

Spring Boot 2.0 Projects

Build production-grade reactive applications and
microservices with Spring Boot

Mohamed Shazin Sadakath

BIRMINGHAM - MUMBAI

Spring Boot 2.0 Projects
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Sandeep Mishra
Content Development Editor: Tiksha Sarang
Technical Editor: Supriya Thabe
Copy Editor: Safis Editing
Project Coordinator: Prajakta Naik
Proofreader: Safis Editing
Indexer: Rekha Nair
Graphics: Jisha Chirayil
Production Coordinator: Aparna Bhagat

First published: July 2018

Production reference: 1260718

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78913-615-9

www.packtpub.com

http://www.packtpub.com

To my parents, for going through tough times in order to give me a good education
and manners, and to my wife, Nadhiya, for being my loving partner

throughout our life journey together.

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com, and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Mohamed Shazin Sadakath is an experienced software engineer with over 9 years of
software development experience in J2SE-, J2EE-, and Spring-based applications. He is a
BSc (Hons) software engineering graduate, having achieved first class honors. He has
worked in different domains, ranging from telecommunications to real estate. In his spare
time, he contributes to open source projects, such as Spring Security, and writes technical
articles for blogs. He is a Stack Overflow Moderator and loves answering Java-related
questions.

I would like to thank my loving wife, Nadhiya, for her help and encouragement while
writing this book. I would like to thank Gunith Devasurendra for the technical reviewing
of this book. I would also like to thank Sudharshan Selvenayagam and Manoj Senevirathne
for their assistance while writing this book.

About the reviewers
Gunith Eranda Devasurendra is a senior software engineer with 10 years, professional
development experience, specializing in Java. Born in Sri Lanka, he became interested in
programming as he considers elegant programming and design to be an art form. Gunith
has a master's in computer science awarded by the University of Colombo. He is a speaker
and a trainer on technical topics including Spring, and Git. He is also an advocate of FOSS.
Gunith also helps out in the Stack Overflow community.

To Lord Buddha. To my parents for raising me and giving me an education so that I could
contribute to this book. To my wife, Vimanga, for her love and helping me on so many
levels so that I can contribute. To my son Sasen for his love. To Shazin, the author, for
nominating me and trusting me. To all my teachers and friends who taught me things.

Biharck Araújo has been working as a principal software architect and lead programmer
for the past 15 years. He is passionate about technology and academic research. He has
been working with JavaEE technology for web projects that demand high-security
standards in terms of information transmission for companies across different sectors. He
has extensive experience in activities regarding software architecture. He works in
bioinformatics using technology in life's favor.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Introduction 6
Technical requirements 6
Generating Spring Boot Projects 7

Opening the generated project with IntelliJ 8
Opening the generated project with STS 10

Getting started with Spring Boot 12
Learning about Spring Boot 12

Anatomy of a Spring Boot application 13
Supporting the Spring Framework ecosystem in Spring Boot 15

Changes since Spring Boot 1.x 16
Registering a Spring Bean using ApplicationContextInitializer 17
Configuration property binding 18

New property binding API 19
Property origin 20
Tightened rules for governing relaxed property binding 20
Environment variables with indices 21
Direct binding of property type java.time.Duration in the ISO-8601 form 21

Custom endpoints for Spring Boot Actuator using annotations 21
Exposing a custom Spring Boot Actuator endpoint 22
Extending a custom endpoint with a specialized implementation for the web 23
Connecting to a custom endpoint using monitoring and management tools 23

Custom metrics using Micrometer 25
Custom health indicator 26
Using the HTTP/2 protocol 27
Securing applications with Spring Security 30

The next milestone 31
Migration 32

Using the correct JDK and JVM 32
Running on Java 9 32

Tackling JAXBException 32
Using the correct AspectJ version 33
Being aware of limitations on Apache Cassandra drivers 33
Being aware of issues with the Maven Surefire Plugin 33

Using the upgraded Spring Framework 5.0 33
Modified CORS support behavior 34
Removed packages, classes, and methods 34
Dropped support for frameworks 34

Using the updated configuration properties 35
Using the changed servlet-specific server properties 35
Using the modified template engine extension handling 35

Table of Contents

[ii]

Using the changed actuator configuration properties 36
Using the changed actuator base path 36
Using the renamed actuator endpoints 36
Using the changed Embedded Container Configuration 37
Using the changed default behavior for path mapping 37
Using the changed default dispatcher types for the servlet filter 38
Using the modified transitive dependency to spring-boot-web-starter 38
Using the changed default proxying strategy 39
Using the modified configuration location strategy 39
Using the changed Jackson/JSON support 39
Using the changed Spring Boot Actuator security 39
Using the changed HikariCP default connection pool for JPA 40
Using the changed default database initialization strategy 40
Using the changed database schema creation strategy 40
Using the changed testing support 41
Using the revised Spring Security 41

Using the changed default security auto-configuration strategy 41
Spring Security OAuth2 is migrated to Spring Security core 41
Using the AuthenticationManager bean 41

Understanding removed features 42
Summary 42
Questions 43
Further reading 43

Chapter 2: Building a Basic Web Application 44
Technical requirements 44
Getting started 45

Web application architecture 45
Workflow of Spring Web MVC 46

Requirements for our web application 48
The use case diagram 48

Using Spring Data JPA for persistence 49
Understanding the Java Persistence API (JPA) 49
Understanding Spring Data JPA 50
Class diagram for the domain model 50
Implementation of the domain model using JPA annotations 51

Setting up dependencies and configuration 51
Implementing the domain model 53

Implementation of Spring Data JPA repositories 55
Testing Spring Data JPA repositories 55

Using Spring Boot Devtools for database visualization 58
Using Services to encapsulate business logic 60
Testing Services 61

Using Spring Thymeleaf for the view 64
Understanding template engines 64
Spring Thymeleaf 65

Table of Contents

[iii]

UI design for the Retro Board 65
UI implementation for the Retro Board using Spring Thymeleaf 66

Using Spring Web MVC with servlet 3.x for the controller 68
Implementation of Controllers annotations 69
Testing controllers 70

Using Spring Security for authentication and authorization 73
Demonstrating the Retro Board 76
Summary 78
Questions 78
Further reading 79

Chapter 3: Building a Simple Blog Management System 80
Technical requirements 80
Getting started 81

Web application architecture 81
Workflow of Spring WebFlux 82

Requirements of the Bloggest system 82
The use case diagram 83

Using Spring Data Elasticsearch for persistence 84
Understanding Elasticsearch 84
Understanding Spring Data Elasticsearch 85
Class diagram for the domain model 85
Implementation of the domain model using Spring Data Elasticsearch
annotations 86

Setting up dependencies and configuration classes 86
Implementing the domain model 87

Implementation of Spring Data Elasticsearch repositories 88
Using Apache FreeMarker for the view 89

Understanding template engines 89
Apache FreeMarker 90
UI design for Bloggest 91
UI implementation for Bloggest using Apache FreeMarker 93

Implementing a common layout using Apache FreeMarker 94
Implementing a List Articles page 97
Implementing a Create Article page 100
Implementing a Show Article page 102
Implementing an error page 104

Using Spring WebFlux for controller 105
Implementation of controllers 105
Implementation of ControllerAdvice 109

Using Spring Security for authentication and authorization 110
Demonstrating Bloggest 113
Summary 121
Questions 122
Further reading 122

Table of Contents

[iv]

Chapter 4: Introduction to Kotlin 123
Technical requirements 123
Getting started with Kotlin 124

Default imports 124
Basic data types 125

Numeric data types 125
Learning numeric literals 125
Numeric representation 126
Numeric operations 126
String literals 127

The syntax for Kotlin code 127
The Kotlin packages 127
String interpolation 128
Functions in Kotlin 128
Variables in Kotlin 129
Conditional statements 129

The if statement 129
The when statement 130

Type checking and automatic casting 130
Nullable values and compile-time null safety 130
The for loop 131

The for loop with an array 131
The for loop with a collection 131
The for loop with a value range 132

The while loop 132
Object-oriented programming with Kotlin 133

Learning about visibility modifiers 133
Classes in Kotlin 134

Abstract classes 134
Concrete classes 135

The concept of interfaces in Kotlin 135
Learning about extensions 136
Generic types in Kotlin 137
Enums in Kotlin 137
Objects in Kotlin 138

Object expressions 138
Object declarations 138
Companion objects 139

Advanced programming with Kotlin 139
Functions 140

Infix notation in functions 140
Local functions in Kotlin 140
Default arguments in functions 141
Named arguments in functions 141
Generics in functions 142
Variable number of arguments (vararg) in functions 142

Summary 142
Questions 143

Table of Contents

[v]

Further reading 143

Chapter 5: Building a Reactive Movie Rating API Using Kotlin 144
Technical requirements 144
Getting started 145

REST architecture 145
Requirements of REST architecture 146

The use case diagram 147
Using Spring Data MongoDB for persistence 147

Understanding MongoDB 148
Understanding Spring Data MongoDB 148
Class diagram for the domain model 149
Implementation of the domain model using Spring Data MongoDB
annotations 150

Setting up dependencies and configuration 150
Implementing the domain model 150

Implementing of Spring Data MongoDB repositories 152
Using a service to encapsulate business logic 152
Testing Services 154

Using Spring WebFlux for controllers 158
Implementation of controllers 159
Testing controllers 160

Using Spring Security for basic authorization 163
Demonstrating Moviee 165

Integration testing 165
Demonstrating the use of Postman 168

Accessing the List Movies endpoint 168
Accessing the Get Movie endpoint 169
Accessing the Get Movie endpoint with an invalid Movie ID 170
Accessing the Rate Movie endpoint 171

Summary 172
Questions 172
Further reading 173

Chapter 6: Building an API with Reactive Microservices 174
Technical requirements 175
Getting started 175

Microservices architecture 175
The requirements of microservices architecture 177

The use case diagram 178
The project structure to develop microservices 179

Using Spring Data Redis for persistence 180
Understanding Redis 180
Understanding Spring Data Redis 180
Class diagram for the domain model 181
Implementation of domain model using Spring Data Redis annotations 182

Table of Contents

[vi]

Setting up dependencies and configuration 182
 Implementing the domain model 182

Implementation of Spring Data Redis repositories 184
Using a Service to encapsulate business logic 184

Using Spring WebFlux for a controller 190
Implementation of controllers 191

Using asynchronous data transfer for cross-microservice
communication 194

Asynchronous data transfer using Redis 194
Using Docker to support microservices 196

Understanding Docker 196
Using Maven to build Docker images 197
Building a system of microservices with Docker 199
Deploying microservices with Docker 203

Demonstrating Saber 204
Submitting to the Register Taxi endpoint 204
Submitting location to update Taxi Location endpoint 206
Submitting to Update Taxi Status endpoint 207
Accessing the Get Taxi Status endpoint 208
Accessing the GET available Taxis endpoint 209
Submitting to Book Taxi endpoint 210
Submitting to Accept Taxi Booking endpoint 211
Submitting to cancel Taxi Booking endpoint 212
Accessing Taxi Bookings endpoint 213

Summary 214
Questions 214
Further reading 215

Chapter 7: Building a Twitter Clone with Spring Boot 216
Technical requirements 216
Getting started 217

Beginning with the Tweety architecture 217
Tweety requirements 218

The use case diagram 218
Using Spring Data JPA for persistence 219

Class diagram for the domain model 219
Implementation of the domain model using Spring Data JPA annotations 220

Setting up dependencies and configuration 220
Implementing the domain model 221

Implementing Spring Data JPA repositories 223
Caveat for going reactive with blocking JDBC 223

Using Service to encapsulate business logic 224
Using Angular 5 for the frontend 226

Getting started with Angular 5 application development 226
Generating Angular services 227

Generating the users service 228

Table of Contents

[vii]

Generating Angular page components 230
Generating the Tweets Add page 232
Generating the User Profile page 234

Using Spring Web Flux for the REST controller 235
Implementing controllers 236
Enabling Angular frontend access to controllers 238

Using Spring Security for authentication and authorization 239
Understanding OAuth2 239
Setting up dependencies and configuration 240

Configuring the Resource Server 241
Configuring the Authorization Server 241
Configuring web security 242
Using an Angular service for OAuth2 authentication and authorization 243

Demonstrating Tweety 246
Accessing the login page 247
Accessing the List Tweets page 248
Accessing the Send Tweet page 248
Accessing the User Profile page 249

Summary 250
Questions 251
Further reading 251

Chapter 8: Introducing Spring Boot 2.0 Asynchronous 252
Technical requirements 252
Getting started 253

Synchronous applications 253
Asynchronous applications 254
The requirement of asynchronous applications 254

The use case diagram 255
The architecture of an image resizing application 256

Using Spring Kafka for communication 256
Understanding Apache Kafka 257
Setting up dependencies and configuration 258
Configuration for the Image Resize Request Producer 258
Configuration for Image Resize Request Consumer 261
Starting Spring Boot applications in a non-web mode 262

Using Quartz for scheduling 263
Understanding Quartz 263
Setting up dependencies and configuration 263
Configuration for Quartz scheduling 263

Demonstrating Image Resizer 265
Building all dependencies 265
Running Apache Kafka 265

Running Apache ZooKeeper on Windows 265
Running Apache Kafka on Linux/Unix 266
Running Apache Kafka on Windows 266

Table of Contents

[viii]

Running Image Resize Request Consumer 266
Running Image Resize Request Producer 266

Summary 269
Questions 269
Further reading 270

Chapter 9: Building an Asynchronous Email Formatter 271
Technical requirements 271
Getting started 272

Why Email Formatter is useful 272
The use case diagram 273

The architecture of the Email Formatter application 274
Using Spring Data JPA for persistence 274

Class diagram for the domain model 275
Implementation of the domain model using JPA annotations 275

Setting up dependencies and the configuration class 275
Implementing the domain model 276

Implementation of Spring Data JPA repositories 277
Using Services to encapsulate business logic 277

Using Apache FreeMarker for templates 279
Using Spring Kafka for communication 281

Setting up dependencies and the configuration class 282
Configuration for User Registration 282
Configuration for the Email Formatter consumer 284

Configuring Java Mail 286
Using Spring Web MVC for the REST controller 287

Implementation of controller annotations 287
Using Spring Security for authentication and authorization 288
Demonstrating Email Formatter 289

Building all dependencies 289
Running Apache Kafka 290

Running Apache ZooKeeper on Windows 290
Running Apache Kafka on Linux/Unix 290
Running Apache Kafka on Windows 290

Running SMTP server 291
Running the Email Formatter consumer 292
Running the User Registration microservice 292

Summary 296
Questions 297
Further reading 297

Assessments 298

Other Books You May Enjoy 305

Index 308

Preface
This book is about Spring Boot 2.0 hands-on development for beginners, intermediate, and
expert-level software developers. The purpose of this book is to increase the practical
knowledge of the readers by going through the practical uses of the features introduced in
Spring Boot 2.0.

This book covers vast topics with example applications so that it is much easier to grasp
and use in real-life projects.

Who this book is for
This book is for anyone interested in developing applications using the Spring Framework,
and specifically, Spring Boot 2. The readers may have prior experience of Spring Boot, but it
is not compulsory, as even beginners can benefit from the content of this book.

This book expects the readers to have some level of understanding of software
development using Java.

What this book covers
Chapter 1, Introduction, outlines the Spring Boot 2.0 application development framework
and compares its features with the previous version of Spring Boot. It also talks about
configuration property changes, API changes, platform changes, and more in Spring Boot
2.0. Furthermore, it explains how to migrate from the previous version of Spring Boot
application to Spring Boot 2.0 application.

Chapter 2, Building a Basic Web Application, begins with the practical side of developing a
basic web application using the Spring Boot 2.0 Framework. It also talks about Spring Data
JPA persistence, Spring Thymeleaf view, and Spring WebFlux controllers.

Chapter 3, Building a Simple Blog Management System, presents the practical side of
developing a simple blog management system using the Spring Boot 2.0 framework. It also
talks about Spring Data Elasticsearch for persistence, Apache FreeMarker view, and Spring
WebFlux controllers.

Preface

[2]

Chapter 4, Introduction to Kotlin, introduces the programming language Kotlin by
comparing it with Java programming language side by side. It will help to get started with
Kotlin programming, subsequently moving into advanced topics in Kotlin such as OOP
and other features.

Chapter 5, Building a Reactive Movie Rating API Using Kotlin, discusses reactive movie rating
API development using Kotlin programming language with Spring Boot 2.0. It talks about
Spring Data MongoDB persistence, Spring WebFlux controllers, and Spring Security
authentication and authorization.

Chapter 6, Building an API with Reactive Microservices, explains reactive microservices
development using Spring Boot 2.0. It also talks about Spring Data Redis persistence,
Spring Web Flux controllers, Asynchronous data transfer among microservices, and Docker
deployment of microservices.

Chapter 7, Building a Twitter Clone with Spring Boot, covers Angular application acting as a
client for Spring Boot 2.0 REST API. It also talks about Spring Data JPA persistence,
Angular 5 frontend, Spring Web Flux controllers, and Spring Security OAuth2
authentication and authorization.

Chapter 8, Introducing Spring Boot 2.0 Asynchronous, Quartz Scheduler introduces
asynchronous application development using Spring Boot 2.0. It also talks about Apache
Kafka as a message broker that enables decoupled, asynchronous communication between
applications.

Chapter 9, Building an Asynchronous Email Formatter, explains details of how to build an
Asynchronous Email Formatter, using Spring Boot 2 as the backend development
framework and Apache Kafka as a message queue. It will also explain how to use JPA as
the persistence layer, which is a widely used data source. It will use Apache FreeMarker to
create the email templates and show how to use placeholders to provide dynamic data to
email templates.

To get the most out of this book
You need knowledge of the following:

The Java programming language1.
Spring Framework2.
Web application concepts3.

Preface

[3]

The following tools will be used throughout chapters:

Java Development Kit 8+1.
Maven 32.
IntelliJ IDEA or Spring Tool Suite3.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Spring- Boot- 2.0- Projects- Fundamentals- of- Spring- Boot- 2.0. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[4]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "An ApplicationStartedEvent will be sent right after the application context
is refreshed but before any command-line runners run. "

A block of code is set as follows:

public class Address {
 private String number;
 private String street;
 private String city;
 private String country;
 private String zipCode;
 // Getters, Setters, Equals, Hashcode
}

Any command-line input or output is written as follows:

$ jconsole

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select File | Open from the menu bar."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[5]

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Introduction

This chapter will introduce the reader to Spring Boot and explain how it stands out from
other competing frameworks. It will begin by explaining how to get started developing
applications using Spring Boot. Also, it will explain about Spring Boot 1.x and the
improvements introduced in Spring Boot 2.0. Furthermore, it will walk through the most
noticeable features and/or improvements of Spring Boot 2.0. Continuing on, it will explain
progress with Spring Boot 2.0 and supply tips on migration from the older versions to
Spring Boot 2.0.

This chapter covers the following topics:

Understanding Spring Boot
Generating Spring Boot Projects
Getting started with Spring Boot
Changes since Spring Boot 1.x
The next milestone
Migration

Technical requirements
Technical requirements for this chapter are as follows:

To install Java Development Kit (JDK) 8, it can be downloaded from its official
page at http:/ /www. oracle. com/technetwork/ java/ javase/ downloads/ jdk8-
downloads- 2133151. html

To install Maven 3, download it from its official page at https:/ /maven. apache.
org/download. cgi

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi

Introduction Chapter 1

[7]

To install IntelliJ IDEA, download it from its official page at https:/ /www.
jetbrains. com/ idea/ download/

To install Spring Tool Suite (STS), download it from its official page at https:/ /
spring.io/ tools

Generating Spring Boot Projects
In this book, we will be using http:/ / start. spring. io, which is a convenient tool for
generating Spring Projects with the required dependencies to get started. This tool supports
multiple Spring Boot versions, programming languages (Java, Groovy, Kotlin), project
types (Maven, Gradle), and dependencies. Learning to use this tool will help readers to get
started quickly with Spring Projects. The following is a screenshot of the tool to help us get
familiarized with it:

This tool allows the selection of a Project type (Maven Project, Gradle Project),
programming language (Java, Groovy, Kotlin), Spring Boot version (2.0.*, 1.5.*), project
artifact group, artifact name, and project dependencies. After selecting the correct options,
click on Generate Project will download a ZIP file of the project.

https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
http://start.spring.io
http://start.spring.io
http://start.spring.io
http://start.spring.io
http://start.spring.io
http://start.spring.io
http://start.spring.io
http://start.spring.io
http://start.spring.io

Introduction Chapter 1

[8]

The ZIP file needs to be extracted first before being used. The extracted ZIP file will have
the following structure:

<Project Name>/
├── src/
├── pom.xml
├── mvnw
└── mvnw.bat

Opening the generated project with IntelliJ
To open the generated project with IntelliJ, we perform the following steps:

Open IntelliJ IDE.1.
Select File | Open from the menu bar as shown in the following screenshot:2.

Introduction Chapter 1

[9]

Navigate to the location where the extracted project is and click on OK after3.
selecting the project, shown as follows:

The IDE will show the opened project.4.

Introduction Chapter 1

[10]

Opening the generated project with STS
To open the generated project the Spring Tool Suite, we perform the following steps:

Open STS.1.
Select File | Open Projects from File System... from the menu bar, as shown in2.
the following screenshot:

Introduction Chapter 1

[11]

From the dialog box that launched, click on the Directory... button:3.

Navigate to the extracted project location and Click on OK after selecting the4.
project:

Introduction Chapter 1

[12]

Finally, click on Finish on the import projects dialog box.5.
The IDE will show the opened project.6.

The source code for this chapter can be found at https:/ /github. com/PacktPublishing/
Spring-Boot-2.0- Projects- Fundamentals- of-Spring- Boot- 2.0, in the Chapter01
directory.

Getting started with Spring Boot
This section will enable readers to get started with Spring Boot by explaining its features in
detail. Furthermore, it will help you get started with Spring Boot application development
by explaining the bare-bones of a Spring Boot application. Furthermore, it will explain the
Spring Framework ecosystem and how it can be used in the Spring Boot application to
harness the power of time-tested, industry-standard databases, messaging systems, and so
on.

Learning about Spring Boot
Spring Boot is an application development framework for the Java virtual machine (JVM)
that enables users to write stand-alone, production-grade, flexible, and extensible Spring-
based applications with minimum code and configurations. This follows the Rapid
application development (RAD) paradigm where the focus is on writing business logic
that matters. With the introduction of cloud-based hosting services and microservice
architectures, Spring Boot has been further elevated into a must-know technology platform.
The following are some of its features:

Standalone: A Spring Boot application is self-contained and easily deployable. It
can start with its own embedded Tomcat, Jetty, Undertow web container, or as a
console application from a just standard file such as Java Archive (JAR) or Web
Archive (WAR). An example of this would be an application that has spring-
boot-starter-web as a dependency, which when run will by default inside an
embedded Tomcat web container.
Production-grade: A Spring Boot application enables most of the features
required for production, such as monitoring, connection pools, externalized
configurations, and so on, out of the box, and ships with industry-standard, time-
tested, and proven third-party applications such as Tomcat.

https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0

Introduction Chapter 1

[13]

Flexible: A Spring Boot application will have most of its settings auto-configured
with default settings based on the dependencies available in the classpath of the
application. But the auto-configuration will step back whenever a custom
configuration is made. An example for this would be when a Spring Boot
application finds a MySQL JDBC driver in the classpath; it auto-
configures DataSource, which connects to the host localhost and port 3306, as
those will be the settings for a MySQL Server with a default installation.
Extensible: A Spring Boot application will have most core functionalities
implemented out of the box, but also has a lot of Service Provider Interfaces
(SPI), which are used by third-party developers to implement or modify
functionality. An example of this would be when a requirement arises for a
custom endpoint in Spring Boot Actuator; extending and overriding
the AbstractEndpoint.invoke method in a Spring Bean will expose it as a
new endpoint under Spring Boot Actuator.

Spring Boot does not do any code generation and does not require any XML files to be
configured in order to run. Spring Boot is ideal for on-premise and cloud-based
deployments with a quick boot-up time and a good memory footprint. The uniqueness of
Spring Boot comes from its ecosystem of Spring modules, which covers security, data
persistence, batch processing, and so on and from the highly active, competent community
of developers who keep on improving the Spring Boot Framework.

Anatomy of a Spring Boot application
The anatomy of a Spring Boot application will be that it will be inheriting from a spring-
boot-starter-parent project that will in return have all the common dependencies
available for a Spring Boot application. Apart from this, there will be one or more spring-
boot-starter POM such as spring-boot-starter-web, spring-boot-starter-jpa,
and so on. The following example excerpt from pom.xml shows the basic dependencies of a
Spring Boot application:

<parent>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-parent</artifactId>
 <version>1.5.9.RELEASE</version>
 <relativePath/> <!-- lookup parent from repository -->
</parent>

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter</artifactId>

Introduction Chapter 1

[14]

 </dependency>
 ...
</dependencies>

The minimum bootstrapping point of a Spring Boot application will be a class with a main
method that will be annotated with a @SpringBootApplication annotation along with
the main method body, which calls the SpringApplication.run static method, for which
a configuration class (a class with @Configuration
annotation—the @SpringBootApplication annotation transitively has one) needs to be
passed, along with a String array of arguments. The following code shows the minimum
bootstrapping point of a Spring Boot application:

import org.springframework.boot.ApplicationRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

@SpringBootApplication
public class SpringBootIntroApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootIntroApplication.class, args);
 }

 @Bean
 public ApplicationRunner applicationRunner() {
 return args -> {
 System.out.println("Hello, World!");
 };
 }
}

By running the preceding class, a Spring Boot application can be provisioned and executed.
There are several ways to run a Spring Boot application; some of them are mentioned here:

Running the Spring Boot application main class using an IDE.
Building a JAR or WAR file using the following Maven command and then
running:

$ mvn clean install
$ java -jar target/<package-name>.[jar|war]

Run this using the Spring Boot Maven plugin:

$ mvn clean spring-boot:run

Introduction Chapter 1

[15]

The @SpringBootApplication annotation comprises
of @EnableAutoConfiguration and @ComponentScan annotations that do the heavy
lifting of auto-configuring the Spring Boot application with the default settings and
scanning the packages for any Spring-specific components such as services, components,
repositories, and so on.

Supporting the Spring Framework ecosystem in Spring
Boot
What made the Spring Boot application development framework stand out from other
competing alternatives is the fact that it has a lot of supporting frameworks for easing
development, with starter dependencies that cover industry-standard, enterprise-grade
methodologies and tools such as Web MVC, JPA, MongoDB, Elasticsearch, Redis, and
many more.

This makes Spring Boot a unique solution for day-to-day programming needs. By including
a starter dependency, a Spring Boot application will have all the necessary dependencies
and auto-configurations included in the application without any developer intervention.

This makes the life of a developer easy and enables us to focus on the business logic of the
application instead of configurations and dependency management. At the time of writing,
there are more than thirty of these starters available to be used in a Spring Boot application.
The complete list can be found at https:/ /github. com/spring- projects/ spring- boot/
tree/master/spring- boot- project/ spring- boot- starters.

Spring Boot is a powerful framework as it has a very gradual learning curve and is built on
the basis of the ability to write applications that just run with minimal effort. Having said
that, Spring Boot should not be mistaken for a silver-bullet solution for all problems. In the
areas of memory utilization, optimization, latency reduction, and many more, work may be
needed, so developer commitment and effort are still required. But all in all, Spring Boot
can be considered as a very good solution as it enables users to develop a minimum viable
product (MVP) that is production-ready within maybe a couple of days or hours.

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters
https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters

Introduction Chapter 1

[16]

Changes since Spring Boot 1.x
The last released version of Spring Boot 1.x was 1.5.10.RELEASE, after which Spring Boot
2.0 was released in early 2018. As Spring Boot 2.0 is a major release it has JVM level,
platform level, application programming interface (API) level, and dependencies level
changes, which must be taken into account when developing applications with Spring Boot
2.0.

The major changes from Spring Boot 1.x to Spring Boot 2.0 are listed as follows:

Java 8 is the baseline and Java 9 is supported: This means the minimum JVM
version on which a Spring Boot 2.0 application can be run is now Java 8 because
the framework is modified to use many features introduced in Java 8.
Furthermore, Spring Boot 2.0 is fully supported to run on Java 9, which means all
the dependency JARs shipped will have module descriptors to support the Java 9
module system.
Third-party libraries upgraded: Spring Boot 2.0 requires Spring Framework 5.0
along with Tomcat 8.5, Flyway 5, Hibernate 5.2, and Thymeleaf 3.
Reactive Spring supported: Supports the development of functional, non-
blocking, and asynchronous applications out of the box. Reactive Spring will be
explained and used extensively in upcoming chapters.
Micrometer Framework introduced for metrics: Uses Micrometer instead of its
own API for metrics. A micrometer is a third-party framework that allows
dimensional metrics.
Spring Boot Actuator changed: Spring Boot Actuator endpoints are now placed
inside the context path /actuator instead of being mapped directly to root, to
avoid path collisions. Additionally, a new set of endpoint annotations have been
introduced to write custom endpoints for Spring Boot Actuator.
Configuration property binding: Improved relaxed binding of properties,
property origins, converter support, and a new Binder API.
Kotlin language supported: Supports Kotlin, a new concise and interoperable
programming language introduced by IDEA. Kotlin will be explained in detail in
Chapter 04, Introduction to Kotlin.
HikariCP shipped out of the box instead of Tomcat Connection Pool: HikariCP
is the most efficient, high-performing database connection pool available for the
JVM and it is shipped by default with Spring Boot 2.0.

Introduction Chapter 1

[17]

A new way to dynamically register Spring Bean with
ApplicationContextInitializer: Adds to previous methods of registering a
Spring Bean by providing the means to define it in an XML file, annotate @Bean
on a method that returns an object, annotate with @Component, @Service,
@Repository annotations, and so on. Spring Framework 5 has
introduced ApplicationContextInitializer, which can do dynamic
registering.
HTTP/2 supports out of the box: HTTP/2 is the latest version of the widely used
Hypertext Transfer Protocol (HTTP), which has a lot of performance gains when
compared to older versions.
Newly added event ApplicationStartedEvent: An
ApplicationStartedEvent will be sent right after the application context is
refreshed but before any command line runners run.
ApplicationReadyEvent will, however, be sent right after the application
context is refreshed and any command-line runners run. This means the
application is in a ready state to accept and process requests.

These are the most notable changes, but there are so many more, as with any major release.
Other changes can be seen in the Spring Boot 2.0 release notes, found at https:/ /github.
com/spring-projects/ spring- boot/ wiki/ Spring- Boot- 2.0- Release- Notes.

Let's have a look at some of the notable features of Spring Boot 2.0 with some hands-on
examples.

Registering a Spring Bean using
ApplicationContextInitializer
Spring Boot allows Builder to create customized Spring Boot application bootstrapping
with a tool called SpringApplicationBuilder. This can be used as follows to customize
the Spring Boot application and register a Spring Bean dynamically:

public static void main(String[] args) {
 new SpringApplicationBuilder(SpringBoot2IntroApplication.class)
 .bannerMode(Banner.Mode.OFF)
 .initializers((GenericApplicationContext
 genericApplicationContext) -> {
 genericApplicationContext.registerBean
 ("internet",
 InternetHealthIndicator.class);
 })

https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes

Introduction Chapter 1

[18]

 .run(args);
}

In this code, a new instance of SpringApplicationBuilder is instantiated with a
configuration class. By invoking the bannerMode(Banner.Mode.OFF) method, the banner
shown in the console at the Spring Boot Bootstrap is switched off.

By invoking the initializers() method with a lambda function (learn about lambda
functions in the reference documentation at https:/ / docs. oracle. com/ javase/ tutorial/
java/javaOO/lambdaexpressions. html) for ApplicationContextInitializer, the
GenericApplicationContext.registerBean method is used to register a Spring Bean
called internet and with class type InternetHealthIndicator.

Configuration property binding
Configuration properties are a great feature of Spring Boot for reading properties with type
safety. This section will explain the concept with the following
DemoApplicationProperties class file:

@ConfigurationProperties(prefix = "demo")
public class DemoApplicationProperties {

 private Integer number;

 private String username;

 private String telephoneNumber;

 private List<String> emailAddresses =
 Arrays.asList("shazin@techtalks.lk");

 private String firstName;

 private String lastName;

 private Duration workingTime;

 // Getters and Setters
}

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

Introduction Chapter 1

[19]

The application.yml has the following configuration properties:

demo:
 number: 10
 user-Name: shazin
 firstName: Shazin
 lAsTNamE: Sadakath
 telephone_number: "0094777329939"
 workingTime: 8h
 EMAILADDRESSES:
 - shazin.sadakath@gmail.com
 - shazin.swe@gmail.com
 addresses:
 - number: "B 22 2/3"
 city: Colombo
 street: "Ramya Place"
 country: "Sri Lanka"
 zipCode: "01000"
 - number: "123"
 city: Kandy
 street: "Dalada Weediya"
 country: "Sri Lanka"
 zipCode: "01332"

For configuration properties, an application.properties file also can be used over an
application.yml file. Lately, YML files are becoming famous among developers because
they can provide a structure with indentations, the ability to use collections, and so on.
Spring Boot supports both at the moment.

New property binding API
Spring Boot 2.0 introduces a new binding API for configuration properties. The most
notable change in Spring Boot 2.0 related to configuration property binding is the
introduction of a new binding API with the following Address Plain Old Java Object
(POJO):

public class Address {
 private String number;
 private String street;
 private String city;
 private String country;
 private String zipCode;
 // Getters, Setters, Equals, Hashcode
}

Introduction Chapter 1

[20]

The following Binder fluent API can be used to map properties directly into the Address
POJO.

This code can be written inside any initializing code such as
CommandLineRunner, ApplicationRunner, and so on. In the application this code is
available inside the SpringBoot2IntroApplication.runner method:

List<Address> addresses = Binder.get(environment)
 .bind("demo.addresses", Bindable.listOf(Address.class))
 .orElseThrow(IllegalStateException::new);

The preceding code will create a Binder instance from the given Environment instance
and bind the property for a list of Address classes. If it fails to bind the property then it will
throw IllegalStateException.

Property origin
Another notable addition to configuration property binding is exposing the origins of a
property. This is a useful feature because many developers have struggled in the past
because they had configured the wrong file and ran an application to just see unexpected
results. Now, the origin of a property is shown along with the file, line number, and
column number:

"demo.user-Name": {
 "value":"shazin",
 "origin":"class path resource [application.yml]:5:14"
}

Tightened rules for governing relaxed property binding
Relaxed property binding rules have the following changes:

Kebab-case format (lower-case, hyphen-separated) must be used for prefixes.1.
Examples of this are demo and demo-config.
Property names can use kebab-case, camel-case, or snake-case. Examples of this2.
are user-Name, firstName, and telephone_number.
The upper case underscore format that is usually used for environment variables3.
should be followed, where the underscore should only be used to separate parts
of the key. The upper case underscore format is usually used for environment
variables. The underscore is used to separate parts of the key. An example of this
would be DEMO_ENV_1.

Introduction Chapter 1

[21]

The complete set of rules for relaxed bindings can be seen in the Spring Boot
documentation at https:/ / docs. spring. io/spring- boot/ docs/ current/ reference/ html/
boot-features-external- config. html#boot- features- external- config- relaxed-
binding.

Environment variables with indices
Furthermore, environment variables with indices can be mapped to names with array
syntax and indices, shown as follows:

DEMO_ENV_1 = demo.env[1]
DEMO_ENV_1_2 = demo.env[1][2]

So, the DEMO_ENV_1 environment variable can be read in the application as follows:

System.out.printf("Demo Env 1 : %s\n",
environment.getProperty("demo.env[1]"));

Direct binding of property type java.time.Duration in the
ISO-8601 form
Another notable change is the ability to specify time duration in days (d), hours (h),
minutes (m), seconds (s), milliseconds (ms), and nanoseconds (ns), which will be correctly
mapped to a java.time.Duration object in the configuration property. In the example
workingTime: 8h, the property will be mapped to the java.time.Duration
workingTime property correctly. Values such as 8m, 8s, 8d can also be specified to define
duration.

Custom endpoints for Spring Boot Actuator
using annotations
In Spring Boot 1.x, in order to write a custom endpoint for Spring Boot
Actuator, AbstractEndpoint had to be extended and its invoke method has been
overridden with custom logic. Spring Boot Actuator is a production-ready feature for
monitoring and managing a Spring Boot application using HTTP endpoints or JMX.
Auditing metrics such as health could also be gathered using this feature. Finally, it had to
be injected into the Spring Context as a Bean. This endpoint was technologically agnostic, in
the sense that it could be invoked using JMX as well as with web requests.

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config-relaxed-binding

Introduction Chapter 1

[22]

If a custom behavior was required for a particular technology, such as JMX or the web,
then AbstractEndpointMvcAdapter or EndpointMBean had to be extended respectively
and had to be injected as a Spring Bean. This is cumbersome, and Spring Boot 2.0 has
introduced technology-specific annotations such as @Endpoint, @WebEndpoint,
and @JmxEndpoint; technology-independent operation annotations such
as @ReadOperation, @WriteOperation, and @DeleteOperation; and technology-
specific extension annotations such
as @EndpointWebExtension and @EndpointJmxExtension, to ease this process.

By default, only the /info and /health endpoints are exposed. The
management.endpoints.web.exposure.include=* property must be
set to expose other endpoints, including custom ones.

Exposing a custom Spring Boot Actuator endpoint
The @ReadOperation annotation will expose the Getter for the custom endpoint and
the @WriteOperation will expose the Setter for the custom endpoint. The endpoint will
be mapped under the http://<host>:<port>/actuator/custom URL (the default host
is localhost, and the default port is 8080 unless configured otherwise) and also exposed
as a JMX Management bean:

@Component
@Endpoint(id = "custom")
public class CustomEndpoint {

 private final static Logger LOGGER =
 LoggerFactory.getLogger(CustomEndpoint.class);

 @ReadOperation
 public String get() {
 return "Custom Endpoint";
 }

 @WriteOperation
 public void set(String message) {
 LOGGER.info("Custom Endpoint Message {}", message);
 }
}

Introduction Chapter 1

[23]

Extending a custom endpoint with a specialized
implementation for the web
The following extension class, which uses @EndpointWebExtension to extend
CustomEndpoint for custom behavior for web technology and for JMX technology, will
not be changed:

@Component
@EndpointWebExtension(endpoint = CustomEndpoint.class)
public class CustomEndpointWebExtension {
 ...

 @ReadOperation
 public WebEndpointResponse<String> getWeb() {
 ...
 return new WebEndpointResponse<>("Custom Web
 Extension Hello, World!", 200);
 }
}

The @EndpointWebExtension annotation will make the CustomEndpointWebExtension
a web extension for CustomEndpoint with its endpoint property. The method with
the @ReadOperation annotation will be the overridden Getter.
Accessing http://<host>:<port>/actuator/custom (the default host is localhost,
and the default port is 8080 unless configured otherwise) and a URL using a browser will
prompt for the username (specify sysuser) and password (specify password) and when
logged in will return the following:

Custom Web Extension Hello, World!

Connecting to a custom endpoint using monitoring and
management tools
Running the Spring Boot application with the following VM arguments will enable it to be
connected using jconsole remotely, and the exposed CustomEndpoint JMX Bean can be
accessed using monitoring and management tools such as jconsole, which is shipped
with the JDK installation:

-Djavax.management.builder.initial=
-Dcom.sun.management.jmxremote
-Dcom.sun.management.jmxremote.port=8855
-Dcom.sun.management.jmxremote.authenticate=false
-Dcom.sun.management.jmxremote.ssl=false

Introduction Chapter 1

[24]

Run jconsole with the following command:

$ jconsole

Making a remote process connected with it to <host>:8855 will list all the MBeans from
the Spring Boot application under MBeans tab. When the Custom.get operation is
executed from jconsole it will show the return from CustomEndpoint.get as expected,
as shown in the following screenshot:

Introduction Chapter 1

[25]

Custom metrics using Micrometer
With the introduction of Micrometer to Spring Boot Actuator in Spring Boot 2.0, metrics can
be customized easily. The following code snippet
from CustomEndpointWebExtension shows how to make use
of io.micrometer.core.instrument.MeterRegistry to maintain a counter with the
name custom.endpoint.calls, which will be incremented every time
CustomEndpointWebExtension is invoked:

public static final String CUSTOM_ENDPOINT_CALLS =
"custom.endpoint.calls";

private final MeterRegistry meterRegistry;

public CustomEndpointWebExtension(MeterRegistry meterRegistry) {
 this.meterRegistry = meterRegistry;
}

@ReadOperation
public WebEndpointResponse<String> getWeb() {
 meterRegistry.counter(CUSTOM_ENDPOINT_CALLS).increment();
 return new WebEndpointResponse<>("Custom Web Extension Hello,
World!", 200);
}

The preceding code injects MeterRegistry from the Micrometer Framework, which is
used to create and retrieve a counter named custom.endpoint.calls and increment it
during each read operation of the custom web endpoint extension.

This metric will be available under
the http://<host>:<port>/actuator/metrics/custom.endpoint.calls URL,
which will show a result similar to the following:

{
 "name":"custom.endpoint.calls",
 "measurements":[
 {
 "statistic":"COUNT",
 "value":3.0
 }
],
 "availableTags":[]
}

Introduction Chapter 1

[26]

Custom health indicator
Spring Boot Actuator's health endpoint is really helpful for checking the status of Spring
Boot application and dependent systems such as databases, message queues, and so on.
Spring Boot ships out of the box with many standard HealthIndicator implementations
such as DiskSpaceHealthIndicator, DataSourceHealthIndicator,
and MailHealthIndicator, which can all be used in Spring Boot applications with Spring
Boot Actuator. Furthermore, custom health indicators can also be implemented if required:

public class InternetHealthIndicator implements HealthIndicator {

 private static final Logger LOGGER =
LoggerFactory.getLogger(InternetHealthIndicator.class);

 public static final String UNIVERAL_INTERNET_CONNECTIVITY_CHECKING_URL
= "https://www.google.com";

 private final RestTemplate restTemplate;

 public InternetHealthIndicator(RestTemplateBuilder restTemplateBuilder)
{
 this.restTemplate = restTemplateBuilder.build();
 }

 @Override
 public Health health() {
 try {
 ResponseEntity<String> response =
restTemplate.getForEntity(UNIVERAL_INTERNET_CONNECTIVITY_CHECKING_URL,
String.class);
 LOGGER.info("Internet Health Response Code {}",
 response.getStatusCode());
 if (response.getStatusCode().is2xxSuccessful()) {
 return Health.up().build();
 }
 } catch (Exception e) {
 LOGGER.error("Error occurred while checking
 internet connectivity", e);
 return Health.down(e).build();
 }

 return Health.down().build();
 }
}

Introduction Chapter 1

[27]

The preceding InternetHealthIndicator is intended to show the status of internet
connectivity from within Spring Boot applications to the outside world. It will send a
request to www.google.com to check whether it sends a successful HTTP response code, and
based on that the health status of this indicator will be set to up or down. This was injected
as a Spring Bean using an ApplicationContextInitializer earlier. Invoking
the http://<host>:<port>/actuator/health URL will return the internet status as in
the following:

{
 "status":"UP",
 "details":{
 "internet":{
 "status":"UP"
 },
 "diskSpace":{
 "status":"UP",
 "details":{
 "total":399268376576,
 "free":232285409280,
 "threshold":10485760
 }
 }
 }
}

Using the HTTP/2 protocol
HTTP was invented by Tim Berners-Lee in 1989 while he was working at CERN. It was
designed as a way to share scientific findings among coworkers and is almost three decades
old. When HTTP was invented, it was never intended to be the backbone of today's low-
latency, high-traffic web, used by millions if not billions of people. So HTTP 1-and HTTP
1.1-based web applications had to have a lot of workarounds to cater to the high demands
of the modern web. The following are some of those workarounds:

Concurrent resources are download by the browser since HTTP 1.x can
download only one resource at a time, and Domain Sharding is used to tackle
limitations on the maximum number of connections per domain
Combining multiple resources such as CSS/Javascript files together with complex
server-side logic and downloading them all in one go
Multiple image sprites in a single resource to reduce the number of image file
downloads
Inlining static resources in an HTML file itself

http://www.google.com

Introduction Chapter 1

[28]

But HTTP/2 is designed from the ground up to tackle these pain points. Compared to HTTP
1.x, HTTP/2 doesn't use text to communicate between the client and server. It uses binary
data frames, which makes it much more efficient and reduces the text-to-binary and binary-
to-text conversion overhead in the servers. Furthermore, it has the following features
introduced:

HTTP/2 multiplexing: This multiplexing feature allows opening one connection
to a server and downloading multiple resources using that connection:

HTTP/2 push: This will send resources to clients even before resources are
requested:

HTTP/2 header compression: Eliminates the repeating of the same headers
across multiple requests by maintaining an HTTP header table, thus reducing
request bandwidth

Introduction Chapter 1

[29]

Spring Boot 2 supports HTTP/2 out of the box for server Undertow, and, with minor
dependencies at https:/ /docs. spring. io/ spring- boot/ docs/ 2.0. x-SNAPSHOT/
reference/htmlsingle/ #howto- configure- http2, also supports Tomcat and Jetty servers.
But Spring Boot 2 doesn't support the clear text version of HTTP/2, so Secure Socket Layer
(SSL) is a must. It requires the following dependencies in pom.xml :

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 <exclusions>
 <exclusion>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-tomcat</artifactId>
 </exclusion>
 </exclusions>
 </dependency>

 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-undertow</artifactId>
 </dependency>
 ...
</dependencies>

The configuration properties in application.yml configure both SSL and HTTP/2:

 server:
 port: 8443
 ssl:
 key-store: keystore.p12
 key-store-password: sslcert123
 keyStoreType: PKCS12
 keyAlias: sslcert

 http2:
 enabled: true

In this configuration SSL key-store, key-store-password, keyStoreType,
and keyAlias are configured along with the port for HTTPs. The key was generated using
keytool, which is a utility shipped with the JDK release with the following command, and
fills in the necessary details when prompted by the utility tool:

$ keytool -genkey -alias sslcert -storetype PKCS12 -keyalg RSA -keysize
2048 -keystore keystore.p12 -validity 3650

https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2
https://docs.spring.io/spring-boot/docs/2.0.x-SNAPSHOT/reference/htmlsingle/#howto-configure-http2

Introduction Chapter 1

[30]

This key-store is not recommended for production as it is not generated
by a Trusted Certificate Authority. A proper SSL Certificate must be used
in production.

Now when the https://<localhost>:8443/actuator/custom URL is accessed it will
be served over HTTP/2.

Securing applications with Spring Security
Spring Boot 2.0 has introduced updated support for Spring Security with Spring
Framework 5.0 and Reactive support for Spring Security, providing simplified default
configurations and ease of customization for Spring Security. As opposed to having
multiple auto-configurations for Spring Security, Spring Boot 2.0 has introduced a single
behavior that can be overridden easily and can be customized easily with a
WebSecurityConfigurerAdapter such as the following:

@Configuration
public class SecurityConfig extends WebSecurityConfigurerAdapter {

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.httpBasic().and()
 .authorizeRequests()
 .requestMatchers(EndpointRequest.to("info", "health")).permitAll()
 .requestMatchers(EndpointRequest.toAnyEndpoint()).hasRole("SYSTEM")
 .antMatchers("/**").hasRole("USER");

 }

 @Override
 protected void configure(AuthenticationManagerBuilder
 auth) throws Exception {
 auth.inMemoryAuthentication()
 .passwordEncoder(new
 MessageDigestPasswordEncoder("SHA-256"))
 .withUser("user")
.password("5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef721d1542d8
")
 .roles("USER")
 .and()
 .withUser("sysuser")
.password("5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef721d1542d8
")
 .roles("SYSTEM");

Introduction Chapter 1

[31]

 }

}

One thing to note here is the introduction of the EndpointRequest helper class, which
makes it easier to protect endpoints.

The next milestone
Spring Boot is a highly active project with contributors from all around the World. At the
time of writing, the Spring Boot 2.1.0 milestone is set and is under active development. The
following are some of the features proposed for that Spring Boot minor-version release:

Support for embedding Tomcat 9: Tomcat 9 has introduced a lot of features, but
Spring Boot 2.0 still only supports up to Tomcat 8 by default. With this support,
Spring Boot 2.0 will be able to offer features such as Servlet 4.0 API, JSP 2.4,
WebSocket 2.0, and so on.
Auto-configuration of JettyMetrics: Micrometer has metrics support for Jetty,
which is planned to be included in the next release of Spring Boot 2.0.
Support for embedding Undertow 2.0: Undertow 2.0 has a lot of features, such
as Servlet 4.0, but is not yet supported by Spring Boot 2.0.
Support for Hibernate 5.3.0 and JPA 2.2: Hibernate 5.3.0 and JPA 2.2 are the
latest releases for the persistence layer, which needs to be incorporated into
Spring Boot 2.0.
Actuator endpoint for listing and clearing cache: The actuator endpoint is
intended to return caches per context and provides a delete operation to clear
the cache.
Allowing @ConfigurationProperties binding on interfaces: At the moment
only a class can be used to bind properties from a configuration properties file
with a @ConfigurationProperties annotation. This feature will allow
interfaces with methods with property names to be mapped to their
corresponding property.
Having consistent auto-configuration behavior for default connection of data
sources: Currently, behavior for default connection auto-configurations differs
from data sources as such as MongoDB, Couchbase, and so on. This proposed
change will make it consistent.

Introduction Chapter 1

[32]

However, these enhancements and features are still under active evaluation and debate and
can be further improved or reduced based on the collective decisions of the Spring Boot
developer community.

Migration
Spring Boot 2.0 is a major release; it will require care when migrating from Spring Boot 1.x,
as a lot has changed. Migration is unavoidable, as existing applications require the use of
new features and enhancements available in the latest Spring Boot 2.0 release. The official
migration guide can be read at https:/ / github. com/spring- projects/ spring- boot/ wiki/
Spring-Boot-2.0- Migration- Guide and in this section, the most notable migration tips will
be discussed.

Using the correct JDK and JVM
Spring Boot 2.0 doesn't support Java 6 or Java 7, which are still widely used in many
production environments. So the first thing that needs to be done is to upgrade both
development environments and runtime environments to at least Java 8 or above.

Running on Java 9
Since Java 9 was a major release and has one of the most complex enhancement
modifications made to Java since its inception (the modular system), special care needs to
be taken when running the Spring Boot 2.0 application on it. The following tips will help
you get started.

Tackling JAXBException
The following exception can be expected as soon as a Spring Boot 2.0 application is run on
Java 9:

java.lang.NoClassDefFoundError: javax/xml/bind/JAXBException

https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide

Introduction Chapter 1

[33]

This is because Hibernate requires JAXB, which is not shipped by default in Java 9. The
following dependency needs to be added in pom.xml to include it:

<dependency>
 <groupId>javax.xml.bind</groupId>
 <artifactId>jaxb-api</artifactId>
 <version>2.3.0</version>
</dependency>

Instead, you can add the java.xml.bind module to Java 9 directly to get rid of this
exception.

Using the correct AspectJ version
Java 9 requires AspectJ version 1.9 (currently in Release Candidate version) if JDK weaving
of classes is required. Spring Boot 2.0, however, can work with the lower version 1.8 that is
shipped by default.

Being aware of limitations on Apache Cassandra drivers
Apache Cassandra drivers that run on Spring Boot 2.0 are not fully supported by Java 9 at
the time of writing this book, so if a Spring Boot 2.0 application uses these then it must be
properly tested. The issue can be followed at https:/ /github. com/ spring- projects/
spring-boot/issues/ 10453 for more updates.

