radius: Style.sizeDataControlsRadius
 color: isSelected ?
Style.colourDataControlsBackgroundSelected :
Style.colourDataSelectorBackground

 Text {
 anchors {
 fill: parent
 margins: Style.heightDataControls / 4
 }
 text: modelData.ui_description
 color: Style.colourDataSelectorFont
 font.pixelSize: Style.pixelSizeDataControls
 verticalAlignment: Qt.AlignVCenter
 }

 MouseArea {
 anchors.fill: parent
 onClicked: {
 selectedValue = modelData.ui_key;
 contentFrame.pop();
 }
 }
 }
 }
 }
 }

 Binding {
 target: enumeratorDecorator
 property: "ui_value"
 value: selectedValue
 }
}

Here, we use a Repeater element for the first time. A Repeater instantiates the QML element
defined in its delegate property for each item it finds in its model property. We pass it the
collection of DropDownValue objects as its model and create a delegate inline. The delegate
is essentially another button with some selection code. We can create a new custom
component and use that for the delegate instead to keep the code cleaner, but we’ll skip that
here for brevity. The key parts of this component are the Binding element that gives us the
two-way binding to the supplied EnumeratorDecorator, and the onClicked event
delegate in the MouseArea, which performs the update and pops this component off the
stack, returning us to whichever view we came from.

Wrapping Up Chapter 9

[292]

Create a new EnumeratorSelector.qml in cm-ui/components:

import QtQuick 2.9
import QtQuick.Controls 2.2
import CM 1.0
import assets 1.0

Item {
 property DropDown dropDown
 property EnumeratorDecorator enumeratorDecorator
 id: enumeratorSelectorRoot
 height: width > textLabel.width + textAnswer.width ?
 Style.heightDataControls : Style.heightDataControls * 2

 Flow {
 anchors.fill: parent

 Rectangle {
 width: Style.widthDataControls
 height: Style.heightDataControls
 Text {
 id: textLabel
 anchors {
 fill: parent
 margins: Style.heightDataControls / 4
 }
 text: enumeratorDecorator.ui_label
 color: Style.colourDataControlsFont
 font.pixelSize: Style.pixelSizeDataControls
 verticalAlignment: Qt.AlignVCenter
 }
 }

 Rectangle {
 id: buttonAnswer
 width: Style.widthDataControls
 height: Style.heightDataControls
 radius: Style.sizeDataControlsRadius
 enabled: dropDown ? dropDown.ui_values.length > 0 : false
 color: Style.colourDataSelectorBackground

 Text {
 id: textAnswer
 anchors {
 fill: parent
 margins: Style.heightDataControls / 4
 }

Wrapping Up Chapter 9

[293]

 text:
dropDown.findDescriptionForDropdownValue(enumeratorDecorator.ui_value)
 color: Style.colourDataSelectorFont
 font.pixelSize: Style.pixelSizeDataControls
 verticalAlignment: Qt.AlignVCenter
 }

 MouseArea {
 anchors.fill: parent
 onClicked:
contentFrame.push("qrc:/components/EnumeratorSelectorView.qml",
 {dropDown: enumeratorSelectorRoot.dropDown,
 enumeratorDecorator: enumeratorSelectorRoot.enumeratorDecorator})
 }
 }
 }
}

This component has a lot of similarities to StringEditorSingleLine in its layout, but it
replaces the Text element with a button representation. We grab the value from the bound
EnumeratorDecorator and pass that to the slot we created on the DropDown class to get
the string description for the currently selected value. When the user presses the button, the
onClicked event of the MouseArea performs the same kind of view transition we’ve seen
in MasterView, taking the user to the new EnumeratorSelectorView.

We’re cheating a bit here in that we are directly referencing the
StackView in MasterView by its contentFrame ID. At design time, Qt
Creator can’t know what contentFrame is as it is in a totally different file,
so it may flag it as an error, and you certainly won’t get auto-completion.
At runtime, however, this component will be part of the same QML
hierarchy as MasterView, so it will be able to find it. This is a risky
approach, because if another element in the hierarchy is also called
contentFrame, then bad things may happen. A safer way to do this is to
pass contentFrame all the way down through the QML hierarchy from
MasterView as a QtObject property.

When we add or edit a Client, we currently ignore contacts and always have an empty
collection. Let’s take a look at how we can add objects to a collection and put our shiny new
EnumeratorSelector to use while we’re at it.

Wrapping Up Chapter 9

[294]

Contacts
We will need a handful of new UI components to manage our contacts. We’ve previously
worked with an AddressEditor to look after our address details, so we’ll continue in that
mold and create a ContactEditor component. This component will display our collection
of contacts, each of which will be represented by a ContactDelegate. Upon initially
creating a new Client object, there won’t be any contacts, so we also need some way for the
user to add a new one. We’ll enable that with a button press, and we’ll create a new
component for buttons we can add to a content view. Let’s do that first.

To support this new component, as usual, we’ll go ahead and add some properties to Style:

readonly property real widthFormButton: 240
readonly property real heightFormButton: 60
readonly property color colourFormButtonBackground: "#f36f24"
readonly property color colourFormButtonFont: "#ffffff"
readonly property int pixelSizeFormButtonIcon: 32
readonly property int pixelSizeFormButtonText: 22
readonly property int sizeFormButtonRadius: 5

Create FormButton.qml in cm-ui/components:

import QtQuick 2.9
import CM 1.0
import assets 1.0

Item {
 property alias iconCharacter: textIcon.text
 property alias description: textDescription.text
 signal formButtonClicked()
 width: Style.widthFormButton
 height: Style.heightFormButton

 Rectangle {
 id: background
 anchors.fill: parent
 color: Style.colourFormButtonBackground
 radius: Style.sizeFormButtonRadius

 Text {
 id: textIcon
 anchors {
 verticalCenter: parent.verticalCenter
 left: parent.left
 margins: Style.heightFormButton / 4
 }

Wrapping Up Chapter 9

[295]

 font {
 family: Style.fontAwesome
 pixelSize: Style.pixelSizeFormButtonIcon
 }
 color: Style.colourFormButtonFont
 text: "\uf11a"
 horizontalAlignment: Text.AlignHCenter
 verticalAlignment: Text.AlignVCenter
 }

 Text {
 id: textDescription
 anchors {
 left: textIcon.left
 bottom: parent.bottom
 top: parent.top
 right: parent.right
 }
 font.pixelSize: Style.pixelSizeFormButtonText
 color: Style.colourFormButtonFont
 text: "SET ME!!"
 horizontalAlignment: Text.AlignHCenter
 verticalAlignment: Text.AlignVCenter
 }

 MouseArea {
 anchors.fill: parent
 cursorShape: Qt.PointingHandCursor
 hoverEnabled: true
 onEntered: background.state = "hover"
 onExited: background.state = ""
 onClicked: formButtonClicked()
 }

 states: [
 State {
 name: "hover"
 PropertyChanges {
 target: background
 color: Qt.darker(Style.colourFormButtonBackground)
 }
 }
]
 }
}

Wrapping Up Chapter 9

[296]

Here, we combine aspects of the NavigationButton and CommandButton controls we
wrote earlier in the book. The only real difference is that it is intended for more free-form
use in the main content frame rather than being constrained to one of the toolbars.

