

Java: High-Performance Apps
with Java 9

Optimize the powerful techniques of Java 9 to boost
your application's performance

Mayur Ramgir

Nick Samoylov

BIRMINGHAM - MUMBAI

Java: High-Performance Apps with Java 9

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2018

Production reference: 1080318

Published by Packt Publishing Ltd.
Livery Place, 35 Livery Street
Birmingham B3 2PB, UK.

ISBN: 978-1-78913-051-5

www.packtpub.com

Credits

This book is a blend of text and quizzes, all packaged up keeping your journey in
mind. It includes content from the following Packt product:

•	 Java 9 High Performance by Mayur Ramgir and Nick Samoylov

Meet Your Experts
We have the best works of the following esteemed authors to ensure that your
learning journey is smooth:

Mayur Ramgir has more than 16 years of experience in the software industry,
working at various levels. He is a Sun certified Java programmer and Oracle certified
SQL database expert. He completed an MS in computational science and engineering
at Georgia Tech, USA (rank 7th in the world for computer science), and an M.Sc.
in multimedia application and virtual environments at University of Sussex, UK.
He has also attended various universities for other degrees and books, such as MIT
for applied software security, and University of Oxford for system and software
security. He is the CEO of a software company, Zonopact, Inc. headquartered in
Boston, USA, which specializes in bringing innovative applications based on AI,
robotics, big data, and more. He has single-handedly developed Zonopact's flagship
product, Clintra (B2B-integrated AI-assisted business management software). He is
also the inventor of two patent pending technologies, ZPOD (an automated cloud-
based medical kiosk system) and ZPIC (an AI-enabled robotic in-car camera system).

Nick Samoylov is graduated as an engineer-physicist from Moscow Institute of
Physics and Technologies and has even worked as a theoretical physicist. He has
learned programming as a tool for testing his mathematical models using FORTRAN
and C++. After the demise of the USSR, Nick created and successfully ran a software
company, but was forced to close it under the pressure of governmental and criminal
rackets. Nick adopted Java in 1997 and used it for his work as a software developer-
contractor for a variety of companies, including BEA Systems, Warner Telecom,
and Boeing. Nick's current projects are related to machine learning and developing
a highly scalable system of microservices using non-blocking reactive technologies,
including Vert.x, RxJava, and RESTful web services on Linux deployed in a cloud.

[i]

Table of Contents
Preface	 v

Lesson 1: Learning Java 9 Underlying Performance
Improvements	 1

Introducing the New Features of Java 9	 2
Modular Development and Its Impact	 2

Quick Introduction to Modules	 7
String Operations Performance	 10

Compact String	 11
The World of Heap	 11

Why Bother Compressing Strings?	 12
What Did They Do?	 12
What is the Escape Route?	 13
What is the Performance Gain?	 13

Indify String Concatenation	 13
Invokedynamic	 16

Storing Interned Strings in CDS Archives	 18
Concurrency Performance	 18
Compiler Improvements	 20

Tiered Attribution	 20
Ahead-of-Time Compilation	 20

Security Manager Improvements	 21
Graphics Rasterizers	 23
Summary	 23
Assessments	 24

Table of Contents

[ii]

Lesson 2: Tools for Higher Productivity and Faster Application	 25
The JShell Tool Usage	 25

Creating a JShell Session and Setting Context	 26
JShell Commands	 30

Ahead-of-Time (AOT)	 40
Static versus Dynamic Compilation	 41
The AOT Commands and Procedures	 42

Summary	 45
Assessments	 45

Lesson 3: Multithreading and Reactive Programming	 47
Prerequisites	 48
Thread Pools	 54
Monitoring Threads	 62
Sizing Thread Pool Executors	 73
Thread Synchronization	 75
Tuning JVM	 83
Reactive Programming	 87
Summary	 94
Assessments	 95

Lesson 4: Microservices	 97
Why Microservices?	 98
Building Microservices	 101
Container-Less Deployment	 124
Self-Contained Microservices	 126
In-Container Deployment	 127
Summary	 129
Assessments	 130

Lesson 5: Making Use of New APIs to Improve Your Code	 131
Filtering Streams	 132

Basic Filtering	 132
Using Other Stream Operations for Filtering	 137

Table of Contents

[iii]

Stack-Walking APIs	 144
Stack Analysis before Java 9	 145
New Better Way to Walk the Stack	 147

Convenience Factory Methods for Collections	 151
Why New Factory Methods?	 152
The New Factory Methods in Action	 160

CompletableFuture in Support of Asynchronous Processing	 163
The CompletableFuture API Overview	 163
The CompletableFuture API Enhancements in Java 9	 166
The Problem and the Solution using Future	 166
The Solution with CompletableFuture	 171
Other Useful Features of CompletableFuture	 173

Stream API Improvements	 176
Summary	 178
Assessments	 178

Appendix: Assessment Answers	 181

Chapter No.

[v]

Preface
This book is about Java 9 which is one of the most popular application development
languages. The latest released version Java 9 comes with a host of new features
and new APIs with lots of ready to use components to build efficient and scalable
applications. Streams, parallel and asynchronous processing, multithreading, JSON
support, reactive programming, and microservices comprise the hallmark of modern
programming and are now fully integrated into the JDK.

So, if you want to take you Java knowledge to another level and want to improve
your application's performance, you are in the right path.

What's in It for Me?
Maps are vital for your journey, especially when you're holidaying in another
continent. When it comes to learning, a roadmap helps you in giving a definitive
path for progressing towards the goal. So, here you're presented with a roadmap
before you begin your journey.

This book is meticulously designed and developed in order to empower you with all
the right and relevant information on Java. We've created this Learning Path for you
that consists of five lessons:

Lesson 1, Learning Java 9 Underlying Performance Improvements, covers the exciting
features of Java 9 that will improve your application's performance. It focuses on
modular development and its impact on an application's performance.

Lesson 2, Tools for Higher Productivity and Faster Application, describes two new
tools added in Java 9--JShell and Ahead-of-Time (AOT) compiler--that boost your
productivity and also improve the overall performance of your applications.

Lesson 3, Multithreading and Reactive Programming, shows how to monitor Java
applications programmatically using command-line tools. You will also explore how
to improve the application performance via multithreading and how to tune the JVM
itself after learning about the bottlenecks through monitoring.

Lesson 4, Microservices, describes the solution many leaders of the industry have
adopted while addressing flexible scaling under the load. It talks about adding
more workers by splitting the application into several microservices, each deployed
independently and each using multiple threads and reactive programming for better
performance, response, scalability, and fault-tolerance.

Preface

[vi]

Lesson 5, Making Use of New APIs to Improve Your Code, describes improvements
in the programming tools, including stream filters, a stack-walking API, the new
convenient static factory methods for creating immutable collections, a new powerful
CompletableFuture class in support of asynchronous processing, and the JDK 9
stream API improvements.

What Will I Get from This Book?
•	 Familiarize with modular development and its impact on performance
•	 Learn various string-related performance improvements, including compact

string and indify string concatenation
•	 Explore various underlying compiler improvements, such as tiered

attribution and Ahead-of-Time (AOT) compilation
•	 Learn security manager improvements
•	 Understand enhancements in graphics rasterizers
•	 Use of command-line tools to speed up application development
•	 Learn how to implement multithreading and reactive programming
•	 Build microservices in Java 9
•	 Implement APIs to improve application code

Prerequisites
This book is for Java developers who would like to build reliable and
high-performance applications. Some of the prerequisites that is required
before you begin this book are:

•	 Prior Java programming knowledge is assumed

[1]

Learning Java 9 Underlying
Performance Improvements

Just when you think you have a handle on lambdas and all the performance-related
features of Java 8, along comes Java 9. What follows are several of the capabilities
that made it into Java 9 that you can use to help improve the performance of your
applications. These go beyond byte-level changes like for string storage or garbage
collection changes, which you have little control over. Also, ignore implementation
changes like those for faster object locking, since you don't have to do anything
differently and you automatically get these improvements. Instead, there are new
library features and completely new command-line tools that will help you create
apps quickly.

In this lesson, we will cover the following topics:

•	 Modular development and its impact on performance
•	 Various string-related performance improvements, including compact string

and indify string concatenation
•	 Advancement in concurrency
•	 Various underlying compiler improvements, such as tiered attribution and

Ahead-of-Time (AOT) compilation
•	 Security manager improvements
•	 Enhancements in graphics rasterizers

Learning Java 9 Underlying Performance Improvements

[2]

Introducing the New Features of Java 9
In this lesson, we will explore many under the cover improvements to performance
that you automatically get by just running your application in the new environment.
Internally, string changes also drastically reduce memory footprint requirements
for times when you don't need full-scale Unicode support in your character strings.
If most of your strings can be encoded either as ISO-8859-1 or Latin-1 (1 byte per
character), they'll be stored much more efficiently in Java 9. So, let's dive deep into
the core libraries and learn the underlying performance improvements.

Modular Development and Its Impact
In software engineering, modularity is an important concept. From the point of
view of performance as well as maintainability, it is important to create autonomous
units called modules. These modules can be tied together to make a complete
system. The modules provides encapsulation where the implementation is hidden
from other modules. Each module can expose distinct APIs that can act as connectors
so that other modules can communicate with it. This type of design is useful as it
promotes loose coupling, helps focus on singular functionality to make it cohesive,
and enables testing it in isolation. It also reduces system complexity and optimizes
application development process. Improving performance of each module helps
improving overall application performance. Hence, modular development is a very
important concept.

I know you may be thinking, wait a minute, isn't Java already modular? Isn't the
object-oriented nature of Java already providing modular operation? Well, object-
oriented certainly imposes uniqueness along with data encapsulation. It only
recommends loose coupling but does not strictly enforce it. In addition, it fails to
provide identity at the object level and also does not have any versioning provision
for the interfaces. Now you may be asking, what about JAR files? Aren't they
modular? Well, although JARs provide modularization to some extent, they don't
have the uniqueness that is required for modularization. They do have a provision
to specify the version number, but it is rarely used and also hidden in the JAR's
manifest file.

So we need a different design from what we already have. In simple terms, we need
a modular system in which each module can contain more than one package and
offers robust encapsulation compared to the standard JAR files.

This is what Java 9's modular system offers. In addition to this, it also replaces
the fallible classpath mechanism by declaring dependencies explicitly. These
enhancements improve the overall application performance as developers can now
optimize the individual self-contained unit without affecting the overall system.

Lesson 1

[3]

This also makes the application more scalable and provides high integrity.

Let's look at some of the basics of the module system and how it is tied together.
To start off with, you can run the following commands to see how the module
system is structured:

$java --list-modules

Learning Java 9 Underlying Performance Improvements

[4]

If you are interested in a particular module, you can simply add the module name at
the end of the command, as shown in the following command:

$java --list-modules java.base

The earlier command will show all the exports in packages from the base module.
Java base is the core of the system.

Lesson 1

[5]

This will show all the graphical user interface packages. This will also show
requires which are the dependencies:

$java --list-modules java.desktop

Learning Java 9 Underlying Performance Improvements

[6]

So far so good, right? Now you may be wondering, I got my modules developed
but how to integrate them together? Let's look into that. Java 9's modular system
comes with a tool called JLink. I know you can guess what I am going to say now.
You are right, it links a set of modules and creates a runtime image. Now imagine
the possibilities it can offer. You can create your own executable system with your
own custom modules. Life is going to be a lot more fun for you, I hope! Oh, and on
the other hand, you will be able to control the execution and remove unnecessary
dependencies.

