

Learn ARCore - Fundamentals
of Google ARCore

Learn to build augmented reality apps for Android, Unity, and
the web with Google ARCore 1.0

Micheal Lanham

BIRMINGHAM - MUMBAI

Learn ARCore - Fundamentals of Google
ARCore
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Amarabha Banerjee
Acquisition Editor: Reshma Raman
Content Development Editor: Onkar Wani
Technical Editor: Vaibhav Dwivedi
Copy Editor: Shaila Kusanale
Project Coordinator: Devanshi Doshi
Proofreader: Safis Editing
Indexer: Priyanka Dhadke
Graphics: Jason Monteiro
Production Coordinator: Shraddha Falebhai

First published: March 2018

Production reference: 1280318

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78883-040-9

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Micheal Lanham is a proven software and tech innovator with 20 years of experience. He
has developed a broad range of software applications, including games, graphics, web,
desktop, engineering, artificial intelligence, GIS, and Machine Learning applications for a
variety of industries. He was introduced to Unity in 2006 and has been an avid developer,
consultant, manager, and author of multiple Unity games, graphics projects, and books
since. Micheal lives in Calgary, Canada, with his family.

I would like to thank Reshma Raman, my Acquisition Editor, and the rest of the team at
Packt Publishing for showing the utmost professionalism and dedication to producing
quality books. I would also like to thank the work by the reviewers for all their hard work.
At home, I would graciously like to thank my partner, Rhonda, my internal editor/artist,
and Ava, my QA tester and part-time model. Finally, I would like to thank my mother for
teaching me to be creative with anything. Thanks Mom...

About the reviewer
Neil Alexander is a recent graduate from the University of North Carolina at Charlotte,
where he earned a master's in computer science with a specialization in intelligent and
interactive systems. As part of his education, he worked on developing several virtual
reality demos and data visualization applications. He graduated from the Don Bosco
Institute of Technology and has also worked as a research analyst at an IT publishing firm
in Mumbai.

He currently works as a data scientist with several Blockchain and cryptocurrency startups
in the Washington D.C. area.

I’d like to thank my friends and family, with a quick shout out to Govindan K, who was
extremely helpful throughout the review process.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Getting Started 6
Immersive computing 7
AR and ARCore 8

Motion tracking 9
Environmental understanding 10
Light estimation 11

The road ahead 12
Summary 15

Chapter 2: ARCore on Android 16
Installing Android Studio 17
Installing ARCore 19

Installing the ARCore service on a device 20
Build and deploy 22
Exploring the code 24
Summary 26

Chapter 3: ARCore on Unity 27
Installing Unity and ARCore 28
Building and deploying to Android 32
Remote debugging 33

Testing the connection 34
Remotely debugging a running app 35

Exploring the code 37
Unity Update method 38

Summary 40

Chapter 4: ARCore on the Web 41
Installing WebARonARCore 41
Installing Node.js 43

The Node Package Manager 43
Exploring the samples 45
Debugging web apps on Android 47

Connecting Chrome Developer tools 47
Debugging with Chrome 49

3D and three.js 50
Understanding left- or right-handed coordinate systems 52
3D scale, rotation, and transformation 53

Table of Contents

[ii]

Summary 54

Chapter 5: Real-World Motion Tracking 55
Motion tracking in depth 56
3D sound 59
Resonance Audio 60
A tracking service with Firebase 63

Setting up the database 65
Time to test the connection 66

Visualizing tracked motion 68
Exercises 71
Summary 71

Chapter 6: Understanding the Environment 72
Tracking the point cloud 73
Meshing and the environment 75
Interacting with the environment 77

Touch for gesture detection 80
Drawing with OpenGL ES 82
Shader programming 84

Editing the shader 87
Exercises 90
Summary 90

Chapter 7: Light Estimation 91
3D rendering 92

Building a test scene 93
Materials, shaders, and textures 96

3D lighting 97
Light estimation 100
Cg/HLSL shaders 104
Estimating light direction 108

Updating the environmental lighting 111
Exercises 112
Summary 112

Chapter 8: Recognizing the Environment 113
Introduction to ML 114

Linear regression explained 117
Deep learning 119

Neural networks – the foundation of deep learning 121
Programming a neural network 123

Scripting the neural network 124
Training a neural network 131

Activating the warning 133

Table of Contents

[iii]

Adding the environmental scanner 136
Backward propagation explained 138
Gradient descent explained 140
Defining the network architecture 142
The network view of the world 146
Exercises 147

TensorFlow 147
Summary 150

Chapter 9: Blending Light for Architectural Design 151
Setting up the project 152

Building the scene 154
Modifying the base scene 157

The environment and placing content 161
Building the UI 167

Scripting the buttons 170
Interacting with the virtual 173

Building the object outliner 177
Positioning the chair 180

Lighting and shadows 184
Turning the shadows on 187

Exercises 190
Summary 190

Chapter 10: Mixing in Mixed Reality 191
Mixed reality and HoloKit 192

Setting up HoloKit 194
How does it work? 198

Introducing WRLD 199
Setting up WRLD for MR 202
Navigating the map 205

Switching from AR to MR 207
Building the SceneSwitcher 209
Creating the SceneSwitcher prefab 210
Modifying the Wrld map script 213

Mapping, GIS, and GPS 216
Making the Splash scene 221
Fixing the altitude issue 225

What's next? 226
Exercises 228
Summary 229

Chapter 11: Performance Tips and Troubleshooting 230
Diagnosing performance 231

Chrome DevTools 231

Table of Contents

[iv]

Android Profiler 234
Unity Profiler 236

Tips for managing better performance 240
General troubleshooting 243

Troubleshooting code 244
Exercises 247
Troubleshooting tips 248
Summary 249

Other Books You May Enjoy 250

Index 253

Preface
Augmented reality applications have moved from novelty to reality, and with the release of
ARKit and now ARCore, have become more accessible to the average developer. Now
virtually anyone with a grasp of a programming language can quickly build an AR
experience using a variety of platforms. Google, with the release of ARCore, has now made
this even easier and also provides support for multiple development platforms. This book
will guide you through building AR applications using JavaScript and web in mobile with
Java/Android and also in mobile with C# / Unity. Along the way, you will learn the
fundamentals of building a quality AR experience for your user.

Who this book is for
This book is for any developer who wants to dive into building an augmented reality app
with ARCore, but has no background in game or graphic programming. Although the book
only assumes the reader has basic high-school level math, the reader should still have a firm
grasp of at least one of the following programming languages: JavaScript, Java, or C#.

What this book covers
Chapter 1, Getting Started, covers the fundamental concepts any modern AR app needs to
tackle in order to provide a great experience to the user. We will learn the basic concepts of
motion tracking, environmental understanding, and light estimation.

Chapter 2, ARCore on Android, is an introduction to Android development with Android
Studio, where we show you how to install Android Studio and set up your first ARCore
app.

Chapter 3, ARCore on Unity, discusses how to install and build an ARCore app with Unity.
This chapter also shows you how to remotely debug an app using the Android
development tools.

Chapter 4, ARCore on the Web, jumps into web development with JavaScript and focuses on
how to set up your own simple web server with Node.js. Then, this chapter looks through
the various sample ARCore templates and discusses how to extend those for further
development.

Preface

[2]

Chapter 5, Real-World Motion Tracking, extends our learnings from the preceding chapter
and extend one of the web examples to add a real-world motion tracking. Not only will this
showcase several fundamentals of working with 3D concepts, but it will also demonstrate
how ARCore tracks a user's motion.

Chapter 6, Understanding the Environment, jumps back to the Android platform and deal
with how ARCore understands the user's environment. We will grasp how ARCore
identifies planes or surfaces in the environment and meshes them for user interaction and
visualization. Here, we will take a look at how to modify a shader in order to measure and
colorize the points from the user.

Chapter 7, Light Estimation, explains the role that lighting and shadows play in selling the
AR experience to the user. We learn how ARCore provides for the estimation of light and
how it is used to light the virtual models placed by the user into the AR world.

Chapter 8, Recognizing the Environment, is where we cover the basics of Machine Learning
and how essential is the technology to the success of the AR revolution. We then look to
building a simple neural network that learns through supervised training using a technique
called back propagation. After learning the basics of NN and deep learning, we look to a
more complex example that demonstrates various forms of Machine Learning.

Chapter 9, Blending Light for Architectural Design, covers the building of an AR design app
that allows the user to place virtual furniture in the living space or wherever they need to.
We also cover how to place and move an object in AR using touch and how to identify
when an object is selected. Then, we will extend our lighting and shadows from Chapter
7, Light Estimation and provide real-time shadows on the virtual objects.

Chapter 10, Mixing in Mixed Reality, is where we introduce mixed reality through the use of
inexpensive MR headsets. ARCore is ideally suited for use in these inexpensive headsets
since it already tracks the user and monitors their environment internally. We will oversee
how to turn our app from a traditional mapping app using the 3D WRLD API for Unity to an
AR mapping app, where we will also provide an option to switch to MR and an MR
headset.

Chapter 11, Performance Tips and Troubleshooting, covers techniques for measuring an app's
performance on all the development platforms we deal with. We then talk about the
importance of performance and the impact it can have to the various systems. After that, we
cover general debugging and troubleshooting tips, where we finish off with a table that
covers the most common errors a user may encounter in this book.

Preface

[3]

To get the most out of this book
These are the things to be remembered in order to use this book to the fullest:

The reader will need to be proficient in one of the following programming
languages: JavaScript, Java, or C#
A memory of high-school mathematics
An Android device that supports ARCore; the following is the link to check the
list: https:/ /developers. google. com/ar/ discover/

A desktop machine that will run Android Studio and Unity; a dedicated 3D
graphics card is not explicitly required

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Learn- ARCore- Fundamentals- of-Google- ARCore. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/ PacktPublishing/ . Check them out!

https://developers.google.com/ar/discover/
https://developers.google.com/ar/discover/
https://developers.google.com/ar/discover/
https://developers.google.com/ar/discover/
https://developers.google.com/ar/discover/
https://developers.google.com/ar/discover/
https://developers.google.com/ar/discover/
https://developers.google.com/ar/discover/
https://developers.google.com/ar/discover/
https://developers.google.com/ar/discover/
https://developers.google.com/ar/discover/
https://developers.google.com/ar/discover/
https://developers.google.com/ar/discover/
https://developers.google.com/ar/discover/
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Learn-ARCore-Fundamentals-of-Google-ARCore
https://github.com/PacktPublishing/Learn-ARCore-Fundamentals-of-Google-ARCore
https://github.com/PacktPublishing/Learn-ARCore-Fundamentals-of-Google-ARCore
https://github.com/PacktPublishing/Learn-ARCore-Fundamentals-of-Google-ARCore
https://github.com/PacktPublishing/Learn-ARCore-Fundamentals-of-Google-ARCore
https://github.com/PacktPublishing/Learn-ARCore-Fundamentals-of-Google-ARCore
https://github.com/PacktPublishing/Learn-ARCore-Fundamentals-of-Google-ARCore
https://github.com/PacktPublishing/Learn-ARCore-Fundamentals-of-Google-ARCore
https://github.com/PacktPublishing/Learn-ARCore-Fundamentals-of-Google-ARCore
https://github.com/PacktPublishing/Learn-ARCore-Fundamentals-of-Google-ARCore
https://github.com/PacktPublishing/Learn-ARCore-Fundamentals-of-Google-ARCore
https://github.com/PacktPublishing/Learn-ARCore-Fundamentals-of-Google-ARCore
https://github.com/PacktPublishing/Learn-ARCore-Fundamentals-of-Google-ARCore
https://github.com/PacktPublishing/Learn-ARCore-Fundamentals-of-Google-ARCore
https://github.com/PacktPublishing/Learn-ARCore-Fundamentals-of-Google-ARCore
https://github.com/PacktPublishing/Learn-ARCore-Fundamentals-of-Google-ARCore
https://github.com/PacktPublishing/Learn-ARCore-Fundamentals-of-Google-ARCore
https://github.com/PacktPublishing/Learn-ARCore-Fundamentals-of-Google-ARCore
https://github.com/PacktPublishing/Learn-ARCore-Fundamentals-of-Google-ARCore
https://github.com/PacktPublishing/Learn-ARCore-Fundamentals-of-Google-ARCore
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[4]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/LearnARCoreFundamentalsofGoogleARCore_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Scroll down to the draw method and add the following code beneath the
identified line."

A block of code is set as follows:

void main() {
 float t = length(a_Position)/u_FurthestPoint;
 v_Color = vec4(t, 1.0-t,t,1.0);
 gl_Position = u_ModelViewProjection * vec4(a_Position.xyz, 1.0);
 gl_PointSize = u_PointSize;
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

uniform mat4 u_ModelViewProjection;
uniform vec4 u_Color;
uniform float u_PointSize;
uniform float u_FurthestPoint;

Any command-line input or output is written as follows:

cd c:\Android
npm install http-server -g

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

https://www.packtpub.com/sites/default/files/downloads/LearnARCoreFundamentalsofGoogleARCore_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearnARCoreFundamentalsofGoogleARCore_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearnARCoreFundamentalsofGoogleARCore_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearnARCoreFundamentalsofGoogleARCore_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearnARCoreFundamentalsofGoogleARCore_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearnARCoreFundamentalsofGoogleARCore_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearnARCoreFundamentalsofGoogleARCore_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearnARCoreFundamentalsofGoogleARCore_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearnARCoreFundamentalsofGoogleARCore_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearnARCoreFundamentalsofGoogleARCore_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearnARCoreFundamentalsofGoogleARCore_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearnARCoreFundamentalsofGoogleARCore_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearnARCoreFundamentalsofGoogleARCore_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearnARCoreFundamentalsofGoogleARCore_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearnARCoreFundamentalsofGoogleARCore_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearnARCoreFundamentalsofGoogleARCore_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearnARCoreFundamentalsofGoogleARCore_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearnARCoreFundamentalsofGoogleARCore_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearnARCoreFundamentalsofGoogleARCore_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearnARCoreFundamentalsofGoogleARCore_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearnARCoreFundamentalsofGoogleARCore_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/LearnARCoreFundamentalsofGoogleARCore_ColorImages.pdf

Preface

[5]

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Getting Started

Welcome to the world of immersive computing and augmented reality with Google
ARCore. In this book, we will start with the basics. First, we will cover the basics of
augmented reality (AR) on some important core concepts. From there, we will cover the
installation and basics of the three development platforms (Android, web, and Unity) that
we will use throughout the book. Next, we will take a more in-depth look at the technical
challenges faced by AR developers, including various solutions techniques and for solving
them. In the final chapters of the book, we will expand on those skills by developing three
example AR and mixed reality (MR) apps, where we will build a Machine Learning object
recognizer, an AR Designer app, and an app that transitions from AR to MR.

We decided to omit the Unreal platform from this book, not because it is
an inferior platform, but quite the opposite. Unreal is a proven and
cutting-edge game engine that is well suited for experienced graphic and
game developers. However, Unreal and Unity are essentially on par for
development features. Therefore, it made more sense to focus on Unity,
which is far better suited for learning game and graphic development.

Getting Started Chapter 1

[7]

In this chapter, we will begin by quickly covering the fundamental concepts of immersive
computing and augmented reality. Then, we will look at the core problems ARCore is
designed to address (motion tracking, environmental understanding, and light estimation).
Here's a quick look at the topics we will cover in this chapter:

Immersive computing
ARCore and AR

Motion tracking
Environmental understanding
Light estimation

The road ahead

This book was written with a beta version of ARCore. If you find
something different or something that needs to be changed, contact Packt
with your errata.

Immersive computing
Immersive computing is a new term used to describe applications that provide an
immersive experience for the user. This may come in the form of an augmented or virtual
reality experience. While our attention in this book will be primarily focused on building an
augmented reality experience, we will highlight techniques that can be used for VR as well.
In order to better understand the spectrum of immersive computing, let's take a look at this
diagram:

The Immersive Computing Spectrum

Getting Started Chapter 1

[8]

The preceding diagram illustrates how the level of immersion affects the user experience,
with the left-hand side of the diagram representing more traditional applications with little
or no immersion, and the right representing fully immersive virtual reality applications. For
us, we will stay in the middle sweet spot and work on developing augmented reality
applications. In the next section, we will be introduced to AR and ARCore in more detail.

AR and ARCore
Augmented reality applications are unique in that they annotate or augment the reality of
the user. This is typically done visually by having the AR app overlay a view of the real
world with computer graphics. ARCore is designed primarily for providing this type of
visual annotation for the user. An example of a demo ARCore application is shown here:

Google ARCore demo application; the dog is real

The screenshot is even more impressive when you realize that it was rendered real time on
a mobile device. It isn't the result of painstaking hours of using Photoshop or other media
effects libraries. What you see in that image is the entire superposition of a virtual object,
the lion, into the user's reality. More impressive still is the quality of immersion. Note the
details, such as the lighting and shadows on the lion, the shadows on the ground, and the
way the object maintains position in reality even though it isn't really there. Without those
visual enhancements, all you would see is a floating lion superimposed on the screen. It is
those visual details that provide the immersion. Google developed ARCore as a way to help
developers incorporate those visual enhancements in building AR applications.

Getting Started Chapter 1

[9]

Google developed ARCore for Android as a way to compete against
Apple's ARKit for iOS. The fact that two of the biggest tech giants today
are vying for position in AR indicates the push to build new and
innovative immersive applications.

ARCore has its origins in Tango, which is/was a more advanced AR toolkit that used special
sensors built into the device. In order to make AR more accessible and mainstream, Google
developed ARCore as an AR toolkit designed for Android devices not equipped with any
special sensors. Where Tango depended on special sensors, ARCore uses software to try
and accomplish the same core enhancements. For ARCore, Google has identified three core
areas to address with this toolkit, and they are as follows:

Motion tracking
Environmental understanding
Light estimation

In the next three sections, we will go through each of those core areas in more detail and
understand how they enhance the user experience.

Motion tracking
Tracking a user's motion and ultimately their position in 2D and 3D space is fundamental to
any AR application. ARCore allows us to track position changes by identifying and tracking
visual feature points from the device's camera image. An example of how this works is
shown in this figure:

Feature point tracking in ARCore

Getting Started Chapter 1

[10]

In the figure, we can see how the user's position is tracked in relation to the feature points
identified on the real couch. Previously, in order to successfully track motion (position), we
needed to pre-register or pre-train our feature points. If you have ever used the Vuforia AR
tools, you will be very familiar with having to train images or target markers. Now, ARCore
does all this automatically for us, in real time, without any training. However, this tracking
technology is very new and has several limitations. In the later part of the book, and
specifically in Chapter 5, Real-World Motion Tracking, we will add a feature to our AR
assistant that allows us to track multiple objects' positions from multiple devices in real
time using GPS. Then, in Chapter 10, Mixing in Mixed Reality, we will extend our tracking
to include augmented maps.

Environmental understanding
The better an AR application understands the user's reality or the environment around
them, the more successful the immersion. We already saw how ARCore uses feature
identification in order to track a user's motion. Yet, tracking motion is only the first part.
What we need is a way to identify physical objects or surfaces in the user's reality. ARCore
does this using a technique called meshing.

We will cover more details about meshing in later chapters, but, for now, take a look at the
following figure from Google that shows this meshing operation in action:

Google image showing meshing in action

Getting Started Chapter 1

[11]

What we see happening in the preceding image is an AR application that has identified a
real-world surface through meshing. The plane is identified by the white dots. In the
background, we can see how the user has already placed various virtual objects on the
surface. Environmental understanding and meshing are essential for creating the illusion of
blended realities. Where motion tracking uses identified features to track the user's position,
environmental understanding uses meshing to track the virtual objects in the user's reality.
In Chapter 8, Recognizing the Environment, we will look at how to train our own machine
learning object identifier, which will allow us to extend our meshing to include
automatically recognizable objects or areas of an environment.

Light estimation
Magicians work to be masters of trickery and visual illusion. They understand that
perspective and good lighting are everything in a great illusion, and, with developing great
AR apps, this is no exception. Take a second and flip back to the scene with the virtual lion.
Note the lighting and detail in the shadows on the lion and ground. Did you note that the
lion is casting a shadow on the ground, even though it's not really there? That extra level of
lighting detail is only made possible by combining the tracking of the user's position with
the environmental understanding of the virtual object's position and a way to read light
levels. Fortunately, ARCore provides us with a way to read or estimate the light in a scene.
We can then use this lighting information in order to light and shadow virtual AR objects.
Here's an image of an ARCore demo app showing subdued lighting on an AR object:

Google image of demo ARCore app showing off subdued lighting

Getting Started Chapter 1

[12]

The effects of lighting, or lack thereof, will become more obvious as we start developing our
startup applications. Later, in Chapter 9, Blending Light for Architectural Design, we will go
into far more detail about 3D lighting and even build some simple shader effects.

In this chapter, we didn't go into any extensive details; we will get to that later, but you
should now have a good grasp of the core elements ARCore was developed to address. In
the next section, we will take a closer look at how best to use the material in this book.

The road ahead
We will take a very hands-on approach for the rest of this book. After all, there is no better
way to learn than by doing. While the book is meant to be read in its entirety, not all readers
have the time or a need to do this. Therefore, provided in the following table is a quick
summary of the platforms, tools, techniques, and difficulty level of each chapter left in the
book:

Chapter Focus Difficulty Platform Tools and
techniques

Chapter 2,
ARCore on
Android

Basics of Android Basic Android (Java)
Installation of tools
and environment for
Android.

Chapter 3,
ARCore on Unity Basics of Unity Basic Android/Unity

(C#)

Installation, setup,
and deployment of
the Unity sample.

Chapter 4,
ARCore on the
Web

Building ARCore
web apps Medium Web

(JavaScript)

Installation and
setup of tools to
support web
development and
hosting.

Getting Started Chapter 1

[13]

Chapter 5, Real-
World Motion
Tracking

3D spatial audio
and Firebase Medium Web

(JavaScript)

Introduce motion
tracking with a
mobile device with
audio, integrate with
Google Firebase, and
track multiple
objects and/or users
in AR.

Chapter 6,
Understanding
the Environment

Introduction to
EU and meshing Medium Android (Java)

Learning the ARCore
API for Java as well
as creating a new
ARCore Android
project, meshing an
environment, and
interacting with
objects using
OpenGL ES.

Chapter 7,
Light Estimation

Introduction to
light estimation
and lighting in
Unity

Advanced Unity (C#,
Cg/HLSL)

Understand the
importance of
lighting and how it
can be used to make
AR objects appear
more realistic.

Chapter 8,
Recognizing the
Environment

Introduction to
Machine
Learning (ML) for
AR and how it
can be used.

Advanced Android (Java),
Unity (C#)

Look at various ML
platforms in order to
better understand
how it can be used in
AR applications.

Chapter 9,
Blending Light for
Architectural
Design

3D lighting and
shaders Advanced Unity (C#)

An advanced
introduction to
lighting and shaders
in Unity, including
writing HLSL/ Cg
shader code.

Getting Started Chapter 1

[14]

Chapter 10,
Mixing in Mixed
Reality

Combine all
elements together. Advanced+ Unity (C#),

Android (Java)

We will extend the
ARCore platform by
introducing mixed
reality and allowing
the app to transition
from AR to MR.

Chapter 11,
Performance and
Troubleshooting

Performance and
troubleshooting
tips

Basic All

Provides some
helpful tips on
performance, with a
section dedicated to
addressing the
possible issues you
may have while
working on the
samples.

Also, Chapter 10, Mixing in Mixed Reality, is intended to be used after the reader has
reviewed all the previous chapters.

While some readers may prefer to only explore a single ARCore platform by sticking to
those specific chapters, you are strongly encouraged to work through all the samples in this
book. Given that the ARCore API is so similar across platforms, transferring the techniques
you learn for one should translate well to another. Also, don't be intimidated by a different
platform or programming language. If you have a good base of knowledge in one C
language, learning any other language from the rest of the family takes only minimal effort.
Developer, programmer, software engineer, or whatever you want to call yourself, you can
always benefit from learning another programming language.

Getting Started Chapter 1

[15]

Summary
In this chapter, we took a very quick look at what immersive computing and AR is all
about. We learned that augmented reality covers the middle ground of the immersive
computing spectrum, that AR is just a careful blend of illusions used to trick the user into
believing that their reality has been combined with a virtual one. After all, Google
developed ARCore as a way to provide a better set of tools for constructing those illusions
and to keep Android competitive in the AR market. After that, we learned the core concepts
ARCore was designed to address and looked at each: motion tracking, environmental
understanding, and light estimation, in a little more detail. Finally, we finished with a
helpful roadmap for users looking to get the most out of this book in the shortest amount of
time.

In the next chapter, we begin to dive in and get our hands dirty by getting the sample
Android project set up and tweaked for our needs.

2
ARCore on Android

Google developed ARCore to be accessible from multiple development platforms (Android
[Java], Web [JavaScript], Unreal [C++], and Unity [C#]), thus giving developers plenty of
flexibility and options to build applications on various platforms. While each platform has
its strengths and weaknesses, which we will get to later, all the platforms essentially extend
from the native Android SDK that was originally built as Tango. This means that regardless
of your choice of platform, you will need to install and be somewhat comfortable working
with the Android development tools.

In this chapter, we will focus on setting up the Android development tools and building an
ARCore application for Android. The following is a summary of the major topics we will
cover in this chapter:

Installing Android Studio
Installing ARCore
Build and deploy
Exploring the code

If you have experience working with the Android tools and already have the SDK installed,
you may want to just skim over the first three sections. Otherwise, be sure to follow along
with the exercises in this chapter, as these steps will be required to undertake exercises in
many other areas of this book.

At the time of writing, in order to perform any of the exercises in this
book, you will need an ARCore-supported device. The list of supported
devices can be found at https:/ / developers. google. com/ ar/ discover/
#supported_ devices. There has been some work done by others to add
support for earlier devices, so if you have an unsupported device, that
may be an option. You can find more details about the ARCore for
All project at https:/ /github. com/tomthecarrot/ arcore- for- all.

https://developers.google.com/ar/discover/#supported_devices
https://developers.google.com/ar/discover/#supported_devices
https://developers.google.com/ar/discover/#supported_devices
https://developers.google.com/ar/discover/#supported_devices
https://developers.google.com/ar/discover/#supported_devices
https://developers.google.com/ar/discover/#supported_devices
https://developers.google.com/ar/discover/#supported_devices
https://developers.google.com/ar/discover/#supported_devices
https://developers.google.com/ar/discover/#supported_devices
https://developers.google.com/ar/discover/#supported_devices
https://developers.google.com/ar/discover/#supported_devices
https://developers.google.com/ar/discover/#supported_devices
https://developers.google.com/ar/discover/#supported_devices
https://developers.google.com/ar/discover/#supported_devices
https://developers.google.com/ar/discover/#supported_devices
https://developers.google.com/ar/discover/#supported_devices
https://github.com/tomthecarrot/arcore-for-all
https://github.com/tomthecarrot/arcore-for-all
https://github.com/tomthecarrot/arcore-for-all
https://github.com/tomthecarrot/arcore-for-all
https://github.com/tomthecarrot/arcore-for-all
https://github.com/tomthecarrot/arcore-for-all
https://github.com/tomthecarrot/arcore-for-all
https://github.com/tomthecarrot/arcore-for-all
https://github.com/tomthecarrot/arcore-for-all
https://github.com/tomthecarrot/arcore-for-all
https://github.com/tomthecarrot/arcore-for-all
https://github.com/tomthecarrot/arcore-for-all
https://github.com/tomthecarrot/arcore-for-all
https://github.com/tomthecarrot/arcore-for-all
https://github.com/tomthecarrot/arcore-for-all

ARCore on Android Chapter 2

[17]

Installing Android Studio
Android Studio is a development environment for coding and deploying Android
applications. As such, it contains the core set of tools we will need for building and
deploying our applications to an Android device. After all, ARCore needs to be installed to
a physical device in order to test. Follow the given instructions to install Android Studio for
your development environment:

Open a browser on your development computer to https:/ /developer. android.1.
com/studio.
Click on the green DOWNLOAD ANDROID STUDIO button.2.
Agree to the Terms and Conditions and follow the instructions to download.3.
After the file has finished downloading, run the installer for your system.4.
Follow the instructions on the installation dialog to proceed. If you are installing5.
on Windows, ensure that you set a memorable installation path that you can
easily find later, as shown in the following example:

Setting the install path for Windows

Click through the remaining dialogs to complete the installation.6.

https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio
https://developer.android.com/studio

ARCore on Android Chapter 2

[18]

When the installation is complete, you will have the option to launch the7.
program. Ensure that the option to launch Android Studio is selected and click
on Finish.

Android Studio comes embedded with OpenJDK. This means we can omit the steps to
installing Java, on Windows at least. If you are doing any serious Android development,
again on Windows, then you should go through the steps on your own to install the full
Java JDK 1.7 and/or 1.8, especially if you plan to work with older versions of Android.

On Windows, we will install everything to C:\Android; that way, we can
have all the Android tools in one place. If you are using another OS, use a
similar well-known path.

Now that we have Android Studio installed, we are not quite done. We still need to install
the SDK tools that will be essential for building and deployment. Follow the instructions in
the next exercise to complete the installation:

If you have not installed the Android SDK before, you will be prompted to install1.
the SDK when Android Studio first launches, as shown:

Setting the SDK installation path for Windows

ARCore on Android Chapter 2

[19]

Select the SDK components and ensure that you set the installation path to a well-2.
known location, again, as shown in the preceding screenshot.
Leave the Welcome to Android Studio dialog open for now. We will come back3.
to it in a later exercise.

That completes the installation of Android Studio. In the next section, we will get into
installing ARCore.

Installing ARCore
Of course, in order to work with or build any ARCore applications, we will need to install
the SDK for our chosen platform. Follow the given instructions to install the ARCore SDK:

We will use Git to pull down the code we need directly from the source.
You can learn more about Git and how to install it on your platform
at https:/ / git- scm. com/ book/en/ v2/Getting- Started- Installing- Git
or use Google to search: getting started installing Git. Ensure that when
you install on Windows, you select the defaults and let the installer set the
PATH environment variables.

Open Command Prompt or Windows shell and navigate to the Android1.
(C:\Android on Windows) installation folder.
Enter the following command:2.

git clone https://github.com/google-ar/arcore-android-sdk.git

This will download and install the ARCore SDK into a new folder called arcore-3.
android-sdk, as illustrated in the following screenshot:

https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

ARCore on Android Chapter 2

[20]

Command window showing the installation of ARCore

Ensure that you leave the command window open. We will be using it again4.
later.

Installing the ARCore service on a device
Now, with the ARCore SDK installed on our development environment, we can proceed
with installing the ARCore service on our test device. Use the following steps to install the
ARCore service on your device:

NOTE: this step is only required when working with the Preview SDK of
ARCore. When Google ARCore 1.0 is released you will not need to
perform this step.

ARCore on Android Chapter 2

[21]

Grab your mobile device and enable the developer and debugging options by1.
doing the following:

Opening the Settings app1.
Selecting the System2.
Scrolling to the bottom and selecting About phone3.
Scrolling again to the bottom and tapping on Build number seven4.
times
Going back to the previous screen and selecting Developer options5.
near the bottom
Selecting USB debugging6.

Download the ARCore service APK from https:/ /github. com/ google- ar/2.
arcore-android- sdk/ releases/ download/ sdk-preview/ arcore- preview. apk to
the Android installation folder (C:\Android). Also note that this URL will likely
change in the future.
Connect your mobile device with a USB cable. If this is your first time connecting,3.
you may have to wait several minutes for drivers to install. You will then be
prompted to switch on the device to allow the connection. Select Allow to enable
the connection.
Go back to your Command Prompt or Windows shell and run the following4.
command:

adb install -r -d arcore-preview.apk
//ON WINDOWS USE:
sdk\platform-tools\adb install -r -d arcore-preview.apk

After the command is run, you will see the word Success. If you have encountered an
error at this stage, ensure that you consult Chapter 11, Performance Tips and Troubleshooting,
for more help.

This completes the installation of ARCore for the Android platform. In the next section, we
will build our first sample ARCore application.

https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk
https://github.com/google-ar/arcore-android-sdk/releases/download/sdk-preview/arcore-preview.apk

ARCore on Android Chapter 2

[22]

Build and deploy
Now that we have all the tedious installation stuff out of the way, it's time to build and
deploy a sample app to your Android device. Let's begin by jumping back to Android
Studio and following the given steps:

Select the Open an existing Android Studio project option from the Welcome to1.
Android Studio window. If you accidentally closed Android Studio, just launch
it again.
Navigate and select the Android\arcore-android-2.
sdk\samples\java_arcore_hello_ar folder, as follows:

Selecting the ARCore sample project folder

ARCore on Android Chapter 2

[23]

Click on OK. If this is your first time running this project, you will encounter3.
some dependency errors, such as the one here:

Dependency error message

In order to resolve the errors, just click on the link at the bottom of the error4.
message. This will open a dialog, and you will be prompted to accept and then
download the required dependencies. Keep clicking on the links until you see no
more errors.
Ensure that your mobile device is connected and then, from the menu, choose5.
Run - Run. This should start the app on your device, but you may still need to
resolve some dependency errors. Just remember to click on the links to resolve
the errors.
This will open a small dialog. Select the app option. If you do not see the app6.
option, select Build - Make Project from the menu. Again, resolve any
dependency errors by clicking on the links.

"Your patience will be rewarded."
 - Alton Brown

Select your device from the next dialog and click on OK. This will launch the app7.
on your device. Ensure that you allow the app to access the device's camera. The
following is a screenshot showing the app in action:

ARCore on Android Chapter 2

[24]

Sample Android ARCore app running; the dog is real

Great, we have built and deployed our first Android ARCore app together. In the next
section, we will take a quick look at the Java source code.

Exploring the code
Now, let's take a closer look at the main pieces of the app by digging into the source code.
Follow the given steps to open the app's code in Android Studio:

From the Project window, find and double-click on the HelloArActivity, as1.
shown:

HelloArActivity shown in the Project window

ARCore on Android Chapter 2

[25]

After the source is loaded, scroll through the code to the following section:2.

private void showLoadingMessage() {
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 mLoadingMessageSnackbar = Snackbar.make(
 HelloArActivity.this.findViewById(android.R.id.content),
 "Searching for surfaces...",
 Snackbar.LENGTH_INDEFINITE);
mLoadingMessageSnackbar.getView().setBackgroundColor(0xbf323232);
 mLoadingMessageSnackbar.show();
 }
 });
}

Note the highlighted text—"Searching for surfaces..". Select this text and3.
change it to "Searching for ARCore surfaces..". The
showLoadingMessage function is a helper for displaying the loading message.
Internally, this function calls runOnUIThread, which in turn creates a new
instance of Runnable and then adds an internal run function. We do this to
avoid thread blocking on the UI, a major no-no. Inside the run function is where
the messaging is set and the message Snackbar is displayed.
From the menu, select Run - Run 'app' to start the app on your device. Of course,4.
ensure that your device is connected by USB.
Run the app on your device and confirm that the message has changed.5.

Great, now we have a working app with some of our own code. This certainly isn't a leap,
but it's helpful to walk before we run. At this point, go back and review the code, paying
special attention to the comments and flow. If you have never developed an Android app,
the code may look quite intimidating, and it is. Not to worry, we will deconstruct and reuse
several elements of this sample app in Chapter 5, Real-World Motion Tracking, and Chapter
6, Understanding the Environment.

ARCore on Android Chapter 2

[26]

Summary
In this chapter, we started our exploration of ARCore by building and deploying an AR app
for the Android platform. We did this by first installing Android Studio, which will be our
go-to Integrated Development Environment (IDE) for Android development. Then, we
installed the ARCore SDK and ARCore service onto our test mobile device. Next, we loaded
up the sample ARCore app and patiently installed the various required build and deploy
dependencies. After a successful build, we deployed the app to our device and tested.
Finally, we tested making a minor code change and then deployed another version of the
app. Doing this assured us that our Android development environment was fully
functional, and we are now ready to proceed to the rest of the book.

Our journey continues in the next chapter, where we will build and deploy an ARCore app
with the Unity platform. Unity is a leading free/commercial game engine we will use for
our final project in Chapter 10, Mixing in Mixed Reality.

3
ARCore on Unity

The next platform we will set up is Unity. Unity is a leading cross-platform game engine
that is exceptionally easy to use for building game and graphic applications quickly. As
such, it will be the platform we use when we build our final application in Chapter 10,
Mixing in Mixed Reality.

Unity has developed something of a bad reputation in recent years due to
its overuse in poor-quality games. It isn't because Unity can't produce
high-quality games, it most certainly can. However, the ability to create
games quickly often gets abused by developers seeking to release cheap
games for profit.

In this chapter, we will learn how to install, build, and deploy Unity ARCore apps for
Android. Then, we will set up for remote debugging and, finally, we will explore making
some changes to the sample app. The following is a summary of the topics we will cover in
this chapter:

Installing Unity and ARCore
Building and deploying to Android
Remote debugging
Exploring the code

We have already covered setting up the Android tools in Chapter 2, ARCore on Android. If
you omitted that chapter, you will need to go back and do the exercises in the first few
sections before continuing. If you are an experienced Unity developer with an Android
environment set up, you should still review this chapter as it may have some useful tips or
settings.

ARCore on Unity Chapter 3

[28]

Installing Unity and ARCore
Installing the Unity editor is relatively straightforward. However, the version of Unity we
will be using may still be in beta. Therefore, it is important that you pay special attention to
the following instructions when installing Unity:

Navigate a web browser to https:/ /unity3d. com/ unity/ beta.1.

At the time of writing, we will use the most recent beta version of Unity
since ARCore is also still in beta preview. Be sure to note the version you
are downloading and installing. This will help in the event you have issues
working with ARCore.