Next, let’s add the component we’ll use to display/edit a single Contact object. Create
ContactDelegate.qml in cm-ui/components:

import QtQuick 2.9
import CM 1.0
import assets 1.0

Item {
 property Contact contact
 implicitWidth: flow.implicitWidth
 implicitHeight: flow.implicitHeight + borderBottom.implicitHeight +
Style.sizeItemMargin
 height: width > selectorType.width + textAddress.width +
Style.sizeScreenMargin
 ? selectorType.height + borderBottom.height +
Style.sizeItemMargin
 : selectorType.height + textAddress.height +
Style.sizeScreenMargin + borderBottom.height + Style.sizeItemMargin

 Flow {
 id: flow
 width: parent.width
 spacing: Style.sizeScreenMargin

 EnumeratorSelector {
 id: selectorType
 width: Style.widthDataControls
 dropDown: contact.ui_contactTypeDropDown
 enumeratorDecorator: contact.ui_contactType
 }

 StringEditorSingleLine {
 id: textAddress
 width: Style.widthDataControls
 stringDecorator: contact.ui_address
 }
 }

 Rectangle {
 id: borderBottom
 anchors {
 top: flow.bottom
 left: parent.left

Wrapping Up Chapter 9

[297]

 right: parent.right
 topMargin: Style.sizeItemMargin
 }
 height: 1
 color: Style.colorItemBorder
 }
}

This is much the same as the RssItemDelegate we added in Chapter 8, Web Requests. We
add our new EnumeratorSelector and bind it to the ui_contactType property, using
ui_contactTypeDropDown to provide the control with the drop-down information it
needs.

Create ContactsEditor.qml in cm-ui/components:

import QtQuick 2.9
import CM 1.0
import assets 1.0

Panel {
 property Client client
 id: contactsEditorRoot
 contentComponent:
 Column {
 id: column
 spacing: Style.sizeControlSpacing

 Repeater {
 id: contactsView
 model: client.ui_contacts
 delegate:
 ContactDelegate {
 width: contactsEditorRoot.width
 contact: modelData
 }
 }

 FormButton {
 iconCharacter: "\uf067"
 description: "Add Contact"
 onFormButtonClicked: {
 client.addContact();
 }
 }
 }
}

Wrapping Up Chapter 9

[298]

We’ve already done all the hard work in our ContactDelegate and FormButton controls,
so this is really short and sweet. We add everything to a Panel so that the look and feel will
be consistent with the rest of the views. We use another Repeater so that we can spin up a
ContactDelegate for every contact in the collection and immediately after the contacts,
we display a button to add a new contact to the list. In order to do this, we call the
addContact() method we added earlier in this chapter.

Now, we just need to add instances of our ContactsEditor to the CreateClientView:

ContactsEditor {
 width: scrollView.width
 client: newClient
 headerText: "Contact Details"
}

We can also use the same component in EditClientView:

ContactsEditor {
 width: scrollView.width
 client: selectedClient
 headerText: "Contact Details"
}

Wrapping Up Chapter 9

[299]

That’s it. Build and Run, and you can add and edit contacts to your heart’s content:

Wrapping Up Chapter 9

[300]

Once you save a new client, if you take a look at the database, you will see that the
contacts array has been updated accordingly, as highlighted in the following screenshot:

All that’s left now is the appointments collection, and we’ve already covered all the skills
you need to tackle that, so we’ll leave that as an exercise for the reader and move on to the
final topic—deploying our application to our end users.

Deployment preparation
The center piece of our application is the cm-ui executable. This is the file that gets
launched by the end user and that opens graphical windows and orchestrates all the fancy
stuff we’ve written. When we run the cm-ui project in Qt Creator, it opens the executable
file for us and everything works perfectly. However, distributing our application to another
user is unfortunately more complicated than simply plonking a copy of the executable on
their machine and launching it.

Wrapping Up Chapter 9

[301]

Our executable has a variety of dependencies that need to be in place in order for it to run.
A prime example of a dependency is our very own cm-lib library. Pretty much all of our
business logic is hidden away in there, and without that functionality, our UI can’t do
much. The implementation details for dependency resolution across the various operating
systems are complex and well beyond the scope of this book. However, the fundamental
requirements of our application are the same, irrespective of the platform.

There are four categories of dependency that we need to consider and ensure that they are
in place on our target user’s machine in order for our application to function:

Item 1: Custom libraries we’ve written or added to our solution manually. In this
case, it is only the cm-lib library that we need to worry about.
Item 2: The parts of the Qt framework that our application links to, both directly
and indirectly. We already know some of these through the modules we’ve
added to our .pro files, for example, the qml and quick modules require the
QtQml and QtQuick components.
Item 3: Any internal dependencies of the Qt framework itself. This includes
platform-specific files, resources for the QML subsystem, and third-party libraries
such as sqlite or openssl.
Item 4: Any libraries required by the C++ compiler we have built the application
with.

We’ve already worked extensively with item 1, back in Chapter 2, Project Structure, we put
a lot of work into controlling exactly where that output goes. We haven’t really needed to
worry about items 2 and 3, because we have a full installation of the Qt Framework in our
development machine and that takes care of everything for us. Similarly, item 4 is dictated
by the kit we use, and if we have a compiler available on our machine, it follows that we
have the libraries it needs too.

Identifying exactly what we need to copy for our end users (who more than likely don’t
have Qt or other development tools installed) can be an excruciating exercise. Even once
we’ve done that, packaging everything up into a neat package or installer that is simple for
the user to run can be a project in itself. Fortunately, Qt offers us some help in the form of
bundled tools.

Linux and macOS X have a concept of application packages, whereby the application
executable and all dependencies can be rolled up together into a single file that can then be
easily distributed and launched at the click of a button. Windows is a bit more freestyle and
if we want to bundle all of our files into a single installable file, we need to do a bit more
work, but again, Qt comes to the rescue and comes with the fantastic Qt Installer
Framework that simplifies it for us.

Wrapping Up Chapter 9

[302]

Let’s take a look at each operating system in turn and produce an application package or
installer for each.

OS X
First, build the solution using the kit of your choice in the Release mode. You already know
that if we press the Run button in Qt Creator, our app launches and all is well. However,
navigate to the cm-ui.app file in Finder and try and launch it directly; with this, things
aren’t quite so rosy:

The problem here is missing dependencies. We can use otool to take a look at what those
dependencies are. First, copy the cm-ui.app package to a new
directory—cm/installer/osx.