Let's see how to link modules together. Well, it's very simple. Just run the following
command:

$jlink --module-path $JAVA_HOME/jmods:mlib --add-modules java.desktop
--output myawesomeimage

This linker command will link all the modules for you and create a runtime image.
You need to provide a module path and then add the module that you want to
generate a figure and give a name. Isn't it simple?

Now, let's check whether the previous command worked properly or not. Let's verify
the modules from the figure:

$myawesomeimage/bin/java --list-modules

The output looks like this:

With this, you will now be able to distribute a quick runtime with your application.
It is awesome, isn't it? Now you can see how we moved from a somewhat monolithic
design to a self-contained cohesive one. Each module contains its own exports and
dependencies and JLink allows you to create your own runtime. With this, we got
our modular platform.

Note that the aim of this section is to just introduce you to the modular system. There
is a lot more to explore but that is beyond the scope of this book. In this book, we will
focus on the performance enhancement areas.

Lesson 1

[7]

Quick Introduction to Modules
I am sure that after reading about the modular platform, you must be excited to dive
deep into the module architecture and see how to develop one. Hold your excitement
please, I will soon take you on a journey to the exciting world of modules.

As you must have guessed, every module has a property name and is organized
by packages. Each module acts as a self-contained unit and may have native code,
configurations, commands, resources, and so on. A module's details are stored in
a file named module-info.java, which resides in the root directory of the module
source code. In that file, a module can be defined as follows:

module <name>{
}

In order to understand it better, let's go through an example. Let's say, our module
name is PerformanceMonitor. The purpose of this module is to monitor the
application performance. The input connectors will accept method names and the
required parameters for that method. This method will be called from our module to
monitor the module's performance. The output connectors will provide performance
feedback for the given module. Let's create a module-info.java file in the root
directory of our performance application and insert the following section:

module com.java9highperformance.PerformanceMonitor{
}

Awesome! You got your first module declaration. But wait a minute, it does not
do anything yet. Don't worry, we have just created a skeleton for this. Let's put
some flesh on the skeleton. Let's assume that our module needs to communicate
with our other (magnificent) modules, which we have already created and named--
PerformanceBase, StringMonitor, PrimitiveMonitor, GenericsMonitor, and so
on. In other words, our module has an external dependency. You may be wondering,
how would we define this relationship in our module declaration? Ok, be patient,
this is what we will see now:

module com.java9highperformance.PerformanceMonitor{
 exports com.java9highperformance.StringMonitor;
 exports com.java9highperformance.PrimitiveMonitor;
 exports com.java9highperformance.GenericsMonitor;
 requires com.java9highperformance.PerformanceBase;
 requires com.java9highperformance.PerformanceStat;
 requires com.java9highperformance.PerformanceIO;
}

Learning Java 9 Underlying Performance Improvements

[8]

Yes, I know you have spotted two clauses, that is, exports and requires. And I am
sure you are curious to know what they mean and why we have them there. We'll first
talk about these clauses and what they mean when used in the module declaration:

•	 exports: This clause is used when your module has a dependency on
another module. It denotes that this module exposes only public types
to other modules and none of the internal packages are visible. In our
case, the module com.java9highperformance.PerformanceMonitor
has a dependency on com.java9highperformance.StringMonitor,
com.java9highperformance.PrimitiveMonitor, and com.
java9highperformance.GenericsMonitor. These modules export
their API packages com.java9highperformance.StringMonitor,
com.java9highperformance.PrimitiveMonitor, and com.
java9highperformance.GenericsMonitor, respectively.

•	 requires: This clause denotes that the module depends upon the
declared module at both compile and runtime. In our case, com.
java9highperformance.PerformanceBase, com.java9highperformance.
PerformanceStat, and com.java9highperformance.PerformanceIO
modules are required by our com.java9highperformance.
PerformanceMonitor module. The module system then locates all the
observable modules to resolve all the dependencies recursively. This
transitive closure gives us a module graph which shows a directed edge
between two dependent modules.

Note: Every module is dependent on java.base even without
explicitly declaring it. As you already know, everything in Java
is an object.

Now you know about the modules and their dependencies. So, let's draw a
module representation to understand it better. The following figure shows
the various packages that are dependent on com.java9highperformance.
PerformanceMonitor.

Lesson 1

[9]

Modules at the bottom are exports modules and modules on the right are
requires modules.

Now let's explore a concept called readability relationship. Readability relationship
is a relationship between two modules where one module is dependent on another
module. This readability relationship is a basis for reliable configuration. So in our
example, we can say com.java9highperformance.PerformanceMonitor reads
com.java9highperformance.PerformanceStat.

Let's look at com.java9highperformance.PerformanceStat module's description
file module-info.java:

module com.java9highperformance.PerformanceStat{
 requires transitive java.lang;
}

This module depends on the java.lang module. Let's look at the PerformanceStat
module in detail:

package com.java9highperformance.PerformanceStat;
import java.lang.*;

public Class StringProcessor{
 public String processString(){...}
}

In this case, com.java9highperformance.PerformanceMonitor only depends on
com.java9highperformance.PerformanceStat but com.java9highperformance.
PerformanceStat depends on java.lang. The com.java9highperformance.
PerformanceMonitor module is not aware of the java.lang dependency from the
com.java9highperformance.PerformanceStat module. This type of problem is
taken care of by the module system. It has added a new modifier called transitive.
If you look at com.java9highperformance.PerformanceStat, you will find
it requires transitive java.lang. This means that any one depending on com.
java9highperformance.PerformanceStat reads on java.lang.

Learning Java 9 Underlying Performance Improvements

[10]

See the following graph which shows the readability graph:

Now, in order to compile the com.java9highperformance.PerformanceMonitor
module, the system must be able to resolve all the dependencies. These dependencies
can be found from the module path. That's obvious, isn't that? However, don't
misunderstand the classpath with the module path. It is a completely different
breed. It doesn't have the issues that the packages have.

String Operations Performance
If you are not new to programming, string must be your best friend so far. In many
cases, you may like it more than your spouse or partner. As we all know, you can't
live without string, in fact, you can't even complete your application without a single
use of string. OK, enough has been expressed about string and I am already feeling
dizzy by the string usage just like JVM in the earlier versions. Jokes apart, let's talk
about what has changed in Java 9 that will help your application perform better.
Although this is an internal change, as an application developer, it is important to
understand the concept so you know where to focus for performance improvements.

Java 9 has taken a step toward improving string performance. If you have ever
come across JDK 6's failed attempt UseCompressedStrings, then you must be
looking for ways to improve string performance. Since UseCompressedStrings
was an experimental feature that was error prone and not designed very well, it
was removed in JDK 7. Don't feel bad about it, I know it's terrible but as always the
golden days eventually come. The JEP team has gone through immense pain to add
a compact string feature that will reduce the footprint of string and its related classes.

Lesson 1

[11]

Compact strings will improve the footprint of string and help in using memory space
efficiently. It also preserves compatibility for all related Java and native interfaces.
The second important feature is Indify String Concatenation, which will optimize a
string at runtime.

In this section, we will take a closure look at these two features and their impact on
overall application performance.

Compact String
Before we talk about this feature, it is important to understand why we even care
about this. Let's dive deep into the underworld of JVM (or as any star wars fan
would put it, the dark side of the Force). Let's first understand how JVM treats
our beloved string and that will help us understand this new shiny compact string
improvement. Let's enter into the magical world of heap. And as a matter of fact, no
performance book is complete without a discussion of this mystical world.

The World of Heap
Each time JVM starts, it gets some memory from the underlining operating system.
It is separated into two distinct regions called heap space and Permgen. These are
home to all your application's resources. And as always with all good things in life,
this home is limited in size. This size is set during the JVM initialization; however,
you can increase or decrease this by specifying the JVM parameters, -Xmx, and
-XX:MaxPermSize.

The heap size is divided into two areas, the nursery or young space and the old
space. As the name suggests, the young space is home to new objects. This all sounds
great but every house needs a cleanup. Hence, JVM has the most efficient cleaner
called garbage collector (most efficient? Well... let's not get into that just yet). As any
productive cleaner would do, the garbage collector efficiently collects all the unused
objects and reclaims memory. When this young space gets filled up with new objects,
the garbage collector takes charge and moves any of those who have lived long
enough in the young space to the old space. This way, there is always room for more
objects in the young space.

And in the same way, if the old space becomes filled up, the garbage collector
reclaims the memory used.

Learning Java 9 Underlying Performance Improvements

[12]

Why Bother Compressing Strings?
Now you know a little bit about heap, let's look at the String class and how strings
are represented on heap. If you dissect the heap of your application, you will notice
that there are two objects, one is the Java language Stringobject that references
the second object char[] that actually handles the data. The char datatype is
UTF-16 and hence takes up to 2 bytes. Let's look at the following example of
how two different language strings look:

2 byte per char[]
Latin1 String : 1 byte per char[]

So you can see that Latin1 String only consumes 1 byte, and hence we are losing
about 50% of the space here. There is an opportunity to represent it in a more dense
form and improve the footprint, which will eventually help in speeding up garbage
collection as well.

Now, before making any changes to this, it is important to understand its impact
on real-life applications. It is essential to know whether applications use 1 byte per
char[] strings or 2 bytes per char[] strings.

To get an answer to this, the JPM team analyzed a lot of heap dumps of real-world
data. The result highlighted that a majority of heap dumps have around 18 percent to
30 percent of the entire heap consumed by chars[], which come from string. Also,
it was prominent that most strings were represented by a single byte per char[]. So,
it is clear that if we try to improve the footprint for strings with a single byte, it will
give significant performance boost to many real-life applications.

What Did They Do?
After having gone through a lot of different solutions, the JPM team has finally
decided to come up with a strategy to compress string during its construction. First,
optimistically try to compress in 1 byte and if it is not successful, copy it as 2 bytes.
There are a few shortcuts possible, for example, the use of a special case encoder like
ISO-8851-1, which will always spit 1 byte.

This implementation is a lot better than JDK 6's UseCompressedStrings
implementation, which was only helpful to a handful of applications as it was
compressing string by repacking and unpacking on every single instance. Hence
the performance gain comes from the fact that it can now work on both the forms.

Lesson 1

[13]

What is the Escape Route?
Even though it all sounds great, it may affect the performance of your application if
it only uses 2 byte per char[]string. In that case, it make sense not to use the earlier
mentioned, check, and directly store string as 2 bytes per char[]. Hence, the JPM
team has provided a kill switch --XX: -CompactStrings using which you can
disable this feature.

What is the Performance Gain?
The previous optimization affects the heap as we saw earlier that the string
is represented in the heap. Hence, it is affecting the memory footprint of the
application. In order to evaluate the performance, we really need to focus on the
garbage collector. We will explore the garbage collection topic later, but for now, let's
just focus on the run-time performance.