Being aware of issues with the Maven Surefire Plugin
Maven Surefire Plugin version 2.20.1 has re-introduced a bug that was fixed on other Java
versions and only raised when running tests on Java 9. In order to fix this, the Maven
Surefire Plugin has to be downgraded to 2.20.0 or the java.se.ee module needs to be
excluded from the runtime while running tests.

Using the upgraded Spring Framework 5.0
Spring Boot 2.0 by default uses and supports Spring Framework 5.0. Thus, any change to it
will affect migration to Spring Boot 2.0. Some notable changes are explained in the
following topics.

https://github.com/spring-projects/spring-boot/issues/10453
https://github.com/spring-projects/spring-boot/issues/10453
https://github.com/spring-projects/spring-boot/issues/10453
https://github.com/spring-projects/spring-boot/issues/10453
https://github.com/spring-projects/spring-boot/issues/10453
https://github.com/spring-projects/spring-boot/issues/10453
https://github.com/spring-projects/spring-boot/issues/10453
https://github.com/spring-projects/spring-boot/issues/10453
https://github.com/spring-projects/spring-boot/issues/10453
https://github.com/spring-projects/spring-boot/issues/10453
https://github.com/spring-projects/spring-boot/issues/10453
https://github.com/spring-projects/spring-boot/issues/10453
https://github.com/spring-projects/spring-boot/issues/10453
https://github.com/spring-projects/spring-boot/issues/10453
https://github.com/spring-projects/spring-boot/issues/10453
https://github.com/spring-projects/spring-boot/issues/10453
https://github.com/spring-projects/spring-boot/issues/10453
https://github.com/spring-projects/spring-boot/issues/10453

Introduction Chapter 1

[34]

Modified CORS support behavior
The @CrossOrigin annotations property allowCredentials now has the default value
false. This means that it needs to be explicitly set if cookies or authentication are
required.

Removed packages, classes, and methods
The following packages, classes, and methods are no longer supported in the Spring
Framework 5.0 release:

The beans.factory.access package, including the class
SpringBeanAutowiringInterceptor.
The jdbc.support.nativejdbc package, which is replaced by JDBC 4
implementation.
The mock.staticmock package, with
which AnnotationDrivenStaticEntityMockingControl is no longer
supported.
The web.views.tiles2 package, with the minimum version requirement for
tiles being version 3.
The orm.hibernate3/hibernate4 packages, with the minimum version
requirement for Hibernate being version 5.
Most of the deprecated classes in the previous version have been removed.
Some methods in JSP Standard Tag Library (JSTL) have been removed. For
example, FormTag commandName is no longer available.

Dropped support for frameworks
Spring Framework 5.0 no longer supports the following frameworks:

Google Guava
Velocity
XMLBeans
JDO
Portlet
JasperReports

Introduction Chapter 1

[35]

Using the updated configuration properties
A lot of configuration properties have been renamed/replaced from Spring Boot 1.x to
Spring Boot 2.0. So these changes must be incorporated in
the application.yml/application.properties file to do a successful migration. To
ease this process, Spring Boot has released the spring-boot-properties-migrator
properties migrator, which can be used in the Maven configuration as follows:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-properties-migrator</artifactId>
 <scope>runtime</scope>
</dependency>

When this dependency is used, it will analyze the application environment, print out any
diagnostics at startup, and even temporarily migrate properties at runtime.

This dependency is only required during migration and could/should be
removed when the migration is complete.

Using the changed servlet-specific server
properties
With the introduction of Reactive Web Programming out of the box in Spring Boot 2.0,
there needs to be a differentiation between properties for a servlet stack and properties for a
reactive stack, so that previous properties such as server.*, which was related to the
server ServletContext path, is not changed to server.servlet.* , avoiding verbosity in
property naming.

Using the modified template engine extension
handling
In Spring Boot 2.0 the file extension for the mustache template engine has been changed
from .html to .mustache. With the spring.mustache.suffix configuration property
this behavior can be overridden if required.

Introduction Chapter 1

[36]

Using the changed actuator configuration
properties
The following changes have been introduced in the Spring Boot Actuator configuration
properties in Spring Boot 2.0:

endpoints.* properties have been moved under management.*
management.* properties have been moved under management.server.*
endpoints.<id>.* properties have been moved under
management.endpoint.<id>.*

Shutdown endpoint must be explicitly enabled by setting
the management.endpoint.shutdown.enabled configuration property to
true

These changes have the potential to break existing code, and so must be changed
accordingly when migrating.

Using the changed actuator base path
Now, the /actuator path contains all Spring Boot Actuator-related endpoints. In order to
get the previous version's behavior, the management.endpoints.web.base-path=/
configuration property needs to be set. Another change is the addition of a new purpose for
management.server.servlet.context-path, which is the counterpart of
server.servlet.context-path related to Spring Boot Actuator endpoints.

As an example, if management.server.servlet.context-path=/actuator is set,
along with management.endpoints.web.base-path=/application, then the
endpoints will be accessible under the /actuator/application/<endpoint> path.

Using the renamed actuator endpoints
The following Spring Boot Actuator endpoints have been changed:

/autoconfig has been renamed to /conditions
/trace has been renamed to /httptrace

Introduction Chapter 1

[37]

Applications depending on these endpoints need to be changed to use the renamed
endpoints.

Using the changed Embedded Container
Configuration
EmbeddedServletContainer is changed to WebServer. Also,
the org.springframework.boot.context.embedded package is refactored to
org.springframework.boot.web.embedded. If
TomcatEmbeddedServletContainerFactory was used to configure an embedded
Tomcat with a custom port in an application as in the following, then it will need to be
changed:

@Bean
public EmbeddedServletContainerFactory servletContainer() {
 TomcatEmbeddedServletContainerFactory tomcat = new
TomcatEmbeddedServletContainerFactory();
 Connector connector = new
Connector("org.apache.coyote.http11.Http11NioProtocol");
 connector.setScheme("http");
 connector.setPort(9090);
 tomcat.addAdditionalTomcatConnectors(connector);
 return tomcat;
}

It must be changed to use TomcatServletWebServerFactory instead, as in the following:

@Bean
public TomcatServletWebServerFactory webServer() {
 TomcatServletWebServerFactory tomcat = new
 TomcatServletWebServerFactory(9090);
 return tomcat;
}

Using the changed default behavior for path
mapping
The default behavior of map extensions such as .json and .xml to existing controller
request mappings has changed in Spring Boot 2.0. Consider the following URL mapping:

@GetMapping("/users")

Introduction Chapter 1

[38]

If it is expected to cater to the /users.json URL in a Spring Boot 1.x application, then it
won't be supported in Spring Boot 2.0. This means new mappings need to be added as
necessary.

Using the changed default dispatcher types for
the servlet filter
The default dispatcher type for the servlet filter in Spring Boot 2.0 is
DispatcherType.REQUEST. This is changed to be in line with the default in the servlet
specification. If other dispatcher types are required then a FilterRegistrationBean
must be used to register the filter.

Using the modified transitive dependency to
spring-boot-web-starter
Spring Boot 1.x had the transitive dependency spring-boot-starter-web whenever one
of the following template engine starters was used:

spring-boot-starter-freemarker

spring-boot-starter-thymeleaf

spring-boot-starter-mustache

This was done because Spring Web MVC was running on top of the Servlet API, which is
the only web application framework that was available at that time.

Now, with the introduction of the Spring Reactive Web starter spring-boot-starter-
webflux, which is completely independent of the Servlet API, transitive dependencies
from those template engine starters have been removed. This means that, when a template
engine starter dependency is added, a developer needs to manually add a dependency to
either Spring Web MVC starter or Spring Web Flux starter based on the requirement.

Introduction Chapter 1

[39]

Using the changed default proxying strategy
Spring Boot 2.0 uses CGLIB as the default proxying strategy including for aspect-oriented
programming (AOP). If proxy based proxying is required, the following configuration
property needs to be set:

spring.aop.proxy-target-class=false.

Using the modified configuration location
strategy
With Spring Boot 2.0, the spring.config.location configuration will no longer append
to the list of configurations; instead, it will replace it. So, if append logic is required,
then spring.config.additional-location must be used.

Using the changed Jackson/JSON support
With Spring Boot 2.0, Jackson's configuration was modified to write JSR-310 dates as
ISO-8601 strings. For its previous behavior, the
property spring.jackson.serialization.write-dates-as-timestamps=true
needs to be set.

Using the changed Spring Boot Actuator security
The separate security auto-configuration for actuators has been removed in Spring Boot 2.0;
thus, management.security.* properties are no longer supported. The
endpoints.<id>.sensitive flag for each endpoint is no longer available, and if an
application is dependent on this behavior then it must use a custom configuration for
Spring Security to permit or restrict access to those endpoints.

Introduction Chapter 1

[40]

Using the changed HikariCP default connection
pool for JPA
With Spring Boot 2.0, the default connection pool for JPA has been changed from Tomcat to
HikariCP. Thus it is no longer required to use the configuration
property spring.datasource.type as an override to use HikariCP. Using the following
dependency will by default use HikariCP:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
</dependency>

Using the changed default database initialization
strategy
With Spring Boot 2.0, the default basic DataSource initialization is only enabled for
embedded databases and will be disabled as soon as a production database is used. The
configuration property spring.datasource.initialization-mode (with values
always or never), which replaces the old spring.datasource.initialize
configuration property, can be used for more control.

Using the changed database schema creation
strategy
The default behavior for embedded databases used with a schema manager such as
Liquibase, Flyway, and so on will be dropping existing tables and creating a new one,
which is similar to create-drop for the configuration property
spring.jpa.hibernate.ddl-auto .If no schema manager is used then the default
behavior is to do nothing, which is similar to setting none for the aforementioned
configuration property.

Introduction Chapter 1

[41]

Using the changed testing support
The following test annotations are no longer supported for Mockito 1.x:

@MockBean

@SpyBean

If testing needs to be done using the aforementioned annotations then Spring Boot 2.0
spring-boot-starter-test must be used or Mockito 2.x must be used explicitly.

Using the revised Spring Security
There are some Spring Security-related changes made for Spring Boot 2.0's release, which
need to be incorporated when migrating. Some of the most notable ones are explained in
the following sections.

Using the changed default security auto-configuration
strategy
Spring Security has changed its auto-configuration strategy to make use of defaults in most
cases instead of enabling multiple configuration options. Notable cases are when Spring
Security authorization with content negotiation is used.

Spring Security OAuth2 is migrated to Spring Security
core
The OAuth2 project is now part of the Spring Security core project and released out of the
box. Thus dependencies for OAuth2 will not be maintained separately as of Spring Security
5.0. If a Spring Boot application makes use of a non-migrated feature then dependencies for
those need to be added explicitly.

Using the AuthenticationManager bean
Exposing a custom AuthenticationManager bean can now be done with an overriding
WebSecurityConfigurerAdapter.authenticationManagerBean method annotated
with a @Bean annotation.

Introduction Chapter 1

[42]

Understanding removed features
Some features that were available in Spring Boot 1.x but are no longer supported in Spring
Boot 2.0 are as follows:

Disabled CRaSH support—Spring Boot 1.x had an integrated Java shell that was
used to SSH and Telnet in a Spring Boot application. This is no longer available
and the spring-boot-starter-remote-shell dependency can no longer
provide support in monitoring and manage Spring Boot applications.
Removed auto-configuration support for Spring Mobile.
Removed auto-configuration support for Spring Social.
Removed dependency management support for commons-digester.

Summary
Congratulations on completing the first chapter. This chapter talked about what Spring
Boot is, and explained its unique characteristics in depth by talking about Spring Boot's
standalone, production-grade, flexible, and extensible capabilities in detail with examples.

Also, it talked about how to get started with Spring Boot application development by going
through the anatomy of a Spring Boot application. It explained what makes a Spring Boot
application different from a standard Maven Java application. Also, it talked about the
ways a Spring Boot application can be run.

Next, it talked about what has changed from Spring Boot 1.x to Spring Boot 2.0, as it is a
major version release, and how to successfully migrate from Spring Boot 1.x to Spring Boot
2.0 by going through each change and explaining how it affects an existing Spring Boot
application. It also covered how to mitigate any adverse effects successfully without
breaking the application.

Furthermore, it talked about what is in the pipeline for the next minor release of Spring
Boot 2.0. These are enhancements that are proposed and discussed by the Spring Boot
community, which they deem necessary for the next minor release. These features, along
with more features, enhancements, and bug fixes, can be expected in the next minor release,
Spring Boot 2.1.0.

Introduction Chapter 1

[43]

This chapter has set the pace for coming chapters, which contain more exciting, hands-on
Spring Boot 2.0 applications. The contents of this chapter will help greatly in upcoming
chapters when it comes to understanding what makes a Spring Boot application work. This
chapter also touched on different parts of the Spring Framework ecosystem such as Spring
Security, Spring Data JPA, and so on, which will be covered in detail in coming chapters.
This chapter has enabled us to write Spring Boot 2.0 applications that just run easily and
effectively.

Questions
Please answer the following questions to see whether you have successfully mastered this
chapter:

What is Spring Boot?1.
What is the bare minimum code to start a Spring Boot application?2.
What is the minimum platform required to run a Spring Boot 2.0 application?3.
What is HTTP/2?4.
What is the default dispatcher type for a Spring Boot 2.0 servlet filter?5.
What is the next minor release version of Spring Boot 2.0?6.
What is the name of the default connection pool framework for a Spring Boot 2.07.
application with the JPA starter?

Further reading
In order to improve your knowledge of Java and Spring Boot, the following books are
recommended. They will be helpful in the coming chapters:

Learning Reactive Programming with Java 8: https:/ /www. packtpub. com/
application- development/ learning- reactive- programming- java- 8

Learning Spring Boot 2.0 – Second Edition: https:/ /www. packtpub. com/
application- development/ learning- spring- boot- 20- second- edition

https://www.packtpub.com/application-development/learning-reactive-programming-java-8
https://www.packtpub.com/application-development/learning-reactive-programming-java-8
https://www.packtpub.com/application-development/learning-reactive-programming-java-8
https://www.packtpub.com/application-development/learning-reactive-programming-java-8
https://www.packtpub.com/application-development/learning-reactive-programming-java-8
https://www.packtpub.com/application-development/learning-reactive-programming-java-8
https://www.packtpub.com/application-development/learning-reactive-programming-java-8
https://www.packtpub.com/application-development/learning-reactive-programming-java-8
https://www.packtpub.com/application-development/learning-reactive-programming-java-8
https://www.packtpub.com/application-development/learning-reactive-programming-java-8
https://www.packtpub.com/application-development/learning-reactive-programming-java-8
https://www.packtpub.com/application-development/learning-reactive-programming-java-8
https://www.packtpub.com/application-development/learning-reactive-programming-java-8
https://www.packtpub.com/application-development/learning-reactive-programming-java-8
https://www.packtpub.com/application-development/learning-reactive-programming-java-8
https://www.packtpub.com/application-development/learning-reactive-programming-java-8
https://www.packtpub.com/application-development/learning-reactive-programming-java-8
https://www.packtpub.com/application-development/learning-reactive-programming-java-8
https://www.packtpub.com/application-development/learning-reactive-programming-java-8
https://www.packtpub.com/application-development/learning-reactive-programming-java-8
https://www.packtpub.com/application-development/learning-reactive-programming-java-8
https://www.packtpub.com/application-development/learning-reactive-programming-java-8
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition
https://www.packtpub.com/application-development/learning-spring-boot-20-second-edition

2
Building a Basic Web

Application
This chapter will help readers get started developing web applications using Spring Boot
2.0. It will enable experts as well as beginners with Spring Boot web application
development to understand the concepts behind a web application. It will explain these
concepts by walking the reader through the process of developing a web application that
enables the submitting of comments to a scrum retrospective meeting. This web application
will use an embedded database for persistence, Spring Data JPA for a model, Spring
Thymeleaf for a view, and Spring Web MVC for controllers.

The following topics will be covered in this chapter:

Using Spring Data JPA for persistence
Using Thymeleaf for view
Using Spring Web MVC with servlet 3.x for controller
Using Spring Security for authentication and authorization
Demonstrating Retro Board

Technical requirements
In order to implement a web application using Spring Boot, the following build tools need
to be downloaded and installed:

To install Java Development Kit (JDK) 8, download it from its official page
at http:/ /www. oracle. com/ technetwork/ java/ javase/ downloads/ jdk8-
downloads- 2133151. html

To install Maven 3, download it from its official page at https:/ /maven. apache.
org/download. cgi

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi

Building a Basic Web Application Chapter 2

[45]

To install IntelliJ IDEA, download it from its official page at https:/ /www.
jetbrains. com/ idea/ download/

To install Spring Tool Suite (STS), download it from its official page at https:/ /
spring.io/ tools

The source code for this chapter can be found at https:/ /github. com/PacktPublishing/
Spring-Boot-2.0- Projects- Fundamentals- of-Spring- Boot- 2.0, under
the Chapter02 directory.

Getting started
In this section, readers will get an overview of the web application being developed. The
requirements, design, and implementation details will be discussed in brief.

Web application architecture
A web application is exposed to multiple concurrent users over a public or private network
as opposed to a standalone application. Let's get started developing a basic web application
that uses the well known Model-view-controller (MVC) pattern to build a three-tier
application. The MVC pattern is known for its separation of concerns by decoupling
presentation logic (what the user sees in a browser), routing and business logic (what the
application needs to accomplish), and persistence (where the data is finally stored). This
has made MVC a very developer-friendly pattern as different tiers of an application can be
developed and tested by experts in that area independently and without knowledge of the
other tiers.

For example, a user interface (UI) developer can work on the presentation while a database
administrator works on database optimization. Also, this layering has made maintenance
easier than in conventional web applications, which usually have spaghetti code without
any layering.

In this chapter, Spring Web MVC Framework will be used to implement the MVC pattern
inside our web application. Let's have a look at the workflow of Spring Web MVC in detail.

https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0

Building a Basic Web Application Chapter 2

[46]

Workflow of Spring Web MVC
Spring Web MVC is a web framework that is built using a central front controller in the
form of a Java servlet known as DispatcherServlet. This servlet is responsible for the
orchestration of the underlying components required in order to process a request it
receives from clients (in most cases from a browser).

Spring Web MVC makes use of the following programming components of its own to make
the web framework flexible and able to support different workflows:

HandlerMapping: This is used to map a request to a handler with a set of
configurable pre-request and post-request interceptors. For example, a
controller class with a @RequestMapping annotation will be mapped to a
corresponding HTTP request by the RequestMappingHandlerMapping
implementation of HandlerMapping.
Controller: This is used to implement handlers to a particular HTTP request,
which will be responsible for coordinating the business logic and response
generation. For example, an HTTP GET request to the URL /index can be
mapped to the @GetMapping("/index") handler method in a controller
class.
Model: This is used to send dynamic data in the form of attributes to View. Flash
messages, lists of domain-specific objects, and so on can be sent using a Model.
ViewResolver: This is used to resolve view names usually returned by a
controller handler method and get the actual View in order to return an HTTP
response.
View: This is used to generate the final presentation to the end user. These views
will contain the syntax that will use Model attributes to render responses
dynamically. View technologies supported by Spring Web MVC include plain
Java Server Pages (JSP) with JavaServer Pages Standard Tag Library (JSTL),
Spring Thymeleaf, Apache Freemarker, and so on.

Building a Basic Web Application Chapter 2

[47]

As an example, an HTTP GET request to path /index from a web browser will result in the
following orchestration when the request reaches DispatcherServlet:

Let's understand the preceding diagram:

The browser will initiate the HTTP GET request for the path /index using the
HTTP protocol
The HTTP GET request in the form of the HTTP protocol will be resolved and
handed over to DispatcherServlet by the Web container (this is a required but
transparent step)
DispatcherServlet will use the available HandlerMapping implementations to
find a Controller that contains a handler method matching the path /index and
HTTP request method GET
DispatcherServlet will invoke the handler method from the Controller and
return the View name and Model data if there are any
DispatcherServlet will use any configured View Resolver to find the view by
name and retrieve it
DispatcherServlet will use a model, if any are available, along with the
resolved View to prepare the final view that will be rendered
DispatcherServlet will hand over the rendered View to the web container, which
will convert it to an HTTP response and send it to the browser

This complex orchestration will take place for each HTTP request in a Spring Web MVC
Framework-based application.

Building a Basic Web Application Chapter 2

[48]

Requirements for our web application
We will be creating a dashboard, which will allow team members to share comments
during retrospective meetings. During software development, a team usually carries out
scrum retrospective meetings to share their comments on a sprint (a software development
period usually a week long). These comments can be positive (plus), improvement (delta),
and appreciation (flower).

These comments will be used as feedback to make the team work more efficiently during
the following sprints. Usually, this is done using a whiteboard with a table drawn that has
columns for pluses, deltas, flowers, and multicolor sticky notes, where each comment from
a team member will be placed in a sticky note and posted on the whiteboard under the
corresponding column.

Finally, all the comments will be noted and action will be taken in coming sprints
accordingly. But this is a tedious process, one that can use technology to simplify the task,
making it easier for each member to share their comments on a Sprint easily.

To address this requirement, a web application can be developed that will allow multiple
users to log in to the web application and post their respective comments and collaborate in
real time.

The use case diagram
The following use case diagram shows the requirement for the dashboard, which is
nicknamed Retro Board:

Building a Basic Web Application Chapter 2

[49]

The actor is a User of the Retro Board and is a team member who is involved in a sprint. It
has the following use cases:

Login: This is required to authenticate users so that each comment can be1.
uniquely identified
Post Comments: This is where a logged in user can post their comment under its2.
respective type so that it will be recorded for later, and also collaborate with
other users in real time
View Comments: This is where a logged in user can view comments made by all3.
users

All actions need authentication and authorization to distinguish users and relate the
comments they make. All comments need to be saved based on the date when they were
made and should be retrievable based on the date also.

Using Spring Data JPA for persistence
In this section, readers will learn what JPA is, as well as how Spring Data JPA helps
simplify the development of applications with database persistence.

Understanding the Java Persistence API (JPA)
JPA provides object/relation mapping capabilities to enable mapping between relational
database tables and Java objects in order to ease persistence in Java applications. JPA
consists of the following features:

A query language to enable querying from relational database tables in order to
retrieve Java objects
A JPA Criteria API, which can be used to generate queries dynamically
A set of metadata defined with XML Java annotations in order to successfully
map relational database table columns to Java object fields

JPA is not an actual implementation of the preceding features but merely defines the
specification. Third-party vendors can perform their own implementation that conforms to
the specification. The most popular third-party implementations that support JPA are
Hibernate and EclipseLink.

Building a Basic Web Application Chapter 2

[50]

JPA 1.0 was released in 2006 as part of Java Community Process JSR 220. Its latest version is
JPA 2.2, which was released in 2017. JPA has made persistence easier and standardized for
developers while allowing transactions and data consistency. This has helped a lot, making
JPA famous among developers.

Understanding Spring Data JPA
The Spring Data JPA project is an abstraction over JPA which vastly simplifies the process
of object/relation mapping, querying, and so on. The following are some of the features of
Spring Data JPA:

Reduces/eliminates unnecessary boilerplate code
Ease of building repositories with Spring and JPA
Support for type-and value-safe JPA queries
Support for database-independent auditing
Support for database-independent pagination, custom query execution, and so
on

Spring Data JPA eases Create, Retrieve, Update, Delete (CRUD) operations by allowing
the JpaRespository interface, which extends from CrudRepository. This hides the
complexities of plain JPA implementations, which need to be implemented and tested by
developers. Using Spring Data JPA could reduce the development time dramatically
because of this.

In upcoming chapters, JpaRepository with default methods and custom methods will be
used extensively to implement business logic and demonstrate how to write Spring Data
JPA repositories and test them. The following sections will discuss how to use a domain
model designed using a class diagram as a base to implement Spring Data JPA-based
entities and repositories.

Class diagram for the domain model
The domain model is the most important part of an application; some applications have run
for years on end with multiple frontend technologies but without ever changing the
existing domain model. A well-built domain model can easily support multiple business
logic and can run an application on limited resources efficiently.

Building a Basic Web Application Chapter 2

[51]

The following is the simple class diagram for this web application:

There are two main domain models and one enumeration, as shown in the preceding
diagram. Those are as follows:

Comment: This is the main domain model, which will store the actual comment,
comment type, comment created date, comment create a user, and so on
User: This is the domain model, which will store the username, password, and
role of a registered user
CommentType: This enumeration is to differentiate comments by type

Implementation of the domain model using JPA
annotations
This section will explain the details of how to configure and use Spring Data JPA with an
embedded database with the domain model designed in the previous section.

Setting up dependencies and configuration
Initially, before implementing the domain model, the dependencies and configuration class
need to be specified. The following Maven starter dependency and H2 database
dependency need to be included:

<dependencies>
 ...
 <dependency>
 <groupId>org.springframework.boot</groupId>

Building a Basic Web Application Chapter 2

[52]

 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>

 <dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <version>1.4.196</version>
 </dependency>
</dependencies>

The following RepoConfig is used, which enables JPA Auditing (here auditing means
tracking and logging events related to entities, such as createdBy for the Comment entity);
this will enable auditing of the created date and created a user of an entry in the table:

@Configuration
@EnableJpaAuditing
public class RepoConfig {

}

The following configuration properties in the application.properties file need to be
set to configure DataSource:

spring.jpa.hibernate.ddl-auto=create
spring.jpa.properties.hibernate.format_sql=true
spring.jpa.properties.hibernate.show_sql=true

spring.datasource.driver-class-name=org.h2.Driver
spring.datasource.url=jdbc:h2:~/retroboard
spring.datasource.username=sa
spring.datasource.password=

The preceding configuration does the following:

Uses spring.jpa.hibernate.ddl-auto to set automatically generate Data
Definition Language (DDL) SQL
Uses spring.jpa.properties.hibernate.format_sql to format SQL
generated in a visually pleasing manner
Uses spring.jpa.properties.hibernate.show_sql to show the SQL
generated
Uses spring.datasource.driver-class-name to set org.h2.Driver as the
database driver

Building a Basic Web Application Chapter 2

[53]

Uses spring.datasource.url to set the JDBC URL
Uses spring.datasource.username to set the username for the H2 database
Uses spring.datasource.password to set the password for the H2 database

For the complete set of Spring Boot Database configurations, the following documentation
URL can be used:

https://docs.spring. io/ spring- boot/ docs/ current/ reference/ html/ boot- features-
sql.html

Implementing the domain model
In order to successfully populate the createdUser property, the AuditAware interface
needs to be implemented to supply the username and needs to be registered as a Spring
Component. More on this in the Using Spring Security for authentication and authorization
section.

Implementing the domain model Comment class using JPA annotations will look like the
following:

@Entity
@Table(name = "rb_comment")
@EntityListeners(AuditingEntityListener.class)
@Data
public class Comment {

 @Id
 @GeneratedValue
 private Long id;

 private String comment;

 @Enumerated(EnumType.STRING)
 private CommentType type;

 @CreatedDate
 private Timestamp createdDate;

 @CreatedBy
 private String createdBy;

}

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-sql.html

Building a Basic Web Application Chapter 2

[54]

In the preceding code, the @Entity annotation is used to mark the Comment class as a JPA
entity so that it will be eligible to be used in JPA persistence environment.
The @Table annotation is used to mention the table name to which the Comment class
needs to be mapped. The @EntityListeners annotation is used with
the AuditingEntityListener implementation to dynamically populate
the createdDate and createdBy properties annotated with @CreatedDate and
@CreatedBy in the Comment domain model when persisting the comment entry into the
table. The @Data annotation is from the Lombok library and used to mark a POJO as a class
that will hold data. This means getters, setters, the equals method, the hashCode
method, and the toString method will be generated for that class.

The @Id annotation marks the ID property as the identity field of the entity, whereas
@GeneratedValue marks it as an auto-generated value. The @Enumerated annotation with
value EnumType.STRING on the type property is used to notify JPA that the value of the
enum CommentType needs to be persisted as a String type in the database.

Implementing the domain model User will look like the following:

@Entity
@Table(name = "rb_user")
@Data
@AllArgsConstructor
@NoArgsConstructor
public class User {

 @Id
 @GeneratedValue
 private Long id;

 private String username;

 private String password;

 private String role;

}

The preceding class also does the same things as the Comment class. The newly added
annotations, which are also from the Lombok library, are @AllArgsConstructor, which
will generate a constructor with the id, username, password, and role properties, and
@NoArgsConstructor, which will generate a default constructor.

Building a Basic Web Application Chapter 2

[55]

Implementation of Spring Data JPA repositories
With the domain model implemented successfully, the JpaRepository for those can be
implemented using Spring Data JPA. The specialty here is that there is no need to
implement anything. Just writing an interface that extends from the JpaRepository
interface will be sufficient to expose methods to find one, find all, save, delete, and so
on. The following code shows CommentRepository:

public interface CommentRepository extends JpaRepository<Comment, Long>
{

 @Query("SELECT c FROM Comment c WHERE year(c.createdDate) = ?1 AND
 month(c.createdDate) = ?2 AND
 day(c.createdDate) = ?3")
 List<Comment> findByCreatedYearAndMonthAndDay(int year, int month,
 int day);

}

Since a list of comments for a specific date needs to retrieved to be shown in the frontend, a
custom method with a @Query annotation is added to the CommentRepository interface.
This annotation is responsible for using a database-independent SQL query to filter out
data from the database.

The following code shows UserRepository:

public interface UserRepository extends JpaRepository<User, Long> {

 User findByUsername(String username);
}

In the preceding code, there is a method named findByUsername where username is a
property of User class. In this case, an @Query annotation is not required, as the naming of
the method will be used to create the filter. There are more things that can be done using
Spring Data JPA; see in the official documentation at https:/ /docs. spring. io/spring-
data/jpa/docs/current/ reference/ html/ .

Testing Spring Data JPA repositories
Testing is an important part of software engineering and with Spring Boot 2.0
@DataJpaTest is introduced to ease the testing of JPA repositories. This annotation will
use an embedded database for testing and will auto-configure TestEntityManager to
verify the JPA Repository operations.

https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/

Building a Basic Web Application Chapter 2

[56]

The following is the test for CommentRepository:

@RunWith(SpringRunner.class)
@DataJpaTest
public class CommentRepoTest {

 @Autowired
 private TestEntityManager testEntityManager;

 @Autowired
 private CommentRepository commentRepository;

 @Test
 public void
 findByCreatedYearAndMonthAndDay_HappyPath_ShouldReturn1Comment() {
 // Given
 Comment comment = new Comment();
 comment.setComment("Test");
 comment.setType(CommentType.PLUS);
 comment.setCreatedDate(new Timestamp(System.currentTimeMillis()));
 testEntityManager.persist(comment);
 testEntityManager.flush();

 // When
 LocalDate now = LocalDate.now();
 List<Comment> comments =
 commentRepository.findByCreatedYearAndMonthAndDay(now.getYear(),
 now.getMonth().getValue(), now.getDayOfMonth());

 // Then
 assertThat(comments).hasSize(1);
 assertThat(comments.get(0)).hasFieldOrPropertyWithValue("comment",
 "Test");
 }

 @Test
 public void save_HappyPath_ShouldSave1Comment() {
 // Given
 Comment comment = new Comment();
 comment.setComment("Test");
 comment.setType(CommentType.PLUS);
 comment.setCreatedDate(new Timestamp(System.currentTimeMillis()));

 // When
 Comment saved = commentRepository.save(comment);

 // Then
 assertThat(testEntityManager.find(Comment.class,

Building a Basic Web Application Chapter 2

[57]

 saved.getId())).isEqualTo(saved);
 }
}

The preceding test case uses a TestEntityManager private member auto-wired (auto-
wiring private members should be kept to the minimum as it is not a best practice) to the
JUnit test and persists Comment by flushing it to the temporary persistence using
the TestEntityManager.flush method and then, in one test, tests whether it can be
successfully retrieved using the
CommentRepository.findByCreatedYearAndMonthAndDay method. Furthermore, in
the next test, it tests whether it could successfully save a Comment.

The following is the test for UserRepository:

@RunWith(SpringRunner.class)
@DataJpaTest
public class UserRepoTest {

 @Autowired
 private TestEntityManager testEntityManager;

 @Autowired
 private UserRepository userRepository;

 @Test
 public void findByUsername_HappyPath_ShouldReturn1User() throws
 Exception {
 // Given
 User user = new User();
 user.setUsername("shazin");
 user.setPassword("shaz980");
 user.setRole("USER");
 testEntityManager.persist(user);
 testEntityManager.flush();

 // When
 User actual = userRepository.findByUsername("shazin");

 // Then
 assertThat(actual).isEqualTo(user);
 }

 @Test
 public void save_HappyPath_ShouldSave1User() throws Exception {
 // Given
 User user = new User();
 user.setUsername("shazin");

Building a Basic Web Application Chapter 2

[58]

 user.setPassword("shaz980");
 user.setRole("USER");

 // When
 User actual = userRepository.save(user);

 // Then
 assertThat(actual).isNotNull();
 assertThat(actual.getId()).isNotNull();
 }
}

One test, findByUsername_HappyPath_ShouldReturn1User, in the preceding test case
tests the UserRepository.findByUsername method by verifying whether it returns the
expected User object with a matching username. The other
test, save_HappyPath_ShouldSave1User, tests for the correct persistence of a User
object.

Using Spring Boot Devtools for database visualization
In order to ease the testing of database development via Spring Boot Devtools, a
dependency can be used that will provide a GUI to visualize the tables created with the
data when an embedded database such as H2 is used. This can be seen from the following
code:

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-devtools</artifactId>
 <optional>true</optional>
 </dependency>
</dependencies>

Building a Basic Web Application Chapter 2

[59]

With this Spring Boot Devtools enabled after the Spring Boot application's startup,
accessing the http://<host>:<port>/h2-console (the port will be the same port as the
Spring Boot application) URL will display the following H2 database console for ease of
development:

After clicking the Connect button with the correct parameters, the following screen with
database tables and users will be displayed:

With this tool, entries in the rb_user table and the rb_comment table can be visualized for
ease of development.

Building a Basic Web Application Chapter 2

[60]

Using Services to encapsulate business logic
It is a good practice to encapsulate business logic inside Service methods so that
controllers and repositories are loosely coupled. The following Service is written to
encapsulate business logic for Comment:

@Service
@Transactional(readOnly = true)
public class CommentService {

 private static final Logger LOGGER =
LoggerFactory.getLogger(CommentService.class);

 private final CommentRepository commentRepository;

 public CommentService(CommentRepository commentRepository) {
 this.commentRepository = commentRepository;
 }

 @Transactional(rollbackFor = Exception.class)
 public List<Comment> saveAll(List<Comment> comments) {
 LOGGER.info("Saving {}", comments);
 return commentRepository.saveAll(comments);
 }

 public List<Comment> getAllCommentsForToday() {
 LocalDate localDate = LocalDate.now();
 return
commentRepository.findByCreatedYearAndMonthAndDay(localDate.getYear(),
 localDate.getMonth().getValue(), localDate.getDayOfMonth());
 }
}

The CommentService method in the preceding code is annotated with the @Service
stereotype annotation to mark it as a Spring service. Also, it has the @Transactional
annotation (learn more about Spring Transaction in the reference documentation). The
CommentRepository will be auto-wired using the CommentService constructor
argument. Another notable thing is that the CommentService.saveAll method is
annotated with the @Transactional annotation with rollbackFor set to the Exception
class. This means that any code inside that method will be enclosed inside a transaction
and, if an exception is thrown, JpaTransactionManager will roll back the changes it
made in the database within that transaction.

https://docs.spring.io/spring/docs/4.2.x/spring-framework-reference/html/transaction.html#tx-decl-explained

Building a Basic Web Application Chapter 2

[61]

Likewise, the following UserService is used for User:

@Service
@Transactional(readOnly = true)
public class UserService implements UserDetailsService {

 private final UserRepository userRepository;

 public UserService(UserRepository userRepository) {
 this.userRepository = userRepository;
 }

 @Override
 public UserDetails loadUserByUsername(String username) throws
 UsernameNotFoundException {
 User user = userRepository.findByUsername(username);

 if(user == null) {
 throw new UsernameNotFoundException(username);
 }

 return new
 org.springframework.security.core.userdetails.User(user.getUsername(),
user.getPassword(),
 Arrays.asList(new SimpleGrantedAuthority(user.getRole())));
 }

 @Transactional(rollbackFor = Exception.class)
 public User create(User user) {
 return userRepository.save(user);
 }
}

This is similar to CommentService but also implements the Spring Security
UserDetailsService interface in addition to supporting User detail loading. More on
this will be discussed in the Using Spring Security for authentication and authorization section
of this chapter.

Testing Services
Services with business logic need to be tested for their correct functionality. In order to
do this, Services like the following one can be used:

@RunWith(SpringRunner.class)
public class CommentServiceTest {

Building a Basic Web Application Chapter 2

[62]

 @MockBean
 private CommentRepository commentRepository;

 private CommentService commentService;

 @Before
 public void init() {
 commentService = new CommentService(commentRepository);
 }

 @Test
 public void
 getAllCommentsForToday_HappyPath_ShouldReturn1Comment() {
 // Given
 Comment comment = new Comment();
 comment.setComment("Test");
 comment.setType(CommentType.PLUS);
 comment.setCreatedDate(new
 Timestamp(System.currentTimeMillis()));
 List<Comment> comments = Arrays.asList(comment);
 LocalDate now = LocalDate.now();

when(commentRepository.findByCreatedYearAndMonthAndDay(now.getYear(),
now.getMonth().getValue(),
 now.getDayOfMonth())).thenReturn(comments);

 // When
 List<Comment> actualComments =
 commentService.getAllCommentsForToday();

 // Then
 verify(commentRepository,
 times(1)).findByCreatedYearAndMonthAndDay(now.getYear(),
 now.getMonth().getValue(), now.getDayOfMonth());
 assertThat(comments).isEqualTo(actualComments);
 }

 @Test
 public void saveAll_HappyPath_ShouldSave2Comments() {
 // Given
 Comment comment = new Comment();
 comment.setComment("Test Plus");
 comment.setType(CommentType.PLUS);
 comment.setCreatedBy("Shazin");
 comment.setCreatedDate(new
 Timestamp(System.currentTimeMillis()));

 Comment comment2 = new Comment();

Building a Basic Web Application Chapter 2

[63]

 comment2.setComment("Test Star");
 comment2.setType(CommentType.STAR);
 comment2.setCreatedBy("Shahim");
 comment2.setCreatedDate(new
 Timestamp(System.currentTimeMillis()));
 List<Comment> comments = Arrays.asList(comment, comment2);
 when(commentRepository.saveAll(comments)).thenReturn(comments);

 // When
 List<Comment> saved = commentService.saveAll(comments);

 // Then
 assertThat(saved).isNotEmpty();
 verify(commentRepository, times(1)).saveAll(comments);

 }
}

In the preceding test case for CommentService, CommentRepository is annotated with
@MockBean, as testing of its functionality has already been done in the JPA repository
testing. During Service, test mocking is done using the Mockito library to just mock
repository method invocations and verify the correct invocation.

The following is the service test case for UserService:

@RunWith(SpringRunner.class)
public class UserServiceTest {

 @MockBean
 private UserRepository userRepository;

 private UserService userService;

 @Before
 public void init() {
 this.userService = new UserService(userRepository);
 }

 @Test
 public void getAllCommentsForToday_HappyPath_ShouldReturn1Comment()
{
 // Given
 User user = new User();
 user.setUsername("shazin");
 user.setPassword("sha908");
 user.setRole("USER");

Building a Basic Web Application Chapter 2

[64]

 when(userRepository.findByUsername("shazin")).thenReturn(user);

 // When
 UserDetails actual = userService.loadUserByUsername("shazin");

 // Then
 verify(userRepository, times(1)).findByUsername("shazin");
 }

}

In the preceding test case, the UserRepository.findByUsername method is mocked to
return a given user and finally verify whether that method is invoked exactly once.

Using Spring Thymeleaf for the view
In this section, we will explain in detail what a template engine is, and how to use Spring
Thymeleaf to implement the view presentation.

Understanding template engines
Standard Java Enterprise Edition (Java EE) applications used JSPs to generate presentation
views for the end user. JSP is a mature technology that enables users to use embedded Java
code as well as Java Server Tag Library (JSTL) elements, which will, in turn, execute Java
code to generate a presentation view. All JSPs are eventually compiled as a servlet.

But mixing this Java code with presentation-specific code (HTML, CSS, and many more) is
cumbersome and makes separation of concern difficult. Furthermore, presentation views
done using plain JSPs are difficult to modify and maintain for UI Engineers. That is where
UI template engines are useful.

Template engines provide an easy way of decoupling presentation view code from business
logic so that each is layered and can be developed and maintained independently of the
others. This helps vastly reduce code duplication and bugs introduced because template
engines allow the reuse of previously tested, production-ready code.

Building a Basic Web Application Chapter 2

[65]

Spring Thymeleaf
Spring Thymeleaf is a very easy to use and popular template engine used to generate final
presentation views. The Spring Thymeleaf Framework offers ViewResolver as well as
View implementations that can be used to generate presentation views. The uniqueness of
Spring Thymeleaf comes from the syntax it uses to define presentation view logic.

A snippet of this syntax is as follows:

<!DOCTYPE HTML>
<html xmlns:th="http://www.thymeleaf.org">
 ...
 <body>
 <p th:text="${message}">
 </body>
</html>

The uniqueness of this syntax is that it is pure HTML and isn't special code that needs the
help of the server side to render. This means that UI engineers can work on styling,
animations, and so on without ever knowing anything about Spring Thymeleaf. In order to
use Spring Thymeleaf, the following Maven starter dependency needs to be included:

<dependencies>
 ...
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>
 </dependency>
</dependencies>

Adding the preceding Maven dependency will import all the required dependencies for
Spring Thymeleaf to be used in the web application successfully. The following sections
will describe how to sketch-design the Retro Board and then implement it using Spring
Thymeleaf.

UI design for the Retro Board
The following is a rough UI design for the Retro Board, which will be designed using
Spring Thymeleaf for the web application:

Building a Basic Web Application Chapter 2

[66]

The UI will consist of three columns for each particular comment type and a text area for
typing comments. In the end, there will be a button to submit all comments. The UI has an
additional requirement where it needs to refresh every 30 seconds to see updated
comments from others. This UI will be implemented in a responsive way so that it can be
used in desktop devices as well as mobile devices. In order to achieve this, the following UI
framework will be used:

Bootstrap: This is a very famous framework for developing responsive UIs for
devices with different screen sizes and resolutions
Font Awesome: This is a collection of icons that are usually used in UIs

The preceding frameworks will be used to implement the aforementioned UI design with
standard HTML, CSS, and a bit of JavaScript.

UI implementation for the Retro Board using
Spring Thymeleaf
The main page for the Retro Board will be a page similar to the design shown in the
previous section, implemented using Spring Thymeleaf, Bootstrap, and Font Awesome
along with some plain HTML, CSS, and so on.

When you take a closer look at the preceding code, it seems it is mostly very familiar
HTML, with some special syntax for Spring Thymeleaf. One of the most notable sections is
in the HTML element where the namespace for Spring Thymeleaf is:

<html xmlns:th="http://www.thymeleaf.org">

The structure of the page is divided into three parts as follows:

Header: This section has the page title and logout button
Body: This section has all the comments and text areas to submit a comment
Footer: This section has author information

Building a Basic Web Application Chapter 2

[67]

In order to correctly structure this, Bootstrap-specific styling classes in HTML element
attributes are used to define how the UI needs to be rendered responsively:

<div class="container">

For a full list of such styling classes, the Bootstrap documentation can be referred to,
at https://getbootstrap. com/ docs/ 4. 0/ getting- started/ introduction/ .

Another notable piece of code is the Cross-Site Request Forgery (CSRF) protection token
submitted with the POST request when saving comments:

<input type="hidden" th:name="${_csrf.parameterName}"
th:value="${_csrf.token}" />

This will be explained in detail in the Using Spring Security for authentication and
authorization section, but in simple terms it is used to verify that all mutable requests come
only from authorized forms. Take note of the Spring Thymeleaf syntax th:name and
th:value, which will be rendered into the input name and input value attribute
respectively.

From the diagram displayed in the previous section, we can see that there is a main
form that has comments for pluses, deltas, and stars along with text areas for submitting
comments. Consider the following code:

<form action="/comment" method="POST">
 <div class="row form-row">
 <input type="hidden" th:name="${_csrf.parameterName}"
 th:value="${_csrf.token}" />
 <div class="col-md-4"><i class="fa fa-plus"></i> Pluses
 <hr/>
 <div id="pluses" th:each="plus : ${plusComments}">
 <div class="alert alert-info" role="alert">
 <strong th:text="${plus.createdBy}">
 <p th:text="${plus.comment}"></p>
 </div>
 </div>
 <textarea id="plusComment" name="plusComment" class="form-
 control" style="min-width: 100%"></textarea>
 </div>
 ...
...

https://getbootstrap.com/docs/4.0/getting-started/introduction/
https://getbootstrap.com/docs/4.0/getting-started/introduction/
https://getbootstrap.com/docs/4.0/getting-started/introduction/
https://getbootstrap.com/docs/4.0/getting-started/introduction/
https://getbootstrap.com/docs/4.0/getting-started/introduction/
https://getbootstrap.com/docs/4.0/getting-started/introduction/
https://getbootstrap.com/docs/4.0/getting-started/introduction/
https://getbootstrap.com/docs/4.0/getting-started/introduction/
https://getbootstrap.com/docs/4.0/getting-started/introduction/
https://getbootstrap.com/docs/4.0/getting-started/introduction/
https://getbootstrap.com/docs/4.0/getting-started/introduction/
https://getbootstrap.com/docs/4.0/getting-started/introduction/
https://getbootstrap.com/docs/4.0/getting-started/introduction/
https://getbootstrap.com/docs/4.0/getting-started/introduction/
https://getbootstrap.com/docs/4.0/getting-started/introduction/
https://getbootstrap.com/docs/4.0/getting-started/introduction/
https://getbootstrap.com/docs/4.0/getting-started/introduction/
https://getbootstrap.com/docs/4.0/getting-started/introduction/
https://getbootstrap.com/docs/4.0/getting-started/introduction/
https://getbootstrap.com/docs/4.0/getting-started/introduction/

Building a Basic Web Application Chapter 2

[68]

In the preceding code snippet, Spring Thymeleaf's th:each tag is used to iterate through
the list plusComments sent from the server and render createdBy and comment
respectively. Take note that a variable named plus is used to refer to each plus comment
individually. The same is true for deltaComments and starComments also.

Eventually, there is a footer section, where copyright and author information will be
usually placed, as follows:

<footer class="fixed-bottom" style="position: fixed; bottom: 0">
 <div class="container">
 Retro Board by Shazin Sadakath.
 </div>
</footer>

The complete source code is available in this chapter's GitHub repository.

Using Spring Web MVC with servlet 3.x for
the controller
Controllers are the integration point between the model and view in the MVC paradigm.
They act like glue that binds together everything while taking care of business logic
execution and routing. The following Maven starter dependency needs to be added to
enable Spring Web MVC:

<dependencies>
 ...
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
</dependencies>

The preceding dependency will import servlet, Spring, and Tomcat dependencies to enable
successfully writing servlet-based web applications using Spring.

Building a Basic Web Application Chapter 2

[69]

Implementation of Controllers annotations
The following is CommentController, which displays and saves comment:

@Controller
public class CommentController {

 private final static Logger LOGGER =
LoggerFactory.getLogger(CommentController.class);

 private final CommentService commentService;

 public CommentController(CommentService commentService) {
 this.commentService = commentService;
 }

 @GetMapping("/")
 public String index(Model model) {
 model.addAttribute("time", new SimpleDateFormat("yyyy-MM-dd
HH:mm:ss").format(new Date()));
 List<Comment> allComments = commentService.getAllCommentsForToday();
 Map<CommentType, List<Comment>> groupedComments =
 allComments.stream().collect(Collectors.groupingBy(Comment::getType));
 model.addAttribute("starComments", groupedComments.get(CommentType.STAR));
 model.addAttribute("deltaComments",
groupedComments.get(CommentType.DELTA));
 model.addAttribute("plusComments", groupedComments.get(CommentType.PLUS));

 return "comment";
 }

 @PostMapping("/comment")
 public String createComment(@RequestParam(name = "plusComment", required =
false) String plusComment,
 @RequestParam(name = "deltaComment", required = false) String
deltaComment,
 @RequestParam(name = "starComment", required = false) String starComment)
{
 List<Comment> comments = new ArrayList<>();

 if (StringUtils.isNotEmpty(plusComment)) {
 comments.add(getComment(plusComment, CommentType.PLUS));
 }

 if (StringUtils.isNotEmpty(deltaComment)) {
 comments.add(getComment(deltaComment, CommentType.DELTA));
 }

Building a Basic Web Application Chapter 2

[70]

 if (StringUtils.isNotEmpty(starComment)) {
 comments.add(getComment(starComment, CommentType.STAR));
 }

 if (!comments.isEmpty()) {
 LOGGER.info("Saved {}", commentService.saveAll(comments));
 }

 return "redirect:/";
 }

 private Comment getComment(String comment, CommentType commentType) {
 Comment commentObject = new Comment();
 commentObject.setType(commentType);
 commentObject.setComment(comment);

 return commentObject;
 }
}

The index method, which is mapped to the URL /, will load comments made on the day
using CommentService.getAllCommentsForToday(). After that, it will group all
comments by comment type and send those to be displayed on the comment page.

The createComment method, which is mapped to the URL /comment, will save comments
made on the day using the CommentService.saveAll() method.

Testing controllers
Testing controllers for successful routing and view rendering is a must in order to make
sure the web application does what is expected. The following is a test case written for
CommentController, which is annotated with @WebMvcTest and has auto-wired
MockMvc, which will be used to invoke endpoints for testing:

@RunWith(SpringRunner.class)
@WebMvcTest(CommentController.class)
public class CommentControllerTest {

 @Autowired
 private MockMvc mockMvc;

 @MockBean
 private CommentService commentService;

 @Test

Building a Basic Web Application Chapter 2

[71]

 public void saveComments_HappyPath_ShouldReturnStatus302() throws
Exception {
 // When
 ResultActions resultActions =
mockMvc.perform(post("/comment").with(csrf()).with(user("shazin").roles("US
ER")).param("plusComment", "Test Plus"));

 // Then
 resultActions
 .andExpect(status().is3xxRedirection())
 .andExpect(redirectedUrl("/"));

 verify(commentService, times(1)).saveAll(anyList());
 verifyNoMoreInteractions(commentService);
 }

 @Test
 public void getComments_HappyPath_ShouldReturnStatus200() throws Exception
{
 // Given
 Comment comment = new Comment();
 comment.setComment("Test Plus");
 comment.setType(CommentType.PLUS);
 comment.setCreatedBy("Shazin");
 comment.setCreatedDate(new Timestamp(System.currentTimeMillis()));

 Comment comment2 = new Comment();
 comment2.setComment("Test Star");
 comment2.setType(CommentType.STAR);
 comment2.setCreatedBy("Shahim");
 comment2.setCreatedDate(new Timestamp(System.currentTimeMillis()));
 List<Comment> comments = Arrays.asList(comment, comment2);
 when(commentService.getAllCommentsForToday()).thenReturn(comments);

 // When
 ResultActions resultActions =
mockMvc.perform(get("/").with(user("shazin").roles("USER")));

 // Then
 resultActions
 .andExpect(status().isOk())
 .andExpect(view().name("comment"))
 .andExpect(model().attribute("plusComments", hasSize(1)))
 .andExpect(model().attribute("plusComments", hasItem(
 allOf(
 hasProperty("createdBy", is("Shazin")),
 hasProperty("comment", is("Test Plus"))
)

Building a Basic Web Application Chapter 2

[72]

)))
 .andExpect(model().attribute("starComments", hasSize(1)))
 .andExpect(model().attribute("starComments", hasItem(
 allOf(
 hasProperty("createdBy", is("Shahim")),
 hasProperty("comment", is("Test Star"))
)
)));

 verify(commentService, times(1)).getAllCommentsForToday();
 verifyNoMoreInteractions(commentService);
 }
}

One test, saveComments_HappyPath_ShouldReturnStatus302, tests the
CommentController.createComment method by verifying its successful persistence of
comments by invoking the CommentService.saveAll method exactly once, and verifying
it does a redirect to the URL /. Furthermore, it verifies there are no more interactions
with CommentService after saving all the comments it received.