This isn’t strictly necessary, but I like to keep build and deployment files
separate. This way, if we make a code change and rebuild the solution, we
will only update the app in the binaries folder, and our deployment files
remain untouched.

Next, have a poke around inside the app package and see what we’re working with. In
Finder, Ctrl and click on the cm-ui.app we just copied to the installer folder and select
Show Package Contents. The bit we’re interested in is the Contents/MacOS folder. In
there, you will find our cm-ui application executable.

With that identified, open up a command terminal, navigate to cm/installer/osx, and
run otool on the executable:

$ otool -L cm-ui.app/Contents/MacOS/cm-ui

Wrapping Up Chapter 9

[303]

You will see an output the same as (or similar to) the following:

cm-ui:
libcm-lib.1.dylib (compatibility version 1.0.0, current version 1.0.0)
@rpath/QtQuick.framework/Versions/5/QtQuick (compatibility version 5.9.0,
current version 5.9.1)
@rpath/QtQml.framework/Versions/5/QtQml (compatibility version 5.9.0,
current version 5.9.1)
@rpath/QtNetwork.framework/Versions/5/QtNetwork (compatibility version
5.9.0, current version 5.9.1)
@rpath/QtCore.framework/Versions/5/QtCore (compatibility version 5.9.0,
current version 5.9.1)
/System/Library/Frameworks/DiskArbitration.framework/Versions/A/DiskArbitra
tion (compatibility version 1.0.0, current version 1.0.0)
/System/Library/Frameworks/IOKit.framework/Versions/A/IOKit (compatibility
version 1.0.0, current version 275.0.0)
@rpath/QtGui.framework/Versions/5/QtGui (compatibility version 5.9.0,
current version 5.9.1)
@rpath/QtXml.framework/Versions/5/QtXml (compatibility version 5.9.0,
current version 5.9.1)
/System/Library/Frameworks/OpenGL.framework/Versions/A/OpenGL
(compatibility version 1.0.0, current version 1.0.0)
/System/Library/Frameworks/AGL.framework/Versions/A/AGL (compatibility
version 1.0.0, current version 1.0.0)
/usr/lib/libc++.1.dylib (compatibility version 1.0.0, current version
307.5.0)
/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version
1238.50.2)

Let’s remind ourselves of the dependencies we need to consider and look at how they relate
to the output we’ve just seen:

Custom libraries we’ve written or added to our solution manually (cm-lib). This
is the libcm-lib.1.dylib reference. The fact that there is no path component
suggests that the tool isn’t quite sure where this file is located. Should it be in the
same folder as the executable itself? Should it be in the standard /usr/lib/
folder? Fortunately, we can specify the location of this file when we package our
app.
The parts of the Qt framework that our application links to. QtQuick, QtQml, and
such are all the framework modules we directly reference in our cm-ui code.
Some of them are explicitly brought in via the QT variable in our cm-ui.pro file
and others are implicitly included using things like QML.

Wrapping Up Chapter 9

[304]

Any internal dependencies of the Qt framework itself. We don’t see those listed
earlier, but if we were to run otool against the QtQuick module, you would see
that it is dependent on QtQml, QtNetwork, QtGui, and QtCore. There are also
several system level libraries required, such as OpenGL, which we haven’t
explicitly coded against but are used by Qt.
Any libraries required by the C++ compiler we have built the application with;
libc++.1.dylib stands out here.

To bundle all of our dependencies manually, we can copy them all inside the app package
and then perform some reconfiguration steps to update the location metadata we saw from
otool.

Let’s pick one of the framework dependencies—QtQuick—and quickly work through what
we will have to do to achieve this, and then we’ll move on to the really handy tool that does
all of this very unpleasant grunt work for us.

First, we will create a Frameworks directory where the system will search for the bundled
dependencies:

$ mkdir cm-ui.app/Contents/Frameworks

Next, we will physically copy the referenced file to that new directory. We know where to
look for the existing file on our development machine, thanks to the preceding LC_RPATH
entry, in this case /Users/<Your Username>/Qt5.9.1/5.9.1/clang_64/lib:

$ cp -R /Users/<Your Username> /Qt5.9.1 /5.9.1/clang_64 /lib/
QtQuick.framework cm-ui.app/Contents/Frameworks

We then need to change the shared library identification name for the copied library file
using install_name_tool:

$ install_name_tool -id @executable_path /../Frameworks /
QtQuick.framework/Versions/5/QtQuick cm-ui.app /Contents /Frameworks /
QtQuick.framework/Versions/5/QtQuick

Wrapping Up Chapter 9

[305]

The syntax here is install_name_tool -id [New name] [Shared library file]. To
get to the library file (not the framework package, which is what we copied), we drill down
to Versions/5/QtQuick. We set the ID of that binary to where the executable will look to
find it, which, in this case, is in the Frameworks folder a level up (../) from the executable
file itself.

Next, we also need to update the executable’s list of dependencies to look in the correct
place for this new file:

$ install_name_tool -change @rpath/QtQuick.framework/Versions/5/QtQuick
@executable_path/../Frameworks/QtQuick.framework/Versions/5/QtQuick cm-
ui.app/Contents/MacOs/cm-ui

The syntax here is install_name_tool -change [old value] [new value]
[executable file]. We want to change the old @rpath entry for QtQuick to be the new
Frameworks path we’ve just added. Again, we use the @executable_path variable so that
the dependencies are always located in the same place relative to the executable. Now, the
metadata in the executable and the shared library both match each other and relate to the
Frameworks folder, which we have now added to our app package.

Remember, that’s not all, because QtQuick itself has dependencies, so we will need to copy
and reconfigure all of those files too and then check their dependencies. Once we’ve
exhausted the whole dependency tree for our cm-ui executable, we also need to repeat the
process for our cm-lib library. As you can imagine, this gets tedious very quickly.

Fortunately, the macdeployqt Qt Mac Deployment Tool is just what we need here. It scans
an executable file for Qt dependencies and copies them across to our app package for us as
well as for handling the reconfiguration work. The tool is located in the bin folder of the
installed kit you have built the application with, for example,
/Qt/5.9.1/5.9.1/clang_64/bin.

In a command terminal, execute macdeployqt as follows (assuming that you are in the
cm/installer/osx directory):

$ <Path to bin>/macdeployqt cm-ui.app -qmldir=<Qt Projects>/cm/cm-ui -
libpath=<Qt Projects>/cm/binaries/osx/clang/x64/release

Wrapping Up Chapter 9

[306]

Remember to replace the parameters in angle brackets with the full paths on your system
(or add the executable paths to your system PATH variable).

The qmldir flag tells the tool where to scan for QML imports and is set to our UI project
folder. The libpath flag is used to specify where our compiled cm-lib file lives.