Click on the Download installer button. This will download2.
UnityDownloadAssistant.
Launch UnityDownloadAssistant.3.
Click on Next and then agree to the Terms of Service. Click on Next again.4.
Select the components, as shown:5.

Selecting the components to install

https://unity3d.com/unity/beta
https://unity3d.com/unity/beta
https://unity3d.com/unity/beta
https://unity3d.com/unity/beta
https://unity3d.com/unity/beta
https://unity3d.com/unity/beta
https://unity3d.com/unity/beta
https://unity3d.com/unity/beta
https://unity3d.com/unity/beta
https://unity3d.com/unity/beta
https://unity3d.com/unity/beta

ARCore on Unity Chapter 3

[29]

Install Unity in a folder that identifies the version, as follows:6.

Setting the Unity installation path

Click on Next to download and install Unity. This can take a while, so get up,7.
move around, and grab a beverage.
Click on the Finish button and ensure that Unity is set to launch automatically.8.
Let Unity launch and leave the window open. We will get back to it shortly.

Once Unity is installed, we want to download the ARCore SDK for Unity. This will be easy
now that we have Git installed. Follow the given instructions to install the SDK:

Open a shell or Command Prompt.1.
Navigate to your Android folder. On Windows, use this:2.

cd C:\Android

Type and execute the following:3.

git clone https://github.com/google-ar/arcore-unity-sdk.git

ARCore on Unity Chapter 3

[30]

After the git command completes, you will see a new folder called arcore-4.
unity-sdk.

If this is your first time using Unity, you will need to go online to https:/
/unity3d. com/ and create a Unity user account. The Unity editor will
require that you log in on first use and from time to time.

Now that we have Unity and ARCore installed, it's time to open the sample project by
implementing the following steps:

If you closed the Unity window, launch the Unity editor. The path on Windows1.
will be C:\Unity 2017.3.0b8\Editor\Unity.exe. Feel free to create a
shortcut with the version number in order to make it easier to launch the specific
Unity version later.
Switch to the Unity project window and click on the Open button.2.
Select the Android/arcore-unity-sdk folder. This is the folder we used3.
the git command to install the SDK to earlier, as shown in the following dialog:

Opening the sample ARCore Unity project

https://unity3d.com/
https://unity3d.com/
https://unity3d.com/
https://unity3d.com/
https://unity3d.com/
https://unity3d.com/
https://unity3d.com/

ARCore on Unity Chapter 3

[31]

Click on the Select Folder button. This will launch the editor and load the project.4.
Open the Assets/GoogleARCore/HelloARExample/Scenes folder in the5.
Project window, as shown in the following excerpt:

Opening the scenes folder

Double-click on the HelloAR scene, as shown in the Project window and in the6.
preceding screenshot. This will load our AR scene into Unity.

At any point, if you see red console or error messages in the bottom status
bar, this likely means you have a version conflict. You will likely need to
install a different version of Unity. Consult Chapter 11, Performance Tips
and Troubleshooting for more help.

Now that we have Unity and ARCore installed, we will build the project and deploy the
app to an Android device in the next section.

ARCore on Unity Chapter 3

[32]

Building and deploying to Android
With most Unity development, we could just run our scene in the editor for testing.
Unfortunately, when developing ARCore applications, we need to deploy the app to a
device for testing. Fortunately, the project we are opening should already be configured for
the most part. So, let's get started by following the steps in the next exercise:

Open up the Unity editor to the sample ARCore project and open the HelloAR1.
scene. If you left Unity open from the last exercise, just ignore this step.
Connect your device via USB.2.
From the menu, select File | Build Settings. Confirm that the settings match the3.
following dialog:

Build settings dialog

ARCore on Unity Chapter 3

[33]

Confirm that the HelloAR scene is added to the build. If the scene is missing,4.
click on the Add Open Scenes button to add it.
Click on Build and Run. Be patient, first-time builds can take a while.5.
After the app gets pushed to the device, feel free to test it, as you did with the6.
Android version.

Great! Now we have a Unity version of the sample ARCore project running. In the next
section, we will look at remotely debugging our app.

Remote debugging
Having to connect a USB all the time to push an app is inconvenient. Not to mention that, if
we wanted to do any debugging, we would need to maintain a physical USB connection to
our development machine at all times. Fortunately, there is a way to connect our Android
device via Wi-Fi to our development machine. Use the following steps to establish a Wi-Fi
connection:

Ensure that a device is connected via USB.1.
Open Command Prompt or shell.2.

On Windows, we will add C:\Android\sdk\platform-tools to the path
just for the prompt we are working on. It is recommended that you add this
path to your environment variables. Google it if you are unsure of what this
means.

Enter the following commands:3.

//WINDOWS ONLY
path C:\Android\sdk\platform-tools

//FOR ALL
adb devices
adb tcpip 5555

If it worked, you will see restarting in TCP mode port: 5555. If you4.
encounter an error, disconnect and reconnect the device.

ARCore on Unity Chapter 3

[34]

Disconnect your device.5.
Locate the IP address of your device by doing as follows:6.

Open your phone and go to Settings and then About phone.1.
Tap on Status. Note down the IP address.2.

Go back to your shell or Command Prompt and enter the following:7.

adb connect [IP Address]

Ensure that you use the IP Address you wrote down from your device.8.
You should see connected to [IP Address]:5555. If you encounter a9.
problem, just run through the steps again.

Testing the connection
Now that we have a remote connection to our device, we should test it to ensure that it
works. Let's test our connection by doing the following:

Open up Unity to the sample AR project.1.
Expand the Canvas object in the Hierarchy window until you see the2.
SearchingText object and select it, just as shown in the following excerpt:

Hierarchy window showing the selected SearchingText object

ARCore on Unity Chapter 3

[35]

Direct your attention to the Inspector window, on the right-hand side by default.3.
Scroll down in the window until you see the text "Searching for
surfaces…".

Modify the text to read "Searching for ARCore surfaces…", just as we did4.
in the last chapter for Android.
From the menu, select File | Build and Run.5.
Open your device and test your app.6.

Remotely debugging a running app
Now, building and pushing an app to your device this way will take longer, but it is far
more convenient. Next, let's look at how we can debug a running app remotely by
performing the following steps:

Go back to your shell or Command Prompt.1.
Enter the following command:2.

adb logcat

You will see a stream of logs covering the screen, which is not something very3.
useful.
Enter Ctrl + C (command + C on Mac) to kill the process.4.
Enter the following command:5.

//ON WINDOWS
C:\Android\sdk\tools\monitor.bat

//ON LINUX/MAC
cd android-sdk/tools/
monitor

ARCore on Unity Chapter 3

[36]

This will open Android Device Monitor. You should see your device on the list6.
to the left. Ensure that you select it. You will see the log output start streaming in
the LogCat window. Drag the LogCat window so that it is a tab in the main
window, as illustrated:

Android Device Monitor showing the LogCat window

Leave the Android Device Monitor window open and running. We will come7.
back to it later.

Now we can build, deploy, and debug remotely. This will give us plenty of flexibility later
when we want to become more mobile. Of course, the remote connection we put in place
with adb will also work with Android Studio. Yet, we still are not actually tracking any log
output. We will output some log messages in the next section.

ARCore on Unity Chapter 3

[37]

Exploring the code
Unlike Android, we were able to easily modify our Unity app right in the editor without
writing code. In fact, given the right Unity extensions, you can make a working game in
Unity without any code. However, for us, we want to get into the nitty-gritty details of
ARCore, and that will require writing some code. Jump back to the Unity editor, and let's
look at how we can modify some code by implementing the following exercise:

From the Hierarchy window, select the ExampleController object. This will pull1.
up the object in the Inspector window.
Select the Gear icon beside Hello AR Controller (Script) and from the context2.
menu, select Edit Script, as in the following excerpt:

Editing a script in Unity

This will open your script editor and load the script, by default, MonoDevelop.3.

Unity supports a number of Integrated Development Environments
(IDEs) for writing C# scripts. Some popular options are Visual Studio
2015-2017 (Windows), VS Code (All), JetBrains Rider (Mac), and even
Notepad++(All). Do yourself a favor and try one of the options listed for
your OS.

ARCore on Unity Chapter 3

[38]

Scroll down in the script until you see the following block of code:4.

public void Update ()
{
 _QuitOnConnectionErrors();

After the _QuitOnConnectionErrors(); line of code, add the following code:5.

Debug.Log("Unity Update Method");

Save the file and then go back to Unity. Unity will automatically recompile the6.
file. If you made any errors, you will see red error messages in the status bar or
console.
From the menu, select File | Build and Run. As long as your device is still7.
connected via TCP/IP, this will work. If your connection broke, just go back to the
previous section and reset it.
Run the app on the device.8.
Direct your attention to Android Device Monitor and see whether you can spot9.
those log messages.

Unity Update method
The Unity Update method is a special method that runs before/during a frame update or
render. For your typical game running at 60 frames per second, this means that the Update
method will be called 60 times per second as well, so you should be seeing lots of messages
tagged as Unity. You can filter these messages by doing the following:

Jump to the Android Device Monitor window.1.
Click on the green plus button in the Saved Filters panel, as shown in the2.
following excerpt:

ARCore on Unity Chapter 3

[39]

Adding a new tag filter

Create a new filter by entering a Filter Name (use Unity) and by Log Tag (use3.
Unity), as shown in the preceding screenshot.
Click on OK to add the filter.4.
Select the new Unity filter. You will now see a list of filtered messages specific to5.
Unity platform when the app is running on the device. If you are not seeing any
messages, check your connection and try to rebuild. Ensure that you saved your
edited code file in MonoDevelop as well.

Good job. We now have a working Unity set up with remote build and debug support,
which will certainly make our job easier going forward. Now that you have everything set
up, go back to Unity platform and get more familiar with the interface. Try not to change
any settings as we will use the sample project as our base in later chapters.

ARCore on Unity Chapter 3

[40]

Summary
In this chapter, we set up a new platform for our ARCore development, called Unity. Unity,
as we learned, is a leading, powerful, flexible, and simple game/graphic engine we will use
extensively in later chapters. For now though, we installed Unity and the ARCore SDK for
Unity. We then took a slight diversion by setting up a remote build and debug connection
to our device using TCP/IP over Wi-Fi. Next, we tested out our ability to modify the C#
script in Unity by adding some debug log output. Finally, we tested our code changes using
the Android Device Monitor tool to filter and track log messages from the Unity app
deployed to the device.

We will continue to grind away in the next chapter and set up our environment for web
ARCore development. Web ARCore development is substantially different from Android
and Unity. However, we will still cover some essential setup for components we will use in
Chapter 10, Mixing in Mixed Reality, so don't feel you can bypass the next chapter, even if
you are not doing web development.

4
ARCore on the Web

Previously, most AR development would need to be done on a native installed app. Except,
with the advent of ARCore, Google has added support for AR development on the web,
which, allows users to access AR applications through a browser. Of course, AR web
applications may never be as robust or feature rich as a similar app done with Android or
Unity. Yet ARCore extends its browser support to include iOS as well as Android. So if you
need a cross-platform AR app, then you likely want to focus on ARCore web development.

In this chapter, we continue our work of setting up our environment for ARCore web
development. Listed here are the main topics we will cover in this chapter:

Installing WebARonARCore
Installing Node.js
Exploring the samples
Debugging web apps on Android
3D and three.js

Even if you have no interest in web development, you should still review this chapter. We
will be using elements from this chapter in the final project, Chapter 10, Mixing in Mixed
Reality.

Installing WebARonARCore
In order to run ARCore from the web, we also need a browser that supports ARCore or
ARKit. At the time of writing (beta preview), no browser supports ARCore or ARKit, and
therefore, we need to install a special or experimental browser. The experimental browser
we will install is called WebARonARCore.

ARCore on the Web Chapter 4

[42]

At the time of writing, Google ARCore is in the beta preview. If Google
ARCore is in full release (1.0) and supported in a browser on your device,
then you can bypass this section.

Installing WebARonARCore is quite simple and just requires you to point a browser on
your device and install an APK. Follow the given steps to install WebARonARCore:

Point a browser on your device to https:/ /github. com/google- ar/1.
WebARonARCore or just Google git WebARonARCore.
Follow the instructions in the README file to find and click on the2.
WebARonARCore APK download link. This will download the APK to your
device. If you get a security warning about the APK file type, just bypass it.
Click on Open after the file downloads. If your device is set to block installation3.
of apps from unknown sources, you will get a warning. To bypass the warning,
do this:

Tap on Settings.1.
Tap on Unknown sources to enable it.2.

Click on Install to install the APK to your device.4.
Locate the WebARonARCore app on your device and open it.5.
Tap on Allow, through the security warnings.6.

This will launch the WebARCore experimental browser and point it at the same GitHub
page we pulled the APK from. Leave the app open on your device as we will use it in an
upcoming section. In the next section, we will learn to install Node.js.

You can test your web development on an iOS device by
installing WebARonARKit. Unfortunately, the code for WebARonARKit
source must be built, compiled, and deployed manually. These steps are
not covered in this book, but if you are interested in setting up for an iOS
device, follow https:/ /github. com/ google- ar/ WebARonARKit.

https://github.com/google-ar/WebARonARCore
https://github.com/google-ar/WebARonARCore
https://github.com/google-ar/WebARonARCore
https://github.com/google-ar/WebARonARCore
https://github.com/google-ar/WebARonARCore
https://github.com/google-ar/WebARonARCore
https://github.com/google-ar/WebARonARCore
https://github.com/google-ar/WebARonARCore
https://github.com/google-ar/WebARonARCore
https://github.com/google-ar/WebARonARCore
https://github.com/google-ar/WebARonARCore
https://github.com/google-ar/WebARonARCore
https://github.com/google-ar/WebARonARKit
https://github.com/google-ar/WebARonARKit
https://github.com/google-ar/WebARonARKit
https://github.com/google-ar/WebARonARKit
https://github.com/google-ar/WebARonARKit
https://github.com/google-ar/WebARonARKit
https://github.com/google-ar/WebARonARKit
https://github.com/google-ar/WebARonARKit
https://github.com/google-ar/WebARonARKit
https://github.com/google-ar/WebARonARKit
https://github.com/google-ar/WebARonARKit
https://github.com/google-ar/WebARonARKit
https://github.com/google-ar/WebARonARKit

ARCore on the Web Chapter 4

[43]

Installing Node.js
Unlike the other platforms, we don't need to install anything more on the device to use an
AR web app. However, we do need a way to serve up our web application pages to a
device. Typically, this is done with a web server, like IIS, Tomcat, Jetty, Node, or others. For
our purpose, we just need a simple HTTP server to serve up static HTML content.
Fortunately, Node provides a package just for running a simple HTTP server from a folder.
In order to get this package, we first need to install Node. Follow the given steps to install
Node:

Download and install the Long Term Support (LTS) version of Node.js from1.
Nodejs.org. Just follow the instructions on the page and installer. Ensure that
you set the PATH when installing to Windows.

Node.js is a lightweight, non-blocking, and event-driven JavaScript
runtime built on top of Chrome's JavaScript runtime. It has become hugely
popular due to its massive library of modules or packages. We are
installing Node.js just to use a Node.js package.

Open Command Prompt or shell and enter the following:2.

npm

If you have everything installed correctly, you should see a message showing the3.
npm usage.

The Node Package Manager
Node Package Manager (npm) is a command-line tool used to install the packages for
Node.js. We will use this tool to download and install our simple HTTP server. Follow the
given steps to install the HTTP server:

From your device, open Command Prompt or shell and enter this:1.

npm install http-server -g

This will download and install http-server as a global tool. Now, let's test it.2.

http://nodejs.org

ARCore on the Web Chapter 4

[44]

Use your Command Prompt or shell and change your folder to Android, like3.
this:

//WINDOWS
cd c:\Android

Run http-server from the Android folder by entering the following:4.

http-server -p 9999

You will see a list of endpoint URLs. Choose an endpoint that is on the same5.
subnet as your Wi-Fi, the same subnet as your device. Copy or write down the
text of the endpoint, as shown in the following excerpt:

Picking an endpoint URL

Open a web browser on your device and enter the endpoint you selected in the6.
preceding step. After you start making connections, you will see the log output
shown in the preceding screen excerpt.

If you are unable to connect with your device, ensure that you are entering
the full endpoint including the protocol,
http://192.168.1.118:9999 in the example, but your endpoint will
likely be different. Ensure that you allow any exceptions in your firewall
for port 9999. Alternatively, you can turn off your firewall for testing. Just
don't leave it off.

ARCore on the Web Chapter 4

[45]

You should see the Android folder listing in your browser, as we have7.
configured our server to just list the contents of the Android folder. The
following is an example of how this will look in your browser:

Browser showing the Android folder listing

Good! Now we have a way to simply server up any static web pages we need. In the next
section, we will pull down the web ARCore examples and review them.

Exploring the samples
Now that we have an AR-enabled web browser, we can proceed to exploring some
examples. Follow the instructions in the mentioned steps to explore the samples:

Open Command Prompt or shell to the Android folder and enter this:1.

git clone https://github.com/google-ar/three.ar.js.git

Ensure that your http-server web browser is running from the Android2.
folder. If you need to start the server again, just run the command from the last
exercise.
Point your web AR-enabled browser (WebARCore) on your device to a valid3.
endpoint URL. Again, check the last exercise if you forgot how to do this. If the
page goes black or is unresponsive, you may have to reset the app. Just shut
down the WebARCore browser app and restart it.

ARCore on the Web Chapter 4

[46]

Browse to the three.ar.js/examples/ folder. Inside this folder, you will find a4.
set of example HTML pages of AR apps developed with three.js and
three.ar.js. The following table outlines each of the examples, with a
description of what they do:

Page Description Concepts

boilerplate.html A simple project for building on Basic

graffiti.html
Touch interaction and drawing in
AR Touch, environment

record-at-camera.html Record 3D spatial audio at a point Touch, spatial audio

reticle.html Tracks the pose of a surface Motion, pose tracking –
environment

spawn-at-camera.html
Touch spawn an object at the
camera position Touch, environment

spawn-at-surface.html
Touch spawn object on a identified
surface or plane Touch, environment

surfaces.html
Identifies surfaces or planes in the
environment Environment

At the time of writing these were the examples available. There likely will
be some new samples added that have some of the newer features or other
ways of doing things. Be sure to check your folder and spend some time
exploring each of those samples.

Browse through each of the samples on your device. These samples are excellent5.
examples of the concepts we will cover in the later chapters.

If the screen goes black while running the WebAR browser, then just force
close the app and restart it. What typically happens is that Chrome's
Developer tools (DevTools) and the app get out of sync and just need to be
restarted.

We now have an HTTP server running on our development machine serving up web AR
apps to our device. This is great, but how will we edit the code and debug? Being able to
debug code will also be critical to our success when we start writing new code. Therefore, in
the next section, we will learn how to set up remote web debugging to an Android device.

ARCore on the Web Chapter 4

[47]

Debugging web apps on Android
As we mentioned at the end of the last section, debugging/logging will be critical for us
when we start writing new code. If you have ever tried to fix an issue blind without a log or
ability to debug, then you will quickly appreciate the value of a good debugger. As it so
happens, Chrome has a great set of tools that will help us do just that. Work through the
following steps to set up remote web debugging on your Android device:

Connect your device to your computer with a USB.1.
Open Command Prompt window.2.
Validate your connection by entering this:3.

adb devices

The output of that command should show your connected device. You may be4.
able to get away with bypassing this step, but you can avoid plenty of frustration
later by just running this simple check.
Ensure that all instances of the Chrome browser on your Android device are shut5.
down.
Open an instance of the WebARCore browser. Remember that this browser is just6.
an experimental extension of Chrome.
Using the open browser, navigate to one of the samples. It really doesn't matter7.
which just yet. This example will use spawn-at-camera.html.

Connecting Chrome Developer tools
So, believe it or not, we are connected and ready to debug at this point. Now, we just need
to set up our debugging tools on the development machine:

Open Chrome on your development machine. If you don't have Chrome1.
installed, you will need to do this. Of course, if you are reading a book on Google
ARCore, you likely already have Chrome installed, right?
Open the Chrome Developer tools by pressing command + option + I (Mac), Ctrl +2.
Shift + I (Windows, Linux), or from the menu: More tools | Developer tools.

ARCore on the Web Chapter 4

[48]

From Chrome's Developer tools menu, select More tools | Remote devices, as3.
shown:

Locating the remote debugging menu option

A new tab, Remote devices, will open and should show your connected device,4.
as follows:

The Remote devices tab showing the connected device and page

ARCore on the Web Chapter 4

[49]

At the bottom of the tab, you should see the address you are currently pointing to5.
on your device. If this is not the case, there may be a text box allowing you to
manually enter it and then connect.
Click on the Inspect button. This will open a new Chrome window with6.
Developers Tools on one side and an image of your device on the other.

Debugging with Chrome
At this point, if you have experience using the Chrome DevTools, you are good to start
debugging. Of course, if this is all relatively new to you, follow the given steps to learn how
to debug in DevTools:

Switch your view to the Chrome window we opened in the last section.1.
Click on the Sources tab of the DevTools window.2.
Select spawn-at-camera.html or the one you used in your testing.3.
Scroll down through the HTML and JavaScript until you see the4.
onClick() function.
Click on the line number 229 (229 in the example, but yours may differ), just left5.
of the highlighted code to set a break point. This is also demonstrated in the
following excerpt:

Setting a JavaScript break point

ARCore on the Web Chapter 4

[50]

Switch back to the device that is running the app. Touch on the screen to spawn6.
an object. When you do this, your app should display a Paused in debugger
message at the top and then graciously freeze.
Switch back to your development machine and the Developer Tools window.7.
You will see the app paused at your break point. Now, you can use your mouse
to hover over code to inspect variables and anything else you may be debugging.

Feel free to explore setting other break points and even stepping through
the code. We will leave it up to the reader to explore more of the DevTools
functionality on their own.

Now you can remote debug an AR web app running on your device. This also completes
most of our initial basic setup. We can now get into the details of working with AR in 3D,
starting in the next section.

3D and three.js
We live in a 3D world. Therefore, for us to convincingly fool our users into believing that
their reality is being augmented or altered, we need to work with their world in three
dimensions. Now, each of the platforms we are working with (web, Android, and Unity),
all have 3D engines we will be using. In the case of Unity, it is the 3D engine and without a
doubt the easiest to use with little or no programming or math knowledge required.
Android and OpenGL ES is a distant second, as it will require some knowledge of 3D math.
The third and last option is our 3D engine for web, which will be three.js library. The
three.js will be the most difficult platform to work with when using 3D, which makes it
our perfect candidate to start with.

The Unreal platform, as we mentioned in Chapter 1, Getting Started, is
another ARCore platform option. Unreal is similar to Unity in the manner
that it provides great tools to work in 3D, although those tools are more
technical and will require understanding of 3D maths to be successful.

ARCore on the Web Chapter 4

[51]

Unlike in the previous chapters, we will not do just a simple text change to test our ability
to change and deploy code. Instead, in this section, we will modify the 3D object we spawn.
This will be a good dive into the deep end of 3D and get us ready for the rest of the book.
Let's get started by following the given steps:

Use a text editor such as Notepad, Notepad++, vi, or something else to open the1.
spawn-at-camera.html file located in the Android/three.ar.js/example
folder.
Scroll down in the code until you see the following section:2.

var geometry = new THREE.BoxGeometry(0.05, 0.05, 0.05);
var faceIndices = ['a', 'b', 'c'];
for (var i = 0; i < geometry.faces.length; i++)
{
 var f = geometry.faces[i];
 for (var j = 0; j < 3; j++)
{
 var vertexIndex = f[faceIndices[j]];
 f.vertexColors[j] = colors[vertexIndex];
 }
}
var material = new THREE.MeshBasicMaterial({ vertexColors:
 THREE.VertexColors });

Comment out or delete the entire section of code. Use // to convert a line as a3.
comment.
Enter the new code just before the highlighted line:4.

var geometry = new THREE.TorusGeometry(10, 3, 16, 100);
var material = new THREE.MeshBasicMaterial({ color: 0xffff00 });
cube = new THREE.Mesh(geometry, material);

This first new line replaces the geometry with a torus. The TorusGeometry is a5.
helper function for creating a torus. There are plenty of other helpers for creating
many other geometries or even loading mesh objects. The second line creates a
new basic single color material. Then, it wraps that material around the geometry
and creates our object (mesh), which for now, we will keep calling cube. If you
feel the need to change the variable name, then by all means go ahead, but do be
careful.
Save your code changes.6.

ARCore on the Web Chapter 4

[52]

Switch back to your device and refresh the page. Then, tap the screen to spawn7.
the new object. At first, you may think that nothing worked; walk away and
move around. You will likely only see the edges of a very large bright yellow
torus. If you still have some issues, just ensure that you saved changes and try
reconnecting everything.

At this point, we have a number of problems to understand and solve, as outlined in the
following list:

The object is too big or out of scale
The object is orientated or rotated wrong
The object needs to be moved or transformed to just in front of the camera
We want to change the color

Understanding left- or right-handed coordinate
systems
While a good understanding of 3D math will certainly be helpful, it isn't entirely essential.
All you need to know, for now, is that we define an object in three dimensions (hence, 3D)
using a common notation of x, y, and z, where x is the position along the x axis, y along y
axis, and z along z axis. Furthermore, we define the position of these axes using a term
called left-handed or right-handed coordinate system, as shown in the following diagram:

Definition of left-handed and right-handed coordinate systems

ARCore on the Web Chapter 4

[53]

Hold up your left hand, as shown in the preceding diagram, and point your middle finger
at the screen. Your thumb now points to positive x, your index finger points to positive y,
and your middle finger to positive z. Many times, to avoid confusion between left- or right-
hand systems, we will just denote the axis by the direction they are pointing. Thus, right is
used for positive x, up for positive y, and forward for positive z. Fortunately, for all of our
platforms, we will use the left-hand coordinate system.

3D scale, rotation, and transformation
The next thing we need to understand is how to apply scale, rotation, and transformation to
an object and thus solve the problems we identified. Without getting deep into the math,
let's just understand what those terms mean:

Scale: It allows us to define how large or small an object is. In our example, our
object is too big and thus we need to scale the object down. We will learn how to
do that shortly.
Rotation: It defines how an object is orientated or posed. We will use both terms
interchangeably. Rotation is a bit more complex, and we won't worry about it for
this example.
Transformation: It defines the position of an object, where a position of 0,0,0
represents the origin. In our example, we want to position the torus slightly in
front of the camera.

We use a mathematical concept called a matrix to apply operations of scale, rotation, and
transformation to a 3D object in 3D space. The cool thing about matrices is that they can
represent all three operations of scale, rotation, and transformation simultaneously.
However, this also means that we have to be careful about the order in which we apply
these operations. Let's get back into the code and see how we can apply each of these
operations to our torus:

Open up your text editor to the spawn-at-camera.html example.1.
Scroll to the highlighted code and enter the following lines right after it:2.

scene.add(clone); //near the bottom of the file
clone.scale.copy(new THREE.Vector3(.15,.15,.15));
clone.position.copy(new THREE.Vector3(0,0,10));

Comment out the line of code beneath that, like this:3.

//clone.position.copy(pos);

ARCore on the Web Chapter 4

[54]

Save your work and run the app in your device. You can now see how we move4.
and scale our spawned object. Feel free to try and move, scale, and even rotate the
object further.

As for changing the color from that blinding yellow to something else more appealing, we
leave that up to the reader for their homework. Here's the line of code that needs to be
changed:

var material = new THREE.MeshBasicMaterial({ color: 0xffff00 });

If you struggled with any of the material in the last section, you really
should pick up a book, read a blog/wiki, or take a course on 3D and/or 3D
math. Another good option for learning 3D concepts is working with 3D
modeling software like Blender, SketchUp, Max, and so on.

We will, of course, cover more 3D concepts throughout the book and in much more detail in
the later chapters. For now though, if this is your first exposure to 3D programming,
welcome aboard and get ready for a bumpy ride.

Summary
In this chapter, we completed the last of our major setup tasks for the ARCore
environments we will explore in later chapters. We first jumped in and installed the
prerequisite AR-enabled experimental Chrome browser. Then, we downloaded and
installed Node.js as a requirement for running a simple HTTP server. This gave us the
ability to pull the examples from the three.ar.js source onto our local machine. We then
used the HTTP server to serve up the sample AR web-enabled applications to our device.
Next, we tackled the problem of debugging JavaScript code remotely to an Android device.
After that, we took a brief tour of 3D and explored ways in which we could scale and
transform 3D objects in our AR scenes. Then, we finally learned that good knowledge of 3D
concepts and/or math is essential for our success as AR developers.

Now that we are done with the essential setup tasks, it is time to move on to building AR
applications of our own. In the next chapter, we will explore the AR concept of motion
tracking using our web platform.

5
Real-World Motion Tracking

Now that we have all the fun stuff set up and ready to go, we can begin building some real-
world AR apps. In order to do this, we will be picking and choosing various pieces we need
from the samples. The samples are great examples, but, for the most part, they are nothing
more than boilerplate code. This means that we have no reason to rewrite code sections that
already work well. Instead, we will focus on adding new code to tackle AR problems. In
this chapter, we will dive in and learn in depth how ARCore motion tracking works. We
will learn the current limitations of motion tracking with ARCore and develop a technique
for overcoming those limitations. Here are the main topics that we will cover in this chapter:

Motion tracking in depth
3D sound
Resonance Audio
A tracking service with Firebase
Visualize tracked motion

In order to successfully complete the exercises in this chapter, the reader will need to
complete the setup till Chapter 4, ARCore on the Web. It may be helpful to review some of
the exercises from that chapter as well.

Real-World Motion Tracking Chapter 5

[56]

Motion tracking in depth
ARCore implements motion tracking using an algorithm known as visual-inertial
odometry (VIO). VIO combines the identification of image features from the device's
camera with internal motion sensors to track the device's orientation and position relative to
where it started. By tracking orientation and position, we have the ability to understand
where a device is in 6 degrees of freedom, or what we will often refer to as the
device's/object's pose. Let's take a look at what a pose looks like in the following diagram:

6 Degrees of Freedom, Pose

We will use the term pose frequently when identifying an object's position and orientation
in 3D. If you recall from Chapter 4, ARCore on the Web, a pose can also be expressed in a
mathematical notation called a matrix. We can also refer to rotation in a special form of
complex math called a quaternion. Quaternions allow us to define all aspects of 3D rotation
in a simple form. Again, we won't worry about the specific math here; we will just mention
how it is used.

Perhaps it will be more helpful if we can see how this works in a modified ARCore sample.
Open up the spawn-at-surface.html example from the
Android/three.ar.js/examples folder in a text editor and follow the given steps:

Scroll down or search for the update function.1.
Locate the following line of code:2.

camera.updateProjectionMatrix();

Real-World Motion Tracking Chapter 5

[57]

Add the following lines of code right after the highlighted line:3.

var pos = camera.position;
var rot = camera.rotation;
console.log("Device position (X:" + pos.x + ",Y:" + pos.y + ",Z:" +
pos.z + ")");
console.log("Device orientation (pitch:" + rot._x + ",yaw:" +
rot._y + ",roll:" + rot._z + ")");

Save the file. The code we added just extracts the camera's position and4.
orientation (rotation) into some helper variables: pos and rot. Then, it outputs
the values to the console with the console.log function. As it happens, the
camera also represents the device's view.
Open Command Prompt or shell window.5.
Launch the http-server in your android folder by entering this:6.

cd /android
http-server -d -p 9999

Launch the Chrome debugging tools and connect remotely to your device.7.
Open the spawn-at-surface.html file using the WebARCore browser app on8.
your device.
Switch back to the Chrome tools and click on Inspect.9.
Wait for the new window to open and click on Console. Move your device10.
around while running the AR app (spawn-at-surface.html), and you should
see the Console tab updated with messages about the device's position and
orientation. Here's an example of how this should look:

Console output showing device position and orientation being tracked

Real-World Motion Tracking Chapter 5

[58]

The code we added in this example tracks the camera, which, as it so happens, represents
the view projected through the device in an AR app. We refer to a camera as the view of a
scene in 3D. A 3D scene can have multiple cameras, but, typically, we only use one in AR.
The following is a diagram of how we define a camera or view projection in 3D:

Viewing frustum of a 3D camera

The main task of a camera is to project or flatten the 3D virtual objects into a 2D image,
which is then displayed on the device. If you scroll near the middle of the spawn-at-
surface.html file, you will see the following code, which creates the camera for the scene:

camera = new THREE.ARPerspectiveCamera(
 vrDisplay,
 60,
 window.innerWidth / window.innerHeight,
 vrDisplay.depthNear,
 vrDisplay.depthFar
);

Here, vrDisplay is the device's actual camera, 60 represents the field of view,
window.innerWidth / window.innerHeight represents the aspect ratio,
and vrDisplay.depthNear and vrDisplay.depthFar represent the near and far plane
depth distances. The near and far, along with the field of view, represent the view frustum.
All objects in the view frustum will be rendered. Feel free to try and change those
parameters to see what effect they have on the scene view when running the app.

We use a field of view of 60 degrees in this setting to give a more natural
perspective to the objects in the scene. Feel free to experiment with larger
and smaller angles to see the visual effect this has on the scene objects.

Real-World Motion Tracking Chapter 5

[59]

Now that we have a better understanding of how we can track our device around a scene,
we will extend our example. In the next section, we will introduce 3D spatial sound.

3D sound
3D sound is another illusion we cast at the listener in order to further trick them into
believing that our virtually generated world is real. In fact, 3D sound has been used
extensively for years in movies, TV, and of course, video games in order to trick the listener
into a more immersive experience. In a movie, for instance, the listener is stationary, so 3D
sound can be mimicked by setting up multiple speakers. However, in an AR or VR mobile
app, the sound needs to come from a single (mono) or double (stereo, headphones) source.
Fortunately, numerous smart people figured out how our human ears hear using a
technique called binaural sound to map out sounds in 3D. The next diagram goes into a
little more detail on how binaural audio works:

3D sound visualized

Real-World Motion Tracking Chapter 5

[60]

Since then, we have figured out not only how to record binaural audio, but also how to play
it back, thus giving us the ability to play sounds that fool the brain into thinking that their
source is different from reality. However, most of the current technology assumes that the
user is stationary, but, of course, that is far from the case in an AR app. In an AR app, our
user (listener) is moving in our virtual world, which means that the 3D sounds around the
listener also need to adjust. Fortunately, Google has again come to the rescue and
developed a 3D sound API for AR and VR, called Resonance Audio. We will explore more
about Resonance Audio and how to use it in the next section.

Resonance Audio
Google developed Resonance Audio as a tool for developers who need to include 3D spatial
audio in their AR and VR applications. We will use this tool to put 3D sound in our demo
app. Let's get started by opening up the spawn-at-surface.html file in your favorite text
editor and then follow the given steps:

Locate the beginning of the JavaScript and add the following lines in the variable1.
declarations:

var cube; //after this line
var audioContext;
var resonanceAudioScene;
var audioElement;
var audioElementSource;
var audio;

Now, scroll down to just before the update function and start a new function2.
called initAudio, like this:

function initAudio(){

}

function update(){ //before this function

Next, we need to initialize an AudioContext, which represents the device's3.
stereo sound. Inside the initAudio function, enter the following:

audioContext = new AudioContext();

Real-World Motion Tracking Chapter 5

[61]

Then, we set up the audio scene in Resonance and output the binaural audio to4.
the device's stereo output by adding this:

resonanceAudioScene = new ResonanceAudio(audioContext);
resonanceAudioScene.output.connect(audioContext.destination);

After this, we define some properties for the virtual space around the user by5.
adding the given code:

let roomDimensions = { width: 10, height: 100, depth: 10 };
let roomMaterials = {
 // Room wall materials
 left: 'brick-bare',
 right: 'curtain-heavy',
 front: 'marble',
 back: 'glass-thin',
 // Room floor
 down: 'grass',
 // Room ceiling
 up: 'transparent' };

As you can see, there is plenty of flexibility here to define any room you want. We6.
are describing a room in this example, but that room can also be described as an
outdoor space. There's an example of this for the up direction at the bottom
where the transparent option is used. Transparent means sound will pass
through the virtual wall in that direction, and you can represent the outdoors by
setting all directions to transparent.
Now, we add the room to the audio scene by writing this:7.

resonanceAudioScene.setRoomProperties(roomDimensions,
 roomMaterials);

Now that room is done, let's add the audio source by entering the following:8.

audioElement = document.createElement('audio');
audioElement.src = 'cube-sound.wav';

audioElementSource =
audioContext.createMediaElementSource(audioElement);
audio = resonanceAudioScene.createSource();
audioElementSource.connect(audio.input);

The audioElement is a connection to an HTML audio tag. Essentially, what we9.
are doing here is replacing the default audio of HTML with the audio routed
through resonance to provide us with spatial sound.

Real-World Motion Tracking Chapter 5

[62]

Finally, we need to add our audio object when we spawn our box and play the10.
sound. Enter the given code just following the function call to
THREE.ARUtils.placeObjectAtHit inside the onClick function:

audio.setPosition(cube.position.x,cube.position.y,cube.position.z);

audioElement.play();

Before we run our sample, we need to download the cube-sound.wav file and put it in our
sample folder. Open the folder where you downloaded the book's source code and copy the
file from Chapter_5/Resources/cube-sound.wav to your
Android/three.ar.js/examples folder.

Binaural is so named because we hear sound with both the ears. In order
to get the most from the audio examples in this chapter, ensure that you
wear stereo headphones. You will be able to hear some differences with
your device's mono speaker, but it won't be the same without headphones.