Another test, getComments_HappyPath_ShouldReturnStatus200, tests the
CommentController.index method by verifying it successfully returns mocked
comments to the view comment by invoking
the CommentService.getAllCommentsForToday method exactly once. Furthermore, it
verifies there are no more interactions with CommentService after returning all the
comments for the day.

During both tests, a dummy user authentication and authorization are mocked using the
following code snippet:

user("shazin").roles("USER")

This code creates a request post processor that will mimic a user with the username shazin
and role USER, which will enable successfully accessing protected endpoints. The following
Maven dependencies need to be specified to enable testing:

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-test</artifactId>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.mockito</groupId>
 <artifactId>mockito-all</artifactId>
 <version>1.10.19</version>

Building a Basic Web Application Chapter 2

[73]

 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-test</artifactId>
 <version>4.1.4.RELEASE</version>
 <scope>test</scope>
 </dependency>
</dependencies>

Using Spring Security for authentication and
authorization
This web application has used Spring Security to authenticate users and to authorize them
to submit comments. The Maven Spring Security starter needs to be specified as follows to
enable Spring Security in the web application:

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
 </dependency>
</dependencies>

The following is the Spring Security configuration:

@Configuration
@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {

 @Autowired
 private UserService userDetailService;

 @Override
 public void configure(WebSecurity web) throws Exception {
 web.ignoring().antMatchers("/h2-console/**");
 }

 @Override
 protected void configure(HttpSecurity http) throws Exception {
 http.formLogin()
 .and()
 .logout()
 .permitAll()
 .and()

Building a Basic Web Application Chapter 2

[74]

 .authorizeRequests()
 .antMatchers("/**")
 .hasRole("USER");
 }

 @Override
 protected void configure(AuthenticationManagerBuilder auth) throws
Exception {
 auth.authenticationProvider(authenticationProvider());
 }

 @Bean
 public AuthenticationProvider authenticationProvider() {
 DaoAuthenticationProvider authenticationProvider = new
DaoAuthenticationProvider();
 authenticationProvider.setPasswordEncoder(passwordEncoder());
authenticationProvider.setUserDetailsService(userDetailService);
 return authenticationProvider;
 }

 @Bean
 public PasswordEncoder passwordEncoder() {
 return new BCryptPasswordEncoder();
 }

 @Bean
 public ApplicationRunner applicationRunner() {
 return args -> {
 userDetailService.create(new User(null, "shazin",
passwordEncoder().encode("password"),
 "ROLE_USER"));
 userDetailService.create(new User(null, "shahim",
passwordEncoder().encode("password"),
 "ROLE_USER"));
 };
 }
}

Building a Basic Web Application Chapter 2

[75]

The preceding configuration has @EnableWebSecurity to configure the filters necessary
for Spring Security and override any auto-configuration. The configure(WebSecurity
web) method ignores Spring Security for the URL /h2-console/ and all of its sub-URLs.
The configure(HttpSecurity http) method configures formLogin, log out, and
access to all URLs (/**) that have the user role (ROLE_USER) authorization. This, in turn,
means the user needs to be authenticated and anonymous users will not be allowed to
access anything.

The configure(AuthenticationManagerBuilder auth) method is used to
configure AuthenticationProvider with our implementation for UserDetailsService
(UserService) and PasswordEncoder, in our case BCryptPasswordEncoder.
Finally, ApplicationRunner is used to insert some users into the database at startup.

The following code helps to load the currently logged-in user:

@Component
public class AuditAwareImpl implements AuditorAware<String> {
 @Override
 public Optional<String> getCurrentAuditor() {
 Authentication authentication =
SecurityContextHolder.getContext().getAuthentication();

 if (authentication == null || !authentication.isAuthenticated()) {
 return Optional.empty();
 }

 return Optional.of(((User)
authentication.getPrincipal()).getUsername());
 }
}

Furthermore, to support the @CreatedUser annotation used in JPA Auditing, there
is AuditAware implementation that makes use of SecurityContextHolder, which is
responsible for holding the Authentication object for a logged in user. The principal
from the Authentication object is retrieved to get the username of the logged in user,
which will be persisted with a Comment object.

Building a Basic Web Application Chapter 2

[76]

Demonstrating the Retro Board
When everything is put together, build and run the Retro Board, which we will be able to
access using the http://<host>:<port> URL.

There are several ways to run a Spring Boot application, some of which are:

Running the Spring Boot application main class using an IDE
Building a JAR or WAR file using the following Maven command and then
running:

$ mvn clean install
$ java -jar target/<package-name>.[jar|war]

Running using the Spring Boot Maven plugin:

$ mvn clean spring-boot:run

After running, the Retro Board web application will launch the login screen as follows:

This login screen is the default login screen for form logins in Spring Security. A
username/password combination created in SecurityConfig can be used to log in to the
system. After successful login, the user will be routed to the comments page, which is as
follows:

Building a Basic Web Application Chapter 2

[77]

In the preceding screenshot, the header is visible with the title of the web application, the
current date and time, and the Logout button. Additionally, there are three text areas to
enter comments and a button to submit comments to be persisted in the relational database.
The comments will be shown under their respective type.

As we have used the Bootstrap UI Framework, the comments page is responsive and can be
viewed from devices with different screen sizes and resolutions as follows:

The header, body, and footers sections will be re-positioned on the screen so they're
displayed properly in the device. Now, with this Retro Board, members of a development
team can comment and collaborate successfully using multiple devices simultaneously.

Building a Basic Web Application Chapter 2

[78]

Summary
Congratulations on completing this chapter, where the skills and knowledge required to
build a basic web application were discussed in detail. This chapter started off by
explaining what a web application is and how a web application can benefit from MVC
patterns in terms of both development and maintenance. It talked about the requirements
of a web application being developed and used a UML use case diagram to explain the
requirement visually.

This chapter also explained how to write the domain model of an application based on the
requirements, how to write data repositories for it, how to test those for their correct
functioning, and so on. It also discussed how to encapsulate business logic inside services
and test them effectively to make sure everything works correctly.

Subsequently, the chapter talked about how to write presentation views to create and
display comments using the Spring Thymeleaf Framework. It briefly explained about JSP,
JSTL, and how Spring Thymeleaf differs from those. Also, it explained how to use Spring
Thymeleaf's syntax to list comments.

Eventually, the chapter discussed how to use Spring Web MVC Controllers to provide
routing and coordination for different services. Furthermore, it talked about how to protect
controller endpoints using Spring Security to allow proper authentication and
authorization for users. Finally, it explained how to test Spring Web MVC Controllers using
Web MVC test cases. The chapter also demonstrated the usage of the Retro Board in detail.
We'll learn about more complex web application development in upcoming chapters.

Questions
Please answer the following questions to see whether you have successfully mastered this
chapter:

What is a web application?1.
What is an MVC pattern?2.
What is a relational database?3.
What is JPA?4.
How is the @Entity annotation used in JPA?5.
What is a template engine?6.
What is Spring Security used for?7.

Building a Basic Web Application Chapter 2

[79]

Further reading
In order to improve your knowledge of Spring Web MVC and Spring Security, the
following books are recommended and will be helpful in the coming chapters:

Spring MVC: Designing Real-World Web Applications: https:/ / www.packtpub. com/
application- development/ spring- mvc- designing- real- world- web-
applications

Spring Security - Third Edition: https:/ /www. packtpub. com/ application-
development/ spring- security- third- edition

https://www.packtpub.com/application-development/spring-mvc-designing-real-world-web-applications
https://www.packtpub.com/application-development/spring-mvc-designing-real-world-web-applications
https://www.packtpub.com/application-development/spring-mvc-designing-real-world-web-applications
https://www.packtpub.com/application-development/spring-mvc-designing-real-world-web-applications
https://www.packtpub.com/application-development/spring-mvc-designing-real-world-web-applications
https://www.packtpub.com/application-development/spring-mvc-designing-real-world-web-applications
https://www.packtpub.com/application-development/spring-mvc-designing-real-world-web-applications
https://www.packtpub.com/application-development/spring-mvc-designing-real-world-web-applications
https://www.packtpub.com/application-development/spring-mvc-designing-real-world-web-applications
https://www.packtpub.com/application-development/spring-mvc-designing-real-world-web-applications
https://www.packtpub.com/application-development/spring-mvc-designing-real-world-web-applications
https://www.packtpub.com/application-development/spring-mvc-designing-real-world-web-applications
https://www.packtpub.com/application-development/spring-mvc-designing-real-world-web-applications
https://www.packtpub.com/application-development/spring-mvc-designing-real-world-web-applications
https://www.packtpub.com/application-development/spring-mvc-designing-real-world-web-applications
https://www.packtpub.com/application-development/spring-mvc-designing-real-world-web-applications
https://www.packtpub.com/application-development/spring-mvc-designing-real-world-web-applications
https://www.packtpub.com/application-development/spring-mvc-designing-real-world-web-applications
https://www.packtpub.com/application-development/spring-mvc-designing-real-world-web-applications
https://www.packtpub.com/application-development/spring-mvc-designing-real-world-web-applications
https://www.packtpub.com/application-development/spring-mvc-designing-real-world-web-applications
https://www.packtpub.com/application-development/spring-mvc-designing-real-world-web-applications
https://www.packtpub.com/application-development/spring-mvc-designing-real-world-web-applications
https://www.packtpub.com/application-development/spring-mvc-designing-real-world-web-applications
https://www.packtpub.com/application-development/spring-mvc-designing-real-world-web-applications
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition

3
Building a Simple Blog

Management System
This chapter will introduce the reader to the details of how to build a simple blog
management system using Spring Boot 2 as the base application development framework.
It will explain how to use Elasticsearch as the persistence layer, which is a widely used data
source for storing high-volume, high-velocity data. Subsequently, it will use Apache
FreeMarker Template Engine to create presentation views for the blog management system.
Furthermore, it will use Spring WebFlux and Spring Security WebFlux to implement
controllers and provide authentication and authorization.

The following topics will be covered in this chapter:

Using Spring Data Elasticsearch for persistence
Using Apache FreeMarker for the view
Using Spring WebFlux for the controller
Using Spring Security for authentication and authorization
Demonstrating Bloggest

Technical requirements
In order to implement the web application using Spring Boot, the following build tools
need to be downloaded and installed:

To install Java Development Kit (JDK) 8, download it from its official page
at http:/ /www. oracle. com/ technetwork/ java/ javase/ downloads/ jdk8-
downloads- 2133151. html

To install Maven 3, download it from its official page at https:/ /maven. apache.
org/download. cgi

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi

Building a Simple Blog Management System Chapter 3

[81]

To install IntelliJ IDEA, download it from its official page at https:/ /www.
jetbrains. com/ idea/ download/

To install Spring Tool Suite (STS), download it from its official page at https:/ /
spring.io/ tools

To download Elasticsearch server, visit its official page at https:/ /www. elastic.
co/downloads/ elasticsearch

The source code for this chapter can be found under the https:/ / github. com/
PacktPublishing/Spring- Boot- 2.0- Projects- Fundamentals- of- Spring- Boot- 2.0,
Chapter03 directory.

Getting started
In this section, the readers will get an overview of the web application that is being
developed. The requirements, design, and implementation details will be discussed in brief.

Web application architecture
A web application is exposed to multiple concurrent users over a public or private network,
as opposed to a standalone application. Let's get started developing a basic web application
that uses the well-known model-view-controller (MVC) pattern to build a three-tier
application. The MVC pattern is known for its separation of concerns by
decoupling presentation logic (what the user sees in a browser), routing and business logic
(what the application needs to accomplish), and persistence (where the data is finally
stored). This has made MVC a very developer-friendly pattern, as different tiers of an
application can be developed and tested by experts in that area independently and without
knowledge of the other tiers.

For example, a user interface (UI) developer can work on the beautification of the
presentation while a database administrator works on database optimization. Also, this
layering has made maintenance easier than with conventional web applications, which
usually have spaghetti code without any layering.

In this chapter, Spring WebFlux Framework will be used to implement the MVC pattern
inside our web application. Let's have a look at the workflow of Spring WebFlux in detail.

https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0

Building a Simple Blog Management System Chapter 3

[82]

Workflow of Spring WebFlux
The Spring WebFlux workflow is similar to the Spring Web MVC workflow; the main
difference is that it doesn't rely on Servlet anymore. Instead, it uses a
DispatcherHandler, which is non-blocking. Furthermore, it makes use of
ServerHttpRequest and ServerHttpResponse instead of HttpServletRequest and
HttpServletResponse from Servlet for its request and response representation.

In addition to that, it uses Flux<DataBuffer> (this is a non-blocking way to send a 0..N
number of messages, data, and so on) instead of InputStream and OutputStream to read
and write data in a non-blocking manner. It uses a HandlerMapping and
HandlerAdapter, which are also non-blocking.

Requirements of the Bloggest system
The problem domain under consideration is a simple blog management system nicknamed
Bloggest, where users can write articles of interest to them. The Bloggest system must be
publicly accessible via the internet and registered users must be able to write, edit, and
delete content.

But content available in the Bloggest system must be publicly visible without any need to
log in. Each article should have a title, summary, permanent link, and body. The body
section must be styled using commonly available fonts and font styling, so that articles can
be presented in a pleasing manner.

There must be administration capabilities, where an administrator must be able to edit or
delete an article written by a user as appropriate.

The Bloggest system should allow the authentication and authorization of users and
administrators. Users should be able to create new articles and then edit and delete articles.
Administrators should be able to create new articles and edit or delete an article written by
anyone to moderate the content.

Building a Simple Blog Management System Chapter 3

[83]

The use case diagram
The following use case diagram shows the requirement for the dashboard, which is
nicknamed Bloggest:

The actors are the User and Administrator of Bloggest. It has the following use cases:

Login: This use case is required to authenticate users so that each article author
can be uniquely identified.
Add Article: This use case is where a user creates a new article in the Bloggest
system. It requires the user to be authenticated.
Edit Article: This use case is where a user edits an article he/she created or an
administrator edits an article created by any user of the Bloggest system. It
requires the user/administrator to be authenticated.

Building a Simple Blog Management System Chapter 3

[84]

Delete Article: This use case is where a user deletes an article he/she created or
an administrator deletes an article created by any user of the Bloggest system. It
requires the user/administrator to be authenticated.
List Articles: This use case is where any user of the Bloggest system can list all
the articles available in the system. This step doesn't require authentication and is
public to everyone.
Search Articles: This use case is where any user of the Bloggest system can
search for articles available in the system. This step doesn't require
authentication and is public to everyone.
Show Article: This use case is where any user of the Bloggest system can view a
particular article of interest. This step doesn't require authentication and is public
to everyone.
Logout: This use case is where a logged-in user can log out of the Bloggest
system.

Using Spring Data Elasticsearch for
persistence
This section will introduce Elasticsearch and how to use Spring Data Elasticsearch
repositories to provide Create, Retrieve, Update, and Delete (CRUD) operations on
Elasticsearch easily.

Understanding Elasticsearch
Elasticsearch is an open source search and analytics engine that can run in a distributed
environment. It provides RESTful APIs to ingest and retrieve high-volume, high-velocity
data. Elasticsearch is built on top of Apache Lucene and was released in 2010. It has
popular use cases such as:

Log analytics
Full-text search
Operational and business intelligence
Distributed Document Store

Building a Simple Blog Management System Chapter 3

[85]

Elasticsearch can store new data in the form of documents and it indexes the documents in
a cluster by adding searchable references to the document. This enables faster searching for
and retrieval of high-volume, velocity documents.

This chapter will use Elasticsearch to store and retrieve blog articles because of the search
and indexing capabilities it provides; a blogging system is expected to have a lot of text,
which needs to be searched very quickly to provide a good user experience.

Understanding Spring Data Elasticsearch
Spring Data Elasticsearch projects are intended to bring in the concepts of Spring Data
repositories, enabling easy development of Elasticsearch repositories. They provide an
abstraction layer on top of Elasticsearch to successfully store, retrieve, and modify
documents available in the Elasticsearch transparently.

Spring Data Elasticsearch eases CRUD operations by allowing
the ElasticsearchRepository interface, which extends
from ElasticsearchCrudRepository. This hides the complexities of plain Elasticsearch
implementations, which need to be implemented and tested by developers. Using Spring
Data Elasticsearch could reduce the development time dramatically because of this.

In coming chapters, ElasticsearchRepository, with default methods and custom
methods, will be used extensively to implement business logic and write and test Spring
Data Elasticsearch repositories. The following sections will discuss how to use a domain
model designed using a class diagram as a base to implement Spring Data Elasticsearch-
based documents and repositories.

Class diagram for the domain model
Since the domain model is the most important component of an application, this section
will design it first. The following is the simple class diagram for this web application:

Building a Simple Blog Management System Chapter 3

[86]

There are two main domain models, as shown in the preceding diagram. They are as
follows:

Article: This is the main domain model, which will store the actual article title,
body, link, summary, author, created date, and so on
User: This domain model will store the username, password, and role of a
registered user

Implementation of the domain model using
Spring Data Elasticsearch annotations
This section will explain the details of how to configure and use Spring Data Elasticsearch
with an Elasticsearch service with the domain model designed in the previous section.

Setting up dependencies and configuration classes
Initially, before implementing the domain model, the dependency and configuration
class need to be specified. The following Maven starter dependency needs to be included:

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-elasticsearch</artifactId>
 </dependency>
</dependencies>

Building a Simple Blog Management System Chapter 3

[87]

The following configuration properties in the application.properties file need to be
set to configure the Elasticsearch cluster nodes:

spring.data.elasticsearch.cluster-nodes=localhost:9300

The preceding configuration uses spring.data.elasticsearch.cluster-nodes to set
the Elasticsearch cluster node IP/hostname and port.

Implementing the domain model
The implementation of the domain model Article using Elasticsearch annotations will
look like the following:

@Document(indexName = "springboot2blog_article", type = "article")
@Data
public class Article {

 @Id
 private String id;

 private String title;

 private String link;

 private String summary;

 private String body;

 @Field(type = FieldType.Nested)
 private User author;
 @Field(type = FieldType.Date)
 private Date createdDate = new Date();

}

In the preceding code, @Document is used to mark the Article class as an Elasticsearch
document with the index name "springboot2blog_article" and the type "article".
The @Id annotation marks the ID property as the identity field of the document.
The @Data annotation is from Lombok library and is used to mark a plain old Java object
(POJO) as a class that will hold data. This means getters, setters, the equals method,
the hashCode method, and the toString method will be generated for that class. The
author field and the createdDate field are annotated with the @Field annotation, which
specifies the type of those fields as they are complex, composite fields.

Building a Simple Blog Management System Chapter 3

[88]

The implementation of the domain model User will look like the following:

@Document(indexName = "springboot2blog_user", type = "user")
@Data
@NoArgsConstructor
@AllArgsConstructor
public class User {

 @Id
 private String id;

 private String username;

 private String password;

 private String role;
 private String description;
}

The preceding class also does the same things as the User class. The newly added
annotations, which are also from Lombok library and @AllArgsConstructor, will
generate a constructor with the id, username, password, role, and description
properties and @NoArgsConstructor, which will generate a default constructor.

Implementation of Spring Data Elasticsearch
repositories
With the domain models implemented successfully, ElasticsearchRepository for those
can be implemented using Spring Data Elasticsearch. The specialty here is that there is no
need to implement anything. Just writing an interface that extends from
the ElasticsearchRepository interface would be sufficient to expose methods to find
one, find all, save, delete, and so on. The following code shows ArticleRepository:

public interface ArticleRepository extends
ElasticsearchRepository<Article, String> {
 Optional<Article> findByLink(String link);
 Page<Article> findByTitleContainingAndBodyContaining(String title,
 String body, Pageable pageable);
}

Building a Simple Blog Management System Chapter 3

[89]

Since there are use cases in the application to show Article with a link to that Article,
the findByLink method is introduced in the preceding repository; this will
return Optional, which may or may not have a value inside. Furthermore, in order to
enable the search use case for all the available articles,
the findByTitleContainingAndBodyContaining method is introduced, which will
return a Page object that will have the content, number of total elements, number of total
pages, and so on. So, that full-text search can be done on the title and body properties
of Article.

The following code shows UserRepository:

public interface UserRepository extends ElasticsearchRepository<User,
String> {
 User findByUsername(String username);
}

In the preceding code, there is a method name findByUsername, where username is a
property of the User class.

Using Apache FreeMarker for the view
In this section, it will be explained in detail what a template engine is, and then we will talk
about how to use Spring Apache FreeMarker to implement the view presentation.

Understanding template engines
Standard Java Jakarta Enterprise Edition (Jakarta EE) applications use JavaServer Pages
(JSPs) to generate presentation views for the end user. JSP is a mature technology that
enables the use of embedded Java code as well as JavaServer Pages Standard Tag
Library (JSTL) elements, which will, in turn, execute Java code, which can generate
presentation views. All JSPs are eventually compiled as a Servlet.

But mixing these Java codes and presentation-specific codes (HTML, CSS, and many more)
is cumbersome and makes the separation of concerns difficult. Furthermore, presentation
views mad using plain JSPs are difficult to modify and be maintained by UI engineers. That
is where UI template engines are useful.

Building a Simple Blog Management System Chapter 3

[90]

Template engines provide an easy way of decoupling presentation view code from business
logic so that each is layered and can be developed and maintained independently of the
other. This helps vastly reduce code duplication and the number of bugs introduced
because template engines allow the reuse of previously tested, production-ready code.

Apache FreeMarker
Apache FreeMarker is a popular template engine that can generate a text output based on
the template and variable data. Apache FreeMarker templates use a custom programming
language named FreeMarker Template Language (FTL), which is used to write
programming constructs in presentation views.

A controller is used to prepare the data required, which is then passed on to the template in
order to render the presentation views. Apache FreeMarker focuses on how to present the
data that is sent to it in an aesthetically pleasing manner.

Apache FreeMarker adheres to the MVC pattern and templates can be developed by UI
engineers, while the data required to render the final presentation views can be computed
in the backend and sent by developers independently and transparently.

Some features of Apache FreeMarker are as follows:

FTL has common programming syntaxes for conditional blocks, iterations,
assignments, string, arithmetic operations, and so on
It is lightweight and flexible
It has internationalization (i18n support)

A snippet of this syntax is as follows:

<!DOCTYPE HTML>
<html>
 ...
 <body>
 <#if message??>
 <p>${message}</p>
 </#if>
 </body>
</html>

Building a Simple Blog Management System Chapter 3

[91]

The preceding Apache FreeMarker code basically checks if a variable by the name message
is present, and if so, displays it inside of a paragraph tag. More details on Apache
FreeMarker can be referenced from the following documentation:

https://freemarker. apache. org/ docs/ dgui_ quickstart_ basics. html.

In order to use Apache FreeMarker, the following Maven starter dependency needs to be
included:

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-freemarker</artifactId>
 </dependency>
</dependencies>

Adding the preceding Maven dependency will import all the required dependencies
for Apache FreeMarker to be used in the web application successfully. The following
sections will describe how to sketch design the Bloggest application and then implement it
using Apache FreeMarker.

UI design for Bloggest
The following is a rough UI design for Bloggest, which will be designed using Apache
FreeMarker for the web application:

https://freemarker.apache.org/docs/dgui_quickstart_basics.html
https://freemarker.apache.org/docs/dgui_quickstart_basics.html
https://freemarker.apache.org/docs/dgui_quickstart_basics.html
https://freemarker.apache.org/docs/dgui_quickstart_basics.html
https://freemarker.apache.org/docs/dgui_quickstart_basics.html
https://freemarker.apache.org/docs/dgui_quickstart_basics.html
https://freemarker.apache.org/docs/dgui_quickstart_basics.html
https://freemarker.apache.org/docs/dgui_quickstart_basics.html
https://freemarker.apache.org/docs/dgui_quickstart_basics.html
https://freemarker.apache.org/docs/dgui_quickstart_basics.html
https://freemarker.apache.org/docs/dgui_quickstart_basics.html
https://freemarker.apache.org/docs/dgui_quickstart_basics.html
https://freemarker.apache.org/docs/dgui_quickstart_basics.html
https://freemarker.apache.org/docs/dgui_quickstart_basics.html
https://freemarker.apache.org/docs/dgui_quickstart_basics.html
https://freemarker.apache.org/docs/dgui_quickstart_basics.html
https://freemarker.apache.org/docs/dgui_quickstart_basics.html
https://freemarker.apache.org/docs/dgui_quickstart_basics.html
https://freemarker.apache.org/docs/dgui_quickstart_basics.html

Building a Simple Blog Management System Chapter 3

[92]

The preceding UI sketch is for the List Articles use case, which will be the main landing
page of the Bloggest web application. There are some common UI elements that are
common to almost all of the use cases, such as a header, navigation links, search bar, and a
footer. Consider this use case diagram:

The preceding UI sketch is for Add Article, Edit Article, and Delete Article use cases
where the Title, Perma Link, Summary, and Body of an Article can be specified to be
created or edited. Now, consider this diagram:

The preceding UI sketch is for the Show Article use case, where a user can view
an Article available on the Bloggest platform.

Building a Simple Blog Management System Chapter 3

[93]

This UI will be implemented in a responsive way so that it can be used on desktop devices
as well as mobile devices. In order to achieve this, the Bootstrap UI Framework will be
used. Bootstrap is a very famous framework for developing a responsive UI for devices
with different screen sizes and resolutions.

The preceding frameworks will be used to implement the aforementioned UI design with
standard HTML, CSS, and a bit of JavaScript.

UI implementation for Bloggest using Apache
FreeMarker
The main page for Bloggest will be a page similar to the design shown in the previous
section, implemented using Apache FreeMarker and Bootstrap along with some plain
HTML, CSS, and so on.

Upon taking a closer look at the preceding code, it seems it is mostly very familiar HTML,
with some special syntax for Apache FreeMarker. One of the most notable sections is where
Apache FreeMarker specific tags will start as follows:

<#element>

These tags end as follows:

</#element>

The structure of the page is divided into three parts as follows:

Header: This section has the page title and the login, logout, and Write Article
buttons
Body: This section has all the content
Footer: This section has author information

In order to structure this correctly, Bootstrap-specific styling classes in HTML element
attributes are used to define how the UI needs to be rendered responsively. In order to
speed up development, this section uses an opensource Bootstrap template specifically
designed for blogging systems, which is available at the following URL:

https://blackrockdigital. github. io/ startbootstrap- blog- post/

https://blackrockdigital.github.io/startbootstrap-blog-post/
https://blackrockdigital.github.io/startbootstrap-blog-post/
https://blackrockdigital.github.io/startbootstrap-blog-post/
https://blackrockdigital.github.io/startbootstrap-blog-post/
https://blackrockdigital.github.io/startbootstrap-blog-post/
https://blackrockdigital.github.io/startbootstrap-blog-post/
https://blackrockdigital.github.io/startbootstrap-blog-post/
https://blackrockdigital.github.io/startbootstrap-blog-post/
https://blackrockdigital.github.io/startbootstrap-blog-post/
https://blackrockdigital.github.io/startbootstrap-blog-post/
https://blackrockdigital.github.io/startbootstrap-blog-post/
https://blackrockdigital.github.io/startbootstrap-blog-post/
https://blackrockdigital.github.io/startbootstrap-blog-post/
https://blackrockdigital.github.io/startbootstrap-blog-post/
https://blackrockdigital.github.io/startbootstrap-blog-post/
https://blackrockdigital.github.io/startbootstrap-blog-post/

Building a Simple Blog Management System Chapter 3

[94]

Implementing a common layout using Apache
FreeMarker
There are so many common elements in the aforementioned UI sketches, it makes sense to
use a common layout to avoid code duplication and enable centralized code in all the
pages. The following common/standardPage.ftl template file is used for this purpose:

<#macro page title>
<!DOCTYPE html>
<html lang="en">

 <head>

 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1,
 shrink-to-fit=no">
 <meta name="description" content="Blog Management System">
 <meta name="author" content="Shazin Sadakath">

 <title>${title}</title>
 <link rel="stylesheet" type="text/css"
 href="/webjars/bootstrap/4.0.0/css/bootstrap.min.css"/>

 <!-- Custom styles for this template -->
 <link href="/css/blog-post.css" rel="stylesheet">

 <script src="/webjars/jquery/3.3.1-1/jquery.min.js"></script>

 </head>

The preceding head section imports Bootstrap, Blog CSS, and the JQuery JavaScript library.
Going ahead, we see the following code:

<body>

 <!-- Navigation -->
 <nav class="navbar navbar-expand-lg navbar-dark bg-dark fixed-top">
 <div class="container">
 Blog Management
 System
 <button class="navbar-toggler" type="button" data-
 toggle="collapse" data-target="#navbarResponsive"
 aria-controls="navbarResponsive" aria-expanded="false" aria-
 label="Toggle navigation">

 </button>
 <div class="collapse navbar-collapse" id="navbarResponsive">

Building a Simple Blog Management System Chapter 3

[95]

 <ul class="navbar-nav ml-auto">
 <li class="nav-item active">
 Home
 (current)

 <li class="nav-item">
 Write Article
 (current)

 <li class="nav-item">
 <#if user??>
 Welcome, ${user.username}

 <#else>
 Login
 </#if>

 <li class="nav-item">
 Logout

 </div>
 </div>
 </nav>

Then, inside the body section, the preceding code is responsible for rendering the header
and menu at the top of the page:

 <!-- Page Content -->
 <div class="container">

 <div class="row">

 <#nested>

 <!-- Sidebar Widgets Column -->
 <div class="col-md-4">

 <!-- Search Widget -->
 <div class="card my-4">
 <h5 class="card-header">Search</h5>
 <div class="card-body">
 <form action="/article">
 <div class="input-group">
 <input type="text" name="q" class="form-control"
 placeholder="Search for...">

Building a Simple Blog Management System Chapter 3

[96]

 <input type="submit" class="btn btn-secondary"
 value="Go!"/>

 </div>
 </form>
 </div>
 </div>

 </div>

 </div>
 <!-- /.row -->

 </div>
 <!-- /.container -->

Furthermore, for dynamic content, there is a notable Apache FreeMarker tag, which is the
following. We wire content here using @p.page:

<#nested>

Dynamic content specific to a web page will be rendered inside this part of the template:

 <!-- Footer -->
 <footer class="py-5 bg-dark">
 <div class="container">
 <p class="m-0 text-center text-white">Copyright © Shazin
 Sadakath 2018</p>
 </div>
 <!-- /.container -->
 </footer>

 <!-- Bootstrap core JavaScript -->
 <script src="/webjars/bootstrap/4.0.0/js/bootstrap.bundle.min.js">
 </script>

 </body>

</html>
</#macro>

Building a Simple Blog Management System Chapter 3

[97]

Finally, the template has the footer section, which is common to all pages, and also
imports any JavaScript libraries that need to be loaded lazily.

Some noticeable things in the preceding template are that it begins and ends with the
following macro tag:

<#macro page title>

All of the common JavaScript, CSS, and HTML will go inside this tag.

Implementing a List Articles page
Let's have a look at the article/index.ftl page, which implements the List Articles
page and makes use of the common template shown in the preceding section:

<#import "../common/standardPage.ftl" as p>

<@p.page title="Posts">
 <!-- Post Content Column -->
 <div class="col-lg-8">

 <#if message??>
 <div id="success-alert" class="alert alert-success">
 ${message}
 </div>
 <script type="text/javascript">
 $(document).ready(function() {
 $("#success-alert").fadeTo(2000, 500).slideUp(500,
 function(){
 $("#success-alert").slideUp(500);
 });
 });
 </script>
 </#if>

The preceding section is responsible for showing any message to the user for up to two
seconds. The message can be anything from information, to a warning, or an error. The
code actually uses the JQuery slide up animation and fade effect. Now, consider the
following code:

 <#if articles?? >
 <#list articles.content as article>
 <!-- Title -->
 <h1 class="mt-4">${article.title}
 </h1>

Building a Simple Blog Management System Chapter 3

[98]

 <!-- Author -->
 <p class="lead">
 by
 <#if article.author??>
 ${article.author.username}
 <#else>
 Anonymous
 </#if>
 </p>

 <hr>
 <!-- Date/Time -->
 <p>Posted on ${article.createdDate?string
 ('dd.MM.yyyy HH:mm:ss')}</p>

 <p>${article.summary}</p>

If there are articles to be shown, then the preceding code will loop through each of them
and show the title of the Article that will be linked to that article's link. Also, it will show
the name of the author of the Article, the Article that was created, and also a summary
of the Article:

 <#if article.author?? && user??>
 <#if article.author.username == user.username || user.role?
 contains("ADMIN")>
 <form id="form_delete_${article.id}" method="post"
 action="/article/delete/${article.id}"></form>
 <p><a class="btn btn-success"
 href="/article/edit/${article.id}">Edit
 <a href="#" class="btn btn-danger"
 onclick="$('#form_delete_${article.id}').submit();">Delete
 </p>
 </#if>
 </#if>

 <hr>
 </#list>

These objects, ??, these objects are the ones that are sent in the Model object. If there is a
user logged-in, the preceding logic will check whether the logged in user is actually the
author of Article or an administrator. In both of those cases, only then will it show the
Edit and Delete buttons.

Building a Simple Blog Management System Chapter 3

[99]

Finally, the previous code generates the pagination for the list of articles available in
the List Articles page. Consider the following code:

 <nav aria-label="Page navigation example">
 <ul class="pagination">
 <#if articles.hasPrevious()>
 <li class="page-item"><a class="page-link"
 href="/article?
 page=${articles.previousPageable().pageNumber}&size=20">
 Previous
 </#if>
 <#list 1..articles.totalPages as i>
 <li class="page-item"><a class="page-link"
 href="/article?page=${i-1}&size=20">${i}
 </#list>
 <#if articles.hasNext()>
 <li class="page-item"><a class="page-link"
 href="/article?
 page=${articles.nextPageable().pageNumber}&size=20">
 Next
 </#if>

 </nav>
 </#if>

 </div>
</@p.page>

The common template is imported using the following Apache FreeMarker tag:

<#import "../common/standardPage.ftl" as p>

This tag imports the common/standardPage.ftl as the variable p, and dynamic content
for the page is specified inside the tags p.page as follows:

<@p.page title="Posts">

The content within the preceding tags will be replaced with the <#nested> tag available in
the common template, and the value specified in title will replace ${title} in the
common template.

Building a Simple Blog Management System Chapter 3

[100]

Implementing a Create Article page
Let's have a look at the article/create.ftl page, which implements the Create Article
page and makes use of the common template shown in the preceding section's code:

<#import "../common/standardPage.ftl" as p>

<@p.page title="${(article.title)!'New Post'}">
<script type="text/javascript"
src="/webjars/ckeditor/4.7.0/standard/ckeditor.js"></script>

The preceding code imports the CKEditor JavaScript library to enable rich text writing for
the content section:

<!-- Post Content Column -->
<div class="col-lg-8">
<form action="/article" method="post">

The preceding code creates a form that can be submitted to a URL/article as a POST request
to create or update a blog article:

<#if article?? >
 <input type="hidden" id="id" name="id" value="${article.id}"/>
 <div class="form-group">
 <label for="postTitle">Title</label>
 <input type="text" class="form-control" id="title" name="title"
 placeholder="Post Title" value="${article.title}" required="true">
 </div>
 <div class="form-group">
 <label for="postLink">Perma Link</label>
 <input type="text" class="form-control" id="link" name="link"
 placeholder="Post Perma Link" value="${article.link}"
 required="true">
 </div>
 <div class="form-group">
 <label for="postSummary">Summary</label>
 <textarea class="form-control" id="summary" name="summary" rows="3"
 required="true">${article.summary}</textarea>
 </div>
 <div class="form-group">
 <label for="postBody">Body</label>
 <textarea class="form-control" id="body" name="body" rows="10"
 required="true">${article.body}</textarea>
 </div>

Building a Simple Blog Management System Chapter 3

[101]

If an article is already there (update article scenario) then the preceding code will store the
ID of that article in a hidden field to be submitted and will populate the Title, Perma
Link, Summary, and Body with the existing values so that they can be edited, shown as
follows:

<#else>
 <div class="form-group">
 <label for="postTitle">Title</label>
 <input type="text" class="form-control" id="title" name="title"
 placeholder="Post Title" required="true">
 </div>
 <div class="form-group">
 <label for="postLink">Permalink</label>
 <input type="text" class="form-control" id="link" name="link"
 placeholder="Post Permalink" required="true">
 </div>
 <div class="form-group">
 <label for="postSummary">Summary</label>
 <textarea class="form-control" id="summary" name="summary" rows="3"
 required="true"></textarea>
 </div>
 <div class="form-group">
 <label for="postBody">Body</label>
 <textarea class="form-control" id="body" name="body" rows="10"
 required="true"></textarea>
 </div>
 </#if>
 <div class="form-group">
 <input class="form-control btn btn-primary" type="submit"
 value="Save"/>
 </div>

If it is an entirely new article then the preceding code will create empty Title, Perma
Link, Summary, and Body fields. Eventually, the page will have a Save button for both the
create and update use cases:

<script type="text/javascript">
 CKEDITOR.replace('body');

 $("#title").keyup(function(){
 var str = $(this).val();
 str = str.replace(/[^a-zA-Z0-9\s]/g,"");
 str = str.toLowerCase();
 str = str.replace(/\s/g,'-');
 $("#link").val(str);
 });
</script>

Building a Simple Blog Management System Chapter 3

[102]

</form>
</div>
</@p.page>

For styling, the body section with bold, italic, and so on, on a fully fledged JavaScript
editor named CKEDITOR is used. The following dependency in pom.xml is required to
enable that:

<dependencies>
 ...
 <dependency>
 <groupId>org.webjars</groupId>
 <artifactId>ckeditor</artifactId>
 <version>4.7.0</version>
 </dependency>
</dependencies>

The following JavaScript code in the front-end page can be used to enable CKEDITOR on an
HTML element:

<script type="text/javascript">
 CKEDITOR.replace('body');
 ...
</script>

This page also makes use of the common template. It also has a piece of jQuery JavaScript
code that takes the text typed in for the title and converts it into a permanent link URL by
replacing spaces with '-' and rendering all other characters in a simple case.

Implementing a Show Article page
Let's have a look at the article/show.ftl page, which implements the Show Article
page and makes use of the common template shown in the preceding code:

<#import "../common/standardPage.ftl" as p>

<#if article??>
<@p.page title="${article.title}">
 <!-- Post Content Column -->
 <div class="col-lg-8">

 <!-- Title -->
 <h1 class="mt-4">${article.title}</h1>

Building a Simple Blog Management System Chapter 3

[103]

The previous code will check if it has an article to show, and if it does it will show the
article title as the title of the page itself. It will follow this by showing a big header on the
page with the article title:

 <!-- Author -->
 <p class="lead">
 by
 <#if article.author??>
 ${article.author.username}
 <#else>
 Anonymous
 </#if>
 </p>

 <hr>

The preceding code snippet will show the author of the article if it can find one; if not it will
show Anonymous.

The following code will show the date when the article was created:

 <!-- Date/Time -->
 <p>${article.createdDate?string('dd.MM.yyyy HH:mm:ss')}</p>
 <hr>

Furthermore, it has the following code to convert the Article.createdDate property into
a string of the format dd.MM.yyyy HH:mm:ss:

 ${article.createdDate?string('dd.MM.yyyy HH:mm:ss')}
 <!-- Post Content -->
 ${article.body}
 <hr>
 </div>
 </@p.page>
 </#if>

Eventually, the actual article is shown in its entirety. This page also makes use of the
common template.

Building a Simple Blog Management System Chapter 3

[104]

Implementing an error page
For all the common error scenarios there is a custom error page implemented at
common/error.ftl, which is shown as follows:

<!DOCTYPE html>
<html lang="en">

 <head>

 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1,
 shrink-to-fit=no">
 <meta name="description" content="">
 <meta name="author" content="">

 <title>Error : ${status}</title>
 <link rel="stylesheet" type="text/css"
 href="/webjars/bootstrap/4.0.0/css/bootstrap.min.css"/>

 <!-- Custom styles for this template -->
 <link href="/css/blog-post.css" rel="stylesheet">

 </head>
 <body>
 <nav class="navbar navbar-expand-lg navbar-dark bg-dark fixed-top">
 <div class="container">
 Blog Management System
 </div>
 </nav>

 <div class="container">

 <div class="row">
 <div class="col-lg-8">

 <!-- Title -->
 <h1 class="mt-4">${status}</h1>

 <p>${exception.message}
 </div>
 </div>
 </div>
 </body>

</html>

Building a Simple Blog Management System Chapter 3

[105]

The preceding page will show the HTTP status and exception.message in the page for
easy troubleshooting regarding what went wrong.

Using Spring WebFlux for controller
Controllers are the integration point between models and views in the MVC paradigm.
They act like the glue that binds together everything while taking care of business logic
execution and routing. The following Maven starter dependency needs to be added to
enable Spring WebFlux:

<dependencies>
 ...
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-webflux</artifactId>
 </dependency>
</dependencies>

The preceding dependency will import the Reactive Streams, Spring, and
Netty dependencies to enable successful writing of Servlet-based web applications using
Spring.

Implementation of controllers
The following is the IndexController that caters the index URL:

@Controller
public class IndexController {

 @GetMapping("/")
 public String index() {
 return "redirect:/article";
 }
}

The index method is mapped to the URL /, which will redirect to the /article URL
when a GET request is received at that endpoint.

Building a Simple Blog Management System Chapter 3

[106]

The following is the ArticleController, which is responsible for the CRUD operations
of the Article domain model:

@Controller
@RequestMapping("/article")
public class ArticleController {

 private final ArticleService articleService;
 private final UserService userService;

 public ArticleController(ArticleService articleService, UserService
 userService) {
 this.articleService = articleService;
 this.userService = userService;
 }

 @GetMapping
 public String index(Model model,
 @AuthenticationPrincipal UserDetails
 userDetails,
 @RequestParam(required = false, value = "q")
 String q,
 @RequestParam(required = false, value = "page") Integer page,
 @RequestParam(required = false, value = "size") Integer size)
 {
 if (q == null) {
 model.addAttribute("articles",
 articleService.getAll(getPageable(page, size)));
 } else {
 model.addAttribute("articles", articleService.search(q,
 getPageable(page, size)));
 }

 return "article/index";
 }

All the methods in the preceding controller will be grouped under the URL
/article. ArticleController.index, which is mapped to the GET method of
the /article URL, expects @AuthenticationPrincipal UserDetails, and which
returns the logged-in user's details and optional @QueryParams q, page, and size. Where
q is used as a search query, page and size are used to enable pagination on the List
Articles page.

Building a Simple Blog Management System Chapter 3

[107]

It uses the ArticleSearch.getAll method if a q query parameter is not specified and
the ArticleService.search method when a q query parameter is specified using the
search bar. It also uses the UserService.getByUsername method to get the currently
logged-in User domain model. Finally, it will send all the data
using Model to article/index.ftl. A Model is an auto injected into a method, a model
usually allows us to submit any reference data to a page that is going to be loaded:

 @GetMapping("/show/{link}")
 public String getPost(@AuthenticationPrincipal UserDetails
 userDetails,
 @PathVariable String link, Model model) {
 Optional<Article> article = articleService.getByLink(link);
 if (article.isPresent()) {
 model.addAttribute("article", article.get());
 } else {
 throwNotFoundException(link);
 }

 return "article/show";
 }

The ArticleController.getPost method is mapped to the GET method
/article/show/{link} URL, which uses the @PathVariable link variable to get the
Article using the ArticleService.getByLink method, which in turn uses the link
property to get the correct Article to show. Finally, it will send the data using Model to
article/show.ftl:

 @GetMapping("/new")
 public String newPost() {
 return "article/create";
 }

The ArticleController.newPost method is mapped to the GET method /article/new,
which displays the article/create.ftl page:

 @GetMapping("/edit/{id}")
 public String editPost(@AuthenticationPrincipal UserDetails
 userDetails, @PathVariable String id, Model model) {
 Optional<Article> article = articleService.getById(id);
 if (article.isPresent()) {
 model.addAttribute("article", article.get());
 } else {
 return throwNotFoundException(id);
 }

 return "article/create";

Building a Simple Blog Management System Chapter 3

[108]

 }

 private String throwNotFoundException(@PathVariable String id) {
 throw new NotFoundException("Article Not Found for "+id);
 }

The ArticleController.editPost method is mapped to the GET method
/article/edit/{id} URL, which uses the @PathVariable id variable to get the
Article using ArticleService.getById. Finally, it will send all the data
using Model to article/create.ftl:

 @PostMapping("/delete/{id}")
 public String deletePost(@AuthenticationPrincipal UserDetails
 userDetails, @PathVariable String id, Model model) {
 articleService.deleteById(id);

 model.addAttribute("message", "Article with id " + id + "
 deleted successfully!");
 model.addAttribute("articles", articleService.getAll(new
 PageRequest(0, 10)));

 return "article/index";
 }

The ArticleController.deletePost method is mapped to the POST method
/article/delete/{id} URL, which uses the @PathVariable id variable to delete the
Article using the ArticleService.deleteById method. Finally, it will send the user to
the article/index.ftl page to List Articles with a message for successfully deleting
an Article:

 @PostMapping
 public String savePost(@AuthenticationPrincipal UserDetails
 userDetails, Article article, Model model) {
 if (article.getId() == null || article.getId().length() == 0) {
 User user =
 userService.getByUsername(userDetails.getUsername());
 article.setAuthor(user);
 } else {
 Optional<Article> optionalArticle =
 articleService.getById(article.getId());
 if (optionalArticle.isPresent()) {
 article.setAuthor(optionalArticle.get().getAuthor());
 }
 }
 articleService.save(article);

 return "redirect:/article/show/"+article.getLink();

Building a Simple Blog Management System Chapter 3

[109]

 }

The ArticleController.savePost method is mapped to the POST
method /article URL, which saves the Article using
the ArticleService.save method. Finally, it will redirect to /article/show/{link},
where link is the link property of the newly saved Article.

Implementation of ControllerAdvice
Furthermore, there is BaseControllerAdvice, which is annotated
with @ControllerAdvice as follows. ControllerAdvice is a specialized component that
can handle the @ExceptionHandler, @InitBinder, and @ModelAttribute methods:

@ControllerAdvice
public class BaseControllerAdvice {

 private final UserService userService;

 public BaseControllerAdvice(UserService userService) {
 this.userService = userService;
 }

 @ExceptionHandler(NotFoundException.class)
 public String handledNotFoundException(NotFoundException e, Model
 model) {
 model.addAttribute("status", 400);
 model.addAttribute("exception", e);

 return "common/error";
 }

The BaseControllerAdvice.handleNotFoundException method that is annotated
with @ExceptionHandler will catch NotFoundException, which is as follows:

public class NotFoundException extends RuntimeException {

 public NotFoundException(String message) {
 super(message);
 }

 public NotFoundException(String message, Throwable cause) {
 super(message, cause);
 }
}

Building a Simple Blog Management System Chapter 3

[110]

It will set the model properties status, exception and will eventually forward to
the common/error.ftl page:

 @ExceptionHandler(Exception.class)
 public String handleException(Exception e, Model model) {
 model.addAttribute("status", 500);
 model.addAttribute("exception", e);

 return "common/error";
 }

Also, it has the handleException method to catch and handle all other Exception types,
and to forward to common/error.ftl:

 @ModelAttribute
 public void addCommonAttributes(@AuthenticationPrincipal
 UserDetails userDetails, Model model) {
 if (userDetails != null) {
 User user =
 userService.getByUsername(userDetails.getUsername());
 model.addAttribute("user", user);
 }
 }
 }

Additionally, it has the addCommonAttributes method to add any common Model
attributes, which needs to be sent as part of all controller returns. In this case, we send
an @Model attribute user so that the logged-in username can be shown in the
header. @ModelAttribute is invoked whenever there is a GET request to a controller.

Using Spring Security for authentication and
authorization
This web application has used Spring Security for authentication of users and to authorize
them to submit comments. The Maven Spring Security starter needs to be specified, as
follows, to enable Spring Security in the web application:

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
 </dependency>
 <dependency>

Building a Simple Blog Management System Chapter 3

[111]

 <groupId>org.springframework.security</groupId>
 <artifactId>spring-security-webflux</artifactId>
 <version>5.0.0.M2</version>
 </dependency>
</dependencies>

The following is the Spring Security configuration:

@Configuration
@EnableWebFluxSecurity
@EnableReactiveMethodSecurity
public class SecurityConfig {

 @Autowired
 private UserService userService;

 @Bean
 public SecurityWebFilterChain
 springWebFilterChain(ServerHttpSecurity http) throws Exception {
 return http
 .authorizeExchange().pathMatchers(HttpMethod.GET,
 "/article", "/article/show/**", "/webjars/**", "/css/**",
 "/favicon.ico", "/").permitAll()
 .pathMatchers(HttpMethod.POST,
 "/article").authenticated()
 .pathMatchers("/article/edit/**", "/article/new",
 "/article/delete/**").authenticated()
 .and()
 .csrf().disable()
 .formLogin()
 .and()
 .logout()
 .and()
 .build();
}

Since the Bloggest application makes use of Spring WebFlux, it also needs to use Reactive
Spring Security. This is a new feature introduced in conjunction with Spring Framework 5.0
and Spring WebFlux, so the code may look unfamiliar. The preceding SecurityConfig
configuration class does the following.

With the @EnableWebFluxSecurity annotation, Spring WebFlux controller security is
enabled. This will enable us to protect the URLs of the Bloggest application. Also, it has
@EnableReactiveMethodSecurity, where the @Secured annotation can be used on top
of methods to be protected.

Building a Simple Blog Management System Chapter 3

[112]

The springWebFilterChain(ServerHttpSecurity http) method, which uses the
parameter http passed into configure and build SpringWebFilterChain, will be used to
protect endpoints in the Bloggest application:

 @Bean
 public UserDetailsRepositoryReactiveAuthenticationManager
 authenticationManager(BlogReactiveUserDetailsService
 blogReactiveUserDetailsService) {
 UserDetailsRepositoryReactiveAuthenticationManager
 userDetailsRepositoryReactiveAuthenticationManager = new
 UserDetailsRepositoryReactiveAuthenticationManager
 (blogReactiveUserDetailsService);
 userDetailsRepositoryReactiveAuthenticationManager.
 setPasswordEncoder(passwordEncoder());
 return userDetailsRepositoryReactiveAuthenticationManager;
 }

 @Bean
 public PasswordEncoder passwordEncoder() {
 return new BCryptPasswordEncoder();
 }

Furthermore, the method authenticationManager returns
UserDetailsRepositoryReactiveAuthenticationManager, which is configured to
have the following ReactiveUserDetailsService implementation to load instances
of User by username using UserRepository:

@Service
public class BlogReactiveUserDetailsService implements
ReactiveUserDetailsService {

 private final UserRepository userRepository;

 public BlogReactiveUserDetailsService(UserRepository
 userRepository) {
 this.userRepository = userRepository;
 }

 @Override
 public Mono<UserDetails> findByUsername(String s) {
 User user = userRepository.findByUsername(s);
 if (user == null) {
 return Mono.empty();
 }
 return Mono.just(new
 org.springframework.security.core.userdetails.User
 (user.getUsername(), user.getPassword(), Arrays.asList(new

Building a Simple Blog Management System Chapter 3

[113]

 SimpleGrantedAuthority(user.getRole()))));
 }
}

The preceding implementation finds a User by username, encapsulates the inside of
UserDetails and returns it as Mono (UserDetails encapsulated inside of a Mono
object). Also, configure the passwordEncoder to be used as follows:

 @Bean
 public ApplicationRunner applicationRunner() {
 return args -> {
 userService.deleteAll();
 userService.save(new User(UUID.randomUUID().toString(),
 "user", passwordEncoder().encode("password"), "USER",
 "User of Blog"));
 userService.save(new User(UUID.randomUUID().toString(),
 "admin", passwordEncoder().encode("password"), "ADMIN",
 "Admin of Blog"));
 };
 }

}

The method applicationRunner() is used to create and return an ApplicationRunner
instance to clear the existing users from the Elasticsearch data store and create some Users.