Indify String Concatenation
I am sure you must be thrilled by the concept of the compact string feature we
just learned about. Now let's look at the most common usage of string, which is
concatenation. Have you ever wondered what really happens when we try to
concatenate two strings? Let's explore. Take the following example:

public static String getMyAwesomeString(){
 int javaVersion = 9;
 String myAwesomeString = "I love " + "Java " + javaVersion + "
high performance book by Mayur Ramgir";
 return myAwesomeString;
}

In the preceding example, we are trying to concatenate a few strings with the
int value. The compiler will then take your awesome strings, initialize a new
StringBuilder instance, and then append all these individuals strings. Take a look
at the following bytecode generation by javac. I have used the ByteCode Outline
plugin for Eclipse to visualize the disassembled bytecode of this method. You may
download it from http://andrei.gmxhome.de/bytecode/index.html:

// access flags 0x9
public static getMyAwesomeString()Ljava/lang/String;
 L0
 LINENUMBER 10 L0
 BIPUSH 9
 ISTORE 0
 L1
 LINENUMBER 11 L1

Learning Java 9 Underlying Performance Improvements

[14]

 NEW java/lang/StringBuilder
 DUP
 LDC "I love Java "
 INVOKESPECIAL java/lang/StringBuilder.<init> (Ljava/lang/String;)V
 ILOAD 0
 INVOKEVIRTUAL java/lang/StringBuilder.append (I)Ljava/lang/
StringBuilder;
 LDC " high performance book by Mayur Ramgir"
 INVOKEVIRTUAL java/lang/StringBuilder.append (Ljava/lang/String;)
Ljava/lang/StringBuilder;
 INVOKEVIRTUAL java/lang/StringBuilder.toString ()Ljava/lang/String;
 ASTORE 1
 L2
 LINENUMBER 12 L2
 ALOAD 1
 ARETURN
 L3
 LOCALVARIABLE javaVersion I L1 L3 0
 LOCALVARIABLE myAwesomeString Ljava/lang/String; L2 L3 1
 MAXSTACK = 3
 MAXLOCALS = 2

Quick Note: How do we interpret this?

•	 INVOKESTATIC: This is useful for invoking static methods
•	 INVOKEVIRTUAL: This uses of dynamic dispatch for invoking public and

protected non-static methods
•	 INVOKEINTERFACE: This is very similar to INVOKEVIRTUAL except that the

method dispatch is based on an interface type
•	 INVOKESPECIAL: This is useful for invoking constructors, methods of a

superclass, and private methods

However, at runtime, due to the inclusion of -XX:+-OptimizeStringConcat into
the JIT compiler, it can now identify the append of StringBuilder and the
toString chains. In case the match is identified, produce low-level code for
optimum processing. Compute all the arguments' length, figure out the final
capacity, allocate the storage, copy the strings, and do the in place conversion of
primitives. After this, handover this array to the String instance without copying.
It is a profitable optimization.

But this also has a few drawbacks in terms of concatenation. One example is that in
case of a concatenating string with long or double, it will not optimize properly. This
is because the compiler has to do .getChar first which adds overhead.

Lesson 1

[15]

Also, if you are appending int to String, then it works great; however, if you
have an incremental operator like i++, then it breaks. The reason behind this is that
you need to rewind to the beginning of the expression and re-execute, so you are
essentially doing ++ twice. And now the most important change in Java 9 compact
string. The length spell like value.length >> coder; C2 cannot optimize it as it
does not know about the IR.

Hence, to solve the problem of compiler optimization and runtime support, we need
to control the bytecode, and we cannot expect javac to handle that.

We need to delay the decision of which concatenation can be done at runtime. So can
we have just method String.concat which will do the magic. Well, don't rush into
this yet as how would you design the method concat. Let's take a look. One way to
go about this is to accept an array of the String instance:

public String concat(String... n){
 //do the concatenation
}

However, this approach will not work with primitives as you now need to convert
each primitive to the Stringinstance and also, as we saw earlier, the problem is that
long and double string concatenation will not allow us to optimize it. I know, I can
sense the glow on your face like you got a brilliant idea to solve this painful problem.
You are thinking about using the Object instance instead of the String instance,
right? As you know the Objectinstance is catch all. Let's look at your brilliant idea:

public String concat(Object... n){
 //do the concatenation
}

First, if you are using the Object instance, then the compiler needs to do autoboxing.
Additionally, you are passing in the varargs array, so it will not perform optimally.
So, are we stuck here? Does it mean we cannot use the preeminent compact string
feature with string concatenation? Let's think a bit more; maybe instead of using the
method runtime, let javac handle the concatenation and just give us the optimized
bytecode. That sounds like a good idea. Well, wait a minute, I know you are thinking
the same thing. What if JDK 10 optimizes this further? Does that mean, when I
upgrade to the new JDK, I have to recompile my code again and deploy it again?
In some cases, its not a problem, in other cases, it is a big problem. So, we are back
to square one.

Learning Java 9 Underlying Performance Improvements

[16]

We need something that can be handled at runtime. Ok, so that means we need
something which will dynamically invoke the methods. Well, that rings a bell. If we go
back in our time machine, at the dawn of the era of JDK 7 it gave us invokedynamic. I
know you can see the solution, I can sense the sparkle in your eyes. Yes, you are right,
invokedynamic can help us here. If you are not aware of invokedynamic, let's spend
some time to understand it. For those who have already mastered the topic, you could
skip it, but I would recommend you go through this again.

Invokedynamic
The invokedynamic feature is the most notable feature in the history of Java. Rather
than having a limit to JVM bytecode, we now can define our own way for operations
to work. So what is invokedynamic? In simple terms, it is the user-definable
bytecode. This bytecode (instead of JVM) determines the execution and optimization
strategies. It offers various method pointers and adapters which are in the form of
method handling APIs. The JVM then work on the pointers given in the bytecode
and use reflection-like method pointers to optimize it. This way, you, as a developer,
can get full control over the execution and optimization of code.

It is essentially a mix of user-defined bytecode (which is known as bytecode +
bootstrap) and method handles. I know you are also wondering about the method
handles--what are they and how to use them? Ok, I heard you, let's talk about
method handles.

Method handles provide various pointers, including field, array, and method, to pass
data and get results back. With this, you can do argument manipulation and flow
control. From JVM's point of view, these are native instructions that it can optimize
as if it were bytecode. However, you have the option to programmatically generate
this bytecode.

Let's zoom in to the method handles and see how it all ties up together. The main
package's name is java.lang.invoke, which has MethodHandle, MethodType,
and MethodHandles. MethodHandle is the pointer that will be used to invoke the
function. MethodType is a representation of a set of arguments and return value
coming from the method. The utility class MethodHandles will act as a pointer to
a method which will get an instance of MethodHandle and map the arguments.

We won't be going in deep for this section, as the aim was just to make you aware
of what the invokedynamic feature is and how it works so you will understand the
string concatenation solution. So, this is where we get back to our discussion on
string concatenation. I know, you were enjoying the invokedynamic discussion, but
I guess I was able to give you just enough insight to make you understand the core
idea of Indify String Concatenation.

Lesson 1

[17]

Let's get back on the concatenation part where we were looking for a solution to
concatenate our awesome compact strings. For concatenating the compact strings,
we need to take care of types and the number of types of methods and this is what
the invokedynamic gives us.

So let's use invokedynamic for concat. Well, not so quick, my friend. There is a
fundamental problem with this approach. We cannot just use invokedynamic as
it is to solve this problem. Why? Because there is a circular reference. The concat
function needs java.lang.invoke, which uses concat. This continues, and
eventually you will get StackOverflowError.

Take a look at the following code:

String concat(int i, long l, String s){
 return s + i + l
}

So if we were to use invokedynamic here, the invokedynamic call would look
like this:

InvokeDynamic #0: makeConcat(String, int, long)

There is a need to break the circular reference. However, in the current JDK
implementation, you cannot control what java.invoke calls from the complete
JDK library. Also, removing the complete JDK library reference from java.invoke
has severe side effects. We only need the java.base module for Indify String
Concatenation, and if we can figure out a way to just call the java.base module,
then it will significantly improve the performance and avoid unpleasant exceptions.
I know what you are thinking. We just studied the coolest addition to Java 9, Project
Jigsaw. It provides modular source code and now we can only accept the java.base
module. This solves the biggest problem we were facing in terms of concatenating
two strings, primitives, and so on.

After going through a couple of different strategies, the Java Performance
Management team has settled on the following strategy:

1.	 Make a call to the toString() method on all reference args.
2.	 Make a call to the tolength() method or since all the underlying methods

are exposed, just call T.stringSize(T t) on every args.
3.	 Figure out the coders and call coder() for all reference args.
4.	 Allocate byte[] storage and then copy all args. And then, convert primitives

in-place.
5.	 Invoke a private constructor String by handing over the array for

concatenation.

Learning Java 9 Underlying Performance Improvements

[18]

With this, we are able to get an optimized string concat in the same code and not in
C2 IR. This strategy gives us 2.9x better performance and 6.4x less garbage.

Storing Interned Strings in CDS Archives
The main goal of this feature is to reduce memory footprint caused by creating
new instances of string in every JVM process. All the classes that are loaded in
any JVM process can be shared with other JVM processes via Class Data Sharing
(CDS) archives.

Oh, I did not tell you about CDS. I think it's important to spend some time to
understand what CDS is, so you can understand the underlying performance
improvement.

Many times, small applications in particular spend a comparatively long time on
startup operations. To reduce this startup time, a concept called CDS was introduced.
CDS enables sharing of a set of classes loaded from the system JAR file into a private
internal representation during the JRE installation. This helps a lot as then any
further JVM invocations can take advantage of these loaded classes' representation
from the shared archive instead of loading these classes again. The metadata related
to these classes is shared among multiple JVM processes.

CDS stores strings in the form of UTF-8 in the constant pool. When a class from these
loaded classes begins the initialization process, these UTF-8 strings are converted
into String objects on demand. In this structure, every character in every confined
string takes 2 bytes in the String object and 1 byte to 3 bytes in the UTF-8, which
essentially wastes memory. Since these strings are created dynamically, different
JVM processes cannot share these strings.

Shared strings need a feature called pinned regions in order to make use of the
garbage collector. Since the only HotSpot garbage collector that supports pinning
is G1; it only works with the G1 garbage collector.

Concurrency Performance
Multithreading is a very popular concept. It allows programs to run multiple tasks
at the same time. These multithreaded programs may have more than one unit
which can run concurrently. Every unit can handle a different task keeping the use
of available resources optimal. This can be managed by multiple threads that can
run in parallel.

Lesson 1

[19]

Java 9 improved contended locking. You may be wondering what is contended
locking. Let's explore. Each object has one monitor that can be owned by one
thread at a time. Monitors are the basic building blocks of concurrency. In order
for a thread to execute a block of code marked as synchronized on an object or a
synchronized method declared by an object, it must own this object's monitor. Since
there are multiple threads trying to get access to the mentioned monitor, JVM needs
to orchestrate the process and only allow one thread at a time. It means the rest of
threads go in a wait state. This monitor is then called contended. Because of this
provision, the program wastes time in the waiting state.

Also, Java Virtual Machine (JVM) does some work orchestrating the lock
contention. Additionally, it has to manage threads, so once the existing thread
finishes its execution, it can allow a new thread to go in. This certainly adds
overhead and affects performance adversely. Java 9 has taken a few steps to improve
in this area. The provision refines the JVM's orchestration, which will ultimately
result in performance improvement in highly contested code.