Now when you are ready to run the app, save the spawn-at-surface.html page, start
your device, and close and reopen the WebARCore app. Play around with the app and
spawn a box by tapping a surface. Now when the box spawns, you will hear the cube
sound. Move around the scene and see how the sound moves.

Not what you expected? That's right, the sound still moves with the user. So what's wrong?
The problem is that our audio scene and 3D object scene are in two different virtual spaces
or dimensions. Here's a diagram that hopefully explains this further:

Difference in audio and virtual 3D object space

Real-World Motion Tracking Chapter 5

[63]

The problem we have is that our audio space moves with the user. What we want is to align
the audio space with the same reference as our camera and then move the listener. Now,
this may sound like a lot of work, and it likely would be, if not for ARCore. So thankfully,
we can do this by adding one line right after those couple of console lines we put in earlier,
like this:

Find the two console.log lines we added in the previous section and comment1.
them out like this:

If you omitted the previous section, you will need to go back and complete
it. The code we use in this section requires it.

//console.log("Device position (X:" + pos.x + ",Y:" + pos.y + ",Z:"
+ pos.z + ")");
//console.log("Device orientation (pitch:" + rot._x + ",yaw:" +
rot._y + ",roll:" + rot._z + ")");

Add our new line of code:2.

audio.setPosition(pos.x-cube.position.x,pos.y-
cube.position.y,pos.z-cube.position.z);

All this line does is to adjust the audio position relative to the user (camera). It3.
does this by subtracting the X, Y, and Z values of the position vectors. We could
have also just as easily subtracted the vectors.
Run the sample again. Spawn some boxes and move around.4.

Note that when you place a box and move around, the sound changes, as you expect it to.
This is due to our ability to track the user in 3D space relative to where a virtual sound is. In
the next section, we will look at extending our ability to track users by setting up a tracking
service.

A tracking service with Firebase
Now, being able to track a user's motion is all well and good, but what if we wanted to
track a user across applications or even multiple users at the same time? This will require us
to write a server, set up a database, make a schema, and so on, which is certainly not an
easy task and cannot be easily explained in just a chapter. However, what if there was an
easier way? Well, there is, and again, Google comes to our rescue with Firebase.

Real-World Motion Tracking Chapter 5

[64]

Firebase is an excellent collection of app tools and storage services that are dead simple to
use and cross-platform. We will use Firebase database, a real-time database service, to track
our user's position. Open up a web browser and follow the given steps:

Browse to firebase.google.com.1.
Click on the GET STARTED button.2.
Log in with your Google (Gmail) account. If you don't have one, yes, you will3.
need to create one to continue.
Click on the Add project button.4.
Name your project ARCore and select your own Country/Region, as shown in the5.
following excerpt:

Setting up the ARCore project

Click on CREATE PROJECT. This will create your project and open up the6.
Firebase Console.

https://firebase.google.com/

Real-World Motion Tracking Chapter 5

[65]

Click on Add Firebase to your web app, which can be found at the top of the7.
Project Overview page. This will open up a dialog similar to the following:

Copy the setup code for your project

Click on COPY. This should copy the two script tags and contents to your8.
clipboard.

Don't worry if the keys and URLs you see are different; they should be
different.

Open up the spawn-at-surface.html file in your favorite text editor. Scroll9.
down to just before the last <script> tag, the one with the big block of code.
Paste the code (Ctrl + V and command + V on Mac) you copied earlier.

Setting up the database
With that, we have set up the ARCore Firebase project. Now we want to create our real-time
database and set it up for us to connect to. Go back to the Firebase Console and follow the
given steps to set up a database:

Close the configuration dialog that we left open from the last exercise.1.
Click on Database on the left-hand side menu.2.

Real-World Motion Tracking Chapter 5

[66]

Click on GET STARTED. This will create a Firebase Realtime Database with3.
default security turned on. We don't really need authentication at this point, so
let's just turn it off.
Click on the RULES tab. The default security rule is defined with JSON. We want4.
to change this so that our database has public access. Replace the JSON with the
following:

{ "rules": { ".read": true, ".write": true }}

Click on PUBLISH. You should now see the following security warning:5.

The security warning after turning on public access

Click on the DATA tab. Leave this tab and the browser window open.6.

Turning off security is okay for development prototyping. However, as
soon as you go past a prototype, you need to turn security back on. Failure
to do this can cost you all manner of heartache, pain, and things you
probably can't imagine.

Time to test the connection
Believe it or not, our real-time database service is up and running; now we just want to test
our connection by writing a single value to the database from our AR Web app. Open up
spawn-at-surface.html in a text editor and follow along:

Scroll down to the Firebase script we added earlier. Add the following code after1.
the last line:

var database = firebase.database();

The preceding line creates a reference to the database. Now, let's set some data2.
using the following code:

firebase.database().ref('pose/' + 1).set({x: 12,y: 1,z: 0});

Real-World Motion Tracking Chapter 5

[67]

Save the file.3.

Various versions of the spawn-at-surface.html page can be found in
the book's downloaded source code at Chapter_5/Examples.

Run the page on your desktop using4.
the http://localhost:9999/three.ar.js/examples/spawn-at-surface.html
URL. At this stage, we are just setting a single point of data when the page starts,
as a test, so we don't need AR. Of course, ensure that you start http-server
before running any tests.
After the page loads, you will see the ARCore warning message, but not to5.
worry, this is just a test of the real-time database service.
Go back to the Firebase Console (https:/ /console. firebase. google. com/ u/0/ ?6.
pli=1) window we left open. Ensure that you are looking at the Database page
and DATA tab, as shown:

Checking the data that was set on the Firebase database

Expand the pose and its child objects, as shown in the preceding excerpt. If7.
everything is working correctly, you should see the values we set for a simulated
pose (position).

http://localhost:9999/three.ar.js/examples/spawn-at-surface.html
https://console.firebase.google.com/u/0/?pli=1
https://console.firebase.google.com/u/0/?pli=1
https://console.firebase.google.com/u/0/?pli=1
https://console.firebase.google.com/u/0/?pli=1
https://console.firebase.google.com/u/0/?pli=1
https://console.firebase.google.com/u/0/?pli=1
https://console.firebase.google.com/u/0/?pli=1
https://console.firebase.google.com/u/0/?pli=1
https://console.firebase.google.com/u/0/?pli=1
https://console.firebase.google.com/u/0/?pli=1
https://console.firebase.google.com/u/0/?pli=1
https://console.firebase.google.com/u/0/?pli=1
https://console.firebase.google.com/u/0/?pli=1
https://console.firebase.google.com/u/0/?pli=1
https://console.firebase.google.com/u/0/?pli=1
https://console.firebase.google.com/u/0/?pli=1
https://console.firebase.google.com/u/0/?pli=1
https://console.firebase.google.com/u/0/?pli=1
https://console.firebase.google.com/u/0/?pli=1
https://console.firebase.google.com/u/0/?pli=1

Real-World Motion Tracking Chapter 5

[68]

We now have a service in place, with the ability to track any data we want. Firebase allows
us to model our data and schema on the fly, which is very useful in prototyping. It also has
the extra benefit of being free, public, and accessible from the other platforms we will work
with later. In the next section, we will put our tracking service to use by tracking the user in
real time.

Visualizing tracked motion
Now that we understand how to track motion and have a service in place, let's see how we
can put this service to use and visualize the tracked data in our AR app. Open up the
spawn-at-surface.html page in a text editor and follow the given steps:

Find that last line of code we added in the last exercise and delete it:1.

firebase.database().ref('pose/' + 1).set({x: 12,y: 1,z : 0});
//delete me

Replace that line with the following code:2.

var idx = 1;
setInterval(function(){
 idx = idx + 1;
 if(camera){
 camera.updateProjectionMatrix();
 var pos = camera.position;
 var rot = camera.rotation;
 firebase.database().ref('pose/' + idx).set({x: pos.x,y: pos.y,z :
pos.z, roll: rot._z, pitch: rot._x, yaw: rot._y });
 } }, 1000);

The first line in the preceding snippet is setting an index or count variable. Then,3.
we use the setInterval function to set up a repeating timer that calls the
anonymous function every second (1000 milliseconds). We do this so that we
only track movement every second. We could certainly track movement every
frame like in a multiplayer game, but for now, one second will work. The rest of
the code, you have seen earlier in the previous exercises.
Save the file.4.
Run the sample in your browser's device. Now, move around with the device.5.
Go to the Firebase Console. You should now see a stream of data getting fed into6.
the database. Feel free to expand the data points and see the values being
captured.

Real-World Motion Tracking Chapter 5

[69]

Great, we can now see our data being collected. Of course, it is a little difficult for us
humans to easily make sense of the data unless we can visualize it in 2D or 3D, which
means that we have a few options. We can build a separate web page to just track the users
on a map. Yet, that sounds more like a standard web exercise, so let's leave that to readers
who are so inclined. Instead, what we will do is draw a 3D path of where the user has
traveled, using the same data that we are sending to our database. Open up that text editor
again and load up spawn-at-camera.html to follow along:

Locate that call to the setInterval function we added in the last exercise. We1.
need to change some code in order to create a line from the points.
Enter the following code after the identified line:2.

firebase.database().ref('pose/' + ... //after this line
if(lastPos){
 var material = new THREE.LineBasicMaterial({ color: 0x0000ff
});
 var geometry = new THREE.Geometry();
 geometry.vertices.push(
 new THREE.Vector3(pos.x, pos.y, pos.z),
 new THREE.Vector3(lastPos.x, lastPos.y, lastPos.z)
);
 var line = new THREE.Line(geometry, material);
 scene.add(line);
}
lastPos = { x: pos.x, y: pos.y, z: pos.z};

This code first checks whether lastPos is defined. On the first run through the3.
setInterval timer loop, lastPos will be undefined; it then gets set right after
the if statement. Then, after lastPos is defined, we create a basic line material
with the call to THREE.LineBasicMaterial, passing in a hexadecimal color
value. Next, we create our geometry, a line, using the current pos and lastPos
variables with the material. We do this by first constructing a Vector3 object
with the x, y, and z values of each position. Finally, we add the line to the scene
with scene.add(line).

A vector is nothing more than an ordered set of numbers, where each
number represents a dimension. There are a number of cool mathematical
properties about vectors that are useful to know. However, for now, think
of a Vector3 as representing a point in 3D space at the x, y, and
z coordinates. We use the term vertex to refer to a vector or point on a line,
surface, or mesh.

Real-World Motion Tracking Chapter 5

[70]

Save the file and run it in the WebARCore browser on your device. Now when4.
you move around, you will see a trail of blue lines follow you, as shown in the
following picture:

Sample showing tracked path as blue lines

Feel free to continue playing with the app. The development cycle (build, deploy, and run)
is quick when developing a simple single page web app, which gives you plenty of
opportunities to make quick changes, run them, and then debug easily.

Real-World Motion Tracking Chapter 5

[71]

Exercises
At the end or near the end of every chapter, an exercise section will be available to test your
knowledge and give you more experience with ARCore. Complete the following exercises
on your own:

Change the color of the tracking line from blue to red, or another color.1.
Replace the straight line segments with a SplineCurve. Hint—you will need to2.
track more than one previous position.
Make the cube and/or audio follow the user along the tracked path. Hint—you3.
can use another setInterval timer function to move the box every 1.1 seconds
(1100 milliseconds) along the path.

Summary
With that, we complete our look at motion tracking with ARCore. As we learned, ARCore
gives us the ability to track position and rotation or the pose of a device using feature
identification correlated with the device's motion sensors. We then learned why it is
important to track the position of a user when building AR apps with 3D sound. This
taught us the difference between our audio and virtual (3D) scene and how to convert
between references. We then extended our ability to track a user by setting up a Firebase
Realtime Database and connected that to our AR app. By doing this, we could now track a
single user or multiple users globally. Of course, we didn't have enough time here to build
on this further. For now, we finished the app by drawing the user's travel path while the
device moves around an area.

In the next chapter, we will jump back to working with Android (Java) and learn more
about environmental understanding and various related 3D concepts, which is the next
topic on the fundamental AR topics' list.

6
Understanding the Environment

Augmented reality applications are all about enhancing or augmenting the user's reality. In
order to do this, we as AR app developers need a set of tools capable of understanding the
user's environment. As we saw in the last chapter, ARCore uses visual-inertial
odometry (VIO) to identify objects and features in the environment, which it can then use
to obtain a pose of the device and track motion. However, this technology can also help us
identify objects and their pose using the same toolkit. In this chapter, we will explore how
we can use the ARCore API to better understand the user's environment. Here's a quick
overview of the main topics we will cover in this chapter:

Tracking the point cloud
Meshing and the environment
Interacting with the environment
Drawing with OpenGL ES
Shader programming

If you have not downloaded the source code from GitHub, you will need to do so for this
chapter. Of course, you will also need to have completed the setup and installation of
Android covered in Chapter 2, ARCore on Android.

Understanding the Environment Chapter 6

[73]

Tracking the point cloud
As we discussed, motion tracking in ARCore is done by identifying and tracking
recognizable features around the user. It then uses those points with the device's orientation
and accelerometer sensors to keep its tracking updated. Without doing this, the ability to
track accurately quickly falls apart. Additionally, we gain the benefit of now tracking
multiple points that ARCore identifies as object points. Let's see an example of what these
tracking points look like by starting up the sample ARCore Android app again. Follow the
given steps to get started:

Open Android Studio. If you haven't opened any other projects, then it should1.
immediately load the Android ARCore sample project. If not, load the project in
the Android/arcore-android-sdk/samples/java_arcore_hello_ar
folder.
Open the HelloArActivity.java file and scroll down to the OnDrawFrame2.
method, as shown in the following excerpt:

Opening the HelloArActivity.java file in Android Studio

Understanding the Environment Chapter 6

[74]

OnDrawFrame is the render method, exactly like the update function we have3.
seen in the web example. This method is called every frame, generally around 60
frames per second in the typical 3D app. We also call 60 fps as the frame rate.
Frame rates will vary depending on how much your code performs each frame.
Therefore, we want our render function and the code inside to be as fast as
possible. We will talk more about performance and rendering in Chapter 11,
Performance Tips and Troubleshooting.
The first line in this method, starting with GLES20.glClear, clears the render4.
buffer and prepares for drawing.

Depending on the 3D platform you are working with, you may or may not
have to worry about specific details such as clearing render buffers. Unity,
for instance, hides many of these details away from the developer, which
can be good and bad. Just understand that all 3D platforms will generally
follow the same principals.

Scroll down a bit to just inside the try block and add the following line:5.

Frame frame = mSession.update();

Frame represents the current AR view captured from the device's camera. We get6.
access to an instance of frame by calling mSession.update(); mSession, which
is initialized earlier, represents our ARCore session service.
Frame also exposes a number of helper methods; scroll down until you see the7.
following lines:

mPointCloud.update(frame.getPointCloud());
mPointCloud.draw(frame.getPointCloudPose(), viewmtx, projmtx);

Starting with mPointCloud.update(), this call gets the visible points in the8.
current frame. Then, mPointCloud.draw() draws the points based on the
cloud's pose, using the current view (viewmtx) and projection (projmtx)
matrices.

View and projection matrices represent the camera or combined scene
view. With three.js, this was handled for us. Likewise, when we get to
Unity, we won't need to worry about setting these matrices either.

Connect your device to your machine, either through USB or remotely. Then,9.
build and run the app on your device. Pay particular attention to the drawing of
the point cloud.

Understanding the Environment Chapter 6

[75]

Note how the number of points increases the longer you hold the device in one orientation.
These points represent those identifiable and recognizable feature points used for tracking
and interpreting the environment. Those are the same points that will help us identify
objects or surfaces in the environment. In the next section, we will look at how surfaces are
identified and rendered.

Meshing and the environment
So, being able to identify features or corners of objects is really just the start of what we
would like to know about the user's environment. What we really want to do is use those
feature points to help us identify planes, surfaces, or known objects and their pose. ARCore
identifies planes or surfaces automatically for us through a technique called meshing. We
have already seen how meshing works numerous times in the advanced samples, when
ARCore tracks surfaces. Now, before we get ahead of ourselves, let's picture what a point
cloud and mesh look like in 3D, with the following diagram:

Point cloud and mesh in 3D

Understanding the Environment Chapter 6

[76]

If you pay attention to the diagram, you will see an inset figure showing a
polygon and the ordered set of vertices that comprise it. Note how the
order of points goes counterclockwise. Yes, the order in which we join
points makes a difference to the way a surface is facing when a mesh is lit
and shaded. When a scene is rendered we only see surfaces that face the
camera. Surfaces pointing away from the camera are removed or back-face
culled. The order in which we join points is called winding and isn't
something you have to worry about unless you plan to create meshes
manually.

Meshing is the process of taking a collection of feature points and constructing a mesh from
it. The generated mesh is then often shaded and rendered into the scene. If we run the
sample right now and watch, we will see the surfaces or plane meshes being generated and
placed by ARCore. How about we open up the Android sample project again in Android
Studio to see where this meshing occurs:

Ensure that your code is open to where we left off last time. You should be1.
looking at the lines with mPointCloud.
Scroll down just a little until you see this block of code:2.

if (messageSnackbar != null) {
 for (Plane plane : session.getAllTrackables(Plane.class)) {
 if (plane.getType() ==
com.google.ar.core.Plane.Type.HORIZONTAL_UPWARD_FACING
 && plane.getTrackingState() == TrackingState.TRACKING) {
 hideLoadingMessage();
 break;
 }
 }
}

This block of code just loops through the trackables of type Plane (a flat mesh)3.
identified in the session. When it identifies a tracked plane, of the correct type, it
hides the loading message and breaks out of the loop.

Understanding the Environment Chapter 6

[77]

Then, it renders any planes it identifies with this line:4.

planeRenderer.drawPlanes(
 session.getAllTrackables(Plane.class),
camera.getDisplayOrientedPose(), projmtx);

The planeRenderer helper class is for drawing planes. It uses the drawPlanes5.
method to render any of the identified planes the ARCore session has identified
using the view and projection matrices. You will notice it passes all the planes in
through a call to getAllTrackables(Plane.class).
Put your cursor on drawPlanes and type Ctrl + B (command + B on Mac) to go to6.
the definition.
Now you should see the drawPlanes method in the PlaneRenderer.java7.
file—don't panic. Yes, there is a lot of scary code here, which, thankfully, is
already written for us. As an exercise, just scroll through and read the code. We
don't have time to go through it in depth, but reading through this code will give
you more insight into the rendering process.
From the menu, select Run - Run 'HelloArActivity'. Now, as the app runs, pay8.
special attention to the way the surfaces are rendered and how you can interact
with them.

Okay, now we understand how surfaces are created and rendered. What we also need to
understand is how we interact with those surfaces or other objects in the environment.

Interacting with the environment
We know that ARCore will provide us with identified feature points and planes/surfaces it
recognizes around the user. From those identified points or planes, we can attach virtual
objects. Since ARCore keeps track of these points and planes for us, as the user moves
objects, those that are attached to a plane remain fixed. Except, how do we determine where
a user is trying to place an object? In order to do that, we use a technique called ray casting.
Ray casting takes the point of touch in two dimensions and casts a ray into the scene. This
ray is then tested against other objects in the scene for collisions. The following diagram
shows how this works:

Understanding the Environment Chapter 6

[78]

Example of ray casting from device screen to 3D space

You, of course, have likely already seen this work countless times. Not only the sample app,
but virtually every 3D application uses ray casting for object interaction and collision
detection. Now that we understand how ray casting works, let's see how this looks in code:

Open up Android Studio, the sample project, and the HelloArActivity.java1.
file.
Scroll down to the following block of code:2.

MotionEvent tap = queuedSingleTaps.poll();
if (tap != null && camera.getTrackingState() ==
TrackingState.TRACKING) {
 for (HitResult hit : frame.hitTest(tap)) {
 // Check if any plane was hit, and if it was hit inside the
plane
 polygon
 Trackable trackable = hit.getTrackable();
 // Creates an anchor if a plane or an oriented point was hit.
 if ((trackable instanceof Plane && ((Plane)
trackable).isPoseInPolygon(hit.getHitPose()))
 || (trackable instanceof Point
 && ((Point) trackable).getOrientationMode()
 == OrientationMode.ESTIMATED_SURFACE_NORMAL)) {
 // Hits are sorted by depth. Consider only closest hit on a
plane
 or oriented point.

Understanding the Environment Chapter 6

[79]

 // Cap the number of objects created. This avoids overloading
 both the
 // rendering system and ARCore.
 if (anchors.size() >= 20) {
 anchors.get(0).detach();
 anchors.remove(0);
 }
 // Adding an Anchor tells ARCore that it should track this
 position in
 // space. This anchor is created on the Plane to place the 3D
 model
 // in the correct position relative both to the world and to
the
 plane.
 anchors.add(hit.createAnchor());
 break;
 }
 }
}

Read through the comments and pay attention to the highlighted lines of code.3.
The first highlighted line starts a loop based on the number of hits detected in the
scene using frame.hitTest(tap). That call is doing the ray casting to
determine what objects may be hit by the tap. A tap represents the screen touch
in 2D.
The next highlighted line is inside the if statement that checks which of the
ARCore recognized planes are touched. If there is a hit, we first check that the
number of anchors is less than 20, where each anchor represents an attachment
point. Then we add a new Anchor to the collection of anchors ArrayList, with
a reference to a new anchor using hit.createAnchor .
Scroll down some more to the following block of code in onDrawFrame:4.

// Visualize anchors created by touch.
float scaleFactor = 1.0f;
for (Anchor anchor : anchors) {
 if (anchor.getTrackingState() != TrackingState.TRACKING) {
 continue;
 }
 // Get the current pose of an Anchor in world space. The Anchor
pose is updated
 // during calls to session.update() as ARCore refines its
estimate of the world.
 anchor.getPose().toMatrix(anchorMatrix, 0);

 // Update and draw the model and its shadow.

Understanding the Environment Chapter 6

[80]

 virtualObject.updateModelMatrix(anchorMatrix, scaleFactor);
 virtualObjectShadow.updateModelMatrix(anchorMatrix, scaleFactor);
 virtualObject.draw(viewmtx, projmtx, lightIntensity);
 virtualObjectShadow.draw(viewmtx, projmtx, lightIntensity);

Take a quick read through the code. The first highlighted line starts by looping5.
through the anchor in the anchors list. We then check whether the anchor is
being tracked; if it is, we get its pose in the second highlighted line. Then, we
draw our virtualObject (Andy) in the last lines of code. Note that in this case,
we are also drawing shadows.
Change the first line of code to match the following:6.

float scaleFactor = 2.0f;

This change will double the size of Andy. Run the app in your device and wait7.
for some surfaces to appear. Then, touch the screen to drop Andy. He should
now look double the size.

Touch for gesture detection
So, that covers simple interactions. How about we add another gesture to allow the user to
clear all the attachment points and thus remove the Andy robot from the scene. Follow
along the given steps to add another touch gesture:

Scroll to the following section of code:1.

// Set up tap listener.
gestureDetector =
 new GestureDetector(
 this,
 new GestureDetector.SimpleOnGestureListener() {
 @Override
 public boolean onSingleTapUp(MotionEvent e) {
 onSingleTap(e);
 return true;
 }

 @Override
 public boolean onDown(MotionEvent e) {
 return true;
 }
 });

surfaceView.setOnTouchListener(

Understanding the Environment Chapter 6

[81]

 new View.OnTouchListener() {
 @Override
 public boolean onTouch(View v, MotionEvent event) {
 return gestureDetector.onTouchEvent(event);
 }
 });

The preceding section of code is in the onCreate method of the2.
HelloArActivity. It first sets up gestureDetector for interpreting the
selected touch events. Then, we set a listener with setOnTouchListener in
order to capture touch events and send them to the gesture detector. Just
remember that the listener listens for the touch, and the gesture detector
interprets the type of touch. So what we want to do is capture another form of
gesture from the user.
Add the following code right after the highlighted section:3.

@Override
public boolean onDown(MotionEvent e) { return true;} //after this
section

@Override
public void onLongPress(MotionEvent e) {
 onLongPressDown(e);
}

That sends our event to a new method, onLongPressDown. Let's add this new4.
method just below the other gesture handling method by adding the following
code:

private void onSingleTap(MotionEvent e) {
 // Queue tap if there is space. Tap is lost if queue is full.
 mQueuedSingleTaps.offer(e);
} //after this block of code
private void onLongPressDown(MotionEvent e) {
 mTouches.clear();
}

All that happens inside onLongPressDown is the collection of anchors,5.
anchors is cleared. By clearing the anchors, we clear the attachment points and
thus any rendering of Andy.
Save the file, connect your device, and run the sample. Try placing a few big6.
Andy's around the scene. Then, use the new long press gesture to remove them.

Understanding the Environment Chapter 6

[82]

Good, now we have a basic understanding of how we can interact with the environment. In
the next section, we will cover some basics of OpenGL ES, the 3D rendering framework we
are using for Android.

Drawing with OpenGL ES
OpenGL ES or just GLES is the trimmed down mobile version of OpenGL. OpenGL is a
low-level and powerful 2D and 3D drawing API similar to DirectX. Since it is a low-level
library, it does require significant knowledge of 2D/3D maths. Again, for our purposes, we
will avoid most of the nasty math and just modify some of the drawing code to change the
way the sample app functions. What we will do is modify the sample app to change the
way objects are drawn. Load up Android Studio with the sample project and let's get
started:

Scroll down to the bottom of PointCloudRenderer.java and look at the1.
following section of code identified in the following screen excerpt:

PointCloudRenderer.java open on the draw method

Now the code is straightforward, but a lot of what is going on assumes that the2.
developer has a good foundation in 3D maths and graphic rendering. We don't
have time to go through every step, but, essentially, all that the code is doing is
drawing the identified point cloud features (those blue points).

Understanding the Environment Chapter 6

[83]

When we get to the chapters on Unity, you may start wondering why
someone would ever put themselves through the pain of writing an AR
app with OpenGL ES. That's a good question. Rendering realistic 3D
graphics is all about speed and performance. While Unity does an
excellent job at rendering, it still is just another layer of software on top of
OpenGL ES. This means that Unity would typically run slower than its
native OpenGL ES counterpart. How much slower, really depends on
what you are trying to do.

Take a look at the identified line in the following excerpt, as shown:3.

GLES20.glUniform4f(colorUniform, 31.0f / 255.0f, 188.0f / 255.0f,
210.0f / 255.0f, 1.0f);

This line sets the color of the rendered point cloud. It does this by normalizing4.
the RGB color values of 31.0, 188.0, and 210.0 by dividing them by 255.0,
thus creating a uniform or normalized color vector of values from 0 to 1. With the
last value of 1.0 representing the alpha or transparency, where 1.0 means the
color is opaque and 0.0 means it is transparent.
Let's experiment a little by changing that line of code to the following:5.

GLES20.glUniform4f(colorUniform, 255.0f / 255.0f, 255.0f / 255.0f,
255.0f / 255.0f, 1.0f);

Next, we will change the size of points we draw so that they are clearly visible, by6.
changing the following line of code:

GLES20.glUniform1f(pointSizeUniform, 25.0f);

Save the file, connect up your device, and then deploy and run the app. As the7.
app runs, note the color of the points now. Is it what you expected?

Now, we can clearly see how and where the feature points are being identified. However,
we still don't get a lot of information from the point data. What if we color the points based
on their distance to the viewer? This will allow us to visualize our environment point cloud
with some depth information. Doing this in a low-level API such as OpenGL ES to
manually subset points by color will require substantial code changes. Fortunately, we can
even go lower and write a program called a shader to change the color of the point just
before we draw it. We will take a dive in to shader programming in the next section.

Understanding the Environment Chapter 6

[84]

Shader programming
Shader programming is probably one of the most difficult and low-level development tasks
you can do as a graphics programmer. It requires an excellent knowledge of 3D math and
the graphics rendering process. Also, writing good shaders is a skill that can take years to
master. So why are we covering this in a book that covers fundamentals? Simply put,
coding a good shader may be difficult, but it is also extremely rewarding, and it's a skillset
that is essential to any serious 3D programmer.

We will be using shaders throughout the rest of this book for many things.
If, at this point, you are starting to feel overwhelmed, then take a break
and study some 3D math or jump ahead a chapter. Sometimes, you just
need time for things to sink in before you get that eureka moment.

A shader program runs directly on the graphic processing unit (GPU) of the device or
computer. If the device doesn't have a GPU, then the program is executed on the CPU,
which is a much slower process. After all, the GPU has been optimized to run shader code
and do it extremely well. In fact, virtually all 3D rendering done on the GPU runs the
shader code. When we use Unity, a much higher-level game engine, we will still write our
own shaders because of the power and flexibility it gives us.

So, what does a shader program look like? The following is an example of a shader written
in the OpenGL Shading Language (GLSL):

uniform mat4 u_ModelViewProjection;
uniform vec4 u_Color;
uniform float u_PointSize;

attribute vec4 a_Position;

varying vec4 v_Color;

void main() {
 v_Color = u_Color;
 gl_Position = u_ModelViewProjection * vec4(a_Position.xyz, 1.0);
 gl_PointSize = u_PointSize;
}

This is the shader program we use for rendering our point cloud points or vertices.
Specifically, this shader is responsible for rendering a single vertex for each call to main,
and it's called a vertex shader. Later in the rendering process, after the 3D scene is flattened
to a 2D image with the vertex shaders, we have the opportunity to run a fragment or pixel
shader. A fragment shader is run for every pixel/fragment that needs to be rendered.

Understanding the Environment Chapter 6

[85]

Shader programs come in a few variations, but since they all derive from a
C language and share so many similar functions, switching from one
language to another isn't as difficult as you think. We will, in fact, learn
some basics of the GLSL and the form used in Unity called High Level
Shading Language (HLSL), which has its roots in DirectX.

If you look in the main function, you will see we are setting three variables: v_Color,
gl_Position, and gl_PointSize. Those variables are global and just determine the color,
size, and position of the vertex. The first line sets the color to an input variable—u_Color.
Then, the position is calculated by multiplying the u_ModelViewProjection matrix with a
new vector representing the position. That operation converts our vertex from world space
to screen space. Finally, we set the point size with another input—u_PointSize.

What we want to do is modify that shader program so that it colorizes the points based on
the distance from the user. Before we do that, though, let's take a look at how the shader
gets those inputs. Open up Android Studio to PointCloudRenderer.java and follow
along:

Scroll down to bottom of the createOnGUIThread method and look for the1.
following lines:

positionAttribute = GLES20.glGetAttribLocation(programName,
"a_Position");
colorUniform = GLES20.glGetUniformLocation(programName, "u_Color");
modelViewProjectionUniform =
GLES20.glGetUniformLocation(programName, "u_ModelViewProjection");
pointSizeUniform = GLES20.glGetUniformLocation(programName,
"u_PointSize");

Those lines of code set up our shader input positions. What we are doing here is2.
determining the indexes we need for injecting data into the array buffer we pass
to the shader. We need to add another input, so add the following line at the end
of the preceding code snippet:

furthestPoint = GLES20.glGetUniformLocation(programName,
"u_FurthestPoint");

Understanding the Environment Chapter 6

[86]

This line adds another input variable called u_FurthestPoint. We need to3.
calculate the furthest point from the user (camera) in order to colorize the points
on a gradient. Before we do that, go back to the top of the file and declare the
following new variables under the line identified:

private int numPoints = 0; //after this line
private int furthestPoint;
private float furthestPointLength;

Remember that furthestPoint is an index to the variable and4.
furthestPointLength will be used to hold the distance to the furthest point.
Scroll down to the update method and enter the following code after the5.
identified line:

numPoints = lastPointCloud.getPoints().remaining() /
FLOATS_PER_POINT; //after me

furthestPointLength = 1;
if(numPoints > 0) {
 for(int i=0; i<numPoints*FLOATS_PER_POINT;i=
i+FLOATS_PER_POINT) {
 float x = lastPointCloud.getPoints().get(i);
 float y = lastPointCloud.getPoints().get(i+1);
 float z = lastPointCloud.getPoints().get(i+2);
 double len = Math.sqrt(x*x+y*y+z*z);
 furthestPointLength = Math.max(furthestPointLength,
(float)len);
 }
 }
}

This code first sets our minimum distance (1) to mFurthestPointLength. Then,6.
we check whether there are any observed points. If there are, we loop through the
points in the point cloud. In the loop, we use the get method to index into the
point buffer and extract the x, y, and z of the points. This allows us to measure
the length of the vector with x, y, and z of the point. You make recognize the
equation as the Pythagorean theorem, but in 3 dimensions rather than the 2 you
may be used to. We then check whether this new length (distance) is greater than
the current furthest length with Math.max. Keep in mind that this code is run in
the update method and thus executed every rendered frame.

Understanding the Environment Chapter 6

[87]

We calculate the distance between two points in 3D space using the
following formulae:

Since our camera (user) is the origin, we can assume that one of our points
is (0,0,0), which is equal to this:

This becomes the following:

Scroll down to the draw method and add the following code beneath the7.
identified line:

GLES20.glUniform1f(mPointSizeUniform, 25.0f); //after me

GLES20.glUniform1f(furthestPoint, furthestPointLength);

This call sets the furthestPointLength that we calculated in the update8.
method to the shader program.

Editing the shader
Okay, so that's all the Java code we need to write in order to calculate and set our new
distance variable. Next, we want to open up the shader program and modify the code for
our needs. Follow the given steps to modify the shader program:

Open the point_cloud_vertex.shader file under the res/raw folder, as1.
shown:

>

Understanding the Environment Chapter 6

[88]

Opening point_cloud_vertex.shader

Make the highlighted code changes, as follows:2.

uniform mat4 u_ModelViewProjection;
uniform vec4 u_Color;
uniform float u_PointSize;
uniform float u_FurthestPoint;

attribute vec4 a_Position;

varying vec4 v_Color;

void main() {
 float t = length(a_Position)/u_FurthestPoint;
 v_Color = vec4(t, 1.0-t,t,1.0);
 gl_Position = u_ModelViewProjection * vec4(a_Position.xyz, 1.0);
 gl_PointSize = u_PointSize;
}

Understanding the Environment Chapter 6

[89]

The first line of code is new. All we are doing is taking the length of the3.
a_Position vector, determining its length or distance to the camera, and then
normalizing that value between 0 and 1. The second line then creates a new vec4
for color based on our calculations of the t variable. This new vector represents
the color in the form red blue green alpha (RGBA), where alpha is set to a
constant of 1.0.
Save the file, connect your device, and build and run the app on your device. You4.
should now see the cloud points colorized by distance to the camera, as follows:

Screenshot of colored point cloud points by depth

Understanding the Environment Chapter 6

[90]

Imagine if we had to write Java code in order to do the same colorization of the points. We
would certainly need a lot more code than what we wrote. Also, any Java code we used
would certainly be much slower than a shader. Now, for our example, the app's
performance is less critical, but when you develop a real AR app, you will want to squeeze
all the performance you can; that's why our discussion and knowledge of shaders is so
important.

Exercises
The following exercises are meant to test your skills and the knowledge you just earned in
order to build on the work we just completed. Complete the following exercises on your
own:

Change the color of the tracking line from blue to red, or another color.1.
Replace the straight line segments with a SplineCurve. Hint, you will need to2.
track more than one previous position.
Make the cube and/or audio follow the user along the tracked path. Hint—you3.
can use another setInterval timer function to move the box along the path
every 1.1 seconds (1100 ms).

Summary
We began this chapter by first reviewing some concepts on environment tracking and
exploring how ARCore keeps track of the environment. Then, we moved on to meshing and
how it is used to generate planes and surfaces. From there, we moved on to interacting with
the environment, where we saw how a touch gesture is interpreted and converted into a
position in a 3D scene. After that, we learned some basics about OpenGL ES and how our
point cloud is rendered. We then took a deep dive and introduced the low-level rendering
process of shaders. With this, we then modified the point cloud vertex shader in order to
colorize the points by distance.

Lighting is a critical element to the whole illusion of augmented reality. In the next chapter,
we will dive back into Unity and learn about light estimation.

7
Light Estimation

Magicians spend hours in front of a mirror, watching and studying every angle of their
performance in order to get it just right. They realize that every detail needs to be perfect in
order for the audience to believe in the illusion. Even a single mistake can ruin not only the
illusion, but the entire performance and credibility of the magician. As harsh as it is, this is
no different to what it's like building an AR app. If your app will immerse a user in your
world, you need to make it as believable as possible. This includes ensuring that all the
virtual objects in a scene look like they belong. Magicians use lighting and perspective tricks
to fool the user into believing that something is real. We have already seen how we use
perspective, so now we need to cover and enhance our use of lighting.

In this chapter, we will cover how ARCore uses light estimation techniques to make the AR
experience more believable to the user. We will then go on to extend some of those basic
techniques in order to improve our future AR apps. Here are the main topics we will cover
in this chapter:

3D rendering
3D lighting
Light estimation
Cg/HLSL shaders
Estimating light direction

We will use Unity in this chapter because it provides an easier platform for learning about
the rendering process, lighting, and more about shader programs. The shader programs in
Unity are a different variety and are definitely worth taking a look at.

Light Estimation Chapter 7

[92]

While this chapter is less than halfway through the book, a reader should
consider this as an advanced chapter. We will again be covering more
about shader programs and 3D math concepts. Here's a good site for those
of you who want to review or just get a basic understanding of 3D math,
through this tutorial, 3D Math: Vector Math for 3D Computer Graphics at
http:/ / chortle. ccsu. edu/ vectorlessons/ vectorindex. html. This is an
excellent site licensed by Bradley Kjell.

3D rendering
Before we get into talking about light estimation for AR, let's step back and review the
rendering process of a 3D model. Take a look at the following diagram that explains the
rendering process at a high level:

Typical rendering process for a 3D model

Now, the diagram only visually demonstrates the rendering process. Geometry and vertex
shaders never actually render a wireframe model. Rather, they only position and color
vertices and surfaces, which are then fed into the pixel/fragment and lighting shaders. This
last step is called rasterization and represents the final step when the 2D image is generated
or rasterized.