The output of this operation will be as follows:

File exists, skip copy: "cm-
ui.app/Contents/PlugIns/quick/libqtquick2plugin.dylib"
File exists, skip copy: "cm-
ui.app/Contents/PlugIns/quick/libqtquickcontrols2plugin.dylib"
File exists, skip copy: "cm-
ui.app/Contents/PlugIns/quick/libqtquickcontrols2materialstyleplugin.dylib"
File exists, skip copy: "cm-
ui.app/Contents/PlugIns/quick/libqtquickcontrols2universalstyleplugin.dylib
"
File exists, skip copy: "cm-
ui.app/Contents/PlugIns/quick/libwindowplugin.dylib"
File exists, skip copy: "cm-
ui.app/Contents/PlugIns/quick/libqtquicktemplates2plugin.dylib"
File exists, skip copy: "cm-
ui.app/Contents/PlugIns/quick/libqtquickcontrols2materialstyleplugin.dylib"
File exists, skip copy: "cm-
ui.app/Contents/PlugIns/quick/libqtquickcontrols2materialstyleplugin.dylib"
File exists, skip copy: "cm-
ui.app/Contents/PlugIns/quick/libqtquickcontrols2universalstyleplugin.dylib
"
File exists, skip copy: "cm-
ui.app/Contents/PlugIns/quick/libqtquickcontrols2universalstyleplugin.dylib
"
WARNING: Plugin "libqsqlodbc.dylib" uses private API and is not Mac App
store compliant.
WARNING: Plugin "libqsqlpsql.dylib" uses private API and is not Mac App
store compliant.
ERROR: no file at "/opt/local/lib/mysql55/mysql/libmysqlclient.18.dylib"
ERROR: no file at "/usr/local/lib/libpq.5.dylib"

Qt is a bit quirky with the SQL module, whereby if you use one SQL driver, it will try and
package them all; however, we know that we are only using SQLite and don’t need MySQL
or PostgreSQL, so we can safely ignore those errors.

Wrapping Up Chapter 9

[307]

Once executed, you should be able to Show Package Contents again in Finder and see all
the dependencies ready and waiting for deployment, as illustrated:

What a huge timesaver! It has created the appropriate file structure and copied all the Qt
modules and plugins for us, along with our cm-lib shared library. Try and execute the cm-
ui.app file now, and it should successfully launch the application.

Linux
Linux packaging and deployment is broadly similar to OS X, and we won’t cover it in the
same level of detail, so at least skim the OS X section first if you haven’t already. As with all
platforms, the first thing to do is build the solution using the kit of your choice
in the Release mode in order to generate the binaries.

Wrapping Up Chapter 9

[308]

When building in Release mode for the first time, I received the “cannot
find -lGL” error. This was because the dev libraries for OpenGL were not
installed on my system. One way of obtaining these libraries is to install
FreeGlut:
$ sudo apt-get update
$ sudo apt-get install build-essential
$ sudo apt-get install freeglut3-dev

Once compiled, copy the cm-ui binary to a new cm/installer/linux directory.

Next, we can take a look at what dependencies our application has. In a command terminal,
change to the cm/installer/linux folder and run ldd:

$ ldd <Qt Projects>/cm/binaries/linux/gcc/x64/release/cm-ui

You will see an output similar to the following:

linux-vdso.so.1 => (0x00007ffdeb1c2000)
libcm-lib.so.1 => /usr/lib/libcm-lib.so.1 (0x00007f624243d000)
libQt5Gui.so.5 => /home/nick/Qt/5.9.1/gcc_64/lib/libQt5Gui.so.5
(0x00007f6241c8f000)
libQt5Qml.so.5 => /home/nick/Qt/5.9.1/gcc_64/lib/libQt5Qml.so.5
(0x00007f6241698000)
libQt5Xml.so.5 => /home/nick/Qt/5.9.1/gcc_64/lib/libQt5Xml.so.5
(0x00007f624145e000)
libQt5Core.so.5 => /home/nick/Qt/5.9.1/gcc_64/lib/libQt5Core.so.5
(0x00007f6240d24000)
libstdc++.so.6 => /usr/lib/x86_64-linux-gnu/libstdc++.so.6
(0x00007f62409a1000)
libgcc_s.so.1 => /lib/x86_64-linux-gnu/libgcc_s.so.1 (0x00007f624078b000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f62403c1000)
libQt5Sql.so.5 => /home/nick/Qt/5.9.1/gcc_64/lib/libQt5Sql.so.5
(0x00007f6240179000)
libQt5Network.so.5 => /home/nick/Qt/5.9.1/gcc_64/lib/libQt5Network.so.5
(0x00007f623fde8000)
libpthread.so.0 => /lib/x86_64-linux-gnu/libpthread.so.0
(0x00007f623fbcb000)
libGL.so.1 => /usr/lib/x86_64-linux-gnu/mesa/libGL.so.1
(0x00007f623f958000)
libz.so.1 => /lib/x86_64-linux-gnu/libz.so.1 (0x00007f623f73e000)
libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007f623f435000)
librt.so.1 => /lib/x86_64-linux-gnu/librt.so.1 (0x00007f623f22c000)
libicui18n.so.56 => /home/nick/Qt/5.9.1/gcc_64/lib/libicui18n.so.56
(0x00007f623ed93000)
libicuuc.so.56 => /home/nick/Qt/5.9.1/gcc_64/lib/libicuuc.so.56
(0x00007f623e9db000)

Wrapping Up Chapter 9

[309]