The following benchmarks and tests can be used to check the performance
improvements of contented Java object monitors:

•	 CallTimerGrid (This is more of a stress test than a benchmark)
•	 Dacapo-bach (earlier dacapo2009)
•	 _ avrora

•	 _ batik

•	 _ fop

•	 _ h2

•	 _ luindex

•	 _ lusearch

•	 _ pmd

•	 _ sunflow

•	 _ tomcat

•	 _ tradebeans

•	 _ tradesoap

•	 _ xalan

•	 DerbyContentionModelCounted

•	 HighContentionSimulator

•	 LockLoops-JSR166-Doug-Sept2009 (earlier LockLoops)
•	 PointBase

•	 SPECjbb2013-critical (earlier specjbb2005)

Learning Java 9 Underlying Performance Improvements

[20]

•	 SPECjbb2013-max

•	 specjvm2008

•	 volano29 (earlier volano2509)

Compiler Improvements
Several efforts have been made to improve the compiler's performance. In this
section, we will focus on the improvements to the compiler side.

Tiered Attribution
The first and foremost change providing compiler improvement is related to
Tiered Attribution (TA). This change is more related to lambda expressions. At the
moment, the type checking of poly expression is done by type checking the same
tree multiple times against different targets. This process is called Speculative
Attribution (SA), which enables the use of different overload resolution targets
to check a lambda expression.

This way of type checking, although a robust technique, adversely affects
performance significantly. For example, with this approach, n number of overload
candidates check against the same argument expression up to n * 3 once per overload
phase, strict, loose, and varargs. In addition to this, there is one final check phase.
Where lambda returns a poly method call results in combinatorial explosion of
attribution calls, this causes a huge performance problem. So we certainly need a
different method of type checking for poly expressions.

The core idea is to make sure that a method call creates bottom-up structural types
for each poly argument expression with every single details, which will be needed to
execute the overload resolution applicability check before performing the overload
resolution.

So in summary, the performance improvement was able to achieve an attribute of
a given expression by decreasing the total number of tries.

Ahead-of-Time Compilation
The second noticeable change for compiler improvement is Ahead-of-Time
compilation. If you are not familiar with the term, let's see what AOT is. As you
probably know, every program in any language needs a runtime environment to
execute. Java also has its own runtime which is known as Java Virtual Machine
(JVM). The typical runtime that most of us use is a bytecode interpreter, which is
JIT compiler as well. This runtime is known as HotSpot JVM.

Lesson 1

[21]

This HotSpot JVM is famous for improving performance by JIT compilation as
well as adaptive optimization. So far so good. However, this does not work well in
practice for every single application. What if you have a very light program, say, a
single method call? In this case, JIT compilation will not help you much. You need
something that will load up faster. This is where AOT will help you. With AOT as
opposed to JIT, instead of compiling to bytecode, you can compile into native machine
code. The runtime then uses this native machine code to manage calls for new objects
into mallocs as well as file access into system calls. This can improve performance.

Security Manager Improvements
Ok, let's talk about security. If you are not one of those who cares about application
security over pushing more features in a release, then the expression on your
face may be like Uh! What's that? If you are one those, then let's first understand
the importance of security and find a way to consider this in your application
development tasks. In today's SaaS-dominated world, everything is exposed to the
outside world. A determined individual (a nice way of saying, a malicious hacker),
can get access to your application and exploit the security holes you may have
introduced through your negligence. I would love to talk about application security
in depth as this is another area I am very much interested in. However, application
security is out of the scope of this book. The reason we are talking about it here is
that the JPM team has taken an initiative to improve the existing security manager.
Hence, it is important to first understand the importance of security before talking
about the security manager.

Hopefully, this one line of description may have generated secure programming
interest in you. However, I do understand that sometimes you may not have enough
time to implement a complete secure programming model due to tight schedules.
So, let's find a way which can fit with your tight schedule. Let's think for a minute;
is there any way to automate security? Can we have a way to create a blueprint and
ask our program to stay within the boundaries? Well, you are in luck, Java does have
a feature called security manager. It is nothing but a policy manager that defines
a security policy for the application. It sounds exciting, doesn't it? But what does
this policy look like? And what does it contain? Both are fair questions to ask. This
security policy basically states actions that are dangerous or sensitive in nature. If
your application does not comply with this policy, then the security manager throws
SecurityException. On the other side, you can have your application call this
security manager to learn about the permitted actions. Now, let's look at the security
manager in detail.

Learning Java 9 Underlying Performance Improvements

[22]

In case of a web applet, a security manager is provided by the browser, or the Java
Web Start plugin runs this policy. In many cases, applications other than web applets
run without a security manager unless those applications implement one. It's a no
brainer to say that if there is no security manager and no security policy attached,
the application acts without restrictions.

Now we know a little about the security manager, let's look at the performance
improvement in this area. As per the Java team, there may be a possibility that an
application running with a security manager installed degrades performance by
10 percent to 15 percent. However, it is not possible to remove all the performance
bottlenecks but narrowing this gap can assist in improving not only security but
also performance.

The Java 9 team looked at some of the optimizations, including the enforcement
of security policy and the evaluation of permissions, which will help improve the
overall performance of using a security manager. During the performance testing
phase, it was highlighted that even though the permission classes are thread safe,
they show up as a HotSpot. Numerous improvements have been made to decrease
thread contention and improve throughput.

Computing the hashcode method of java.security.CodeSource has been improved
to use a string form of the code source URL to avoid potentially expensive DNS
lookups. Also, the checkPackageAccess method of java.lang.SecurityManager,
which contains the package checking algorithm, has been improved.

Some other noticeable changes in security manager improvements are as follows:

•	 The first noticeable change is that using ConcurrentHashMap in place
of Collections.synchronizedMap helps improving throughput of the
Policy.implie method. Look at the following graph, taken from the
OpenJDK site, which highlights the significant increase in the throughput
with ConcurrentHashMap:

Lesson 1

[23]

•	 In addition to this, HashMap, which had been used for maintaining internal
collection of CodeSource in java.security.SecureClassLoader, has been
replaced by ConcurrentHashMap.

•	 There are a few other small improvements like an improvement in the
throughput by removing the compatibility code from the getPermissions
method (CodeSource), which synchronizes on identities.

•	 Another significant gain in performance is achieved using
ConcurrentHashMap instead of HashMap surrounded by synchronized
blocks in the permission checking code, which yielded in greater thread
performance.

Graphics Rasterizers
If you are into Java 2D and using OpenJDK, you will appreciate the efforts taken by
the Java 9 team. Java 9 is mainly related to a graphics rasterizer, which is part of the
current JDK. OpenJDK uses Pisces, whereas Oracle JDK uses Ductus. Oracle's closed-
source Ductus rasterizer performs better than OpenJDK's Pisces.

These graphics rasterizers are useful for anti-aliased rendering except fonts. Hence,
for a graphics-intensive application, the performance of this rasterizer is very
important. However, Pisces is failing in many fronts and its performance problems
are very visible. Hence, the team has decided to replace this with a different
rasterizer called Marlin Graphics Renderer.

Marlin is developed in Java and, most importantly, it is the fork of the Pisces
rasterizer. Various tests have been done on it and the results are very promising. It
consistently performs better than Pisces. It demonstrates multithreaded scalability
and even outperforms the closed-source Ductus rasterizer for a single-threaded
application.

Summary
In this lesson, we have seen some of the exciting features that will improve your
application's performance without making any effort from your end.

In the next lesson, we will learn about JShell and the Ahead-of-Time (AOT)
compiler. We will also learn about Read-Eval-Print Loop (REPL) tool.

Learning Java 9 Underlying Performance Improvements

[24]

Assessments
1.	 JLink is a ___________ of Java 9 modular system.
2.	 What is the relationship between two modules where one module is

dependent on another module?
1.	 Readability relationship
2.	 Operability relationship
3.	 Modular relationship
4.	 Entity relationship

3.	 State whether True or False: Each time JVM starts, it gets some memory from
the underlining operating system.

4.	 Which of the following perform some work orchestrating the lock
contention?

1.	 Pinned regions
2.	 Readability relationship
3.	 Java Virtual Machine
4.	 Class data sharing

5.	 Which of the following enables the use of different overload resolution
targets to check a lambda expression?

1.	 Tiered attribution
2.	 HotSpot JVM
3.	 Speculative attribution
4.	 Permgen

[25]

Tools for Higher Productivity
and Faster Application

Since the dawn of programming as a profession, the standing goals of every aspiring
coder were to quickly produce applications that perform the assigned tasks with
lightning speed. Otherwise, why bother? We could slowly do whatever we were doing
for thousands of years. In the book of the last century, we made substantial progress
in both aspects, and now, Java 9 makes another step in each of these directions.

Two new tools were introduced in Java 9, JShell and the Ahead-of-Time (AOT)
compiler--both were expected for a long time. JShell is a Read–Eval–Print Loop
(REPL) tool that is well-known for those who program in Scala, Ruby, or Python,
for example. It takes a user input, evaluates it, and returns the result immediately.
The AOT compiler takes Java bytecode and generates a native (system-dependent)
machine code so that the resulting binary file can execute natively.

These tools will be the focus of this lesson.

The JShell Tool Usage
JShell helps a programmer to test fragments (snippets) of code as they are written.
It shortens the time for development by avoiding the build-deploy-test part of
the development cycle. Programmers can easily copy an expression or even
several methods into the JShell session and run-test-modify them multiple times
immediately. Such a quick turnaround also helps to understand the library API
better before using it and to tune the code to express exactly its purpose, thus
facilitating better quality software.

Tools for Higher Productivity and Faster Application

[26]

How often have we guessed what the JavaDoc for a particular API meant and wasted
build-deploy-test cycles for figuring it out? Or we want to recall, how exactly the
string will be split by substring(3)? Sometimes, we create a small test application
where we run the code we are not sure about, using again the same build-deploy-test
cycle. With JShell, we can copy, paste, and run. In this section, we will describe and
show how to do it.

JShell is built on the top of JVM, so it processes the code snippets exactly as
JVM does. Only a few constructs that do not make sense for REPL are omitted.
For example, you cannot use package declaration, static, or final in JShell
(these keywords are going to be ignored). Also, the semicolon ; is allowed but
not required at the end of a statement.

JShell comes with API included in the module jdk.jshell which can be used for
the integration of JShell into other tools (IDE, for example), but it is outside of the
scope of this book.

Creating a JShell Session and Setting Context
JShell comes with the JDK installation. You can find it in the bin directory as
$JAVA_HOME/bin/jshell. Execute it to start the JShell session. Before you get
familiar with JShell, we recommend starting the session with the option -v, which
stands for verbose. This way, the shell will add more details to each of your actions,
explaining what has been accomplished with each of them. After launching jshell
in a terminal window, you will see the following output:

This means that a JShell session is created and can be used for Java code running.
Enter the recommended command /help intro and read the following JShell
introduction:

Lesson 2

[27]

The introduction tells us the very minimum we need to know in order to get
going. So, let's follow the guide. If we enter /help, we get the list of possible JShell
commands with a short description (we will go over every command in more detail
later) and the following information:

Those are important tips to remember. Notice that the /? and /help commands
produce the same result, so from now on, we will use/? only. The commands /i,
/<id> (id is assigned to each snippet automatically and shown to the left of the
snippet when listed by the command /list), and /-<n> allow re-running of the
snippets that have been run previously.