The rendering process we are talking about here is for standard real-time
rendering on a device's GPU using DirectX or OpenGL. Keep in mind that
there are other rendering processes used for real-time (voxel) and non real-
time (ray tracing) rendering.

http://chortle.ccsu.edu/vectorlessons/vectorindex.html
http://chortle.ccsu.edu/vectorlessons/vectorindex.html
http://chortle.ccsu.edu/vectorlessons/vectorindex.html
http://chortle.ccsu.edu/vectorlessons/vectorindex.html
http://chortle.ccsu.edu/vectorlessons/vectorindex.html
http://chortle.ccsu.edu/vectorlessons/vectorindex.html
http://chortle.ccsu.edu/vectorlessons/vectorindex.html
http://chortle.ccsu.edu/vectorlessons/vectorindex.html
http://chortle.ccsu.edu/vectorlessons/vectorindex.html
http://chortle.ccsu.edu/vectorlessons/vectorindex.html
http://chortle.ccsu.edu/vectorlessons/vectorindex.html
http://chortle.ccsu.edu/vectorlessons/vectorindex.html
http://chortle.ccsu.edu/vectorlessons/vectorindex.html
http://chortle.ccsu.edu/vectorlessons/vectorindex.html
http://chortle.ccsu.edu/vectorlessons/vectorindex.html

Light Estimation Chapter 7

[93]

Euclideon have developed a voxel-like rendering technology, which they are claiming to be,
in their words, as follows:

"The First Truly Applicable Hologram Tech is Here."

- Euclideon

This sounds very promising and a game changer for AR and VR. However, this technology
has come under incredible scrutiny for making, what some feel are outlandish claims of
rendering trillions of points without frame rate loss.

Building a test scene
As always, let's take a look at how this looks in our tools. Open up Unity with the sample
ARCore project we have already installed, and perform the following steps:

From the menu, select File | New Scene. This will create a new empty scene for1.
us in Unity.
From the Project window, drag the Andy prefab from the2.
Assets/GoogleARCore/HelloARExample/Prefabs folder into the Hierarchy
window, as shown in the following screen excerpt:

Unity interface showing Andy prefab dragged onto the scene

Light Estimation Chapter 7

[94]

Andy is quite small, so we will adjust his size and the camera so that he fits in the3.
Scene and Game windows better. Select Andy and modify Transform Scale to
X as 25, Y as 25, and Z as 25. Then, select Main Camera and modify its
Transform Position to Y as 4. This is shown in the following screen excerpt:

Setting the Transform of Andy and the Main Camera

Click on the Game and Scene tabs to switch views and see how the Andy model4.
looks in each view.

The Scene window in Unity is for composing your scene objects. This is
where you will generally do most of your work in Unity. The Game
window represents the view, as close as possible, as it is rendered in game.
Unfortunately, for ARCore apps, we are limited to testing on a device and
thus unable to generate an accurate game view. This is why, for now
anyway, we will work in a separate scene for discovery purposes.

From the menu, select GameObject | 3D Object | Plane. This will add a new5.
plane to the scene. Ensure that the plane is positioned at 0,0,0 by clicking on the
Gear icon beside the Transform component in the Inspector window and
selecting Reset Position from the menu. After you do that, Andy will be casting a
shadow on the plane.
Switch between views again. Expand the Shaded dropdown just under the Scene6.
tab, as shown in the following excerpt:

Light Estimation Chapter 7

[95]

The Draw Mode menu

This menu represents the various Draw Modes Unity can support. Some of these7.
may make sense, such as Wireframe, while others less so. In any case, run
through the list of each option to see what they do.

Light Estimation Chapter 7

[96]

Materials, shaders, and textures
Okay, now we have seen how Unity renders a scene and the various draw modes available.
However, we still need to go over how an object is colored or textured. In Unity, we
typically use materials, shaders, and textures to render 3D objects. A material is essentially
an encapsulation of a shader, its dependent textures, and other settings. Let's see what
AndyMaterial looks like in Unity by following the given steps:

Open the Assets/GoogleARCore/HelloARExample/Materials/Andy folder1.
in the Project window and select AndyMaterial. Look at the Inspector window
and note the name of the Shader (ARCoreDiffuseWithLightEstimation) at
the top. The current Shader uses a simple lighting model and has been optimized
for mobile AR, which we don't currently need, so we will change it.
Expand the Shader dropdown in AndyMaterial and select Standard. This will2.
switch the material to using the Standard Shader, as shown in the following
screenshot:

Switching Andy to use the Standard Unity shader

Light Estimation Chapter 7

[97]

The first thing you will immediately note is that Andy gets very dark. This is3.
because the Metallic and Smoothness are turned way up. Use your mouse to
adjust the various values to something more pleasant, as shown by the red
arrows in the preceding screenshot. Perhaps a metallic shiny Andy?

One thing to note when adjusting materials is that any changes you make
to a material will be automatically saved and persisted even when running
in the play or demo mode. Sometimes, it is useful to have backups of
settings, especially if you found them difficult to achieve.

Make a copy of AndyMaterial by selecting it in the Project window and typing4.
Ctrl + D or command + D on Mac. Rename the new material
StandardAndyMaterial.
Select AndyMaterial again. Change Shader back to5.
ARCore/DiffuseWithLightEstimation. Note how the look of Andy quickly
changes.
From the menu, select File | Save Scenes. Save the scene to the6.
Assets/GoogleARCore/HelloARExample/Scenes folder as
RenderingTest.scene.

As you can see, there are plenty of options and settings that can go into rendering a 3D
object. Feel free to explore on your own what each of the material settings are on the
Standard Shader. In the next section, we will expand our understanding of rendering by
discussing lighting.

3D lighting
So far, we have looked at the basics of the rendering process and how a 3D model is
rendered. What we omitted in the first section, however, is how lighting plays into this. In
order to get a sense of the importance of lights in a 3D scene, how about we go ahead and
turn out the lights. Open up Unity to where we left off in the first section and follow along:

Select the Directional Light object in the Hierarchy window.1.
Disable the Light in the Inspector window by unchecking the box beside the2.
object's name. This will turn off or disable the light. You will note that not all the
lights go off, however. This is because we have an ambient or global light that is
used to account for general light scattering.

Light Estimation Chapter 7

[98]

You are now left with a dark object with no lights and shadows. Turn back on the3.
Directional Light by clicking on the checkbox. Take a look at the properties of the
Light in the Inspector window, as shown:

Directional Light properties in the Inspector window

Play with the Type, Color, Mode, and Shadow Type properties in the Inspector4.
window. There are four different types of lights you can work with. The
Directional type represents a light source such as the sun, and as such, we only
need to identify the direction the light is pointing. For the other light types, such
as point and spot, you will need to position the light in the scene correctly in
order to see any effects.

Light Estimation Chapter 7

[99]

We can calculate simple 3D diffuse lighting with the following equation:

Here:
 is the direction of the light

 is the normal to the surface
 is the intensity of light [0 to 1]

 is then multiplied by the color in order to determine the resulting lit
color.

The Standard Shader we looked at earlier uses Physically-Based5.
Rendering (PBR) or a lighting model, which is quite sophisticated.
Unfortunately, PBR shaders are currently limited for mobile platforms and often
don't work or have poor performance. Often, the devices' GPU cannot support
the additional instructions required for a PBR shader. Therefore, we will be
limited to writing our own custom lighting shaders.
Let's explore switching shaders on our AndyMaterial so that we can see what6.
effect different lighting models have. Locate AndyMaterial in the
Assets/GoogleARCore/HelloARExample/Materials/Andy folder and select
it.
Switch between ARCore/DiffuseWithLightEstimation, Mobile Diffuse, and7.
the Standard shaders to see the effects or the different lighting models, as
illustrated:

Comparison of lighting models from three different shaders

Light Estimation Chapter 7

[100]

Obviously, the Standard shader looks the most natural, but as we learned, PBR8.
shaders are currently not supported on mobile platforms. Another option would
be the Mobile Diffuse shader; let's see how that shader looks in our AR sample
app.
Switch the shader to the Mobile Diffuse one and then save the project9.
(File | Save Project).
Connect your device and type Ctrl + B, command + B on Mac. This will build and10.
run the app on your device. Play with the app and wait for a surface to be visible
and then tap and place Andy.

Note anything different about our friend? That's right, he appears to stick out like a hot day
in Canada. The reason for this is that the Mobile Diffuse shader is assuming a consistent
light source, which means our model is always getting the same light (direction and
intensity), except that in the real world, as the user moves, light direction and intensity can
change dramatically. Your device's camera will try and compensate for this, but you can
still see perceptible changes in lighting, especially if the lighting around the user changes
dramatically. You can see this by running the app again, and this time, take a closer look at
how the lighting looks different on and around our model. ARCore solves this issue of
inconsistent lighting by performing a process called light estimation. We will cover light
estimation in detail in the next section.

Light estimation
Light estimation is a technique for replicating the lighting conditions of the real world and
applying it to our 3D virtual objects. Ideally, we would like to be able to replicate the exact
lighting conditions, but of course, we're not there yet. ARCore currently uses an image
analysis algorithm to determine light intensity based on the current image from the device.
This is then applied as global light to the 3D objects in the scene. Open up Unity again and
let's see how this is done by following along the given steps:

Locate the AndyMaterial again and revert its shader to1.
ARCore/DiffuseWithLightEstimation.
Save the project (File | Save Project).2.
Connect your device and type Ctrl + B (command + B on Mac) to build and run the3.
app on your device. Place a couple of Andy models and alter the lighting
conditions. Note how our objects respond to the changes in lighting.
Go back to Unity and double-click on the HelloAR scene in the4.
Assets/GoogleARCore/HelloARExample/Scenes folder to open the scene.
Feel free to save your RenderingTest scene.

Light Estimation Chapter 7

[101]

Direct your attention to the Hierarchy window and double-click on Directional5.
Light to focus and highlight it in the Scene window. Note how the light is
pointing straight down in the Scene window. In the Inspector window, you will
see that the Shadow Type is set to No Shadows, and the Intensity is turned
down to 0.7, which essentially turns the light into a directional ambient or global
light.
Direct your attention back to the Hierarchy window and select Environmental6.
Light. Go to the Inspector window and click on the Gear icon beside the
Environmental Light (Script) component. Then, select the Edit Script option
from the context menu, as shown:

Editing the Environmental Light script

This will open up the script in your script editor. By default, Unity installs7.
MonoDevelop, which will open the script if you have not installed and set a
different editor. Scroll down to the Update method, as follows:

public void Update()
{
#if UNITY_EDITOR
 // Set _GlobalLightEstimation to 1 in editor, if the value
is not set, all materials

Light Estimation Chapter 7

[102]

 // using light estimation shaders will be black.
 Shader.SetGlobalFloat("_GlobalLightEstimation", 1.0f);
#else
 if (Frame.TrackingState != FrameTrackingState.Tracking)
 {
 return;
 }

 // Use the following function to compute color scale:
 // * linear growth from (0.0, 0.0) to (1.0,
LinearRampThreshold)
 // * slow growth from (1.0, LinearRampThreshold)
 const float LinearRampThreshold = 0.8f;
 const float MiddleGray = 0.18f;
 const float Inclination = 0.4f;

 float normalizedIntensity =
Frame.LightEstimate.PixelIntensity / MiddleGray;
 float colorScale = 1.0f;

 if (normalizedIntensity < 1.0f)
 {
 colorScale = normalizedIntensity * LinearRampThreshold;
 }
 else
 {
 float b = LinearRampThreshold / Inclination - 1.0f;
 float a = (b + 1.0f) / b * LinearRampThreshold;
 colorScale = a * (1.0f - (1.0f / (b *
normalizedIntensity + 1.0f)));
 }

 Shader.SetGlobalFloat("_GlobalLightEstimation",
colorScale);
#endif
 }
}

The #if UNITY_EDITOR is a compiler directive that checks whether the code is8.
running in the editor. The reason we do this is so that when the code runs in the
Unity editor, we want it to ignore any light estimation calculations. When the
code is running in the editor, it will execute the next line; the
_GlobalLightEstimation shader variable is set to 1. This means that when the
code is running in the editor, all it does is set our light to 1.0.

Light Estimation Chapter 7

[103]

You will come across the #if UNITY_EDITOR directive quite frequently
when doing mobile development. This directive allows you to write test
code that only executes when the code is running in the editor. This allows
us to simulate the object running in the editor without the need to worry
about ARCore services or device restrictions.

Direct your attention to the #else block of code. This is code that is executed on9.
the device and first checks whether the Frame is tracking. We have already seen
this check in Android. The rest of the code is essentially just math, but if you look
at the last highlighted line, you will see a call to
Frame.LightEstimate.PixelIntensity. This is the call where ARCore reads
the image from the camera and determines the current pixel intensity; a float
value from 0 for a totally black image to 1 that is fully white. The intensity is
normalized based on a constant called MiddleGray. The MiddleGray color or
light intensity of 0.18f corresponds roughly to the point where we humans stop
recognizing colors.
We then use the normalizedIntensity to determine whether we want a linear10.
change in lighting, when normalizedIntensity is less than 1.0, or more
gradually, when the intensity is greater than 1.0. That's all that the rest of the
math is doing, just making the lighting change more gradually after a certain
threshold.
Change the MiddleGray constant to match the following line:11.

const float MiddleGray = 1.0f;

This will convert our light estimation to now use a linear model. Save the code12.
change and return to Unity. Unity will automatically recompile the code and
inform you of any errors in the status bar at the bottom of the editor.
Connect your device and build and run. Place an Andy on a surface. Note how13.
dark the figure is; this is because the lighting model is too abrupt.

We are using a single channel of color or what you may also call gray
scale. This is why we refer to values as a color but it is in fact just a single
float. A gray scale color of 0.18f is equivalent to the RGB color (0.18f,
0.18f, 0.18f) or what ARCore calls MiddleGray.

Change the MiddleGray constant back to 0.18f, save the project, and run the14.
app. Note the difference in lighting.

Light Estimation Chapter 7

[104]

This covers how ARCore uses image analysis techniques to read the light intensity from the
camera's image and converts that value into a global light intensity or color. The lighting
value is set on a shader, and we will follow how that value is used in the next section.

Cg/HLSL shaders
The shading language used in Unity is a variety of HLSL, or sometimes referred to as Cg.
This shading variant provides two different forms of shaders: surface and vertex/fragment
shaders. Now, coming from Android, this may sound confusing, since GLSL treats vertex
and fragment shaders differently. However, variety of HLSL in Unity treats vertex and
fragment shaders as the same, since they reside in the same file and are in the same
workflow. A surface shader, which handles the lighting of our model, can be simple or
quite complex. The Standard Unity surface shader uses a PBR lighting model, which is quite
advanced and not supported on most mobile devices. This issue, combined with our limited
ability to track scene lights, limits us to writing our own shaders in order to get our object
lighting correct. ARCore provides us with a very simple surface shader that is used in the
sample to light the Andy model. Let's open up Unity and take a look at what that shader
looks like by following the given steps:

Load up the HelloAR sample project and scene.1.
Select the AndyMaterial in the2.
Assets/GoogleARCore/HelloARExample/Materials/Andy folder. Ensure
that the Shader is set to ARCore/DiffuseWithLightEstimation. Switch it back
if you changed it.
Click on the Gear icon and from the context menu, select Edit Shader. This will3.
open the shader in your code editor, and it is also shown here for reference:

Shader "ARCore/DiffuseWithLightEstimation"
{
 Properties
 {
 _MainTex ("Base (RGB)", 2D) = "white" {}
 }

 SubShader
 {
 Tags { "RenderType"="Opaque" }
 LOD 150

 CGPROGRAM
 #pragma surface surf Lambert noforwardadd
finalcolor:lightEstimation

Light Estimation Chapter 7

[105]

 sampler2D _MainTex;
 fixed _GlobalLightEstimation;

 struct Input
 {
 float2 uv_MainTex;
 };

 void lightEstimation(Input IN, SurfaceOutput o, inout fixed4
 color)
 {
 color *= _GlobalLightEstimation;
 }

 void surf (Input IN, inout SurfaceOutput o)
 {
 fixed4 c = tex2D(_MainTex, IN.uv_MainTex);
 o.Albedo = c.rgb;
 o.Alpha = c.a;
 }
 ENDCG
 }

 Fallback "Mobile/VertexLit"
}

This is a fairly simple diffuse lighting shader that uses the global light estimate4.
we calculated earlier. It starts by defining itself with this line:

Shader "ARCore/DiffuseWithLightEstimation"

Next, it defines Properties in the next code block, where _MainTex represents5.
the base texture, is called "Base (RGB)", and is set to 2D. If you quickly look
back at Unity, you can see this property in the Inspector window.
The block of code that starts with SubShader is where the action happens. We6.
first define Tags, which are sets of key/value pairs that set the rendering order
and type parameters. In our example, we set this to Opaque. Then, we have the
following line:

LOD 150

Light Estimation Chapter 7

[106]

This determines the level of detail of the shader. The LOD directive is used to7.
determine the complexity or performance requirements of the shader. You can set
the value to anything, but typical values are shown in the following list:

VertexLit kind of shaders = 100
Decal, Reflective VertexLit = 150
Diffuse = 200
Diffuse Detail, Reflective Bumped Unlit, Reflective Bumped
VertexLit = 250
Bumped, Specular = 300
Bumped Specular = 400
Parallax = 500
Parallax Specular = 600

As you can see from the list, the simple shader represents a low level of detail.8.
This means that lower-level hardware should be able to run this shader without
any issue. You can set the maximum shader LOD per shader or globally; check
the Unity documentation for further details.
We start our actual shader code with CGPROGRAM and then define the form of9.
surface shader with the #pragma directive, as shown in the following code:

#pragma surface surf Lambert noforwardadd
finalcolor:lightEstimation

#pragma surface surfaceFunction lightModel [optionalparams]

The first part of the directive, surface, defines this as a surface shader. Then, we10.
see that the surf function name refers to the main surface function. Then comes
the lighting model, Lambert in this case. After that, the options are set to
noforwardadd, which is just a simple way to limit the number of lights to one.
Finally, we use a custom modification function called lightEstimation that is
set with finalcolor:lightEstimation.

This shader uses the Lambert lighting model. You can find plenty of
examples of what lighting models Unity supports or how to write your
own model at https:/ / docs.unity3d. com/ Manual/ SL-
SurfaceShaderLightingExamples. html.

https://docs.unity3d.com/Manual/SL-SurfaceShaderLightingExamples.html
https://docs.unity3d.com/Manual/SL-SurfaceShaderLightingExamples.html
https://docs.unity3d.com/Manual/SL-SurfaceShaderLightingExamples.html
https://docs.unity3d.com/Manual/SL-SurfaceShaderLightingExamples.html
https://docs.unity3d.com/Manual/SL-SurfaceShaderLightingExamples.html
https://docs.unity3d.com/Manual/SL-SurfaceShaderLightingExamples.html
https://docs.unity3d.com/Manual/SL-SurfaceShaderLightingExamples.html
https://docs.unity3d.com/Manual/SL-SurfaceShaderLightingExamples.html
https://docs.unity3d.com/Manual/SL-SurfaceShaderLightingExamples.html
https://docs.unity3d.com/Manual/SL-SurfaceShaderLightingExamples.html
https://docs.unity3d.com/Manual/SL-SurfaceShaderLightingExamples.html
https://docs.unity3d.com/Manual/SL-SurfaceShaderLightingExamples.html
https://docs.unity3d.com/Manual/SL-SurfaceShaderLightingExamples.html
https://docs.unity3d.com/Manual/SL-SurfaceShaderLightingExamples.html
https://docs.unity3d.com/Manual/SL-SurfaceShaderLightingExamples.html
https://docs.unity3d.com/Manual/SL-SurfaceShaderLightingExamples.html

Light Estimation Chapter 7

[107]

Just inside the #pragma directive, we see the definition of the shader inputs:11.
_MainTex, _GlobalLightEstimation, and struct Input. If you recall,
_GlobalLightEstimation is the variable we set inside the
EnvironmentalLight script to represent our global light.
Next, we will jump down a few lines to the surf function, as follows:12.

void surf (Input IN, inout SurfaceOutput o)
{
 fixed4 c = tex2D(_MainTex, IN.uv_MainTex);
 o.Albedo = c.rgb;
 o.Alpha = c.a;
 }

This function simply samples the color from our _MainTex using tex2D and the13.
input uv coordinates. Then, it sets the color (Albedo) and Alpha from the lookup.
This function is called first to determine the color of the surface, and then, its
output is passed to the Lambert lighting model, after which the final color is set
by the lightEstimation function.
An input marked as inout represents a value that can be modified and will
automatically be returned.
Scroll up a bit to the lightEstimation function. Inside this function, the code,14.
shown as follows, modifies the color based on the value that was set for
_GlobalLightEstimation:

color *= _GlobalLightEstimation;

Multiplying the color by the global light estimation is the same as adjusting the15.
brightness with a dimmer switch.
Finally, we complete the shader with Fallback and the name of another shader.16.
This sets the fall back or backup shader if the current shader is unable to run. A
shader can fail due to compilation errors or hardware limitations.

Now that we have a clear understanding of how the light estimation value we saw
generated earlier is used in the shader, we can move to perhaps enhancing our lighting. If
you recall, our current light just points straight down, but ideally, we would like to position
the light to match the strongest light source. We will look at a simple but effective technique
to track and position a light in AR in the next section.

Light Estimation Chapter 7

[108]

Estimating light direction
Google provides us with a robust solution for estimating the amount of light in an AR scene
with ARCore. As we learned, light direction is an equally important part of scene lighting.
Google didn't intentionally ignore estimating light direction with ARCore; it's just that that
problem is really difficult to do right. However, Google did provide us with just enough
tools in ARCore to be able to estimate light direction, providing some simple assumptions.
First, we need to assume that our user, for now anyway, will remain in the same room or
area. Second, our user will need to look in at least an 180 degree arc across their vision, or
more simply put, the user just needs to look around. Third, it works best if the real-world
environment is lit from a distant single bright source, such as the sun. Based on those
assumptions, we can simply store the direction the user saw the brightest image in and use
that to reverse calculate our light direction. This may sound more complex than it is, so
hopefully, the following diagram can explain this further:

Calculating light direction from camera pixel intensity

Now, this technique may sound quite complicated, but it isn't. We can actually accomplish
this with just a few lines of code. Open up Unity and follow along to write our directional
light detector:

Ensure that the HelloAR scene of the sample app is loaded.1.
Select the Environmental Light object in the Hierarchy window.2.

Light Estimation Chapter 7

[109]

Click on the Gear icon beside the Environmental Light (Script) component in the3.
Inspector window and select Edit Script from the context menu.
Just beneath the class declaration, add the following lines to declare new4.
variables:

public class EnvironmentalLight : MonoBehaviour
{ //after me
 public GameObject SceneCamera;
 public GameObject SceneLight;
 private float maxGlobal = float.MinValue;
 private Vector3 maxLightDirection;

These variables will hold a reference to the scene camera, light, the max global5.
intensity we find, and the direction we find it.
Scroll down in the code until you see the identified line in the Update method,6.
and add the following lines:

const float Inclination = 0.4f; //after me

var pi = Frame.LightEstimate.PixelIntensity;
if(pi > maxGlobal)
{
 maxGlobal = pi;
 SceneLight.transform.rotation = Quaternion.LookRotation(-
SceneCamera.transform.forward);
}

All this code does is use Frame.LightEstimate.PixelIntensity to read the7.
light intensity for the current camera direction. Then, we check whether this
value is higher than any previous seen value (maxGlobal). If it is, we set a new
maximum value and rotate the light (SceneLight) in the opposite direction of
the camera, which means that the light will face toward the camera.

Be careful when you edit code outside of the #if UNITY_EDITOR
directive. This code won't be compiled until a build is run for the platform,
which means that any errors in the code will be identified as build errors.
This can be confusing, so be careful to avoid syntax errors when coding
these sections.

Save the file; that's all the code we need to write in order to adjust the light8.
direction. If you recall from the last section, the diffuse shader we are using
doesn't account for light direction. However, ARCore has provided us with
another shader that does.

Light Estimation Chapter 7

[110]

Return to the editor to find and select the AndyMaterial in9.
the Assets/GoogleARCore/HelloARExample/Materials/Andy folder.
Change the material to use the ARCore/SpecularWithLightEstimation10.
shader. This material shows the direction of light better.
Select the Environmental Light object in the Hierarchy window. Note how we11.
have two new properties added to the Environmental Light (Script) component.
These new properties (Scene Camera and Scene Light) were added because we
declared them as public fields in the class.
Click on the icon that resembles a bullseye next to the Scene Camera property.12.
Then, as shown in the following excerpt, select the First Person Camera object
from the Select GameObject dialog:

 Setting the Scene Camera and Scene Light properties of the component

Light Estimation Chapter 7

[111]

Close the Select GameObject dialog.13.
Repeat the same process for setting the Directional Light as the Scene Light.14.
Connect your device and build and run. Run the app in an area with a single15.
bright light source and see how Andy looks after you place it.

Updating the environmental lighting
Now Andy should be lit from what looks like the brightest light source in the area.
However, because we don't currently track changes in light direction, if you change rooms
or the lighting changes, then the illusion is broken. Light tracking is difficult, and it's more
difficult than tracking a user, except that we can put a simple hack in place to not track the
lighting for as long as we do, which is currently forever, if you weren't paying attention.
Follow along to put this simple hack in the code we just wrote:

Open up the EnvrionmentalLight.cs script in your text editor of choice. If you1.
forgot how to do this, just look back a few pages.
Add the following line right after and before the lines identified:2.

var pi = Frame.LightEstimate.PixelIntensity; //after me
maxGlobal *= .98f;
if(pi > maxGlobal){ //before me

That single line is a degrade function on the maxGlobal variable. Remember3.
that maxGlobal is the value we identify as the strongest light source. This simple
function, yep function, degrades this value over time. The value of .98f sets the
speed of decay. A value of .98f represents a fairly quick decay rate, whereas a
value of .9999f would represent a slow decay.
Save the file, and yep, that's it.4.
Go back to Unity. Connect and build and run the app. Now when you place an5.
Andy, you should quickly see changes in what the app identifies as the strongest
light source. Feel free to go back and change the decay rate or alter the function
and use your own method; experiment.

Light Estimation Chapter 7

[112]

What we put together is a simple way to track and estimate light direction. As we
mentioned, this method works, but it's certainly not without its limitations. In any case, this
should give the curious reader enough to continue and extend this further. We also
completely avoided a proper discussion of shadows. Fortunately, we will have plenty of
time to do that in Chapter 9, Blending Light for Architectural Design, where we will allow the
user to transform their own living space.

Exercises
Complete the following exercises on your own:

Change the maxGlobal rate of decay. You decide whether to make it faster or1.
slower.
 Increase or decrease the maxGlobal rate of decay based on the user's amount of2.
movement. Hint—recall how we tracked the user, and use that to determine how
far they have gone or how fast. Use that information to set the rate of decay.
 Write your own custom lighting surface shader. This one's difficult, but it's3.
worth the effort.

Summary
Certainly, as you become more of an expert in AR, you realize how important lighting is to
augmented reality. It's so important that Google developed ARCore with light estimation
built in, which is why we spent this entire chapter on the subject. First, we learned about the
rendering process in a bit more depth; then, we covered 3D lighting, an essential bit of
knowledge that we will need in order to understand the added complexity of lighting in
AR. This led us to look at the way ARCore estimates the light levels or global light in an
area by taking a closer look at Unity Cg/HLSL shaders and, more specifically, surface
shaders. Finally, we implemented a simple but effective hack to track and estimate light
direct in a scene, which we left the reader with to improve on in their own time.

Estimating the actual lighting conditions of the environment will be a major hurdle for AR
to overcome. However, with the incredible advances in AI and Machine Learning, we will
likely see some better solutions come out soon. We will take a closer look at how Machine
Learning can assist AR in the next chapter.

8
Recognizing the Environment

Throughout this book, we have looked at the numerous ways of how our device, with the
help of ARCore, can track the user, understand the user's world, and render an alternate
reality. ARCore uses the device's sensors and camera as inputs to constantly update what it
perceives as the user's real world. However, what if we wanted to do more for the user;
perhaps identify a certain object, sign, or landmark? That would require a much more
advanced set of tools. Even just 5 years ago, this would seem like an incredibly daunting
task. With the advent of OpenAI, thanks to Mr. Musk, many other companies have started
to open source and make their tools available. This has led to phenomenal explosive growth
in these technologies, colloquially referred to as Machine Learning (ML), and broadened
their accessibility to everyone. Fortunately, for those interested in developing AR apps, this
is a good thing. We want all the help we can get when it comes to recognizing and
understanding the user's environment.

For this chapter, we will introduce ML and explore how we can use it to create better AR
apps for our users. In this chapter, we will cover the following topics:

Introduction to ML
Deep reinforcement learning
Programming a neural network
Training a neural network
TensorFlow

Machine Learning is a very advanced subject that can take years of study in order to master.
However, for our purposes, we will learn some basic techniques, which the reader can
extend on later, either through more learning or implementing their own solution.

If you already have an in-depth understanding of neural networks,
convolutional neural networks, and TensorFlow, feel free to breeze over
this chapter.

Recognizing the Environment Chapter 8

[114]

Introduction to ML
Machine Learning is a term widely used to refer to artificial intelligence and related
computer predictive analytical models. The name Machine Learning, while perhaps overly
generalized, fits better than the term AI. However, Machine Learning is itself such a broad
term that it perhaps needs some further explanation and clarification. A machine obviously
refers to a computer, or other device and learning tends to denote an algorithm or model
that will evolve or learn over time. However, this is often not the case in many Machine
Learning models. Therefore, for our purposes, we will use the broader term of Machine
Learning to refer to any tool or algorithm that can be trained to recognize the environment
or parts of the environment in AR, thus allowing us, the developers, to better augment our
user's world.

Data science and Machine Learning go hand in hand. Data science is all
about making sense of data, extracting patterns, and making predictions.
In essence, when you start writing Machine Learning models in order to
recognize objects or the environment, you are really just analyzing data,
which means you can also, very loosely, call yourself a data scientist.

Machine Learning is a big area and is only getting bigger every day, so let's break down the
specific problems we would like ML to help us with:

Target detection: Targets have been used in AR for some time. It has been the
primary tracking and reference point for many AR apps previous to ARCore.
Image recognition: This spawns into a whole set of sub-applications, all of which
we will deal with in detail later.
Object detection: Being able to detect an object in 3D from point cloud data is no
easy feat, but it has been done and is getting better.
Face detection: Detecting a person's face in an image has been around for years
and has been used to great effect in many apps.
Person detection: Detecting people or motion has great possibilities. Think Kinect
comes to AR.
Hand/Gesture detection: Not to be confused with touch gestures. This is where
we detect a user's hand motions or gestures in front of a device's camera.
Pose detection on object: Related to object detection, but now we also detect the
position and orientation of the object.
Light source detection: Being able to place realistic lights in a scene to make
virtual object rendering more realistic. We already looked at the importance of
lighting in Chapter 7, Light Estimation.

Recognizing the Environment Chapter 8

[115]

Environment detection: Recognizing the environment a user has moved into has
great application in mapping buildings or other locations where GPS is
unavailable, which applies to most internal spaces.

Each of those problems may require different tools and techniques to solve those issues. In
ML, it's not always about using the tool but the final answer and what works. Think about
this as you build any ML you need for your app. Try a variety of ML tools and techniques;
differences in size and performance of ML models can be critical, and it's something you
need to consider.

A Machine Learning algorithm walks into a restaurant.
The waiter asks, "What will you have?
The algorithm says, "What's everyone else having?"
 - Unknown

In the following table is a summary of the current major ML providers and the types of AR
problems they can be used to solve:

Toolset Pros/Cons
Machine Learning task

Targets/Image Object/Pose Face Person Hand Light Environment

Vuforia

Mature and
easy to use.
Requires
internet
connectivity.

Yes Yes/Paid

XZIMG

Face and
image/target
tracking
supported
for Unity
and other
platforms.

Yes Yes

ARToolkit

Mature
OpenSource
platform for
image
tacking and
feature
detection.

Yes

Recognizing the Environment Chapter 8

[116]

EasyAR

Pro license
gets object
and feature
tracking.

Yes Yes/Paid

Google
Face
Detection
API

Low level
Android
API.

Yes

OpenCV

A mature
low-level
API for
Android,
commercial
version
ported to
Unity. Still
requires low
level
knowledge.

Yes Yes Yes Yes Yes Coming Coming

Google
TensorFlow

Still in its
infancy but
quickly
becoming
the platform
standard for
CNN. Low
level and
advanced
ML
knowledge
required.

Yes Yes Yes Yes Yes coming coming

Google
ARCore

Currently,
identifies
planes,
feature
points, and
light.

Yes Yes

Recognizing the Environment Chapter 8

[117]

We only included the main players who have built an AR platform for a mobile ARCore-
supported device. Web technologies were omitted from this due to their limitations,
although many of the mentioned technologies require internet connectivity and support
web platforms as well. If you quickly review the table, you can also clearly see two main
contenders that have the potential to dominate the entire space; that's because these are
both low-level technologies that often back larger platforms such as Vuforia. Both of these
platforms now support mobile pretrained networks for fast recognition on mobile devices.
This may not seem like a big deal yet, but after we get into training our own models, you
will see why.

Linear regression explained
Let's discuss the basic premise behind what Machine Learning is and what it attempts to
accomplish. Take a look at the following chart that shows some fictional sales data for your
next app:

Chart of fictional sales data

Recognizing the Environment Chapter 8

[118]

Now, just looking at the chart, you can see that as the x values increase (perhaps days on
sale), it appears that our sales also increase: y value (sales). By just eyeing the chart, we
ourselves can make predictions by following the trend of the points. Try it; how many sales
are for an x value (bottom axis) of 25? Give it a guess, and write it down. With your guess
secured, we will use a technique called linear regression to find a good answer.

Linear regression has been around for years and is considered as the base for many
statistical data analysis methods. It is the basis for many other Machine Learning algorithms
used in data science and predictive analysis today. This technique works by finding a
solution (a line, curve, or whatever) that best fits the points. From that solution, we can
determine the future or previous events or occurrences. Since this method is so well
established, you can just open up Excel and let it draw the linear regression solution right
on the graph. The following is an example of the linear regression with a trend line and
equation added to the chart:

Chart with linear regression trend line

Keep in mind that this example uses 2D points, but the same concepts
equally apply to 3D as well. You just need to account for the extra
dimension, which is not always a trivial thing but doable nonetheless.

Recognizing the Environment Chapter 8

[119]

Without getting into the nitty-gritty details of the math, just understand that the line is
drawn in order to minimize the error between the line and the points, which is often
referred to as the line of best fit or one that minimizes the error, which in this case, is
expressed as an R squared value (R²). R² ranges in value from 1.0, a best possible fit, to 0.0,
or shooting blanks in the dark. You can see that our R² is not perfect, but it is 0.9125 out of 1
or 91.25% correct; it's not perfect but perhaps good enough.

Probability and statistics play heavily into Machine Learning of all forms.
If you don't have a good statistics background, you can still get the
statistics by choosing a third-party provider. The only exception is if you
have issues with that technology; then, it helps to have some background
on your side, which is probably not something you wanted to hear if
you're already trying to catch up on your 3D math skills.

Take the example we just looked at and now think about the problem in 3D, and it's not a
line but a 3D object we want to recognize or predict. Obviously, things can get complicated
quite fast and computationally expensive using statistical models. Fortunately, there is a
better way to do this using a technique that uses supervised learning that models the
human brain, called neural networks (NN).

In the next section, we will go under the covers into supervised learning and explore some
techniques that we can use to analyze data using deep learning (DL) with neural networks.

Deep learning
As we discussed, the more traditional predictive models such as linear regression don't
scale well, because they always need to calculate the whole solution using all the available
points or data. These types of techniques or models have no ability to remember, learn, and
improve, and they are generally classified as supervised models. This has led to the
evolution of more advanced learning models known as reinforcement learning
(RL) techniques for solving ML problems. In fact, deep learning and deep reinforcement
learning techniques now outclass statistical methods in performance and accuracy by
several orders of magnitude. However, that wasn't always the case, and statistical methods
are also improving just as dramatically everyday. It really is an exciting time to be getting
into Machine Learning.

Recognizing the Environment Chapter 8

[120]

The following diagram demonstrates the reinforcement learning process:

Reinforcement learning process

In the diagram, you can see that there is an Agent (assume computer) and the Environment
(game or real world). The Agent acts on Observations from the Environment, and those
actions may or may not be based on Rewards. An RL system using rewards is known as
reinforcement learning. The learning method we will use in this chapter is called supervised
learning since we are labeling or training to a specific output class. Unsupervised learning is
a class of training that doesn't label data but just uses techniques to classify or group data.

There are three classes of training we typically identify: unsupervised
learning, supervised learning, and reinforcement learning. Reinforcement
learning uses a rewards-based system on top of supervised or
unsupervised systems as an enhancement to learning. RL systems can
learn this way with essentially no initial training. AlphaGo Zero, which
uses a deep RL model, is currently making the news after being able to
beat a trained version of itself from scratch, with no human intervention.

Part of the problem in defining all these ML concepts is that they often get woven together,
where one learning algorithm or technique is layered on top of another, perhaps using RL
with or without supervision. It is quite common, as we will see, to use multiple different
layers of techniques to produce an accurate answer. This layering also has the benefit of
being able to try multiple different approaches quickly or swap a technique out for
something better later.