libicudata.so.56 => /home/nick/Qt/5.9.1/gcc_64/lib/libicudata.so.56
(0x00007f623cff7000)
libdl.so.2 => /lib/x86_64-linux-gnu/libdl.so.2 (0x00007f623cdf3000)
libgthread-2.0.so.0 => /usr/lib/x86_64-linux-gnu/libgthread-2.0.so.0
(0x00007f623cbf1000)
libglib-2.0.so.0 => /lib/x86_64-linux-gnu/libglib-2.0.so.0
(0x00007f623c8df000)
/lib64/ld-linux-x86-64.so.2 (0x0000562f21a5c000)
libexpat.so.1 => /lib/x86_64-linux-gnu/libexpat.so.1 (0x00007f623c6b6000)
libxcb-dri3.so.0 => /usr/lib/x86_64-linux-gnu/libxcb-dri3.so.0
(0x00007f623c4b2000)
libxcb-present.so.0 => /usr/lib/x86_64-linux-gnu/libxcb-present.so.0
(0x00007f623c2af000)
libxcb-sync.so.1 => /usr/lib/x86_64-linux-gnu/libxcb-sync.so.1
(0x00007f623c0a8000)
libxshmfence.so.1 => /usr/lib/x86_64-linux-gnu/libxshmfence.so.1
(0x00007f623bea4000)
libglapi.so.0 => /usr/lib/x86_64-linux-gnu/libglapi.so.0
(0x00007f623bc75000)
libXext.so.6 => /usr/lib/x86_64-linux-gnu/libXext.so.6 (0x00007f623ba63000)
libXdamage.so.1 => /usr/lib/x86_64-linux-gnu/libXdamage.so.1
(0x00007f623b85f000)
libXfixes.so.3 => /usr/lib/x86_64-linux-gnu/libXfixes.so.3
(0x00007f623b659000)
libX11-xcb.so.1 => /usr/lib/x86_64-linux-gnu/libX11-xcb.so.1
(0x00007f623b457000)
libX11.so.6 => /usr/lib/x86_64-linux-gnu/libX11.so.6 (0x00007f623b11c000)
libxcb-glx.so.0 => /usr/lib/x86_64-linux-gnu/libxcb-glx.so.0
(0x00007f623af03000)
libxcb-dri2.so.0 => /usr/lib/x86_64-linux-gnu/libxcb-dri2.so.0
(0x00007f623acfe000)
libxcb.so.1 => /usr/lib/x86_64-linux-gnu/libxcb.so.1 (0x00007f623aadb000)
libXxf86vm.so.1 => /usr/lib/x86_64-linux-gnu/libXxf86vm.so.1
(0x00007f623a8d5000)
libdrm.so.2 => /usr/lib/x86_64-linux-gnu/libdrm.so.2 (0x00007f623a6c4000)
libpcre.so.3 => /lib/x86_64-linux-gnu/libpcre.so.3 (0x00007f623a453000)
libXau.so.6 => /usr/lib/x86_64-linux-gnu/libXau.so.6 (0x00007f623a24e000)
libXdmcp.so.6 => /usr/lib/x86_64-linux-gnu/libXdmcp.so.6
(0x00007f623a048000)

That’s some list of dependencies! Crucially, note the dependency on our cm-lib library:

libcm-lib.so.1 => /usr/lib/libcm-lib.so.1

Wrapping Up Chapter 9

[310]

This shows that the executable will look for our library in the /usr/lib folder, so let’s
ensure that it’s available there before we move on by copying libcm-lib.so.1 to
/usr/lib:

$ sudo cp <Qt Projects>/cm/binaries/linux/gcc/x64/release/libcm-lib.so.1
/usr/lib

We can already guess what a nightmare managing all these dependencies manually will be,
having discussed the OS X process and seen how many dependencies there are, so there
must be a tool in our Kit’s bin folder that does it all for us, right? Well, yes and no. There is
no official Qt tool we get out of the box to do this for us like there is for OS X and Windows.
Fortunately, a fantastic member of the Qt community probonopd has come to the rescue
and plugged the gap with linuxdeployqt.

You can get a linuxdeployqt app image from the releases page of the GitHub project at
https:/​/​github.​com/ ​probonopd/ ​linuxdeployqt. Download the file (linuxdeployqt-
continuous-x86_64.AppImage) and then make it executable:

$ chmod a+x <Path to downloaded file>/linuxdeployqt-continuous-
x86_64.AppImage

We can then execute it and have it work its dependency-based magic for us. Change the
directory to cm/installer/linux first:

$ <Path to downloaded file>/linuxdeployqt-continuous-x86_64.AppImage cm-ui
-qmldir=<Qt Projects>/cm/cm-ui -appimage

The qmldir flag tells the tool where to scan for QML imports and is set to our UI project
folder. The appimage flag is used to get the tool to create an application image file for us,
which is a single file with everything bundled inside.

Things may not work perfectly the first time. Your output may look as follows:

ERROR: Desktop file missing, creating a default one (you will probably want
to edit it)
ERROR: Icon file missing, creating a default one (you will probably want to
edit it)
ERROR: "/usr/bin/qmake -query" exited with 1 : "qmake: could not exec
'/usr/lib/x86_64-linux-gnu/qt4/bin/qmake': No such file or directory\n"
ERROR: Qt path could not be determined from qmake on the $PATH
ERROR: Make sure you have the correct Qt on your $PATH
ERROR: You can check this with qmake -v

https://github.com/probonopd/linuxdeployqt
https://github.com/probonopd/linuxdeployqt
https://github.com/probonopd/linuxdeployqt
https://github.com/probonopd/linuxdeployqt
https://github.com/probonopd/linuxdeployqt
https://github.com/probonopd/linuxdeployqt
https://github.com/probonopd/linuxdeployqt
https://github.com/probonopd/linuxdeployqt
https://github.com/probonopd/linuxdeployqt
https://github.com/probonopd/linuxdeployqt
https://github.com/probonopd/linuxdeployqt

Wrapping Up Chapter 9

[311]

The first two errors are just because we haven’t provided a desktop file or icon and defaults
have been generated for us; we can ignore those. The rest are because linuxdeployqt
doesn't know where qmake is. We can either provide the path as an extra parameter (-
qmake=<PATH>), or to save us having to do it every time, we can add it to our PATH
environment variable:

$ export PATH=<Qt Path>/5.9.1/gcc_64/bin/:$PATH

We can then check whether qmake can be found by trying to retrieve the version
information:

$ qmake -v

If it is happy, you will see the version information:

QMake version 3.1
Using Qt version 5.9.1 in /home/nick/Qt/5.9.1/gcc_64/lib

With that fixed, we can now try running the linuxdeployqt command again. However,
we’ve fixed one problem, but now experience another:

ERROR: Desktop file missing, creating a default one (you will probably want
to edit it)
ERROR: Icon file missing, creating a default one (you will probably want to
edit it)
ERROR: ldd outputLine: "libmysqlclient.so.18 => not found"
ERROR: for binary:
"/home/nick/Qt/5.9.1/gcc_64/plugins/sqldrivers/libqsqlmysql.so"
ERROR: Please ensure that all libraries can be found by ldd. Aborting.

Ignore the first two errors again. Now it can't find MySQL drivers, which is annoying,
because we aren’t even MySQL and it is the same Qt SQL quirk we saw on OS X. As a
workaround, let's effectively "hide" the SQL drivers we don't want from the tool by
temporarily renaming them:

$ cd <Qt Path>/5.9.1/gcc_64/plugins/sqldrivers
$ mv libqsqlmysql.so libqsqlmysql.so_ignore
$ mv libqsqlpsql.so libqsqlpsql.so_ignore

Run the linuxdeployqt command again. You will get lots of output this time, culminating
in a success message, including the following:

App name for filename: Application
dest_path: Application-x86_64.AppImage

Wrapping Up Chapter 9

[312]

This is telling us that our app image has been named as Application-x86_64.AppImage,
which it saves to the Downloads folder.