Tools for Higher Productivity and Faster Application

[28]

Subject intro we saw already. Subject shortcuts can be viewed by entering the
command /? shortcuts:

As you can see, the Tab key can be used to complete the current entry, while double
Tab brings up possible completion options or JavaDoc, if available. Do not hesitate
to press Tab several times after each command. It will help you to find more ways
to utilize JShell features to your advantage.

Press Shift + Tab and then press V to create a variable based on the just completed
expression. Here is an example:

•	 Type 2*2 on the console and press Enter.
•	 Press Shift + Tab together.
•	 Release the keys and press V.
•	 The shell will show int x = 2*2 and position the cursor just in front of =.
•	 Enter the variable (x, for example, and press Enter). The resulting screen will

show the following output:

Press Shift + Tab and then press I after an unresolved identifier requests JShell to
provide possible imports based on the content of the classpath. Here is an example:

•	 Type new Pair and press Enter.
•	 Press Shift + Tab together.

Lesson 2

[29]

•	 Release the keys and press I. The shell will show the following output:

•	 You will get two options with the values 0 and 1, respectively.
•	 In the shell, you will get a statement called Choice; type 1 and press Enter.
•	 Now, the javafx.util.Pair class is imported.
•	 You can continue entering the code snippet.

JShell was able to provide the suggestion because the JAR file with the compiled
Pair class was on the classpath (set there by default as part of JDK libraries). You can
also add to the classpath any other JAR file with the compiled classes you need for
your coding. You can do it by setting it at JShell startup by the option --class-path
(can be also used with one dash -class-path):

In the earlier example, the JAR file myclasses.jar is loaded from the folder
mylibrary in the user's home directory. To set several JAR files, you can separate
them by a colon: (for Linux and MacOS) or by a semicolon ; (for Windows).

The classpath can also be set by the command /env any time during the
JShell session:

Notice that every time the classpath is set, all the snippets of the current session are
reloaded with the new classpath.

The commands /reset and /reload can be used instead of the /env command
to set the classpath too. We will describe the difference between these commands
in the next section.

If you do not want to collect your compiled classes in a JAR file, the option --class-
path (or -class-path) could point to the directory where the compiled classes
are located. Once the classpath is set, the classes associated with it can be imported
during a snippet writing using keys Shift + Tab and then I as described earlier.

Tools for Higher Productivity and Faster Application

[30]

Other context options are related to the usage of modules and can be seen after
entering the command /? context:

There are several more advanced options of running the jshell tool. To learn about
them, refer to the Oracle documentation (for example, https://docs.oracle.com/
javase/9/tools/jshell.htm).

The last important command we would like to mention in this section is /exit. It
allows exiting the command mode and closing the JShell session.

JShell Commands
As we mentioned in the previous section, the full list of JShell commands can
be obtained by typing the /? command. Each command comes with a one-line
description. There is another way to get the same list but without description,
that is by typing / followed by Tab. The screen would show the following content:

Lesson 2

[31]

Pressing Tab the second time would bring the same list of the commands with
a synopsis (one-line description) for each. To make it easier for a user, while
typing, a command, subcommand, command argument, or command option
can be abbreviated, as long as it remains unique so that the tool can recognize it
unambiguously. For example, instead of the previous list of full-name commands,
you can use the corresponding list of their abbreviated versions: /!, /?, /d, /ed, /en,
/ex, /he, /hi, /i, /l, /m, /o, /rel, /res, /sa, /se, /t, /v. The preceding dash /
is necessary for distinguishing commands from snippets.

Now, let's review each of these commands. While doing it, we will create a few
snippets, variables, and types so that we can demonstrate each command more
clearly using specific examples.

You can start a new JShell session by running jshell (with option -v) and enter the
following commands:

•	 /en: To view or change the evaluation context
•	 /h: To view history of what you have typed
•	 /l [<name or id>|-all|-start]: To list the source you have typed
•	 /m [<name or id>|-all|-start]L: To list the declared methods and

their signatures
•	 /t [<name or id>|-all|-start]: To list the declared types
•	 /v [<name or id>|-all|-start]: To list the declared variables and

their values

The result would be like this:

Tools for Higher Productivity and Faster Application

[32]

As you might be expecting, most of these commands yielded no results (except a
short history of your typing until that moment) because we have not entered any
code snippet yet. The last four commands have the same options:

•	 <name or id>: This is the name or ID of a specific snippet or method or type
or variable (we will see examples later)

•	 -start: This shows snippets or methods or types or variables loaded at the
JShell start (we will see later how to do it)

•	 -all: This shows snippets or methods or types or variables loaded at the
JShell start and entered later during the session

By default, at the startup, several common packages are imported. You can see them
by typing the /l -start or /l -all command:

There is no java.lang package in this list, but it is always imported by default and
not listed among the imports.

In the left column of the previously mentioned list, you can see the ID of each
snippet. If you type the /l s5command, for example, it will retrieve the snippet
with ID s5:

To customize the startup entries, you can use the command /sa <file> to save in
the specified file all the settings and snippets you have entered in the current session.
The next time you would like to continue with the same context, you can start the
JShell session with this file jshell <file>.

Lesson 2

[33]

Let's demonstrate this procedure with an example:

In the previous screenshot, you can see that we have started a JShell session and
entered the name of the class Pair (not imported yet), then pressed Shift + Tab
and I and selected option 1 (to import the class Pair). After that, we have finished
typing the snippet (created a variable pair), saved the session entries in the file
mysession.jsh (in the home directory), and closed the session. Let's look in the
file mysession.jsh now:

As you can see, the file contains only the new entries from the saved session. If we
would like to load them into the next session, we will use the command jshell ~/
mysession.jsh and continue working in the same context:

Tools for Higher Productivity and Faster Application

[34]

In the previous screenshot, we started a new session, listed all the new entries
(reloaded from the previous session), and got a key from the object pair. This has
created variable $3 automatically.

We can also create a variable explicitly. Type pair.getValue() and press Shift + Tab
and then press V, which will prompt you to enter the variable name just in front of
the sign String = pair.getValue(). Enter value and see the result:

To see all the variables of the current session, type the command /v:

Let's now create a method to2() that multiplies any integer by 2:

To complete the demonstration of the commands /l, /m, /t, and /v, let's create a
new type:

Lesson 2

[35]

Notice that the method to2() is visible inside a new class, which means that all
standalone variables, standalone methods, and code inside classes are executed
in the same context. This way, testing of a code fragment becomes easier but may
introduce subtle errors and even unexpected behavior if the code's author relies on
the encapsulation and behavior isolation in different parts of a more complex system
than just a flat code fragment.

Now, by using the /l command, we can see everything we have typed:

All these snippets are available for execution. Here is one example of using them:

Tools for Higher Productivity and Faster Application

[36]

In the previous screenshot, we typed new Demo and pressed Tab. Then, we
entered 2 and pressed Tab again. We saw the suggestion about pressing Tab to see
documentation and did it. Well, there was no documentation found (we did not type
any JavaDoc while creating the class DemoClass), so we just added) and pressed
Enter. As a result, a new variable $7 was created that held references to the object
of the class DemoClass. We can use this variable now like this, for example:

In the previous screenshot, we entered int y = $7. and pressed Tab, then pressed
Tab the second time to see other options. We did it just for demo purposes. Then,
we made our selection by typing getX after . and pressing Tab. JShell completed
the statement with () for us and we pressed Enter, thus creating a new variable y
(with the current evaluated value of 4).

Finally, let's try and test the function substring() to make sure it returns us the
substring we need:

We hope you now have a feel of how you can create and execute snippets.

Let's review other JShell commands. The command /i lists the imported packages
and classes. In our case, if we use this command we will get the following output:

Lesson 2

[37]

You can see that the class Pair is listed as imported, although we have done it
in the previous JShell session and brought it in the new session by using the file
~/mysession.jsh.

The command /ed <name or id> allows you to edit any of the entries listed by the
command /l. Let's do it:

Tools for Higher Productivity and Faster Application

[38]

In the previous screenshot, we listed all the snippets and entered /e 7 to edit
snippets with ID 7. It turned out that there are several commands starting with e,
so we added d and got the following editor window:

In the previous window, we changed 2 to 3 and clicked the Accept button. As a
result, a new variable $9was created that holds the reference to the new DemoClass
object. We can now use this new variable too:

In the previous screenshot, we entered $9.getX and pressed Tab. The JShell
completed the statement by adding (). We press Enter, and the new variable $10
(with the current evaluated value 6) was created.

The command /d <name or id> drops a snippet referenced by name or ID. Let's use
it to delete a snippet with ID 7:

Lesson 2

[39]

As you could guess, the expression that assigns a value to the variable 8 now cannot
be evaluated:

In the earlier screenshot, we first requested to evaluate the expression that generates
a value for variable 10 (for demonstration purposes), and it was correctly calculated
as 6. Then, we attempted to do the same for variable 8 and received an error because
its expression was broken after deleting the variable 7. So, we have deleted it now,
too (this time by name, to demonstrate how a name can be used).

The command /sa [-all|-history|-start] <file> saves a snippet to a file. It is
complemented by the command /o <file> that opens the file as the source input.

The commands /en, /res, and /rel have an overlapping functionality:

•	 /en [options]: This allows to view or change the evaluation context
•	 /res [options]: This discards all entered snippets and restarts the session
•	 /rel[options]: This reloads the session the same way the command /en

does

See the official Oracle documentation (http://docs.oracle.com/javase/9/tools/
jshell.htm) for more details and possible options.

The command [/se [setting] sets configuration information, including the
external editor, startup settings, and feedback mode. This command is also used to
create a custom feedback mode with customized prompt, format, and truncation
values. If no setting is entered, then the current setting for the editor, startup settings,
and feedback mode are displayed. The documentation referred to earlier describes
all possible settings in all details.

The JShell is going to be even more helpful when integrated inside of the IDE so
that a programmer can evaluate expressions on the fly or, even better, they can be
evaluated automatically the same way the compiler today evaluates the syntax.

Tools for Higher Productivity and Faster Application

[40]

Ahead-of-Time (AOT)
The big claim of Java was write-once-run-anywhere. It was achieved by creating an
implementation of Java Runtime Environment (JRE) for practically all platforms, so
the bytecode generated once from the source by Java compiler (javac tool) could be
executed everywhere where JRE was installed, provided the version of the compiler
javac was compatible with the version of JRE.

The first releases of JRE were primarily the interpreters of the bytecode and yielded
slower performance than some other languages and their compilers, such as C and
C++. However, over time, JRE was improved substantially and now produces quite
decent results, on a par with many other popular systems. In big part, it is due to the
JIT dynamic compiler that converts the bytecodes of the most frequently used methods
to the native code. Once generated, the compiled methods (the platform-specific
machine code) is executed as needed without any interpretation, thus decreasing
the execution time.

To utilize this approach, JRE needs some time for figuring out which methods of the
application are used most often. The people working in this area of programming
call them hot methods. This period of discovery, until the peak performance is
reached, is often called a JVM's warm-up time. It is bigger for the larger and more
complex Java applications and can be just a few seconds for smaller ones. However,
even after the peak performance is reached, the application might, because of the
particular input, start utilizing an execution path never used before and calling the
methods that were not compiled yet, thus suddenly degrading the performance.
It can be especially consequential when the code not compiled yet belongs to the
complex procedures invoked in some rare critical situations, exactly when the best
possible performance is needed.