Demonstrating Bloggest
In order to run the Bloggest web application, it requires that the Elasticsearch data store be
up and running. The following command can be used to start Elasticsearch:

$ <Path to Elasticsearch>/bin/elasticsearch

When everything is put together, build and run the Bloggest, which you will be able to
access using the http://<host>:<port> URL.

Building a Simple Blog Management System Chapter 3

[114]

There are several ways to run a Spring Boot application, some of them are mentioned here:

Running the Spring Boot application main class using an IDE.
Building a JAR or WAR file using the following Maven command and then
running:

$ mvn clean install
$ java -jar target/<package-name>.[jar|war]

Running using a Spring Boot Maven plugin:

$ mvn clean spring-boot:run

After running, the Bloggest web application will show the List Articles page as follows:

In this page, the header, footer, and right panel with Search bar are coming from the
common/standardPage.ftl common layout. The dynamic content is only available in the
middle. Since in this case the admin user is already logged in, in the top right the system
welcomes the user with the username. If no user is logged in, that section will show the
Login link (username user, password password for USER role, username admin,
password password for ADMIN role).

Building a Simple Blog Management System Chapter 3

[115]

When the title link is clicked, the following Show Article page is shown:

Things to note on this page are that the page is showing the body section of the article in
the styled text with even images. Also, the URL is using a permanent link to call the
/article/show/ endpoint with. This is important as this URL is now search engine
optimization (SEO) friendly, meaning it can be indexed easily in search engines such as
Google, Bing, and so on to get more leads.

Building a Simple Blog Management System Chapter 3

[116]

The following page is for the Add Article use case:

Building a Simple Blog Management System Chapter 3

[117]

The page has text boxes for Title, Perma Link (this will be derived dynamically from the
title), Summary, and Body. You can see the CKEDITOR in action for the body section.

The Edit Article use case will look like the following:

By clicking on the Edit button under the article on the List Articles page, this page can be
reached. The Edit button will be visible only if the logged-in user has the administrator role
or is the original author of that particular article.

Building a Simple Blog Management System Chapter 3

[118]

The following page shows a Search Article use case where the keyword Java is searched:

Matching results will be displayed on the List Articles page. And finally, the result of the
Delete Article use case is displayed on the following page:

An article can be deleted using the Delete button on the List Articles page. The Delete
button will be visible only if the logged-in user has the administrator role or is the original
author of that particular article. Eventually, it will redirect to the List Articles page.

Building a Simple Blog Management System Chapter 3

[119]

Since the Bloggest application may be viewed using devices other than a computer, it
supports a responsive UI with Bootstrap. All pages are responsive to different screen sizes
and resolutions. The following is the Show Article page with smaller dimensions:

Building a Simple Blog Management System Chapter 3

[120]

The following is the page for the Login use case:

This page comes out of the box with Spring Security 5 and it is responsive and more stylish
than its predecessor, which was used in Chapter 2, Building a Basic Web Application.

The following is the page for the Log out use case:

Building a Simple Blog Management System Chapter 3

[121]

Logout can be performed by clicking the Log Out link in the header. Unlike the predecessor
version of Spring Security, Spring Security 5 asks for confirmation during logout out of the
box. When logout is confirmed it will redirect to the Login page with a message, as follows:

Summary
Congratulations on completing this chapter, where the skills and knowledge required to
build a simple blog management system nicknamed Bloggest were discussed in detail. This
chapter started off by explaining what a web application is and how a web application can
benefit from the MVC pattern both in terms of development and maintenance. It talked
about the requirements of the web application being developed and used a UML use case
diagram to explain the requirements visually.

This chapter also talked about how to understand the domain models of an application
based on the requirements (Bloggest) and how to use Spring Data Elasticsearch to convert
those domain models into documents in the Elasticsearch data store. A UML class diagram
was used to explain the domain models in detail.

Furthermore, the chapter explained how to write data repositories for those documents
using Spring Data Elasticsearch with minimum effort for commonly used CRUD
operations. Moving on, it also explained how to write custom query methods in data
repositories, and how to encapsulate business logic inside Spring Service components.

Subsequently, the chapter talked about how to write presentation views to create and
display comments using Apache FreeMarker Framework. In addition, it explained how to
use Apache FreeMarker syntax to list articles, add an article, edit an article, and show an
article.

Building a Simple Blog Management System Chapter 3

[122]

Eventually, the chapter talked about how to use Spring WebFlux Controllers to provide
routing and coordinating of different services. Furthermore, it talked about how to protect
controller endpoints using Spring Security to allow proper authentication and
authorization for users. The chapter also demonstrated the usage of Bloggest in detail.
We'll learn more about some interesting features of Spring Boot 2.0 in coming chapters.

Questions
Please answer the following questions to see whether you have successfully mastered this
chapter:

What is Elasticsearch?1.
What is Apache FreeMarker?2.
What are the two common constructs in Spring WebFlux?3.
What is a blog management system?4.
What is the use of a ControllerAdvice?5.
What is the use of a PasswordEncoder?6.
How do you configure Spring Security to use a custom UserDetailsService?7.

Further reading
In order to improve your knowledge of Spring Web MVC, Spring Security, Elasticsearch,
and Apache FreeMarker, the following books are recommended to be read, as they will be
helpful in the coming chapters:

Spring 5.0 By Example: https:/ / www. packtpub. com/ application- development/
spring-mvc- designing- real- world- web-applications

Spring Security - Third Edition: https:/ /www. packtpub. com/ application-
development/ spring- security- third- edition

Elasticsearch Essentials: https:/ / www. packtpub. com/big- data- and- business-
intelligence/ elasticsearch- essentials

Instant FreeMarker Starter: https:/ /www. packtpub. com/ web- development/
instant- freemarker- starter- instant

https://www.packtpub.com/application-development/spring-50-example
https://www.packtpub.com/application-development/spring-50-example
https://www.packtpub.com/application-development/spring-50-example
https://www.packtpub.com/application-development/spring-50-example
https://www.packtpub.com/application-development/spring-50-example
https://www.packtpub.com/application-development/spring-50-example
https://www.packtpub.com/application-development/spring-50-example
https://www.packtpub.com/application-development/spring-50-example
https://www.packtpub.com/application-development/spring-50-example
https://www.packtpub.com/application-development/spring-50-example
https://www.packtpub.com/application-development/spring-50-example
https://www.packtpub.com/application-development/spring-50-example
https://www.packtpub.com/application-development/spring-50-example
https://www.packtpub.com/application-development/spring-50-example
https://www.packtpub.com/application-development/spring-50-example
https://www.packtpub.com/application-development/spring-50-example
https://www.packtpub.com/application-development/spring-50-example
https://www.packtpub.com/application-development/spring-50-example
https://www.packtpub.com/application-development/spring-50-example
https://www.packtpub.com/application-development/spring-50-example
https://www.packtpub.com/application-development/spring-50-example
https://www.packtpub.com/application-development/spring-50-example
https://www.packtpub.com/application-development/spring-50-example
https://www.packtpub.com/application-development/spring-50-example
https://www.packtpub.com/application-development/spring-50-example
https://www.packtpub.com/application-development/spring-50-example
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/application-development/spring-security-third-edition
https://www.packtpub.com/big-data-and-business-intelligence/elasticsearch-essentials
https://www.packtpub.com/big-data-and-business-intelligence/elasticsearch-essentials
https://www.packtpub.com/big-data-and-business-intelligence/elasticsearch-essentials
https://www.packtpub.com/big-data-and-business-intelligence/elasticsearch-essentials
https://www.packtpub.com/big-data-and-business-intelligence/elasticsearch-essentials
https://www.packtpub.com/big-data-and-business-intelligence/elasticsearch-essentials
https://www.packtpub.com/big-data-and-business-intelligence/elasticsearch-essentials
https://www.packtpub.com/big-data-and-business-intelligence/elasticsearch-essentials
https://www.packtpub.com/big-data-and-business-intelligence/elasticsearch-essentials
https://www.packtpub.com/big-data-and-business-intelligence/elasticsearch-essentials
https://www.packtpub.com/big-data-and-business-intelligence/elasticsearch-essentials
https://www.packtpub.com/big-data-and-business-intelligence/elasticsearch-essentials
https://www.packtpub.com/big-data-and-business-intelligence/elasticsearch-essentials
https://www.packtpub.com/big-data-and-business-intelligence/elasticsearch-essentials
https://www.packtpub.com/big-data-and-business-intelligence/elasticsearch-essentials
https://www.packtpub.com/big-data-and-business-intelligence/elasticsearch-essentials
https://www.packtpub.com/big-data-and-business-intelligence/elasticsearch-essentials
https://www.packtpub.com/big-data-and-business-intelligence/elasticsearch-essentials
https://www.packtpub.com/big-data-and-business-intelligence/elasticsearch-essentials
https://www.packtpub.com/big-data-and-business-intelligence/elasticsearch-essentials
https://www.packtpub.com/big-data-and-business-intelligence/elasticsearch-essentials
https://www.packtpub.com/big-data-and-business-intelligence/elasticsearch-essentials
https://www.packtpub.com/web-development/instant-freemarker-starter-instant
https://www.packtpub.com/web-development/instant-freemarker-starter-instant
https://www.packtpub.com/web-development/instant-freemarker-starter-instant
https://www.packtpub.com/web-development/instant-freemarker-starter-instant
https://www.packtpub.com/web-development/instant-freemarker-starter-instant
https://www.packtpub.com/web-development/instant-freemarker-starter-instant
https://www.packtpub.com/web-development/instant-freemarker-starter-instant
https://www.packtpub.com/web-development/instant-freemarker-starter-instant
https://www.packtpub.com/web-development/instant-freemarker-starter-instant
https://www.packtpub.com/web-development/instant-freemarker-starter-instant
https://www.packtpub.com/web-development/instant-freemarker-starter-instant
https://www.packtpub.com/web-development/instant-freemarker-starter-instant
https://www.packtpub.com/web-development/instant-freemarker-starter-instant
https://www.packtpub.com/web-development/instant-freemarker-starter-instant
https://www.packtpub.com/web-development/instant-freemarker-starter-instant
https://www.packtpub.com/web-development/instant-freemarker-starter-instant
https://www.packtpub.com/web-development/instant-freemarker-starter-instant
https://www.packtpub.com/web-development/instant-freemarker-starter-instant
https://www.packtpub.com/web-development/instant-freemarker-starter-instant
https://www.packtpub.com/web-development/instant-freemarker-starter-instant

4
Introduction to Kotlin

This chapter will introduce the reader to the details of using Kotlin programming with
Spring Boot 2 as the base application development framework. It will explain what Kotlin is
and how to get started with Kotlin as the main programming language and for testing
purposes. Subsequently, it will explain the basic syntax of Kotlin, followed by coding
conventions, coding basics, class concepts, and so on. Furthermore, it will delve into the
advanced functionalities of Kotlin, such as lambdas, annotations, reflection, and many
more, to provide a deep understanding of the programming language.

The following topics will be covered in this chapter:

Getting started with Kotlin
Object-oriented programming with Kotlin
Advanced programming with Kotlin

Technical requirements
In order to implement a web application using Spring Boot, the following build tools need
to be downloaded and installed:

To install Java Development Kit (JDK) 8, download it from its official page
at http:/ /www. oracle. com/ technetwork/ java/ javase/ downloads/ jdk8-
downloads- 2133151. html

To install Maven 3, download it from its official page at https:/ /maven. apache.
org/download. cgi

To install IntelliJ IDEA, download it from its official page at https:/ /www.
jetbrains. com/ idea/ download/

To install Spring Tool Suite (STS), download it from its official page at https:/ /
spring.io/ tools

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools

Introduction to Kotlin Chapter 4

[124]

The source code for this chapter can be found at https:/ /github. com/PacktPublishing/
Spring-Boot-2.0- Projects- Fundamentals- of-Spring- Boot- 2.0, in
the Chapter04 directory.

Getting started with Kotlin
Kotlin is an up-and-coming programming language that is very versatile and can be used to
develop applications in platforms such as server-side, Android, JavaScript, and native. The
main features of the Kotlin programming language are as follows:

Concise syntax: Kotlin eliminates a lot of boilerplate code and sticks to the core
concepts and functionality
Safe coding and runtime: Kotlin makes sure errors are minimized during coding
and while running the application
Interoperability: Kotlin code can make use of existing libraries for JVM
(ArrayList), JavaScript (document), and many more
Developer friendliness: Kotlin is supported in a wide array of integrated
development environments (IDE) and command line tools to keep the learning
curve gradual

The following sections will cover these features, showcasing each with practical examples
to enable easy comprehension.

Default imports
The following packages are imported by default into every Kotlin file:

kotlin.*

kotlin.annotation.*

kotlin.collections.*

kotlin.comparisons.* (since 1.1)

kotlin.io.*

kotlin.ranges.*

kotlin.sequences.*

kotlin.text.*

https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0

Introduction to Kotlin Chapter 4

[125]

When running Kotlin applications on the JVM, the following packages are also imported:

java.lang.*
kotlin.jvm.*

Basic data types
There are a few data types in Kotlin that we need to be aware of, I have listed a few of them
in the upcoming sections.

Numeric data types
Kotlin has almost the same data types as Java. The following table lists them:

Data type No. of bytes No. of bits
Byte 1 8
Short 2 16
Int 4 32
Long 4 32
Float 8 64
Double 8 64

The only visible difference is that Kotlin has the data type Int as opposed to Integer in
Java.

Learning numeric literals
Unlike Java, Kotlin does not support octal literals (which begin with 0 in Java) as a numeric
literal. The following numeric literals are supported:

Decimals: We have the following decimals:
Int: 123
Long: 123L ends with a capital L

Hexa-decimals: Begin with a 0x followed by the value. An example is 0xCAFE for
the decimal value 51966.
Binary: Begins with prefix 0b followed by the value. An example is 0b1010 for
the decimal value 10.

Introduction to Kotlin Chapter 4

[126]

Floating point: Kotlin supports conventional notations for floating points:
Double:123.0, 12.0e10
Float: 123.0f or 123.0F ends with capital F or simple f

All numeric literals can use _ to separate digits. Some examples are 100_000_000,
0xA_B_C, 0b000_000_001, 100_000F.

Numeric representation
All numeric values are represented as primitive values in the JVM unless it is a nullable
value. For example, if Long? or generics are involved. Kotlin has a ternary equals operator
(===) that can be used to check identity. Consider the following code example:

var a : Long = 10L;
println(a === a)

The following code will print true:

var a : Long = 10L;
var b : Long? = a;
var c : Long? = a;
println(b === c)

However, it will print false if the b and c variables are nullable, will not use primitive
data types, and thus will have different identities for each of those respectively.
Yet println(b == c) will print true as it will be checking equality, not the identity.

Numeric operations
Kotlin has bitwise operations available for Int and Long only, which are very different
from those in Java. The following table shows these operations:

Bitwise operation Purpose Example
shl(bits) Signed shift left (Java's <<) 123 shl 1

shr(bits) Signed shift right (Java's >>) 123 shr 1

ushr(bits) Unsigned shift right (Java's >>>) 123 ushr 1

and(bits) Bitwise and 123 and 456

or(bits) Bitwise or 123 or 456

xor(bits) Bitwise xor 0x101 xor 0x010

inv() Bitwise inversion 123.inv()

Introduction to Kotlin Chapter 4

[127]

String literals
Kotlin has string literal support in the following code:

var message = "Hello, World\n";
print(message);

Also, unlike Java, Kotlin has multiline string support, as seen in the following code:

var csv = """
 Name,Telephone,Email
 Shazin,07743299201,shazin.sadakath@gmail.com
 """.trimIndent();
println(csv);

A multiline string literal begins and ends with three double quotes ("""). Inside this,
special double quotes can be used without escaping, which is very handy. The
trimIndent() method trims the indentations inside the string in the preceding code.
Without it the string literal will contain tabs and spacing exactly as shown in the previous
code; this is shown in the following code:

 Name,Telephone,Email
 Shazin,07743299201,shazin.sadakath@gmail.com

The syntax for Kotlin code
Because Kotlin code will be compiled as bytecode to run on top of the Java virtual machine
(JVM), it enables us to use the utility classes available in a JVM out of the box. This means
Kotlin code can be very familiar to Java developers. But still, as Kotlin is a concise
programming language, it has reduced a lot of unnecessary keywords and has simplified
many keywords. The following sections will explain this.

The Kotlin packages
Similar to the Java programming language, Kotlin also supports the grouping and
categorization of code using packages. The following package declaration can be used to do
that:

package com.packtpub.springboot2kotlin.gettingstarted

import java.sql.*;

Also, whole packages or specific classes inside a package can be imported just as in Java.

Introduction to Kotlin Chapter 4

[128]

String interpolation
Unlike Java, Kotlin supports string interpolation where an actual variable, an expression
value, can be used to substitute placeholders ($ sign followed by the variable name or $
sign followed by curly braces) inside string objects. This eliminates the need for memory-
expensive string concatenation using the + operator in Java. This is explained using the
following code:

var sum: Double = calculator.add(1.0, 2.0);
println("Double Sum of 1.0 + 2.0 = $sum");

...
println("No of times methods invoked in StringFormatter =
${stringFormatter.noOfTimesMethodsInvoked}");

In the preceding code snippet println, which is passed with string objects containing the
placeholders $sum and ${stringFormatter.noOfTimesMethodsInvoked} respectively.
Kotlin will replace the actual values with the placeholders before they're sent to be printed
on the console.

Functions in Kotlin
As in any programming language, Kotlin does support functions to be written and it
enables users to write very concise functions such as the following, without any curly
braces, start, and end keywords:

// This is an inline function which adds two Int values
fun add(n1: Int, n2: Int): Int = n1 + n2;

More descriptive functions with well-defined content are as follows:

/*
This is a descriptive function which adds two Double values
 */
fun add(n1: Double, n2: Double): Double {
 return n1 + n2;
}

Introduction to Kotlin Chapter 4

[129]

A function that doesn't return anything (effectively a procedure) can be written as follows:

fun addAndPrint(n1: Int, n2: Int): Unit {
 println("$n1 + $n2 = ${n1 + n2}");
}

fun substractAndPrint(n1: Int, n2: Int) {
 println("$n1 - $n2 = ${n1 - n2}");
}

This is done either by returning Unit or by completely omitting it.

Variables in Kotlin
Defining variables in Kotlin can be done in several ways, such as the following:

// Immutable
val separatorChar: String = ",";

// Mutable
var noOfTimesMethodsInvoked = 0;

The val keyword can be used to define Immutable variables, and the var keyword can be
used to define Mutable variables. The type of the variable can be specified, but when it
isn't, it will be inferred based on what value is being set. In the case of
the noOfTimesMethodsInvoked variable, the type will be inferred as Int by default.

Conditional statements
When writing programming logic, conditional statements are crucial. Similar to Java, Kotlin
supports the following statements.

The if statement
An if statement can be written as follows:

if (i % 2 == 0) {
 println("$i is an even number");
} else {
 println("$i is an odd number");
}

This code is very similar to the Java if statement.

Introduction to Kotlin Chapter 4

[130]

The when statement
The when statement here is the same as Java's switch statement, but with concise code as
follows:

var word : String = when(letter) {
 "A" -> "Apple";
 "B" -> "Ball";
 "C" -> "Cat";
 "D" -> "Dog";
 else -> "Don't Know";
}

The else keyword is used to specify default values in case no match is found.

Type checking and automatic casting
In the Java programming language, if a function accepts a parameter of type Object, and if
the actual type of that parameter needs to be checked, then the instanceof keyword is
used. But this alone wasn't sufficient; even if the type of the parameter is found it still needs
to be explicitly cast to access any properties or functions within it. This is solved in Kotlin
as follows:

if (csv is String) {
 return csv.length;
}

In the preceding code, the if keyword is used to check whether the csv parameter is of
type String or not. If the condition returns true, Kotlin does the implicit casting of csv to
String to enable access to properties or functions and to reduce the chances of errors while
keeping the code concise.

Nullable values and compile-time null safety
In contrast to Java, Kotlin enables users to specify whether a variable or function can hold
or return null as a value. This can be done as follows:

fun getStringLength(csv: Any): Int? {
 noOfTimesMethodsInvoked++;
 if (csv is String) {
 return csv.length;
 }

Introduction to Kotlin Chapter 4

[131]

 return null;
}

The getStringLength function returns an Int ending with ?, which specifies that this
method should return null. So, the caller of this method must write code to check for null
safety. This will be enforced during compile time to reduce the chances
of NullPointerException.

The for loop
The for loop is a very useful and familiar programming syntax that can be used to iterate
through an array, collection, or range of values.

The for loop with an array
Using the for loop to iterate through an array of values can be done as follows:

var animals = arrayOf("Cat", "Lion");

...
for (index in animals.indices) {
 println("This is a great animal : ${animals[index]}")
}

Here, the animals array has an indices property that itself is an array of Int, which can
be used to loop through each index and print the value of that index.

The for loop with a collection
The for loop can also be used to loop through List and Set as well, as follows:

var letters = stringFormatter.csvToList("A,B,C,D,E,F,G,H,I");

if (letters != null) {
 for (letter in letters) {
 var word : String = when(letter) {
 "A" -> "Apple";
 "B" -> "Ball";
 "C" -> "Cat";
 "D" -> "Dog";
 else -> "Don't Know";
 }

Introduction to Kotlin Chapter 4

[132]

 println("$letter for $word");
 }
}

Here, the letters variable is a List of strings objects.

The for loop with a value range
Kotlin, unlike Java, supports looping through a range of values such as 1 to 10 using a for
loop, as in the following:

for (i in 1..10) {
 if (i % 2 == 0) {
 println("$i is an even number");
 } else {
 println("$i is an odd number");
 }
}

Here the number range is specified by the 1..10 syntax.

Furthermore, Kotlin supports looping through ranges in reverse as well as with custom
specified stepping values, seen as follows:

for (i in 10 downTo 0 step 2) {
 println("$i");
}

The while loop
The while loops are a way to iterate while a condition is being satisfied and are crucial in
situations where a for loop will not fit. The syntax for a while loop is similar to Java and is
shown as follows:

var animals = arrayOf("Cat", "Lion");

var index = 0;
while (index < animals.size) {
 var animal = animals[index++];
 println("This animal is a $animal");
}

Introduction to Kotlin Chapter 4

[133]

Object-oriented programming with Kotlin
Object-oriented programming (OOP) is a very famous and widely used programming
methodology. The Java programming language enables OOP with programming concepts
such as classes, interfaces, abstraction, inheritance, polymorphism, encapsulation, and
many more. The following sections will explain these concepts in Kotlin.

Learning about visibility modifiers
Visibility modifiers can be specified to classes, interfaces, constructors, functions, and
properties. In Kotlin, the following visibility modifiers are available:

Visibility
modifiers Classes Interfaces Constructors Functions Properties

private
Visible only
inside
the file

Visible only
inside
the file

Visible only
inside
the file

Visible only
inside
the file

Visible only
inside
the file

protected
Visible inside
file and
in subclasses

Visible inside
file and
in subclasses

Visible inside
file and
in subclasses

Visible inside
file and
in subclasses

Visible inside
file and
in subclasses

internal

Visible
everywhere
inside the
same module

Visible
everywhere
inside the
same module

Visible
everywhere
inside the
same module

Visible
everywhere
inside the
same module

Visible
everywhere
inside the
same module

public Visible to all
(default)

Visible to all
(default)

Visible to all
(default)

Visible to all
(default)

Visible to all
(default)

The protected keyword cannot be used to control the visibility of the preceding modifier
if it is declared directly under a package. This is because the protected keyword expects
to subclass. A module in Kotlin can be a Maven project, a Gradle project, an IDE project,
and so on; in simple terms, a set of Kotlin files compiled and grouped together.

Introduction to Kotlin Chapter 4

[134]

Classes in Kotlin
The concept of class is used to group the properties and behavior of a particular type of
domain model to enable high cohesion. A class is a blueprint that can later be used to create
object instances to represent different states. A class in Kotlin will look like the following:

class Car(var color : String = "RED") {

 fun accelerate() {
 println("$color car is accelerating...");
 }

 fun brake() {
 println("$color car is decelerating...");
 }

 fun turn(direction: String) {
 println("$color car is turning $direction");
 }

}

The preceding class represents a Car domain model that has the color property and
the accelerate, decelerate, and turn behaviors.

Abstract classes
Abstract classes are used to define behavior but not implement it. Implementation of a
certain behavior is kept open so that it can be overridden by any implementation later. Let's
look at the Animal class in the following code:

public abstract class Animal() {

 open fun makeNoise(): String? {
 return null;
 }

 open fun name(): String? {
 return null;
 }
}

Introduction to Kotlin Chapter 4

[135]

The preceding class is marked as abstract so no instance can be created out of it. Instead,
it is meant to be extended and its behavior will override by some other class. Functions of
that class, such as makeNoise and name, are kept open with the corresponding keyword so
that any subclass implementation can override it later on.

Concrete classes
Concrete classes are used to implement the properties and behaviors of a domain and
create instances out of it. The following Lion concrete class will inherit from the Animal
abstract class:

class Lion : Animal {
 var noise: String

 constructor(noise: String) {
 this.noise = noise;
 }

 override fun name(): String? {
 return "Lion";
 }

 override fun makeNoise(): String? {
 return noise;
 }

}

The : symbol is used to specify in the class declaration that one class extends from another.

The concept of interfaces in Kotlin
The concept of an interface is used to define behavior in classes selectively. For
example, Cat and Lion can be considered as Animal. But in common practice, Cat can be a
more of Pet than Lion. So adding the pet behavior to Animal will cause problems, as all
Animal instances will by default have the Pet behavior, which could be dangerous. This is
where interfaces come in handy, as they enable us to define behavior selectively as follows:

interface Pettable {
 fun play() {
 println("Playing");

Introduction to Kotlin Chapter 4

[136]

 };
}

With the preceding interface named Pettable, the play behavior can be introduced
selectively to classes. For example, Cat can be given the play behavior while Lion can be
excluded as follows:

class Cat : Animal, Pettable {
 var noise: String

 constructor(noise: String) {
 this.noise = noise;
 }

 override fun name(): String? {
 return "Cat";
 }

 override fun makeNoise(): String? {
 return noise;
 }

 override fun play() {
 println("Fur Ball");
 }
}

Kotlin has simplified how a class or an interface is being used in a subclass, and the syntax
remains the same.

Learning about extensions
Kotlin has introduced ways to have custom functionality in existing code without
subclassing or writing design patterns over it such as decorator patterns. The following
method in String to count the number of the simple letter A can be written without ever
subclassing:

fun String.countAs() : Int {
 var count = 0;
 for(i in 0..(this.length - 1)) {
 if (this.get(i) == 'a') {
 count++;
 }
 }

Introduction to Kotlin Chapter 4

[137]

 return count;
}

It can also be used as follows:

println("aaaaabcdefghijkl".countAs());

Generic types in Kotlin
Just as in Java 1.5 onwards, Kotlin also has support for generic types to ensure type and
value safety at compile time and run-time to reduce boilerplate code and errors. Generics
can be used in the following way:

class Range<F, T>(var from: F, var to: T) {

 override fun toString() : String {
 return "From $from to $to";
 }
}

Generics can also be used with different data types, such as in the following code:

var intRange : Range<Int, Int> = Range<Int, Int>(1, 10);
var doubleRange : Range<Double, Double> = Range<Double, Double>(1.0,
10.0);

println(intRange);
println(doubleRange);

Enums in Kotlin
Enums are a great way to enforce type and value safety. Just like in Java, Kotlin also has
enums and the following way in which an enum can be defined:

enum class Transaction(var code : Char) {
 DEPOSIT('d'),
 WITHDRAW('w')
}

Introduction to Kotlin Chapter 4

[138]

Objects in Kotlin
Unlike Java, Kotlin has flexible ways to modify existing functionalities attached to classes
without subclassing (anonymous inner classes) them. There are two ways to do that, as
follows.

Object expressions
An object expression can be used to create objects without the need to have a class
declaration for them. For example, the Lion class from previous sections does not
implement the Pettable interface. This doesn't mean that there can't be extreme cases
where exotic tamed animals can be used as pets. So, a one time tamed Lion instance can be
created on the fly as follows:

var tamedLionPet = object : Lion("roar"), Pettable {
 override fun name() : String {
 return "Tamed Pet Lion";
 }
}

Using the object keyword, a class of Lion that implements the Pettable interface can be
created and an instance can be created out of it for a single use. Also with this, a class is not
even required to create an object. This can be explained by the following code:

var personObjectWithoutAClass = object {
 var name : String = "Shazin"
 var age : Int = 32
}

The preceding code creates a person object with name and age without the need for a class
declaration. These expressions can be passed as arguments to methods also. Object
expressions are eagerly initialized and executed at the place where they are expressed.

Object declarations
Unlike object expressions, object declarations have a name and cannot be passed into a
variable, method argument, and so on, or declared locally. They can be referred by their
name and used anywhere within the scope for which they are declared. This is shown with
the following code example:

object BeanRegister {
 fun registerBean(bean: Any) {
 println("$bean is registered");

Introduction to Kotlin Chapter 4

[139]

 }
}

The declared BeanRegister object at the top level will become a singleton class and its
initialization is thread-safe. It can be used as follows:

BeanRegister.registerBean("String bean");

As with the preceding code, the object's declared name must be used to invoke the methods
inside the object declaration. Object declarations are lazily initialized and executed the first
time they are called. Object declarations can also have an associated type, like in the
following code:

object PettableSingleton : Pettable {
 override fun play() {
 super.play()
 }
}

Companion objects
An object declaration inside a class can be specified as a companion object of it, just like in
the following code:

class Bean {
 companion object Factory {
 fun create() : Bean = Bean();
 }
}

This means that methods of object declaration inside can be invoked by just specifying the
name of the outer class, as follows:

var bean = Bean.create();

A companion object is initialized when the outer class enclosing it is loaded similarly to a
static initializer in Java.

Advanced programming with Kotlin
Kotlin has a lot of features that can be used for advanced programming. This section will
explain some of those.

Introduction to Kotlin Chapter 4

[140]

Functions
Unlike in Java, where classes are first-class citizens, functions are first class citizens in
Kotlin. This means that a function can exist without being inside a class. This is quite
powerful and there are a lot of advanced ways functions can be used to achieve different
functionalities.

Infix notation in functions
Infix notations can be used to define functions that can be used, such as 1 + 2, 2 - 3,
true && false, a == b statements where there is an operator and two operands. The
following function with the infix notation can be used to ZIP (interweave) words together
in a way that the letters of each String are joined together to create a new String that has
overlapping letters:

infix fun String.zip(s1 : String) : String {
 var result : String = "";
 var zipLength : Int = Math.min(s1.length, this.length);
 for(i in 0..zipLength-1) {
 result += this[i];
 result += s1[i];
 }
 return result;
}

 The preceding function can be called as follows:

println("acegikmoqsuwy" zip "bdfhjlnprtvxz");

This will produce the following string as a result:

 abcdefghijklmnopqrstuvwxyz

Local functions in Kotlin
In Kotlin, unlike Java, functions can include functions. These nested inner functions will
have a local scope where they are defined as follows:

fun outerFunction(o : String) {
 var outerFunctionVariable = 0;
 fun innerFunction(i : String) {
 outerFunctionVariable += 1;
 println("Inner Function $i");
 println("Outer Function Variable inside Inner Function

Introduction to Kotlin Chapter 4

[141]

 $outerFunctionVariable");
 }

 innerFunction(o);

 println("Outer Function $o");
 println("Outer Function Variable $outerFunctionVariable");
}

The outer function can be invoked as follows:

outerFunction("Hello World!");

An inner function can never be invoked from outside its scope but can be accessed from
inside it. Also, outer function local variables can be used by inner functions but not vice
versa.

Default arguments in functions
Unlike Java function arguments, Kotlin supports default arguments in functions. This
enables flexible function writing, as in the following code:

fun withDefaultValues(name : String = "Shazin", age : Int = 32) {
 println("Name $name and Age $age");
}

The preceding function can be called as follows:

withDefaultValues();
withDefaultValues("Shahim", 32);

Named arguments in functions
Kotlin functions can be invoked with the name of the arguments. As an example, consider
the following function:

fun withNamedArguments(firstName : String, lastName : String) {
 println("Hello Mr. $firstName, $lastName");
}

This function can be invoked as in the following code:

withNamedArguments(firstName = "Shazin", lastName = "Sadakath");

This is a really nice feature to enable good readability and reduce the number of errors.

Introduction to Kotlin Chapter 4

[142]

Generics in functions
Kotlin supports generics in functions to avoid code duplication. This is shown with the
following code:

fun <T> genericFunction(t : T) {
 println(t);
}

This function can be invoked as follows:

genericFunction("Shazin");
genericFunction(123);

Variable number of arguments (vararg) in functions
Kotlin supports a variable number of arguments in functions as in the following code:

fun sum(vararg nos: Int): Int {
 var result = 0;
 for(no in nos) {
 result+= no;
 }
 return result;
}

These can be invoked with a varying number of arguments, such as the following code:

println("Sum of 1, 2, 3 is ${sum(1, 2, 3)}");
println("Sum of 0, 9, 8, 7, 6, 5, 4, 3, 2, 1 is ${sum(0, 9, 8, 7, 6, 5,
4, 3, 2, 1)}");

Summary
Congratulations on completing this chapter, where the skills and knowledge required to
write applications in the Kotlin language and its features were discussed in detail. This
chapter started off by explaining what the Kotlin programming language is and how it
differs both in terms of development and maintenance. It talked about the syntax, safety,
interoperability, and developer-friendliness of the Kotlin programming language.

This chapter also discussed how to get started using the Kotlin programming language by
explaining its basic data types, literals, string interpolation, conditional statements, and so
on in detail.

Introduction to Kotlin Chapter 4

[143]

Subsequently, the chapter talked about how to do OOP using Kotlin. It explained the
concepts of class, interface, inheritance, extensions, and enums in detail. It also talked about
some features unique to Kotlin such as object expressions, object declarations, and
companion objects in simple terms.

Eventually, the chapter talked about some of the advanced features of Kotlin such as infix
functions, local functions, default arguments in functions, and named arguments in a
function. This chapter has provided enough knowledge to help developers learn the Kotlin
programming language easily and quickly. This knowledge can be used to build Spring
Boot 2.0 applications using the Kotlin programming language. We will learn about more
complex Kotlin application development in up coming chapters.

Questions
Please answer the following questions to see whether you have successfully mastered this
chapter:

Does Kotlin allow string interpolation?1.
What is a nullable variable/argument in Kotlin and how do you define one?2.
What is explicit casting?3.
What are object expressions and object declarations?4.
What is a companion object?5.
What is an infix function?6.
Can a variable define inside a local function accessed by an enclosing function?7.

Further reading
In order to improve your knowledge of Kotlin, the following books are recommended to be
read, as they will be helpful in the coming chapters:

Kotlin Programming By Example: https:/ /www. packtpub. com/ application-
development/ kotlin- programming- example

Functional Kotlin: https:/ /www. packtpub. com/ application- development/
functional- kotlin

Kotlin Programming Cookbook: https:/ / www.packtpub. com/ application-
development/ kotlin- programming- cookbook

https://www.packtpub.com/application-development/kotlin-programming-example
https://www.packtpub.com/application-development/kotlin-programming-example
https://www.packtpub.com/application-development/kotlin-programming-example
https://www.packtpub.com/application-development/kotlin-programming-example
https://www.packtpub.com/application-development/kotlin-programming-example
https://www.packtpub.com/application-development/kotlin-programming-example
https://www.packtpub.com/application-development/kotlin-programming-example
https://www.packtpub.com/application-development/kotlin-programming-example
https://www.packtpub.com/application-development/kotlin-programming-example
https://www.packtpub.com/application-development/kotlin-programming-example
https://www.packtpub.com/application-development/kotlin-programming-example
https://www.packtpub.com/application-development/kotlin-programming-example
https://www.packtpub.com/application-development/kotlin-programming-example
https://www.packtpub.com/application-development/kotlin-programming-example
https://www.packtpub.com/application-development/kotlin-programming-example
https://www.packtpub.com/application-development/kotlin-programming-example
https://www.packtpub.com/application-development/kotlin-programming-example
https://www.packtpub.com/application-development/kotlin-programming-example
https://www.packtpub.com/application-development/functional-kotlin
https://www.packtpub.com/application-development/functional-kotlin
https://www.packtpub.com/application-development/functional-kotlin
https://www.packtpub.com/application-development/functional-kotlin
https://www.packtpub.com/application-development/functional-kotlin
https://www.packtpub.com/application-development/functional-kotlin
https://www.packtpub.com/application-development/functional-kotlin
https://www.packtpub.com/application-development/functional-kotlin
https://www.packtpub.com/application-development/functional-kotlin
https://www.packtpub.com/application-development/functional-kotlin
https://www.packtpub.com/application-development/functional-kotlin
https://www.packtpub.com/application-development/functional-kotlin
https://www.packtpub.com/application-development/functional-kotlin
https://www.packtpub.com/application-development/functional-kotlin
https://www.packtpub.com/application-development/functional-kotlin
https://www.packtpub.com/application-development/functional-kotlin
https://www.packtpub.com/application-development/kotlin-programming-cookbook
https://www.packtpub.com/application-development/kotlin-programming-cookbook
https://www.packtpub.com/application-development/kotlin-programming-cookbook
https://www.packtpub.com/application-development/kotlin-programming-cookbook
https://www.packtpub.com/application-development/kotlin-programming-cookbook
https://www.packtpub.com/application-development/kotlin-programming-cookbook
https://www.packtpub.com/application-development/kotlin-programming-cookbook
https://www.packtpub.com/application-development/kotlin-programming-cookbook
https://www.packtpub.com/application-development/kotlin-programming-cookbook
https://www.packtpub.com/application-development/kotlin-programming-cookbook
https://www.packtpub.com/application-development/kotlin-programming-cookbook
https://www.packtpub.com/application-development/kotlin-programming-cookbook
https://www.packtpub.com/application-development/kotlin-programming-cookbook
https://www.packtpub.com/application-development/kotlin-programming-cookbook
https://www.packtpub.com/application-development/kotlin-programming-cookbook
https://www.packtpub.com/application-development/kotlin-programming-cookbook
https://www.packtpub.com/application-development/kotlin-programming-cookbook
https://www.packtpub.com/application-development/kotlin-programming-cookbook

5
Building a Reactive Movie

Rating API Using Kotlin
This chapter will help the reader get started in developing RESTful APIs using Spring Boot
2.0 with the Kotlin programming language. It will enable experts, as well as beginners, to
Spring Boot web application development, to understand the concepts behind a RESTful
API written entirely in Kotlin. It will explain these concepts by walking the reader through
the process of developing a RESTful API that enables users to list movies, get movie details,
rate movies, and so on. This RESTful API will use an embedded MongoDB platform for
persistence, Spring Data MongoDB Reactive for the model, a repository, and Spring
WebFlux for controllers.

The following topics will be covered in this chapter:

Using Spring Data MongoDB for persistence
Using Spring WebFlux for the controller
Using Spring Security for basic authorization
Demonstrating Moviee

Technical requirements
In order to implement the web application using Spring Boot, the following build tools
need to be downloaded and installed:

To install Java Development Kit (JDK) 8, it can be downloaded from its official
page at http:/ /www. oracle. com/technetwork/ java/ javase/ downloads/ jdk8-
downloads- 2133151. html

To install Maven 3, download it from its official page at https:/ /maven. apache.
org/download. cgi

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[145]

To install IntelliJ IDEA, download it from its official page at https:/ /www.
jetbrains. com/ idea/ download/

To install Spring Tool Suite (STS), download it from its official page at https:/ /
spring.io/ tools

The source code for this chapter can be found at https:/ /github. com/PacktPublishing/
Spring-Boot-2.0- Projects- Fundamentals- of-Spring- Boot- 2.0, in
the Chapter05 directory.

Getting started
In this section, readers will get an overview of a RESTful API being developed. The
requirements, design, and implementation details will be discussed in brief.

REST architecture
Representational State Transfer (REST) is an architectural style that defines a set of good
practices, standards, and properties that can be implemented on top of the HyperText
Transfer Protocol (HTTP). A web service that conforms to REST standards enables easy
interoperability between devices on the internet.

RESTful web services enable client devices to produce and consume web resources, which
are represented by using text with a uniform and predefined set of stateless operations.
Web resources were defined by Tim Berners-Lee to be part of the World Wide Web
(WWW) as resources/documents identified by a Uniform Resource Locator (URL). The
flow of a RESTful web service can be defined as follows:

https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[146]

The preceding diagram shows a Client accessing a REST Resource over the internet. The
Client initiates the communication by accessing the REST Resource identified by a
Uniform Resource Identifier (URI). The HTTP Request can have different request
methods based on what operation needs to be performed on the REST Resource. If it is just
a read operation, then most of the time, the HTTP Request method GET is used. If any
manipulation needs to be done on the REST Resource, then the appropriate HTTP Request
method of either POST, PUT, or DELETE is used. Roy Fielding is considered the father of
REST, as he was the first person to define the term in his PhD dissertation in 2000.

The following architectural constraints are a part of REST:

Client-server model
Statelessness
Cacheability
Layerability
Uniform interface

In this chapter, Spring WebFlux will be used to implement REST controllers.

Requirements of REST architecture
The problem domain under consideration is a movie rating API using RESTful web services
nicknamed Moviee, where users can list movies, get movie details, and rate movies. The
Moviee API must be publicly accessible via the internet and only registered users should be
able to perform actions on the API, as a means of security and control.

The Moviee API should allow the authentication and authorization of users without a form
using headers. This is important as the API will be accessed by clients using platforms other
than the standard browsers.

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[147]

The use case diagram
The following use case diagram shows the requirements for the Moviee API:

The actor is the User of Moviee. It has the following use cases:

Login: This use case is required to authenticate users so that each user can be
uniquely identified, and to allow only authenticated users to perform actions.
List Movies: This use case is where a user listed all the movies available inside
Moviee. It requires the user to be authenticated.
Get Movie: This use case is where a user sees the details of a movie that is
available inside Moviee. It requires the user to be authenticated.
Rate Movie: This use case is where a user rates a movie that is available inside
Moviee. It requires the user to be authenticated.

Using Spring Data MongoDB for persistence
This section will introduce MongoDB, and how to use Spring Data MongoDB repositories
to provide Create, Retrieve, Update, and Delete (CRUD) operations on MongoDB easily.

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[148]

Understanding MongoDB
MongoDB is a free and open source document store that stores data in a schemaless JSON
format that is highly flexible. Each individual document can have different fields. It allows
ad-hoc querying, indexing, and aggregation out of the box.

MongoDB can provide high availability, horizontal scalability (scale out), and geographical
distribution. MongoDB simplifies development by providing drivers in multiple
programming languages, such as C++, C#, JavaScript, Java, and so on.

The following are some of the features of MongoDB:

High availability with built-in replication
Horizontal scalability with sharding
End-to-end security
Document validation and schema exploration

Understanding Spring Data MongoDB
The Spring Data MongoDB project was intended to introduce the concepts of Spring Data
repositories to enable the easy development of MongoDB repositories. It provides an
abstraction layer on top of MongoDB to successfully store, retrieve, and modify documents
available in MongoDB transparently.

Spring Data MongoDB simplifies Create, Retrieve, Update, and Delete (CRUD) operations
by providing the ReactiveMongoRepository interface, which extends
from ReactiveCrudRepository. This hides the complexities of plain
MongoDB implementations, which need to be implemented and tested by developers.
Using Spring Data MongoDB could reduce development time dramatically because of this
interface.

In the coming chapters, ReactiveMongoRepository along with the default methods will
be used extensively to implement business logic and to write Spring Data
MongoDB repositories and test them. The following sections will show you how to use a
domain model that is designed using a class diagram as a base to implement Spring Data
MongoDB-based documents and repositories.

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[149]

Class diagram for the domain model
Since the domain model is the most important component of an application, in this section
we will design it first. The following is the simple class diagram for this web service:

There are five main domain models, as shown in the preceding diagram. These are as
follows:

Movie: This is the main domain model, which will store the actual movie title,
year, genre, ratings, and cast
MovieGenre: This is the domain model that will store the name and description
of the movie genre
MovieRating: This is the domain model that will store the comments, rating,
and date of the movie rating
Actor: This is the domain model that will store the name, character name, and
number of awards for each actor in the cast
User: This is the domain model that will store the username, password, role, and
description for each user in the system

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[150]

Implementation of the domain model using
Spring Data MongoDB annotations
This section will explain the details of how to configure and use Spring Data MongoDB
with a MongoDB service and the domain model designed in the previous section. All
source code in this chapter is written using Kotlin.

Setting up dependencies and configuration
Initially, before implementing the domain model, the dependency and configuration
classes need to specified. The following Maven starter dependency needs to be included:

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-mongodb-reactive</artifactId>
 </dependency>
 ...
 <dependency>
 <groupId>de.flapdoodle.embed</groupId>
 <artifactId>de.flapdoodle.embed.mongo</artifactId>
 </dependency>
</dependencies>

The preceding entries import all the dependencies of the MongoDB Reactive stack and an
embedded MongoDB, which can be used to store documents.

Implementing the domain model
Implementing the Movie domain model using MongoDB annotations will look like the
following:

@Document(collection = "movies")
data class Movie(@Id val id : Int,
 val title : String,
 val year : Int,
 val genre : MovieGenre,
 val ratings : MutableList<MovieRating>,
 val cast : List<Actor>)

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[151]

The preceding model is written in Kotlin. There are some interesting things about the
preceding code:

The data keyword: The data keyword in Kotlin can be used to mark classes
whose sole purpose is to hold and transfer data. Classes with this keyword will
get the equals(), hashCode(), toString(), and copy() functions auto-
generated by the compiler.
The val keyword: The val keyword is used to define immutable properties
right after the class name, which will generate the proper accessors and modifiers
accordingly.

Furthermore, the @Document annotation is used to mark the Movie class as a document in
MongoDB and the @Id annotation is used to mark the id property as the identifier of the
Movie class.

Implementing the MovieGenre domain model will look like the following:

data class MovieGenre(val name : String,
 val description : String)

Implementing the MovieRating domain model will look like the following:

data class MovieRating(val comment : String,
 val rating : Int,
 val date : Date)

Implementing the Actor domain model will look like the following:

data class Actor(val name : String,
 val inAs : String,
 val noOfAwards : Int)

Implementing the User domain model will look like the following:

@Document(collection = "users")
data class User(@Id val id : Int,
 val username : String,
 val password : String,
 val role : String,
 val description: String)

All the models will have all argument constructors, which can be used to create instances
out of them.

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[152]

Implementing of Spring Data MongoDB
repositories
With the domain model implemented successfully, its MovieRepository can be
implemented using Spring Data MongoDB. The specialty of this is that there is no need to
implement anything. Just writing an interface that extends from the
ReactiveMongoRepository interface would be sufficient to expose the methods to find
one, find all, save, delete, and so on. The following code shows MovieRepository:

interface MovieRepository : ReactiveMongoRepository<Movie, Int>

The following code shows, UserRepository:

interface UserRepository : ReactiveMongoRepository<User, Int> {
 fun findByUsername(username : String) : Flux<User>;
}

The preceding UserRepository has a custom method written to query the MongoDB
user's collection and find users by username.

Using a service to encapsulate business logic
It is a good practice to encapsulate business logic inside Service methods so that
controllers and repositories are loosely coupled. The following is a Service written to
encapsulate the business logic for Movie:

@Service
class MovieService constructor(val movieRepository: MovieRepository) {

 fun findAll() = this.movieRepository.findAll();

 fun save(movie : Movie) : Mono<Movie> =
this.movieRepository.save(movie);

 fun findOne(id : Int) : Mono<Movie> = this.movieRepository.findById(id)
 .switchIfEmpty(Mono.error(MovieNotFoundException.create(id)));

 fun rate(id : Int, comment : String, rating : Int) : Mono<Movie> {
 var movieMono: Mono<Movie> = this.findOne(id);
 return
 movieMono.switchIfEmpty(Mono.error
 (MovieNotFoundException.create(id))).map({ movie ->
 movie.ratings.add(MovieRating(comment, rating, Date()));
 movie;

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[153]

 }).map({ movie ->
 this.save(movie).subscribe();
 movie;
 });
 }

}

in the preceding code, MovieService is annotated with the @Service stereotype
annotation to mark it as a Spring Service. When a movie specified by an ID does not exist,
MovieNotFoundException is thrown. The following is the implementation of this:

class MovieNotFoundException : Exception {

 constructor(message : String) : super(message);

 companion object {
 fun create(id : Int) : MovieNotFoundException {
 return MovieNotFoundException("Movie by id $id, not
 found");
 }
 }

}

The MovieNotFoundException phrase extends the Exception class and has a companion
object to create instances with an appropriate message.

Likewise, the following UserService is used for User:

@Service
class UserService(val userRepository: UserRepository) {

 fun getByUsername(username : String) : Flux<User> {
 return userRepository.findByUsername(username);
 }

 fun save(user : User) : Mono<User> {
 return userRepository.save(user);
 }
}

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[154]

This Service class has functions to save and get the user using their username. Also, there
is a Spring Security Reactive-specific service that is implemented to load users by username
using UserService and return as a Spring Security user to successfully authenticate users.
The following MovieeReactiveUserDetailsService implements
the ReactiveUserDetailsService.findByUsername() function:

@Service
class MovieeReactiveUserDetailsService(val userService : UserService) :
ReactiveUserDetailsService {

 override fun findByUsername(username: String?): Mono<UserDetails> {
 if (username != null) {
 return userService.getByUsername(username).toMono().map({
 user -> User.withUsername(user.username).password
 (user.password).roles(user.role).build();
 });
 }

 return Mono.empty();
 }
}

The preceding service makes use of UserService to get the user using their username and
convert them into a Spring Security user, before returning Mono<UserDetails>.