Take a look in file manager, and you will see that it has added various files and directories
alongside our executable:

It has also deposited the Application-x86_64.AppImage file in the Downloads folder
that is a single self-contained executable package with all dependencies. However, if you
head over to Downloads and try and launch the AppImage, you may get an error (execute it
via a Terminal command to see the error message):

QXcbIntegration: Cannot create platform OpenGL context, neither GLX nor EGL
are enabled

This appears to be an issue with linuxdeployqt missing some dependencies, but for some
reason, running the tool a second time magically picks them up. Execute the
linuxdeployqt command again, and hey presto, the AppImage now works correctly.

Wrapping Up Chapter 9

[313]

Windows
First, build the solution using the kit of your choice in the Release mode. Once complete,
copy the cm-ui.exe and cm-lib.dll application binaries to a new
cm/installer/windows/packages/com.packtpub.cm/data directory. This strange
directory structure will be explained in the next section—Qt Installer Framework—and we
are simply saving ourselves some additional copying later.

Next, let’s remind ourselves of the dependencies we need to consider:

Item 1: Custom libraries we’ve written or added to our solution manually (cm-
lib)
Item 2: The parts of the Qt framework that our application links to
Item 3: Any internal dependencies of the Qt framework itself
Item 4: Any libraries required by the C++ compiler we have built the application
with

The good news is that item 1 is already done! Windows will look for the dependencies of an
executable in the same folder that the executable is in. This is really helpful and by simply
copying the DLL to the same folder as the executable, we’ve already taken care of that
dependency. The Qt Installer framework takes all the files from a given folder and deploys
them to the target machine in the same place relative to each other, so we know this will be
preserved after deployment too.

The bad news is that the remaining steps are a bit of a nightmare to manage manually. We
can have a decent first stab at what parts of Qt we need by reviewing the modules we’ve
explicitly added to our *.pro files. This will be qml, quick, and xml from cm-ui and sql,
and network and xml from cm-lib core is also included by default. In File Explorer,
navigate to <Qt Installation Folder>/5.9.1/<Kit>/bin. In there, you can find all
the binaries relating to these modules, for example, Qt5Qml.dll for the qml module.

We can use the approach that we did for cm-lib.dll and simply manually copy each of
the Qt DLL files across to the data folder too. This will fulfil item 2 and while deeply
tedious, it’s fairly straightforward. However, item 3 is a painful exercise that we really don’t
want to do ourselves.

Fortunately, the windeployqt Qt Windows Deployment Tool is just what we need here. It
scans an .exe file for Qt dependencies and copies them across to our installer folder for us.
The tool is located in the bin folder of the installed kit you have built the application with,
for example, /Qt/5.9.1/mingw32/bin.

Wrapping Up Chapter 9

[314]

In a command terminal, execute windeployqt as follows:

$ <Path to bin>/windeployqt.exe --qmldir <Qt Projects>/cm/cm-ui <Qt
Projects>/cm/installer/windows/packages/com.packtpub.cm/data/cm-ui.exe --
compiler-runtime

Remember to replace the parameters in angle brackets with the full paths on your system
(or add the executable paths to your system PATH variable).

The qmldir flag tells the tool where to scan for QML imports and is set to our UI project
folder. After we tell the tool which .exe to scan for dependencies, the compiler-runtime
flag denotes that we want the compiler runtime files too, so it even takes care of item 4 for
us as a bonus!

By default, found dependencies will subsequently be copied to the same
folder as the executable being scanned. This is a good reason to copy the
compiled binaries to a dedicated installer folder first so that development
project output and content for deployment remain separate.

Once executed, you should see a large block of output. Although it’s tempting to think “oh,
that’s done stuff so everything must be ok”, it’s a good idea to scan through the output, even
if you’re not sure what it’s doing as you can sometimes pick up obvious issues that you can
can take action to resolve.

For example, when first deploying a MinGW kit build, I encountered the given line:

Warning: Cannot find GCC installation directory. g++.exe must be in the
path.

Although the command had executed successfully, and I can see a whole bunch of Qt
dependencies in the installer folder, I was actually missing the GCC dependencies. It was a
simple fix to follow the instructions and add <Qt Installation
path>/Tools/mingw530_32/bin to the PATH variable in my system environment
variables. After restarting the command terminal and running the windeployqt command
again, it subsequently completed successfully without the warning, and the GCC files were
present as expected in data alongside all the Qt binaries. Without picking up on this quiet
little warning, I would have proceeded with some potentially critical missing files.

Wrapping Up Chapter 9

[315]

As you can see, windeployqt is a huge time saver, but unfortunately, it isn’t a silver bullet
and sometimes misses the required files. Tools like Dependency Walker exist, which can
help analyze the dependency tree in detail, but a good starting point is to just manually
launch the cm-ui executable from the data folder and see what happens. In our case, it is
this:

The bad news is that it doesn’t work, but the good news is that at least it clearly tells us why
it doesn’t work—it is missing the Qt5Sql.dll dependency. We know that we do indeed
have a dependency there, because we had to add the sql module to our .pro files when we
started doing database work. However, wait, we’ve just executed a command that should
pull in all the Qt dependencies for us, right? Right, I don’t know why the tool misses out
some dependencies that it really should know about, but it does. I don’t know if it’s a bug,
an oversight, or a licensing restriction related to the underlying third-party SQLite
implementation, but in any case, the simple solution is that we just need to copy it
ourselves.

Head over to <Qt Installation>/5.9.1/<kit>/bin and copy Qt5Sql.dll over to our
data folder. Launch the cm-ui.exe again and hurrah, it opens successfully!

One other thing to look out for apart from missing .dll files from the bin
directory is missing files/folders from the plugins directory. You will see
in our case that several folders have been copied successfully (bearer,
iconengines, and such), but sometimes they don’t, and can be very difficult
to figure out as you don’t get a helpful error message like we did with the
missing DLL. I can only recommend three things in that situation: trial,
error, and the internet.

Wrapping Up Chapter 9

[316]

So, we now have a folder containing our lovely application binaries and a whole bunch of
similarly lovely other files and folders. What now? Well, we can simply copy the folder
wholesale onto our users' machines and get them to launch the executable as we did.
However, a neater and more professional solution is to bundle up everything into a pretty
installation package, and that is where the Qt Installer Framework tool comes in.

Qt Installer framework
Let's edit our Qt installation and grab the Qt Installer framework.

Launch the MaintenanceTool application from your Qt installation directory, and you will
be presented with a wizard virtually identical to the one we saw when we first installed Qt.
To add Qt Installer Framework to your existing installation, follow these steps:

Either log in to your Qt Account or Skip1.
Select Add or remove components and click on Next2.
On the Select Components dialog, check Tools > Qt Installer Framework 3.0 and3.
click on Next
Begin the installation by clicking on Update4.

Once complete, you can find the installed tools in
Qt/Tools/QtInstallerFramework/3.0.