The natural solution was to allow the programmer to decide which components of
the application have to be precompiled into the native machine code--those that are
more often used (thus decreasing the application's warm-up time), and those that
are used not often but have to be executed as quickly as possible (in support of the
critical situations and stable performance overall). That was the motivation of the
Java Enhancement ProposalJEP 295: Ahead-of-Time Compilation:

JIT compilers are fast, but Java programs can become so large that it takes a long
time for the JIT to warm up completely. Infrequently used Java methods might
never be compiled at all, potentially incurring a performance penalty due to
repeated interpreted invocations.

Lesson 2

[41]

It is worth noticing though that already in JIT compiler, it is possible to decrease
the warm-up time by setting the compilation threshold--how many times a method
has to be called before it gets compiled into the native code. By default, the number
is 1,500. So, if we set it to less than that, the warm-up time will be shorter. It can be
done using the option -XX:CompileThreshold with the java tool. For example, we
can set the threshold to 500 as follows (where Test is the compiled Java class with
the main() method in it):

java -XX:CompileThreshold=500 -XX:-TieredCompilation Test

The option -XX:-TieredCompilation was added to disable the tiered compilation
because it is enabled by default and does not honor the compilation threshold. The
possible drawback is that the 500 threshold might be too low and too many methods
will be compiled, thus slowing down the performance and increasing the warm-up
time. The best value for this option will vary from application to an application and
may even depend on the particular data input with the same application.

Static versus Dynamic Compilation
Many higher level programming languages such as C or C++ used AOT compilation
from the very beginning. They are also called statically compiled languages. Since
AOT (or static) compilers are not constrained by performance requirements (at least
not as much as the interpreters at runtime, also called dynamic compilers), they can
afford to spend the time producing complex code optimizations. On the other hand,
the static compilers do not have the runtime (profiling) data, which is especially
limiting in the case of dynamically typed languages, Java being one of them. Since
the ability of dynamic typing in Java--downcasting to the subtype, querying an
object for its type, and other type operations--is one of the pillars of object-oriented
programming (principle of polymorphism), AOT compilation for Java becomes even
more limited. Lambda expressions pause another challenge for static compilation
and are currently not supported yet.

Another advantage of a dynamic compiler is that it can make assumptions and
optimize the code accordingly. If the assumption turned out to be wrong, the
compiler can try another assumption until the performance goal is achieved. Such
a procedure may slow down the application and/or increase the warm-up time,
but it may result in a much better performance in the long run. The profile-guided
optimization can help a static compiler to move along this path too, but it will always
remain limited in its opportunity to optimize by comparison with a dynamic one.

Tools for Higher Productivity and Faster Application

[42]

That said, we should not be surprised that the current AOT implementation in JDK
9 is experimental and limited, so far, to 64-bit Linux-based systems only, with both
Parallel or G1 garbage collection and the only supported module being java.base.
Further, AOT compilation should be executed on the same system or a system with
the same configuration on which the resulting machine code will be executed. Yet,
despite all that, the JEP 295 states:

Performance testing shows that some applications benefit from AOT-compiled code,
while others clearly show regressions.

It is worth noting that AOT compilation has been long supported in Java Micro
Edition (ME), but more use cases for AOT in Java Standard Edition (SE) are yet to
be identified, which was one of the reasons the experimental AOT implementation
was released with JDK 9-- in order to facilitate the community to try and tell about
the practical needs.

The AOT Commands and Procedures
The underlying AOT compilation in JDK 9 is based on the Oracle project Graal--an
open source compiler introduced with JDK 8 with a goal of improving the performance
of the Java dynamic compiler. The AOT group had to modify it, mostly around
constants processing and optimization. They have also added probabilistic profiling
and a special inlining policy, thus making Grall more suitable for static compilation.

In addition to the existing compiling tool javac, a new jaotc tool is included in the
JDK 9 installation. The resulting AOT shared libraries .so are generated using the
libelf library--the dependency that is going to be removed in the future releases.

To start AOT compilation, a user has to launch jaotc and specify classes, JAR files,
or modules that have to be compiled. The name of the output library (that holds the
generated machine code) can also be passed as the jaotc parameter. If not specified,
the default name of the output will be unnamed.so. As an example, let's look at how
the AOT compiler can work with the class HelloWorld:

public class HelloWorld {
 public static void main(String... args) {
 System.out.println("Hello, World!");
 }
}

First, we will generate the bytecode and produce HelloWorld.class using javac:

javac HelloWorld.java

Lesson 2

[43]

Then, we will use the bytecode from the file HelloWorld.class to generate machine
code into the library libHelloWorld.so:

jaotc --output libHelloWorld.so HelloWorld.class

Now, we can execute the generated library (on the platform with the same
specification as the one where jaotcwas executed) using the java tool with
an option -XX:AOTLibrary:

java -XX:AOTLibrary=./libHelloWorld.so HelloWorld

The option -XX:AOTLibrary allows us to list several AOT libraries separated
by commas.

Notice that the java tool requires bytecode of all the applications in addition to the
native code of some of its components. This fact diminishes the alleged advantage
of static compilation, which some AOT enthusiasts claim, that it protects code
better from being decompiled. It might be so in the future when bytecode will not
be required at runtime if the same class or method is in the AOT library already.
However, as of today, it is not the case.

To see if AOT-compiled methods were used, you can add an option -XX:+PrintAOT:

java -XX:AOTLibrary=./libHelloWorld.so -XX:+PrintAOT HelloWorld

It will allow you to see the line loaded ./libHelloWorld.so AOT library in
the output.

If the source code of a class was changed but not pushed (through the jaotc tool)
into the AOT library, JVM will notice it at runtime because the fingerprint of each
compiled class is stored with its native code in the AOT library. JIT will then ignore
the code in the AOT library and use the bytecode instead.

The java tool in JDK 9 supports a few other flags and options related to AOT:

•	 -XX:+/-UseAOT tells the JVM to use or to ignore AOT-compiled files (by
default, it is set to use AOT)

•	 -XX:+/-UseAOTStrictLoading turns on/off the AOT strict loading; if on, it
directs JVM to exit if any of the AOT libraries were generated on a platform
with a configuration different from the current runtime configuration

The JEP 295 describes the jaotc tool's command format as follows:

jaotc <options> <name or list>

Tools for Higher Productivity and Faster Application

[44]

The name is a class name or JAR file. The list is a colon : separated list of class
names, modules, JAR files, or directories that contain class files. The options is one
or many flags from the following list:

•	 --output <file>: This is the output file name (by default, unnamed.so)
•	 --class-name <class names>: This is the list of Java classes to compile
•	 --jar <jar files>: This is the list of JAR files to compile
•	 --module <modules>: This is the list of Java modules to compile
•	 --directory <dirs>: This is the list of directories where you can search for

files to compile
•	 --search-path <dirs>: This is the list of directories where to search for

specified files
•	 --compile-commands <file>: This is the name of the file with compile

commands; here is an example:
exclude sun.util.resources..*.TimeZoneNames_.*.getContents\(\)\[\
[Ljava/lang/Object;

exclude sun.security.ssl.*

compileOnly java.lang.String.*

AOT recognizes two compile commands currently:

•	 exclude: This excludes the compilation of specified methods
•	 compileOnly: This compiles only specified methods

Regular expressions are used to specify classes and methods, which are
mentioned here:

•	 --compile-for-tiered: This generates profiling code for tiered compilation
(by default, profiling code is not generated)

•	 --compile-with-assertions: This generates code with Java assertions
(by default, assertions code is not generated)

•	 --compile-threads <number>: This is the number of compilation threads to
be used (by default, the smaller value of 16 and number of available CPUs)

•	 --ignore-errors: This ignores all exceptions thrown during class loading
(by default, exits on compilation if class loading throws an exception)

•	 --exit-on-error: This exits on compilation errors (by default, failed
compilation is skipped, while the compilation of other methods continues)

•	 --info: This prints information about compilation phases
•	 --verbose: This prints more details about compilation phases

Lesson 2

[45]

•	 --debug: This prints even more details
•	 --help: This prints help information
•	 --version: This prints version information
•	 -J<flag>: This passes a flag directly to the JVM runtime system

As we mentioned already, some applications can improve performance using AOT,
while others may become slower. Only testing will provide a definite answer to the
question about the usefulness of AOT for each application. In any case, one of the
ways to improve performance is to compile and use the AOT library of the java.
base module:

jaotc --output libjava.base.so --module java.base

At runtime, the AOT initialization code looks for shared libraries in the $JAVA_HOME/
lib directory or among the libraries listed by the -XX:AOTLibrary option. If shared
libraries are found, they are picked up and used. If no shared libraries can be found,
AOT will be turned off.

Summary
In this lesson, we described two new tools that can help a developer be more
productive (JShell tool) and help improve Java application performance (jaotc tool).
The examples and steps to use them will help you understand the benefits of their
usage and get you started in case you decide to try them.

In the next lesson, we will discuss how to monitor Java applications
programmatically using command-line tools. We will also explore how to improve
the application performance via multithreading and how to tune the JVM itself after
learning about the bottlenecks through monitoring.

Assessments
1.	 The ________ compiler takes Java bytecode and generates a native machine

code so that the resulting binary file can execute natively.
2.	 Which of the following commands drops a snippet referenced by a name or

on ID?
1.	 /d <name or id>

2.	 /drop <name or id>

3.	 /dr <name or id>

4.	 /dp <name or id>

Tools for Higher Productivity and Faster Application

[46]

3.	 State whether True or False: Shell is Ahead-of-Time tool that is well-known
for those who program in Scala, Ruby. It takes a user input, evaluates it, and
returns the result after sometime.

4.	 Which of the following commands is used to list the source you have typed
in JShell?

1.	 /l [<name or id>|-all|-start]

2.	 /m [<name or id>|-all|-start]L

3.	 /t [<name or id>|-all|-start]

4.	 /v [<name or id>|-all|-start]

5.	 Which of the following regular expressions ignores all exceptions thrown
during class loading?

1.	 --exit-on-error

2.	 –ignores-errors

3.	 --ignore-errors

4.	 --exits-on-error

[47]

Multithreading and Reactive
Programming

In this lesson, we will look at an approach to support a high performance of an
application by programmatically splitting the task between several workers. That
was how the pyramids were built 4,500 years ago, and this method has not failed to
deliver since then. But there is a limitation on how many laborers can be brought to
work on the same project. The shared resources provide a ceiling to how much the
workforce can be increased, whether the resources are counted in square feet and
gallons (as the living quarters and water in the time of the pyramids) or in gigabytes
and gigahertz (as the memory and processing power of a computer).

Allocation, usage, and limitations of a living space and computer memory are very
similar. However, we perceive the processing power of the human workforce and
CPU quite differently. Historians tell us that thousands of ancient Egyptians worked
on cutting and moving massive stone blocks at the same time. We do not have any
problem understanding what they mean even if we know that these workers rotated
all the time, some of them resting or attending to other matters temporarily and then
coming back to replace the ones who have finished their annual assignment, others
died or got injured and were replaced by the new recruits.

But in case of computer data processing, when we hear about working threads
executing at the same time, we automatically assume that they literally do what
they are programmed to do in parallel. Only after we look under the hood of such a
system we realize that such parallel processing is possible only when the threads are
executed each by a different CPU. Otherwise, they time share the same processing
power, and we perceive them working at the same time only because the time slots
they use are very short--a fraction of the time units we have used in our everyday
life. When the threads share the same resource, in computer science we say they
do it concurrently.