Testing Services
A Service with business logic needs to be tested to ensure it functions correctly. In order
to do this, a Service like the following can be used:

@RunWith(MockitoJUnitRunner::class)
@ActiveProfiles("dev")
class MovieServiceTest {

 @Mock
 lateinit var movieRepository: MovieRepository;

 lateinit var movieService: MovieService;

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[155]

In the preceding test case for MovieService , MovieRepository is annotated with
@Mock. During Service, test mocking is done using the Mockito library just to mock
repository method invocations and verify the correct invocation. Consider the following
code:

 @Before
 fun setup() {
 movieService = MovieService(movieRepository);
 }

The preceding code is used to create an instance of MovieService with a mocked
MovieRepository. Consider the following code:

 @Test
 fun `Saving a Movie - Happy Path`() {
 // Given
 var expected = getMovie();
 `when`(movieRepository.save(expected)).
 thenReturn(Mono.just(expected));

 // When
 val actual = movieService.save(expected);

 // Then
 actual.subscribe({movie ->
 assertThat(movie).isEqualTo(expected)});
 verify(movieRepository, times(1)).save(expected);
 }

The preceding code snippet tests the Saving a Movie scenario's happy path:

 @Test
 fun `Find a Movie by Id - Happy Path`() {
 // Given
 var expected = getMovie();
 `when`(movieRepository.findById(1)).
 thenReturn(Mono.just(expected));

 // When
 val actual = movieService.findOne(1);

 // Then
 actual.subscribe({movie ->
 assertThat(movie).isEqualTo(expected)});
 verify(movieRepository, times(1)).findById(1);
 }

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[156]

The preceding code snippet tests the Find a Movie by Id scenario's happy path:

 @Test
 fun `Find a Movie by Id - Failure Path`() {
 // Given
 var expected = getMovie();
 `when`(movieRepository.findById(1)).thenReturn(Mono.empty());

 // When
 val actual = movieService.findOne(1);

 // Then
 actual.doOnError({t ->
 assertThat(t).isInstanceOf(MovieNotFoundException::
 class.java)}).
 subscribe();
 verify(movieRepository, times(1)).findById(1);
 }

The preceding code snippet tests the Find a Movie by Id scenario's failure path:

 @Test
 fun `Rate a Movie - Happy Path`() {
 // Given
 var expected = getMovie();
 `when`(movieRepository.findById(1)).
 thenReturn(Mono.just(expected));
 `when`(movieRepository.save(expected)).
 thenReturn(Mono.just(expected));

 // When
 var actual = movieService.rate(1, "Great", 5);

 // Then
 actual.subscribe({movie ->
 assertThat(movie.ratings).hasSize(1)});
 verify(movieRepository, times(1)).findById(1);
 verify(movieRepository, times(1)).save(expected);
 }

The preceding code snippet tests the Rate a Movie scenario's happy path:

 @Test
 fun `Rate a Movie - Failure Path`() {
 // Given
 `when`(movieRepository.findById(1)).thenReturn(Mono.empty());

 // When

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[157]

 var actual = movieService.rate(1, "Great", 5);

 // Then
 actual.doOnError({t ->
 assertThat(t).isInstanceOf(MovieNotFoundException::
 class.java)}).subscribe();
 }

The preceding code snippet tests the Rate a Movie scenario's failure path:

 fun getMovie() : Movie {
 return Movie(1, "Avengers", 2018, MovieGenre("Action",
 "Action"), ArrayList<MovieRating>(), ArrayList<Actor>())
 }

}

The preceding code snippet creates mock Movie data for testing.

The following is the service test case for UserService:

@RunWith(MockitoJUnitRunner::class)
@ActiveProfiles("dev")
class UserServiceTest {

 @Mock
 lateinit var userRepository: UserRepository;

 lateinit var userService: UserService;

 @Before
 fun setup() {
 this.userService = UserService(userRepository);
 }

 @Test
 fun `Saving a User - Happy Path`() {
 // Given
 var user : User = getUser();
 `when`(userRepository.save(user)).thenReturn(Mono.just(user));

 // When
 var actual = userService.save(user);

 // Then
 actual.subscribe({u -> assertThat(user).isEqualTo(u)});
 verify(userRepository, times(1)).save(user);

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[158]

 }

 @Test
 fun `Find by Username - Happy Path`() {
 // Given
 var user : User = getUser();
 `when`(userRepository.findByUsername("shazin")).
 thenReturn(Flux.just(user));

 // When
 var actual = userService.getByUsername("shazin");

 // Then
 actual.subscribe({u -> assertThat(user).isEqualTo(u)});
 verify(userRepository, times(1)).findByUsername("shazin");
 }

 fun getUser() : User {
 return User(1, "shazin", "password", "USER", "User of Moviee");
 }

}

The preceding tests use lazy initialization with the lateinit keyword for variables that
are mocked, autowired, or initialized inside the @Before function. This is done because any
variable that is not nullable must be initialized either during declaration or in the
constructor.

Also, Kotlin allows descriptive function names for methods, which describe the scenario
being tested, enclosed inside two "`".

Using Spring WebFlux for controllers
Controllers are the integration point between the model and resources in a RESTful web
service. They act like the glue that binds everything together while taking care of business
logic execution and responses. The following Maven starter dependency needs to be added
to enable Spring WebFlux:

<dependencies>
 ...
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-webflux</artifactId>
 </dependency>
</dependencies>

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[159]

The preceding dependency will import the Reactive Stream, Spring, and
Netty dependencies to enable the successful writing of Reactive web applications using
Spring.

Implementation of controllers
The following is MovieController, which caters for listing and rating movies:

@RequestMapping("/movies")
@RestController
class MovieController constructor(val movieService : MovieService) {

 @GetMapping
 fun getMovies() : Flux<Movie> {
 return this.movieService.findAll();
 }

 @GetMapping("/{id}")
 fun getMovie(@PathVariable id : Int) : Mono<Movie> {
 return this.movieService.findOne(id);
 }

 @PutMapping("/{id}/rate")
 fun rateMovie(@PathVariable id : Int, @RequestParam rating : Int,
 @RequestParam comment : String) : Mono<Movie> {
 return this.movieService.rate(id, comment, rating);
 }
}

The getMovies function is mapped to the /movies URL and will load movies from
MongoDB by using the MovieService.findAll() function as Flux<Movie> and sending
it as a JSON response to the caller.

The getMovie function is mapped to the /movies/{id} URL and will load the movie
identified by the id path variable from MongoDB by using the MovieService.findOne()
function as Mono<Movie> and sending it as a JSON response to the caller.

The rateMovie function is mapped to the /movies/{id}/rate URL and will load the
movie identified by the id path variable from MongoDB and rate it with the comment and
rating query strings passed in by using the MovieService.rate() function as
Mono<Movie> and sending it as a JSON response to the caller.

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[160]

Furthermore, to show meaningful information when MovieNotFoundException is thrown
instead of a white label page, ErrorDTO is introduced as follows:

data class ErrorDTO(val code : Int, val message : String?) : Serializable

This has the code phrase, which is the HTTP status code, and a message property.
A @ControllerAdvice is used to catch MovieNotFoundException and convert it to a
ReponseEntity containing ErrorDTO, as follows:

@ControllerAdvice
class BaseController {

 @ExceptionHandler(value = MovieNotFoundException::class)
 fun handleMovieNotFoundException (e : MovieNotFoundException) :
 ResponseEntity<ErrorDTO> {
 return ResponseEntity<ErrorDTO>(ErrorDTO(400, e.message),
 HttpStatus.BAD_REQUEST);
 }
}

The handleMovieNotFoundException function accepts an argument of
MovieNotFoundException and is annotated with @ExceptionHandler to catch that
exception. Inside the function, the correct message and HTTP status code are returned as
part of ErrorDTO.

Testing controllers
You should test the controller for successful business logic execution and response
generation. The following test case is written for MovieController, which is annotated
with @WebFluxTest and has an autowired WebTestClient, which will be used to invoke
the endpoints:

@RunWith(SpringRunner::class)
@WebFluxTest(MovieController::class)
@ActiveProfiles("dev")
class MovieControllerTest {

 @MockBean
 lateinit var movieService: MovieService;

 @MockBean
 lateinit var movieRepository: MovieRepository;

 @Autowired
 lateinit var webTestClient: WebTestClient;

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[161]

The preceding code snippet performs creates mocking beans and the testing utility:

 @Test
 fun `List Movies - Happy Path`() {
 // Given
 var movieFlux: Flux<Movie> = Flux.fromIterable(listOf(getMovie()));
 `when`(movieService.findAll()).thenReturn(movieFlux);

 // When
 webTestClient.get().uri("/movies")
 .header(HttpHeaders.CONTENT_TYPE, "application/json")
 .exchange()
 .expectStatus().isOk()
 .expectBody()
 .json("""
 [{"id":1,"title":"Avengers","year":2018,"genre":
 {"name":"Action","description":"Action"},"ratings":[],
 "cast":[]}]""");

 // Then
 verify(movieService, times(1)).findAll();
 }

The preceding code snippet performs the controller testing for the List Movies scenario's
happy path:

 @Test
 fun `Rate Movie - Happy Path`() {
 // Given
 var movie = getMovie();
 movie.ratings.add(MovieRating("Great", 5, Date()))
 `when`(movieService.rate(1, "Great",
 5)).thenReturn(Mono.just(movie));

 // When
 webTestClient.put().uri("/movies/1/rate?
 comment=Great&rating=5")
 .exchange()
 .expectStatus().isOk()
 .expectBody()
 .json("""
 {"id":1,"title":"Avengers","year":2018,"genre":
 {"name":"Action","description":"Action"},"ratings":
 [{"comment":"Great","rating":5}],"cast":[]}""")

 // Then
 verify(movieService, times(1)).rate(1, "Great", 5)
 }

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[162]

The preceding code snippet performs the controller testing for the Rate Movie scenario's
happy path:

 @Test
 fun `Rate Movie - Failure Path`() {
 // Given
 `when`(movieService.rate(2, "Great",
 5)).thenReturn(Mono.error(MovieNotFoundException.create(2)));

 // When
 webTestClient.put().uri("/movies/2/rate?
 comment=Great&rating=5")
 .exchange()
 .expectStatus().isBadRequest()
 .expectBody()
 .json("""{"code":400,"message":"Movie by id 2, not
 found"}""")

 // Then
 verify(movieService, times(1)).rate(2, "Great", 5)
 }

The preceding code snippet performs the controller testing of the Rate Movie scenario's
failure path:

 @Test
 fun `Get Movie by Id - Happy Path`() {
 // Given
 `when`(movieService.findOne(1))
 .thenReturn(Mono.just(getMovie()));

 // When
 webTestClient.get().uri("/movies/1")
 .exchange()
 .expectStatus().isOk()
 .expectBody()
 .json("""
 {"id":1,"title":"Avengers","year":2018,"genre":
 {"name":"Action","description":"Action"},
 "ratings":[],"cast":[]}""")

 // Then
 verify(movieService, times(1)).findOne(1);
 }

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[163]

The preceding code snippet does the controller testing of the Get Movie by Id scenario's
happy path:

 fun getMovie() : Movie {
 return Movie(1, "Avengers", 2018, MovieGenre("Action",
 "Action"), ArrayList<MovieRating>(), ArrayList<Actor>())
 }
}

The preceding code snippet creates mock Movie data for testing.

In the preceding controller test case, WebTestClient is used to hit particular endpoints of
the controller and verify whether it returns the correct status codes, bodies, and so on.

Using Spring Security for basic
authorization
The Moviee web service uses Spring Security to authenticate users and authorize them to
list, get, and rate movies. The Maven Spring Security starter needs to be specified as follows
to enable Spring Security in the web service:

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
 </dependency>
</dependencies>

The Moviee web service uses basic authentication, an authentication mechanism that uses a
header named Authorization with the "Basic
"+base64encode(username:password) value. The following is the Spring Security
configuration:

@Configuration
@EnableWebFluxSecurity
class SecurityConfig {

 @Bean
 fun securityWebFilterChain(http : ServerHttpSecurity) :
SecurityWebFilterChain {
 http.authorizeExchange()
 .pathMatchers("/movies/**")
 .authenticated()
 .and()

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[164]

 .httpBasic()
 .and()
 .csrf()
 .disable();

 return http.build();
 }

The preceding configuration uses @EnableWebFluxSecurity to configure the web filters
necessary for Spring Security Reactive and override any auto-configurations.
The securityWebFilterChain function uses its ServerHttpSecurity argument to
protect all the endpoint sets under /movies/** and ensure they're accessible only after
authentication. This in turns means the user needs to be authenticated; anonymous users
will not be allowed to access anything:

 @Bean
 fun authenticationManager(movieeReactiveUserDetailsService:
 MovieeReactiveUserDetailsService):
 UserDetailsRepositoryReactiveAuthenticationManager {
 val userDetailsRepositoryReactiveAuthenticationManager =
 UserDetailsRepositoryReactiveAuthenticationManager
 (movieeReactiveUserDetailsService)
 userDetailsRepositoryReactiveAuthenticationManager.
 setPasswordEncoder(passwordEncoder())

 return userDetailsRepositoryReactiveAuthenticationManager
 }

 @Bean
 fun passwordEncoder(): PasswordEncoder {
 return BCryptPasswordEncoder()
 }

The authenticationManager function is used to configure an instance of
ReactiveAuthenticationManager with MovieeReactiveUserDetailsService,
implemented earlier, along with BCryptPasswordEncoder:

 @Bean
 @Profile("default")
 fun applicationRunner(userService : UserService): ApplicationRunner
 {
 return ApplicationRunner {
 userService.save(com.packtpub.springboot2movierating.model.User
 (1, "user", passwordEncoder().encode("password"), "USER", "User of
 Moviee")).subscribe();
 userService.save(com.packtpub.springboot2movierating.model.User(2,

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[165]

 "admin", passwordEncoder().encode("password"), "ADMIN", "Admin of
 Moviee")).subscribe()
 }
 }

}

Finally, ApplicationRunner is used to insert some users into the database at startup.

Demonstrating Moviee
When everything is put together, built, and run, the Retro board can be accessed using
the http://<host>:<port> URL.

There are several ways to run a Spring Boot application; some of them are mentioned in the
following list:

Running the Spring Boot application main class using an IDE.
Building a JAR or WAR file using the following Maven command and then
running it:

$ mvn clean install
$ java -jar target/<package-name>.[jar|war]

Running the Spring Boot application using the Spring Boot Maven plugin:

$ mvn clean spring-boot:run

Integration testing
To verify the everything works as expected in a real world scenario, an integration test can
be written that, which puts everything together and tests each endpoint. The following is an
integration test for the Moviee web service:

@RunWith(SpringRunner::class)
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
class SpringBoot2MovieRatingApplicationTests {

 @Autowired
 lateinit var webTestClient : WebTestClient;

 @Test
 fun `Get Movies - Happy Path`() {

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[166]

 webTestClient
 .get()
 .uri("/movies")
 .header("Authorization", getBasicAuthorization())
 .exchange()
 .expectStatus()
 .isOk()
 .expectBody()
 .json("""[{"id":1,"title":"Titanic","year":1999,"genre":
 {"name":"Romantic","description":"Romantic"},"cast":
 [{"name":"Lionardo Dicaprio","inAs":"Jack","noOfAwards":1},
 {"name":"Kate Winslet","inAs":"Rose","noOfAwards":2}]}]""");
 }

The preceding code snippet performs the integration testing for the Get Movies scenario's
happy path:

 @Test
 fun `Get Movies - Failure Path (No Authorization)`() {
 webTestClient
 .get()
 .uri("/movies")
 .exchange()
 .expectStatus()
 .isUnauthorized()
 }

The preceding code snippet performs the integration testing for the Get Movies scenario's
failure path:

 @Test
 fun `Get Movie - Happy Path`() {
 webTestClient
 .get()
 .uri("/movies/1")
 .header("Authorization", getBasicAuthorization())
 .exchange()
 .expectStatus()
 .isOk()
 .expectBody()
 .json("""{"id":1,"title":"Titanic","year":1999,"genre":
 {"name":"Romantic","description":"Romantic"},"cast":
 [{"name":"Lionardo Dicaprio","inAs":"Jack","noOfAwards":1},
 {"name":"Kate Winslet","inAs":"Rose","noOfAwards":2}]}""")

 }

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[167]

The preceding code snippet performs the integration testing for the Get Movie scenario's
happy path:

 @Test
 fun `Rate Movie - Happy Path`() {
 webTestClient
 .put()
 .uri("/movies/1/rate?comment=Ok Movie&rating=3")
 .header("Authorization", getBasicAuthorization())
 .exchange()
 .expectStatus()
 .isOk()
 .expectBody()
 .json("""{"id":1,"title":"Titanic","year":1999,"genre":
 {"name":"Romantic","description":"Romantic"},"ratings":
 [{"comment":"Good Movie","rating":5},{"comment":"Ok
 Movie","rating":3}],"cast":[{"name":"Lionardo
 Dicaprio","inAs":"Jack","noOfAwards":1},{"name":"Kate
 Winslet","inAs":"Rose","noOfAwards":2}]}""")
 }

The preceding code snippet performs the integration testing for the Rate Movie scenario's
happy path:

fun getBasicAuthorization() : String {
 val plainCreds = "user:password"
 val plainCredsBytes = plainCreds.toByteArray()
 val base64CredsBytes =
 Base64.getEncoder().encode(plainCredsBytes);
 val base64Creds = String(base64CredsBytes)

 return "Basic $base64Creds";
 }

}

The preceding code snippet returns the Base64 encoded username and password to be sent
as part of the authorization header.

The preceding integration test class is annotated with @SpringBootTest, which configures
a webEnvironment that will start on a random port. By using WebTestClient, each
particular endpoint can be invoked with a proper basic authentication header and verified
responses. Integration tests are used to test from end to end before deploying to
production.

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[168]

Demonstrating the use of Postman
Postman is a famous GUI tool widely used to invoke RESTful web services. It offers a free
tier for small, individual projects, such as Moviee.

Accessing the List Movies endpoint
In the following Postman GET request, the Basic Auth authorization type is used, along
with a username of user and a password of password, to authenticate. When the Send
button is clicked, a JSON array of movies will be returned, as shown in the following
screenshot:

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[169]

Accessing the Get Movie endpoint
In the following Postman GET request, the Basic Auth authorization type is used, along
with a username of user and a password of password, to authenticate. When the Send
button is clicked, the JSON of a single movie will be returned, along with the HTTP status
code 200, as shown in the following screenshot:

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[170]

Accessing the Get Movie endpoint with an invalid Movie
ID
In the following Postman GET request, the Basic Auth authorization type is used, along
with a username of user and a password of password, to authenticate. When the Send
button is clicked, the JSON of a single error will be returned, along with the HTTP status
code 400, as shown in the following screenshot:

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[171]

Accessing the Rate Movie endpoint
In the following Postman PUT request, the Basic Auth authorization type is used, along
with a username of user and a password of password, to authenticate comment, rating
query strings. When the Send button is clicked, the JSON of a single movie with a newly
added rating will be returned, along with the HTTP status code 200, as shown in the
following screenshot:

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[172]

Summary
Congratulations on completing this chapter, where the skills and knowledge required to
build a RESTful web service were discussed in detail. This chapter started off by explaining
what REST is and how a web service can benefit by being RESTful, in terms of both
development and maintenance. It talked about the requirements of the RESTful web service
being developed, and used a UML use case diagram to explain the requirement visually.

This chapter also talked about how to understand the domain model of an application
based on the requirements (the Moviee app), and used Spring Data MongoDB to convert
domain model entities into MongoDB documents. A UML class diagram was used to
explain the domain model in detail. Furthermore, the chapter explained how to write data
repositories for those entities, using Spring Data MongoDB with minimum effort, in
commonly used CRUD operations. It also explained how to write custom query methods in
data repositories and how to encapsulate business logic inside Spring service components.
Finally, it explained how to test these service components.

Toward the end, the chapter talked about how to use Spring WebFlux REST controllers to
provide coordination between different services. Furthermore, it talked about how to
protect controller endpoints using Spring Security to allow the basic authentication and
authorization of users. Finally, it explained how to test Spring WebFlux controllers using
WebFlux test cases. The chapter also demonstrated the use of Moviee in detail. Let's learn
more about application development in the next chapter.

Questions
Please answer the following questions to see whether you have successfully mastered this
chapter:

What is REST?1.
What is MongoDB?2.
What is Kotlin?3.
What is the use of the data keyword in Kotlin?4.
What is basic authentication?5.
What is integration testing?6.
What is Postman?7.

Building a Reactive Movie Rating API Using Kotlin Chapter 5

[173]

Further reading
In order to improve your knowledge of Spring Web MVC and Spring Security, the
following books are recommended, which will be helpful in the coming chapters:

Building RESTful Web Services with Spring 5, Second Edition: https:/ /www.
packtpub. com/ application- development/ building- restful- web- services-
spring-5- second- edition

Mastering MongoDB 3.x: https:/ /www. packtpub. com/ big- data- and-business-
intelligence/ mastering- mongodb- 3x

https://www.packtpub.com/application-development/building-restful-web-services-spring-5-second-edition
https://www.packtpub.com/application-development/building-restful-web-services-spring-5-second-edition
https://www.packtpub.com/application-development/building-restful-web-services-spring-5-second-edition
https://www.packtpub.com/application-development/building-restful-web-services-spring-5-second-edition
https://www.packtpub.com/application-development/building-restful-web-services-spring-5-second-edition
https://www.packtpub.com/application-development/building-restful-web-services-spring-5-second-edition
https://www.packtpub.com/application-development/building-restful-web-services-spring-5-second-edition
https://www.packtpub.com/application-development/building-restful-web-services-spring-5-second-edition
https://www.packtpub.com/application-development/building-restful-web-services-spring-5-second-edition
https://www.packtpub.com/application-development/building-restful-web-services-spring-5-second-edition
https://www.packtpub.com/application-development/building-restful-web-services-spring-5-second-edition
https://www.packtpub.com/application-development/building-restful-web-services-spring-5-second-edition
https://www.packtpub.com/application-development/building-restful-web-services-spring-5-second-edition
https://www.packtpub.com/application-development/building-restful-web-services-spring-5-second-edition
https://www.packtpub.com/application-development/building-restful-web-services-spring-5-second-edition
https://www.packtpub.com/application-development/building-restful-web-services-spring-5-second-edition
https://www.packtpub.com/application-development/building-restful-web-services-spring-5-second-edition
https://www.packtpub.com/application-development/building-restful-web-services-spring-5-second-edition
https://www.packtpub.com/application-development/building-restful-web-services-spring-5-second-edition
https://www.packtpub.com/application-development/building-restful-web-services-spring-5-second-edition
https://www.packtpub.com/application-development/building-restful-web-services-spring-5-second-edition
https://www.packtpub.com/application-development/building-restful-web-services-spring-5-second-edition
https://www.packtpub.com/application-development/building-restful-web-services-spring-5-second-edition
https://www.packtpub.com/application-development/building-restful-web-services-spring-5-second-edition
https://www.packtpub.com/application-development/building-restful-web-services-spring-5-second-edition
https://www.packtpub.com/application-development/building-restful-web-services-spring-5-second-edition
https://www.packtpub.com/application-development/building-restful-web-services-spring-5-second-edition
https://www.packtpub.com/big-data-and-business-intelligence/mastering-mongodb-3x
https://www.packtpub.com/big-data-and-business-intelligence/mastering-mongodb-3x
https://www.packtpub.com/big-data-and-business-intelligence/mastering-mongodb-3x
https://www.packtpub.com/big-data-and-business-intelligence/mastering-mongodb-3x
https://www.packtpub.com/big-data-and-business-intelligence/mastering-mongodb-3x
https://www.packtpub.com/big-data-and-business-intelligence/mastering-mongodb-3x
https://www.packtpub.com/big-data-and-business-intelligence/mastering-mongodb-3x
https://www.packtpub.com/big-data-and-business-intelligence/mastering-mongodb-3x
https://www.packtpub.com/big-data-and-business-intelligence/mastering-mongodb-3x
https://www.packtpub.com/big-data-and-business-intelligence/mastering-mongodb-3x
https://www.packtpub.com/big-data-and-business-intelligence/mastering-mongodb-3x
https://www.packtpub.com/big-data-and-business-intelligence/mastering-mongodb-3x
https://www.packtpub.com/big-data-and-business-intelligence/mastering-mongodb-3x
https://www.packtpub.com/big-data-and-business-intelligence/mastering-mongodb-3x
https://www.packtpub.com/big-data-and-business-intelligence/mastering-mongodb-3x
https://www.packtpub.com/big-data-and-business-intelligence/mastering-mongodb-3x
https://www.packtpub.com/big-data-and-business-intelligence/mastering-mongodb-3x
https://www.packtpub.com/big-data-and-business-intelligence/mastering-mongodb-3x
https://www.packtpub.com/big-data-and-business-intelligence/mastering-mongodb-3x
https://www.packtpub.com/big-data-and-business-intelligence/mastering-mongodb-3x
https://www.packtpub.com/big-data-and-business-intelligence/mastering-mongodb-3x
https://www.packtpub.com/big-data-and-business-intelligence/mastering-mongodb-3x
https://www.packtpub.com/big-data-and-business-intelligence/mastering-mongodb-3x
https://www.packtpub.com/big-data-and-business-intelligence/mastering-mongodb-3x

6
Building an API with Reactive

Microservices
This chapter will help readers get started on developing reactive microservices using
Spring Boot 2.0. It will enable experts as well as beginners in Spring Boot web application
development to understand the concepts behind a microservice and how easy it is to use
Spring Boot 2.0 to develop a microservice application. It will explain these concepts by
walking the reader through the process of developing two microservices related to a Taxi
Hailing System, where one will be for the Taxi Service, including functions such as getting
available taxis, finding the status of a taxi, updating taxi location, and registering taxis, and
the other one will be for the Taxi Booking Service, which will allow users to book a taxi,
cancel a taxi, and so on. These two microservices will be running inside a container
platform named Docker and will use a Redis instance for persistence, Spring Data Redis
Reactive for the model and repository, and Spring WebFlux for controllers.

The following topics will be covered in this chapter:

Using Spring Data Redis for persistence
Using Spring WebFlux for controllers
Using asynchronous data transfer for cross-microservice communication
Using Docker to support microservices
Demonstrating Saber

Building an API with Reactive Microservices Chapter 6

[175]

Technical requirements
In order to implement the web application using Spring Boot, the following build tools
need to be downloaded and installed:

To install Java Development Kit (JDK) 8, download it from its official page
at http:/ /www. oracle. com/ technetwork/ java/ javase/ downloads/ jdk8-
downloads- 2133151. html

To install Maven 3, download it from its official page at https:/ /maven. apache.
org/download. cgi

To install IntelliJ IDEA, download it from its official page at https:/ /www.
jetbrains. com/ idea/ download/

To install Spring Tool Suite (STS), download it from its official page at https:/ /
spring.io/ tools

To install Docker, download it from its official page at https:/ /www. docker. com/
get-docker

The source code for this chapter can be found at https:/ /github. com/PacktPublishing/
Spring-Boot-2.0- Projects- Fundamentals- of-Spring- Boot- 2.0, under
the Chapter06 directory.

Getting started
In this section, the reader will get an overview of the reactive microservices being
developed. The requirements, design, and implementation details will be discussed in brief.

Microservices architecture
Microservices architecture has become a buzzword within the last five years with the
emergence of cloud-based hosting services. There is no fixed definition of this architecture,
but in general terms, microservices architecture is a way of designing and implementing
software as a collection of independently deployable services that are highly coherent and
loosely coupled. Each of these services will be designed, implemented, deployed, and
maintained by a team of usually 5 to 10 members with complete ownership and
accountability. Each microservice will address a particular domain of a system (user, sales,
and others), can be developed using different programming languages, and can have its
own persistence and an API to enable synchronous communication and/or
a publisher/subscriber model for asynchronous communication.

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://www.docker.com/get-docker
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0

Building an API with Reactive Microservices Chapter 6

[176]

Microservices architecture was preceded by monolithic architecture, where all the
functionality was grouped into a single application that loaded and ran inside a single
process. This monolithic software was really heavy and took a lot of time to load, and
scaling required the entire application to be scaled by replicating it in multiple servers.
There was no way to scale a particular functionality alone. This is depicted in the following
diagram:

Microservices architecture addressed these pain points by enabling us to run small, highly
cohesive applications that do one functionality really well. This could load fast and require
fewer resources to function. Scaling of a microservice can be done by distributing it across
servers and by replicating it as and when needed. Consider the following diagram:

There are some characteristics that can be found in any Microservices architecture-based
software application, which are as follows:

Service components: The components in a microservice architecture are services
that can communicate via a web request, RPC call, and so on. Unlike library
components in a monolithic application where communication happens between
library components via in-memory, in-process calls internally without an
external API.
Organized by business domain: In a monolithic application, layering of the
application was done using techniques such as user interface, business logic, and
database. But in a microservices architecture, layering is not like that; instead, it
is based on a business domain such as user, or transaction.

Building an API with Reactive Microservices Chapter 6

[177]

Building products, not projects: A monolithic application is considered to be a
project, where it will be developed by a groups of engineers, deployed by
another group of engineers, and maintained by another group, whereas
microservices architecture-based software applications are built as products,
which are owned by the group of engineers that developed them. They are
accountable for the deployment, smooth running, and maintenance of that
microservice product.
Smart Microservices, dumb queues: Instead of using an Enterprise Service Bus
(ESB), which is capable of doing complex tasks such as transforming, filtering,
routing, and aggregating of the messages being communicated, microservices
rely on using dumb queues, which are just to communicate between two
microservices asynchronously. All heavy lifting should be done in microservices.
Decentralized persistence: Polyglot persistence, as it is commonly known, lets
each microservice use its own persistence (Database, Key/Value
store—whichever suits it well), instead of relying on a single persistence store.
Fail tolerance: Microservices should be able to work under predictable and
unpredictable failures.
Automation: Microservices should be able to be deployed using continuous
integration and continuous deployment tools.
Future-proof with the ability to evolve.

The requirements of microservices architecture
The application being developed is a Taxi Hailing API nicknamed Saber, which uses
microservices architecture to break down its two most core features into independently
running microservices. We will be learning about the following:

Taxi Service: This service is responsible for registering, updating taxi location,1.
updating taxi status, getting taxi status, and searching for taxis in a geographical
area
Taxi Booking Service: This service is responsible for registering, accepting,2.
canceling, and searching for bookings in a geographical area

The microservices will be placed behind a secure API Gateway that will be responsible for
handling the authentication and authorization of users, which is out of scope for this
implementation. The API Gateway will be calling the microservices that are internally
accessible to it in order to perform taxi and taxi booking actions.

Building an API with Reactive Microservices Chapter 6

[178]

Each microservice has a REST API to expose operations of its own to the outside world, and
also uses asynchronous communication to communicate among them using a
publisher/subscriber model.

The use case diagram
The following use case diagram shows the requirements for the microservice, which is
nicknamed Saber:

Building an API with Reactive Microservices Chapter 6

[179]

There are two main actors, named the Driver and the Passenger of the Saber. The use cases
are grouped into two different microservices.

The Taxi Microservice has the following use cases:

Register Taxi: This use case is required to register a Taxi by a driver, a physical
vehicle with a vehicle type to provide a transportation service to passengers
Update Taxi Location: This use case is required to update the location of a
registered Taxi while it moves around
Update Taxi Status: This use case is required to update the status of a registered
Taxi such as available, occupied, and so on
Get Taxi Status: This use case is required to get the status of a registered Taxi
Search Taxi: This use case is required to search for registered Taxis close to a
passenger, given a geographical coordinate (latitude, longitude) and a radius in
kilometers

The Taxi Booking microservice has the following use cases:

Book Taxi Ride: This use case is required to book a Taxi ride by a passenger,
given a start location, end location, taxi type, and so on
Accept Taxi Ride: This use case is required to accept a Taxi booking made by a
passenger by a driver
Cancel Taxi Ride: This use case is required to cancel a Taxi booking made by a
passenger, either by the driver or by the passenger
Search Booking: This use case is required to search Taxi Bookings close to a
driver, given a geographical coordinate (latitude, longitude) and a radius in
kilometers

The project structure to develop microservices
In order to develop microservices in this chapter, there may be a lot of code that could be
reused between the two microservices. To accommodate this, the following project
structure is used in this chapter:

spring-boot-2-taxi/: This is the parent Maven project of all the following projects:

├── spring-boot-2-taxi-config/: This is a Maven project that will have
all the common configurations
├── spring-boot-2-taxi-model/: This is a Maven project that will have all
the common data transfer objects

Building an API with Reactive Microservices Chapter 6

[180]

├── spring-boot-2-taxi-service/: This is a Maven project that will be
responsible for the Taxi Microservice
├── spring-boot-2-taxi-book-service/: This is a Maven project that
will be responsible for the Taxi Booking microservice

This project structure follows a Maven module approach, which enables code reuse and
faster building of the projects.

Using Spring Data Redis for persistence
This section will introduce Redis and how to use Spring Data Redis repositories to provide
Create, Retrieve, Update, Delete (CRUD) operations on Redis easily, and also how to use
the reactive capabilities of Spring Data with Redis. The decision to use Redis was made
because the data in a Taxi domain is highly volatile and tends to change very often (such as
the location of a moving Taxi), and also because of its out-of-the-box Geo data support. This
is because Redis holds in memory most of the time; it suits well for this.

Understanding Redis
Redis is a distributed, in-memory, key-value store that provides high scalability,
reliability, and performance. Redis is much more than a distributed cache; it stores not only
key-value pairs but also collections such as lists, sets, sorted sets, maps, and many more.
Redis also provides a set of algorithms that can be performed on those collections.

Redis supports scalability by enabling client-side sharing and server-side master/slave
replication. Redis stores encoded data in memory, so a large amount of data can be stored
with a minimal memory footprint. Redis can also be configured to write data to a file for
fault tolerance based on the timing and frequency of data writing.

Understanding Spring Data Redis
Spring Data Redis is intended to bring the concepts of Spring Data repositories to enable
easy development of Redis repositories. It provides an abstraction layer on top of Redis to
successfully store, retrieve, and modify documents available in Redis transparently.

Building an API with Reactive Microservices Chapter 6

[181]

Spring Data Redis eases CRUD operations by allowing the CrudRepository
interface, which extends from the repository. This hides the complexities of plain Redis
implementations, which need to be implemented and tested by developers. Using Spring
Data Redis could reduce the development time dramatically because of this.

Furthermore, Spring Data Redis provides a set of templates to enable reactive
programming in the form of ReactiveRedisTemplate and ReactiveRedisOperations.

In coming chapters, CrudRepository with default methods and
ReactiveRedisTemplate will be used extensively to implement business logic and to
write Spring Data Redis repositories and test them. The following sections will discuss how
to use a domain model designed using a class diagram as a base to implement Spring Data
Redis-based documents and repositories.

Class diagram for the domain model
Since the domain model is the most important component of an application, this section
will design it first. The following is a simple class diagram for these microservices:

There are two main domain models shown in the preceding diagram. They are as follows:

Taxi: This is the main domain model, which will store the taxiid, TaxiType,
and TaxiStatus of an actual physical taxi
TaxiBooking: This is the domain model, which will store the taxiBookingId,
TaxiBookingStatus, start location, end location, start time, end time, and so on.

Building an API with Reactive Microservices Chapter 6

[182]

Also, the model uses TaxiType, TaxiStatus, and TaxiBookingStatus enumerations to
specify some type-and value-safe properties.

Implementation of domain model using Spring
Data Redis annotations
This section will explain the details of how to configure and use Spring Data Redis with a
Redis service with the domain model designed in the previous section.

Setting up dependencies and configuration
Initially, before implementing the domain model, the dependency and configuration classes
need to be specified. The following Maven starter dependency needs to be included and
available in the spring-boot-2-taxi-config project:

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-redis-reactive</artifactId>
 </dependency>
</dependencies>

 Implementing the domain model
Implementing the domain model Taxi using Spring Data Redis annotations will look like
the following, which is available in spring-boot-2-taxi-service:

@RedisHash("Taxi")
@Data
@AllArgsConstructor
@NoArgsConstructor
public class Taxi implements Serializable {
 @Id
 private String taxiId;

 private TaxiType taxiType;

 private TaxiStatus taxiStatus;
}

Building an API with Reactive Microservices Chapter 6

[183]

Implementing the domain model TaxiBooking using Spring Data Redis annotations will
look like the following which is available in spring-boot-2-taxi-book-service:

@RedisHash("TaxiBooking")
@Data
@AllArgsConstructor
@NoArgsConstructor
public class TaxiBooking {
 @Id
 private String taxiBookingId;

 private Point start;

 private Date startTime;

 private Point end;

 private Date endTime;

 private Date bookedTime;

 private Date acceptedTime;

 private Long customerId;

 private TaxiBookingStatus bookingStatus;

 private String reasonToCancel;

 private Date cancelTime;

 private String taxiId;
}

The @RedisHash annotation is used to store the contents of this domain model as a Redis
Map with @Id used to mark the id field for this model. The annotations @Data is from
Lombok library to generate toString, equals, hashCode, and getters/setters for this
model. The start and end attributes are of type org.springframework.data.geo.Point,
which is used to store coordinates. The @AllArgsConstructor annotation is used to
generate the all arguments constructor and @NoArgsConstructor is used to generate a
default constructor without any arguments.

Building an API with Reactive Microservices Chapter 6

[184]

Implementation of Spring Data Redis repositories
With the domain model implemented successfully, CrudRepository for those can be
implemented using Spring Data Redis. The specialty here is that there is no need to
implement anything. Just writing an interface that extends from the CrudRepository
interface would be sufficient to expose methods to find one, find all, save, delete, and so on.
The following code shows the TaxiRepository, which is available in the spring-
boot-2-taxi-service:

@Repository
public interface TaxiRepository extends CrudRepository<Taxi, String> {

}

The @Repository annotation is used to mark this interface as a data repository component
of Spring. The following code shows TaxiBookingRepository, which is available
in spring-boot-2-taxi-book-service:

@Repository
public interface TaxiBookingRepository extends CrudRepository<TaxiBooking,
String> {

}

Using a Service to encapsulate business logic
It is a good practice to encapsulate business logic inside Service methods so that
controllers and repositories are loosely coupled. The following is a Service written for
encapsulating business logic for Taxi, and is available in spring-boot-2-taxi-service:

@Service
public class TaxiService {

 private final ReactiveRedisTemplate<String, String> reactiveRedisTemplate;
 private final TaxiRepository taxiRepository;
 private final LocationToPointConverter locationToPointConverter = new
 LocationToPointConverter();

 public TaxiService(ReactiveRedisTemplate<String, String>
 reactiveRedisTemplate, TaxiRepository taxiRepository) {
 this.reactiveRedisTemplate = reactiveRedisTemplate;
 this.taxiRepository = taxiRepository;
 }

Building an API with Reactive Microservices Chapter 6

[185]

 public Mono<Taxi> register(TaxiRegisterEventDTO taxiRegisterEventDTO) {
 Taxi taxi = new Taxi(taxiRegisterEventDTO.getTaxiId(),
 taxiRegisterEventDTO.getTaxiType(), TaxiStatus.AVAILABLE);
 return Mono.just(taxiRepository.save(taxi));
 }

The preceding register method saves Taxi in the system so that it can fulfill rides. This
will return a result that is a reactive single object:

public Mono<Taxi> updateLocation(String taxiId, LocationDTO locationDTO) {
 Optional<Taxi> taxiOptional = taxiRepository.findById(taxiId);
 if (taxiOptional.isPresent()) {
 Taxi taxi = taxiOptional.get();
 return
reactiveRedisTemplate.opsForGeo().add(taxi.getTaxiType().toString(),
locationToPointConverter.convert(locationDTO), taxiId.toString()).flatMap(l
-> Mono.just(taxi));
 } else {
 throw getTaxiIdNotFoundException(taxiId);
 }
 }

The preceding updateLocation method will use
the ReactiveRedisTemplate.opsForGeo().add method to update the location and
taxiId of a Taxi grouped into taxi type. This will return a result that is a reactive single
object:

 public Flux<GeoResult<RedisGeoCommands.GeoLocation<String>>>
 getAvailableTaxis(TaxiType taxiType, Double latitude, Double
longitude,
 Double radius) {
 return
reactiveRedisTemplate.opsForGeo().radius(taxiType.toString(), new
 Circle(new Point(longitude, latitude), new Distance(radius,
 Metrics.KILOMETERS)));
 }

The preceding getAvailableTaxis method will return all the Taxi IDs falling inside of a
circle which has a center geo coordinate depicted by latitude, longitude, and radius in
kilometers. This will return a result that is a reactive collection of objects:

 public Mono<TaxiStatus> getTaxiStatus(String taxiId) {
 Optional<Taxi> taxiOptional = taxiRepository.findById(taxiId);
 if (taxiOptional.isPresent()) {
 Taxi taxi = taxiOptional.get();
 return Mono.just(taxi.getTaxiStatus());
 } else {

Building an API with Reactive Microservices Chapter 6

[186]

 throw getTaxiIdNotFoundException(taxiId);
 }

 }

The preceding getTaxiStatus method will return TaxiStatus of a taxi identified
by taxiId. This will return a result that is a reactive single object:

public Mono<Taxi> updateTaxiStatus(String taxiId, TaxiStatus taxiStatus) {
 Optional<Taxi> taxiOptional = taxiRepository.findById(taxiId);
 if (taxiOptional.isPresent()) {
 Taxi taxi = taxiOptional.get();
 taxi.setTaxiStatus(taxiStatus);
 return Mono.just(taxiRepository.save(taxi));
 } else {
 throw getTaxiIdNotFoundException(taxiId);
 }
 }

 private TaxiIdNotFoundException getTaxiIdNotFoundException(String
taxiId) {
 return new TaxiIdNotFoundException("Taxi Id "+taxiId+" Not Found");
 }
}

The preceding updateTaxiStatus method will update the TaxiStatus of a taxi
identified by the taxiId. This will return a result that is a reactive single object.

The TaxiService class in the preceding code is annotated with the @Service stereotype
annotation to mark it as a Spring Service. All methods of this service return either a Mono or
Flux, enabling those to be used Reactively. When a Taxi specified by an ID does not
exist, TaxiIdNotFoundException is thrown. The following is the implementation for it:

public class TaxiIdNotFoundException extends RuntimeException {
 public TaxiIdNotFoundException(String message) {
 super(message);
 }

 public TaxiIdNotFoundException(String message, Throwable cause) {
 super(message, cause);
 }
}

Building an API with Reactive Microservices Chapter 6

[187]

TaxiIdNotFoundException extends from the Exception class. Likewise, the following
TaxiBookingService class is used for TaxiBooking, which is available in spring-
boot-2-taxi-book-service:

@Service
public class TaxiBookingService {

 private final static Logger LOGGER =
 LoggerFactory.getLogger(TaxiBookingService.class);

 private final RedisTemplate<String, String> redisTemplate;
 private final ReactiveRedisTemplate<String, String>
reactiveRedisTemplate;
 private final TaxiBookingRepository taxiBookingRepository;
 private final ObjectMapper objectMapper = new ObjectMapper();
 private final LocationToPointConverter locationToPointConverter = new
 LocationToPointConverter();

 public TaxiBookingService(RedisTemplate<String, String> redisTemplate,
 ReactiveRedisTemplate<String, String> reactiveRedisTemplate,
 TaxiBookingRepository taxiBookingRepository) {
 this.redisTemplate = redisTemplate;
 this.reactiveRedisTemplate = reactiveRedisTemplate;
 this.taxiBookingRepository = taxiBookingRepository;
 }

 public Mono<TaxiBooking> book(TaxiBookedEventDTO taxiBookedEventDTO) {
 TaxiBooking taxiBooking = new TaxiBooking();
taxiBooking.setEnd(locationToPointConverter.convert(taxiBookedEventDTO.getE
nd()));
taxiBooking.setStart(locationToPointConverter.convert(taxiBookedEventDTO.ge
tStart()));
 taxiBooking.setBookedTime(taxiBookedEventDTO.getBookedTime());
 taxiBooking.setCustomerId(taxiBookedEventDTO.getCustomerId());
 taxiBooking.setBookingStatus(TaxiBookingStatus.ACTIVE);
 TaxiBooking savedTaxiBooking =
taxiBookingRepository.save(taxiBooking);
 return
reactiveRedisTemplate.opsForGeo().add(getTaxiTypeBookings(taxiBookedEventDT
O.getTaxiType()), taxiBooking.getStart(),
taxiBooking.getTaxiBookingId()).flatMap(l -> Mono.just(savedTaxiBooking));
 }

Building an API with Reactive Microservices Chapter 6

[188]

The preceding book method will enable a passenger to save a TaxiBooking in Redis based
on the supplied TaxiBookedEventDTO, and will use
the reactiveRedisTemplate.opsForGeo().add() method to add the taxi booking by
its type, to be listed by its starting location and taxiBookingId so that it can be queried
using geo-location search queries:

public Mono<TaxiBooking> cancel(String taxiBookingId,
TaxiBookingCanceledEventDTO canceledEventDTO) {
 Optional<TaxiBooking> taxiBookingOptional =
 taxiBookingRepository.findById(taxiBookingId);
 if (taxiBookingOptional.isPresent()) {
 TaxiBooking taxiBooking = taxiBookingOptional.get();
 taxiBooking.setBookingStatus(TaxiBookingStatus.CANCELLED);
 taxiBooking.setReasonToCancel(canceledEventDTO.getReason());
 taxiBooking.setCancelTime(canceledEventDTO.getCancelTime());
 return Mono.just(taxiBookingRepository.save(taxiBooking));
 } else {
 throw getTaxiBookingIdNotFoundException(taxiBookingId);
 }
}

The preceding cancel method retrieves a Taxi Booking by its taxiBookingId and
updates the booking status to canceled along with the reason and canceled time:

public Mono<TaxiBooking> accept(String taxiBookingId,
TaxiBookingAcceptedEventDTO acceptedEventDTO) {
 Optional<TaxiBooking> taxiBookingOptional =
 taxiBookingRepository.findById(taxiBookingId);
 if (taxiBookingOptional.isPresent()) {
 TaxiBooking taxiBooking = taxiBookingOptional.get();
 taxiBooking.setTaxiId(acceptedEventDTO.getTaxiId());
taxiBooking.setAcceptedTime(acceptedEventDTO.getAcceptedTime());
 return
Mono.just(taxiBookingRepository.save(taxiBooking)).doOnSuccess(t ->
 {
 try {
redisTemplate.convertAndSend(RedisConfig.ACCEPTED_EVENT_CHANNEL,
objectMapper.writeValueAsString(acceptedEventDTO));
 } catch (JsonProcessingException e) {
 LOGGER.error("Error while sending message to Channel
{}",
 RedisConfig.ACCEPTED_EVENT_CHANNEL, e);
 }
 });

Building an API with Reactive Microservices Chapter 6

[189]

 } else {
 throw getTaxiBookingIdNotFoundException(taxiBookingId);
 }
 }

The preceding accept method will enable a driver to accept a TaxiBooking to fulfill the
ride. After updating the taxiId and acceptedTime the taxiBooking will be saved and a
Booking Accepted Event will be triggered to notify any listeners:

 public Flux<GeoResult<RedisGeoCommands.GeoLocation<String>>>
 getBookings(TaxiType taxiType, Double latitude, Double longitude,
Double
 radius) {
 return
reactiveRedisTemplate.opsForGeo().radius(getTaxiTypeBookings(taxiType),
 new Circle(new Point(longitude, latitude), new Distance(radius,
 Metrics.KILOMETERS)));
 }

The preceding getBookings method will return TaxiBooking by taxiType, geo-location,
and radius. So any taxiBookings that match the type and fall inside the circle whose
center is marked by the geo-coordinates and has the same radius:

public Mono<TaxiBooking> updateBookingStatus(String taxiBookingId,
TaxiBookingStatus taxiBookingStatus) {
 Optional<TaxiBooking> taxiBookingOptional =
 taxiBookingRepository.findById(taxiBookingId);
 if (taxiBookingOptional.isPresent()) {
 TaxiBooking taxiBooking = taxiBookingOptional.get();
 taxiBooking.setBookingStatus(taxiBookingStatus);
 return Mono.just(taxiBookingRepository.save(taxiBooking));
 } else {
 throw getTaxiBookingIdNotFoundException(taxiBookingId);
 }
 }

The preceding updateBookingStatus will update the bookingStatus of a TaxiBooking
identified by the taxiBookingId passed in:

 private TaxiBookingIdNotFoundException
 getTaxiBookingIdNotFoundException(String taxiBookingId) {
 return new TaxiBookingIdNotFoundException("Taxi Booking Id
 "+taxiBookingId+" Not Found");
 }

Building an API with Reactive Microservices Chapter 6

[190]

 private String getTaxiTypeBookings(TaxiType taxiType) {
 return taxiType.toString()+"-Bookings";
 }

}

The TaxiBookingService in the preceding code is also annotated
with @Service stereotype annotation to mark it as a Spring Service. All methods of this
service return either a Mono or Flux, enabling those to be used Reactively. When a Taxi
booking specified by an ID does not exist, TaxiBookingIdNotFoundException is thrown.
Following is the implementation:

public class TaxiBookingIdNotFoundException extends RuntimeException {

 public TaxiBookingIdNotFoundException(String message) {
 super(message);
 }

 public TaxiBookingIdNotFoundException(String message, Throwable cause)
{
 super(message, cause);
 }

}

TaxiBookingIdNotFoundException extends from Exception .

Using Spring WebFlux for a controller
Controllers are the integration point between Model and Resources in an AI. They act like
the glue that binds together everything while taking care of business logic execution and
response. The following Maven starter dependency needs to be added to enable Spring
WebFlux:

<dependencies>
 ...
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-webflux</artifactId>
 </dependency>
</dependencies>

The preceding dependency will import Reactive Stream, Spring, and Netty dependencies to
enable successful writing of Reactive-based web applications using Spring.