Recognizing the Environment Chapter 8

[121]

Deep learning is the term we use to describe this layering process. DL can be trained using
any of the training methods we talked about. In any case, we need to stop talking in
generalities and actually look at the DL process.

Deep reinforcement learning has become quite popular as of late with
plenty of success from playing Atari games to beating earlier supervised
trained versions of itself quickly. If this area of training interests you,
ensure that you search for AlphaGo Zero.

Neural networks – the foundation of deep
learning
When we speak of DL, we generally think of one ML technique called neural networks.
Neural networks were conceptualized by trying to model the human brain. At the core of a
neural network is the neuron, called so because it represents a single human brain cell. The
following is an image of a human and computer neuron:

Human and computer neuron

Recognizing the Environment Chapter 8

[122]

Just like the brain, where billions of neurons are connected in layers, we connect neurons in
layers in a similar way. Each neuron is connected to all the other neurons' inputs and
outputs in layers, where the first layer takes our input and the last layer or perhaps single
neuron spits out our answer. The following is an example of what this typically looks like:

Neural network with layers

One thing we should clarify before going any further is that the layers we
talk about in deep learning don't correspond to the layers in a neural
network. Think of a neural network as being in one layer of the DL
system.

Here, each circle in the diagram represents a single neuron. Each neuron fires when the sum
of all its inputs passes some threshold or activation function. This process continues for all
the neurons, and the final layer outputs the answer. Of course, this is a very simple
example, but it is difficult to see the power of neural networks until you start programming
with them. Therefore, in the next section, we will write a neural network, which we plan to
use to recognize objects in the environment.

Recognizing the Environment Chapter 8

[123]

When you encounter neural networks for the first time, the assumption is
that this can't possibly work. After all, how could a self-driving car
recognize a person using just a bunch of interconnected neurons? The
answer to that is how indeed. We are really only starting to understand
how the neural networks do what they do and, often, what we find is that
we need to go back to the drawing board. In this case, the drawing board
is the human brain and some of the more recent advances in neural
networks were results of further brain research.

Programming a neural network
The best way to learn something is to do it, so in this section, we will write a simple neural
network that we'll then train to perform various tasks. This network will have a set number
of layers—input, hidden, and output—but we will allow for a number of neurons to be set
in each layer. We will write this code in Unity so that we can use it in Chapter 10, Mixing in
Mixed Reality.

Writing a neural network is an advanced example, which will require a
discussion with math to properly explain. If you feel overwhelmed at any
time, you can always open up the finished project and check the final
results. Of course, if you have written a neural network earlier, then you
may also want to skip this section.

For this example, we will create a new project from the source Unity template, so let's get
started by opening Command Prompt:

Create a new folder called ARCore off the root (C:\ on Windows) folder using the1.
following commands:

mkdir ARCore
cd ARCore

This set of commands creates a new folder and then navigates to it.2.
Execute the following command:3.

git clone https://github.com/google-ar/arcore-unity-sdk.git
ARCoreML

This pulls the Unity ARCore template from GitHub into a new folder called4.
ARCoreML.

Recognizing the Environment Chapter 8

[124]

Open a new instance of Unity and click on Open on the Project page. This will5.
open the select project folder dialog. Select the new folder you just pulled the
template into, ARCoreML, to open the project. Wait as the project opens in the
Unity editor.
Right-click on (Ctrl + Click on Mac) the Assets folder in the Project window.6.
Select Create | Folder from the context menu. Name the new folder Scripts.
Open the HelloAR scene from the Assets/GoogleARCore/Examples/HelloAR7.
folder by double-clicking on it in the Project window.
From the menu, select File | Build Settings. Ensure that Android is set for the8.
target platform and the HelloAR scene is set as scene 0 in the build.
Connect your device and build and run. Just ensure that the example runs as you9.
expected on your device.

Scripting the neural network
With the new project set up, we can now start writing our scripts to build a neural network.
Go back to Unity and perform the following steps:

Open the ARCoreML/Scripts folder and then from the menu, select Assets |1.
Create | C# Script. Name the script as Neuron and double-click to open it in your
editor of choice.

The code for this example was originally sourced from https:/ /github.
com/Blueteak/ Unity- Neural- Network. git, which shows an excellent
example of a simple and concise neural network with training explicitly
developed for Unity. We will modify the original code for our needs, but
feel free to check out and contribute to the original source if you are
interested. This code is great for learning, but certainly, it's not something
you may want to use in production. We will look at options for
production-ready neural networks in the section on TensorFlow.

Delete all the code, leave the using statements, and then add the following:2.

using System.Linq; //add after other using's

public class Neuron
{
 private static readonly System.Random Random = new
System.Random();
 public List<Synapse> InputSynapses;
 public List<Synapse> OutputSynapses;

https://github.com/Blueteak/Unity-Neural-Network.git
https://github.com/Blueteak/Unity-Neural-Network.git
https://github.com/Blueteak/Unity-Neural-Network.git
https://github.com/Blueteak/Unity-Neural-Network.git
https://github.com/Blueteak/Unity-Neural-Network.git
https://github.com/Blueteak/Unity-Neural-Network.git
https://github.com/Blueteak/Unity-Neural-Network.git
https://github.com/Blueteak/Unity-Neural-Network.git
https://github.com/Blueteak/Unity-Neural-Network.git
https://github.com/Blueteak/Unity-Neural-Network.git
https://github.com/Blueteak/Unity-Neural-Network.git
https://github.com/Blueteak/Unity-Neural-Network.git
https://github.com/Blueteak/Unity-Neural-Network.git
https://github.com/Blueteak/Unity-Neural-Network.git
https://github.com/Blueteak/Unity-Neural-Network.git
https://github.com/Blueteak/Unity-Neural-Network.git

Recognizing the Environment Chapter 8

[125]

 public double Bias;
 public double BiasDelta;
 public double Gradient;
 public double Value;
}

Note how this class does not inherit MonoBehaviour and thus will not be a game3.
object, which means we will load this class in another script. Then, we create a
placeholder for Random; we do this because we are using System.Random rather
than Unity.Random. Unity.Random only supports generating a random float,
but we need the precision of a double. The rest are just properties that we will
discuss as we get to the relevant code sections.
Enter the following after the last property declaration but before the class's4.
ending brace:

public static double GetRandom()
{
 return 2 * Random.NextDouble() - 1;
}

We create this static helper method in order to generate double random5.
numbers from -1.0 to 1.0. This allows for greater precision and assures that our
values are always getting generated around 0. Keeping values close to 0 avoids
rounding errors and just generally makes things easier to calculate.
Next, enter the following code after the static method:6.

public Neuron()
{
 InputSynapses = new List<Synapse>();
 OutputSynapses = new List<Synapse>();
 Bias = GetRandom();
}

public Neuron(IEnumerable<Neuron> inputNeurons) : this()
{
 foreach (var inputNeuron in inputNeurons)
 {
 var synapse = new Synapse(inputNeuron, this);
 inputNeuron.OutputSynapses.Add(synapse);
 InputSynapses.Add(synapse);
 }
}

Recognizing the Environment Chapter 8

[126]

Here, we set up a base and single parameter constructors. The base constructor7.
creates a List<Synapse> for the input and output connections to the neuron. A
Synapse represents a connection. The other constructor calls the base (this) and
takes an IEnumerable<Neuron> of neurons that it then connects back to. This
way, networks can be built bottom up; we will see how this works when we get
to the NeuralNet class.
Next, we will add the rest of the methods for the Neuron class:8.

public virtual double CalculateValue()
{
 return Value = Sigmoid.Output(InputSynapses.Sum(a => a.Weight *
 a.InputNeuron.Value) + Bias);
}

public double CalculateError(double target)
{
 return target - Value;
}

public double CalculateGradient(double? target = null)
{
 if (target == null)
 return Gradient = OutputSynapses.Sum(a =>
 a.OutputNeuron.Gradient * a.Weight) *
Sigmoid.Derivative(Value);
 return Gradient = CalculateError(target.Value) *
Sigmoid.Derivative(Value);
}

public void UpdateWeights(double learnRate, double momentum)
{
 var prevDelta = BiasDelta;
 BiasDelta = learnRate * Gradient;
 Bias += BiasDelta + momentum * prevDelta;
 foreach (var synapse in InputSynapses)
 {
 prevDelta = synapse.WeightDelta;
 synapse.WeightDelta = learnRate * Gradient *
synapse.InputNeuron.Value;
 synapse.Weight += synapse.WeightDelta + momentum * prevDelta;
 }
}

Recognizing the Environment Chapter 8

[127]

We added four methods here: CalculateValue, CalculateError,9.
CalculateGradient, and UpdateWeights. CalculateValue is used to
determine the neuron's output based on the activation function we defined in
Sigmoid. We will get to Sigmoid shortly. The other methods are used to train
the neuron. Training a neuron is something we will cover in the next section.
Stay in the same file, and add the following three new helper classes outside10.
the Neuron class:

} // end of Neuron class definition

public class Synapse
{
 public Neuron InputNeuron;
 public Neuron OutputNeuron;
 public double Weight;
 public double WeightDelta;
 public Synapse(Neuron inputNeuron, Neuron outputNeuron)
 {
 InputNeuron = inputNeuron;
 OutputNeuron = outputNeuron;
 Weight = Neuron.GetRandom();
 }
}

public static class Sigmoid
{
 public static double Output(double x)
 {
 return x < -45.0 ? 0.0 : x > 45.0 ? 1.0 : 1.0 / (1.0 +
 Mathf.Exp((float)-x));
 }
 public static double Derivative(double x)
 {
 return x * (1 - x);
 }
}
public class DataSet
{
 public double[] Values;
 public double[] Targets;
 public DataSet(double[] values, double[] targets)
 {
 Values = values;
 Targets = targets;
 }
}

Recognizing the Environment Chapter 8

[128]

The first class Synapse, as we already know, defines a connection between11.
neurons. Next comes Sigmoid, which, conveniently enough, is just a wrapper
class for the sigmoid activation function we use. Note that the values are getting
capped at -45.0 and +45.0. This limits the size of our network, but we can
manually change that later. Then comes DataSet, which is just a holder for our
training data.

That completes the Neuron class. Create another script in Unity, and this time, call it
NeuralNet; open it up in your editor of choice and perform the following steps:

Delete the starter code again, but leave the using's statements, and enter the1.
following:

public class NeuralNet
{
 public double LearnRate;
 public double Momentum;
 public List<Neuron> InputLayer;
 public List<Neuron> HiddenLayer;
 public List<Neuron> OutputLayer;

} //be sure to add ending brace

Again, this is another set of public properties that define the LearnRate2.
network and Momentum. Then, three List<Neuron> to hold the collection of
neurons in the input, hidden (middle), and output layers. In this example, we use
a single hidden layer, but more sophisticated networks often support several
more layers. You guessed it, LearnRate and Momentum will be covered in the
section on training.

We generally prefer not to use properties with getters and setters in Unity.
Why? Primarily because the Unity editor just plays better with public
fields. Secondarily, game programming is all about performance, and it
only makes sense to avoid the overhead of getters and setters where
possible. Using a list is also a no-no, but it makes the code easier to
understand in this case.

Next, let's add a constructor for our NeuralNet:3.

public NeuralNet(int inputSize, int hiddenSize, int outputSize,
 double? learnRate = null, double? momentum = null)
{
 LearnRate = learnRate ?? .4;
 Momentum = momentum ?? .9;

Recognizing the Environment Chapter 8

[129]

 InputLayer = new List<Neuron>();
 HiddenLayer = new List<Neuron>();
 OutputLayer = new List<Neuron>();
 for (var i = 0; i < inputSize; i++){
 InputLayer.Add(new Neuron());
 }
 for (var i = 0; i < hiddenSize; i++){
 HiddenLayer.Add(new Neuron(InputLayer));
 }

 for (var i = 0; i < outputSize; i++){
 OutputLayer.Add(new Neuron(HiddenLayer));
 }
}

This constructor expects several inputs, including the number of neurons in the4.
input, hidden, and output layers, in addition to a value for the learnRate and
momentum. Inside the constructor, the properties are initialized based on the
input values. Note how the first layer uses the default Neuron constructor, and
the successive layers use the single parameter constructor with the previous layer
as input. Remember from building the Neuron class that this is where all the
synapse connections between the neuron layers are added.
Next, we will add a couple of methods for training:5.

public void Train(List<DataSet> dataSets, int numEpochs)
{
 for (var i = 0; i < numEpochs; i++)
 {
 foreach (var dataSet in dataSets)
 {
 ForwardPropagate(dataSet.Values);
 BackPropagate(dataSet.Targets);
 }
 }
}

public void Train(List<DataSet> dataSets, double minimumError)
{
 var error = 1.0;
 var numEpochs = 0;
 while (error > minimumError && numEpochs < int.MaxValue)
 {
 var errors = new List<double>();
 foreach (var dataSet in dataSets)
 {
 ForwardPropagate(dataSet.Values);

Recognizing the Environment Chapter 8

[130]

 BackPropagate(dataSet.Targets);
 errors.Add(CalculateError(dataSet.Targets));
 }
 error = errors.Average();
 numEpochs++;
 }
}

Then, we will add methods to propagate the network forward and backward:6.

private void ForwardPropagate(params double[] inputs)
{
 var i = 0;
 InputLayer.ForEach(a => a.Value = inputs[i++]);
 HiddenLayer.ForEach(a => a.CalculateValue());
 OutputLayer.ForEach(a => a.CalculateValue());
}

private void BackPropagate(params double[] targets)
{
 var i = 0;
 OutputLayer.ForEach(a => a.CalculateGradient(targets[i++]));
 HiddenLayer.ForEach(a => a.CalculateGradient());
 HiddenLayer.ForEach(a => a.UpdateWeights(LearnRate, Momentum));
 OutputLayer.ForEach(a => a.UpdateWeights(LearnRate, Momentum));
}

Finally, add the following methods to compute the whole network and to7.
calculate errors:

public double[] Compute(params double[] inputs)
{
 ForwardPropagate(inputs);
 return OutputLayer.Select(a => a.Value).ToArray();
}

private double CalculateError(params double[] targets)
{
 var i = 0;
 return OutputLayer.Sum(a =>
Mathf.Abs((float)a.CalculateError(targets[i++])));
}

Recognizing the Environment Chapter 8

[131]

That completes the neural network code. We left a number of areas for discussion in the
next section on training the neural network.

Training a neural network
As you may have already summarized, a neural network is essentially useless until it is
trained. Before we get into training, we should talk some more on how a neuron is
activated. Open up the Neuron class again and take a look at the CalculateValue
function. This method calculates the output based on its internal set of weights and is
described by the following:

Here:

Also, keep the following in mind:

n = total number of neurons connected as inputs
I = signaled input to the Neuron class

O = calculated output

Recognizing the Environment Chapter 8

[132]

S = the sigmoid function with a graph:

Sigmoid function

Sigmoid Function essentially distributes the weighted sum of values between 0 and 1 based
on a curve (function) similar to the one shown in the preceding graph. We do this in order
to evenly weigh the outputs of each of the neurons. Likewise, when we look to input data
into a network, we also like to normalize the values between 0 and 1. If we didn't do this,
one single neuron or input could bias our entire network. This is like hitting your thumb
with a hammer and only being able to feel pain in your thumb for the next several seconds,
Except that we don't want our network to respond to wild inputs like that. Instead, we want
to mellow our network out with the sigmoid function.

Recognizing the Environment Chapter 8

[133]

Activating the warning
Let's delay our discussion of training a bit further and put together a simple example to see
how this works. Open up Unity again and perform the following steps:

Create a new C# script called EnvironmentScanner in the1.
Assets/ARCoreML/Scripts folder. Then, open the script in your editor.
Add the code, as shown, to the class definition:2.

[RequireComponent(typeof(AudioSource))]
public class EnvironmentalScanner : MonoBehaviour //before me

RequireComponent is a custom Unity attribute that forces a GameObject to3.
require a specific class before this component can be added. In this example, we
require an AudioSource component.
Enter the following new properties/fields and method to the class; don't delete4.
anything:

public NeuralNet net;
public List<DataSet> dataSets;
private float min = float.MaxValue;
private float maxRange = float.MinValue;
private float[] inputs;
private double[] output;
private double temp;
private bool warning;
private AudioSource audioSource;
private double lastTimestamp;

public void Awake()
{
 int numInputs, numHiddenLayers, numOutputs;
 numInputs = 1; numHiddenLayers = 4; numOutputs = 1;
 net = new NeuralNet(numInputs, numHiddenLayers, numOutputs);
 dataSets = new List<DataSet>();
}

Recognizing the Environment Chapter 8

[134]

The Awake method is special in Unity in that it gets called when the object first5.
wakes up or becomes active. Awake varies from Start in that it is called upon
initialization of the object, whereas Start is called before the first frame an object
is rendered. The difference is subtle and is typically only relevant when you are
worried about object load time.
Next, we create a number of temporary input variables for setting the number of
input, hidden, and output neurons. For this example, we will use one input, four
hidden, and one output. These inputs are used to create NeuralNet in the next
line, which is followed by the initialization of the dataSets list.
Next, let's modify the Start method to resemble the following:6.

void Start()
{
 dataSets.Add(new DataSet(new double[]{ 1,.1,0.0}, new double[] {
0.0,1.0,1.0 }));
 net.Train(dataSets, .001);
 audioSource = GetComponent<AudioSource>();
}

The first line inside Start creates a very simple DataSet with inputs and7.
outputs. Since we are using a single input and output neuron, these inputs and
outputs map 1 to 1 and thus produce the following chart:

Chart of training inputs

Recognizing the Environment Chapter 8

[135]

Then, net.Train trains the neural network with a minimum error of .001. After8.
that, it gets the required AudioSource, remembers the RequireComponent
attribute, and sets it to a private audioSource field. We will use sound in order
to warn the user when they get too close. Think about what it is that those points
are describing as a function.
Finally, modify the Update method to include the following:9.

void Update()
{
 if (warning)
 {
 audioSource.Play();
 }
 else
 {
 audioSource.Stop();
 }
 // Do not update if ARCore is not tracking.
 if (Frame.TrackingState != FrameTrackingState.Tracking)
 {
 return;
 }
 min = float.MaxValue;
 PointCloud pointCloud = Frame.PointCloud;
 if (pointCloud.PointCount > 0 && pointCloud.Timestamp >
lastTimestamp)
 {
 lastTimestamp = pointCloud.Timestamp;
 //find min
 for (int i = 0; i < pointCloud.PointCount; i++)
 {
 var rng = Mathf.Clamp01((pointCloud.GetPoint(i)-
transform.parent.parent.transform.position).magnitude);
 min = Mathf.Min(rng, min);
 }
 //compute output
 output = net.Compute(new double[] { (double)min });
 if(output.Length > 0)
 {
 warning = output[0] > .001;
 }
 else
 {
 warning = false;
 }
 }

Recognizing the Environment Chapter 8

[136]

}

There is a lot going on here, so let's break it down. We first check whether the10.
warning is true. If it is, we play a sound, otherwise we stop playing; warning
will be our flag to indicate when our NN is signalling. Next, we ensure that the
Frame is tracking, with the same code as we saw earlier. Then, we reset min and
get the current point cloud from the Frame.
After that, we ensure that pointCloud has points, and it is the most recent. This
is checked by testing the timestamp. Then, inside the if block, we calculate the
current min by looping through all points. We then push this through our NN
with net.Compute, the value of min (minimum point); this returns our signal or
neuron output. In this particular case, we are testing for .001 to determine
whether the neuron is signalling an activation. This sets the warning to true or
false.
Save the code and return to Unity; ensure that you see no compiler errors.11.

Adding the environmental scanner
Now that we have a script that uses the component, let's add it to our scene as a new object.
Return to the editor where we last left off and continue as follows:

Open the HelloAR scene. From the menu, select File | Save as and save the scene1.
as Main in the Assets/ARCoreML folder.
Find and select First Person Camera in the Hierarchy window. Remember that2.
you can use the search panel.
Right-click (Ctrl + Click on Mac) on the First Person Camera and from the context3.
menu, select Create Empty. Name the object as Environmental Scanner.
Select the new object and in the Inspector window, add a new AudioSource4.
component.
Create a new folder called Audio in the Assets/ARCoreML path in the Project5.
window.
Open the Resources folder from the downloaded code folder and copy the6.
tone-beep.wav file to the new Assets/ARCoreML/Audio folder you just
created.
Open up the Environmental Scanner object in the Inspector window and set7.
the AudioSource properties, as shown in the following screenshot:

Recognizing the Environment Chapter 8

[137]

Setting the AudioSource properties in the Inspector

With Environmental Scanner still selected, click on the Add Component8.
button in the Inspector window. Add the Environmental Scanner script we
wrote earlier.
Open the Build Settings dialog and ensure that you add the current scene (Main)9.
to the build. Ensure that you remove any other scenes from the build.
Connect, build, and run. Move around the room. Now what happens when you10.
get too close to objects? At what distance?

Great, so we have effectively made a backup or warning beeper to let you know when you
are getting too close to an object. Obviously, we could have just as easily written a simple
threshold test ourselves to test when min is getting too close. However, this simple example
gives us a good basis for understanding how training works.

Recognizing the Environment Chapter 8

[138]

Backward propagation explained
In this example, we are pretraining our model (supervised learning) to a simple function
described by a set of inputs (1.0, 0.1, 0) and expected outputs of (0, 1.0, 1.0), which is
represented by the graph/chart we saw earlier. In essence, we want our neural net to learn
the function defined by those points and be able to output those results. We do this by
calling net.Train, passing in datasets and the minimum expected error. This trains the
network by backward propagating the error through each neuron of the network until a
minimum error can be reached. Then, the training stops and the network declares itself
ready.

Backward propagation works using a simple iterative optimization algorithm called
gradient descent, which uses the minimum error to minimize each of the neuron input
weights so that the global minimum error can be reached. To fully understand this, we will
need to go into some differential calculus and derivatives. Instead, we will take a shortcut
and just look at what the code is doing in the Train method of the NeuralNet class:

public void Train(List<DataSet> dataSets, double minimumError)
{
 var error = 1.0;
 var numEpochs = 0;
 while (error > minimumError && numEpochs < int.MaxValue)
 {
 var errors = new List<double>();
 foreach (var dataSet in dataSets)
 {
 ForwardPropagate(dataSet.Values);
 BackPropagate(dataSet.Targets);
 errors.Add(CalculateError(dataSet.Targets));
 }
 error = errors.Average();
 numEpochs++;
 }
}

Recognizing the Environment Chapter 8

[139]

The code here is relatively straightforward. We set an error and numEpochs. Then, we
start a while loop that ends when the error is greater than the minimumError (global)
and the numEpochs is less than the maximum int value. Inside the loop, we then loop
through each dataSet in dataSets. First, ForwardPropagate is used on the inputs of the
dataset values to determine output. Then, BackPropagate is used on the dataset target
value to adjust the weights on each of the neurons using gradient descent. Let's take a look
inside the BackPropagate method:

private void BackPropagate(params double[] targets)
{
 var i = 0;
 OutputLayer.ForEach(a => a.CalculateGradient(targets[i++]));
 HiddenLayer.ForEach(a => a.CalculateGradient());
 HiddenLayer.ForEach(a => a.UpdateWeights(LearnRate, Momentum));
 OutputLayer.ForEach(a => a.UpdateWeights(LearnRate, Momentum));
}

This method just elegantly loops through each layer of neurons using ForEach from
System.Linq. First, it calculates the gradient in the output and hidden layers and then it
adjusts the weights in reverse order: first the hidden and then the output. Next, we will
dissect the CalculateGradient method:

public double CalculateGradient(double? target = null)
{
 if (target == null)
 return Gradient = OutputSynapses.Sum(a => a.OutputNeuron.Gradient *
a.Weight) * Sigmoid.Derivative(Value);

 return Gradient = CalculateError(target.Value) *
Sigmoid.Derivative(Value);
}

We can see that the CalculateGradient method takes a nullable double called target. If
target is null, the Gradient is calculated by summing the previous gradient multiplied
by the input weights. Otherwise, the Gradient is calculated by multiplying the error by the
derivative of the Sigmoid. Remember that, sigmoid was our activation function, which is
essentially what we are trying to minimize. If you recall from calculus, we can take the
derivative of a function in order to determine its minimum or maximum value. In fact, in
order to use the gradient descent method for backward propagation, your activation
function has to be differentiable.

Recognizing the Environment Chapter 8

[140]

Gradient descent explained
Gradient descent uses the partial derivative of the loss or error function in order to
propagate the updates back to the neuron weights. Our cost function in this example is the
sigmoid function, which relates back to our activation function. In order to find the gradient
for the output neuron, we need to derive the partial derivative of the sigmoid function. The
following graph shows how the gradient descent method walks down the derivative in
order to find the minimum:

Gradient descent algorithm visualized

If you plan to spend anymore time studying neural networks, deep
learning, or machine learning, you will certainly study the mathematics of
gradient descent and backward propagation in more depth. However, it is
unlikely that you will get further exposure to the basic concepts of
programming a neural network, so this chapter will be a good future
reference.

Let's take a look at the CalculateError function, which simply subtracts the neuron's
output value from what its value should have been:

public double CalculateError(double target)
{
 return target - Value;
}

Then, scroll to the UpdateWeights method, as shown in the following code:

public void UpdateWeights(double learnRate, double momentum)
{
 var prevDelta = BiasDelta;

Recognizing the Environment Chapter 8

[141]

 BiasDelta = learnRate * Gradient;
 Bias += BiasDelta + momentum * prevDelta;

 foreach (var synapse in InputSynapses)
 {
 prevDelta = synapse.WeightDelta;
 synapse.WeightDelta = learnRate * Gradient *
 synapse.InputNeuron.Value;
 synapse.Weight += synapse.WeightDelta + momentum * prevDelta;
 }
}

UpdateWeights then adjusts each of the neurons' weights based on learnRate and
momentum; learnRate and momentum set the speed at which the NN will learn. We often
want to control the learning rate of the algorithm to prevent overfitting and falling into a
local minimum or maximum. After that, the code is relatively straightforward, with it
looping through the synapse connections and updating the weights with a new value. The
Bias is used to control the intercept of the sigmoid activation function, thus allowing the
neuron to adjust its initial activation function. We can see how the Bias can alter the
activation function in the following graph:

Effect of Bias on the sigmoid activation function

Recognizing the Environment Chapter 8

[142]

Adjusting the Bias allows for the neuron to start firing or activating at a value other than 0,
as indicated in the preceding graph. Thus, if the value of Bias is 2, then the neuron will
start activating at -2, as shown in the graph.

Defining the network architecture
We just learned how to write and use a simple neural network to warn a user when they are
getting too close to an object. As you look through the code, appreciate that most of these
values are internally adjusted as part of training. When using a neural network, it is
important to understand these basic principals:

Activation function: If you are not using sigmoid, then you will also need to find
the partial derivative of your activation function in order to use gradient descent
with backward propagation.
Input neurons: This will not only set the complexity of the network, but it will
also determine the number of hidden or middle layer of neurons.
Output neurons: How many outputs or ways do you need your network to
classify?
Hidden layers/neurons: As a good rule of thumb, you want to use the average
of the input and output neurons, or just input+output/2. We will apply this rule in
our next example.
Training method: Our neural network supports two methods of training:
minimum error or by epoch or number of iterations. Our preference will be to use
minimum error, as this quantifies our model better.

Included in the source code download for this chapter is a working example in an asset
package of our simple neural network being used as an environment or object recognizer.
Jump back to Unity and perform the following steps to set up this example:

Ensure that you save your existing project or download a new ARCore
template before beginning. The asset import will overwrite your existing
files, so you should make a backup before continuing if you want to keep
any of your earlier work.

From the menu, select Assets | Import Package | Custom Package. Use the file1.
dialog to navigate to the Code/Chapter_8 folder of the book's downloaded
source code and import Chapter_8_Final.unitypackage.

Recognizing the Environment Chapter 8

[143]

Open the Main scene from the Assets/ARCoreML folder.2.
Open the Build Settings dialog and ensure that the Main scene is added to the3.
build and is active.
Connect, build, and run. Now when you run the app, you will see two buttons at4.
the top of the interface: one that says Train 0 and one that says Train 1.
Face your device on an area you want the NN to recognize. Ensure that ARCore5.
is identifying plenty of blue points on the screen, and then press the Train 1
button; this will signal to the network that you want it to identify this feature set.
Face the device on an area that you don't want the NN to recognize and press the6.
Train 0 button; this will reinforce to the network that you do not want it to
recognize this area.
While staying in place, continue this process. Point your device at the same area7.
you want recognized repeatedly and press Train 1. Likewise, do this for areas
you don't want recognized, but ensure that you press the Train 0 button. After
you train 10 or so times, you should start hearing the warning beep, identifying
when the NN has recognized your area.
If you start hearing the warning tones, that will be an indicator that your NN is8.
starting to learn. Continue to spin around in the place, training the network,
making sure to correct the network by pressing the appropriate button. You will
likely have to do this several times (perhaps 20 to 50 times or so) before you note
that the NN recognizes the area you want.

Ensure that when you are training the network, you can see plenty of blue
points. If you don't see any points, you will essentially be training with
null data.

Finally, when your network is fully trained, you should be able to spin slowly9.
around the room and hear when your device recognizes your region of choice.

Recognizing the Environment Chapter 8

[144]

Using our simple NN, we were able to build an object/feature recognizer that we could train
to recognize specific features, places, or objects. This example is quite simple and not very
robust or accurate. However, considering the limited training dataset, it does a good job of
being able to recognize features on the fly. Open up the Environmental Scanner script,
and we will take a look at how the network is configured:

Scroll down to the Awake method and take a look at how the network is created:1.

public void Awake()
{
 int numInputs, numHiddenLayers, numOutputs;
 numInputs = 25; numHiddenLayers = 13; numOutputs = 1;
 net = new NeuralNet(numInputs, numHiddenLayers, numOutputs);
 dataSets = new List<DataSet>();
 normInputs = new double[numInputs];
}

Note that this time we are creating an input layer of 25 neurons and output of 1.2.
If we stick to the general rule for our hidden layer being the average of the input
and output, that equates to 13 [(25+1)/2=13].
We removed the initial NN setup and training from Start and moved it to the3.
bottom in a new method called Train:

private void Train()
{
 net.Train(dataSets, 100);
 trained = dataSets.Count > 10;
}

This time, we are using a different form of training called epoch. We use this4.
form of training when we are not actually sure what the expected error is or it
needs to change, as in this case. Think about this—when we start training our
network with a very limited dataset, our error rates will be high due to our lack
of data. This will mean that we will never be able to train our network to a
minimum error. It, therefore, makes more sense to just run our training algorithm
for a set number of iterations or epochs for every training cycle.
Just preceding Train is TrainNetwork, and it's shown as follows:5.

public void TrainNetwork(float expected)
{
 this.expected = expected;
 training = true;
}

Recognizing the Environment Chapter 8

[145]

TrainNetwork is a public method that we use to signal to the Environmental6.
Scanner to initiate a training cycle with the expected outcome. This allows us to
wire up event handlers on the UI buttons to call this method with an expected
value. When you press Train 0, TrainNetwork is passed 0.0, and after the Train
1 button is pressed, 1.0 is passed.
Scroll up to the Update method and look at the following section of code:7.

if (training)
{
 dataSets.Add(new DataSet(normInputs, new double[] { expected }));
 training = false;
 Train();
}

This is the block of code that checks the training flag. If it is set, it collects the8.
normalized inputs and adds them to dataSets with the expected outcome. We
then turn the flag off and call Train.
Scroll up to the following block of code, and you can see how we are normalizing9.
the training inputs:

for (int i = 0; i < normInputs.Length; i++)
{
 if (i < pointCloud.PointCount)
 {
 //normalize the inputs
 normInputs[i] = inputs[i] / max;
 }
 else
 {
 normInputs[i] = 0;
 }
}

Here, we are normalizing the inputs. An input represents the distance or10.
magnitude between an identified point and the camera (user). Normalizing is
scaling or converting your data to values in the range 0 to 1. We do this, in this
case, by finding the maximum distance of each point and then using that to
divide into all the other inputs. The test in the loop to check whether i is less than
the PointCount is to ensure that we always set a value for each input neuron.

The rest of the code is similar to what we wrote earlier and not worth going over again.

Recognizing the Environment Chapter 8

[146]

The network view of the world
So what exactly is going on here, what is it that the network is identifying? Essentially, we
are flattening our 3D view of the world into a 2D line or curve. A typical example of how
this line may look normalized is as follows:

Normalized input points

Those inputs represent the normalized view the neural network is training for, or perhaps,
against. If you trained the network to recognize that line, then the warning sound should go
off when it detects the said line. Of course, the more points you add, the better your
recognizer may or may not work. We will leave it up to you to further test the network on
your own.

Neural networks were quite popular with game and graphic developers in
the late 1990s and early 2000s. NNs showed some success in various AI
scenarios, driving games especially, but at the end, other purpose-built
techniques won out, that is, until quite recently with the advent of new
techniques such as convolutional NNs. These new successes have led to
massive surges in deep learning techniques and platforms.

Recognizing the Environment Chapter 8

[147]

This simple NN can be extended to recognize other simple functions or patterns you
wanted. However, it will work poorly if we try to use it for any of the other recognition
tasks we identified earlier as critical for AR. Therefore, in the next section, we will look at
how ML solves our recognition problems with a new platform developed by Google, called
TensorFlow.

Exercises
Work through the following exercises on your own:

Explain the difference between unsupervised learning, supervised learning, and1.
reinforcement learning. This is more of a thought exercise, but it will be beneficial
to really understand the difference.
Modify the original NN example to warn you when objects are detected past a2.
certain distance.
What happens in the second example if you order the inputs by length? Does it3.
still work?
Add an additional output neuron to the network in the second example. You will4.
also need a new training button and will need to modify the TrainNetwork
function to take two inputs.

TensorFlow
There is a new kid on the block called TensorFlow, also developed by Google, that is
making impressive waves in ML. TensorFlow is a full ML platform that is actually more
than just an execution engine with a bunch of built-in tools. What is even more impressive
is that you can train advanced neural nets, convolutional neural networks, capsule
networks, or whatever else you need on massive datasets offline. Then, you take those
trained networks and put them on a mobile device in what is called a MobileNet to quickly
recognize and classify complex objects. We will take a break from ARCore in this section
and look at the upcoming power of TensorFlow.

TensorFlow is an advanced ML resource and toolkit that will be worth
your time, learning more about whether you need to do any advanced
recognition tasks. Keep in mind, though, that this tool requires advanced
knowledge in math and a working knowledge of Python.

Recognizing the Environment Chapter 8

[148]

We will run the TensorFlow example for Android, not just to get a grasp of the power of the
tool but also to understand what is possible. With Google building TensorFlow and ARCore
though, we can only assume that new integrated tools will be built in the future. For now,
though, let's open Command Prompt or shell and get started:

Run the following command from your user folder or root:1.

mkdir TensorFlow
cd TensorFlow

Create the TensorFlow directory and navigate to it. Then, type the following2.
command:

git clone https://github.com/tensorflow/tensorflow

Open Android Studio. From the Welcome screen, select Open an existing3.
Android Studio project.
Use the dialog and navigate to, select4.
the TensorFlow/tensorflow/examples/android folder, and click on OK.

If it asks you to do a Gradle Sync, click on OK.5.

Open the build.gradle file from the Project side panel under the Gradle6.
Scripts and set the nativeBuildSystem variable to none, as shown here:

def nativeBuildSystem = 'none'

Connect your device and click on the Run button, the green arrow icon on top.7.
Follow any necessary build steps and let the apps push to your device.
When the build is completed, Studio will have pushed four apps to your device:8.
TFClassify, TFDetect, TFSpeech, and TFStylize. Play around with each of these
examples and observe the power of some networks running on your device.

The following is an example of the TFDetect app running and correctly classifying a dog
and person with very high accuracy:

Recognizing the Environment Chapter 8

[149]

TFDetect correctly classifying a dog and person

Unfortunately, the components needed to run TensorFlow with ARCore are not quite ready
yet, so at the time of writing, we couldn't complete a full example. However, the future of
ML for AR apps will most certainly be with TensorFlow or some other third-party solution,
piggybacking on top of TensorFlow. Google has years of experience in AI/ML, from
developing self-driving cars to the Google Home. It has put those years of knowledge into
TensorFlow and made it accessible to the world. You would have to be a fool not to spend
any time learning TensorFlow if you plan to build your own ML for object/feature
recognition.

We had planned to build an example with a trained MobileNet running in
ARCore. Unfortunately, the pieces were not quite ready yet, and it made
for a far too complicated example. Right around the time that this book is
published, we will likely see more tools developed to make integrating
TensorFlow into ARCore easier.

Recognizing the Environment Chapter 8

[150]

Summary
In this chapter, we took a proverbial dive into the deep end—or the deep learning end—of
the pool. We started by talking about the importance of ML and what applications we can
use it for in AR. Then, we looked at how ML can use various methods of learning from
unsupervised, supervised, and reinforcement learning in order to teach an ML agent to
learn. We then looked at a specific example of learning ML algorithms, called neural
networks and often referred to as deep learning. This led us to build a simple neural
network that you can also use to learn the intricacies of neural networks on your own. NNs
are very complex and not very intuitive, and it is helpful to understand their basic structure
well. We then trained this network on a very simple dataset to notify the user if they get too
close to an object. This led to a further discussion of how NNs train with back propagation
using the gradient descent algorithm. After that, we looked at an enhanced example that
allows you to train the network to recognize an area or object. Finally, we looked at the
current king of ML, TensorFlow, and looked at a quick example of what is possible and
what is coming soon.

In the next chapter, we get back to building a practical example with ARCore. We will build
a simple design app that lets the user virtually decorate their living space.