You can add further modules, kits, and such in exactly the same way. Any
components you already have installed will be unaffected unless you
actively deselect them.

The Qt Installer Framework requires two specific directories to be present: config and
packages. Config is a singular piece of configuration that describes the installer as a whole,
whereas you can bundle multiple packages (or components) together in the same
installation package. Each component has its own subdirectory within the packages folder,
with a data folder containing all the items to be installed for that component and a meta
folder where configuration data for the package is held.

In our case, although we have two projects (cm-lib and cm-ui), it makes no sense to
distribute one without the other, so we will aggregate the files together into one package. A
common naming convention for packages is com.<publisher>.<component>, so we’ll
name ours com.packtpub.cm. We already created the required data folder in the previous
section (yay for forward planning!) and windeployqt stuffed it full of files for us.

Wrapping Up Chapter 9

[317]

There is no required naming convention here, so feel free to name the package something
else if you wish. If we wanted to bundle an additional, optional component with our
application, we would do so by simply creating an additional package folder (for example,
com.packtpub.amazingcomponent) containing the relevant data and meta files, including
a separate package.xml to configure that component.

Create any missing folders so that you end up with the following folder structure inside
cm/installer/windows:

To compliment these folders, we also need to provide two XML configuration files.

Create config.xml in the config subfolder:

<?xml version="1.0" encoding="UTF-8"?>
<Installer>
 <Name>Client Management</Name>
 <Version>1.0.0</Version>
 <Title>Client Management Application Installer</Title>
 <Publisher>Packt Software Publishing</Publisher>
 <StartMenuDir>Client Management</StartMenuDir>
 <TargetDir>@HomeDir@/ClientManagement</TargetDir>
</Installer>

Wrapping Up Chapter 9

[318]

This configuration file customizes the behavior of the installer. The properties we have
specified here are as follows:

Property Purpose

Name The application name

Version The application version

Title The installer name displayed in the title bar

Publisher The publisher of the software

StartMenuDir The default program group in the Windows Start menu

TargetDir The default target directory for the application installation

You will note strange @ symbols in the TargetDir property, and they
define a predefined variable HomeDir that allows us to dynamically obtain
a path to the end user’s home directory. You can also access the values of
other properties in the same way, for example, @ProductName@ will
return “Client Management”. Further information is available at http:/ ​/
doc.​qt. ​io/ ​qtinstallerframework/ ​scripting. ​html#predefined-
variables.

Next, create package.xml in the packages/com.packtpub.cm/meta subfolder:

<?xml version="1.0" encoding="UTF-8"?>
<Package>
 <DisplayName>Client Management application</DisplayName>
 <Description>Install the Client Management application.</Description>
 <Version>1.0.0</Version>
 <ReleaseDate>2017-10-30</ReleaseDate>
 <Licenses>
 <License name="Fictional Training License Agreement"
file="license.txt" />
 </Licenses>
 <Default>true</Default>
</Package>

http://doc.qt.io/qtinstallerframework/scripting.html#predefined-variables
http://doc.qt.io/qtinstallerframework/scripting.html#predefined-variables
http://doc.qt.io/qtinstallerframework/scripting.html#predefined-variables
http://doc.qt.io/qtinstallerframework/scripting.html#predefined-variables
http://doc.qt.io/qtinstallerframework/scripting.html#predefined-variables
http://doc.qt.io/qtinstallerframework/scripting.html#predefined-variables
http://doc.qt.io/qtinstallerframework/scripting.html#predefined-variables
http://doc.qt.io/qtinstallerframework/scripting.html#predefined-variables
http://doc.qt.io/qtinstallerframework/scripting.html#predefined-variables
http://doc.qt.io/qtinstallerframework/scripting.html#predefined-variables
http://doc.qt.io/qtinstallerframework/scripting.html#predefined-variables
http://doc.qt.io/qtinstallerframework/scripting.html#predefined-variables
http://doc.qt.io/qtinstallerframework/scripting.html#predefined-variables
http://doc.qt.io/qtinstallerframework/scripting.html#predefined-variables
http://doc.qt.io/qtinstallerframework/scripting.html#predefined-variables

Wrapping Up Chapter 9

[319]

This file configures the com.packtpub.cm package (our Client Management application)
with the following properties:

Property Purpose

DisplayName The name of the component.

Description The text displayed when the component is selected.

Version The version of the component (used to promote component updates).

ReleaseDate The date the component was released.

Licenses
A collection of licenses that must be agreed to in order to install the
package. The text for the license agreement is obtained from the specified
file that must be alongside the configuration file in the meta folder.

Default Boolean flag denoting whether the component is selected by default.

You will also need to create license.txt in the meta folder; the content doesn’t matter in
this case as it’s just for demonstration, so write any old nonsense in there.

With all the binaries, dependencies, and configuration in place, we can now run the Qt
Framework Installer in a command terminal to generate our installation package. First,
change directory to the cm/installer/windows folder and then execute binarycreator:

$ <Qt Installation Path> \Tools \QtInstallerFramework \3.0\ bin\
binarycreator.exe -c config\config.xml -p packages
ClientManagementInstaller.exe

The -c flag tells the tool where the config.xml file resides and -p where all the packages
are. The final parameter is the name you want to give the resulting installer.

With our application neatly packaged up into a single installer file,
ClientManagementInstaller.exe, we can now easily distribute it to our end users for
installation.

Wrapping Up Chapter 9

[320]

Installation
Upon launching the installer, you will be presented with a welcome dialog, the content of
which is derived from our config.xml file:

We are then prompted to specify the target directory for the installation and what we expect
is that after installation, this folder will contain all the files and folders we pulled together in
the data folder:

Wrapping Up Chapter 9

[321]

We are then presented with a list of all the components we defined via the packages
directory, which in this case is simply the application and dependencies in the
com.packtpub.cm folder:

Next, we are presented with any licenses we defined in packages.xml, including the
license information provided in the text files:

Wrapping Up Chapter 9

[322]

We are then prompted for the Start Menu shortcuts, with the default provided by
config.xml:

We’re ready to install now and are provided with disk usage stats before we confirm:

Wrapping Up Chapter 9

[323]

After a brief wait while the installation completes, we are presented with a final
confirmation dialog:

You should see a new ClientManagement folder in the target directory containing our
installed application!

Summary
In this chapter, we made our application even more testable by introducing our first object
factory. They are a really useful layer of abstraction that make unit testing so much easier,
and on larger projects, it's common to end up with several factories. We then made our UI
even more dynamic by having Style properties that can scale along with the Window.
EnumeratorDecorators got some love and an editor component of their own, fully finger-
friendly to boot. We then put that editor to use and implemented Contact management,
showing how collections of objects can easily be viewed and edited.