Building an API with Reactive Microservices Chapter 6

[191]

Implementation of controllers
The following code is the TaxiController, which caters to the registering, searching,
status updating, and so on, of Taxis; it is available in spring-boot-2-taxi-service:

@RequestMapping("/taxis")
@RestController
public class TaxiController {

 private final TaxiService taxiService;

 public TaxiController(TaxiService taxiService) {
 this.taxiService = taxiService;
 }

 @GetMapping
 public Flux<TaxiAvailableResponseDTO>
 getAvailableTaxis(@RequestParam("type") TaxiType taxiType,
 @RequestParam("latitude") Double latitude, @RequestParam("longitude")
 Double longitude, @RequestParam(value = "radius", defaultValue = "1")
 Double radius) {
 Flux<GeoResult<RedisGeoCommands.GeoLocation<String>>>
availableTaxisFlux
 = taxiService.getAvailableTaxis(taxiType, latitude, longitude,
radius);
 return availableTaxisFlux.map(r -> new
 TaxiAvailableResponseDTO(r.getContent().getName()));
 }

 @GetMapping("/{taxiId}/status")
 public Mono<TaxiStatusDTO> getTaxiStatus(@PathVariable("taxiId") String
 taxiId) {
 return taxiService.getTaxiStatus(taxiId).map(s -> new
 TaxiStatusDTO(taxiId, s));
 }

 @PutMapping("/{taxiId}/status")
 public Mono<TaxiStatusDTO> updateTaxiStatus(@PathVariable("taxiId")
String
 taxiId, @RequestParam("status") TaxiStatus taxiStatus) {
 return taxiService.updateTaxiStatus(taxiId, taxiStatus).map(t ->
new
 TaxiStatusDTO(t.getTaxiId(), t.getTaxiStatus()));
 }

 @PutMapping("/{taxiId}/location")
 public Mono<TaxiLocationUpdatedEventResponseDTO>

Building an API with Reactive Microservices Chapter 6

[192]

 updateLocation(@PathVariable("taxiId") String taxiId, @RequestBody
 LocationDTO locationDTO) {
 return taxiService.updateLocation(taxiId, locationDTO).map(t -> new
 TaxiLocationUpdatedEventResponseDTO(taxiId));
 }

 @PostMapping
 public Mono<TaxiRegisterEventResponseDTO> register(@RequestBody
 TaxiRegisterEventDTO taxiRegisterEventDTO) {
 return taxiService.register(taxiRegisterEventDTO).map(t -> new
 TaxiRegisterEventResponseDTO(t.getTaxiId()));
 }

}

We can understand the following from the previous code:

The getAvailableTaxis function is mapped to the URL /taxis and accepts
taxi type, latitude, longitude, and radius in kilometers, and returns Taxis
available in that geographical area
The getTaxiStatus function is mapped to the URL
/taxis/{taxiId}/status and returns the status of the Taxi identified by the
taxiId path variable
The updateTaxiStatus function is mapped to
the URL /taxis/{taxiId}/status with the request method PUT and updates
the status of the Taxi identified by the taxiId path variable
The updateLocation function is mapped to the URL
/taxis/{taxiId}/location with the request method PUT and updates the
location of the Taxi identified by the taxiId path variable
The register function is mapped to the URL /taxis with request method
POST and registers a new Taxi into the system

The following code is TaxiBookingController, which caters to the registering, searching,
status updating, and so on, of Taxis; it is available in spring-boot-2-taxi-book-
service:

@RequestMapping("/taxibookings")
@RestController
public class TaxiBookingController {

 private final TaxiBookingService taxiBookingService;

 public TaxiBookingController(TaxiBookingService taxiBookingService) {
 this.taxiBookingService = taxiBookingService;

Building an API with Reactive Microservices Chapter 6

[193]

 }

 @PostMapping
 public Mono<TaxiBookedEventResponseDTO> book(@RequestBody
TaxiBookedEventDTO
 taxiBookedEventDTO) {
 return taxiBookingService.book(taxiBookedEventDTO).map(t -> new
 TaxiBookedEventResponseDTO(t.getTaxiBookingId()));
 }

 @PutMapping("/{taxiBookingId}/cancel")
 public Mono<TaxiBookingCanceledEventResponseDTO>
 cancel(@PathVariable("taxiBookingId") String taxiBookingId,
@RequestBody
 TaxiBookingCanceledEventDTO taxiBookingCanceledEventDTO) {
 return taxiBookingService.cancel(taxiBookingId,
 taxiBookingCanceledEventDTO).map(t -> new
 TaxiBookingCanceledEventResponseDTO(t.getTaxiBookingId()));
 }

 @PutMapping("/{taxiBookingId}/accept")
 public Mono<TaxiBookingAcceptedEventResponseDTO>
 accept(@PathVariable("taxiBookingId") String taxiBookingId,
@RequestBody
 TaxiBookingAcceptedEventDTO taxiBookingAcceptedEventDTO) {
 return taxiBookingService.accept(taxiBookingId,
 taxiBookingAcceptedEventDTO).map(t -> new
 TaxiBookingAcceptedEventResponseDTO(t.getTaxiBookingId(),
t.getTaxiId(),
 t.getAcceptedTime()));
 }

 @GetMapping
 public Flux<TaxiBookingResponseDTO> getBookings(@RequestParam("type")
 TaxiType taxiType, @RequestParam("latitude") Double latitude,
 @RequestParam("longitude") Double longitude, @RequestParam(value =
"radius",
 defaultValue = "1") Double radius) {
 return taxiBookingService.getBookings(taxiType, latitude,
longitude,
 radius).map(r -> new
TaxiBookingResponseDTO(r.getContent().getName()));
 }

}

Building an API with Reactive Microservices Chapter 6

[194]

We infer the following from the previous code:

The book function is mapped to the URL /taxibookings with request method
POST and creates a Taxi booking for a particular Taxi type with start and end
location
The cancel function is mapped to the URL
/taxibookings/{taxiBookingId}/cancel and cancels a Taxi booking
identified by the taxiBookingId path variable
The accept function is mapped to the URL
/taxibookings/{taxiBookingId}/accept and enables a driver to accept a
Taxi booking identified by the taxiBookingId path variable
The getBookings function is mapped to the URL /taxibookings and accepts
taxi type, latitude, longitude, radius in a kilometers, and returns Taxi bookings
available in that geographical area

Using asynchronous data transfer for cross-
microservice communication
Microservices need to communicate with each other from time to time. The HTTP APIs that
microservices expose are usually reserved for the external systems invoking them, but
when they need to talk internally, it is best to use an asynchronous way to communicate so
that they can still communicate even when one microservice is down or not functioning
properly.

Asynchronous data transfer using Redis
Redis offers asynchronous data transfer between an application using a
publisher/subscriber model, which enables one application to publish to a channel and
another application to subscribe to that channel and perform actions when an event is
received. The publishers need not know about the subscribers, and vice versa in this model,
which enables loose coupling and high scalability.

In the case of these two microservices, the Taxi Microservice needs to know when a Taxi
Booking is accepted in the Taxi Booking Microservice so that it can update the status of a
Taxi. For this reason, the Taxi Booking microservice will publish a Taxi Booking Accepted
Event, and the Taxi Microservice will subscribe to it.

Building an API with Reactive Microservices Chapter 6

[195]

The following code snippet in the TaxiBookingService.accept function is responsible
for publishing that event to the Redis Pub/Sub Channel:

try {
 redisTemplate.convertAndSend(RedisConfig.ACCEPTED_EVENT_CHANNEL,
objectMapper.writeValueAsString(acceptedEventDTO));
} catch (JsonProcessingException e) {
 LOGGER.error("Error while sending message to Channel {}",
RedisConfig.ACCEPTED_EVENT_CHANNEL, e);
}

The following bean configuration snippet in the Taxi Microservice in
SpringBoot2TaxiServiceApplication is required to set up the Subscriber as a listener:

@Bean
public RedisMessageListenerContainer container(RedisConnectionFactory
connectionFactory, TaxiBookingAcceptedEventMessageListener
taxiBookingAcceptedEventMessageListener) {
 RedisMessageListenerContainer container = new
 RedisMessageListenerContainer();
 container.setConnectionFactory(connectionFactory);
 container.addMessageListener(taxiBookingAcceptedEventMessageListener,
new
 PatternTopic(RedisConfig.ACCEPTED_EVENT_CHANNEL));
 return container;
}

The following Listener implementation is required to take action when a Taxi Booking
Accepted Event is sent from the Taxi Booking Microservice to the Taxi Microservice:

@Component
public class TaxiBookingAcceptedEventMessageListener implements
MessageListener {

 private static final Logger LOGGER =
 LoggerFactory.getLogger(TaxiBookingAcceptedEventMessageListener.class);

 private final TaxiService taxiService;
 private final ObjectMapper objectMapper = new ObjectMapper();

 public TaxiBookingAcceptedEventMessageListener(TaxiService taxiService)
{
 this.taxiService = taxiService;
 }

 @Override
 public void onMessage(Message message, @Nullable byte[] bytes) {
 try {

Building an API with Reactive Microservices Chapter 6

[196]

 TaxiBookingAcceptedEventDTO taxiBookingAcceptedEventDTO =
 objectMapper.readValue(new String(message.getBody()),
 TaxiBookingAcceptedEventDTO.class);
 LOGGER.info("Accepted Event {}", taxiBookingAcceptedEventDTO);
 taxiService.updateTaxiStatus(taxiBookingAcceptedEventDTO.getTaxiId(),
 TaxiStatus.OCCUPIED);
 } catch (IOException e) {
 LOGGER.error("Error while updating taxi status", e);
 }
 }
}

The preceding listener's onMessage method will be activated whenever an event is
received and will update the status of the Taxi.

Using Docker to support microservices
Microservice architectures need to be able to scale up and scale down as and when required
based on demand. It is best to use a container platform such as Docker to achieve this.

Understanding Docker
Docker is a very popular container platform. Containerization, as opposed to virtualization,
is the process of deploying applications in a portable and predictable manner by packaging
components along with their dependencies into isolated, standard process environments
called containers. Docker is used by many developers and IT operations staff to provide
independence from the underlying infrastructure and applications they run. Docker can be
run on on-premise hardware, in the cloud, or in a hybrid setup. Docker containers are
lightweight and ideal for microservices development. Docker provides the following
features for microservices:

Accelerated development of microservices
Ease of deployment
Ease of rollback
Lightweight
Portability
Predictability

Building an API with Reactive Microservices Chapter 6

[197]

Docker uses a Dockerfile with the steps to initialize a container that can be deployed. Also,
Docker provides Docker Compose in order to compose multiple Docker images to work
together to create a system.

Using Maven to build Docker images
Since the projects already use Maven as the dependency management and build tool, it
makes sense to use a Maven plugin that can be used to build Docker images. For this
purpose, Spotify's open source dockerfile-maven plugin is used in both the spring-
boot-2-taxi-service and spring-boot-2-taxi-booking-service projects as
follows:

<plugins>
 ...
 <plugin>
 <groupId>com.spotify</groupId>
 <artifactId>dockerfile-maven-plugin</artifactId>
 <version>${dockerfile-maven.version}</version>
 <executions>
 <execution>
 <id>default</id>
 <goals>
 <goal>build</goal>
 <goal>push</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <contextDirectory>${project.build.directory}</contextDirectory>
 <repository>packtpub-spring-boot-2/${project.artifactId}
 </repository>
 <tag>${project.version}</tag>
 </configuration>
 </plugin>
</plugins>

This is with the Dockerfile, which is placed inside /src/resources/docker/Dockefile:

FROM frolvlad/alpine-oraclejdk8:slim
VOLUME /tmp
ADD PROJECT_JAR app.jar
RUN sh -c 'touch /app.jar'
ENV JAVA_OPTS=""
ENTRYPOINT ["sh", "-c", "java $JAVA_OPTS -jar /app.jar"]

Building an API with Reactive Microservices Chapter 6

[198]

A Docker image can be built by issuing the following usual Maven build command while
being inside the spring-boot-2-taxi project:

$ mvn clean install

The preceding Dockerfile does the following code:

Downloads alpine-oraclejdk8 and uses it to run the Spring Boot app
Goes into the /tmp volume
Adds the file mentioned by the placeholder PROJECT_JAR (will be explained
later) as app.jar
Creates an empty file by the name app.jar in the root
Sets the environment variable JAVA_OPTS
Creates the entry point into the Docker image with the Spring Boot 2.0
application, which is instructed to start app.jar using the java command

This Dockerfile is available for both spring-boot-2-taxi-service and spring-
boot-2-taxi-booking-service. There are two more plugins used to help with this
Dockerfile, which are listed as follows:

<plugins>
 ...
 <plugin>
 <artifactId>maven-resources-plugin</artifactId>
 <executions>
 <execution>
 <id>copy-resources</id>
 <phase>process-resources</phase>
 <goals>
 <goal>copy-resources</goal>
 </goals>
 <configuration>
 <outputDirectory>${basedir}/target</outputDirectory>
 <resources>
 <resource>
<directory>src/main/resources/docker</directory>
 <includes>
 <include>Dockerfile</include>
 </includes>
 </resource>
 </resources>
 </configuration>
 </execution>
 </executions>
 </plugin>

Building an API with Reactive Microservices Chapter 6

[199]

 <plugin>
 <groupId>com.google.code.maven-replacer-plugin</groupId>
 <artifactId>replacer</artifactId>
 <version>1.5.3</version>
 <executions>
 <execution>
 <phase>prepare-package</phase>
 <goals>
 <goal>replace</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <file>${basedir}/target/Dockerfile</file>
 <replacements>
 <replacement>
 <token>PROJECT_JAR</token>
 <value>${project.build.finalName}.jar</value>
 </replacement>
 </replacements>
 </configuration>
 </plugin>
 ...
</plugins>

The maven-resource-plugin will copy the Dockerfile from
the /src/resources/docker directory to the /target directory in order to create a
Docker image successfully, while the replacer plugin will replace the PROJECT_JAR
placeholder in the file /target/Dockerfile to have the Maven project build the final JAR
name (an example is spring-boot-2-taxi-service-0.0.1-SNAPSHOT.jar).

Building a system of microservices with Docker
The final system is expected to be built in the following shape:

Building an API with Reactive Microservices Chapter 6

[200]

In the preceding diagram, everything resides inside of Docker as containers. Each small
rectangle is a Docker container with a process of its own. There is one Redis container that
acts as the in-memory data store for replication to have multiple instances of the Taxi
Service Apps and Taxi Booking Service Apps.

All the apps are running behind an NGinx Load Balancer so that it can handle the load by
distributing traffic among different apps.

The following docker-compose.yml file is used to define the preceding layout in Docker's
understandable configuration:

version: '2'
services:
 taxi-service-app:
 build: ./spring-boot-2-taxi-service/target
 networks:
 - backend
 depends_on:

Building an API with Reactive Microservices Chapter 6

[201]

 - db

 taxi-booking-service-app:
 build: ./spring-boot-2-taxi-booking-service/target
 networks:
 - backend
 depends_on:
 - db

 db:
 hostname: redis
 image: "redis:alpine"
 ports:
 - "6379:6379"
 networks:
 - backend

 nginx-lb:
 container_name: nginx-lb
 image: nginx:1.13
 restart: always
 ports:
 - 80:80
 - 443:443
 volumes:
 - ./nginx/conf.d:/etc/nginx/conf.d
 networks:
 - backend
 depends_on:
 - taxi-service-app
 - taxi-booking-service-app

networks:
 backend:
 driver: bridge

The services section lists all the services required to be defined, while the networks
section lists the networks connecting those services together. The db service, in this case, the
Redis data store, is the first service to be initialized, as both the taxi-service-app and
taxi-booking-service-app services depend on it. The db service will be listening on
port 6379 both inside and outside of the network backend. This service is created using an
already existing Docker image from the Docker repository named redis:alpine.

Building an API with Reactive Microservices Chapter 6

[202]

After that, either the taxi-service-app or taxi-booking-service-app service can be
initialized. It will be created from the Docker image that was created in the previous step
and placed inside the respective /target directory. Both of these services depend on db as
mentioned earlier and connect to the network backend.

Finally, the nginx-lb service will be initialized when both the taxi-service-
app and taxi-booking-service-app services are up and running. This service will
expose port 80 for non-secure connections and 443 for secure connections. This service will
also use the app.conf configuration file available in the /nginx/conf.d directory, which
is inside the /spring-boot-2-taxi project.

The app.conf file does the following:

server {
 listen 80;
 charset utf-8;
 access_log off;

 location /taxibookings {
 proxy_pass http://taxi-booking-service-app:9090;
 proxy_set_header Host $host:$server_port;
 proxy_set_header X-Forwarded-Host $server_name;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }

 location /taxis {
 proxy_pass http://taxi-service-app:8080;
 proxy_set_header Host $host:$server_port;
 proxy_set_header X-Forwarded-Host $server_name;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }
}

It will listen on port 80, as mentioned in the preceding code explanation, and will route any
requests that come into http://<host>/taxibookings to
http://taxi-booking-service-app:9090 (9090 is the port for the Taxi Bookings
service and is configured with server.port in application.properties file for that
project).

Building an API with Reactive Microservices Chapter 6

[203]

It will route any requests that come into http://<host>/taxis to
http://taxi-service-app:8080. Also, it will send some headers along with the
forwarded requests.

This is all there for the composing of the final system.

Deploying microservices with Docker
Now, with Docker images being built and the Docker composing layout defined, it is
possible to build the composing layout and start it so that it can cater requests. The
following command, issued from inside the spring-boot-2-taxi project, composes
everything:

$ docker-compose build

The preceding command will generate a somewhat familiar output:

db uses an image, skipping
Building taxi-booking-service-app
...
Successfully built 8e77b030d54c
Successfully tagged spring-boot-2-taxi_taxi-booking-service-app:latest
Building taxi-service-app
...
Successfully built a2f9c5cf28af
Successfully tagged spring-boot-2-taxi_taxi-service-app:latest
nginx-lb uses an image, skipping

The preceding output shows that db and nginx-lb use an existing image, so they are not
built from scratch, whereas taxi-booking-service-app and taxi-service-
app are built from scratch using the Dockerfile and initialize everything.

Next, the following command can be used to start all the Docker containers of the system:

$ docker-compose up -d

The preceding command will create all the containers in daemon mode (will run in the
background) and will generate the following familiar-looking output:

Creating network "spring-boot-2-taxi_backend" with driver "bridge"
Creating spring-boot-2-taxi_db_1 ... done
Creating spring-boot-2-taxi_taxi-service-app_1 ... done
Creating spring-boot-2-taxi_taxi-booking-service-app_1 ... done
Creating nginx-lb ... done

Building an API with Reactive Microservices Chapter 6

[204]

As explained earlier, the output shows that the network is being created first, followed by
db, followed by the apps, and finally nginx load balancer.

Individual apps can be scaled up or down using the following command:

docker-compose up --scale <APP_NAME>=2 -d

APP_NAME can be either taxi-service-app or taxi-booking-service-app based on
the requirement. The number after the equals sign depicts the number of containers
required to be running for that app.

Consider the following example:

docker-compose up --scale taxi-service-app=2 -d

Also, in order to stop and bring down all the services started, the following command can
be used:

docker-compose down

Demonstrating Saber
Demonstrating this system is done using Postman, as explained in the following sections.

Submitting to the Register Taxi endpoint
In the following Postman, a POST request is sent to the URL http://localhost/taxis
with this body:

{
 "taxiType":"NANO"
}

Building an API with Reactive Microservices Chapter 6

[205]

When the Send button is pressed, a JSON of a map with taxiId will be returned
back, along with the HTTP status code 200:

Building an API with Reactive Microservices Chapter 6

[206]

Submitting location to update Taxi Location
endpoint
In the following Postman, a PUT request is sent to the URL
http://localhost:8080/taxis/<TaxiId> with the following JSON body:

{"latitude":6.938020, "longitude":79.963855}

When the Send button is pressed, a JSON of a map with taxiId will be returned along
with the HTTP status code 200:

Building an API with Reactive Microservices Chapter 6

[207]

Submitting to Update Taxi Status endpoint
In the following Postman PUT request, a PUT request is sent to the URL
http://localhost:8080/taxis/<TaxiId>/status?status=OCCUPIED, and when
the Send button is pressed a JSON of a map with taxiId, after updating the status of the
taxi identified by the TaxiID and status will be returned along with the HTTP status
code 200:

Building an API with Reactive Microservices Chapter 6

[208]

Accessing the Get Taxi Status endpoint
In the following Postman GET request, when the Send button is pressed, a JSON of a map
with taxiId and status will be returned along with the HTTP status code 200:

Building an API with Reactive Microservices Chapter 6

[209]

Accessing the GET available Taxis endpoint
In the following Postman GET request with taxi type, latitude, longitude, and radius
parameters, when the Send button is pressed, a JSON of a list of maps with taxiId will be
returned, along with the HTTP status code 200:

Building an API with Reactive Microservices Chapter 6

[210]

Submitting to Book Taxi endpoint
In the following Postman POST request, the JSON body is filled:

{
 "start": {"latitude":6.938020, "longitude":79.963855},
 "end": {"latitude":6.938021, "longitude":79.963857},
 "customerId": 101,
 "taxiType": "NANO"
}

When the Send button is pressed, a JSON of a map with taxiBookingId will be returned,
along with the HTTP status code 200:

Building an API with Reactive Microservices Chapter 6

[211]

Submitting to Accept Taxi Booking endpoint
In the following Postman PUT request, when the Send button is pressed, a JSON of a map
with taxiBookingId, taxiId, and acceptedTime will be returned along with the HTTP
status code 200:

Building an API with Reactive Microservices Chapter 6

[212]

Submitting to cancel Taxi Booking endpoint
In the following Postman PUT request, when the Send button is pressed, a JSON of a map
with taxiBookingId will be returned, along with the HTTP status code 200:

Building an API with Reactive Microservices Chapter 6

[213]

Accessing Taxi Bookings endpoint
In the following Postman GET request with taxi type, latitude, longitude, and radius
parameters, when the Send button is pressed, a JSON of a list of maps with
taxiBookingId will be returned, along with the HTTP status code 200:

Building an API with Reactive Microservices Chapter 6

[214]

Summary
Congratulations on completing this chapter, where the skills and knowledge required to
build microservices were discussed in detail. This chapter started off by explaining what a
microservices architecture is and how it is beneficial both in terms of development and
maintenance. It talked about the requirements of the microservice architecture being
developed and used a UML use case diagram to explain the requirement visually.

This chapter also talked about how to understand the domain model of an application
based on the requirements (Saber) and use Spring Data Redis to convert those domain
model entities into Redis maps. A UML class diagram was used to explain the domain
model in detail. Next, it explained how to write data repositories for those entities using
Spring Data Redis with minimum effort for commonly used CRUD operations. It also
explained how to write custom query methods in data repositories. Also, it explained how
to encapsulate business logic inside Spring Service components. It also talked about how to
use Spring WebFlux REST controllers to provide coordination of different services.

Furthermore, it talked about the Docker container platform, explaining what a container is
before diving into creating and deploying Spring Boot 2.0 applications as Docker images.
Finally, this chapter showed how to use Docker Compose to create complex systems using
Docker containers. The chapter also demonstrated the usage of Saber in detail. We'll learn
more about application development in coming chapters.

Questions
Please answer the following questions to see whether you have successfully mastered this
chapter:

What is a Maven module?1.
What is Redis?2.
What is a microservices architecture?3.
What are the benefits of a microservices architecture?4.
What is containerization?5.
What is Docker?6.
What is nginx?7.

Building an API with Reactive Microservices Chapter 6

[215]

Further reading
In order to improve your knowledge of microservices and Docker, the following books are
recommended to be read, as they will be helpful in the coming chapters:

Spring: Microservices with Spring Boot: https:/ / www.packtpub. com/ application-
development/ spring- microservices- spring- boot

Docker and Kubernetes for Java Developers: https:/ /www. packtpub. com/
virtualization- and- cloud/ docker- and-kubernetes- java- developers

https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/application-development/spring-microservices-spring-boot
https://www.packtpub.com/virtualization-and-cloud/docker-and-kubernetes-java-developers
https://www.packtpub.com/virtualization-and-cloud/docker-and-kubernetes-java-developers
https://www.packtpub.com/virtualization-and-cloud/docker-and-kubernetes-java-developers
https://www.packtpub.com/virtualization-and-cloud/docker-and-kubernetes-java-developers
https://www.packtpub.com/virtualization-and-cloud/docker-and-kubernetes-java-developers
https://www.packtpub.com/virtualization-and-cloud/docker-and-kubernetes-java-developers
https://www.packtpub.com/virtualization-and-cloud/docker-and-kubernetes-java-developers
https://www.packtpub.com/virtualization-and-cloud/docker-and-kubernetes-java-developers
https://www.packtpub.com/virtualization-and-cloud/docker-and-kubernetes-java-developers
https://www.packtpub.com/virtualization-and-cloud/docker-and-kubernetes-java-developers
https://www.packtpub.com/virtualization-and-cloud/docker-and-kubernetes-java-developers
https://www.packtpub.com/virtualization-and-cloud/docker-and-kubernetes-java-developers
https://www.packtpub.com/virtualization-and-cloud/docker-and-kubernetes-java-developers
https://www.packtpub.com/virtualization-and-cloud/docker-and-kubernetes-java-developers
https://www.packtpub.com/virtualization-and-cloud/docker-and-kubernetes-java-developers
https://www.packtpub.com/virtualization-and-cloud/docker-and-kubernetes-java-developers
https://www.packtpub.com/virtualization-and-cloud/docker-and-kubernetes-java-developers
https://www.packtpub.com/virtualization-and-cloud/docker-and-kubernetes-java-developers
https://www.packtpub.com/virtualization-and-cloud/docker-and-kubernetes-java-developers
https://www.packtpub.com/virtualization-and-cloud/docker-and-kubernetes-java-developers
https://www.packtpub.com/virtualization-and-cloud/docker-and-kubernetes-java-developers
https://www.packtpub.com/virtualization-and-cloud/docker-and-kubernetes-java-developers
https://www.packtpub.com/virtualization-and-cloud/docker-and-kubernetes-java-developers
https://www.packtpub.com/virtualization-and-cloud/docker-and-kubernetes-java-developers

7
Building a Twitter Clone with

Spring Boot
This chapter will introduce the reader to the details of how to build a Twitter clone,
nicknamed Tweety, using Spring Boot 2 as the backend development framework and
Angular 5 as the frontend framework. We will explain how to use JPA as the persistence
layer, which is a widely used data source. Subsequently, it will use Angular Material to
create the presentation views for the blog management system. Furthermore, it will also use
Spring WebFlux and Spring Security OAuth2 to implement controllers and provide
authentication and authorization.

The following topics will be covered in this chapter:

Using Spring Data JPA for persistence
Using Angular 5 for the frontend
Using Spring Web Flux for the REST controller
Using Spring Security for authentication and authorization
Demonstrating Tweety

Technical requirements
In order to implement the web application using Spring Boot, the following build tools
need to be downloaded and installed:

To install Java Development Kit (JDK) 8, you can download it from its official
page at http:/ /www. oracle. com/technetwork/ java/ javase/ downloads/ jdk8-
downloads- 2133151. html

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Building a Twitter Clone with Spring Boot Chapter 7

[217]

To install Maven 3, download it from its official page at https:/ /maven. apache.
org/download. cgi

To install IntelliJ IDEA, it can be downloaded from its official page at https:/ /
www.jetbrains. com/ idea/ download/

To install Spring Tool Suite (STS), you can download it from its official page
at https:/ /spring. io/ tools

To install Node.js, you can download it from its official page at https:/ /nodejs.
org/en/ download/

The source code for this chapter can be found at https:/ /github. com/PacktPublishing/
Spring-Boot-2.0- Projects- Fundamentals- of-Spring- Boot- 2.0, in
the Chapter07 directory.

Getting started
In this section, readers will get an overview of the Twitter clone being developed. The
requirements, design, and implementation details will be discussed in brief.

Beginning with the Tweety architecture
The application architecture for Tweety will have a RESTful API backend and a model-
view-viewmodel (MVVM) frontend. MVVM is a design pattern used to enable two-way
data binding between the view and the model so that one changes when the other does.
Angular is a very famous framework that conforms to the MVVM design pattern, which
allows highly responsive frontend applications that efficiently update when data from the
server changes or a user interacts with the application. Apart from this, Angular provides
routing, dependency injection, components, templates, and so on to enable flexible,
modular development.

The Tweety application will have the user interface (UI) implemented using Angular
Material, which is a module provided out of the box to simplify UI development using
custom tags and themes.

https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0

Building a Twitter Clone with Spring Boot Chapter 7

[218]

Tweety requirements
Tweety, being a Twitter clone, is supposed to act like a social media application that allows
multiple users to communicate and interact with each other. (This application, however, is
being made purely to demonstrate the features of Angular, Spring Boot 2, and their ability
to integrate together. This application is in no way a competitor or replacement for Twitter
and doesn't include all the features of such a social media application.) The Tweety
application must be publicly accessible via the internet, and registered users must be able to
send out tweets and mention another user in a tweet.

The main feed must be visible without any authentication and the user feed must only be
visible after authentication.

The use case diagram
The following use case diagram shows the requirement for Tweety:

Building a Twitter Clone with Spring Boot Chapter 7

[219]

The actor is the User of the Tweety application. It has the following use cases:

Login: This use case is required to authenticate users so that each user can be
uniquely identified, to allow only authenticated users to perform actions.
List Tweet: This use case is where a user can list all the tweets available for that
user. It requires the user to be authenticated.
Reply Tweet: This use case is where a user can reply to a Tweet. It requires the
user to be authenticated.
Send Tweet: This use case is where a user can send a Tweet. It requires the user
to be authenticated.
Follow User: This use case is where a user can follow another user. It requires the
user to be authenticated.
View Profile: This use case is where a user's profile can be viewed by another. It
requires the user to be authenticated.
Logout: This use case is where a logged in user can log out.

Using Spring Data JPA for persistence
This section will introduce JPA and how to use Spring Data JPA repositories to
provide Create, Retrieve, Update, and Delete (CRUD) operations in JPA easily.

Class diagram for the domain model
Since the domain model is the most important component of an application, in this section,
we will design it first. The following is the simple class diagram for this web service:

Building a Twitter Clone with Spring Boot Chapter 7

[220]

There are three main domain models shown in the preceding diagram. Those are as
follows:

Tweet: This is the main domain model, which will store the actual tweet content,
posted time, and posted user
User: This is the domain model that will store the username, password, role, and
bio of each user on the system
Role: This is the enumeration to describe the role of the user

Implementation of the domain model using
Spring Data JPA annotations
This section will explain the details of how to configure and use Spring Data JPA and an H2
embedded database with the domain model designed in the previous section.

Setting up dependencies and configuration
Initially, before implementing the domain model's dependencies and configuration, the
class needs to be specified. The following Maven starter dependency needs to be included:

<dependencies>
 <dependency>
 <groupId>org.springframework.boot</groupId>

Building a Twitter Clone with Spring Boot Chapter 7

[221]

 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>
 ...
 <dependency>
 <groupId>com.h2database</groupId>
 <artifactId>h2</artifactId>
 <version>1.4.197</version>
 </dependency>
</dependencies>

The preceding entries will import all the dependencies of the JPA stack, and an embedded
H2 database that can be used to store entities.

Implementing the domain model
Implementing the Tweet domain model using JPA annotations will look like the following:

@Data
@NoArgsConstructor
@AllArgsConstructor
@Entity
public class Tweet {
 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 private Integer id;

 @CreationTimestamp
 private Timestamp postTime;

 @ManyToOne
 private User tweetUser;

 @NotNull
 private String content;

}

In the preceding code, @Entity is used to mark the Tweet class as a JPA entity. The @Id
annotation marks the id property as the identity field of the document. The @Data
annotation is from the Lombok library and is used to mark a POJO as a class that will hold
data. This means that getters, setters, the equals method, the hashCode method, and
the toString method will be generated for that class. @AllArgsConstructor, which will
generate a constructor with all the properties, and @NoArgsConstructor, which will
generate a default constructor.

Building a Twitter Clone with Spring Boot Chapter 7

[222]

Implementing the User domain model using JPA annotations will look like the following
code:

@Data
@NoArgsConstructor
@AllArgsConstructor
@Entity
public class User {

 @Id
 @NotNull
 private String userId;

 @JsonIgnore
 @NotNull
 private String password;

 @NotNull
 @Column(unique = true)
 private String screenName;

 @NotNull
 private Role role;

 private String bio;

 private String profileImage;

 @ElementCollection
 private Set<String> following;

}

In the preceding code, @Entity is used to mark the Tweet class as a JPA
entity. @AllArgsConstructor will generate a constructor with all the properties
and @NoArgsConstructor will generate a default constructor. @ElementCollection is
used to persist a Set collection.

Implementing the Role enum will look like the following code:

public enum Role {
 ADMIN, USER
}

Building a Twitter Clone with Spring Boot Chapter 7

[223]

Implementing Spring Data JPA repositories
With the domain model implemented successfully, JpaRepository for it can be
implemented using the Spring Data JPA. The specialty of this is that there is no need to
implement anything. Just writing an interface that extends from the JpaRepository
interface would be sufficient to expose methods to find one, find all, save, delete, and so
on. The following code shows TweetRepository:

public interface TweetRepository extends JpaRepository<Tweet, Integer> {

 List<Tweet> findByTweetUser_ScreenNameOrContentContains(String
 screenName, String mention);

}

Since tweets need to be listed for a particular logged in user or any tweets that mention
them (with the @ symbol in front of the name),
the findByTweetUser_ScreenNameOrContentContains method is implemented, which
will generate the appropriate query to search the tweets. Apart from this, all the default
findAll, findById, delete, and save methods will be available.

The following code shows UserRepository:

public interface UserRepository extends JpaRepository<User, String> {
 User findByScreenName(String screenName);
}

In the preceding code, there is a method by the name of findByScreenName, where
screenName is a property of the User class.

Caveat for going reactive with blocking JDBC
Java Database Connectivity (JDBC) API is still blocking and synchronous. There are
proposals to make it fully non-blocking and asynchronous, but that work is still in progress.
This means, as of writing this book, there is no way to do reactive programming if you
persist to a database using JDBC.

But there is a small caveat that can be used to mimic reactive behavior, you can use a pool
of threads to execute synchronous tasks asynchronously.

Building a Twitter Clone with Spring Boot Chapter 7

[224]

The following DbConfig class is used to do just that:

@Configuration
public class DbConfig {

 private Integer connectionPoolSize;

 public DbConfig(@Value("${spring.datasource.maximum-pool-size:10}")
 Integer connectionPoolSize) {
 this.connectionPoolSize = connectionPoolSize;
 }

 @Bean
 public Scheduler dbScheduler() {
 return Schedulers.fromExecutor(Executors.newFixedThreadPool
 (connectionPoolSize));
 }
}

The dbScheduler() method creates a Scheduler bean, which encapsulates a standard
Java fixed-size thread pool for executive tasks. This bean will be used in the service layer, as
explained in the next section.

Using Service to encapsulate business logic
It is a good practice to encapsulate business logic inside Service methods so that
controllers and repositories are loosely coupled. The following is a Service written to
encapsulate the business logic for Tweet:

@Service
@Transactional(readOnly = true)
public class TweetService {

 private final TweetRepository tweetRepository;
 private final Scheduler dbScheduler;

 public TweetService(TweetRepository tweetRepository, Scheduler
 dbScheduler) {
 this.tweetRepository = tweetRepository;
 this.dbScheduler = dbScheduler;
 }

 @Transactional(rollbackFor = Exception.class)
 public Mono<Tweet> save(Tweet tweet) {
 return Mono.fromCallable(() ->

Building a Twitter Clone with Spring Boot Chapter 7

[225]

 tweetRepository.save(tweet)).publishOn(dbScheduler);
 }

 public Flux<Tweet> getTweets() {
 return Flux.fromIterable(tweetRepository.findAll()).
 publishOn(dbScheduler);
 }

 public Flux<Tweet> getRelevantTweets(String screenName) {
 return Flux.fromIterable(tweetRepository.
 findByTweetUser_ScreenNameOrContentContains(screenName,
 "@"+screenName)).publishOn(dbScheduler);
 }
}

The save method saves Tweet in the database. The getTweets method retrieves
all Tweets from the database. getRelevantTweets will retrieve tweets intended for a user
identified by a particular screenName.

 The following is the Service written to encapsulate the business logic for the User:

@Service
@Transactional(readOnly = true)
public class UserService implements UserDetailsService {

 private final UserRepository userRepository;
 private final Scheduler dbScheduler;

 public UserService(UserRepository userRepository, Scheduler
 dbScheduler) {
 this.userRepository = userRepository;
 this.dbScheduler = dbScheduler;
 }

 @Transactional(rollbackFor = Exception.class)
 public Mono<User> save(User user) {
 return Mono.fromCallable(() ->
 userRepository.save(user)).publishOn(dbScheduler);
 }

 public Mono<User> getUserByScreenName(String screeName) {
 return Mono.fromCallable(() ->
 userRepository.findByScreenName(screeName)).
 publishOn(dbScheduler);
 }

 public Mono<User> getByUserId(String userId) {
 return Mono.fromCallable(() ->

Building a Twitter Clone with Spring Boot Chapter 7

[226]

 userRepository.findById(userId).get()).
 publishOn(dbScheduler);
 }

 @Override
 public UserDetails loadUserByUsername(String screename) throws
 UsernameNotFoundException {
 User user = userRepository.findByScreenName(screename);

 if (user == null) {
 throw new UsernameNotFoundException(screename);
 }

 return new org.springframework.security.core.
 userdetails.User(user.getScreenName(), user.getPassword(),
 Arrays.asList(new SimpleGrantedAuthority
 (user.getRole().toString())));
 }
}

The save method saves the User in the database. The getUserByScreenName method
retrieves a user by the screenName. The getUserById method retrieves a user by ID.
The UserDetailsService.loadUserByUsername method is implemented in this service
as well, to support Spring Security.

In these services, the DbConfig.dbScheduler bean is used to delegate the execution of
synchronous tasks asynchronously, using a thread pool. The Mono and Flux constructs
have a publishOn method, which can be used to achieve this delegation.

Using Angular 5 for the frontend
In this section, how to use Angular 5 to implement the frontend will be explained in detail.

Getting started with Angular 5 application
development
This section expects Node.js and npm to have been already installed using the Technical
requirements section. We will be using the Angular CLI to simplify the development because
it helps to create new Angular projects, generate code, and so on.

Building a Twitter Clone with Spring Boot Chapter 7

[227]

The Angular CLI can be installed using the following command, and more information
about it can be found at https:/ / cli. angular. io:

npm install -g @angular/cli

Now, the Angular client stub project can be created by issuing the following command:

ng new frontend

Now, the stub project is created and all the necessary source code and configuration files
will be available inside a directory named frontend, which will have roughly the
following structure:

frontend/
 ├── src/
 │ ├── app/
 │ ├── assets/
 │ ├── environments/
 │ └── index.html
 └── package.json

Also, Angular Material will be used to simplify layout design and to provide themes that
can be installed using the following command, after going into the frontend generated
directory:

npm install --save-exact @angular/material@5.2.4 @angular/cdk@5.2.4

Angular Material helps to develop applications that look good on any device, and it has
very detailed documentation at https:/ /material. angular. io.

Generating Angular services
Angular uses services to communicate with backend APIs, so it is important to understand
this and use Angular CLI to generate code for this. There are two main backend APIs that
need to be accessed via Angular services in our application. One is Tweets and the other is
Users. So, we shall generate those using the following commands:

ng g s tweets

This will generate a tweets.service.ts file under the /src/app directory, but for
simplicity of development, it should be moved to a new directory under
/src/app/shared/tweets for better grouping and structure.

https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://cli.angular.io
https://material.angular.io
https://material.angular.io
https://material.angular.io
https://material.angular.io
https://material.angular.io
https://material.angular.io
https://material.angular.io
https://material.angular.io
https://material.angular.io

Building a Twitter Clone with Spring Boot Chapter 7

[228]

The tweets.service.ts file looks like the following after modifying the stub code:

import { Injectable } from '@angular/core';
import { HttpClient } from '@angular/common/http';
import { HttpHeaders } from '@angular/common/http';
import { Observable } from 'rxjs/Observable';
import { AuthService } from '../../auth.service';

@Injectable()
export class TweetsService {
 public API = '//localhost:8080';
 public TWEETS_API = this.API + '/tweets';
 private authService;

 constructor(private http: HttpClient, authService: AuthService) {
 this.authService = authService;
 }

 getAll(): Observable<any> {
 let headers = new HttpHeaders().set('Authorization', 'Bearer
 '+this.authService.getToken());
 return this.http.get(this.TWEETS_API, {headers: headers});
 }

 save(tweet: any): Observable<any> {
 let headers = new HttpHeaders().set('Authorization', 'Bearer
 '+this.authService.getToken());
 let result: Observable<Object>;
 result = this.http.post(this.TWEETS_API, tweet, {headers:
 headers});
 return result;
 }

}

TweetsService will use HttpClient to retrieve tweets and save tweets using the backend
API, with the standard REST GET and POST methods.

Generating the users service
This will generate a users.service.ts file under the /src/app directory, but for
simplicity of development, it should be moved to a new directory
under /src/app/shared/users for better grouping and structure:

ng g s users

Building a Twitter Clone with Spring Boot Chapter 7

[229]

The users.service.ts file looks like the following after modifying the stub code:

import { Injectable } from '@angular/core';
import { HttpClient, HttpHeaders } from '@angular/common/http';
import 'rxjs/add/operator/map';
import { AuthService } from '../../auth.service';
import { Observable } from 'rxjs/Observable';

@Injectable()
export class UsersService {

 public API = '//localhost:8080';
 public USERS_API = this.API + '/users';

 constructor(public http: HttpClient, private authService:
 AuthService) {
 }

 getByScreenName(screenName): Observable<any> {
 const apiLink = this.USERS_API + '/' + screenName;
 let headers = new HttpHeaders().set('Authorization', 'Bearer
 '+this.authService.getToken());
 return this.http.get(apiLink, {headers: headers});
 }

 follow(userId): Observable<any> {
 const apiLink = this.USERS_API + '/' + userId + '/follow';
 let headers = new HttpHeaders().set('Authorization', 'Bearer
 '+this.authService.getToken());
 return this.http.put(apiLink, {}, {headers: headers});
 }
}

UsersService will use HttpClient to retrieve the user by screenName, follow a user,
and so on, using the backend API with the standard REST GET and PUT methods.

These two services need to be registered as providers in /src/app/app.module.ts:

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { TweetsService } from './shared/tweets/tweets.service';
import { UsersService } from './shared/users/users.service';
...

@NgModule({
 ...
 providers: [TweetsService, UsersService, ...],
 bootstrap: [AppComponent]

Building a Twitter Clone with Spring Boot Chapter 7

[230]

})
export class AppModule { }

Generating Angular page components
Since now there is a means to retrieve data from the backend, there needs to be ways to
display that data. There are three main pages that need to be created, which are the Tweets
List page, the Tweets Add page, and the User Profile page. So, we shall generate those
using the following command:

ng g c tweets-list

This will generate the tweets-list.component.css, tweets-list.component.html,
tweets-list.component.spec.ts, and tweets-list.component.ts files under
the /src/app/tweets-list directory.

The tweets-list.component.ts file will look like the following after modifying the
stub code:

import { Component, OnInit } from '@angular/core';
import { TweetsService } from '../shared/tweets/tweets.service';
import { AuthService } from '../auth.service'

@Component({
 selector: 'app-tweets-list',
 templateUrl: './tweets-list.component.html',
 styleUrls: ['./tweets-list.component.css']
})
export class TweetsListComponent implements OnInit {

 tweets: Array<any>;

 constructor(private tweetsService: TweetsService, private authService:
AuthService) { }

 ngOnInit() {
 this.authService.checkCredentials();
 this.tweetsService.getAll().subscribe(data => {
 this.tweets = data;
 });
 }

}

Building a Twitter Clone with Spring Boot Chapter 7

[231]

TweetsListComponent will use an injected TweetsService to get all tweets for a
particular user from the backend and store them in an array variable named tweets so that
they can be used in the HTML to be rendered.

tweets-list.component.html will look like the following after modifying the stub
code:

<mat-card>
 <mat-card-header>Tweets</mat-card-header>
 <mat-card-content>
 <mat-list>
 <mat-list-item *ngFor="let tweet of tweets">
 <a mat-list-avatar
 href="/profile/{{tweet.tweetUser.screenName}}">
 <img mat-list-avatar src="{{tweet.tweetUser.profileImage}}"
 alt="{{tweet.tweetUser.profileImage}}"/>
 <h3 mat-line>{{tweet.content}}</h3>
 </mat-list-item>
 </mat-list>
 </mat-card-content>

 <button mat-fab color="primary" [routerLink]="['/tweets-
 add']">Tweet</button>
</mat-card>

The preceding source code uses mat-* elements to structure the layout of the Tweets List
page and the mat-list-item element will use the tweets array from
the TweetsListComponent class to display tweet content, a user profile image, and a link
to the user profile. Also, it will have a button to redirect to the Tweets Add page, which
will be explained later. This will act as the main page. Routing for this is also defined in
the /src/app/app.module.ts file:

const appRoutes: Routes = [
 { path: '', redirectTo: '/tweets-list', pathMatch: 'full' },
 {
 path: 'tweets-list',
 component: TweetsListComponent
 }
 ...
];

@NgModule({
 ...
 imports: [
 ...
 RouterModule.forRoot(appRoutes)

Building a Twitter Clone with Spring Boot Chapter 7

[232]

],
 ...
})
export class AppModule { }

Generating the Tweets Add page
To generate the Tweets Add page, we use the following code:

ng g c tweets-add

This will generate the tweets-add.component.css, tweets-
add.component.html, tweets-add.component.spec.ts, and tweets-
add.component.ts files under the /src/app/tweets-add directory.

tweets-add.component.ts will look like the following after modifying the stub code:

import { Component, OnInit } from '@angular/core';
import { Subscription } from 'rxjs/Subscription';
import { ActivatedRoute, Router } from '@angular/router';
import { TweetsService } from '../shared/tweets/tweets.service';
import { NgForm } from '@angular/forms';
import { AuthService } from '../auth.service'

@Component({
 selector: 'app-tweets-add',
 templateUrl: './tweets-add.component.html',
 styleUrls: ['./tweets-add.component.css']
})
export class TweetsAddComponent implements OnInit {

 tweet: any = {};

 constructor(private route: ActivatedRoute,
 private router: Router,
 private tweetsService: TweetsService,
 private authService: AuthService) { }

 ngOnInit() {
 }

 gotoList() {
 this.authService.checkCredentials();
 this.router.navigate(['/tweets-list']);
 }

Building a Twitter Clone with Spring Boot Chapter 7

[233]

 save(form: NgForm) {
 this.authService.checkCredentials();
 this.tweetsService.save(form).subscribe(result => {
 this.gotoList();
 }, error => console.error(error));
 }

}

TweetsAddComponent will use an injected TweetsService to save a tweet submitted by
a logged in User. On success, it will redirect to the Tweets List.

tweets-add.component.html will look like the following after modifying the stub code:

<mat-card>
 <form #tweetsForm="ngForm" (ngSubmit)="save(tweetsForm.value)">
 <mat-card-header>
 <mat-card-title><h2>Add Tweet</h2></mat-card-title>
 </mat-card-header>
 <mat-card-content>
 <mat-form-field>
 <textarea matInput placeholder="Tweet"
 [(ngModel)]="tweet.content" required name="content"
 #content cols="50" rows="10"></textarea>
 </mat-form-field>
 </mat-card-content>
 <mat-card-actions>
 <button mat-raised-button color="primary" type="submit"
 [disabled]="!tweetsForm.form.valid">Save</button>
 <a mat-button routerLink="/tweets-list">Cancel
 </mat-card-actions>
 <mat-card-footer>
 </mat-card-footer>
 </form>
</mat-card>

The preceding source code uses mat-* elements to structure the layout of the Tweets Add
page. It also has a ngForm, which uses the TweetsAddComponent.save method to submit
a tweet to the backend by invoking the API.

Building a Twitter Clone with Spring Boot Chapter 7

[234]

Generating the User Profile page
To generate the User Profile page, we use the following code:

ng g c user-profile

This will generate the user-profile.component.css, user-
profile.component.html, user-profile.component.spec.ts, and user-
profile.component.ts files under the /src/app/user-profile directory.

user-profile.component.ts will look like the following after modifying the stub code:

import { Component, OnDestroy, OnInit } from '@angular/core';
import { Subscription } from 'rxjs/Subscription';
import { ActivatedRoute, Router } from '@angular/router';
import { AuthService } from '../auth.service';
import { UsersService } from '../shared/users/users.service';
import { NgForm } from '@angular/forms';

@Component({
 selector: 'app-user-profile',
 templateUrl: './user-profile.component.html',
 styleUrls: ['./user-profile.component.css']
})
export class UserProfileComponent implements OnInit, OnDestroy {

 subscription: Subscription;

 user: any;

 constructor(private route: ActivatedRoute,
 private router: Router,
 private usersService: UsersService,
 private authService: AuthService) { }

 ngOnInit() {
 this.authService.checkCredentials();
 this.subscription = this.route.params.subscribe(params => {
 const screenName = params['screenName'];
 this.usersService.getByScreenName(screenName).subscribe(data => {
 console.log(data);
 this.user = data;
 });
 });
 }

 follow(userId) {
 this.usersService.follow(userId).subscribe(data => {

Building a Twitter Clone with Spring Boot Chapter 7

[235]

 console.log(data);
 }, err => console.log("Error "+err));
 }

 ngOnDestroy() {
 this.subscription.unsubscribe();
 }

}

UserProfileComponent will use an injected UserService to follow a user by submitting
to the user ID of a logged in user.

tweets-add.component.html will look like the following after modifying the stub code:

<mat-list>
 <h2>{{user.screenName}}</h2>
 <mat-divider></mat-divider>
 <img mat-list-avatar src="{{user.profileImage}}"
alt="{{user.profileImage}}" width="200" height="200"/>
 <mat-divider></mat-divider>
 {{user.bio}}
 <mat-divider></mat-divider>
 <form #followForm="ngForm" (ngSubmit)="follow(user.userId)">
 <button mat-raised-button color="primary" type="submit">Follow</button>
 </form>
</mat-list>

The preceding source code uses mat-* elements to structure the layout of the User Profile
page. It also has a ngForm, which uses the UserProfileComponent.save method to
follow a user in the backend by invoking the API.

Using Spring Web Flux for the REST
controller
Controllers are the integration point between the model and resources in an Application.
They act like the glue that binds everything together while taking care of business logic
execution and response. The following Maven starter dependency needs to be added to
enable Spring WebFlux:

<dependencies>
 ...
 <dependency>
 <groupId>org.springframework.boot</groupId>

Building a Twitter Clone with Spring Boot Chapter 7

[236]

 <artifactId>spring-boot-starter-webflux</artifactId>
 </dependency>
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-tomcat</artifactId>
 </dependency>
</dependencies>

The preceding dependency will import Asynchronous Servlets, Spring, and
Tomcat dependencies to enable the successful writing of reactive web applications using
Spring.

Implementing controllers
The following code is for TweetController, which caters for retrieving and saving tweets:

@RestController
@RequestMapping("/tweets")
public class TweetController {

 private final TweetService tweetService;
 private final UserService userService;

 public TweetController(TweetService tweetService, UserService
 userService) {
 this.tweetService = tweetService;
 this.userService = userService;
 }

 @PostMapping
 public Mono<Tweet> save(Principal principal, @RequestBody Tweet
 tweet) {
 Mono<User> user =
 userService.getUserByScreenName(principal.getName());
 return user.flatMap(u -> {
 tweet.setTweetUser(u);
 return tweetService.save(tweet);
 });
 }

 @GetMapping
 public Flux<Tweet> getAll(Principal principal) {
 return tweetService.getRelevantTweets(principal.getName());
 }

}

Building a Twitter Clone with Spring Boot Chapter 7

[237]

From the preceding code, we can see that the save method uses Principal, which has
information about the logged in user, to save a Tweet object sent as the request body of a
POST method.

The getAll method uses Principal, which has information about the logged in user, to
retrieve all the tweets relevant to that user.

The following code is for UserController, which caters for retrieving the user by
screenName and following a user by user ID:

@RestController
@RequestMapping("/users")
public class UserController {

 private final UserService userService;

 public UserController(UserService userService) {
 this.userService = userService;
 }

 @GetMapping("/{screenName}")
 public Mono<User> getUserByScreenName(@PathVariable String
 screenName) {
 return userService.getUserByScreenName(screenName);
 }

 @PutMapping("/{userId}/follow")
 @ResponseStatus(code = HttpStatus.OK)
 public void followUser(Principal principal, @PathVariable String
 userId) {
 Mono<User> user =
 userService.getUserByScreenName(principal.getName());
 user.subscribe(u -> {
 if (!u.getUserId().equalsIgnoreCase(userId)) {
 u.getFollowing().add(userId);
 userService.save(u);
 }
 });
 }
}

Building a Twitter Clone with Spring Boot Chapter 7

[238]

The getUserByScreenName method will use screenName sent as part of the URL to
retrieve the matching user.

The followUser method will use the Principal object and the user ID submitted as part
of the URL to follow a user.

Enabling Angular frontend access to controllers
The backend REST controllers will eventually run on their own web server and the Angular
frontend will run on its own server. This means each runs with different origins (domain,
protocol, port) and they need to communicate with each other. This is where cross-origin
resource sharing (CORS) comes in.

When client code like the Angular frontend tries to access an endpoint that is not residing
in the same place as itself, the browser will send an HTTP OPTIONS request to the same
endpoint to check whether the Angular frontend's origin is allowed. It will decide this by
the response headers it receives from the OPTIONS request, such as ACCESS-CONTROL-
ALLOW-ORIGIN, ACCESS-CONTROL-ALLOW-METHODS, and so on.

In order to support this, the following CorsFilter configuration needs to be done in the
REST API backend:

@Bean
public FilterRegistrationBean corsFilter() {
 UrlBasedCorsConfigurationSource source = new
 UrlBasedCorsConfigurationSource();
 CorsConfiguration config = new CorsConfiguration();
 config.setAllowCredentials(true);
 config.addAllowedOrigin("*");
 config.addAllowedHeader("*");
 config.addAllowedMethod("*");
 source.registerCorsConfiguration("/**", config);
 FilterRegistrationBean bean = new FilterRegistrationBean(new
 CorsFilter(source));
 bean.setOrder(Ordered.HIGHEST_PRECEDENCE);
 return bean;
}

The preceding filter allows all origins, all headers, and all methods for any endpoint.