Multithreading and Reactive Programming

[48]

In this lesson, we will discuss the ways to increase Java application performance
by using the workers (threads) that process data concurrently. We will show how
to use threads effectively by pooling them, how to synchronize the concurrently
accessed data, how to monitor and tune worker threads at runtime, and how to
take advantage of the reactive programming concept.

But before doing that, let's revisit the basics of creating and running multiple threads
in the same Java process.

Prerequisites
There are principally two ways to create worker threads--by extending the java.
lang.Thread class and by implementing the java.lang.Runnable interface. While
extending the java.lang.Thread class, we are not required to implement anything:

class MyThread extends Thread {
}

Our MyThread class inherits the name property with an automatically generated
value and the start() method. We can run this method and check the name:

System.out.print("demo_thread_01(): ");
MyThread t1 = new MyThread();
t1.start();
System.out.println("Thread name=" + t1.getName());

If we run this code, the result will be as follows:

As you can see, the generated name is Thread-0. If we created another thread in the
same Java process, the name would be Thread-1 and so on. The start() method
does nothing. The source code shows that it calls the run() method if such a method
is implemented.

We can add any other method to the MyThread class as follows:

class MyThread extends Thread {
 private double result;
 public MyThread(String name){ super(name); }
 public void calculateAverageSqrt(){
 result = IntStream.rangeClosed(1, 99999)
 .asDoubleStream()
 .map(Math::sqrt)

Lesson 3

[49]

 .average()
 .getAsDouble();
 }
 public double getResult(){ return this.result; }
}

The calculateAverageSqrt() method calculates the average square root of the first
99,999 integers and assigns the result to a property that can be accessed anytime. The
following code demonstrates how we can use it:

System.out.print("demo_thread_02(): ");
MyThread t1 = new MyThread("Thread01");
t1.calculateAverageSqrt();
System.out.println(t1.getName() + ": result=" + t1.getResult());

Running this brings up the following result:

As you would expect, the calculateAverageSqrt() method blocks until the
calculations are completed. It was executed in the main thread without it taking
advantage of multithreading. To do this, we move the functionality in the run()
method:

class MyThread01 extends Thread {
 private double result;
 public MyThread01(String name){ super(name); }
 public void run(){
 result = IntStream.rangeClosed(1, 99999)
 .asDoubleStream()
 .map(Math::sqrt)
 .average()
 .getAsDouble();
 }
 public double getResult(){ return this.result; }
}

Now we call the start() method again, as in the first example and expect the result
to be calculated:

System.out.print("demo_thread_03(): ");
MyThread01 t1 = new MyThread01("Thread01");
t1.start();
System.out.println(t1.getName() + ": result=" + t1.getResult());

Multithreading and Reactive Programming

[50]

However, the output of this code may surprise you:

This means that the main thread accessed (and printed) the t1.getResult()
function before the new t1 thread finished its calculations. We can experiment
and change the implementation of the run() method to see if the t1.getResult()
function can get a partial result:

public void run() {
 for (int i = 1; i < 100000; i++) {
 double s = Math.sqrt(1. * i);
 result = result + s;
 }
 result = result / 99999;
}

However, if we run the demo_thread_03() method again, the result remains
the same:

It takes time to create a new thread and get it going. Meanwhile, the main thread
calls the t1.getResult() function immediately, thus getting no results yet.

To give the new (child) thread time to complete the calculations, we add the
following code:

try {
 t1.join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

The join() method tells the current thread to wait until the t1 thread is finished
executing. Let's run the following snippet of code:

System.out.print("demo_thread_04(): ");
MyThread01 t1 = new MyThread01("Thread01");
t1.start();
try {
 t1.join();
} catch (InterruptedException e) {

Lesson 3

[51]

 e.printStackTrace();
}
System.out.println(t1.getName()
 + ": result=" + t1.getResult());
System.out.println("Thread name="
 + Thread.currentThread().getName());

You have noticed that we have paused the main thread by 100 ms and added
printing of the current thread name, to illustrate what we mean by main thread, the
name that is assigned automatically to the thread that executes the main() method.
The output of the previous code is as follows:

The delay of 100 ms was enough for the t1 thread to finish the calculations. That
was the first of two ways of creating threads for multithreaded calculation. The
second way is to implement the Runnable interface. It may be the only way possible
if the class that does calculations already extends some other class and you cannot
or don't want to use composition for some reasons. The Runnable interface is a
functional interface (has only one abstract method) with the run() method that
has to be implemented:

@FunctionalInterface
public interface Runnable {
 /**
 * When an object implementing interface <code>Runnable</code> is
used
 * to create a thread, starting the thread causes the object's
 * <code>run</code> method to be called in that separately
executing
 * thread.
 */
 public abstract void run();

We implement this interface in the MyRunnable class:

class MyRunnable01 implements Runnable {
 private String id;
 private double result;
 public MyRunnable01(int id) {
 this.id = String.valueOf(id);
 }
 public String getId() { return this.id; }

Multithreading and Reactive Programming

[52]

 public double getResult() { return this.result; }
 public void run() {
 result = IntStream.rangeClosed(1, 99999)
 .asDoubleStream()
 .map(Math::sqrt)
 .average()
 .getAsDouble();
 }
}

It has the same functionality as the Thread01 class earlier plus we have added id that
allows identifying the thread if necessary since the Runnable interface does not have
the built-in getName() method like the Thread class has.

Similarly, if we execute this class without pausing the main thread, like this:

System.out.print("demo_runnable_01(): ");
MyRunnable01 myRunnable = new MyRunnable01(1);
Thread t1 = new Thread(myRunnable);
t1.start();
System.out.println("Worker " + myRunnable.getId()
 + ": result=" + myRunnable.getResult());

The output will be as follows:

We will now add the pause as follows:

System.out.print("demo_runnable_02(): ");
MyRunnable01 myRunnable = new MyRunnable01(1);
Thread t1 = new Thread(myRunnable);
t1.start();
try {
 t1.join();
} catch (InterruptedException e) {
 e.printStackTrace();
}
System.out.println("Worker " + myRunnable.getId()
 + ": result=" + myRunnable.getResult());

Lesson 3

[53]

The result is exactly the same as the one produced by the Thread01 class:

All the previous examples stored the generated result in the class property. But it is
not always the case. Typically, the worker thread either passes its value to another
thread or stores it in a database or somewhere else externally. In such a case, one can
take advantage of the Runnable interface being a functional interface and pass the
necessary processing function into a new thread as a lambda expression:

System.out.print("demo_lambda_01(): ");
String id = "1";
Thread t1 =
 new Thread(() -> IntStream.rangeClosed(1, 99999)
 .asDoubleStream().map(Math::sqrt).average()
 .ifPresent(d -> System.out.println("Worker "
 + id + ": result=" + d)));
t1.start();
try {
 t1.join();
} catch (InterruptedException e) {
 e.printStackTrace();
}

The result is going to be exactly the same, as shown here:

Depending on the preferred style, you can re-arrange the code and isolate the
lambda expression in a variable, as follows:

Runnable r = () -> IntStream.rangeClosed(1, 99999)
 .asDoubleStream().map(Math::sqrt).average()
 .ifPresent(d -> System.out.println("Worker "
 + id + ": result=" + d));
Thread t1 = new Thread(r);

Alternatively, you can put the lambda expression in a separate method:

void calculateAverage(String id) {
 IntStream.rangeClosed(1, 99999)
 .asDoubleStream().map(Math::sqrt).average()
 .ifPresent(d -> System.out.println("Worker "

Multithreading and Reactive Programming

[54]

 + id + ": result=" + d));
}
void demo_lambda_03() {
 System.out.print("demo_lambda_03(): ");
 Thread t1 = new Thread(() -> calculateAverage("1"));
 ...
}

The result is going to be the same, as shown here:

With the basic understanding of threads creation in place, we can now return to
the discussion about using the multithreading for building a high-performance
application. In other words, after we understand the abilities and resources needed
for each worker, we can now talk about logistics of bringing in many of them for
such a big-scale project as the Great Pyramid of Giza.

To write code that manages the life cycle of worker threads and their access to
the shared resources is possible, but it is quite the same from one application to
another. That's why, after several releases of Java, the thread management plumbing
became part of the standard JDK library as the java.util.concurrent package.
This package has a wealth of interfaces and classes that support multithreading
and concurrency. We will discuss how to use most of this functionality in the
subsequent sections, while talking about thread pools, threads monitoring, thread
synchronization, and the related subjects.

Thread Pools
In this section, we will look into the Executor interfaces and their implementations
provided in the java.util.concurrent package. They encapsulate thread
management and minimize the time an application developer spends on the writing
code related to threads' life cycles.

There are three Executor interfaces defined in the java.util.concurrent package.
The first is the base Executor interface has only one void execute(Runnable r)
method in it. It basically replaces the following:

Runnable r = ...;
(new Thread(r)).start()

Lesson 3

[55]

However, we can also avoid a new thread creation by getting it from a pool.

The second is the ExecutorService interface extends Executor and adds the
following groups of methods that manage the life cycle of the worker threads
and of the executor itself:

•	 submit(): Place in the queue for the execution of an object of the interface
Runnable or interface Callable (allows the worker thread to return a value);
return object of Future interface, which can be used to access the value
returned by the Callable and to manage the status of the worker thread

•	 invokeAll(): Place in the queue for the execution of a collection of interface
Callable objects return, list of Future objects when all the worker threads
are complete (there is also an overloaded invokeAll() method with timeout)

•	 invokeAny(): Place in the queue for the execution of a collection of interface
Callable objects; return one Future object of any of the worker threads,
which has completed (there is also an overloaded invokeAny() method
with timeout)

Methods that manage the worker threads status and the service itself:

•	 shutdown(): This prevents new worker threads from being submitted
to the service

•	 isShutdown(): This checks whether the shutdown of the executor
was initiated

•	 awaitTermination(long timeout, TimeUnit timeUnit): This waits until
all worker threads have completed execution after a shutdown request, or the
timeout occurs, or the current thread is interrupted, whichever happens first

•	 isTerminated(): This checks whether all the worker threads have
completed after the shutdown was initiated; it never returns true unless
either shutdown() or shutdownNow() was called first

•	 shutdownNow(): This interrupts each worker thread that is not completed;
a worker thread should be written so that it checks its own status (using
Thread.currentThread().isInterrupted(), for example) periodically and
gracefully shuts down on its own; otherwise, it will continue running even
after shutdownNow() was called

The third interface is ScheduledExecutorService that extends ExecutorService
and adds methods that allow scheduling of the execution (one-time and periodic
one) of the worker threads.