9
Blending Light for Architectural

Design
This is the first of two chapters where we will build real-world AR apps that you can learn
from and show off to friends and family. Unlike in the previous chapters, this time we will
build our AR app from nothing. That way, we can learn the specific details needed for
incorporating ARCore into a Unity project. We have a lot to cover in this chapter, so let's get
started. Listed here is a quick summary of the main topics we will cover:

Setting up the project
Placing content
Building the UI
Interacting with the virtual
Lighting and shadows

The premise for our app will be an AR tool for architecture and design. The designing apps
are very popular in AR right now and fit very well with the toolkit ARCore provides.

Blending Light for Architectural Design Chapter 9

[152]

Being able to virtually place objects in or over a real-world object and
instantly see how it looks has a tremendous benefit to designers and
architects. Now a designer using an AR app can instantly transform a
space with their vision. Imagine never having to move a couch 15 times to
get it just right, ever again.

Setting up the project
We will use the sample project as a template for creating a new project. At the time of
writing, doing an ARCore asset import with the beta version still requires considerable
project setup. Ideally, we would like to create a project from scratch, but we will do the next
best thing. The next best thing will be to clone the project from GitHub into a new folder of
our choice. You can start by opening up Command Prompt and following these steps:

Create a new folder off your root or working folder and download the ARCore1.
template by executing the following commands:

mkdir ARCore
cd ARCore
git clone https://github.com/google-ar/arcore-unity-sdk.git
ARCoreDesign

This will create a new folder. Switch to it and download the project template2.
from GitHub.
Open up Unity to the project dialog and click on Open.3.
Use the folder dialog to find and select the ARCoreDesign folder we just4.
downloaded the code to, as shown in the following excerpt:

Blending Light for Architectural Design Chapter 9

[153]

Opening the ARCoreDesign project

Wait for Unity to load. Ensure that you watch for any compiler errors at the5.
bottom of the editor status bar. If you see them, it means you may have a version
conflict or that something's changed. Check your version and try to upgrade or
downgrade, as needed.
The first thing we will do is organize our folder structure. Create a new folder6.
called ARCore_Design in the Project window by right-clicking (Ctrl + Click on
Mac) on the Assets folder and selecting Create | Folder from the context menu.

Blending Light for Architectural Design Chapter 9

[154]

Directly underneath the new folder, add folders for Scripts, Prefabs, Scenes,7.
Materials, and Models, as illustrated:

Setting up the folder structure

The technique we just used for setting up the project is useful when you are dealing with
other sample projects you want to make your own. Unity manages a project by the folder
and the name corresponds to the folder name. We won't worry about setting up source
control as you can do this on your own, as you see fit.

If you are setting up this project for anything other than learning, you
should definitely consider a source code solution at this point. Dropbox or
other file sharing solutions will work in a pinch, but it's not something that
will work for more than one developer. There are plenty of free and fairly
simple solutions that work with Unity, so take some time and pick one
that works for you.

Building the scene
In order for us to save some time, we will load the HelloAR scene and modify it to meet our
needs. Follow along the given steps:

Open the HelloAR scene in the1.
Assets/GoogleARCore/HelloARExample/Scenes folder by double-clicking on
it.
From the menu, select File | Save Scene as, save the scene in the new2.
Assets/ARCore_Design/Scenes folder, and name it as Main.

Blending Light for Architectural Design Chapter 9

[155]

Apart from the samples we worked with earlier, from now on, if we need
to modify a file, we will copy it to a new appropriate folder, and rename it.
This is a good practice to follow when modifying external assets. That
way, when you update the asset with a new version, your changes will not
be overwritten.

From the menu, select Edit | Project Settings | Player. 3.
At the Inspector window, click on the Android tab and edit the Package Name to4.
com.Packt.ARCoreDesign, as shown in the following screen excerpt:

Editing the package name in the Player settings

Blending Light for Architectural Design Chapter 9

[156]

From the menu, select File | Build Settings.5.
Click on the checkbox on the HelloAR scene to turn it off. Then, click on Add6.
Open Scenes to add the new Main scene to the build. Ensure that the Android
option is selected for the Platform, and confirm that everything is set, as shown
in the following excerpt:

Setting the Build Settings

Blending Light for Architectural Design Chapter 9

[157]

Connect your device and then click on Build And Run. You will be prompted to7.
save the APK. Enter the same name you used for the package
(com.Packt.ARCoreDesign) and click on Save. This will kick off the build. A
first build can take a while, so grab a beverage or take a quick break.

Run the app on your device and confirm that everything runs as you expect it to.8.
If anything fails, refer to Chapter 11, Performance Tips and Troubleshooting, for
help.

As you work through the exercises in this chapter, try and build as often
as possible. A build can quickly tell you if you have any major issues.

Modifying the base scene
The next thing we will do is just modify the base scene for our needs. Open up Unity and
follow along:

Select and drag the PointCloud object in the Hierarchy window and drop it into1.
the Assets/ARCoreDesign/Prefabs folder in the Project window, as shown in
the following excerpt:

Blending Light for Architectural Design Chapter 9

[158]

Creating a prefab with the PointCloud object

Blending Light for Architectural Design Chapter 9

[159]

This will create a Prefab of the PointCloud object. Think of a Prefab as a template2.
or almost like a class. Anytime we want to reuse the PointCloud object, we can
drag it into a scene or instantiate it.
Select the PointCloud object in the Hierarchy window and type the Delete key.3.
Find it, and click on it. This will delete the object; we don't need it right now.
Rename the ExampleController object in the Hierarchy window to4.
SceneController.
Select the Assets/ARCoreDesign/Scripts folder and from the menu, select5.
Assets | Create | C# Script. Name the script SceneController. Then, double-
click on it to open the script in your favorite code editor.
Now, get back to Unity. Enter helloarcontroller in the Project search pane to6.
filter the window to the script. Double-click on the script to open it in your code
editor.
Copy the entire HelloARController.cs script and paste it over the contents of7.
the SceneController.cs file; yes, all of it. We are essentially making a copy.
Rename your class and change the namespace, like this:

namespace Packt.ARCoreDesign
{
... //code omitted
public class SceneController : MonoBehaviour //rename me
... //code omitted
} // don't forget the closing brace at the end

We wrap all our new code files with a namespace in order to avoid naming8.
conflicts. Naming conflicts happen more frequently in Unity if you use a lot of
assets. Generally, if you are new to Unity, you will use a lot of third-party assets.
Make sure that all the following new using statements are identified, as follows:9.

 using System.Collections.Generic;
 using GoogleARCore;
 using UnityEngine;
 using UnityEngine.Rendering;
 using GoogleARCore.HelloAR;

#if UNITY_EDITOR
 using Input = GoogleARCore.InstantPreviewInput;
#endif

Blending Light for Architectural Design Chapter 9

[160]

Save the file and return to Unity. Be sure to watch for any compiler errors.10.
Select the SceneController object in the Hierarchy window and click on the11.
Add Component button in the Inspector window.
Enter scene in the search pane and then select the Scene Controller script, as12.
shown in the following excerpt:

Adding the Scene Controller script as a component

Blending Light for Architectural Design Chapter 9

[161]

Click on the bullseye icon to set the properties for the Scene Controller. Ensure13.
that they match Hello AR Controller (Script). When all the properties match,
click on the Gear icon beside the Hello AR Controller (Script) and select Remove
Component from the context menu. You should now be left with just the Scene
Controller (Scene) component with the same properties set.
Connect, build, and run the app on your device. If you encounter any issues,14.
check for compiler errors and ensure that you set up the components correctly.

We can, of course, create duplicates for all the main scripts, but this will work for now.
Obviously, we have a lot more work to do, but this is a good place to start. Ensure that you
save the scene and your project. In the next section, we will look to change the content
which we allow our user to place and choose where to place.

The environment and placing content
We have already covered the basics of how to interact with the environment in order to
place content. What we want to do now is swap out and add new content (sorry Andy).
After all, the whole premise of our design app is visualizing in AR how new furniture or
other items look in a space. Let's get to it by opening up your favorite web browser and
follow along:

Browse to turbosquid.com. TurboSquid is an excellent resource for 3D models,1.
both free and paid.

For AR / VR and mixed apps, you will generally want your models to be
less detailed. Mobile devices such as Android don't render fine detailed
models well. Before you purchase any models, ensure that you understand
what your device's rendering limitations are.

Search for ligne roset on the site.2.

You can, of course, use any FBX model you like, but try using the one
suggested the first time. Working with 3D models can be frustrating if you
are unsure what you are doing.

https://www.turbosquid.com/

Blending Light for Architectural Design Chapter 9

[162]

Filter your search to free models and select Ligne Roset Citta sofa and armchair,3.
as shown:

Downloading models from TurboSquid

Click on the Download button. You may have to create an account and then sign4.
in first.
Click on the link marked Ligne_Roset_Citta_FBX.zip. This will download5.
the zip file.
Unzip the file into a new folder and then open the folder. Select and drag6.
the mpm_vol.07_p24.FBX file into Unity and drop it into the
Assets/ARCore/Models folder, as follows:

Blending Light for Architectural Design Chapter 9

[163]

Dragging the model into the Models folder

Select the model and then, in the Inspector window, confirm that Model |7.
Scale Factor is set correctly, as follows:

Checking the model scale after import

In this example, the model is using File Scale, which is set at 0.001. You may8.
need to adjust this depending on what scale your model uses. Right now, this
scale works.
Our model comes complete with chair and sofa. Fortunately, we can break9.
these apart relatively easily. Drag and drop the model into an open area of the
Hierarchy window. You should see the chair and sofa get added to the scene.
Click on an empty area in the Hierarchy window again to disable the model10.
selection.
From the menu, select GameObject | Create Empty; rename the object as sofa.11.
Do this again to create another new object and name it armchair. Ensure that the
armchair and sofa game objects are set on an origin pose with a position of
(0, 0, 0) and rotation of (0, 0, 0). If you need help, select the object and check the
Inspector window.

Blending Light for Architectural Design Chapter 9

[164]

Expand the mpm_vol.07_p24 model, and drag the child armchair object and12.
drop it on the new armchair game object. Repeat this process for the sofa piece,
and your Hierarchy window should resemble the following:

Creating two new models

What we just did is create new anchor points and then break apart our model.13.
Anchor points allow us to adjust a model with respect to the fixed anchor. You
will often need to do this in cases where the modeling software used a different
reference. This is the case with our model. Select the 24 Ligne Roset Citta
armchair child object and check the Inspector window.

Blending Light for Architectural Design Chapter 9

[165]

Change the position of the armchair Transform to (0, 0.25, 0), as illustrated14.
here:

Setting the position transform of the armchair

Ensure that the position is set to X=0 and Y=-.25 and leave the Rotation as it is.15.
We are offsetting the position of the armchair from where it was and down a
little. This is because ARCore currently tends to track planes too high; hopefully,
this will be fixed by the time of release. In any case, you can adjust the offset of
the position of the chair anytime and anyway you want later.
Drag the armchair object from the Hierarchy window and drop it into the16.
Assets/ARCoreDesign/Prefabs folder. Repeat this process for the sofa object
as well. This will create a prefab of the armchair and sofa.
Delete the armchair, sofa, and original mpm_vol.07_p24 objects from the17.
Hierarchy window.
Select the SceneController object in the Hierarchy window and then in the18.
Inspector window, set Andy Android Prefab to the armchair prefab, as shown
in the following excerpt:

Blending Light for Architectural Design Chapter 9

[166]

Setting the prefab slot on SceneController

Blending Light for Architectural Design Chapter 9

[167]

Save the project, connect, and run the app on your device. Let some surfaces19.
appear and then place a chair or two. Feel free to go back and swap for the sofa.
Note that you may want to adjust the sofa model's position as well.

Good, now we can place some furniture, except that you will soon realize that the planes
are more in the way now. Let's see how we can turn the planes in the next section on and off
when we start adding in some UI.

Building the UI
At this point, we want to give the user the ability to clear a scene and turn off the planes.
The planes are helpful to identify surfaces we can drop objects onto, but they really distract
from the experience. We will do this by building a dead simple UI with a couple of buttons.
Fortunately, Unity has a very powerful UI system called uGUI, which will allow us to
quickly do this. Open up the Unity editor to the Main scene and follow along:

Click on an open area of the Hierarchy window to ensure that your selection is1.
cleared. We do this to avoid attaching objects to other objects mistakenly.
From the menu, select GameObject | UI | Canvas. Name the new object as UI2.
and ensure that the properties for this object match the Inspector window in the
following excerpt:

Blending Light for Architectural Design Chapter 9

[168]

Setting the properties of a new UI canvas

Blending Light for Architectural Design Chapter 9

[169]

The settings we use on this Canvas allow our child UI objects to scale3.
automatically with screen size based on a specific resolution. If we didn't do this,
our UI controls would scale differently on each device. This allows us to keep a
consistent look, which is a good thing.
Select the UI canvas and from the menu, select GameObject | UI | Panel to add a4.
new child panel to the canvas.
Select the new Panel object. In the Inspector window, click on Add Component5.
and then search for and add a Grid Layout Group component. Then, set the
properties of this component to match the following screen excerpt:

Setting the Group Layout Grid (Script) properties

Grid Layout Group is a useful tool for automatically laying out objects. The6.
layout will automatically resize itself and adjust its child grid components.
With the Panel still selected, change the Image component's Color property to7.
transparent. Do this by clicking on Color Selector Area next to the Color
property and set the color to #FFFFFF00 or Alpha 0.
Select the Panel object in the Hierarchy window and from the menu, select8.
GameObject | UI | Button. Rename the button as Clear.
Expand the Clear button and select the child object. Change the Text components9.
Text property to Clear.

Blending Light for Architectural Design Chapter 9

[170]

Repeat the sixth and seventh steps for a new button called Planes. When you are10.
done, your Hierarchy window and Game window should resemble the following
excerpt:

The finished buttons and panel in 2D view

You can view your scene in 2D view by clicking on the 2D button at the top of the11.
Scene window. This is useful for previewing the UI elements you are building.
You can use your mouse and keyboard to adjust the view on your own after that.
Connect, build, and run. The buttons don't work yet, but change the orientation12.
and see how the buttons scale.

Feel free to style these buttons as you wish; after all, this is your app too.
You can also add a slide in menu if you wanted. There are plenty of
excellent resources and good books available on Unity uGUI development
that can guide you on how to extend the UI for your look and feel.

Scripting the buttons
The obvious next step is to get those buttons working. Of course, we need to add a little bit
of scripting, shown as follows:

Open the SceneController script we created earlier in your code editor. Just1.
before the Update method, insert the following section of code:

private List<GameObject> m_sceneObjects = new List<GameObject>();
private List<GameObject> m_scenePlanes = new List<GameObject>();
private bool m_planeOnState;
public void ClearScene()

Blending Light for Architectural Design Chapter 9

[171]

{
 foreach(var obj in m_sceneObjects)
 {
 Destroy(obj);
 }
 m_sceneObjects.Clear();
}
public void Planes()
{
 m_planeOnState = !m_planeOnState;
 //turn plane visibility on or off
 foreach(var plane in m_scenePlanes)
 {
 plane.SetActive(m_planeOnState);
 }
}

In this code, we first create some lists to store scene objects (m_sceneObjects)2.
and planes (m_scenePlanes), with a new boolean to track the state of the
planes m_planeOnState (visible or not). Next, we add two new methods
(ClearScene and Planes). ClearScene iterates over m_sceneObjects using
foreach and removes the object from the scene with the Destroy method.
Destroy is the method used to remove and clean up game objects from a scene.
The Planes method flips the state of m_planeOnState and then loops through
the planes and sets their state with SetActive. If an object is active, it means that
it is visible and being updated in a scene. An inactive object is disabled and does
not render.

We are staying consistent with the same naming conventions in this
example in order to match the code style. If using m_ to denote a private
member variable is not your style, don't use it. You may also want to
refactor this code and replace names such as andyObject with something
more appropriate. Visual Studio has a great set of refactoring tools that
make tasks like this easy.

Scroll down in the Update method and add the line after the line identified:3.

var andyObject = Instantiate... //after me
m_sceneObjects.Add(andyObject);

This line of code just adds the andyObject (poorly named now) to our list of4.
scene objects. The andyObject is first instantiated with the Instantiate
method. Think of Instantiate as the opposite of Destroy.

Blending Light for Architectural Design Chapter 9

[172]

Scroll back up and add the line after the line identified:5.

GameObject planeObject = Instantiate... //after me
m_scenePlanes.Add(planeObject);

The same thing here, we are adding the newly instantiated planeObject to our6.
list of scene planes.
Save the file and return to Unity. We now need to hook up the buttons. As7.
always, wait for the compiler to finish in order to ensure that you didn't create a
syntax error.
Select the Clear button and in the Inspector window, scroll to the Button8.
component. Click on the + button at the bottom to add a new event handler, and
then set the properties of the handler to those shown here:

Adding the button event handler

Repeat the process for the Planes button. This time though, connect the Planes9.
method.
Connect, build, and run. Try to place an object and then use the buttons to clear10.
it.

Blending Light for Architectural Design Chapter 9

[173]

Now, you should be able turn on and off the plane visibility and clear any objects you
created. In the next section, we will extend our UI to allow the user to interact with the
objects.

Interacting with the virtual
We want our users to be able to place and then move or adjust their object's pose as they
need to. If you recall, a pose represents the six degrees of freedom that an object can be
represented in in 3D space. Before we start posing an object though, we need to be able to
select an object. After we select an object, we want to be able to outline it in order to identify
it to the user as selected. Since outlining the object sounds like an essential first step, let's
tackle that first. Follow along the given steps to create the object outlining:

Go back to Unity. Create a new folder in the1.
Assets/ARCoreDesign/Materials folder and name it Shaders.
Right-click (Ctrl + Click on Mac) inside the new folder within the Project window2.
and from the Context menu, select Create | Shader | Standard Surface Shader.
Name the new shader ARMobileSpecularOutline.
Double-click on the ARMobileSpecularOutline shader to open it in your code3.
editor.
Delete the contents of the file. We will replace it with the ARCore mobile specular4.
shader we used earlier.
Open the MobileSpecularWithLightEstimation.shader file in your text5.
editor and copy the entire contents to your clipboard. The file is in the
Assets/GoogleARCore/HelloARExample/Materials/Shaders folder.
Paste the contents of your clipboard to the new6.
ARMobileSpecularOutline.shader file we just created. Again, we are copying
the sample source and converting it to our own.

While this shader is a copy of our light estimation shader and will use
light estimation, we want to try and keep our variable names as succinct as
possible. Normally, we will add light estimation to the name of the shader.
However, in this, we will use an AR prefix to remind us that this shader
uses light estimation and is optimized for AR.

Edit the name of the shader, top line, to the following:7.

Shader "ARCoreDesgin/ARMobileSpecularOutline"

Blending Light for Architectural Design Chapter 9

[174]

Next, we have several edits to do at the top of the file. Change the Properties8.
section to the following by adding the new lines not highlighted:

Properties
{
 _Albedo ("Albedo", Color) = (1, 1, 1, 1)
 _Shininess ("Shininess", Range (0.03, 1)) = 0.078125
 _MainTex ("Base (RGB) Gloss (A)", 2D) = "white" {}
 [NoScaleOffset] _BumpMap ("Normalmap", 2D) = "bump" {}
 _Outline ("_Outline", Range(0,0.1)) = 0
 _OutlineColor ("Color", Color) = (1, 1, 1, 1)
}

This adds three new properties: _Albedo, _Outline, and _OutlineColor. We9.
added _Albedo in order to set a color on our materials without using a texture.
_Outline defines the size of the outline, and _OutlineColor refers to the color.
After the identified lines, inject the following block of code:10.

Tags { "RenderType"="Opaque" }
LOD 250 //after me
Pass {
 Tags { "RenderType"="Opaque" }
 Cull Front

 CGPROGRAM

 #pragma vertex vert
 #pragma fragment frag
 #include "UnityCG.cginc"

 struct v2f {
 float4 pos : SV_POSITION;
 };
 float _Outline;
 float4 _OutlineColor;

 float4 vert(appdata_base v) : SV_POSITION {
 v2f o;
 o.pos = UnityObjectToClipPos(v.vertex);
 float3 normal = mul((float3x3) UNITY_MATRIX_MV, v.normal);
 normal.x *= UNITY_MATRIX_P[0][0];
 normal.y *= UNITY_MATRIX_P[1][1];
 o.pos.xy += normal.xy * _Outline;
 return o.pos;
 }

 half4 frag(v2f i) : COLOR {

Blending Light for Architectural Design Chapter 9

[175]

 return _OutlineColor;
 }

 ENDCG
 }

This block of code is the part that creates the outline and does this by rendering a11.
second time. It does this using the Pass keyword. Inside Pass, we can see more
tags being defined and another start to a shader program with CGPROGRAM. The
second block is a vertex/fragment shader and if you look inside the vert
function, you can see where the outline is calculated. It does this by projecting the
models vertex normal a distance determined by _Outline. Then, in the frag
function, we just return the outline color. Again, don't panic if this looks
intimidating, it is.
The last thing we need to do is add the new _Albedo property to our surface12.
shader and add code to use it. Scroll down and add the following line after the
identified line:

fixed _GlobalLightEstimation; //after me
float4 _Albedo;

Scroll down further to the surf function and modify the following line:13.

from o.Albedo = tex.rgb;

to o.Albedo = tex.rgb * _Albedo;

All this is done to apply the Albedo color to the texture. If there is no texture, a14.
value of 1.0 is used, which means just the Albedo color is shown. We needed to
add this bit because our imported models didn't come with textures, and we
didn't want to have to use a texture.
Save the file and return to Unity. Ensure that you see no compiler errors.15.

That completes the outline shader, but, of course, we want to test how it works. Let's create
a new material and set it on our model to see how this looks:

Create a new material called ARMobileSpecularOutline_Green in the1.
Assets/ARCoreDesign/Materials folder.
Change the new material's shader to use the newly created shader2.
ARCoreDesign | ARMobileSpecularOutline.
Set the Albedo color to a pleasant green, perhaps #09D488FF. Set the Shininess3.
to about 0.5 or so, you decide.

Blending Light for Architectural Design Chapter 9

[176]

The actual color of the fabric material is #8F8E2A; use that color if you
don't want such an obvious difference.

Set _Outline to 0.02, which is still quite thick, but obvious. Use this value for4.
now, and you can change it later.
Select the sofa prefab in the Assets/ARCoreDesign/Prefabs folder and5.
replace the fabric material with the new ARMobileSpecularOutline_Green, as
shown:

Changing the sofa prefab to use the new material

Blending Light for Architectural Design Chapter 9

[177]

Save your project. Connect, build, and then run. Place a chair and see how it6.
looks.

We have our outline shader in place, but now we need to programmatically turn the outline
on when a user selects an object.

Building the object outliner
We will build an ObjectOutliner class to handle the outlining for us. Follow along as we
build the pieces to turn the outline on and off as the user selects an object:

Create a new C# script called ObjectOutliner in the1.
Assets/ARCoreDesign/Scripts folder.
Replace all of the pregenerated script with the following:2.

namespace Packt.ARCoreDesign
{
 using System.Collections;
 using System.Collections.Generic;
 using UnityEngine;
 public class ObjectOutliner : MonoBehaviour
 {
 public int MaterialSlot;
 public Material DefaultMaterial;
 public Material OutlineMaterial;
 public bool outlineOn;
 public void Outline()
 {
 outlineOn = !outlineOn;
 var renderer = GetComponent<MeshRenderer>();
 Material[] mats = renderer.materials;
 if (outlineOn)
 {
 mats[MaterialSlot] = OutlineMaterial;
 }
 else
 {
 mats[MaterialSlot] = DefaultMaterial;
 }
 renderer.materials = mats;
 }
 }
}

Blending Light for Architectural Design Chapter 9

[178]

This class basically just swaps the material of an object with its outlined or3.
default material every time Outline is called.
Next, open the SceneController.cs script in your code editor. We have to4.
wrap the Session Raycast call in the Update method with our own Physics
Raycast. Add the following code around the highlighted code section, as
follows:

RaycastHit rayHit;
if
(Physics.Raycast(FirstPersonCamera.ScreenPointToRay(touch.position)
, out rayHit, 2))
 {
 var outliner =
rayHit.collider.gameObject.GetComponent<ObjectOutliner>();
 if (outliner != null)
 {
 outliner.Outline();
 }
 }
 else
 {
 // Raycast against the location the player touched to search
for planes.
 TrackableHit hit;
 TrackableHitFlags raycastFilter =
TrackableHitFlags.PlaneWithinPolygon |
 TrackableHitFlags.FeaturePointWithSurfaceNormal;

 if (Frame.Raycast(touch.position.x, touch.position.y,
raycastFilter, out hit))
 {
 var andyObject = Instantiate(AndyAndroidPrefab,
hit.Pose.position, hit.Pose.rotation);
 m_sceneObjects.Add(andyObject);
 // Create an anchor to allow ARCore to track the hitpoint as
understanding of the physical
 // world evolves.
 var anchor = hit.Trackable.CreateAnchor(hit.Pose);

 // Andy should look at the camera but still be flush with the
plane.
 if ((hit.Flags & TrackableHitFlags.PlaneWithinPolygon) !=
TrackableHitFlags.None)
 {
 // Get the camera position and match the y-component with
the hit position.

Blending Light for Architectural Design Chapter 9

[179]

 Vector3 cameraPositionSameY =
FirstPersonCamera.transform.position;
 cameraPositionSameY.y = hit.Pose.position.y;

 // Have Andy look toward the camera respecting his "up"
perspective, which may be from ceiling.
 andyObject.transform.LookAt(cameraPositionSameY,
andyObject.transform.up);
 }

 // Make Andy model a child of the anchor.
 andyObject.transform.parent = anchor.transform;
 }/end of Frame.Raycast
 }

This section of code uses the Raycast method of the Physics object. Physics is5.
the object that encapsulates the Unity physics engine. Raycast is a method we
use, just like Frame.Raycast we saw earlier, to cast a ray and check for any
collisions. Normally, you filter out objects to test before you run a ray cast
operation, because it is so expensive. You can see how this is done with Session
in the setup of the raycastFilter, where the filter is set to test for planes, but
you can also set this point as well. This will allow you to easily apply wall
coverings, for instance. In our case, since we are using Physics to do the
Raycast, we can ensure that you only get physics objects. The ARCore planes
don't have physics objects attached to them.
Save the file and return to Unity.6.
Locate the armchair prefab in the Assets/ARCoreDesign/Prefabs folder and7.
expand it to see the inner model.
Select the armchair model and then, in the Inspector window, click on Add8.
Component. Add a Box Collider to the object; the Box Collider will
automatically adjust its size to surround the model. The Physics engine just tests
for collisions against a collider and not the object. This is why we don't have to
worry about our ARCore planes and points. If you add other models and want
them selectable, then always use the simplest collider that best fits your shape. By
simple, we mean less polygons. For instance, don't use a sphere collider when a
Box Collider will do.
Click on the Add Component button again and this time, add our new Object9.
Outliner Script to the object and set its properties to what is shown in the
following excerpt:

Blending Light for Architectural Design Chapter 9

[180]

Setting up the Object Outliner properties

Default Material represents the base look of the model. Then, we set the Outline10.
Material to our outline material we created earlier. Lastly, we set the slot we
want to replace. The element we want to replace is Element 1, so we put 1 in the
Material Slot property.
Save the project, build, and run. Place a chair and then select it.11.

Now you can place a chair, select it, and then deselect it. If you note that it is difficult to
select an object, ensure that you check that the collider is sufficiently large to engulf the
object. In our example, the automatically created collider for the armchair is slightly off;
perhaps we can fix that issue with one of the exercise questions.

Positioning the chair
The last step is to allow the user to move the chair after they select it. Fortunately, we can
do all that in code. Open up your code editor to the SceneController.cs file and follow
along:

Add a new public variable to the top of the class after the line identified:1.

public GameObject m_andyAndroidPrefab; //after me

Blending Light for Architectural Design Chapter 9

[181]

public float MoveSpeed = .1f;

This new float MoveSpeed sets the speed at which the user can move an object.2.
You can also think of it as the move sensitivity. We set it to the default value of
.1f here, but feel free to change it in the Inspector later when testing.
Locate the following highlighted section of code and replace it with this:3.

if (Input.touchCount < 1 || (touch = Input.GetTouch(0)).phase !=
TouchPhase.Began)
{
 return;
} //replace me with

if (Input.touchCount < 1) return;
touch = Input.GetTouch(0);
if (touch.phase == TouchPhase.Began) //handle a single touch
{ //starting single touch

The previous code made sure to only test the for starting touches. Instead, we4.
now want to check when a touch starts and then as the user moves their finger.
Since our previous Physics raycast code wrapped the Session raycast code, we
now need to wrap it again with code that tests for a first touch and move events,
which is what our second if statement does.
Scroll to the line identified and add the following code before the end of the5.
Update method:

 // Make Andy model a child of the anchor.
 andyObject.transform.parent = anchor.transform;
 }
} //after me

} //be sure to add the brace
else if (touch.phase == TouchPhase.Moved)
{
 var change = FirstPersonCamera.transform.forward *
touch.deltaPosition.y;
 change += FirstPersonCamera.transform.right *
touch.deltaPosition.x;
 change *= Time.deltaTime * MoveSpeed;

 foreach (var obj in m_sceneObjects)
 {
 var outliner = obj.GetComponentInChildren<ObjectOutliner>();
 if (outliner != null && outliner.outlineOn)
 {

Blending Light for Architectural Design Chapter 9

[182]

 obj.transform.position += change;
 }
 }
}

The code we are adding here handles when the user is moving their finger. We6.
then calculate a change vector relative to the camera's position. This transforms
the forward or z axis relative to the camera by a delta position of the y axis in 2D,
which more or less means that as the user moves their finger up and down on the
screen, the object will move in and out on the forward axis, relative to the
camera. To the change vector, we then add the right or x axis vector relative to
the camera and modified by the delta of the user's finger along the x axis in 2D.
Thus, when a user moves their finger left or right across the screen, the model
will move left-right along the right axis relative to the camera.
Scroll up and change the if statement to add the new highlighted code starting7.
with &&:

if (outliner != null && outliner.outlineOn == false)
{
 outliner.Outline();
}

This change just ensures that if the object is highlighted and selected again, the8.
Outline method is not called. We no longer want to toggle the selection, but we
will leave the Outline method this way for ease of use. Next, we want to handle
when a user touches away from an object. In that case, we want to disable all the
outlined objects.
If, at any point, you lose track or get frustrated, take a look at the finished project
available as part of the code.
Scroll down to the code identified and insert the new code to clear the outlines on9.
the selected objects:

else
{ //after me
 //touched outside, reset all outlined objects
 foreach (var obj in m_sceneObjects)
 {
 var outliner = obj.GetComponentInChildren<ObjectOutliner>();
 if (outliner != null && outliner.outlineOn)
 {
 outliner.Outline();
 }
 }

Blending Light for Architectural Design Chapter 9

[183]

TrackableHit hit; //before me

This code loops through the game m_scene_Objects, finds the10.
ObjectOutliner component, and then uses that to test whether the outline is
on. If the outline is on, it turns it off with a call to Outline, perhaps poorly
named now.
Connect, build, and run. Wait for the surfaces to track and then place a chair.11.
Touch to select and then use your finger to move the chair around. You can also
adjust your position relative to the chair and watch how the object responds, all
in real time.
Press the volume down and power button at the same time to take a screenshot.12.
Compare your picture to the following one:

A virtual armchair placed and moved

Blending Light for Architectural Design Chapter 9

[184]

Not bad, but we can probably do a bit better. In the next section, we will get back into
lighting and work on the lighting and shadows of our objects.

Lighting and shadows
Lighting is an essential element in our scenes, but as we have already seen, it takes some
work to get it right. In this section, we will revisit lighting and also tackle adding shadows.
Adding shadows to our objects will make them look like they are really there. We will start
with adding shadows, so open up Unity and follow along:

Create a new shader called UnlitShadowReceiver in the1.
Assets/ARCoreDesign/Materials/Shaders folder.
Double-click on the new shader to open it in your code editor.2.
Select all the autogenerated code and delete it. Then, add the following code:3.

Shader "ARCoreDesign/UnlitShadowReceiver"
{
 Properties
 {
 _Color("Main Color", Color) = (1,1,1,1)
 _MainTex("Base (RGB)", 2D) = "white" {}
 _Cutoff("Cutout", Range(0,1)) = 0.5
 }
 SubShader
 {
 Pass
 {
 Alphatest Greater[_Cutoff] SetTexture[_MainTex]
 }
 Pass
 {
 Blend DstColor Zero Tags{ "LightMode" = "ForwardBase" }
 CGPROGRAM
 #pragma vertex vert
 #pragma fragment frag
 #include "UnityCG.cginc"
 #pragma multi_compile_fwdbase
 #include "AutoLight.cginc"
 struct v2f
 {
 float4 pos : SV_POSITION; LIGHTING_COORDS(0,1)
 };
 v2f vert(appdata_base v)
 {

Blending Light for Architectural Design Chapter 9

[185]

 v2f o;
 o.pos = UnityObjectToClipPos(v.vertex);
 TRANSFER_VERTEX_TO_FRAGMENT(o);
 return o;
 }
 fixed4 frag(v2f i) : COLOR
 {
 float attenuation = LIGHT_ATTENUATION(i);
 return attenuation;
 }
 ENDCG
 }
 }
 Fallback "Transparent/Cutout/VertexLit"
}

This shader is an example of a transparent shadow receiver. The shader works in4.
two passes. In the first pass, we essentially clear the texture based on a cutoff
alpha value. This allows us to turn an object transparent and still receive a
shadow. The second pass draws the shadow using a vertex and fragment shader.
Feel free to spend time studying this shader further.

As ARCore matures, there will likely be more versions of transparent
shadow receivers available. Plan to search for other options or other ways
to improve this form of shader in the future.

Save the file and return to Unity.5.
Create a new material in the Assets/ARCoreDesign/Materials folder and6.
name it as UnlitShadowReceiver. Set the properties of the material, as shown
in the following excerpt:

Setting the properties on the UnlitShadowReceiver material

Blending Light for Architectural Design Chapter 9

[186]

Select and drag the armchair prefab from the7.
Assets/ARCoreDesign/Materials folder in the Project window and drop it in
an open area of the Hierarchy window. We want to adjust our prefab a bit, and
this is the easiest way.
From the menu, select GameObject | 3D | Plane. Expand the armchair object8.
and drag the Plane onto the 24 Ligne Roset Citta armchair child object.
Select Plane and reset the position to (0, 0, 0) and scale to (0.1, 1, 0.1) on the9.
Transform. Set the material to new UnlitShadowReceiver, as shown in the
following excerpt:

Setting the Plane material to UnlitShadowReceiver

Blending Light for Architectural Design Chapter 9

[187]

Select the armchair object in the Hierarchy window and then in the Inspector10.
window, click on the Apply button beside the Prefab properties to save the
prefab. Leave the prefab in the scene for now, but we will want to delete it later.

We just created our transparent shadow receiver shader and then set it on a plane that we
added to our prefab. We need to do this in order for our object, the armchair, to correctly
cast a shadow on our new transparent receiver. Next, we need to turn on shadows, as the
ARCore example has them disabled by default.

Turning the shadows on
Follow along to turn shadows back on:

Select the Directional Light in the Hierarchy window and set the lights1.
properties as shown:

Turning on shadows for the Directional Light

Blending Light for Architectural Design Chapter 9

[188]

As soon as you change the Shadow Type, you should see an immediate change2.
in the Scene window with the armchair now showing a shadow underneath. If
you are unable to see a shadow yet, don't panic, we likely need to just adjust the
quality settings.

The ARCore example uses a blob texture for a shadow on the Andy
model. By updating this to use a shader, we now have automatic support
for any object you want to add. Just remember to adjust the plane to the
object. If you wanted to add a painting or other wall hanging, you would
set the plane vertical with the object.

From the menu, select Edit | Project Settings | Quality. Set the Android build to3.
use the highest quality settings by Default by clicking on the arrow icon
underneath the Levels for Android. This is shown in the following excerpt:

Setting the Quality setting for the build

Blending Light for Architectural Design Chapter 9

[189]

Make sure and apply the changes to the prefab again. This just assures us that are4.
changes are saved before we delete the prefab from the scene.
Select and delete the armchair object from the scene.5.

We are using the highest quality settings in this example. For the most
part, ARCore apps will run on relatively new devices, which means we
can attempt to push the limits. If you find that the quality settings are
crashing your device or not rendering correctly, then try dropping the
quality on the build a level. You may want to do this anyway to improve
your app's performance.

Connect, build, and run. Place a chair and see the difference, as shown:6.

Example of the complete app with lighting and shadows

This is as far as we will go with the app in this chapter. Feel free to enhance the app on your
own and take time to complete some of the optional exercises on your own. If the shadow
doesn't show up correctly go back and edit the shadow settings on the light and the quality
settings.

Blending Light for Architectural Design Chapter 9

[190]

Exercises
Answer the following questions on your own:

Change the model in the app to the sofa or even another object.1.
Add the changes we made to the Environmental Light script in order to track2.
the light direction.
Add other objects to the app and allow the user a choice on which to place.3.
Allow the user to place vertical objects. Hint—you will need to render vertical4.
planes now, yes ARCore does recognize vertical planes.
Allow the user to rotate the model. Hint—you may have to add some control5.
handles.

Summary
With that, we have completed our simple example of a design app. We were able to
complete all the major technical items we wanted to accomplish. We started with setting up
a new Unity project using the ARCore example as a template. This saved us some time in
what would have otherwise become a very long chapter. Next, we learned how to import
new models from sites such as TurboSquid and how to set them up as prefabs for later use.
Then, we built a simple UI to allow us to clear the tracking planes from the view and clear
any models. After that, we added the ability for a user to select and move an object in the
AR scene. This required us to enhance one of the ARCore example shaders and heavily
modify the SceneController script. Finally, we tackled shadows by turning on lights and
adding a transparent shadow receiver to our object prefab.