Building a Twitter Clone with Spring Boot Chapter 7

[239]

Using Spring Security for authentication and
authorization
Spring Security is a widely used project to enable authentication and authorization using
many different mechanisms, such as form-based logic, header-based login (Basic), and so
on. But, there are more complex scenarios, such as JWT, SSO, and OAuth2, that can also be
enabled using Spring Security. In this section, we will look at how to use Spring Security
with OAuth2 to configure an authentication and authorization mechanism for the Tweety
application.

Understanding OAuth2
OAuth2 is an authorization contract that enables applications to be secured by providing
limited access to user accounts that are available an on an HTTP service. Parties involved in
an OAuth2 authorization are as follows:

Resource: The protected artifact in the Resource Server
Resource Owner: The owner of the resource being requested
Resource Server: The server that has the resource being requested
Authorization Server: The server that has the responsibility to authorize the
request
Client: The application that is trying to access a resource

Let's look at the orchestration flow between these parties in the following flow diagram:

Building a Twitter Clone with Spring Boot Chapter 7

[240]

From the preceding diagram, we infer the following:

The first step will initiate when the User tries to access a resource using an1.
OAuth2 client, such as an Angular application in our case.
The OAuth2 client will send a POST /oauth/token request to the Authorization2.
Server with the grant_type and credentials.
The Authorization Server will validate the grant_type and credentials,3.
generate an Access_token, and return it to the OAuth2 client.
Then, with the Access_token in hand, the OAuth2 client can access the protected4.
resource endpoint by sending it as a header to the Resource Server.
Finally, the Resource Server will return the response from the protected resource5.
endpoint.

Setting up dependencies and configuration
Initially, before enabling Spring Security OAuth2, the dependency and configuration
classes need to be specified. The following Maven starter dependency needs to be
included:

<dependencies>
 ...
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
 </dependency>
 ...
 <dependency>
 <groupId>org.springframework.security.oauth</groupId>
 <artifactId>spring-security-oauth2</artifactId>
 <version>2.3.3.RELEASE</version>
 </dependency>
</dependencies>

The preceding entries will import all dependencies related to Spring Security and Spring
Security OAuth2. Now, let's look at the configuration.

Building a Twitter Clone with Spring Boot Chapter 7

[241]

Configuring the Resource Server
The following OAuth2ResourceServerConfigurer will configure all the necessary filters
required to run a Resource Server:

@Configuration
@EnableResourceServer
public class OAuth2ResourceServerConfigurer extends
ResourceServerConfigurerAdapter {

}

The preceding configuration class extends from ResourceServerConfigurerAdapter
and is annotated with @EnableResourceServer to set up all the necessary filters.

Configuring the Authorization Server
The following OAuth2AuthorizationServerConfigurer will configure all the necessary
filters required to run an Authorization Server:

@Configuration
@EnableAuthorizationServer
public class OAuth2AuthorizationServerConfigurer extends
AuthorizationServerConfigurerAdapter {

 @Autowired
 private AuthenticationManager authenticationManagerBean;

 @Override
 public void configure(ClientDetailsServiceConfigurer clients)
 throws Exception {
 clients.inMemory().withClient("angularjsapp").secret("
 {noop}angularjs123").authorizedGrantTypes("password").
 scopes("read,write");
 }

 @Override
 public void configure(AuthorizationServerEndpointsConfigurer
 endpoints) throws Exception {
 endpoints.authenticationManager(authenticationManagerBean);
 }
}

Building a Twitter Clone with Spring Boot Chapter 7

[242]

The preceding configuration class extends from
AuthorizationServerConfigurerAdapter and is annotated with
@EnableAuthorizationServer to set up all the necessary filters. Also, in
the configure(ClientDetailsServiceConfigurer clients) method, it configures
in-memory OAuth2 client credentials for accessing the protected /oauth/token endpoint,
and in the configure(AuthorizationServerEndpointsConfigurer endpoints)
method, it configures AuthenticationManager, which is injected.

Configuring web security
The following WebSecurityConfig will configure all the necessary filters required to
protect the resource endpoints:

@Configuration
@EnableWebSecurity
public class WebSecurityConfig extends WebSecurityConfigurerAdapter {

 @Autowired
 private UserDetailsService userDetailsService;

 @Override
 protected void configure(AuthenticationManagerBuilder auth) throws
 Exception {
 auth.userDetailsService(userDetailsService);
 }

 @Override
 @Bean
 public AuthenticationManager authenticationManagerBean() throws
 Exception {
 return super.authenticationManagerBean();
 }

}

In the configure(AuthenticationManagerBuilder auth) method, it has
UserDetailsService configured using an injected bean UserDetailsService, which is
injected. As our UserService already implements this interface, it will be injected into
this.

Building a Twitter Clone with Spring Boot Chapter 7

[243]

Using an Angular service for OAuth2 authentication
and authorization
OAuth2-based security is enabled in the backend API now. Angular can be modified to
include code to generate and retrieve an access_token, use it to access protected resource
endpoints. For this particular reason, an AuthService like the following one is used:

import {Injectable} from '@angular/core';
import {Router} from '@angular/router';
import { Cookie } from 'ng2-cookies';
import { Http, Response, Headers, RequestOptions } from '@angular/http';
import { Observable } from 'rxjs/Observable';
import 'rxjs/add/operator/catch';
import 'rxjs/add/operator/map';

@Injectable()
export class AuthService {
 constructor(
 private router: Router, private http: Http){}

 getAndSaveAccessToken(loginData){
 let params = new URLSearchParams();
 params.append('username',loginData.username);
 params.append('password',loginData.password);
 params.append('grant_type','password');

 let headers = new Headers({'Content-type': 'application/x-www-form-
 urlencoded; charset=utf-8',
 'Authorization': 'Basic
 '+btoa("angularjsapp:angularjs123")});
 let options = new RequestOptions({ headers: headers });
 this.http.post('http://localhost:8080/oauth/token',
 params.toString(), options)
 .map(res => res.json())
 .subscribe(
 data => this.saveToken(data),
 err => console.log(err.body)
);
 }

Building a Twitter Clone with Spring Boot Chapter 7

[244]

The preceding getAndSaveAccessToken method will access the /oauth/token endpoint
with an authorization header with the value 'Basic
'+base64encode("angularjsapp:angularjs123"). This will pass the
grant_type parameter with the value's password, username, and the password of the
user trying to log in. In return, the endpoint will return a JSON with access_token,
refresh_token, expires_in, and others. This is depicted in the following code:

saveToken(token){
 var expireDate = new Date().getTime() + (1000 * token.expires_in);
 Cookie.set("access_token", token.access_token, expireDate);
 this.router.navigate(['/']);
}

The preceding saveToken method will save the retrieved access_token from the
preceding method into a browser cookie for later use. Consider the following code:

getToken() {
 return Cookie.get('access_token');
}

The preceding getToken will return the access_token that's stored as a browser cookie:

checkCredentials(){
 if (!Cookie.check('access_token')){
 this.router.navigate(['/login']);
 } else {
 let headers = new Headers({'Content-type': 'application/x-www-form-
 urlencoded; charset=utf-8',
 'Authorization': 'Bearer '+Cookie.get('access_token')});
 let options = new RequestOptions({ headers: headers });
 this.http.get('http://localhost:8080/tweets', options)
 .map(res => res.json())
 .subscribe(
 data => console.log(data),
 err => {
 console.log(err);
 this.router.navigate(['/login']); }
);
 }
}

Building a Twitter Clone with Spring Boot Chapter 7

[245]

The preceding checkCredentials method will first check whether a browser cookie for
the access_token is already available; if found, it will check whether it is still valid by
sending a dummy request. If either the access_token is not found or it is invalid, it will
redirect to the login page. This is shown with the following code:

logout() {
 Cookie.delete('access_token');
 this.router.navigate(['/login']);
}

The preceding logout method deletes the access_token cookie and navigates to the login
page.

In order to use this AuthService, there needs to be a login page defined. That is why
/src/app/login.component.ts and /src/app/login.component.html have been
created.

The following LoginComponent will use it as follows:

import { Component } from '@angular/core';
import { AuthService } from './auth.service';
import { NgForm } from '@angular/forms';

@Component({
 selector: 'login-form',
 providers: [AuthService],
 templateUrl: './login.component.html'
})
export class LoginComponent {
 public loginData = {username: "", password: ""};

 constructor(private authService:AuthService) {}

 login(ngForm: NgForm) {
 this.authService.getAndSaveAccessToken(ngForm);
 }
}

Use AuthService to get and save the access token with the username and password
extracted from the following form:

<mat-card>
 <form #loginForm="ngForm" (ngSubmit)="login(loginForm.value)">
 <mat-card-header>
 <mat-card-title><h2>Login</h2></mat-card-title>
 </mat-card-header>
 <mat-card-content>

Building a Twitter Clone with Spring Boot Chapter 7

[246]

 <mat-form-field>
 <input matInput placeholder="Username"
 [(ngModel)]="loginData.username" required name="username"
 #username/>
 </mat-form-field>
 <mat-form-field>
 <input type="password" matInput placeholder="Password"
 [(ngModel)]="loginData.password" required name="password"
 #password/>
 </mat-form-field>
 </mat-card-content>
 <mat-card-actions>
 <button mat-raised-button color="primary" type="submit"
 [disabled]="!loginForm.form.valid">Login</button>
 </mat-card-actions>
 <mat-card-footer>
 </mat-card-footer>
 </form>
</mat-card>

The form is submitted to the LoginComponent.login method, and in TweetsService
and UsersService, the AuthService.getToken method is used to submit the
access_token as a header before sending requests to protected resource endpoints.

Demonstrating Tweety
When everything is built and run, and run, the backend will be able to be accessed using
the http://localhost:8080 URL.

There are several ways to run a Spring Boot application; some of them are mentioned here:

Running the Spring Boot application main class using an IDE.
Building a JAR or WAR file using the following Maven command and then
running:

$ cd backend
$ mvn clean install
$ java -jar target/<package-name>.[jar|war]

Building a Twitter Clone with Spring Boot Chapter 7

[247]

Running Tweety using the Spring Boot Maven plugin:

$ mvn clean spring-boot:run

Building the frontend using the following command:

 $ npm install

Running the frontend using the Angular CLI command that will start the
frontend application in http://localhost:4200:

 $ ng serve

Accessing the login page
Before anything can be done on Tweety, users need to log in. The following is the login
page, which will be presented when a user tries to access http://localhost:4200
initially:

There are two users available by default in the system. One has the username shazin and
the password abc123. The other has the username shahim with the password abc123.

Building a Twitter Clone with Spring Boot Chapter 7

[248]

Accessing the List Tweets page
When logged in as user shazin, the following is the page listing tweets:

Accessing the Send Tweet page
Sending Tweet can be done using the following page, by clicking the Tweet button from
the List Tweets page:

Building a Twitter Clone with Spring Boot Chapter 7

[249]

The Tweet body mentions that starting with the @ symbol is possible. This sort of tweet will
be visible to the mentioned user. After sending a tweet, it will redirect back to the List
Tweets page with a newly added tweet:

Accessing the User Profile page
By clicking the avatar image in of a tweet, that user's profile page can be accessed as
follows:

Building a Twitter Clone with Spring Boot Chapter 7

[250]

Finally, logging in as the user shahim lists his tweets and mentions as follows:

Summary
Congratulations on completing this chapter, where the skills and knowledge required to
build a Twitter clone, nicknamed Tweety, were discussed in detail. This chapter started off
by explaining what an Angular frontend application is and how the MVVM pattern can
benefit both in terms of development and maintenance. We talked about the requirements
for the backend and frontend to be developed and used a Unified Modeling
Language (UML) use case diagram to explain the requirements visually.

This chapter also talked about how to understand the domain model of an application,
based on requirements (Tweety), and how to use Spring Data JPA to convert those domain
models into entities in an H2 database. A UML class diagram was used to explain the
domain model in detail.

Furthermore, this chapter explained how to write data repositories for documents using the
Spring Data JPA with minimum effort using common CRUD operations. Next, we
explained how to write custom query methods in data repositories. We also explained how
to encapsulate business logic inside Spring Service components, and some caveats to
provide reactive capabilities with non-reactive data layers.

Building a Twitter Clone with Spring Boot Chapter 7

[251]

Subsequently, this chapter talked about how to write presentation views to list tweets and
create a tweet using the Angular Framework. We also explained how to use Angular
Material syntax to develop pages.

Near the end of this chapter, we talked about how to use Spring WebFlux controllers to
provide routing and coordinating for different services. Furthermore, we talked about how
to protect controller endpoints using Spring Security OAuth2 to allow the proper
authentication and authorization of users. This chapter also demonstrated the use of
Tweety in detail. Let's learn more about some interesting features of Spring Boot 2.0 in the
following chapters.

Questions
Please answer the following questions to see whether you have successfully mastered this
chapter:

What is MVVM?1.
What is Angular?2.
What is the Angular CLI?3.
What is Angular Material?4.
What is CORS?5.
What is OAuth2?6.
Which parties are involved in OAuth2?7.

Further reading
In order to improve your knowledge of Angular and Spring Security OAuth2, the following
books are recommended, which will be helpful in the coming chapters:

Learning Angular, Second Edition: https:/ /www. packtpub. com/ web-development/
learning- angular- second- edition

OAuth 2.0 Cookbook: https:/ /www. packtpub. com/ virtualization- and-cloud/
oauth-20- cookbook

https://www.packtpub.com/web-development/learning-angular-second-edition
https://www.packtpub.com/web-development/learning-angular-second-edition
https://www.packtpub.com/web-development/learning-angular-second-edition
https://www.packtpub.com/web-development/learning-angular-second-edition
https://www.packtpub.com/web-development/learning-angular-second-edition
https://www.packtpub.com/web-development/learning-angular-second-edition
https://www.packtpub.com/web-development/learning-angular-second-edition
https://www.packtpub.com/web-development/learning-angular-second-edition
https://www.packtpub.com/web-development/learning-angular-second-edition
https://www.packtpub.com/web-development/learning-angular-second-edition
https://www.packtpub.com/web-development/learning-angular-second-edition
https://www.packtpub.com/web-development/learning-angular-second-edition
https://www.packtpub.com/web-development/learning-angular-second-edition
https://www.packtpub.com/web-development/learning-angular-second-edition
https://www.packtpub.com/web-development/learning-angular-second-edition
https://www.packtpub.com/web-development/learning-angular-second-edition
https://www.packtpub.com/web-development/learning-angular-second-edition
https://www.packtpub.com/web-development/learning-angular-second-edition
https://www.packtpub.com/web-development/learning-angular-second-edition
https://www.packtpub.com/web-development/learning-angular-second-edition
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook
https://www.packtpub.com/virtualization-and-cloud/oauth-20-cookbook

8
Introducing Spring Boot 2.0

Asynchronous
This chapter will introduce the reader to asynchronous application development with
Spring Boot 2.0 and explain how it can be used to develop decoupled, scalable application
pipelines. We will begin by explaining what asynchronous application development is, and
how to achieve asynchronous capabilities. Later, we will explain what Apache Kafka is and
how to use Apache Kafka as a middle tier to achieve decoupling and scalability.
Furthermore, we will explain what the Quartz Scheduler is and how to use it to achieve
scheduled executions. Finally, we will demonstrate an image-resizing application that runs
asynchronously and can be scaled.

The following topics will be covered in this chapter:

Using Spring Kafka for communication
Using Quartz for scheduling
Demonstrating Image Resizer

Technical requirements
In order to implement the web application using Spring Boot, the following build tools
need to be downloaded and installed:

To install Java Development Kit (JDK) 8, download it from its official page
at http:/ /www. oracle. com/ technetwork/ java/ javase/ downloads/ jdk8-
downloads- 2133151. html

To install Maven 3, download it from its official page at https:/ /maven. apache.
org/download. cgi

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi

Introducing Spring Boot 2.0 Asynchronous Chapter 8

[253]

To install IntelliJ IDEA, download it from its official page at https:/ /www.
jetbrains. com/ idea/ download/

To install Apache Kafka, download it from its official page at https:/ /kafka.
apache.org/ downloads

The source code for this chapter can be found at https:/ /github. com/PacktPublishing/
Spring-Boot-2.0- Projects- Fundamentals- of-Spring- Boot- 2.0, under
the Chapter08 directory.

Getting started
In this section, readers will get an overview of asynchronous applications. The
requirements, design, and implementation details will be discussed in brief.

Synchronous applications
Synchronous applications are programs that can process events, requests, and tasks
sequentially with an order, and where one needs to finish in order for another to begin:

As shown in the preceding diagram, an asynchronous application will process one request
after another, meaning any requests coming simultaneously will be forced to wait until the
initially received request has finished processing. These sort of applications have their pros
and cons, for example, in GUI frameworks such as Java Swing.

https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0

Introducing Spring Boot 2.0 Asynchronous Chapter 8

[254]

Asynchronous applications
Asynchronous applications are programs that can process events, requests, and tasks with
time slicing so that one request can be active and run while another one is also but not
running:

Modern web servers, As shown in the preceding diagram, an asynchronous application can
accept and delegate multiple requests threads/processes to keep accepting requests for a
certain level. While doing this, the application will usually have a queue to hold received
yet unprocessed requests up until threads to process them become available.

The requirement of asynchronous applications
The requirement is to build two asynchronous, decoupled applications that will
communicate using a message queue to resize images that are uploaded into a system. This
resizing is done so that the same images can be viewed from different devices without a
problem.

Introducing Spring Boot 2.0 Asynchronous Chapter 8

[255]

The use case diagram
The following use case diagram shows the requirements for the Image Resizer:

The actor is Quartz Scheduler as this application doesn't allow user interactions. It has the
following use cases:

List Images: This use case is where images that need to be resized are identified
and listed.
Produce to Queue: This use case is where images that need resizing are
produced to the message queue to be consumed.
Consumer from Queue: This use case is where an Image Resize Request is
consumed from the queue.
Resize Image: This use case is where the actual resizing of an image is taking
place. A new image with the given width and height will be created.
Move to Done: This use case is where an original image that was used for
resizing is moved to a Done location to avoid redoing the resizing on the same
image.

Introducing Spring Boot 2.0 Asynchronous Chapter 8

[256]

The architecture of an image resizing application
The architecture for the image resizing application is as follows:

There are three main components involved in image resizing:

Image Resize Request Producer: This component is responsible for finding out
which images need to be resized and delegating the image resizing to Image
Resize Request Consumer by submitting the request to a Message Queue. This
allows decoupling and scalability.
Message Queue: This component is responsible for queuing Image Resize
Requests until they are consumed and processed by the Image Resize Request
Consumer.
Image Resize Request Consumer: This component is responsible for consuming
requests from the Message Queue and actually resizing the images based on the
width and height specified in the request. There can be more than one consumer.

Using Spring Kafka for communication
As explained in the previous section, an asynchronous application will use some kind of
queue to hold received yet unprocessed requests till those requests are processed. For this
purpose, an in-memory data structure, such as a Java ConcurrentLinkedQueue, can be
used. But clearly, this method has limitations, as the queue exists only until the process
exists and there is no reliability, durability, fault tolerance, and scalability. This is where
message queues come in handy.

Introducing Spring Boot 2.0 Asynchronous Chapter 8

[257]

There are so many widely used message queues available in both free and open source
form as well as proprietary form. The online website of Queues (http:/ /queues. io/) lists
many of these widely used queues and can be used as a reference guide to decide the
perfect queue for an application.

In the application being developed, however, Apache Kafka will be used as the messaging
queue. Let's have a look at what it is and how it benefits as a middle tier for the
asynchronous application being developed.

Understanding Apache Kafka
Apache Kafka is a production grade, high performing, scalable, fault-tolerant messaging
platform that enables the following three features:

Publishing and subscribing streams of records similar to a message queue
Storing streams of records in a fault tolerant, durable way
Processing streams of records

Apache Kafka consists of the following key concepts:

Kafka is run on clusters, which span over multiple servers across different data
centers
Kafka cluster stores stream of records categorized into topics
Each record consists of a key, a value, and a timestamp

A topic in Apache Kafka is the core abstraction of the stream of records. It is multi-
subscriber, meaning it can have zero, one, or many subscribers listening for data written to
it. Each topic is represented as a partitioned immutable commit log, which is appended and
has a unique ID number known as the offset, used to uniquely identify each record in the
partition.

Apache Kafka can be used both as a message queue and a publish-subscribe using the same
topic concept. When a topic is used as a message queue, even when multiple consumers
listen to that topic, only one would be able to consume a message, wherein publish-
subscribe models messages can be broadcast to multiple consumers.

In this application, however, we will be using an Apache Kafka topic as a message queue.
Also, the Spring Kafka library will be used to enable easy communication with Apache
Kafka. Spring Kafka provides templates and listeners to both produce to and consume from
Apache Kafka topics easily.

http://queues.io/
http://queues.io/
http://queues.io/
http://queues.io/
http://queues.io/
http://queues.io/
http://queues.io/
http://queues.io/

Introducing Spring Boot 2.0 Asynchronous Chapter 8

[258]

Setting up dependencies and configuration
Initially, before using Apache Kafka for message queue dependency and configuration,
a class needs to be specified. The following Maven starter dependency classes need to be
included:

<dependencies>
 <dependency>
 <groupId>org.springframework.kafka</groupId>
 <artifactId>spring-kafka</artifactId>
 <version>2.1.7.RELEASE</version>
 </dependency>
</dependencies>

The preceding entries will import all the dependencies of Spring Kafka, which can be
used to produce and consume from Apache Kafka topics.

Configuration for the Image Resize Request
Producer
The Image Resize Request Producer is responsible for listing images that need to be resized
and submitting those to the Apache Kafka topic. The following is the configuration for the
producer:

@SpringBootApplication
public class SpringBootAsyncProducerApplication {

 ...

 @Bean
 public ReplyingKafkaTemplate<String, String, String> kafkaTemplate(
 ProducerFactory<String, String> pf,
 KafkaMessageListenerContainer<String, String> replyContainer) {
 return new ReplyingKafkaTemplate<>(pf, replyContainer);
 }

 @Bean
 public KafkaMessageListenerContainer<String, String> replyContainer(
 ConsumerFactory<String, String> cf) {
 ContainerProperties containerProperties = new
ContainerProperties("asyncReplies");
 containerProperties.setGroupId("async");
 return new KafkaMessageListenerContainer<>(cf, containerProperties);
 }

Introducing Spring Boot 2.0 Asynchronous Chapter 8

[259]

 @Bean
 public NewTopic asyncRequests() {
 return new NewTopic("asyncRequests", 10, (short) 2);
 }

 @Bean
 public NewTopic asyncReplies() {
 return new NewTopic("asyncReplies", 10, (short) 2);
 }

}

In the preceding configuration, two Apache Kafka topics by the names asyncRequests
and asyncReplies are created as Spring Beans with a number of replications 10 and
replication factor of 2. The asyncRequests topic is responsible for sending the message to
the consumer and the asyncReplies topic is used to get a response back from the
consumer as an acknowledgment.

The kafkaTemplate Spring Bean is created with an instance of ReplyingKafkaTemplate
to enable a request-response style of communication.

The replyContainer Spring Bean is created to configure the reply received from
the asyncReplies topic.

Furthermore, the following ScheduledImageResizeRequestSubmitter is used to list
images and submit those to the Apache Kafka topic to be consumed and processed:

@Component
public class ScheduledImageResizeRequestSubmitter {

 private static final Logger LOGGER =
LoggerFactory.getLogger(ScheduledImageResizeRequestSubmitter.class);

 private final ReplyingKafkaTemplate<String, String, String> template;
 private final ObjectMapper objectMapper;
 private final String imagesDirectory;

 public
ScheduledImageResizeRequestSubmitter(ReplyingKafkaTemplate<String, String,
String> template, ObjectMapper objectMapper,
@Value("${images.input.directory}") String imagesInputDirectory) {
 this.template = template;
 this.objectMapper = objectMapper;
 this.imagesDirectory = imagesInputDirectory;
 }

Introducing Spring Boot 2.0 Asynchronous Chapter 8

[260]

The preceding constructor injects and initializes ReplyingKafkaTemplate,
ObjectMapper, and the image's input directory path.

The following code uses two reactor Flux objects:

public void scheduleTaskWithCronExpression() {
 Flux.just(new
File(imagesDirectory).listFiles()).filter(File::isFile).subscribe(
 f -> {
 Flux.just(new Dimension(800, 600), new Dimension(180, 180), new
Dimension(1200, 630)).subscribe(d -> {
 try {
 ImageResizeRequest imageResizeRequest = new ImageResizeRequest((int)
d.getWidth(), (int) d.getHeight(), f.getAbsolutePath());
 ProducerRecord<String, String> record = new
ProducerRecord<>("asyncRequests",
objectMapper.writeValueAsString(imageResizeRequest));
 record.headers().add(new RecordHeader(KafkaHeaders.REPLY_TOPIC,
"asyncReplies".getBytes()));
 RequestReplyFuture<String, String, String> replyFuture =
template.sendAndReceive(record);
 ConsumerRecord<String, String> consumerRecord = replyFuture.get();
 } catch (Exception e) {
 LOGGER.error("Error while sending message", e);
 }
 },
 e -> LOGGER.error("Error while running lambda"),
 () -> f.renameTo(new File(f.getParent() + "/Done", f.getName())));
 }
);
 }

}

The initial one is to list files that are not directories inside of the directory specified by the
variable imagesDirectory. The value for this variable is configurable and loaded from
the application.properties file, as follows:

images.input.directory=C:\\Users\\Images

Then, it will create another Flux object to send dimensions so that image resizing can take
place. So, it will be one image converted into multiple dimensions. For this scenario, the 800
x 600, 180 x 180, and 1,200 x 630 dimensions are used.

Introducing Spring Boot 2.0 Asynchronous Chapter 8

[261]

It will send ImageResizeRequest serialized into a JSON so that the consumers can
deserialize and use it. ImageResizeRequest is shown as follows:

@Data
@NoArgsConstructor
@AllArgsConstructor
public class ImageResizeRequest {

 private Integer width;

 private Integer height;

 private String inputFile;

}

Finally, the ImageResizeRequest JSON will be sent to the asyncRequests topic with
the REPLY_TOPIC header set to asyncReplies and sent to the Apache Kafka using
the ReplyingKafkaTemplate bean.

Configuration for Image Resize Request
Consumer
The Image Resize Request Consumer is responsible for listening for messages coming from
Apache Kafka topic and doing the actual resizing of the images. Consider the following
code:

@SpringBootApplication
public class SpringBootAsyncConsumerApplication {

 ...

 @KafkaListener(id="server", topics = "asyncRequests")
 @SendTo
 public String listen(String input) {
 try {
 ImageResizeRequest imageResizeRequest =
objectMapper().readValue(input, ImageResizeRequest.class);
 File imageFile = new File(imageResizeRequest.getInputFile());
 String[] nameParts = imageFile.getName().split("\\.");
 BufferedImage image = ImageIO.read(imageFile);
 ImageIO.write(resize(image, imageResizeRequest.getWidth(),
imageResizeRequest.getHeight()), "png", new File(imageFile.getParent() +
"/Done", imageResizeRequest.getWidth() + "x" +

Introducing Spring Boot 2.0 Asynchronous Chapter 8

[262]

imageResizeRequest.getHeight() + "-" + nameParts[0] + ".png"));
 } catch (IOException e) {
 LOGGER.error("Error while processing input {}", input, e);
 }
 return input;
 }

 @Bean
 public NewTopic asyncRequests() {
 return new NewTopic("asyncRequests", 10, (short) 2);
 }

}

In the preceding configuration, two Apache Kafka topics by the
name asyncRequests are created as a Spring Bean with a number of replications 10 and
replication factor of 2. The listen method is responsible for consuming requests sent by
the producer via the Apache Kafka topic ayncRequests. This method is annotated with
@KafkaListener, which points to the asyncRequests topic and also has the @SendTo
annotation to send a reply back to the asyncReplies topic.

Starting Spring Boot applications in a non-web
mode
Since both Image Resize Request Producer and Image Resize Request Consumer need to
run as console applications, which shouldn't run inside a web container, such as Tomcat,
Jetty, a slightly different bootstrapping code, is used in the main methods, as follows:

public static void main(String... args) {
 new
SpringApplicationBuilder(ConfigClass.class).web(WebApplicationType.NONE).bu
ild().run(args);
}

In the preceding code, the SpringApplicationBuilder builder class is used to non-web
the Spring Boot application. ConfigClass.class needs to be replaced with the actual
configuration class that defines the beans. Finally, it is built and run.

Introducing Spring Boot 2.0 Asynchronous Chapter 8

[263]

Using Quartz for scheduling
As explained in the previous sections, the Image Resize Request Producer is supposed to
run on schedule so that the Image Resize Request Consumers can do the actual work of
resizing. In order to achieve this, Quartz Scheduler is used.

Understanding Quartz
Quartz is a fully open source, high-performing scheduling framework that can be easily
integrated with Java applications of any sort. Quartz can be used to schedule simple as well
as complex jobs, which may be scaled to hundreds if not thousands of jobs. The specialty of
Quartz is that it also supports enterprise-level features, such as transactional jobs and
clustering.

Setting up dependencies and configuration
The Image Resize Request Producer is responsible for listing images and submitting to
Apache Kafka periodically. For this reason, spring-boot-starter-quartz is used as
follows:

<dependencies>
 ...
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-quartz</artifactId>
 </dependency>
</dependencies>

The preceding Maven dependency will import all the required dependencies for Quartz as
well as auto-configuration.

Configuration for Quartz scheduling
In order to periodically submit an Image Resize Request, the Image Resize Request
Producer must be able to run at any given interval. For this purpose, CRON expressions are
used, which can be specified in a variety of ways (for example, run every Monday at 12.00
a.m., run every day at 2.00 p.m, and so on). The following CRON expression to run every
minute is configured as a property in the application.properties file:

images.cron=0 * * * * ?

Introducing Spring Boot 2.0 Asynchronous Chapter 8

[264]

In the preceding CRON expression 0 represents seconds, first * represents minutes, second *
represents hours, third * represents day of month, fourth * represents month, fifth *
represents day of week and ? represents the year. CRON expressions can be very simple of
very complex so use Oracle Documentation of CRON to learn more. The following
configuration is used in the SpringBootAsyncProducerApplication class to enable
Quartz scheduling:

@Bean MethodInvokingJobDetailFactoryBean
methodInvokingJobDetailFactoryBean(ScheduledImageResizeRequestSubmitter
scheduledImageResizeRequestSubmitter) {
 MethodInvokingJobDetailFactoryBean methodInvokingJobDetailFactoryBean =
new MethodInvokingJobDetailFactoryBean();
methodInvokingJobDetailFactoryBean.setTargetObject(scheduledImageResizeRequ
estSubmitter);
methodInvokingJobDetailFactoryBean.setTargetMethod("scheduleTaskWithCronExp
ression");

 return methodInvokingJobDetailFactoryBean;
}

@Bean
public CronTriggerFactoryBean trigger(JobDetail job,
@Value("${images.cron}") String imagesCron) {
 CronTriggerFactoryBean cronTriggerFactoryBean = new
CronTriggerFactoryBean();
 cronTriggerFactoryBean.setCronExpression(imagesCron);
 cronTriggerFactoryBean.setJobDetail(job);
 return cronTriggerFactoryBean;
}

The methodInvokingJobDetailFactoryBean bean defines JobDetail, which
uses ScheduledImageResizeRequestSubmitter, which are defined earlier, to
specify targetObject as well as the targetMethod with
the scheduleTaskWithCronExpression method, which needs to run when the CRON
expression triggers.

The trigger bean defines CronTrigger using CronTriggerFactoryBean, which takes
in the property images.cron from application.properties to configure it.
The JobDetail created inside methodInvokingJobDetailFactoryBean will be invoked
when this CRON trigger is fired.

https://docs.oracle.com/cd/E14003_01/doc/doc.1014/e12030/cron_expressions.htm

Introducing Spring Boot 2.0 Asynchronous Chapter 8

[265]

Demonstrating Image Resizer
When everything is put together, the following commands can be used to start Apache
Kafka, Image Resize Request Producer, and Image Resize Request Consumer.

There are several ways to run a Spring Boot application, and some of them are mentioned
here:

Running the Spring Boot application main class using an IDE
Building a JAR or WAR file using the following Maven command and then
running

Building all dependencies
The following command can be used to build all the dependencies from the root directory
spring-boot-2-async:

$ mvn clean install

Running Apache Kafka
Apache Kafka needs to be running before producers and consumers can start
communicating using it. Apache Kafka makes use of Apache ZooKeeper for maintaining
configuration information, naming, providing distributed synchronization, and providing
group services in a decentralized manner. The default Apache Kafka packaging
downloaded in the technical requirements section will have Apache ZooKeeper bundled
with it. The following command can be used to start Apache ZooKeeper with its default
configuration.

To run Apache ZooKeeper on Linux/Unix, we use the following command:

$ <Absolute Path To Kafka>/bin/zookeeper-server-start.sh
../config/zookeeper.properties

Running Apache ZooKeeper on Windows
To run Apache ZooKeeper on Windows, we use the following commands:

$ <Absolute Path To Kafka>/bin/windows/zookeeper-server-start.sh
../../config/zookeeper.properties

Introducing Spring Boot 2.0 Asynchronous Chapter 8

[266]

Running Apache Kafka on Linux/Unix
To run Apache Kafka on Linux/Unix, we use the following commands:

$ <Absolute Path To Kafka>/bin/kafka-server-start.sh
../config/server.properties

Running Apache Kafka on Windows
To run Apache Kafka on Windows, we use the following commands:

$ <Absolute Path To Kafka>/bin/windows/kafka-server-start.sh
../../config/server.properties

Running Image Resize Request Consumer
After building everything, the following commands can be used to run the Image Resize
Request Consumer:

 $ cd spring-boot-2-async-consumer
 $ mvn spring-boot:run

Running Image Resize Request Producer
Before running, the producer src/main/resources/application.properties will
need to be edited to point to a directory in the file system where images will be placed. This
is done with the following code:

images.input.directory=<Absolute Path To Images Directory>

Also, a directory by the name Done needs to created inside that directory:

 $ cd <Absolute Path To Images Directory>
 $ mkdir Done

After building everything, the following commands can be used to run the Image Resize
Request Producer:

 $ cd ../spring-boot-2-async-consumer
 $ mvn spring-boot:run

Introducing Spring Boot 2.0 Asynchronous Chapter 8

[267]

The following screenshot shows an image in the directory configured by
images.input.directory in the application.properties file:

Introducing Spring Boot 2.0 Asynchronous Chapter 8

[268]

The following screenshot shows resized images in the Done directory, which is inside the
same directory specified in images.input.directory, along with the original image also:

The dimensions are prefixed for easier identification of the images. The original image is
the courtesy of https:/ / pixabay. com/ en/ young- elephants- baby- elephants- 264711/ .

https://pixabay.com/en/young-elephants-baby-elephants-264711/
https://pixabay.com/en/young-elephants-baby-elephants-264711/
https://pixabay.com/en/young-elephants-baby-elephants-264711/
https://pixabay.com/en/young-elephants-baby-elephants-264711/
https://pixabay.com/en/young-elephants-baby-elephants-264711/
https://pixabay.com/en/young-elephants-baby-elephants-264711/
https://pixabay.com/en/young-elephants-baby-elephants-264711/
https://pixabay.com/en/young-elephants-baby-elephants-264711/
https://pixabay.com/en/young-elephants-baby-elephants-264711/
https://pixabay.com/en/young-elephants-baby-elephants-264711/
https://pixabay.com/en/young-elephants-baby-elephants-264711/
https://pixabay.com/en/young-elephants-baby-elephants-264711/
https://pixabay.com/en/young-elephants-baby-elephants-264711/
https://pixabay.com/en/young-elephants-baby-elephants-264711/
https://pixabay.com/en/young-elephants-baby-elephants-264711/
https://pixabay.com/en/young-elephants-baby-elephants-264711/
https://pixabay.com/en/young-elephants-baby-elephants-264711/
https://pixabay.com/en/young-elephants-baby-elephants-264711/
https://pixabay.com/en/young-elephants-baby-elephants-264711/
https://pixabay.com/en/young-elephants-baby-elephants-264711/

Introducing Spring Boot 2.0 Asynchronous Chapter 8

[269]

Summary
Congratulations on completing this chapter, where the skills and knowledge required to
build an asynchronous, scalable producer-consumer application were discussed. This
chapter started off by explaining what a synchronous application is and what an
asynchronous application is.

This chapter also talked about how asynchronous applications can enable decoupling and
scalability by using an intermediate queue. We discussed in-memory queues provided out
of the box by Java as well as advanced queues such as Apache Kafka that enable fault
tolerance, clustering, and scalability while giving high performance.

Furthermore, we explained how to write producers and consumers for Apache Kafka using
the Spring Kafka library, which enables acknowledgment of message sending via replies.
Spring Kafka does a lot of heavy lifting with auto-configuration so that it is easier to
develop.

Subsequently, this chapter talked about Quartz and how to use it schedule Image Resize
Request Producer to run periodically to pick up images that need to be resized and queue
those in the Apache Kafka topic.

Eventually, this chapter talked about how to run Zookeeper and Apache Kafka and then
demonstrated the use of Image Resize Request Producer and Image Resize Request
Consumer running periodically and resizing images. We'll learn more on some interesting
features of Spring Boot 2.0 in the upcoming chapters.

Questions
Please answer the following questions to see whether you have successfully mastered this
chapter:

How do you start a Spring Boot application in non-web mode?1.
What is a synchronous application?2.
What is an asynchronous application?3.
What is a message queue?4.
What is Apache Kafka?5.
What is Spring Kafka?6.
What is Quartz?7.

Introducing Spring Boot 2.0 Asynchronous Chapter 8

[270]

Further reading
In order to improve your knowledge of Apache Kafka and Spring Boot 2.0, the following
books are recommended to be read, as they will be helpful in the coming chapters:

Apache Kafka 1.0 Cookbook - https:/ /www. packtpub. com/ big-data- and- business-
intelligence/ apache- kafka- 10-cookbook

Mastering Spring Boot 2.0 - https:/ /www. packtpub. com/ application-
development/ mastering- spring- boot- 20

https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20

9
Building an Asynchronous

Email Formatter
This chapter will introduce the reader to the details of how to build an Asynchronous Email
Formatter, using Spring Boot 2 as the backend development framework and Apache Kafka
as a message queue. We will explain how to use JPA as the persistence layer, which is a
widely used data source. Subsequently, we will use Apache FreeMarker to create the email
templates and show you how to use placeholders to provide dynamic data to email
templates. Furthermore, we will use Spring Web MVC and Spring Security to implement
controllers and provide authentication and authorization.

The following topics will be covered in this chapter:

Using Spring Data JPA for persistence
Using Apache FreeMarker for templates
Using Spring Kafka for communication
Using Spring Web MVC for REST controller
Using Spring Security for authentication and authorization
Demonstrating the Email Formatter

Technical requirements
In order to implement the web application using Spring Boot, the following build tools
need to be downloaded and installed:

To install Java Development Kit (JDK) 8, download it from its official page
at http:/ /www. oracle. com/ technetwork/ java/ javase/ downloads/ jdk8-
downloads- 2133151. html

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Building an Asynchronous Email Formatter Chapter 9

[272]

To install Maven 3, download it from its official page at https:/ /maven. apache.
org/download. cgi

To install IntelliJ IDEA, download it from its official page at https:/ /www.
jetbrains. com/ idea/ download/

To install Spring Tool Suite (STS), download it from its official page at https:/ /
spring.io/ tools

To install Apache Kafka, download it from its official page at https:/ /kafka.
apache.org/ downloads

The source code for this chapter can be found at https:/ /github. com/PacktPublishing/
Spring-Boot-2.0- Projects- Fundamentals- of-Spring- Boot- 2.0, under
the Chapter09 directory.

Getting started
In this section, the readers will get an overview of the Asynchronous Email Formatter being
developed. The requirements, design, and implementation details will be discussed in brief.

Why Email Formatter is useful
Email formatting is required whenever we need to send emails to users based on an event
such as User Registration, User Password Reset, and so on. This means that Email
Formatter should be able to work independently of the main application, as email sending
is a blocking task that may take a long time to execute. This is where the asynchronous
nature of using a message queue comes in handy. In this chapter, however, we will be
looking at a User Password Reset workflow that sends an auto-generated password on
request by a user. But any other workflow, such as User Registration, can also be
implemented with minor changes.

https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://spring.io/tools
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://kafka.apache.org/downloads
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0
https://github.com/PacktPublishing/Spring-Boot-2.0-Projects-Fundamentals-of-Spring-Boot-2.0

Building an Asynchronous Email Formatter Chapter 9

[273]

The use case diagram
The following use case diagram shows the requirement for Email Formatter:

The actor is the User of the Tweety. It has the following use cases:

Login: This use case is required to authenticate users so that each user can be
uniquely identified to allow only authenticated users to perform actions.
List Users: This use case is where a user can list all the usernames of available
users. It requires the user to be authenticated.
Reset Password: This use case is where a user can request to reset his/her
password.
Format Email: This use case is where, based on a Reset Password request, an
email will be formatted and filled with the relevant user details.
Send Email: This use case is where an actual Reset Password email is sent to the
user's email address.

Building an Asynchronous Email Formatter Chapter 9

[274]

The architecture of the Email Formatter
application
The architecture for the Email Formatter application is as follows:

There are three main components involved in image resizing:

User Registration: This component is responsible for accepting reset password
requests from users and submitting the request to a Message Queue. This allows
decoupling and scalability.
Message Queue: This component is responsible for queuing reset password
requests until they are consumed and processed by the Email Formatter
consumers.
Email Formatter Consumer: This component is responsible for consuming
requests from the Message Queue and actually doing the formatting and
sending of the emails to the recipient. There can be more than one consumer.

Using Spring Data JPA for persistence
This section will introduce JPA and how to use Spring Data JPA repositories to
provide Create, Retrieve, Update, and Delete (CRUD) operations on JPA easily.

Building an Asynchronous Email Formatter Chapter 9

[275]

Class diagram for the domain model
Since the domain model is the most important component of an application, this section
will go over designing it before we go any further. The following is the simple class
diagram for this web service:

There is only one main domain model, as shown in the preceding diagram. This is
explained as follows:

User: This is the main domain model, which will store user details such as username,
password, email, and id.

Implementation of the domain model using JPA
annotations
This section will explain the details of how to configure and use Spring Data JPA with an
embedded database with the domain model designed in the previous section.

Setting up dependencies and the configuration class
Initially, before implementing the domain model, the dependencies and configuration
classes need to be specified. The following Maven starter dependency and H2 database
dependency need to be included:

<dependencies>
 ...
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-data-jpa</artifactId>
 </dependency>

 <dependency>
 <groupId>com.h2database</groupId>

Building an Asynchronous Email Formatter Chapter 9

[276]

 <artifactId>h2</artifactId>
 <version>1.4.196</version>
 </dependency>
</dependencies>

The following RepoConfig is used:

@Configuration
@EnableJpaRepositories(basePackages =
"com.packtpub.spring.boot.email.formatter.model")
@EnableTransactionManagement
@EntityScan(basePackages =
"com.packtpub.spring.boot.email.formatter.model.domain")
public class RepoConfig {
}

The @EnableJpaRepositories annotation is used to set the base package where
repositories are available. @EnableTransactionManagement is used to enable the Spring
JPA Transaction Manager. The @EntityScan annotation is used to set the base package
where domain entities are available.

Implementing the domain model
Implementing the domain model User using JPA annotations will look like the following:

@Entity
@Data
@NoArgsConstructor
@AllArgsConstructor
public class User {

 @Id
 @GeneratedValue
 private Integer id;

 @Column(unique = true)
 private String username;

 @Column(unique = true)
 private String email;

 private String password;

}

Building an Asynchronous Email Formatter Chapter 9

[277]

In the preceding code, the @Entity annotation is used to mark the User class as a JPA
entity so that it will be eligible to be used in the JPA persistence environment.
The @Data annotation is from the Lombok library and is used to mark a POJO as a class
that will hold data. This means getters, setters, the equals method,
the hashCode method, and the toString method will be generated for that class.

The @Id annotation marks the ID property as the identity field of the entity,
whereas @GeneratedValue marks it as an auto-generated value. The newly added
annotations, which are also from the Lombok library, are @AllArgsConstructor, which
will generate a constructor with the id, username, password, properties,
and @NoArgsConstructor, which will generate a default constructor.

Implementation of Spring Data JPA repositories
With the domain model implemented successfully, JpaRepository for those can be
implemented using Spring Data JPA. The specialty here is that there is no need to
implement anything. Just writing an interface that extends from the JpaRepository
interface will be sufficient to expose methods to find one, find all, save, delete, and so on.
The following code shows UserRepository:

public interface UserRepository extends JpaRepository<User, Integer> {

 User findByEmail(String email);

 User findByUsername(String username);

}

In the preceding code, there are methods named findByUsername and findByEmail
where username and email are properties of the User class.

Using Services to encapsulate business logic
It is a good practice to encapsulate business logic inside Service methods so that
controllers and repositories are loosely coupled. The following Service is written to
encapsulate the business logic for User:

Service
@Transactional(readOnly = true)
public class UserService implements UserDetailsService {

Building an Asynchronous Email Formatter Chapter 9

[278]

 private final UserRepository userRepository;

 public UserService(UserRepository userRepository) {
 this.userRepository = userRepository;
 }

 public User getByEmail(String email) {
 return userRepository.findByEmail(email);
 }

 @Override
 public UserDetails loadUserByUsername(String username) throws
UsernameNotFoundException {
 User user = userRepository.findByUsername(username);

 if (user == null) {
 throw new UsernameNotFoundException(username);
 }

 return new
org.springframework.security.core.userdetails.User(username,
user.getPassword(), Arrays.asList(new
SimpleGrantedAuthority("ROLE_USER")));
 }

 @Transactional(rollbackFor = Exception.class)
 public User save(User user) {
 return userRepository.save(user);
 }

 public List<User> getAll() {
 return userRepository.findAll();
 }
}

UserService also implements the Spring Security UserDetailsService interface in
addition to supporting User detail loading. The save method saves a User instance in the
database, getByEmail retrieves the User by email, and the getAll method retrieves all
the users. More on this will be discussed in the Using Spring Security for authentication and
authorization section of this chapter.

Building an Asynchronous Email Formatter Chapter 9

[279]

Using Apache FreeMarker for templates
Apache FreeMarker is used to generate the HTML body that will be embedded in the body
of the email that will be sent when reset password requests are received. The following
template, src/resources/templates/reset_password_en.html, is used:

<!doctype html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <title>Reset Password</title>
 <style>
 /** Styling Code **/
 </style>
</head>
<body class="">
<table border="0" cellpadding="0" cellspacing="0" class="body">
 <tr>
 <td> </td>
 <td class="container">
 <div class="content">

 <!-- START CENTERED WHITE CONTAINER -->
 This email is sent to reset the
password of ${USERNAME}.
 <table class="main">

 <!-- START MAIN CONTENT AREA -->
 <tr>
 <td class="wrapper">
 <table border="0" cellpadding="0"
cellspacing="0">
 <tr>
 <td>
 <p>Hi ${USERNAME},</p>
 <p>Your password has been reset.
Your new password is following.</p>
 <table border="0" cellpadding="0"
cellspacing="0" class="btn btn-primary">
 <tbody>
 <tr>
 <td align="left">
 <table border="0"
cellpadding="0" cellspacing="0">
 <tbody>
 <tr>

Building an Asynchronous Email Formatter Chapter 9

[280]

<td>${NEW_PASSWORD}</td>
 </tr>
 </tbody>
 </table>
 </td>
 </tr>
 </tbody>
 </table>
 <p>Please re-login and change the
password so that it will be your secret.</p>
 <p>Good luck! Hope it works.</p>
 </td>
 </tr>
 </table>
 </td>
 </tr>

 <!-- END MAIN CONTENT AREA -->
 </table>

 <!-- START FOOTER -->
 <div class="footer">
 <table border="0" cellpadding="0" cellspacing="0">
 <tr>
 <td class="content-block">
 <span class="apple-
link">Packtpub.com
 </td>
 </tr>
 <tr>
 <td class="content-block powered-by">
 Powered by Shazin Sadakath.
 </td>
 </tr>
 </table>
 </div>
 <!-- END FOOTER -->

 <!-- END CENTERED WHITE CONTAINER -->
 </div>
 </td>
 <td> </td>
 </tr>
</table>
</body>
</html>

Building an Asynchronous Email Formatter Chapter 9

[281]

This is a standard HTML page with the custom placeholders ${USERNAME} and
${NEW_PASSWORD}, which will be populated by the following EmailTemplateService:

@Service
public class EmailTemplateService {

 private final Configuration configuration;

 public EmailTemplateService(Configuration configuration) {
 this.configuration = configuration;
 }

 public String getResetPasswordEmail(Map<String, Object> data, String
templateName) throws IOException, TemplateException {
 Template template = configuration.getTemplate(templateName);
 return FreeMarkerTemplateUtils.processTemplateIntoString(template,
data);
 }

}

When the getResetPasswordEmail method is called with Map of data and a template
name, it will load the template and replace the placeholders with the actual value from Map.
The template is derived from https:/ /github. com/ leemunroe/ responsive- html- email-
template.

Using Spring Kafka for communication
Apache Kafka is a production grade, high performing, scalable, fault-tolerant messaging
platform. In the application, however, we will be using the Apache Kafka topic as a
message queue. Also, the Spring Kafka library will be used to enable easy communication
with Apache Kafka. Spring Kafka provides the ability for templates and listeners to both
produce to and consumes from Apache Kafka topics easily.

https://github.com/leemunroe/responsive-html-email-template
https://github.com/leemunroe/responsive-html-email-template
https://github.com/leemunroe/responsive-html-email-template
https://github.com/leemunroe/responsive-html-email-template
https://github.com/leemunroe/responsive-html-email-template
https://github.com/leemunroe/responsive-html-email-template
https://github.com/leemunroe/responsive-html-email-template
https://github.com/leemunroe/responsive-html-email-template
https://github.com/leemunroe/responsive-html-email-template
https://github.com/leemunroe/responsive-html-email-template
https://github.com/leemunroe/responsive-html-email-template
https://github.com/leemunroe/responsive-html-email-template
https://github.com/leemunroe/responsive-html-email-template
https://github.com/leemunroe/responsive-html-email-template
https://github.com/leemunroe/responsive-html-email-template
https://github.com/leemunroe/responsive-html-email-template

Building an Asynchronous Email Formatter Chapter 9

[282]

Setting up dependencies and the configuration
class
Initially, before using Apache Kafka for message queue dependency and configuration, the
class needs to be specified. The following Maven starter dependency needs to be included:

<dependencies>
 <dependency>
 <groupId>org.springframework.kafka</groupId>
 <artifactId>spring-kafka</artifactId>
 <version>2.1.7.RELEASE</version>
 </dependency>
</dependencies>

The preceding entries will import all the dependencies of Spring Kafka, which can be
used to produce to and consume from Apache Kafka topics.

Configuration for User Registration
The configuration for User Registration is as follows:

@SpringBootApplication
@Import(RepoConfig.class)
public class SpringBootUserRegistrationApplication {
 ...

 @Bean
 public KafkaTemplate<String, String> kafkaTemplate(
 ProducerFactory<String, String> pf) {
 return new KafkaTemplate<>(pf);
 }

 @Bean
 public NewTopic resetPasswordRequests() {
 return new NewTopic("resetPasswordRequests", 10, (short) 2);
 }

}

In the preceding configuration, an Apache Kafka topic by the name
resetPasswordRequests is created as a Spring Bean with a number of
replications 10 and replication factor of 2. The resetPasswordRequests topic is
responsible for sending the message to the consumer.