With our application more fleshed out, we then took a look at how to get our shiny new
work of genius into the hands of our end users. Different operating systems each have their
own take on things, and you will undoubtedly discover quirks and encounter challenges in
your own particular environment, but hopefully, you now have the tools you need to be
able to work through them.

Wrapping Up Chapter 9

[324]

That sentiment goes not just for deployment, but for the whole project life cycle. The goal
of this book was not to discuss theoretical problems that while interesting, will never come
up in your day-to-day role as a developer. The goal was to present solutions to real-world
problems. We have developed a functional Line of Business application from start to finish,
working through common tasks that you will encounter on a daily basis, whether working
on an initiative at work or on a personal project at home.

I hope that some of the approaches detailed in this book prove useful to you and that you
go on to enjoy working with Qt as much as I do.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Qt 5
Guillaume Lazar, Robin Penea

ISBN: 978-1-78646-712-6

Create stunning UIs with Qt Widget and Qt Quick
Develop powerful, cross-platform applications with the Qt framework
Design GUIs with the Qt Designer and build a library in it for UI preview
Handle user interaction with the Qt signal/slot mechanism in C++
Prepare a cross-platform project to host a third-party library
Build a Qt application using the OpenCV API
Use the Qt Animation framework to display stunning effects
Deploy mobile apps with Qt and embedded platforms

https://www.packtpub.com/application-development/mastering-qt-5

Other Books You May Enjoy

[326]

Computer Vision with OpenCV 3 and Qt5
Amin Ahmadi Tazehkandi

ISBN: 978-1-78847-239-5

Get an introduction to Qt IDE and SDK
Be introduced to OpenCV and see how to communicate between OpenCV and Qt
Understand how to create UI using Qt Widgets
Know to develop cross-platform applications using OpenCV 3 and Qt 5
Explore the multithreaded application development features of Qt5
Improve OpenCV 3 application development using Qt5
Build, test, and deploy Qt and OpenCV apps, either dynamically or statically
See Computer Vision technologies such as filtering and transformation of images,
detecting and matching objects, template matching, object tracking, video and
motion analysis, and much more
Be introduced to QML and Qt Quick for iOS and Android application
development

https://www.packtpub.com/application-development/computer-vision-opencv-3-and-qt5

Other Books You May Enjoy

[327]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
anchors 62, 63, 65, 66, 67

C
Client Management Application Installer setup 320,

322, 323
cm-tests 34
cm-ui 34
cmd-lib 33
components 100, 101, 103
Create, Read, Update, and Delete (CRUD) 203
custom TextBox 161, 162, 164, 165, 166

D
data models 154, 157, 160
DataDecorator tests 181, 182, 185, 186
DataDecorators 133, 134, 135, 140, 141
default Qt approach 170, 171

E
entities 143, 147
entity collections 147, 148, 151, 152
Entity Tests 187, 189, 191

F
Font Awesome
 about 94, 96, 98
 reference 95

I
Integrated Development Environment (IDE) 6
Inversion of Control 195

J
JavaScript Object Notation (JSON) 43, 129
JSON object 130

K
Kit 11

L
library project
 creating 33
Line of Business (LOB) 6, 27

M
mocking 193, 195, 197
Model View Controller (MVC)
 about 27
 mastering 37, 38, 39

N
navigation bar
 clicking 111, 113
 command bar 122
 commands 116, 119
 styling 104, 105, 106, 108
navigation
 about 76, 77, 78, 83, 84, 85
 conflicts, fixing 86, 87
network access 246, 247

O
object factory
 about 278
 contacts 294, 296, 298
 dashboard 283
 deployment preparation 300

 enumerator selectors 285, 289, 291
 Linux 307, 310
 OS X 302, 306
 Qt Installer framework 316
 UI scaling 281
 Windows 313
object hierarchy 131, 132

P
panels
 about 218, 220
 clients, creating 230, 232, 234
 clients, deleting 241, 243, 244
 clients, editing 237, 239
 clients, finding 225, 227
primary keys 210
project output
 controlling 47, 49, 50, 52, 53, 54
Project Working Directory (PWD) 49
projects
 about 26
 creating 28, 30, 31, 32

Q
qmake 19, 20, 21, 22, 23, 24
QObject 40, 41
QQmlApplicationEngine 92
Qt Creator 13, 16
Qt Installer framework 316, 319
Qt Modeling Language (QML) 43, 44, 45
Qt
 custom approach 173, 175, 176, 179
 installation, maintaining 13
 installing 7, 8, 9
 reference 7
 Scratchpad project 17, 18
QtQuick module 90

R
Rich Site Summary (RSS)
 about 259, 262, 268, 272
 reference 259
RSS View 255, 256, 257, 258, 259

S
Scalable Vector Graphics (SVG) 95
sizing 69, 72, 73, 74, 75
SplashView 62
SQLite
 about 202, 203, 205
 clients, creating 213, 215, 217
 primary keys 210
 reference 202
StackView component 60, 61
style resource 89, 90, 91, 92, 93

T
Test Driven Development (TDD) 28, 169

U
unit testing 28, 168
unit tests project
 creating 34
Universally Unique Identifier) UUID 210
user interface design 56, 57, 58
user interface project
 creating 35

V
views
 creating 58, 59, 60

W
Web Requests
 about 249, 255
 RSS View 255, 256, 257, 258, 259

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Hello Qt
	Installing Qt
	Maintaining your installation
	Qt Creator
	Scratchpad project
	qmake

	Summary

	Chapter 2: Project Structure
	Projects, MVC, and unit testing
	Project creation
	cm-lib
	cm-tests
	cm-ui

	Mastering MVC
	QObject
	QML
	Project output

	Summary

	Chapter 3: User Interface
	UX
	Creating views
	StackView
	Anchors
	Sizing
	Navigation
	Fixing conflicts

	Summary

	Chapter 4: Style
	Style resource
	Font Awesome
	Components
	Styling the navigation bar
	Clicking
	Commands
	Command bar

	Summary

	Chapter 5: Data
	JSON
	Object hierarchy
	DataDecorators
	Entities
	Entity collections
	Data models
	Custom TextBox
	Summary

	Chapter 6: Unit Testing
	Unit testing
	The default Qt approach
	Custom approach
	DataDecorator tests
	Entity Tests
	Mocking
	Summary

	Chapter 7: Persistence
	SQLite
	Primary keys
	Creating clients

	Panels
	Finding clients
	Editing clients
	Deleting clients

	Summary

	Chapter 8: Web Requests
	Network access
	Web Requests
	RSS View
	RSS

	Summary

	Chapter 9: Wrapping Up
	Object factory
	UI scaling
	Dashboard
	Enumerator selectors
	Contacts
	Deployment preparation
	OS X
	Linux
	Windows
	Qt Installer framework
	Installation

	Summary

	Other Books You May Enjoy
	Index