ARCore is well suited for the next wave of HoloLens or mixed reality low-cost headsets. In
the next chapter, we take a bit of a break from AR and dive into mixed reality, where we
will build a multiplayer app called HoloCore.

https://www.turbosquid.com/

10
Mixing in Mixed Reality

Mixed reality (MR) is the evolution of combining augmented reality and virtual reality
into the same experience or app. MR typically uses a wearable device to overlay the virtual
world on top of the user's reality. The concept first gained traction with Microsoft's
introduction of HoloLens. HoloLens is a wearable glasses device that allows you to overlay
your real world with virtual content using hand gestures, not unlike what we have been
doing with ARCore in this whole book, except the difference of the wearable part and, of
course, the price tag.

Microsoft is currently leading the charge in mixed reality development
with their platform of the same name, which is great exposure for the
whole AR/VR and now MR space. Microsoft is a big technology company
and, like many big technology giants, has decided to redefine the concept
of mixed reality to also include virtual reality.

Wearable devices that allow users to experience mixed reality have been traditionally quite
expensive, until just recently. Through group funding and other initiatives, there are now
plenty of cheap, less-than $30 US wearable devices out there that will allow you to
experience MR. This is perfect for anybody who wants to dive in and learn how to develop
MR apps. Of course, not all MR platforms are designed for mobile devices, or will work
with ARCore. Fortunately, an open source project called HoloKit has released a cardboard
MR headset that is designed to work with ARCore.

"I'm not confused. I'm just well mixed."
 - Robert Frost

Mixing in Mixed Reality Chapter 10

[192]

In this chapter, we will build a combined AR / MR ARCore app that will be meant as a
technology and learning demo that showcases the power of AR and MR. We will, of course,
need to get our feet wet a little with VR as well, which should make things interesting. The
following is the list of main items we will focus on in this chapter:

Mixed reality and HoloKit
Introducing WRLD
Setting up WRLD for MR
Navigating the map
Mapping, GIS, and GPS
What's next

This is a really big chapter with lots of material to go over. Unfortunately, we cannot
include the content in a completed package due to licensing. However, we have tried to
write each section in this chapter so that it can be used on its own, almost like a cookbook.
This will allow you to pick and choose the components you want and don't want to use.

To best experience the exercises in this chapter, it is recommended that
you obtain a HoloKit. You should be able to obtain this device for around
$30. If you are feeling adventurous, there are even plans available to build
your own. Here's a link to where you can learn more about HoloKit and
order your own at https:/ /holokit. io/.

Mixed reality and HoloKit
HoloKit was created by Botau Hu, a brilliant new tech innovator that will surely experience
great success in the industry. It's a wearable device that projects your mobile devices screen
into a 3D holographic projection. This holographic projection is then overlaid onto the
user's view, thus allowing them to experience a more immersive environment that often
teeters on the edge of VR. The following is an illustration of what a HoloKit looks like fully
assembled:

https://holokit.io/
https://holokit.io/
https://holokit.io/
https://holokit.io/
https://holokit.io/
https://holokit.io/
https://holokit.io/
https://holokit.io/

Mixing in Mixed Reality Chapter 10

[193]

Fully assembled HoloKit

As you can see from the diagram, the device is quite similar in construction to that of
Google Cardboard. Cardboard was Google's way of democratizing VR to the masses, and it
worked. If you are unable to quickly get a HoloKit, you can also use a modified Google
Cardboard. Just cut a slot in the cardboard for the device's camera and ensure not to move
around too much.

One of the first things you will note about most mixed reality headsets is the ability of the
user to see through their environment. This allows the user to still be spatially aware of
their surroundings, while experiencing what could be an almost virtual experience. Since a
user is more aware, MR devices are generally considered safer, and the user is much less
prone to experiencing motion sickness and/or falling down. Currently, VR devices are not
considered appropriate for those under the age of thirteen due to those issues.

VR motion sickness is often more a result of poor app performance or resolution. As it turns
out, visual artifacts caused by a lagging app or poor resolution are responsible for placing
additional strain on the user's brain. That strain will then manifest itself in the form of a
severe headache or nausea. In the early days of VR, this was a big problem, but now the
technology has improved enough for most users to be able to use an app for several hours
at a time.

The Mirage Solo headset was developed by Lenovo for a game by Disney called Jedi
Challenges. Jedi Challenges is really more a proof of concept and showcase for mixed reality
and what is possible. It will likely also be a collector's item, since it is associated with the
new Star Wars franchise and just happens to correspond to an up-and-coming tech
revolution. The only truly unfortunate thing about this project is that Lenovo never released
a developer kit; hopefully they will rectify this is in the future.

Mixing in Mixed Reality Chapter 10

[194]

The following is an image of the Lenovo Mirage Solo headset:

Jedi Challenges Mixed Reality game

In order to complete the exercises in this chapter, you won't need HoloKit. HoloKit allows
for you to switch from AR to MR/VR mode at the press of a button. This means that you can
still work through all the exercises in this chapter. However, it does mean that you won't
experience the magical experience of MR. In the next section, we set up HoloKit to work
with ARCore and get ready to build our tech demo.

Setting up HoloKit
The great thing about HoloKit is that it comes complete with its own Unity template project.
This makes our job of getting up and running with HoloKit quite painless. Open up
Command Prompt or a shell window and do the following:

If you haven't already done so, create a new folder from the root called ARCore1.
and navigate to it:

mkdir ARCore
cd ARCore

Clone the HoloKit repository into it:2.

git clone -b android https://github.com/holokit/holokitsdk.git

Mixing in Mixed Reality Chapter 10

[195]

That command clones the specific Android branch, which we will use. HoloKit is3.
also supported for ARKit on iOS.
Open a new instance of the Unity editor. Create and open a new project called4.
HoloCore in the ARCore folder.
In the Project window, create a new folder under Assets called HoloCore. Under5.
that new folder, create our standard five new folders (Scripts, Scenes,
Materials, Models, and Prefabs).
Open the ARCore/holokitsdk/Assets folder with a file explorer window.6.
Make a copy of the HoloKitSDK folder and place it in the
ARCore/HoloCore/Assets folder. When you are done, return to the editor, and
you should see the assets getting imported and compiled. After the import is
complete, confirm that your Project window resembles the following:

Project window folders showing HoloKitSDK

If you are prompted to switch to Android, elect to do so by clicking on OK.7.

Mixing in Mixed Reality Chapter 10

[196]

From the menu, select Edit | Project Settings | Player. This will open the Player8.
(as in app player) settings panel. Select the Android tab and uncheck the
Multithreaded Rendering option, and set the Package name, API Levels, and
ARCore Supported, as shown:

Setting the Player settings for Android

Open up the HoloKit sample scene CubeOnTheFloor in9.
the Assets/HoloKitSDK/Examples folder.
From the menu, select File | Save Scene as, and save the scene as Main in the10.
Assets/HoloCore/Scenes folder.
Open up Build Settings and add the current scene to the build.11.
Connect, build, and run. You should see a rather small button in the top corner12.
with the letter C. Press that button to switch from AR to the MR mode. When
you are ready, put your device into the HoloKit headset and enjoy your first MR
app.

Mixing in Mixed Reality Chapter 10

[197]

Unlike Google Cardboard, HoloKit needs to let the camera view the user's surroundings in
order to track. As such, you may need to modify the headset by cutting out a larger hole for
the device's camera to see through. Here's a pic of a HoloKit that needed to be modified in
order to accommodate a Samsung Galaxy S8:

Modified HoloKit to allow camera to visibly track

If you have another device that you want to hack, like Cardboard, then just ensure that you
cut a space so that the camera is not blocked. Some other mixed reality headsets that work
with mobile devices already have camera extensions. These camera extensions may support
a fish eye lens, which allows for the device to see a wider area. This works quite well, since
it essentially converts the camera into a sensor with a wide angle lens.

Mixing in Mixed Reality Chapter 10

[198]

How does it work?
Before we get too far ahead of ourselves, let's break open the HoloKit project and take a
look at how or what it does. Open up the Unity editor and complete the following:

Find the HoloKitCameraRig in the Hierarchy window, and then select and1.
expand it. Expand the children's children and so on until you can see the Left Eye
and Right Eye objects, as shown in the following screenshot:

View of the scene's 3 cameras in the Hierarchy window

The VideoSeeThroughCamera is the main camera used when the app is in AR2.
mode. When the app is in MR mode, the Left Eye and Right Eye cameras are
used to create the stereo 3D vision. Take a closer look at the Eye cameras, and you
will note that their position is slightly adjusted on the x axis. For the right camera,
the amount is 0.032, and for the left it is -0.032. This is how we generate 3D stereo
projections, using an offset camera for each eye.

The other components are as follows:3.
HoloKitAmbientLight: It is just a standard directional light with the
ARCore Environmental Light script attached.
HoloKitPlaneGenerator: It is a base object for the
HelloARController script, which we have seen plenty of before.
HoloKitPlacementRoot: It is our main anchor point for the scene's
virtual objects.

Mixing in Mixed Reality Chapter 10

[199]

HoloKitCameraRig: It is what controls the app view.
HoloKitGazeManager: It is new and allows the user to select objects
just by positioning their gaze or view on the target. You can try this
now with the current scene and the ball. Fix your gaze on the ball and
see what happens.
HoloKitPointCloud: It serves the same function as its counterpart in
ARCore.

Go through and continue to expand and inspect the rest of the objects in the4.
scene.

Connect, build, and run the scene again. This time, pay attention to the details5.
and see if you can get the Gaze to work.

Well, hopefully that was relatively painless. Now, with HoloKit setup, we have the
framework in place for our combined AR and MR app. We should expand on what our tech
demo will do. The premise of our tech demo will be an app that allows the user to move
between a traditional map interface and an AR or MR interface. The name HoloCore is a
play on the ability to allow a user to drill into a map and render a 3D view in AR or MR.
This also nicely ties in with the name ARCore. In the next section, we will look at adding a
3D map of the world to our app.

Introducing WRLD
Mixed reality apps, because they provide spatial awareness to the user, are excellent for
viewing massive objects or areas like a map. Unlike virtual reality, mixed provides a more
intuitive and natural interface for movement since the user can also physically move their
position. So, what better way to fully explore MR than by using it to view a 3D map of the
world. Fortunately, there is a relative newcomer called WRLD that has started to make
significant waves in AR / VR and MR, because it provides an excellent and simple solution
for rendering a fairly-good 3D map.

WRLD is a great platform for general 3D mapping and visualization. It
currently does not support more robust backend GIS services, but it
certainly could. For those professional GIS developers with access to Esri
CityEngine, there are also some great workflows for bringing CE models
into Unity. This means that you can also experiment with CE models in
MR.

Mixing in Mixed Reality Chapter 10

[200]

WRLD is shipped as a Unity asset right to the Asset Store, so installation is a breeze.
However, before we install, we need to go to the WRLD site and get a developer account.
WRLD is a commercial service that charges by usage. Fortunately, they offer free developer
access for a limited, which is perfect for our tech demo. Open up a browser and complete
the following:

Browse to wrld3d.com and Sign Up for an account. Ensure that you verify the1.
account through email.
Return to the site and Sign In.2.
Find and click on the Developers link at the top of the page. This will take you to3.
the Developers page.
Click on the big Access API Keys button at the top of the page.4.
Enter the name for your key, HoloCore, and click on Create API Key to create5.
the key, as shown in the following screenshot:

Creating a WRLD API key

Click on Copy API Key to copy the key to your clipboard. We will use it shortly.6.
Return to the Unity editor and, from the menu, select Window | Asset Store.7.
This will open a browser page inside the editor.

https://www.wrld3d.com/

Mixing in Mixed Reality Chapter 10

[201]

Enter WRLD in the search box and click on the Search button. This will open the8.
asset page for WRLD, offering you to Download the asset. Click on the Download
button, as shown in the following screenshot:

Downloading the WRLD asset from the Asset Store

This will download the package. After the package downloads, you will be9.
prompted with an asset import dialog. Just click on Import to import everything.
This may take a while, so stretch your legs and grab some refreshments.

In some cases, you may want to be more careful on what you bring into
your projects. For instance, if you were building a non-tech demo or proof
of concept, you would likely remove any sample scenes or other excess
from a project. We will talk more about keeping projects lean in Chapter
11, Performance Tips and Troubleshooting.

You may get a warning prompting you that the versions don't match with your10.
version of Unity. Accept the warning and continue.
When you are prompted to get a key after you import WRLD, just click on Later.11.
After all, we already have a key.

Mixing in Mixed Reality Chapter 10

[202]

Next, you will probably be prompted to increase the shadow distance with the12.
following dialog:

Skip the Shadow settings dialog

Click on the Skip button. We will need to adjust the lighting, materials, and13.
shadows later manually.

This imports the WRLD asset into our project. In the next section, we will cover how to set it
up and run WRLD for our MR app.

Setting up WRLD for MR
With the asset imported, we can now work on setting up WRLD to work in MR. The setup
requires a little bit of customization, so jump back to Unity and complete the following:

From the menu, select Assets | Setup WRLD Resources For | Android. This will1.
ensure that the assets are optimized for Android. We will also talk, in a later
section, about how the materials can be manually optimized by updating or
creating your own shaders.
Ensure that the Main scene is loaded, and then select and expand the2.
HoloKitPlacementRoot. Disable the DebugCube and GazeTargetExample child
objects. If you forgot how to do this, check the Inspector window.
Create a new child GameObject of HoloKitPlacementRoot called WRLD. Go to the3.
Inspector window and use Add Component to add the Wrld Map component to
the object.

Mixing in Mixed Reality Chapter 10

[203]

Set the component properties of the Wrld Map, as shown:4.

Setting properties for the Wrld Map component

Mixing in Mixed Reality Chapter 10

[204]

Select and drag the new WRLD object into your Assets/HoloCore/Prefabs5.
folder to create a prefab that we can use later.
Select HoloKitCameraRig from the Hierarchy window and set the Transforms Y6.
Position to 300. Since our map is at 0, 0, 0, we want our viewer to look down
from a height of around 300 meters or about 1000 feet. Then, expand the object
until you see all of the children.
Select each of the cameras, VideoSeeThroughCamera, Left Eye, and Right Eye,7.
and, in the Inspector window, set the Clipping Planes Far to 5000, as illustrated:

Setting the Far plane clipping distance

Adjusting the far clipping plane essentially expands our view to include all8.
objects to a distance of 5000. Previously, this was set for 1000. You may also
want to increase the Near Clipping Plane to a larger value; 1 to 10 works well. If
you note a slight flashing on the map, this is likely caused by the clipping plane
being set to close.
Connect, build, and run. Set the app to run in MR by clicking on the C button and9.
then inserting your device in HoloKit. Enjoy the experience of viewing a map in
mixed reality.

WRLD has several excellent examples on using their API on Unity and
other platforms. We built this example in order to feature mixing realities,
rather than recreating their examples. As such, we have omitted placing
the map on a surface, but this is because WRLD already has a good
example for ARKit and, likely, will in the future.

Mixing in Mixed Reality Chapter 10

[205]

What you just experienced is quite fun, especially considering the minimal effort this
example took to get setup, except that there are several things missing. Most certainly, we
want to be able to move and zoom in and out of our map, so we will cover movement and
navigating in the next section.

Navigating the map
In a traditional AR app, you rarely move the user or player. The user or player move
themselves, and the AR app works around that. We spent a good portion of this book
understanding how ARCore tracks the user and understands their environment, which has
worked quite well when working with small objects such as Andy. Except, if we want to
render massive virtual objects or even embed new environments, then we need a way for
the user to navigate those as well. Therefore, in this section, we will look to implement a
mix of navigation methods from a standard touch interface to AR and MR versions. If you
don't have a HoloKit or are not interested in trying MR, then you can stick to just working
with the AR.

Before adding navigation to our app, we probably should look at how navigation is
handled by default in WRLD. Open up the Unity editor and follow along:

Save your current scene.1.
Create a new scene. Name it Navigation and save the scene in2.
the Assets/HoloCore/Scenes folder.
From the Assets/HoloCore/Prefabs folder, drag the WRLD prefab we created3.
earlier and drop it in the scene. Set the properties on the Wrld Map, as shown in
this screenshot:

Mixing in Mixed Reality Chapter 10

[206]

Setting properties for the WRLD prefab

This is more or less the default settings that you will use to just render the map to4.
your device in a non-AR interface.
Open the Build Settings dialog and add your new scene to the build. Uncheck5.
the Main scene, but don't delete it; we will turn it back on later.
Connect, build, and run. You will now see the map as the main element in your6.
view. You can use touch gestures to move, pan, and zoom the map.

Mixing in Mixed Reality Chapter 10

[207]

As you can see by playing with the app, the map navigation is very slick using the touch
interface. We will use this to allow the user to navigate the map with touch until they see an
area of interest that they want to take a close look at. Then, they will be able to switch to AR
or MR mode to view the items in more detail. In order to do this, we will use the scene we
just created as our starting scene, and use our Main scene to let the user switch to AR or
MR.

Being able to switch between interface types like a regular touch-driven UI
and AR or MR works all the time. An excellent example of this, of course,
is the popular game Pokemon Go from Niantic Labs. This also happens to
use a map and allows a user to switch to AR to catch Pokemon. If you are
curious about how Pokemon Go was constructed, take a look at the book
Augmented Reality Game Development by Micheal Lanham, also from Packt.

Switching from AR to MR
Being able to switch scenes and maintain state is common task, but it seems to require a bit
of work in Unity. Open up the Unity editor to the Navigation scene and complete the
following:

Open up the Assets/HoloCore/Scripts folder and create a new script called1.
Singleton. Go to the book's downloaded source Code/Chapter_10 folder, copy
the contents of the Singleton.cs file, and paste it into your new script. A
Singleton is common pattern in Unity for creating an object you only want one
of and when you never want that object destroyed. If you are new to Singleton,
it will be in your best interest to spend some time and review the class.
Create a new script in the same folder called SceneController and replace the2.
generated code with the following:

using System;
using UnityEngine;
using UnityEngine.SceneManagement;
using Wrld;
using Wrld.Space;
namespace Packt.HoloCore
{
 public class SceneController : Singleton<SceneController>
 {
 protected SceneController() { }
 }
}

Mixing in Mixed Reality Chapter 10

[208]

SceneController is a Singleton with a SceneController. That circular3.
reference may be a little confusing, so it is best to think of as a SceneController
that is a Singleton which holds the SceneController type. Inside the class,
we need to define a protected default constructor in order to force access
through the Instance. We will look at how to use Instance shortly.
Enter the following right after the constructor:4.

public LatLongAltitude position;

Next, we will add a single property to hold the position where the camera was5.
last fixed. That way, when we switch scenes, we can just pass the position
property back to the scene so that it can determine where to
setup. LatLongAltitude is a spatial data type that holds the position of the
camera in latitude, longitude, and altitude.
Add the following new method, LoadScene, with the following code:6.

public void LoadScene(string scene, Camera mapCamera)
{
 if (Api.Instance.CameraApi.HasControlledCamera)
 {
 mapCamera = Api.Instance.CameraApi.GetControlledCamera();
 }
 if(mapCamera == null) throw new ArgumentNullException("Camera",
"Camera must be set, if map is not controlled.");

 position = Api.Instance.CameraApi.ScreenToGeographicPoint(new
Vector3(mapCamera.pixelHeight/2, mapCamera.pixelWidth/2,
mapCamera.nearClipPlane), mapCamera);

 SceneManager.LoadScene(scene, LoadSceneMode.Single);
}

Mixing in Mixed Reality Chapter 10

[209]

LoadScene, is where all the work happens. We will call LoadScene on the7.
SceneController, passing in the scene name we want to load at the current
map or WRLD camera. Inside the method, we first test to see whether the current
map is being controlled; if it is, we just ignore the camera and use the controlled
camera. Next, we test whether the mapCamera is null; if it is, we want to exit with
an error. Otherwise, we extract the current position with
ScreenToGeographicPoint. This method extracts the camera's main screen
focal point, which we assume is at half pixel width and height of the
screen; mapCamera.nearClipPlane sets the front of view frustum or camera if
you recall from our earlier discussions, which equals the altitude of the camera
above ground level, or the map in this case. At the end of the method, we
use SceneManager, which is the Unity helper class for loading scenes. We call
LoadScene with the option to replace the scene using LoadSceneMode.Single.

That completes our SceneController. Now, the useful thing about being a Singleton is
that we never have to physically add the component, because it is now always considered
available. WRLD bases most of their Unity API on this pattern as well. We do still have to
add some further code that can be activated from our scene.

Building the SceneSwitcher
Let's add another script/component that will just activate our SceneController. Open up
the editor and complete the following:

Create a new C# script called SceneSwitcher, and replace all the pre-generated1.
code with the following:

using UnityEngine;
namespace Packt.HoloCore
{
 public class SceneSwitcher : MonoBehaviour {
 }
}

Create the following property inside the class:2.

public Camera mapCamera;

Mixing in Mixed Reality Chapter 10

[210]

This is a placeholder for the mapCamera, the camera being used to render the3.
Wrld map. We need this when the map is not being controlled by the camera,
which is the case when the user is in AR / MR.
Then, create the following method:4.

public void SwitchScenes(string sceneName)
{
 SceneController.Instance.LoadScene(sceneName, mapCamera);
}

This method will be responsible for using the LoadScene on the5.
SceneController. Note the use of Instance in between the class and method
call. Remember that our SceneController is a Singleton, which is an object
and not a static class. Therefore, we need an instance, and that is provided with a
helper property called Instance in Singleton and so when calling a method on
SceneController, we always call it through Instance.
Save all your files, if you haven't already done so, and return to Unity. Ensure6.
that you have no compiler errors.

Creating the SceneSwitcher prefab
With the code complete, it is now time to build our SceneSwitcher prefab. Open the
editor to the Navigation scene and complete the following:

From the menu, select GameObject | UI | Canvas. Add the SceneSwitcher1.
component (script) to the canvas and rename it as SceneSwitcher. Set the Map
Camera property on the Scene Switcher to use the Main Camera.
Select the SceneSwitcher object in the Hierarchy window and then, from the2.
menu, select GameObject | UI | Panel. Set the properties of the panel, as shown
in the following excerpt:

Mixing in Mixed Reality Chapter 10

[211]

Setting the properties on the Panel

Set the Anchor by clicking on the button and then, when the Anchor Presets3.
menu opens, simultaneously press the pivot and position keys (Shift + Alt on
Windows) and then click on the top-left corner. This will set the panel to anchor
to the top left. You will also need to add a Grid Layout Group component and set
the properties specified.

Mixing in Mixed Reality Chapter 10

[212]

Select the Panel and, from the menu, choose GameObject | UI | Button. Rename4.
the button Switch and set the button text to Switch.
Set an OnClick handler for the Switch button, as follows:5.

Adding a button OnClick handler

We set the parameter, which is a string, to Main. Main is the name of the scene6.
we want to switch to when the user clicks on the button.
Drag the SceneSwitcher object from the Hierarchy window and drop it into the7.
Assets/HoloCore/Prefabs folder of the Project window. This will create a
new prefab for us to use in the Main scene.
Double-click on the Main scene in the Assets/HoloCore/Scenes folder. When8.
prompted, save the Navigation scene changes, of course.
Drag the SceneSwitcher prefab from the Assets/HoloCore/Prefabs folder9.
and drop it into an empty area of the Hierarchy window.
Set the Map Camera property on the SceneSwitcher component (on10.
SceneSwitcher object) to the VideoSeeThroughCamera.
Expand the SceneSwitcher object and locate the Switch button. Change the11.
OnClick event handler to pass Navigation, which is the scene we want to load
from Main. Remember that the scene names must match exactly, so watch your
case.
Save the scenes.12.

Mixing in Mixed Reality Chapter 10

[213]

Modifying the Wrld map script
We are almost done; the last thing we need to do is let the Wrld Map script pull the last
camera's position from our singleton SceneController. This means that we unfortunately
have to modify the source of the Wrld Map script. Generally, we want to avoid modifying a
third-party API, except that we have the source, and it really is our only option. Open up
the WrldMap script, located in the Assets/Wrld/API folder, and follow along:

Insert the following, between the lines identified:1.

using Wrld.Scripts.Utilities; //after me
using Packt.HoloCore;
#if UNITY_EDITOR //before me

Scroll down to the SetupApi method and insert the following code between the2.
lines identified:

config.Collisions.BuildingCollision = m_buildingCollisions; //after
me
config.DistanceToInterest =
SceneController.Instance.position.GetAltitude();
config.LatitudeDegrees =
SceneController.Instance.position.GetLatitude();
config.LongitudeDegrees =
SceneController.Instance.position.GetLongitude();
Transform rootTransform = null; //before me

All this does is set the map to the last position the camera was pointed at. You3.
can see that we are using the SceneController singleton here to access the
camera's last known position. You can see in the SetupApi method where a
configuration object is defined and set. Hopefully, in the future, Wrld allows for
this configuration to be passed into the script. If that was possible, we could just
modify that configuration before it is passed to the WrldMap script, thus
eliminating the need for us to add our own code in the class.
Save the file and return to Unity. Check for any errors.4.

Mixing in Mixed Reality Chapter 10

[214]

Open the Build Settings dialog and ensure that both scenes are added, active,5.
and in the order shown in the following excerpt:

Setting the scenes and scene order on Build Settings dialog

Mixing in Mixed Reality Chapter 10

[215]

Connect, build, and run the app. Since we are starting at 0, 0 in latitude and6.
longitude spatial coordinates, the map will start just off the coast of Africa, which
is 0, 0. Use a pinch touch gesture to zoom out until you see the global view of the
world. Use a touch slide gesture to pan the map to North America, currently the
best place to view WRLD data. Choose an area that is familiar and zoom in until
you start to see 3D objects. Then, press the Switch button to switch the interface
to MR and AR. You can switch back to the Main view by pressing Switch again.
The following is an image showing the augmented reality mode and another user
using the mixed reality mode with a HoloKit headset:

Augmented reality view of the application running

We now have an app that lets a user navigate a map and then switch to view7.
areas of interest in AR or MR mode. This works well, except that it would be
better if the user started at their current position. In order to do that, we need to
understand a bit more about mapping, GIS, and GPS, which we will cover in the
next section.

Mixing in Mixed Reality Chapter 10

[216]

Mapping, GIS, and GPS
Unity, as we already learned, tracks its objects in 3D space using a point with a Cartesian
coordinate reference system of x, y, and z. When we plot a point on a map of the world, it is
no different; we need to reference the point, except that now we need to use a spherical or
geographic reference system to represent a position on the earth, because as we all know,
the earth is spherical. However, converting between a geographic system and Cartesian
system is expensive. Many mapping applications, therefore, use an intermediary reference
known as earth-centered, earth-fixed (ECEF), which represents mapping data on an earth-
fixed Cartesian coordinate reference system. The following is a diagram shows the
differences between Cartesian, geographic, and ECEF coordinate reference systems:

Comparison of coordinate reference systems

Now, you may have already noticed that WRLD supports ECEF out of the box. As we
mentioned, since ECEF is already in a Cartesian frame of reference, the conversions are
much easier and quicker. However, for us, we just want to position the camera at the user's
geographic coordinate reference, which we can easily obtain from the user's device using
GPS.

Accessing the user's GPS on their device takes a bit of work, but fortunately, we can do this
all in one place. Let's open up the SceneController script and make the following
modifications:

Add two new properties at the top of the class:1.

public bool isLoaded;
public string status;

Mixing in Mixed Reality Chapter 10

[217]

Create a new method just under the constructor:2.

void Awake()
{
 StartCoroutine(GetLocationPoint());
}

The Awake method is a special Unity method that runs when the GameObject3.
first initializes. Inside of the method, we are calling
StartCoroutine. StartCoroutine is another special method in Unity that
allows you to create a coroutine. Coroutines are a way of interrupting or
breaking your code flow, doing something else, and then returning to complete
your original task. In the call, we are passing in a method call
GetLocationPoint(), which sets up that method as a coroutine.
Add the following method to create the coroutine:4.

IEnumerator GetLocationPoint()
{
}

A coroutine must return IEnumerator. By adding the return type, the method5.
can now yield or interrupt its execution with a yield return statement that
returns a YieldInstruction. We will see how to do that shortly.
Just inside GetLocationPoint, add the following line:6.

AndroidPermissionsManager.RequestPermission(new string[] {
"android.permission.ACCESS_FINE_LOCATION" });

This line of code prompts the user for access to the location services, also7.
known as GPS. We do this in order to explicitly identify the user's location,
provided that their device's GPS is not being blocked or the user has the
location service disabled.

Google has developed their own location service in essence by mapping
wireless endpoint MAC addresses to geographic coordinates. Google does
this by essentially war driving with its self-driving Street View cars. While
those cars drive themselves around, they are also grabbing the MAC
address of every wireless device that they can detect at the time of
mapping that to a GPS location. As it turns out, this service can actually
be more accurate for providing location in more dense metropolitan
areas where GPS line of sight is difficult.

Mixing in Mixed Reality Chapter 10

[218]

Then, add the following:8.

if (Input.location.isEnabledByUser == false)
{
 isLoaded = true;
 yield return SetStatus("Location not authorized, starting at
0,0", 1.0f);
 yield break;
}

This block of code checks whether the user had GPS enabled; if they don't, there9.
is nothing we can do. We set isLoaded to true, which will be a flag to let
outside methods know that we found or didn't find a location. Then, we yield
return the results of a call to SetStatus. Remember that because we are in a
coroutine, yield return means that we want to interrupt code execution at
this point.
Scroll down just past the GetLocationPoint method and add the following new10.
method:

public YieldInstruction SetStatus(string status, float time)
{
 this.status = status;
 return new WaitForSeconds(time);
}

Inside the method, we are setting our status text, which will be a message we11.
want to display back to the user. Then, we return a new
WaitForSeconds(time), where time represents the number of seconds to wait.
There are many different forms of YieldInstruction that you can use to break
your code. The YieldInstruction here just waits for a set number of seconds
and then returns to continue the code where it left off. Keep in mind that after the
yield has elapsed, for whatever reason, code will then resume from exactly
where it left off.
Return to where we left off in GetLocationPoint. Right after the yield12.
return SetStatus call, we are executing yield break. This line breaks the
coroutine and exits the method, which is equivalent to return in a normal
method.
Now that we understand coroutines, let's enter the next section of code:13.

yield return SetStatus("-----STARTING LOCATION SERVICE-----", 1);
Input.location.Start();

// Wait until service initializes

Mixing in Mixed Reality Chapter 10

[219]

int maxWait = 30;
while (Input.location.status == LocationServiceStatus.Initializing
&& maxWait > 0)
{
 yield return new WaitForSeconds(1);
 maxWait--;
}

First, we start by setting a status message and letting the user know that we are14.
starting the service, which we then do. After that, we continually loop, breaking
every second with yield return new WaitForSeconds(1), adjusting our
counter maxWait for every iteration. We need to wait for the location service to
initialize; sometimes this can take a while.
Enter the following code to handle when our counter has expired (maxWait<1):15.

// Service didn't initialize in 20 seconds
 if (maxWait < 1)
 {
 yield return SetStatus("ERROR - Location service timed out,
setting to 0,0,0", 10.0f);
 isLoaded = true;
 yield break;
 }

Inside the if block, we set the status and loaded flag. Then, we return from16.
the coroutine with yield break.
Next, we want to handle when the service fails or starts by entering the17.
following:

if (Input.location.status == LocationServiceStatus.Failed)
{
 yield return SetStatus("ERROR - Unable to determine device
location.", 10.0f);
 isLoaded = true;
 yield break;
}
else
{
 //set the position
 yield return SetStatus("-----SETTING LOCATION----", 10.0f);
 position = new LatLongAltitude(Input.location.lastData.latitude,
Input.location.lastData.longitude,
Input.location.lastData.altitude);
 isLoaded = true;
}

Mixing in Mixed Reality Chapter 10

[220]

This code handles the service failure or success. In the failure path, we set an18.
error message and exit. Otherwise, we set a status and wait for 10 seconds. We
do this so that the user can read the message. Then, we set the position according
to the geographic coordinates the device provides us with.
Finally, we stop the service with this:19.

 Input.location.Stop();

We stop the service because we don't need to continually get location updates.21.
If you want to keep the service open and use it to track the user's location, such
as Pokemon Go, then just ensure that you stop the service when the object is
being destroyed. You can do this in a method called OnDisable(), which is
another special Unity method that is used to clean up the object.
At this point, we also want to update and overload the LoadScene method with22.
the following code:

public void LoadScene(string scene)
{
 SceneManager.LoadScene(scene, LoadSceneMode.Single);
}

public void LoadScene(string scene, Camera mapCamera)
{
 if (Api.Instance.CameraApi.HasControlledCamera)
 {
 mapCamera = Api.Instance.CameraApi.GetControlledCamera();
 }
 else if (mapCamera == null) throw new
ArgumentNullException("Camera", "Camera must be set, if map is not
controlled.");
 position = Api.Instance.CameraApi.ScreenToGeographicPoint(new
Vector3(mapCamera.pixelHeight / 2, mapCamera.pixelWidth / 2,
mapCamera.nearClipPlane), mapCamera);

 Debug.LogFormat("cam position set {0}:{1}:{2}",
position.GetLatitude(), position.GetLongitude(),
position.GetAltitude());
 SceneManager.LoadScene(scene, LoadSceneMode.Single);
}

Mixing in Mixed Reality Chapter 10

[221]

We overloaded the method in order to allow two different behaviors when23.
switching scenes. The new method we added won't worry about setting the
position for the camera. We also added some logging, so we can see what
values are being set by looking at our Android debug tools while running the
app.
Save the file when you are done.24.

The code we just set up was originally derived from the Unity sample, but it has been
modified for your reuse. Since accessing the location service can take a while, we will add
a new scene in order to handle the location service starting up. This will be a splash
screen that you can make prettier later on.

Making the Splash scene
The Splash scene we are building is very basic for now, with just some status messages.
You can, of course, style it and add any images you like later on. Open up the editor and
complete the following:

Create a new scene called Splash and save the scene to1.
the Assets/HoloCore/Scenes folder.
From the menu, select GameObject | UI | Panel. This will add a new Canvas2.
with a child Panel and EventSystem. Set the background color of Panel to a dark
gray.
Select the Panel and, from the menu, select GameObject | UI | Text. Change the3.
name of the object to Status and set its properties in the Inspector window, as
shown:

Mixing in Mixed Reality Chapter 10

[222]

Setting the Status text properties

This is the where we will display those status messages back to the user, which4.
means that we need a script that can update the status messages as well as
know when the service has been loaded and the application can start.

Mixing in Mixed Reality Chapter 10

[223]

Create a new C# script called SceneLoader in the Assets/HoloCore/Scripts5.
folder and replace the pre-generated code with the following:

using UnityEngine;
using UnityEngine.UI;

namespace Packt.HoloCore
{
 public class SceneLoader : MonoBehaviour
 {
 public string sceneName;
 public Text statusText;
 void Update()
 {
 if (SceneController.Instance.isLoaded)
 {
 SceneController.Instance.LoadScene(sceneName);
 }
 else
 {
 statusText.text = SceneController.Instance.status;
 }
 }
 }
}

This simple class is what we will use to track the status of our6.
SceneController. All the action takes place in the Update method. We first
check whether the SceneController has loaded by testing isLoaded. If the
scene has not loaded, we display the status text in the statusText.text
object. Remember that the Update method is run every rendering frame, so we
are testing this condition several times a second. Save the script, and next, we
need to add it as a component to our scene.
Return to the Unity editor and wait for the new class to compile.7.

Mixing in Mixed Reality Chapter 10

[224]

Create a new object called ScreenLoader and add the new ScreenLoader script8.
to it. Then, set the properties of SceneLoader to what is shown here:

Setting the SceneLoader component properties

Set the Status Text property to the Status object. You can use the bull's-eye icon9.
to select the object from the scene or just drag the object from the Hierarchy
window and drop it into the slot.
Save the scene.10.
Open Build Settings, add the Splash scene to the build, and ensure that it is the11.
first scene, as follows:

Adding the Splash scene to the build

Mixing in Mixed Reality Chapter 10

[225]

Go ahead, connect, build, and run. You will now be taken to location as12.
identified by the Location service, that is, if you allow the service to connect.

Fixing the altitude issue
You may notice an issue if you live above 500 meters above sea level. This issue happens
because our AR camera is fixed at 500 meters altitude. The problem is that we have our AR
camera at a fixed height; we now need to adjust that based on the camera's altitude. Open
back up the editor and complete the following:

Create a new C# script and replace the code with the following:1.

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

namespace Packt.HoloCore
{
 public class SceneCameraMover : MonoBehaviour
 {
 void Awake()
 {
 var altitude =
SceneController.Instance.position.GetAltitude();
 transform.position = new Vector3(0f, (float)altitude, 0f);
 }
 }
}

This script creates a new class called SceneCameraMover. The job2.
of SceneCameraMover is to move the AR camera into position when the view
switches to AR / MR.
Save the script and return to Unity.3.
Open the Main scene from the Assets/HoloCore/Scenes folder.4.
Expand HoloKitCameraRig and select VideoSeeThroughCamera. Then, add the5.
script to the component using Add Component and searching for
SceneCameraMover.
Set the Transform on the HoloKitCameraRig to 0, 0, 0. We will now let the script6.
move the camera to the position we need.