Building an Asynchronous Email Formatter Chapter 9

[283]

The kafkaTemplate Spring Bean is created with an instance of KafkaTemplate to enable
communication.

Furthermore, the following AsyncService is used to produce reset password requests:

@Service
@Transactional(readOnly = true)
public class AsyncService {

 private final KafkaTemplate<String, String> kafkaTemplate;
 private final UserService userService;
 private final ObjectMapper objectMapper;
 private final PasswordEncoder passwordEncoder;

 public AsyncService(KafkaTemplate<String, String> kafkaTemplate,
UserService userService, ObjectMapper objectMapper, PasswordEncoder
passwordEncoder) {
 this.kafkaTemplate = kafkaTemplate;
 this.userService = userService;
 this.objectMapper = objectMapper;
 this.passwordEncoder = passwordEncoder;
 }

 @Transactional(rollbackFor = Exception.class)
 public void sendResetPassword(String email) throws IOException {
 User user = userService.getByEmail(email);

 if (user != null) {
 ResetPasswordRequest resetPasswordRequest = new
ResetPasswordRequest();
 resetPasswordRequest.setEmail(user.getEmail());

 RandomStringGenerator generator = new
RandomStringGenerator.Builder()
 .withinRange('a', 'z').build();
 String newPassword = generator.generate(10);
 resetPasswordRequest.setNewPassword(newPassword);
 resetPasswordRequest.setUsername(user.getUsername());
 ProducerRecord<String, String> record = new
ProducerRecord<>("resetPasswordRequests",
objectMapper.writeValueAsString(resetPasswordRequest));
 kafkaTemplate.send(record);

 user.setPassword(passwordEncoder.encode(newPassword));
 userService.save(user);

Building an Asynchronous Email Formatter Chapter 9

[284]

 }
 }
}

The sendResetPassword method will find the User by email, and if found will generate a
10 digit random password, send a JSON message to the resetPasswordRequests Apache
Kafka topic, and update the user password with the generated password before
saving User.

Configuration for the Email Formatter consumer
The Email Formatter consumer is responsible for listening for messages coming from the
Apache Kafka topic and doing the actual formatting and sending of emails. Consider the
following code:

@SpringBootApplication
public class SpringBootEmailFormatter {

 private static final Logger LOGGER =
LoggerFactory.getLogger(SpringBootEmailFormatterConsumerApplication.class);

 @Autowired
 private EmailSenderService emailSenderService;

 @KafkaListener(id="resetPasswordRequests", topics =
"resetPasswordRequests")
 public String listen(String in) {
 try {
 ResetPasswordRequest resetPasswordRequest =
objectMapper().readValue(in, ResetPasswordRequest.class);
emailSenderService.sendResetPasswordEmail(resetPasswordRequest);
 } catch (IOException e) {
 LOGGER.error("Error while sending Reset Password Email", e);
 }
 return in;
 }

 @Bean
 public NewTopic resetPasswordRequests() {
 return new NewTopic("resetPasswordRequests", 10, (short) 2);
 }

}

Building an Asynchronous Email Formatter Chapter 9

[285]

In the preceding configuration, one Apache Kafka topic by the name of
resetPasswordRequests is created as a Spring Bean with a number of
replications 10 and replication factor of 2. The listen method is responsible for
consuming requests sent by the producer via the Apache Kafka
topic resetPasswordRequests. This method is annotated with @KafkaListener, which
points to the resetPasswordRequests topic.

Furthermore, the following EmailSenderService is used to format and send actual
emails:

@Service
public class EmailSenderService {

 private static final Logger LOGGER =
LoggerFactory.getLogger(EmailTemplateService.class);

 public static final String RESET_PASSWORD_EN_HTML =
"reset_password_en.html";

 private final EmailTemplateService emailTemplateService;
 private final JavaMailSender javaMailSender;

 public EmailSenderService(EmailTemplateService emailTemplateService,
JavaMailSender javaMailSender) {
 this.emailTemplateService = emailTemplateService;
 this.javaMailSender = javaMailSender;
 }

 public boolean sendResetPasswordEmail(ResetPasswordRequest
resetPasswordRequest) {
 boolean sent = false;
 try {
 Map<String, Object> data = new LinkedHashMap<>();
 data.put("USERNAME", resetPasswordRequest.getUsername());
 data.put("NEW_PASSWORD",
resetPasswordRequest.getNewPassword());

 String resetPasswordEmailContent =
emailTemplateService.getResetPasswordEmail(data, RESET_PASSWORD_EN_HTML);

 MimeMessage mimeMessage = javaMailSender.createMimeMessage();
 MimeMessageHelper mimeMessageHelper = new
MimeMessageHelper(mimeMessage);

 mimeMessageHelper.setTo(resetPasswordRequest.getEmail());
 mimeMessageHelper.setText(resetPasswordEmailContent, true);
 mimeMessageHelper.setSubject("Password Reset");

Building an Asynchronous Email Formatter Chapter 9

[286]

 javaMailSender.send(mimeMessage);
 sent = true;
 } catch (Exception e) {
 LOGGER.error("Error while sending email", e);
 }
 return sent;
 }
}

sendResetPasswordEmail first retrieves the required data for email formatting
from ResetPasswordRequest and will create a Map of the data to be submitted
to EmailTemplateService.getResetPasswordEmail, along with the template file
named reset_password_en.html, which is available inside
the src/resources/templates directory. Then, it will use JavaMailSender to actually
send the email.

Configuring Java Mail
Initially, before using the Java Mail queue, the dependency and configuration classes
need to be specified. The following Maven starter dependency needs to be included:

<dependencies>
 ...
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-mail</artifactId>
 </dependency>
</dependencies>

The following configuration properties also need to be added to
the application.properties file:

spring.mail.host=localhost
spring.mail.port=25
spring.mail.username=
spring.mail.password=

The spring.mail.host property will point to localhost, while spring.mail.port will
point to the default SMTP port 25. The spring.mail.username and
spring.mail.password are intentionally left blank because there won't be any
authentication for SMTP server. These can be filled, if there are credentials for the SMTP
server.

Building an Asynchronous Email Formatter Chapter 9

[287]

Using Spring Web MVC for the REST
controller
Controllers are the integration point between the model and view in the MVC paradigm.
They act like the glue that binds together everything while taking care of business logic
execution and routing. The following Maven starter dependency needs to be added to
enable Spring Web MVC:

<dependencies>
 ...
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-web</artifactId>
 </dependency>
</dependencies>

The preceding dependency will import the servlet, Spring, and Tomcat dependencies to
enable the successful writing of servlet-based web applications using Spring.

Implementation of controller annotations
The following is UserController, which enables reset password for User and the listing
of users in the User Registration module:

@RestController
@RequestMapping("/users")
public class UserController {

 private final AsyncService asyncService;
 private final UserService userService;

 public UserController(AsyncService asyncService, UserService
userService) {
 this.asyncService = asyncService;
 this.userService = userService;
 }

 @GetMapping
 public List<String> listUsers() {
 return userService.getAll().stream().map(u ->
u.getEmail()).collect(Collectors.toList());
 }

 @RequestMapping("/reset-password/{email}")

Building an Asynchronous Email Formatter Chapter 9

[288]

 @ResponseStatus(HttpStatus.OK)
 public void resetPassword(@PathVariable("email") String email) throws
Exception {
 asyncService.sendResetPassword(email);
 }

}

The preceding controller is mapped to the URL "/users" and injects
AsyncService and UserService. The listUsers method is mapped to the GET request,
which will call the UserService.getAll() method to return all the users and then use
the Stream API to list the email addresses of users returned.

The resetPassword method is mapped to the URL "/users/reset-
password/{email}" with the GET request, which will call the
AsyncService.sendResetPassword method with the passed in an email address.

Using Spring Security for authentication and
authorization
Spring Security is widely used to enable authentication and authorization, using many
different mechanisms such as form-based logic, header-based login (Basic), and so on. In
this application, we will be protecting the User Registration microservice. Consider the
following code:

<dependencies>
 ...
 <dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-security</artifactId>
 </dependency>
 ...
</dependencies>

The preceding entries will import all the dependencies related to Spring Security. Now,
let's look at the configuration:

@Configuration
@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {

 @Bean
 public PasswordEncoder passwordEncoder() {

Building an Asynchronous Email Formatter Chapter 9

[289]

 return new SCryptPasswordEncoder();
 }

 @Override
 public void configure(WebSecurity web) throws Exception {
 web.ignoring().antMatchers("/users/reset-password/**");
 }

 @Override
 protected void configure(HttpSecurity http) throws Exception {
http.csrf().disable().authorizeRequests().antMatchers("/users**").hasRole("
USER").and().formLogin().permitAll();
 }
}

In the configure(WebSecurity web) method, it configures the ignore "/users/reset-
password" from Spring Security. In the configure(HttpSecurity http) method, it
configures a formLogin() method and protects the "/users" URL to have the role USER
to access it. @EnableWebSecurity will enable all the other configurations required for
Spring Security. Also, it creates ScryptPasswordEncoder as the passwordEncoder bean
so that it will be used to encode passwords.

Demonstrating Email Formatter
When everything is put together, the following commands can be used to start Apache
Kafka, the User Registration microservice, and the Email Formatter consumers.

There are several ways to run a Spring Boot application, and some of them are mentioned
here:

Running the Spring Boot application main class using an IDE
Building a JAR or WAR file using the following Maven command and then
running it

Building all dependencies
The following command can be used to build all the dependencies from the root
directory spring-boot-2-email-formatter:

$ mvn clean install

Building an Asynchronous Email Formatter Chapter 9

[290]

Running Apache Kafka
Apache Kafka needs to be running before producers and consumers can start
communicating using it. Apache Kafka makes use of Apache ZooKeeper for maintaining
configuration information, naming, providing distributed synchronization, and providing
group services in a decentralized manner. The default Apache Kafka packaging
downloaded in the technical requirements section will have Apache ZooKeeper bundled
with it. The following command can be used to start Apache ZooKeeper with its default
configuration.

To run Apache ZooKeeper on Linux/Unix, we use the following command:

$ <Absolute Path To Kafka>/bin/zookeeper-server-start.sh
../config/zookeeper.properties

Running Apache ZooKeeper on Windows
To run Apache ZooKeeper on Windows, we use the following commands:

$ <Absolute Path To Kafka>/bin/windows/zookeeper-server-start.sh
../../config/zookeeper.properties

Running Apache Kafka on Linux/Unix
To run Apache Kafka on Linux/Unix, we use the following commands:

$ <Absolute Path To Kafka>/bin/kafka-server-start.sh
../config/server.properties

Running Apache Kafka on Windows
To run Apache Kafka on Windows, we use the following commands:

$ <Absolute Path To Kafka>/bin/windows/kafka-server-start.sh
../../config/server.properties

Building an Asynchronous Email Formatter Chapter 9

[291]

Running SMTP server
Since the Email Formatter consumer is supposed to format and send emails, we will be
using a dummy Simple Mail Transfer Protocol (SMTP) server, as it is just for
demonstration purposes. For this, fakeSMTP is used, which can be downloaded
from http://nilhcem. com/ FakeSMTP/ download. html. After downloading and unzipping it,
the following command can be used to run fakeSMTP:

$ java -jar fakeSMTP-<version>.jar

This will open the following window:

Clicking on the Start Server button will make it start to listen for SMTP requests.

http://nilhcem.com/FakeSMTP/download.html
http://nilhcem.com/FakeSMTP/download.html
http://nilhcem.com/FakeSMTP/download.html
http://nilhcem.com/FakeSMTP/download.html
http://nilhcem.com/FakeSMTP/download.html
http://nilhcem.com/FakeSMTP/download.html
http://nilhcem.com/FakeSMTP/download.html
http://nilhcem.com/FakeSMTP/download.html
http://nilhcem.com/FakeSMTP/download.html
http://nilhcem.com/FakeSMTP/download.html
http://nilhcem.com/FakeSMTP/download.html
http://nilhcem.com/FakeSMTP/download.html
http://nilhcem.com/FakeSMTP/download.html

Building an Asynchronous Email Formatter Chapter 9

[292]

Running the Email Formatter consumer
After building everything, the following commands can be used to run the Email Formatter
consumer:

 $ cd spring-boot-2-email-formatter-consumer
 $ mvn spring-boot:run

Running the User Registration microservice
After building everything, the following commands can be used to run the User
Registration microservice:

 $ cd spring-boot-2-user-registration
 $ mvn spring-boot:run

After starting the User Registration microservice, an HTTP GET request can be sent to
the http://localhost:8080/users/reset-password URL with the email as follows:

Building an Asynchronous Email Formatter Chapter 9

[293]

This will return a status 200 and a reset password request to the
resetPasswordRequests Apache Kafka topic, which will be consumed by the Email
Formatter consumer to format and send the email to the SMTP server.

After some time, the fakeSMTP server window will show the email sent by the Email
Formatter, as follows:

Building an Asynchronous Email Formatter Chapter 9

[294]

Double-clicking on the email in the Mails list tab will open the email in your default email
client (in this case Mozilla Thunderbird), seen as follows:

Now, when trying to access the URL http://localhost:8080/users, users will be
redirected to the login page as follows:

Building an Asynchronous Email Formatter Chapter 9

[295]

For the username, shazin can be used, while for password, the new password in the reset
password email can be used. Then, this will successfully redirect to
the URL http://localhost:8080/users and will show the correct response:

Building an Asynchronous Email Formatter Chapter 9

[296]

Summary
Congratulations on completing this chapter, where the skills and knowledge required to
build an asynchronous, scalable Email Formatter application were discussed.

This chapter showed you how to use Spring Data JPA for creating entities and repositories
to store data in a relational database management system (RDBMS). An in-memory
database named H2 was used for demonstration.

Next, we explained how to use Apache FreeMarker to format emails by replacing
placeholders with actual values and generating HTML content dynamically.

Furthermore, we explained how to write producers and consumers for Apache Kafka using
Spring Kafka library. Spring Kafka does a lot of the heavy lifting with auto-configuration so
that it is easier to develop.

We explained how to use Spring Web MVC REST controllers to accept reset password
requests from users and also how to protect endpoints using Spring Security form-based
authentication and authorization.

Subsequently, this chapter talked about Java Mail and how to use it to send emails from the
Email Formatter consumer.

Eventually, this chapter talked about how to run ZooKeeper and Apache Kafka, and then
demonstrated the use of the Email Formatter consumer and the User Registration
microservice to accept reset password requests from users, queue the Apache Kafka topic
and format, and send emails via consumers. This concludes an exciting learning journey of
Spring Boot 2.0 with hands-on examples. Hopefully, this book provided a greater deal of
understanding of Spring Boot, Spring Boot 2.0, Spring Web Flux, Spring Security, Spring
Data JPA, Spring Data MongoDB, Spring Data Redis and many more frameworks. Happy
learning!

Building an Asynchronous Email Formatter Chapter 9

[297]

Questions
Please answer the following questions to see whether you have successfully mastered this
chapter:

What are the uses for the @EnableJpaRepositories annotation and1.
the @EnableTransactionManagement annotation in Spring Data JPA?
What is Apache Kafka?2.
What is Apache FreeMarker?3.
What is SMTP?4.
What is Spring Security?5.
What is the use of PasswordEncoder?6.
What is fakeSMTP?7.

Further reading
In order to improve your knowledge of Apache Kafka and Spring Boot 2.0, the following
books are recommended to be read, as they will be helpful in the coming chapters:

Apache Kafka 1.0 Cookbook - https:/ /www. packtpub. com/ big-data- and- business-
intelligence/ apache- kafka- 10-cookbook

Mastering Spring Boot 2.0 - https:/ /www. packtpub. com/ application-
development/ mastering- spring- boot- 20

https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/big-data-and-business-intelligence/apache-kafka-10-cookbook
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20
https://www.packtpub.com/application-development/mastering-spring-boot-20

Assessments

Chapter 1, Introduction
Spring Boot is a standalone, production-grade, flexible, and extensible1.
application development framework for building enterprise-grade Spring
applications with minimum code and configurations.
A class annotated with the @SpringBootApplication annotation and a Java2.
main method that calls the SpringApplication.run method with the class
annotated with @SpringBootApplication and the main method arguments:

@SpringBootApplication
public class SpringBootIntroApplication {

 public static void main(String[] args) {
 SpringApplication.run(SpringBootIntroApplication.class,
 args);
 }
}

Spring Boot 2.0 requires at least Java 8 to develop and run applications.3.
HTTP/2 is an improved version of HTTP that has introduced support for4.
multiplexing, push, and header compression from the ground up to enable
efficient communication between client and server.
The default dispatcher type for a Spring Boot 2.0 Servlet Filter5.
is DispatcherType.REQUEST.
The next minor release version of Spring Boot 2.0, which is in milestone plan, is6.
Spring Boot 2.1.0.
A Spring Boot 2.0 application with JPA starter will by default use HikariCP,7.
which is the fastest and most efficient connection pooling framework available at
the moment.

Assessments

[299]

Chapter 2, Building a Basic Web Application
A web application is an application that is exposed through a private or public1.
network that allows multiple concurrent users to connect to and use the
application.

MVC pattern is a multi-tiered application development pattern used in web2.
application development to enable separation of concerns and support ease of
development and maintenance.
A relational database is a data store that uses relations (tables with columns,3.
rows, and relationships between them) to maintain data while guaranteeing
ACID (Atomicity, Consistency, Independent, Durable) properties.
JPA provides object/relation mapping capabilities to enable mapping between4.
relational database tables and Java objects in order to ease persistence in Java
applications.
@Entity annotation in JPA is used mark a POJO in Java to be used for object-5.
relational mapping.
A Template engine is used to enable separation of concerns when developing6.
presentation views. By using a Template engine-specific templates, UI engineers
who are experts in frontend development can work independently.
Spring Security is a framework that enables authentication and authorization for7.
an application, mostly web applications while covering most of the commonly
known web security vulnerability.

Chapter 3, Building a Simple Blog
Management System

Elasticsearch is an open source search and analytics engine that can run in a1.
distributed environment. It provides RESTful APIs to ingest and retrieve high
volume, velocity data. Elasticsearch is used for log analytics, full-text search, and
so on.
Apache Freemarker is a popular template engine that can generate text output2.
based on template and variable data. Apache Freemarker templates use a custom
programming language named Freemarker Template Language (FTL), which is
used to write programming constructs in presentation views.

Assessments

[300]

A Flux that can be used to send 0..N number of data and a Mono that can be used3.
to send 0..1 data.
A Blog Management System is a system that must be publicly accessible via the4.
internet and registered users must be able to write, edit, and delete content.
There must be capabilities for administrators to curate the Blog Management
System.
A Controller Advice is used to hold @ExceptionHandler, @InitBinder, or5.
@ModelAttribute methods, which are meant to be shared across multiple
@Controller classes.
A Password Encoder is used to secure a password using a one-way hashing6.
algorithm (SHA-256, MD5, BCrypt, and more) for storing so that it cannot be
reversed to find the original password.
This can be done by returning7.
a UserDetailsRepositoryReactiveAuthenticationManager as a bean,
which is configured to have a ReactiveUserDetailsService implementation
and a PasswordEncoder implementation.

Chapter 4, Introduction to Kotlin
Yes, variables and expressions can be used inside string literals beginning with a1.
$ sign.
A nullable variable/argument can be assigned null at any point of code.2.
However, before using, defensive code must be used to check for null safety.
Kotlin has reduced the chances of NullPointerException using a nullable
variable/argument. An example of a nullable variable/argument is var no :
Int? = 0, which uses ? at the end of the data type.
Explicit casting in Kotlin is where when a type checking is done using the is a3.
keyword. Within the block of code that follows, there is no need to do a type
casting to the destination type. Here is the following code:

var s : Any = "Shazin";
if (s is String) {
 // No need to cast s of type Any to type String inside this block
of code like java does using ((String) s)
 // All properties and functions of String class can be used
without type casting
 println(s.length);
}

Assessments

[301]

Object expressions and object declarations can be used to create and use objects4.
without creating a class declaration. Object expressions can be used to create
objects and assign them to variables, function arguments without a class. Object
declarations have a name and can be used to create singleton objects that cannot
be assigned to variables or arguments, but whose functions can be called using
the name.
A companion object is an object declaration that begins with a companion5.
keyword inside of a class. Functions inside the companion object can be called
just as if they are functions of the enclosing class.
Infix functions are a special type of functions that can be used with two operands6.
similar to the 1 + 2 expression. An Infix function can be defined using
the infix keyword.
No, variables defined inside a local function are out of scope for enclosing7.
function, but it works the other way round.

Chapter 5, Building a Reactive Movie Rating
API Using Kotlin

Representational State Transfer (REST) is an architectural style that defines a1.
set of good practices, standards, and properties that can be implemented on top
of Hypertext Transfer Protocol (HTTP). A web service that conforms to REST
standards enables easy interoperability between devices on the internet.
MongoDB is a free and open source document store that stores data in a schema-2.
less JSON format, which is highly flexible, and each individual document can
have different fields. MongoDB allows ad-hoc querying, indexing, and
aggregation out of the box.
Kotlin is a programming language for the JVM that has concise syntax, is3.
interoperable, safe, and tool friendly.
The data keyword in Kotlin can be used to mark classes whose sole purpose is to4.
hold and transfer data. Classes with this keyword will get the equals(),
hashCode(), toString(), copy() functions autogenerated by the compiler.
Basic Authentication is HTTP header-based authentication where a header5.
named Authorization is used with the "Basic
"+base64Encode(username:password) value to authenticate and authorize
users.

Assessments

[302]

Integration Testing is an end-to-end functionality testing of an application to6.
verify whether all components are functioning together correctly.
Postman is a GUI-based tool to invoke and test RESTful APIs.7.

Chapter 6, Building an API with Reactive
Microservices

A Maven module is a way to modularize large projects into smaller subprojects1.
so that build and deployment can be sped up.
Redis is an in-memory, key/value store that provides high availability,2.
performance, and scalability.
Microservices architecture is a way of designing and implementing software as a3.
collection of independently deployable services that are highly coherent and
loosely coupled.
Independent isolated teams, domain-specific laying, ability to automate4.
deployments, fault tolerance, and the ability to scale individual features.
Containerization is the process of deploying applications in a portable and5.
predictable manner by packaging components along with their dependencies
into isolated, standard process environments called containers.
Docker is a very popular container platform. It is used by many developers and6.
IT operations staff to provide independence from the underlying infrastructure
and applications they run. Docker can be run on-premise hardware, in the cloud,
or in a hybrid setup as well. Docker containers are lightweight and ideal for
Microservices development.
Nginx is a load balancer/proxy server to create clusters of web servers.7.

Chapter 7, Building a Twitter Clone with
Spring Boot

Model-view-viewmodel (MVVM) is a design pattern used to enable two-way1.
data binding between view and model so that one changes when the other does.
Angular is a very famous framework that conforms to MVVM design pattern,2.
which allows highly responsive frontend applications that update efficiently
when data from server changes or when a user interacts with the application.
Apart from this, Angular provides routing, dependency injection, components,
templates, and such to enable flexible, modular development.

Assessments

[303]

Angular CLI is a tool to ease the development of Angular applications because it3.
helps create new Angular projects, generate codes, and more.
Angular Material is a framework that can be used to ease layout design and to4.
provide themes.
CORS is a mechanism that uses HTTP headers to inform the browser to allow a5.
web application running on one origin to have permission to access resources
from a different origin.
OAuth2 is an authorization contract that enables applications to be secured by6.
providing limited access to user accounts available on an HTTP service.
Resource, Resource Owner, Resource Server, Authorization Server, Client.7.

Chapter 8, Introducing Spring Boot 2.0
Asynchronous

The SpringApplicationBuilder can be used to start a Spring Boot application1.
in a non-web mode like this:

new SpringApplicationBuilder(ConfigClass.class).
 web(WebApplicationType.NONE).build().run(args);

Synchronous applications are programs that can process events, requests, and2.
tasks sequentially in an order, and one needs to finish in order for another to
begin.
Asynchronous applications are programs that can process events, requests, and3.
tasks with time slicing so that one request can be active and can run while
another one is also active but not running.
A message queue is a software layer that can be used to communicate between4.
two applications with reliability, durability, fault tolerance, and scalability.
Apache Kafka is a production-grade, high performing, scalable, fault-tolerant5.
messaging platform.
Spring Kafka library will be used to enable easy communication with Apache6.
Kafka. Spring Kafka provides templates and listeners to both produce to and
consume from Apache Kafka topics easily.
Quartz is a fully open source, high-performing scheduling framework that can be7.
easily integrated with Java applications of any sort.

Assessments

[304]

Chapter 9, Building an Asynchronous Email
Formatter

The @EnableJpaRepositories annotation is to the set the base package where1.
repositories are available. @EnableTransactionManagement is used to enable
Spring JPA Transaction manager.
Apache Kafka is a production grade, high-performing, scalable, fault-tolerant2.
messaging platform. In the application, however, we will be using Apache Kafka
topic as a message queue. Also, Spring Kafka library will be used to enable easy
communication with Apache Kafka. Spring Kafka provides templates and
listeners to both produce to and consumes from Apache Kafka topics easily.
Apache Freemarker is used to generate the HTML body that will be embedded3.
into the body of the email that will be sent when reset password requests are
received.
SMTP stands for Simple Mail Transfer Protocol. SMTP is used to send emails4.
from one server to another.
Spring Security is a widely-used project that enables authentication and5.
authorization using many different mechanisms such as form-based logic,
header-based login (Basic), and more.
A PasswordEncoder is used to encode passwords using popular algorithms6.
such as BCrypt, SCrypt, SHA-256, etc for protection.
fakeSMTP is a dummy SMTP server that can be used for testing purposes. This7.
SMTP will not send an email to the actual recipient.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Spring Boot 2.0 Cookbook - Second Edition
Alex Antonov

ISBN: 9781787129825

Get to know Spring Boot Starters and create custom auto-configurations
Work with custom annotations that enable bean activation
Use DevTools to easily develop and debug applications
Learn the effective testing techniques by integrating Cucumber and Spock
Observe an eternal application configuration using Consul
Move your existing Spring Boot applications to the cloud
Use Hashicorp Consul and Netflix Eureka for dynamic Service Discovery
Understand the various mechanisms that Spring Boot provides to examine an
application’s health

https://www.packtpub.com/application-development/spring-boot-cookbook-second-edition

Other Books You May Enjoy

[306]

Mastering Spring Boot 2.0
Dinesh Rajput

ISBN: 9781787127562

Build logically structured and highly maintainable Spring Boot applications
Configure RESTful microservices using Spring Boot
Make the application production and operation-friendly with Spring Actuator
Build modern, high-performance distributed applications using cloud patterns
Manage and deploy your Spring Boot application to the cloud (AWS)
Monitor distributed applications using log aggregation and ELK

https://www.packtpub.com/application-development/mastering-spring-boot-20

Other Books You May Enjoy

[307]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
advanced programming, with Kotlin
 about 139
 functions 140
Angular 5
 page components, generating 230, 231
 reference 227
 services, generating 227, 228
 Tweets Add page, generating 232, 233
 used, for developing frontend for Tweety 226
 User Profile page, generating 234, 235
 users service, generating 228, 229
 using 227
Angular Material
 reference 227
Apache Cassandra drivers
 limitations 33
Apache FreeMarker
 about 90
 Create Article page, implementing 100
 error page, implementing 104
 List Articles page, implementing 97
 Show Article page, implementing 102
 template engines 89
 UI design, for Bloggest 91
 URL 91
 used, for Bloggest UI implementation 93
 used, for implementing layout 94
 using, for view 89
 using, templates 279
Apache Kafka
 about 257
 configuration, setting up 258
 dependencies, setting up 258
 executing 265
 executing, on Linux/Unix 266, 290

 executing, on Windows 266, 290
 features 257
 Image Resize Request Consumer, configuring

261, 262
 Image Resize Request Producer, configuring

258, 259, 260
 key concepts 257
 reference 253
 Spring Boot applications, starting in non-web

mode 262
Apache ZooKeeper
 executing, on Windows 265, 290
application programming interface (API) 16
ApplicationContextInitializer
 used, for registering Spring Bean 17
asynchronous applications
 about 254
 overview 253
asynchronous data transfer
 Redis, using 194
 using, for cross-microservice communication

194

Asynchronous Email Formatter
 architecture 274
 building, technical requisites 271
 requirements 272

B
basic data types, Kotlin 125, 126, 127
blog management system
 Bloggest system, prerequisites 82
 Spring WebFlux, workflow 82
 web application architecture 81
Bloggest system
 about 82
 prerequisites 82
 use case diagram 83

[309]

Bloggest
 demonstrating 113, 118, 121
Bootstrap
 about 66
 URL 67

C
CommentType enumeration 51
components, image resizing
 Email Formatter Consumer 274
 Message Queue 274
 User Registration 274
conditional statements, Kotlin
 if statement 129
 when statement 130
configuration properties
 binding 18
 environment variables, with indices 21
 property origin 20
 property type java.time.Duration, direct binding in

ISO-8601 form 21
 tightened rules, for governing relaxed property

binding 20
containers 196
controller
 implementing 105, 109, 191, 194
 Spring WebFlux, using 105, 190
Create, Retrieve, Update, Delete (CRUD)

operations 50, 84, 147, 180, 181
cross-microservice communication
 asynchronous data transfer, using 194
cross-origin resource sharing (CORS) 238
Cross-Site Request Forgery (CSRF) 67
custom health indicator 26, 27
custom Spring Boot Actuator endpoint
 connecting, with management tools 23
 connecting, with monitoring tools 23
 exposing 22
 extending, with specialized implementation for

web 23

D
Data Definition Language (DDL) 52
Docker
 about 196

 features for microservices 196
 images, building with Maven 197, 199
 used, for building of microsevice system 199,

202

 used, for deploying microservices 203, 204
 used, for supporting microservices 196
domain model, implementing with Spring Data

Redis annotations
 about 182, 183
 dependencies and configuration, setting up 182
domain model
 class diagram 275
 comment 51
 configuration 51
 dependencies and configuration, setting up 275
 dependencies, setting up 51
 implementation, JPA notation used 51, 275
 implementing 53, 276
 user 51

E
Email Formatter Consumer
 Apache Kafka, executing 290
 configuration 284
 demonstrating 289
 dependencies, building 289
 executing 292
 Java Mail, configuration 286
 SMTP server, executing 291
 User Registration microservice, executing 292,

295

F
features, Kotlin
 concise syntax 124
 developer friendliness 124
 interoperability 124
 safe coding and runtime 124
Font Awesome 66
for loop, Kotlin
 with array 131
 with collection 131
 with value range 132
Freemarker Template Language (FTL) 90
functions, Kotlin advanced programming

[310]

 default arguments 141
 generics 142
 infix notation 140
 local functions 140
 named arguments 141
 variable number of arguments (vararg) 142

H
HTTP/2 protocol
 using, by Spring Boot 2.0 27, 29
HyperText Transfer Protocol (HTTP) 145

I
IDEA IntelliJ
 downloading link 7
 reference 145
Image Resizer, components
 Image Resize Request Consumer 256
 Image Resize Request Producer 256
 Message Queue 256
Image Resizer
 Apache Kafka, executing 265
 architecture 256
 demonstrating 265
 dependencies, building 265
 Image Resize Request Consumer, executing

266

 Image Resize Request Producer, executing 266,
268

 Quartz Scheduler, use cases 255
 requisites 254
 use case diagram 255
IntelliJ IDEA
 download link 123
 reference 253
IntelliJ
 used, for opening Spring Boot Project 8

J
Jakarta Enterprise Edition (Jakarta EE)

applications 89
Java 9
 correct AspectJ version, using 33
 JAXBException, tackling 32
 Spring Boot 2.0, executing 32

Java Archive (JAR) 12
Java Database Connectivity (JDBC) 223
Java Development Kit (JDK) 8
 download link 6, 123
 reference 144, 252
 URL 80
Java Enterprise Edition (Java EE) 64
Java Persistence API (JPA) 49
Java Server Pages (JSP) 46
Java Server Tag Library (JSTL) elements 64, 89
Java Server Template Library (JSTL) 46
Java virtual machine (JVM) 12
JSP Standard Tag Library (JSTL) 34

K
Kotlin codes
 syntax 127
Kotlin
 about 124
 advanced programming 139
 automatic casting 130
 basic data types 125
 compile-time null safety 130
 conditional statements 129
 default imports 124
 enums 137
 extensions 136
 for loop 131
 functions 128
 generic types 137
 interfaces 135
 nullable values 130
 objects 138
 packages 127
 string interpolation 128
 type checking 130
 variables 129
 while loop 132

L
Lambda expression
 reference 18
Linux/Unix
 Apache Kafka, executing 266, 290

[311]

M
Maven 3
 download link 6, 123
 reference 144, 252
Maven Surefire Plugin
 issues 33
Micrometer
 used for customising metrics 25
migration guide
 reference link 32
migration
 JVM, using 32
Model-view-controller (MVC) pattern 45
model-view-viewmodel (MVVM) 217
MongoDB
 about 148
 features 148
Moviee API
 demonstrating 165
 integration test, performing 165, 167
 Postman, using 168
 REST architecture, requisites 146
 Spring Security, using for authorization 163, 164
 use case diagram 147
 User, use cases 147

O
OAuth2
 about 239
 configuration, setting up 240
 dependencies, setting up 240
object-oriented programming (OOP), with Kotlin
 about 133
 abstract classes 134
 classes 134
 concrete classes 135
 visibility modifiers 133
objects, Kotlin
 companion objects 139
 declarations 138
 object expressions 138

P
Plain Old Java Object (POJO) 19
Postman
 GET available Taxis endpoint, accessing 209
 Get Movie endpoint, accessing 169
 Get Movie endpoint, accessing with invalid Movie

ID 170
 Get Taxi Status endpoint, accessing 208
 List Movies endpoint, accessing 168
 location, submitting to update Taxi Location

endpoint 206
 submitting, for canceling Taxi Booking endpoint

212

 submitting, for registering Taxi endpoint 204
 submitting, to Accept Taxi Booking endpoint 211
 submitting, to Book Taxi endpoint 210
 submitting, to update Taxi Status endpoint 207
 Taxi Bookings endpoint, accessing 213
 using 168
prerequisites, reactive microservices
 project structure 179
 use case diagram 178
 use cases, of Taxi Microservice 179
property binding API 19

Q
Quartz
 about 263
 configuration, setting up 263
 dependencies, setting up 263
 scheduling, configuration 263
 used, for scheduling 263

R
Rapid application development (RAD) 12
reactive microservices
 architecture 175
 developing, technical requisites 175
 features 176
 overview 175
 requisites 177
Representational State Transfer (REST)
 architecture 145, 146
requisites, for Asynchronous Email Formatter

[312]

 use case diagram 273
REST controller
 annotations, implementation 287
 Spring Web MVC, using 287
Retro Board
 demonstrating 76, 77
 UI implementation, with Spring Thymeleaf 66
revised Spring Security, Spring Boot 2.0
 changed default security auto-configuration

strategy, using 41

S
Saber 204
search engine optimization (SEO) 115
Secure Socket Layer (SSL) 29
Service Provider Interfaces (SPI) 13
Simple Mail Transfer Protocol (SMTP) server
 executing 291
Spring Boot 1.x
 changes 16, 17
 configuration properties, binding 18
 property binding API 19
 Spring Bean, registering with

ApplicationContextInitializer 17
Spring Boot 2.0
 AuthenticationManager bean, using 41
 changed actuator base path, using 36
 changed actuator configuration properties, using

36

 changed database schema creation strategy,
using 40

 changed default behavior for path mapping,
using 37

 changed default database initialization strategy,
using 40

 changed Embedded Container Configuration,
using 37

 changed HikariCP default connection pool, for
JPA using 40

 changed Jackson support, using 39
 changed JSON support, using 39
 changed servlet-specific server properties, using

35

 changed Spring Boot Actuator security, using 39
 changed testing support, using 41

 dispatcher types for the servlet filter, using 38
 executing, on Java 9 32
 HTTP/2 protocol, using 27, 29
 JDK, using 32
 migrating 32
 modified configuration location strategy, using 39
 modified template engine extension handling,

using 35
 modified transitive dependency to spring-boot-

web-starter, using 38
 proxying strategy, using 39
 removed features 42
 renamed actuator endpoints, using 36
 revised Spring Security, using 41
 Spring Security OAuth2, migrating to Spring

Security core 41
 Spring Security, used for securing applications

30

 updated configuration properties, using 35
Spring Boot Actuator
 custom endpoints, using annotations 21
 custom health indicator 26, 27
 metrics, customising with Micrometer 25
Spring Boot application
 anatomy 13, 14
Spring Boot Project
 initiating 7
 opening, with IntelliJ 8
 opening, with Spring Tool Suite (STS) 10
Spring Boot
 about 12
 features 12, 31
 initiating 12
 Spring Framework ecosystem, supporting 15
Spring Data Elasticsearch
 about 85
 configuration class, setting up 86
 dependencies, setting up 86
 domain model implementation, with annotations

86

 domain model, class diagram 85
 domain model, implementing 87
 Elasticsearch 84
 repositories, implementation 88
 using, for persistence 84

[313]

Spring Data JPA
 about 50
 business logic, encapsulating with Services 224,

226, 277
 class diagram, for domain model 219
 dependencies, setting up 220
 domain model, class diagram 50, 275
 domain model, implementation with JPA

annotations 51
 domain model, implementing 220, 221, 222
 Java Database Connectivity (JDBC), using 223
 Java Persistence API (JPA) 49
 repositories, implementing 55, 223, 277
 repositories, testing 55
 services, testing 61
 services, used for encapsulating business logic

60

 Spring Boot Devtools, using for database
visualization 58

 URL 55
 using 219
 using, for persistence 49, 274
Spring Data MongoDB
 about 148
 business logic, encapsulating with service 152,

154

 configuration classes, setting up 150
 dependencies, setting up 150
 domain model 149
 domain model, class diagram 149
 domain model, implementing 150, 151
 repositories, implementing 152
 services, testing 154, 155, 156, 158
 using 147
Spring Data Redis
 class diagram, for domain model 181
 domain model, implementing with annotations

182

 repositories, implementing 184
 Service, used for encapsulating business logic

184, 188, 190
 using, for persistence 180
Spring Framework 5.0
 using 33
Spring Framework ecosystem
 supporting, in Spring Boot 15

Spring Kafka
 dependencies and configuration, setting up 282
 Email Formatter Consumer, configuration 284
 used, for communication 256, 281
 User Registration, configuration 282
Spring Security
 Angular service, used for OAuth2 authentication

and authorization 243, 244, 245
 Authorization Server, configuring 241
 OAuth2 239
 Resource Server, configuring 241
 used, for authentication and authorization of

Tweety 239
 using, for authentication 73, 110
 using, for authentication and authorization 288
 using, for authorization 73, 110
 using, for authorization of Moviee API 163, 164
 web security, configuring 242
Spring Thymeleaf
 about 65
 template engines 64
 UI design, using for Retro Board 65
 used, for Retro Board UI implementation 66
 using, for view 64
Spring Tool Suite (STS)
 download link 123
 downloading link 7
 reference 145
 URL 81
 used, for opening Spring Boot Project 10
Spring Web Flux
 Angular frontend access, enabling to controllers

238

 ControllerAdvice, implementation 109
 TweetController, implementing 236, 237, 238
 using, for controller 105
 using, for REST controller 235
Spring Web MVC
 Controllers annotations, implementation 69
 controllers, testing 70
 using, for REST controller 287
 using, with servlet 3.x for controller 68
 workflow 46
Spring WebFlux
 MovieController, implementing 159, 160

 MovieController, testing 160, 161, 163
 using, for controller 190
 using, for MovieController 158
synchronous applications 253
synchronous data transfer
 Redis, using 196

T
templates
 Apache Freemarker, using 279
 reference 281
Tweety
 architecture 217
 authentication, with Spring Security 239
 authorization, with Spring Security 239
 demonstrating 246
 frontend, developing with Angular 5 226
 List Tweets page, accessing 248
 login page, accessing 247
 requisites 218
 Send Tweet page, accessing 248
 use case diagram 218
 User, use cases 219

U
Uniform Resource Identifier (URI) 146
Uniform Resource Locator (URL) 145
upgraded Spring Framework 5.0
 dropped support, for frameworks 34
 modified CORS support behavior 34
 removed classes 34
 removed methods 34
 removed packages 34
 using 33
user interface (UI) 45, 81

W
web application architecture
 about 45
 prerequisites 48
 Spring Web MVC, workflow 46
 use case diagram 48
Web Archive (WAR) 12
Windows
 Apache Kafka, executing 266
 Apache ZooKeeper, executing 265, 290
World Wide Web (WWW) 145

	Cover
	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction
	Technical requirements
	Generating Spring Boot Projects
	Opening the generated project with IntelliJ
	Opening the generated project with STS

	Getting started with Spring Boot
	Learning about Spring Boot
	Anatomy of a Spring Boot application
	Supporting the Spring Framework ecosystem in Spring Boot

	Changes since Spring Boot 1.x
	Registering a Spring Bean using ApplicationContextInitializer
	Configuration property binding
	New property binding API
	Property origin
	Tightened rules for governing relaxed property binding
	Environment variables with indices
	Direct binding of property type java.time.Duration in the ISO-8601 form

	Custom endpoints for Spring Boot Actuator using annotations
	Exposing a custom Spring Boot Actuator endpoint
	Extending a custom endpoint with a specialized implementation for the web
	Connecting to a custom endpoint using monitoring and management tools

	Custom metrics using Micrometer
	Custom health indicator
	Using the HTTP/2 protocol
	Securing applications with Spring Security

	The next milestone
	Migration
	Using the correct JDK and JVM
	Running on Java 9
	Tackling JAXBException
	Using the correct AspectJ version
	Being aware of limitations on Apache Cassandra drivers
	Being aware of issues with the Maven Surefire Plugin

	Using the upgraded Spring Framework 5.0
	Modified CORS support behavior
	Removed packages, classes, and methods
	Dropped support for frameworks

	Using the updated configuration properties
	Using the changed servlet-specific server properties
	Using the modified template engine extension handling
	Using the changed actuator configuration properties
	Using the changed actuator base path
	Using the renamed actuator endpoints
	Using the changed Embedded Container Configuration
	Using the changed default behavior for path mapping
	Using the changed default dispatcher types for the servlet filter
	Using the modified transitive dependency to spring-boot-web-starter
	Using the changed default proxying strategy
	Using the modified configuration location strategy
	Using the changed Jackson/JSON support
	Using the changed Spring Boot Actuator security
	Using the changed HikariCP default connection pool for JPA
	Using the changed default database initialization strategy
	Using the changed database schema creation strategy
	Using the changed testing support
	Using the revised Spring Security
	Using the changed default security auto-configuration strategy
	Spring Security OAuth2 is migrated to Spring Security core
	Using the AuthenticationManager bean

	Understanding removed features

	Summary
	Questions
	Further reading

	Chapter 2: Building a Basic Web Application
	Technical requirements
	Getting started
	Web application architecture
	Workflow of Spring Web MVC

	Requirements for our web application
	The use case diagram

	Using Spring Data JPA for persistence
	Understanding the Java Persistence API (JPA)
	Understanding Spring Data JPA
	Class diagram for the domain model
	Implementation of the domain model using JPA annotations
	Setting up dependencies and configuration
	Implementing the domain model

	Implementation of Spring Data JPA repositories
	Testing Spring Data JPA repositories
	Using Spring Boot Devtools for database visualization

	Using Services to encapsulate business logic
	Testing Services

	Using Spring Thymeleaf for the view
	Understanding template engines
	Spring Thymeleaf
	UI design for the Retro Board
	UI implementation for the Retro Board using Spring Thymeleaf

	Using Spring Web MVC with servlet 3.x for the controller
	Implementation of Controllers annotations
	Testing controllers

	Using Spring Security for authentication and authorization
	Demonstrating the Retro Board
	Summary
	Questions
	Further reading

	Chapter 3: Building a Simple Blog Management System
	Technical requirements
	Getting started
	Web application architecture
	Workflow of Spring WebFlux

	Requirements of the Bloggest system
	The use case diagram

	Using Spring Data Elasticsearch for persistence
	Understanding Elasticsearch
	Understanding Spring Data Elasticsearch
	Class diagram for the domain model
	Implementation of the domain model using Spring Data Elasticsearch annotations
	Setting up dependencies and configuration classes
	Implementing the domain model

	Implementation of Spring Data Elasticsearch repositories

	Using Apache FreeMarker for the view
	Understanding template engines
	Apache FreeMarker
	UI design for Bloggest
	UI implementation for Bloggest using Apache FreeMarker
	Implementing a common layout using Apache FreeMarker
	Implementing a List Articles page
	Implementing a Create Article page
	Implementing a Show Article page
	Implementing an error page

	Using Spring WebFlux for controller
	Implementation of controllers
	Implementation of ControllerAdvice

	Using Spring Security for authentication and authorization
	Demonstrating Bloggest
	Summary
	Questions
	Further reading

	Chapter 4: Introduction to Kotlin
	Technical requirements
	Getting started with Kotlin
	Default imports
	Basic data types
	Numeric data types
	Learning numeric literals
	Numeric representation
	Numeric operations
	String literals

	The syntax for Kotlin code
	The Kotlin packages
	String interpolation
	Functions in Kotlin
	Variables in Kotlin
	Conditional statements
	The if statement
	The when statement

	Type checking and automatic casting
	Nullable values and compile-time null safety
	The for loop
	The for loop with an array
	The for loop with a collection
	The for loop with a value range

	The while loop

	Object-oriented programming with Kotlin
	Learning about visibility modifiers
	Classes in Kotlin
	Abstract classes
	Concrete classes

	The concept of interfaces in Kotlin
	Learning about extensions
	Generic types in Kotlin
	Enums in Kotlin
	Objects in Kotlin
	Object expressions
	Object declarations
	Companion objects

	Advanced programming with Kotlin
	Functions
	Infix notation in functions
	Local functions in Kotlin
	Default arguments in functions
	Named arguments in functions
	Generics in functions
	Variable number of arguments (vararg) in functions

	Summary
	Questions
	Further reading

	Chapter 5: Building a Reactive Movie Rating API Using Kotlin
	Technical requirements
	Getting started
	REST architecture
	Requirements of REST architecture
	The use case diagram

	Using Spring Data MongoDB for persistence
	Understanding MongoDB
	Understanding Spring Data MongoDB
	Class diagram for the domain model
	Implementation of the domain model using Spring Data MongoDB annotations
	Setting up dependencies and configuration
	Implementing the domain model

	Implementing of Spring Data MongoDB repositories
	Using a service to encapsulate business logic
	Testing Services

	Using Spring WebFlux for controllers
	Implementation of controllers
	Testing controllers

	Using Spring Security for basic authorization
	Demonstrating Moviee
	Integration testing
	Demonstrating the use of Postman
	Accessing the List Movies endpoint
	Accessing the Get Movie endpoint
	Accessing the Get Movie endpoint with an invalid Movie ID
	Accessing the Rate Movie endpoint

	Summary
	Questions
	Further reading

	Chapter 6: Building an API with Reactive Microservices
	Technical requirements
	Getting started
	Microservices architecture
	The requirements of microservices architecture
	The use case diagram
	The project structure to develop microservices

	Using Spring Data Redis for persistence
	Understanding Redis
	Understanding Spring Data Redis
	Class diagram for the domain model
	Implementation of domain model using Spring Data Redis annotations
	Setting up dependencies and configuration
	 Implementing the domain model

	Implementation of Spring Data Redis repositories
	Using a Service to encapsulate business logic

	Using Spring WebFlux for a controller
	Implementation of controllers

	Using asynchronous data transfer for cross-microservice communication
	Asynchronous data transfer using Redis

	Using Docker to support microservices
	Understanding Docker
	Using Maven to build Docker images
	Building a system of microservices with Docker
	Deploying microservices with Docker

	Demonstrating Saber
	Submitting to the Register Taxi endpoint
	Submitting location to update Taxi Location endpoint
	Submitting to Update Taxi Status endpoint
	Accessing the Get Taxi Status endpoint
	Accessing the GET available Taxis endpoint
	Submitting to Book Taxi endpoint
	Submitting to Accept Taxi Booking endpoint
	Submitting to cancel Taxi Booking endpoint
	Accessing Taxi Bookings endpoint

	Summary
	Questions
	Further reading

	Chapter 7: Building a Twitter Clone with Spring Boot
	Technical requirements
	Getting started
	Beginning with the Tweety architecture
	Tweety requirements
	The use case diagram

	Using Spring Data JPA for persistence
	Class diagram for the domain model
	Implementation of the domain model using Spring Data JPA annotations
	Setting up dependencies and configuration
	Implementing the domain model

	Implementing Spring Data JPA repositories
	Caveat for going reactive with blocking JDBC

	Using Service to encapsulate business logic

	Using Angular 5 for the frontend
	Getting started with Angular 5 application development
	Generating Angular services
	Generating the users service

	Generating Angular page components
	Generating the Tweets Add page
	Generating the User Profile page

	Using Spring Web Flux for the REST controller
	Implementing controllers
	Enabling Angular frontend access to controllers

	Using Spring Security for authentication and authorization
	Understanding OAuth2
	Setting up dependencies and configuration
	Configuring the Resource Server
	Configuring the Authorization Server
	Configuring web security
	Using an Angular service for OAuth2 authentication and authorization

	Demonstrating Tweety
	Accessing the login page
	Accessing the List Tweets page
	Accessing the Send Tweet page
	Accessing the User Profile page

	Summary
	Questions
	Further reading

	Chapter 8: Introducing Spring Boot 2.0 Asynchronous
	Technical requirements
	Getting started
	Synchronous applications
	Asynchronous applications
	The requirement of asynchronous applications
	The use case diagram

	The architecture of an image resizing application

	Using Spring Kafka for communication
	Understanding Apache Kafka
	Setting up dependencies and configuration
	Configuration for the Image Resize Request Producer
	Configuration for Image Resize Request Consumer
	Starting Spring Boot applications in a non-web mode

	Using Quartz for scheduling
	Understanding Quartz
	Setting up dependencies and configuration
	Configuration for Quartz scheduling

	Demonstrating Image Resizer
	Building all dependencies
	Running Apache Kafka
	Running Apache ZooKeeper on Windows
	Running Apache Kafka on Linux/Unix
	Running Apache Kafka on Windows

	Running Image Resize Request Consumer
	Running Image Resize Request Producer

	Summary
	Questions
	Further reading

	Chapter 9: Building an Asynchronous Email Formatter
	Technical requirements
	Getting started
	Why Email Formatter is useful
	The use case diagram

	The architecture of the Email Formatter application

	Using Spring Data JPA for persistence
	Class diagram for the domain model
	Implementation of the domain model using JPA annotations
	Setting up dependencies and the configuration class
	Implementing the domain model

	Implementation of Spring Data JPA repositories
	Using Services to encapsulate business logic

	Using Apache FreeMarker for templates
	Using Spring Kafka for communication
	Setting up dependencies and the configuration class
	Configuration for User Registration
	Configuration for the Email Formatter consumer
	Configuring Java Mail

	Using Spring Web MVC for the REST controller
	Implementation of controller annotations

	Using Spring Security for authentication and authorization
	Demonstrating Email Formatter
	Building all dependencies
	Running Apache Kafka
	Running Apache ZooKeeper on Windows
	Running Apache Kafka on Linux/Unix
	Running Apache Kafka on Windows

	Running SMTP server
	Running the Email Formatter consumer
	Running the User Registration microservice

	Summary
	Questions
	Further reading

	Assessments
	Other Books You May Enjoy
	Index