Mixing in Mixed Reality Chapter 10

[226]

Save the scenes and project.7.
Connect, build, and run. Go to an area that is well above sea level, say the8.
mountains, and switch to AR / MR view. The camera should now position itself
correctly based on the altitude you were viewing the scene at.

Ensure that you explore other areas of interest around the world. In the next section, we
will finish up the chapter and our discussion of AR and ARCore with the next steps, and
we'll see where you can go to build your own incredible tech demo or commercial app.

The online example demos from WRLD recommend using an alternate
streaming camera for AR visuals in ARCore or ARKit apps. However, we
found that adding an alternate camera, alongside the already two
additional cameras for the HoloKit, caused the app to be more unstable
than it already can be. If you don't plan to use MR or HoloKit, you likely
want to experiment with the alternate streaming camera.

What's next?
The tech demo we developed is an excellent example of the possibilities of integrating
technologies across user experiences. This has already been done extensively, and one
popular example is Pokemon Go. In fact, you can say that Pokemon Go put AR into our
vocabulary. So what is the next big AR app you will develop with ARCore? Are you still
trying to think of some ideas or possibilities? The following is a list of app ideas or
industries that are investing heavily in AR right now:

Entertainment (Games): Gaming and entertainment is the most competitive
space you can be in. Developing an app for this space requires hard work and a
bit of luck. There have been some grand successes in this space, but that was after
some hard work and considerable backing.
Healthcare (Emergency services): The healthcare industry is diving into the AR /
MR and VR world in full force. Since this industry is heavily funded, it is now a
leader in these technologies. If you want to get into cutting-edge reality
development, this is the space to be in. It can be more difficult to get into, since
this industry has traditionally been more isolated, but now there are plenty of
opportunities with the explosion of growth.

Mixing in Mixed Reality Chapter 10

[227]

Marketing (Retail): As AR becomes more mainstream and readily available, we
will come across new apps developed in this space. There have already been
some great novel concepts used to encourage sales, which have worked, except
that AR has become something of a novelty in this space as of late. However, if
you talk to anyone in marketing, they will agree that some day a majority of
advertising will be provided via AR. Until then though, perhaps you can think of
the next great app that will sell hamburgers.
Education (Knowledge transfer): This is another really big industry that can be
hard to get into, that is, if you are planning to put your app in a classroom.
Alternatively, you can build an educational app that perhaps teaches you how to
cook but is delivered through an app store. Either way, this can be a difficult
industry to get into but very rewarding, especially if you like teaching or
learning.
Military: It's very difficult to get into, unless you have a military background or
other established credentials. This likely means a strong educational background
as well. This is an interesting industry if you can get in, and is certainly not for
everyone. If this is your choice though, you will most certainly be working on
cutting-edge apps or tools.
Travel & tourism (History): This one crosses over with education, as some of the
same principles may apply. Perhaps, it is showing someone a historical battle
over the area where the real battle took place. There are plenty of opportunities
for developers of all skill levels to work in this area building AR / MR apps.
Design (All): This one can tie in a lot with retail applications. Perhaps
demonstrating an outfit overlaid onto someone's body or trying to determine
whether a chair works in a room. We put this further down in the list because our
expert survey listed this one lower as well. However, as we demonstrated,
ARCore has plenty of great design applications.
Industrial (Manufacturing): Applications of AR can help human users as well as
provide better foundations for future automation of systems or other processes.
This means that the AR systems we build for humans now will also help us make
the manufacturing robots of the future smarter.

Mixing in Mixed Reality Chapter 10

[228]

Automotive: We have already seen AR system in automobiles for a few years
now. From heads-up displays to GPS devices, this industry has already embraced
AR, although it isn't likely that developing an embedded AR app for this
industry makes a lot of sense. Most users, drivers, would likely prefer to use an
AR off their device. Perhaps it makes more sense for the automotive industry to
provide a docking station for a mobile device in vehicles with an AR interface?
Music: Think of this as more for the musician and not the audience. This is a set
of AR tools that help musicians compose and work with music. Not for everyone
and not well suited to ARCore, perhaps they will embed voice recognition or
other audio recognition into ARCore someday.

Whatever you plan to build as your next app, we sincerely wish you the best of luck and
would eagerly like to hear about any great apps. Be sure to contact the author with your
great app concepts.

Exercises
Complete the following exercises on your own:

Go back to the HoloCore example and track the user's position with a block or1.
sphere. Hint—the first part of this example is in the code download.
Track the user's position as they move on the map. Hint—you will now need to2.
update the user's position from the most recent GPS readings.
Track multiple users' positions around you. Hint—you can use the Firebase3.
Realtime Database to track the user's position in geographic coordinates.

Mixing in Mixed Reality Chapter 10

[229]

Summary
For this chapter, we diverted away from AR a little and explored mixing augmented and
mixed reality. We discovered that we can easily experience mixed reality apps with a
simple device called a HoloKit or other cheap headset. ARCore tracks the user well and is a
great fit for adding the MR experience. Who knows, in the future when everyone is wearing
MR glasses, will we even distinguish AR and MR as different? We then set up the HoloKit
template app and went to work building a quick MR demo. After that, we expanded on our
demo by adding in WRLD. WRLD, as we learned, is a fun and easy-to-use API that can
quickly give us some large-scale impressive 3D scenery that is representative of the user's
area. From there, we developed a number of scenes for all the users to move a map touch
interface to a full mixed-reality view of the map, where we were able to obtain the user's
geographic coordinates from their device's GPS and put them at the same position in
WRLD. Finally, we looked to the future and industries that you can focus your app
development skills on.

We complete our journey in the next chapter with a discussion of performance and
troubleshooting, both of which will be helpful as you grow your skills to become a better
AR developer.

11
Performance Tips and

Troubleshooting
This will be the end of our journey of exploring ARCore and augmented reality. In this
chapter, we will look at general performance tips for AR and mobile apps specifically. Then,
we will cover a number of troubleshooting solutions to use when and/or if you encounter
any problems. We will speak about the possible specific issues you may encounter as well
as more general patterns to follow if you encounter problems. Here's a summary of the
main topics we will cover in this chapter:

Diagnosing performance
Chrome DevTools
Android Profiler
Unity editor

Tips for better performance
General troubleshooting
Troubleshooting tips

As you likely have already noted many times throughout this book, AR apps require a high
level of performance in order to provide a compelling user experience. In the next section,
we will look at how we can diagnose performance with each of our platforms.

Performance Tips and Troubleshooting Chapter 11

[231]

Diagnosing performance
In this section, we will look at the specific steps you will need to take in order to diagnose
performance for each of our development platforms (web, Android, and Unity). It is often
easy to lose track of performance, especially when working with new or unfamiliar
technologies. Therefore, you often want to include some form of performance assessment as
part of your development process, perhaps even implementing some minimum frame rate
warnings for when your app is rendering at subpar performance or frame rates. Before we
get into designing a performance test though, we want to understand how to track
performance in each platform, starting with the web using Chrome DevTools in the next
section.

Chrome DevTools
One of the pleasures you will have when developing web projects with ARCore is the ease
of debugging with Chrome. In fact, if you were doing a comparison, web project
performance tooling would be ranked #2 on our platform list due to the capabilities
of Chrome DevTools. Let's open up the spawn-at-surface.html web example from
Chapter 5, Real-World Motion Tracking, and perform the following steps:

Start http-server on port 9999 in the Android folder, just like we1.
did previously.
Pick an endpoint that matches your local network and write or copy it for later.2.
Remember that your device and development machine need to be on the same
network for this to work.
Launch the WebARCore app on your device and navigate to your selected3.
endpoint. This will often look something like http://192.168.*.*:9999,
where the *.* will be replaced by your development machine's specific IP.
With WebARCore, navigate to http://[YOUR4.
IP]:9999/three.ar.js/examples/spawn-at-surface.html.
Connect your device to your dev machine, either remotely or with a USB cable.5.
Return to your machine and launch Chrome. Open the Developers tools with6.
Ctrl + Shift + I (command + option + I on Mac).
Click on the Remote Devices tab and select your device. Then, click on the7.
Inspect button to open another Chrome window with WebView of the app
running on your device.

Performance Tips and Troubleshooting Chapter 11

[232]

Click on the Performance tab and then select the Record button to start Profiling,8.
as shown in the following screenshot:

Starting performance profiling with DevTools

Let the app run in your device with the Profiler running for around 30 seconds9.
and then click on Stop. After you stop capturing the data, a profile session will
expand in the Timeline window.

If you find that the Profiling session keeps crashing, disable the
Screenshots feature by unchecking the box at the top of the window.

Performance Tips and Troubleshooting Chapter 11

[233]

Click on the Call Tree tab at the top of the Summary window, as follows:10.

Profile session timeline

The Call Tree tab is where you can quickly identify function calls or sections of11.
code that may be causing performance issues. In our example, we have drilled
into the update function and can see that the bulk of the time spent inside this
function is building the projection matrix with a call to
updateProjectionMatrix. Since this call resides within the three.ar.js
library, it is not something we will concern ourselves with.
Feel free to continue testing and profiling. Try setting several Andy models and12.
see what impact this has on performance.

With any performance profiling, the thing you will want to quickly identify is spikes or
areas where you see data peak. Identifying why these spikes take place will help you
understand what activities can impact performance. Placing an Andy, for instance, will
cause a spike due to the instantiation of a model into the scene. You will also want to closely
watch how the app recovers from a spike. Does the app, for instance, fully recover, or only
recover partially?

Performance Tips and Troubleshooting Chapter 11

[234]

If you are transferring data or doing AJAX calls in your web app, then you
will also want to monitor Network performance. The Network tab has a
tool interface similar to that of the Performance tab.

After identifying spikes, you will want to expand your view to cover the whole session.
Then, you can expand the Call Tree and identify the most time-consuming methods.
Chances are that if your app is spending 80% of its time in a single function, then you need
to be very careful about what operations take place in that function. Finding and optimizing
expensive methods can often get you very quick gains in app performance. While the tools
are different, the same principles apply for all our development platforms.

We have just started to scratch the surface for what is possible with the DevTools. If you are
doing any amount of web development, you will quickly get up to speed with these tools.
In the next section, we will cover the Android profiling tools.

Android Profiler
Android Studio has great performance profiling tools; after all, it provides the closest metal-
to-metal interface with your mobile Android device. However, it is not as simple to use as
the DevTools and therefore comes a close third in comparison to other profiling tools. We
will use one of the sample Android projects we worked with. Open up Android Studio and
either of the java_arcore_hello_ar or android (TensorFlow example) sample
projects, and perform the following steps:

Connect your device and build the app to your device. Wait for the app to start1.
running on the device.

Performance Tips and Troubleshooting Chapter 11

[235]

From the menu, select View | Tool Windows | Android Profiler. This will open2.
a profiling tool window, as shown in the following screenshot:

Android Profiler capturing a real-time session

As the app runs, watch the MEMORY and CPU usage. You can click on any3.
point in the plots in order to expand the view and look at the call stack and
various other views of the code execution, as illustrated in the following
screenshot:

Performance Tips and Troubleshooting Chapter 11

[236]

Inspecting the real-time profiling session

You can also record sessions for later inspection by pressing the Record button at4.
the top of the Profiler window.

At this point, you can look for performance spikes or the general overall performance of
various function calls using Android Profiler, just like you did with Chrome. The Android
tools are more difficult to learn and use, but they're well worth the effort if you are doing
any serious Android/Java development. In the next section, we look at our final way to
profile performance, with Unity.

Unity Profiler
Unity is a powerful tool with a very powerful profiler tool that is a pleasure to work with
and explore, not just for profiling, but it also provides an insight into the inner workings of
Unity. Open up the Unity editor to one of the sample projects we have worked with. For
this example, we will use HoloCore from Chapter 10, Mixing in Mixed Reality, but feel free
to use another app if you prefer. With the editor open, perform the following steps:

From the menu, select Window | Profiler. The window will open undocked.1.
Drag the window over by the tab and drop it beside the Game window tab to
dock it on the right. Normally, we would dock the Profiler beside the Inspector
so that you can watch the profiling while running a game in the editor. Since we
can't run ARCore apps in the editor, for now, we will give the Profiler more
room by docking it next to the Game window.

Performance Tips and Troubleshooting Chapter 11

[237]

Open the Build Settings dialog and check whether the Development Build and2.
Autoconnect Profiler settings are enabled, as shown in the following screenshot:

Setting Development Build settings

Performance Tips and Troubleshooting Chapter 11

[238]

Connect your device with a USB, build, and run. Leave the app running on your3.
device.
Return to the editor and open the Active Player dropdown and select4.
AndroidPlayer(ADB@127.0.0.1:someport), as shown here:

Unity Profiler capturing session from Android device

Performance Tips and Troubleshooting Chapter 11

[239]

Click on one of the spikes, as shown in the preceding screenshot. With the CPU5.
panel selected, direct your attention to the bottom Details panel.
Use the dropdown to select Timeline, as follows:6.

Inspecting the details of a profiling session

There is plethora of useful information here, and it can certainly be7.
overwhelming at first. Fortunately, the Unity interface is self-documenting, and
you can quickly get a sense of what is good or bad. We will go over what areas to
watch for in more detail later, but for now, pay attention to the Rendering time
and Total Allocated Memory. For rendering times, you will usually see a number
in ms or milliseconds in time and FPS or frames per second. A good rule is to
ensure that your frame rate stays above 30 FPS. A memory can equally be critical
when building for mobile apps.
When you are profiling, put the app under stress by changing between reality8.
modes, if you are using HoloCore, for instance. Then, continue drilling into the
various detail panels and watch how values change at various points of the app
session.

Performance Tips and Troubleshooting Chapter 11

[240]

The Unity tools provide the most powerful and intuitive interface for profiling your app.
While we barely scraped the power of all the tools we looked at, you will note that they all
bear a strong resemblance. Of course, this is not by accident and after you learn the ins and
outs of performance profiling an app on one platform, a number of those skills will carry
over. In the next section, we will look at a list of tips for better app performance.

Tips for managing better performance
Now that we have a grasp on how to profile our apps, let's take a look at the primary items
that will impact performance. The order of these items is ordered by general importance,
but the individual requirements of your app may alter these priorities. Feel free to consult
the following checklist the next time you need or want to profile your app:

Rendering (includes all CPU and memory resources responsible for rendering
a frame):

Render loop (CPU performance): Check the timing of the render
function and watch for any expensive calls. Ensure that you
minimize any object instantiation, logging, or inner loops.
Remember that the render function, typically called Update, will
be called 30 times per second or more. All the tools we looked at
will let you perform this vital task.
Frame rate (render time): Outside of optimizing your code, the
frame rate will often be dictated by the complexity and number of
objects we are rendering. As such, you may want to go as low as
optimizing shaders, but many times, you can get great
performance gains by reducing the number of triangles or
complexity of your models. In a mobile app, this means looking for
low poly simple models as assets. Another useful option is to build
various Levels Of Detail (LOD) for your model and use the
appropriate version for the appropriate detail level. Unity provides
an excellent set of free and paid assets for LOD optimization that
can make this task easy.
Lighting and materials: Not only will the complexity of a model
impact performance but also the textures or materials (shaders)
and lights you are using to render the model. Ensure that you limit
the size of textures or ensure that all your shaders have a fallback
or simplification. You will also want to simplify lighting where
possible.

Performance Tips and Troubleshooting Chapter 11

[241]

Memory (graphics): As a general rule, the more memory your app
is using, the more expensive a frame will be to render. Of course,
there are exceptions, but watching the memory can pinpoint
potential issues or even memory leaks. A high memory will often
point to models, textures, or other assets that may need
optimization.

Loading (the process of adding, replacing, or updating new content in the
scene):

Object instantiation: Large complex meshes with multiple detailed
textures will require extra load times. You will often want to cache
or preload objects in order to reduce interruptions during loading.
For most of our examples, this wasn't an issue, but a good example
of where this was a problem was in Chapter 10, Mixing in Mixed
Reality, where we used the 3D map.
Streaming: Streaming is a great way to load media resources such
as audio or video to play just the content you need. In Unity,
setting a resource to stream instead of loading completely is fairly
easy and can be done at the resource definition, as shown in the
following screenshot:

Enabling streaming on an audio resource

Performance Tips and Troubleshooting Chapter 11

[242]

Garbage collection: All of our platforms manage object lifetime
through some form of garbage collection while the app is running.
Keeping the number of objects you create and destroy to a
minimum will alleviate pressure on the GC. If the GC fills up
quickly, this will often trigger an expensive collection operation,
which may freeze your app. You can reduce object instantiation
and collection by creating object pooling. Object pooling is where
you keep a stock of objects in memory, adding and removing
objects from the scene as you need.

Interaction (includes any activity by the user or the environment, be it physical
or artificial):

Environment detection: This is a requirement more specific to AR
apps and crucial to ARCore. If you are planning to augment
detection of point clouds or planes, ensure that you optimize this
code as much as possible.
Object interaction (physics): Limit the number of objects that you
need to test for ray casting or collisions. You can do this by tagging
your objects and then filter the tags. In Unity, this feature is built
in, but it is fairly easy to implement for other platforms.
AI (machine learning): If your app needs to do any AI for an non-
player character (NPC) or other agent, then you may want to limit
any expensive calls for AI or learning. Instead of running your AI
for every frame, you may want to limit it to every fifth or tenth
frame, for instance. Often, this has the added benefit of making the
AI more realistic or smarter, since it appears to think for a short
period before action.

The preceding list is a good place to start when looking for possible performance problems,
and it should suit you well as a guide for any platform you need to profile. In the next
section, we will cover some general troubleshooting tips that you can use for each platform
when developing.

Performance Tips and Troubleshooting Chapter 11

[243]

General troubleshooting
We learned the basics of the debugging process for each platform, but we never covered
any techniques for debugging or troubleshooting. Just like profiling, there is a basic guide
or list that you can follow to make you more efficient when troubleshooting. Use the
following list of steps to help you troubleshoot your next issue:

Console: The first place to look is for any errors that are being reported to the1.
console. All our platforms provide a console, and you should be familiar with
accessing it on your platform of choice. Does the error make sense? Are you able
to pinpoint the section of code or item causing the issue?
Google: If you see an obscure console message and are not quite sure what it2.
does, then Google it. You don't want to Google the entire message, but just
extract five or six key words in the phrase and use those. You may also want to
add words to cover your platform; for instance, Java, Android, or, Unity C#.
Logging: Instrument your code by injecting logging statements in key areas of3.
your code. If your code is not reporting errors to the console, put in logging to let
you know where the code flows. This can help you determine if and when key
sections of code are being run.
Replicate: Isolate the problem and try to replicate it in a new project or test app.4.
If you are unable to isolate the code, you have a bigger issue, and you should
probably refactor. Generally, unless the issue requires a workaround or is
something more serious, replicating the project can solidify your understanding
of the issues. Replicating an issue cannot only help you solve the problem, but it
can also help you refactor and clean your code.
Post it: If you still don't have a resolution after replicating the problem then look5.
for the appropriate forum and post your issue. Ensure that you provide your
replicated sample when you post your issue. It will often be the first thing
someone will likely ask you for, especially if the problem is complex. Also,
showing that you spent time replicating the problem will make your post more
credible and avoid the wasted time of responding to simple questions.
Work around it: If you can't resolve your issue, then work around it. Sometimes,6.
resolving your issue is not possible or just too expensive and time consuming.
Then, you will need to come up with another way to either build the feature or
alter it. This will often require going back to the designer or visionary, if your
project has one, and consulting them for some possible workarounds.

Performance Tips and Troubleshooting Chapter 11

[244]

The preceding list is again a good place to start when you encounter an issue. If you have
been developing software for some time, you will likely have your own process, but the
preceding list is probably not much different from yours.

Troubleshooting code
For those of you with less experience in troubleshooting code, follow this simple exercise:

Open the Unity editor to a new blank project and starting scene.1.
Create a Cube object in the scene.2.
Select the Cube and in the Inspector window, click on Add Component. Select3.
New Script and the set the name to Test and then click on Create and Add to
add the script to the object, as follows:

Creating a new script with Add Component

This will create a script in the root Assets folder. It's not the best place to drop a4.
script, but this method is useful for creating quick test scripts.

Performance Tips and Troubleshooting Chapter 11

[245]

Try to avoid writing replication/test or proof of concept code in your main
development project. Keep your main project as clean as possible. If you
are building anything commercial, you will most certainly want to go
through the extra effort of validating every asset or resource in your
project or at least the ones you are responsible for. It is a useful team
exercise to go through your references and assets on a regular basis,
perhaps once a month or more frequently if you are making multiple
changes.

Open the Test script in an editor of your choice and add the following5.
highlighted lines of code:

using UnityEngine;
public class Test : MonoBehaviour {
 public GameObject monster; //add me
 // Use this for initialization
 void Start () {

 }

 // Update is called once per frame
 void Update () {
 if(monster.transform.position.x > 5) //and add this section
 {
 Destroy(this);
 }
 }
}

This script simply tracks a GameObject called monster and determines when its6.
x position exceeds 5. When it does, the script destroys its parent object with
Destroy(this).
Save the file and return to Unity.7.
Add another Cube to the scene and rename it to Monster.8.
Press the Play button at the top of the editor to start the scene.9.
Click on the Console window to bring it to the top. Watch the stream of errors, as10.
illustrated in the following screenshot:

Performance Tips and Troubleshooting Chapter 11

[246]

Console window showing a stream of errors

So, the general error message we are seeing is UnassignedReferenceException.11.
Quickly Google that text to see what comes back in the results. Did that give you
any more insights other than the message on the Console?

Chances are that you may have already solved the issue, but let's continue as if we are still
stumped. Say, for instance, the Google result was far less helpful. Follow along to continue
our troubleshooting (debugging) process:

Our next step is logging. Add the following line of code just inside the Update1.
method:

Debug.LogFormat("Monster is at position ({0})",
monster.transform.position);

This line of code outputs a debug message to the Console.2.
Of course, running the code again will replicate the same issue, which also means3.
that you just replicated the problem, and cover the next step in a single line of
code.

While logging is good, it can also be bad, for performance and anyone
trying to hack your game. You can usually control the level of logging you
want to output for each environment. As a general rule though, try to
avoid excessive logging unless the information is required or useful.

Performance Tips and Troubleshooting Chapter 11

[247]

At this point in our example, it should be self-explanatory as to what the issue is, but of
course, this isn't always the case. When that happens, if you have exhausted all other paths,
then post the problem to an appropriate forum. If nothing comes back in time, then you
may need to move on and work around the problem. Strangely enough, it is often not
unusual to be halfway through writing a workaround to realize your mistake. It happens,
and the best advice is to just move on. Failure is a great way to learn and the more you fail,
the more you learn.

In Canada, you are taught how to winter drive in the ice and snow by going out to a
parking lot and spinning around and losing control. While this can certainly be lot of fun, it
teaches the driver how to lose control under controlled poor weather conditions. This not
only gives the driver more confidence, it also reinforces how to control a vehicle when it
loses traction under high speeds. Then, when the driver does lose control, they can attempt
to avoid or minimize damage. Unit testing your code is not like learning how to winter
drive. It tests the limits of your code so that you can be sure what will happen if something
works or fails.

Most developers struggle with the concept of adding unit test code to their game or
graphics projects. In fact, the practice is discouraged by the lack of tools or knowledge
available. Unit testing or rigorously testing your code is never a waste of time, and using a
testing framework for your platform will go a long way to make this an easier task. Now
whether you decide to write unit tests for your code or not is up to you, but you should
learn how to unit test. The practice of just learning how to test your code will open your
eyes to a world of possibilities.

The more you code and develop games or other applications, the better you will get at
troubleshooting errors. There is no substitute for practical experience. In the next section,
we will look at more specific troubleshooting items that you may have encountered during
the course of the book.

Exercises
Complete the following exercises on your own:

Alter the if statement that checks the monster's position so that the code avoids1.
the error entirely.
Are you able to fix the unassigned reference issue in code? Hint—check out the2.
GameObject.Find method.
Write a monster script that moves its block using the keyboard or mouse as input.3.

Performance Tips and Troubleshooting Chapter 11

[248]

Troubleshooting tips
There is a lot that can go wrong when working with any new technology, not only because
of your lack of familiarity, but it may also happen that the technology may not be prepared
to do all the things it claims it can do. Here's a table of common issues you may encounter
while working through the book:

Platform Issue Resolution

Web
Unable to load
page or find
server

Check whether you are using the correct endpoint for your
machine. If you have a few choices, try a different option.
Confirm that your system does not have a firewall running
that could be blocking the communication. Try disabling
your firewall (temporarily) and try again. If this resolves the
issue, then make an exception in your firewall for port 9999
or whatever port you used.

Web

ARCore
displays an
error message
on the page

Ensure that the ARCore service is installed and you are
using the WebARCore enabled browser for your platform.

Web Missing
references

Ensure that you check that the path you are using to load
content or scripts is correct. You can do this easily in
Chrome by checking the Sources tab.

Android
Unable to build
or missing
references

Android Studio is very helpful, but it sometimes needs to
load a lot of references. In this case, you just need to be
patient and load everything the project requires. If you are
building your project from scratch, you will need to refer to
a good tutorial on Android project setup to do it right. If
you find that you are still missing references, then create a
new project and try again.

Android/Unity
Unable to
connect to
device

This rarely happens anymore, but it can happen on
occasion. Unplug and plug your device back in or run adb
devices at a console or shell window. If you are
connecting remotely, you may have to reconfigure the
device by reconnecting the USB and resetting the
connection.

Performance Tips and Troubleshooting Chapter 11

[249]

Unity

All compiler
errors have to
be fixed before
you enter the
play mode

Check the console for any red error messages. Double-click
on any messages to be taken to the syntax error in the code.
Do your best to resolve or remove the syntax error.

Unity Unable to build Check for any compiler errors and ensure that your scenes
are added to the build with the Build Settings dialog.

Unity Build stalls

If you are connected to a device and the cable
disconnects momentarily, this can cause the build to lock
or just stop. Usually, just clicking on Cancel will exit the
build process, and you can just start again. On occasion,
very rarely, you may need to restart Unity.

The preceding table should help you resolve more of the common show stopper issues you
may encounter while traversing the book. If you encounter something outside this list,
certainly consult Google or your other favorite search engine. You will often find that just
rebuilding the project will teach you where you went wrong.

Summary
This is the last chapter of our book, and we spent our time well, learning about performance
and troubleshooting. We first covered the use of the various performance profiling tools
you may use for each of our platforms. Then, we covered a set of very basic tips for
increasing your app's performance, which covered everything from frame rate to asset size.
This led us to cover tips for troubleshooting basic problems and, more specifically, coding
issues. We finished off with a table of helpful troubleshooting tips that you can use to
consult if you encounter more specific troublesome problems.

Now that you have completed this book, you have just started your journey into
discovering AR and MR. There are plenty of more good books from Packt on AR, web
development, Android development, and, of course, Unity. Readers are also encouraged to
seek out your local meetups on AR/VR or if there is none, create their own. Seeing what
others are doing for AR or even VR development can encourage new ideas and best
practices. We all, really are, just beginning an exciting journey into a new computing
interface that will radically change our lives in the years to come. With the ongoing
development of wearable mainstream commercial glasses coming around the corner, you
should also be poised for many more changes to come in AR.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Augmented Reality for Developers
Jonathan Linowes, Krystian Babilinski

ISBN: 978-1-78728-643-6

Build Augmented Reality applications through a step-by-step, tutorial-style
project approach
Use the Unity 3D game engine with the Vuforia AR platform, open source
ARToolKit, Microsoft's Mixed Reality Toolkit, Apple ARKit, and Google ARCore,
via the C# programming language
Implement practical demo applications of AR including education, games,
business marketing, and industrial training
Employ a variety of AR recognition modes, including target images, markers,
objects, and spatial mapping
Target a variety of AR devices including phones, tablets, and wearable
smartglasses, for Android, iOS, and Windows HoloLens
Develop expertise with Unity 3D graphics, UIs, physics, and event systems
Explore and utilize AR best practices and software design patterns

https://www.packtpub.com/web-development/augmented-reality-developers

Other Books You May Enjoy

[251]

Augmented Reality Game Development
Micheal Lanham

ISBN: 978-1-78712-288-8

Build a location-based augmented reality game called Foodie Go
Animate a player’s avatar on a map
Use the mobile device’s camera as a game background
Implement database persistence with SQLLite4Unity3D to carry inventory items
across game sessions
Create basic UI elements for the game, inventory, menu, and settings
Perform location and content searches against the Google Places API
Enhance the game’s mood by adding visual shader effects
Extend the game by adding multiplayer networking and other enhancements

https://www.packtpub.com/application-development/augmented-reality-game-development

Other Books You May Enjoy

[252]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

3
3D lighting 97, 98, 99, 100
3D rendering
 about 92, 93
 materials 96, 97
 shaders 96, 97
 test scene, building 93, 94, 95
 textures 96, 97
3D sound 59
3D
 about 50, 51
 left-handed coordinate systems 52, 53
 right-handed coordinate systems 52, 53
 rotation 53
 scale 53
 transformation 53

A
altitude issue
 fixing 225
Android Studio
 building 22, 24
 code, exploring 24, 25
 deploying 22, 24
 installing 17, 18, 19
 reference link 17
AR-enabled web browser
 samples, exploring 45, 46
ARCore applications
 about 8, 9
 approaches 12, 14
 building 32
 deploying, to Android 32
 environmental understanding 10
 light estimation 11
 motion tracking 9

 remote debugging 35, 36
ARCore Firebase project
 connection, testing 66
 database, setting up 65
ARCore project
 base scene, modifying 157, 159, 161
 scene, building 154, 156, 157
 setting up 152, 154
ARCore SDK
 installing 19, 28, 29, 31
ARCore service APK
 reference link 21
ARCore
 content, placing 161, 162, 163, 164, 165, 167
 environment, implementing 161, 162, 163, 164,

165, 167
 lighting 184, 185, 186, 187
 reference link 16
 service, installing on device 20, 21
 shadows 184, 185, 186, 187
 UI, building 167, 169, 170
 virtual interaction 173, 174, 175, 176, 177
aspect ratio 58
augmented reality (AR), industries
 automotive 228
 design (all) 227
 education (knowledge transfer) 227
 entertainment (Games) 226
 healthcare (emergency services) 226
 industrial (manufacturing) 227
 marketing (retail) 227
 military 227
 music 228
 travel & tourism (history) 227
augmented reality (AR)
 about 6, 8, 9
 switching, to mixed reality (MR) 207, 209

[254]

B
backward propagation 138
binaural sound 59

C
Cg shaders 104, 105, 106, 107

D
deep learning (DL)
 about 119, 120
 neural networks (NN) 121, 122
device
 ARCore service, installing 20, 21
drawing
 with OpenGL ES 82, 83

E
earth-centered, earth-fixed (ECEF) 216
environment
 interacting with 77, 79, 80
environmental lighting
 updating 111, 112
environmental understanding 10
epoch 144

F
Firebase
 reference link 64, 67
 tracking service 63

G
GIS 216, 217, 218, 220, 221
Git installation
 reference link 19
GL Shading Language (GLSL) 84
GPS 216, 217, 218, 220, 221
gradient descent 138
graphic processing unit (GPU) 84

H
High Level Shading Language (HLSL) 84
HLSL shaders 104, 105, 106, 107
HoloKit

 about 192, 193, 194
 setting up 194, 195, 196, 197
 working 198, 199

I
immersive computing 7
Integrated Development Environments (IDEs) 37

L
light direction
 estimating 108, 109, 110, 111
light estimation 11, 100, 101, 102, 103, 104
linear regression 118
Long Term Support (LTS) 43

M
Machine Learning (ML)
 about 114, 117
 environment detection 115
 face detection 114
 hand/gesture detection 114
 image recognition 114
 light source detection 114
 linear regression 117, 118, 119
 object detection 114
 person detection 114
 pose detection, on object 114
 target detection 114
map
 navigating 205, 206
mapping 216, 217, 218, 220, 221
meshing 10, 75, 76, 77
Mirage Solo 193
mixed reality (MR)
 about 6
 augmented reality (AR), switching from 207, 209
 WRLD, setting up for 202, 204
MobileNet 147
motion tracking 9, 56, 57, 58

N
network architecture
 activation function 142
 defining 142, 143, 144, 145

[255]

 hidden layers/neurons 142
 input neurons 142
 output neurons 142
 training method 142
neural networks (NN)
 about 119, 121, 122
 backward propagation 138, 139
 environmental scanner, adding 136, 137
 gradient descent 140, 141, 142
 network architecture, defining 142, 143, 144,

145

 normalized input 146, 147
 programming 123, 124
 scripting 124, 125, 126, 127, 128, 129, 130
 training 131, 132
 warning, activating 133, 134, 135
Node Package Manager (npm) 43, 45
Node.js
 installing 43, 44, 45

O
opaque 83
OpenGL ES
 drawing with 83
 used, for drawing 82

P
performance management
 tips 240, 241, 242
performance, diagnosing
 about 231
 Android Profiler 234, 235, 236
 Chrome DevTools 231, 232, 233, 234
 Unity Profiler 236, 238, 239
Physically-Based Rendering (PBR) 99
point cloud
 tracking 73, 74

Q
quaternion 56

R
rasterization 92
ray casting

 about 77
 example 78
red blue green alpha (RGBA) 89
reinforcement learning (RL) 119
remote debugging
 about 33, 34
 connection, testing 34, 35
remote web debugging set up, on Android device
 about 47
 Chrome Developer tools, connecting 47, 48
 debugging, with Chrome 49, 50
Resonance Audio 60

S
SceneSwitcher prefab
 creating 210, 211, 212
SceneSwitcher
 building 209
shader programming 84, 85, 86, 87
shader
 editing 87, 89
shadows
 about 184, 185, 186, 187
 turning on 187, 188, 189
Sigmoid function 132
Splash scene
 making 221, 223
supervised learning 119

T
TensorFlow 147, 148, 149
three.js 50, 51
touch gesture 80, 81
tracked motion
 visualizing 68
tracking service
 with Firebase 63
transparent 83
troubleshooting code 244, 246, 247
troubleshooting
 about 243
 tips 248, 249
TurboSquid 161

U
UI, ARCore
 buttons, scripting 170, 172
Unity 3D
 reference link 28
Unity Profiler 236, 238, 239
Unity
 code, exploring 37, 38
 installing 28, 29, 31
 Update method 38

V
virtual interaction, ARCore

 chair, positioning 180, 181, 182, 183, 184
 object outliner, building 177, 179, 180
visual-inertial odometry (VIO) 56, 72

W
WebARonARCore
 about 41, 42
 installing 41, 42
 reference link 42
Wrld map script
 modifying 213, 214, 215
WRLD
 about 199, 200, 201, 202
 setting up, for mixed reality (MR) 202, 204

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Immersive computing
	AR and ARCore
	Motion tracking
	Environmental understanding
	Light estimation

	The road ahead
	Summary

	Chapter 2: ARCore on Android
	Installing Android Studio
	Installing ARCore
	Installing the ARCore service on a device

	Build and deploy
	Exploring the code
	Summary

	Chapter 3: ARCore on Unity
	Installing Unity and ARCore
	Building and deploying to Android
	Remote debugging
	Testing the connection
	Remotely debugging a running app

	Exploring the code
	Unity Update method

	Summary

	Chapter 4: ARCore on the Web
	Installing WebARonARCore
	Installing Node.js
	The Node Package Manager

	Exploring the samples
	Debugging web apps on Android
	Connecting Chrome Developer tools
	Debugging with Chrome

	3D and three.js
	Understanding left- or right-handed coordinate systems
	3D scale, rotation, and transformation

	Summary

	Chapter 5: Real-World Motion Tracking
	Motion tracking in depth
	3D sound
	Resonance Audio
	A tracking service with Firebase
	Setting up the database
	Time to test the connection

	Visualizing tracked motion
	Exercises
	Summary

	Chapter 6: Understanding the Environment
	Tracking the point cloud
	Meshing and the environment
	Interacting with the environment
	Touch for gesture detection

	Drawing with OpenGL ES
	Shader programming
	Editing the shader

	Exercises
	Summary

	Chapter 7: Light Estimation
	3D rendering
	Building a test scene
	Materials, shaders, and textures

	3D lighting
	Light estimation
	Cg/HLSL shaders
	Estimating light direction
	Updating the environmental lighting

	Exercises
	Summary

	Chapter 8: Recognizing the Environment
	Introduction to ML
	Linear regression explained

	Deep learning
	Neural networks – the foundation of deep learning

	Programming a neural network
	Scripting the neural network

	Training a neural network
	Activating the warning
	Adding the environmental scanner
	Backward propagation explained
	Gradient descent explained
	Defining the network architecture
	The network view of the world
	Exercises

	TensorFlow
	Summary

	Chapter 9: Blending Light for Architectural Design
	Setting up the project
	Building the scene
	Modifying the base scene

	The environment and placing content
	Building the UI
	Scripting the buttons

	Interacting with the virtual
	Building the object outliner
	Positioning the chair

	Lighting and shadows
	Turning the shadows on

	Exercises
	Summary

	Chapter 10: Mixing in Mixed Reality
	Mixed reality and HoloKit
	Setting up HoloKit
	How does it work?

	Introducing WRLD
	Setting up WRLD for MR
	Navigating the map
	Switching from AR to MR
	Building the SceneSwitcher
	Creating the SceneSwitcher prefab
	Modifying the Wrld map script

	Mapping, GIS, and GPS
	Making the Splash scene
	Fixing the altitude issue

	What's next?
	Exercises
	Summary

	Chapter 11: Performance Tips and Troubleshooting
	Diagnosing performance
	Chrome DevTools
	Android Profiler
	Unity Profiler

	Tips for managing better performance
	General troubleshooting
	Troubleshooting code

	Exercises
	Troubleshooting tips
	Summary

	Other Books You May Enjoy
	Index