Multithreading and Reactive Programming

[56]

A pool-based implementation of ExecutorService can be created using the
java.util.concurrent.ThreadPoolExecutor or java.util.concurrent.
ScheduledThreadPoolExecutor class. There is also a java.util.concurrent.
Executors factory class that covers most of the practical cases. So, before writing a
custom code for worker threads pool creation, we highly recommend looking into
using the following factory methods of the java.util.concurrent.Executors class:

•	 newSingleThreadExecutor(): This creates an ExecutorService (pool)
instance that executes worker threads sequentially

•	 newFixedThreadPool(): This creates a thread pool that reuses a fixed
number of worker threads; if a new task is submitted when all the worker
threads are still executing, it will be set into the queue until a worker thread
is available

•	 newCachedThreadPool(): This creates a thread pool that adds a new thread
as needed, unless there is an idle thread created before; threads that have
been idle for sixty seconds are removed from the cache

•	 newScheduledThreadPool(): This creates a thread pool of a fixed size that
can schedule commands to run after a given delay, or to execute periodically

•	 newSingleThreadScheduledExecutor(): This creates a single-threaded
executor that can schedule commands to run after a given delay, or to
execute periodically

•	 newWorkStealingThreadPool(): This creates a thread pool that uses the
same work-stealing mechanism used by ForkJoinPool, which is particularly
useful in case the worker threads generate other threads, such as in recursive
algorithms

Each of these methods has an overloaded version that allows passing in a
ThreadFactory that is used to create a new thread when needed. Let's see
how it all works in a code sample.

First, we create a MyRunnable02 class that implements Runnable—our future
worker threads:

class MyRunnable02 implements Runnable {
 private String id;
 public MyRunnable02(int id) {
 this.id = String.valueOf(id);
 }
 public String getId(){ return this.id; }
 public void run() {
 double result = IntStream.rangeClosed(1, 100)
 .flatMap(i -> IntStream.rangeClosed(1, 99999))
 .takeWhile(i ->

Lesson 3

[57]

 !Thread.currentThread().isInterrupted())
 .asDoubleStream()
 .map(Math::sqrt)
 .average()
 .getAsDouble();
 if(Thread.currentThread().isInterrupted()){
 System.out.println(" Worker " + getId()
 + ": result=ignored: " + result);
 } else {
 System.out.println(" Worker " + getId()
 + ": result=" + result);
 }
}

Notice the important difference of this implementation from the previous
examples--the takeWhile(i -> !Thread.currentThread().isInterrupted())
operation allows the stream flowing as long as the thread worker status is not set to
interrupted, which happens when the shutdownNow() method is called. As soon as
the predicate of the takeWhile() returns false (the worker thread is interrupted),
the thread stops producing the result (just ignores the current result value). In a
real system, it would equate to skipping storing result value in the database,
for example.

It is worth noting here that using the interrupted() status method for checking
the thread status in the preceding code may lead to inconsistent results. Since the
interrupted() method returns the correct state value and then clears the thread
state, the second call to this method (or the call to the method isInterrupted()
after the call to the method interrupted()) always returns false.

Although it is not the case in this code, we would like to mention here a mistake
some developers make while implementing try/catch block in a worker thread. For
example, if the worker needs to pause and wait for an interrupt signal, the code often
looks like this:

try {
 Thread.currentThread().wait();
} catch (InterruptedException e) {}
// Do what has to be done

The problem with the preceding snippet is that the thread status never becomes
interrupted, while the higher level code might be monitoring the worker thread and
changes behavior depending on whether the worker has been interrupted or not.

Multithreading and Reactive Programming

[58]

The better implementation is as follows:

try {
 Thread.currentThread().wait();
} catch (InterruptedException e) {
 Thread.currentThread().interrupt();
}
// Do what has to be done

This way the status interrupted is set on the thread and can be checked later by
the isInterrupted() method. To be fair, in many applications, once the thread
is interrupted, its code is not checked again. But setting the correct state is a good
practice, especially in the cases when you are not the author of the client code.

In the snippet of code with the join() method, we did not need to do that because
that was the main code (the highest level code) that had to be paused.

Now we can show how to execute the earlier MyRunnable02 class with a cached pool
implementation of the ExecutiveService pool (other types of thread pool are used
similarly). First, we create the pool, submit three instances of the MyRunnable02 class
for execution and shut down the pool:

ExecutorService pool = Executors.newCachedThreadPool();
IntStream.rangeClosed(1, 3).
 forEach(i -> pool.execute(new MyRunnable02(i)));
System.out.println("Before shutdown: isShutdown()="
 + pool.isShutdown() + ", isTerminated()="
 + pool.isTerminated());
pool.shutdown(); // New threads cannot be submitted
System.out.println("After shutdown: isShutdown()="
 + pool.isShutdown() + ", isTerminated()="
 + pool.isTerminated());

If we run these lines, we will see the following output:

No surprises here! The isShutdown() method returns a false value before the
shutdown() method is called and a true value afterward. The isTerminated()
method returns a false value, because none of the worker threads has completed yet.

Lesson 3

[59]

Let's test the shutdown() method by adding the following code after it:

try {
 pool.execute(new MyRunnable02(100));
} catch(RejectedExecutionException ex){
 System.err.println("Cannot add another worker-thread to the
service queue:\n" + ex.getMessage());
}

The output will now have the following message (the screenshot would be either
too big for this page or not readable when fitting):

Cannot add another worker-thread to the service queue:
Task com.packt.java9hp.ch09_threads.MyRunnable02@6f7fd0e6
 rejected from java.util.concurrent.ThreadPoolExecutor
 [Shutting down, pool size = 3, active threads = 3,
 queued tasks = 0, completed tasks = 0]

As expected, after the shutdown() method is called, no more worker threads can be
added to the pool.

Now, let's see what we can do after the shutdown was initiated:

long timeout = 100;
TimeUnit timeUnit = TimeUnit.MILLISECONDS;
System.out.println("Waiting for all threads completion "
 + timeout + " " + timeUnit + "...");
// Blocks until timeout or all threads complete execution
boolean isTerminated =
 pool.awaitTermination(timeout, timeUnit);
System.out.println("isTerminated()=" + isTerminated);
if (!isTerminated) {
 System.out.println("Calling shutdownNow()...");
 List<Runnable> list = pool.shutdownNow();
 printRunningThreadIds(list);
 System.out.println("Waiting for threads completion "
 + timeout + " " + timeUnit + "...");
 isTerminated =
 pool.awaitTermination(timeout, timeUnit);
 if (!isTerminated){
 System.out.println("Some threads are running...");
 }
 System.out.println("Exiting.");
}

Multithreading and Reactive Programming

[60]

The printRunningThreadIds() method looks like this:

void printRunningThreadIds(List<Runnable> l){
 String list = l.stream()
 .map(r -> (MyRunnable02)r)
 .map(mr -> mr.getId())
 .collect(Collectors.joining(","));
 System.out.println(l.size() + " thread"
 + (l.size() == 1 ? " is" : "s are") + " running"
 + (l.size() > 0 ? ": " + list : "") + ".");
}

The output of the preceding code will be as follows:

This means that 100 ms was enough for each worker thread to complete the
calculations. (Notice, if you try to reproduce this data on your computer, the results
might be slightly different because of the difference in performance, so you would
need to adjust the timeout.)

When we have decreased the wait time to 75 ms, the output became as follows:

The 75 ms on our computer was not enough to let all the threads complete, so they
were interrupted by shutdownNow() and their partial results were ignored.

Let's now remove the check of the interrupted status in the MyRunnable01 class:

class MyRunnable02 implements Runnable {
 private String id;
 public MyRunnable02(int id) {
 this.id = String.valueOf(id);
 }

Lesson 3

[61]

 public String getId(){ return this.id; }
 public void run() {
 double result = IntStream.rangeClosed(1, 100)
 .flatMap(i -> IntStream.rangeClosed(1, 99999))
 .asDoubleStream()
 .map(Math::sqrt)
 .average()
 .getAsDouble();
 System.out.println(" Worker " + getId()
 + ": result=" + result);
}

Without the check, even if we decrease the timeout to 1 ms, the result will be
as follows:

That is because the worker threads have never noticed that somebody tried to
interrupt them and completed their assigned calculations. This last test demonstrates
the importance of watching for the interrupted state in a work thread in order to
avoid many possible problems, namely, data corruption and memory leak.

The demonstrated cached pool works fine and poses no problem if the worker
threads perform short tasks and their number cannot grow excessively large. If you
need to have more control over the max number of worker threads running at any
time, use the fixed size thread pool. We will discuss how to choose the pool size in
one of the following sections of this lesson.

The single-thread pool is a good fit for executing tasks in a certain order or in the
case when each of them requires so many resources that cannot be executed in
parallel with another. Yet another case for using a single-thread execution would be
for workers that modify the same data, but the data cannot be protected from the
parallel access another way. The thread synchronization will be discussed in more
detail in one of the following sections of this lesson, too.

Multithreading and Reactive Programming

[62]

In our sample code, so far we have only included the execute() method of the
Executor interface. We will demonstrate the other methods of the ExecutorService
pool in the following section while discussing threads monitoring.

And the last remark in this section. The worker threads are not required to be objects
of the same class. They may represent completely different functionality and still be
managed by one pool.

Monitoring Threads
There are two ways to monitor threads, programmatically and using the external
tools. We have already seen how the result of a worker calculation could be checked.
Let's revisit that code. We will also slightly modify our worker implementation:

class MyRunnable03 implements Runnable {
 private String name;
 private double result;
 public String getName(){ return this.name; }
 public double getResult() { return this.result; }
 public void run() {
 this.name = Thread.currentThread().getName();
 double result = IntStream.rangeClosed(1, 100)
 .flatMap(i -> IntStream.rangeClosed(1, 99999))
 .takeWhile(i -> !Thread.currentThread().isInterrupted())
 .asDoubleStream().map(Math::sqrt).average().getAsDouble();
 if(!Thread.currentThread().isInterrupted()){
 this.result = result;
 }
 }
}

For the worker thread identification, instead of custom ID, we now use the thread
name assigned automatically at the time of the execution (that is why we assign
the name property in the run() method that is called in the context of the execution
when the thread acquires its name). The new class MyRunnable03 can be used
like this:

void demo_CheckResults() {
 ExecutorService pool = Executors.newCachedThreadPool();
 MyRunnable03 r1 = new MyRunnable03();
 MyRunnable03 r2 = new MyRunnable03();
 pool.execute(r1);
 pool.execute(r2);
 try {

Lesson 3

[63]

 t1.join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.println("Worker " + r1.getName() + ": result=" +
r1.getResult());
 System.out.println("Worker " + r2.getName() + ": result=" +
r2.getResult());
 shutdown(pool);
}

The shutdown() method contains the following code:

void shutdown(ExecutorService pool) {
 pool.shutdown();
 try {
 if(!pool.awaitTermination(1, TimeUnit.SECONDS)){
 pool.shutdownNow();
 }
 } catch (InterruptedException ie) {}
}

If we run the preceding code, the output will be as follows:

If the result on your computer is different, try to increase the input value to the
sleepMs() method.

Another way to get information about the application worker threads is by using
the Future interface. We can access this interface using the submit() method of the
ExecutorService pool, instead of the execute(), invokeAll(), or invokeAny()
methods. This code shows how to use the submit() method:

ExecutorService pool = Executors.newCachedThreadPool();
Future f1 = pool.submit(new MyRunnable03());
Future f2 = pool.submit(new MyRunnable03());
printFuture(f1, 1);
printFuture(f2, 2);
shutdown(pool);

The printFuture() method has the following implementation:

void printFuture(Future future, int id) {
 System.out.println("printFuture():");

Multithreading and Reactive Programming

[64]

 while (!future.isCancelled() && !future.isDone()){
 System.out.println(" Waiting for worker "
 + id + " to complete...");
 sleepMs(10);
 }
 System.out.println(" Done...");
}

The sleepMs() method contains the following code:

void sleepMs(int sleepMs) {
 try {
 TimeUnit.MILLISECONDS.sleep(sleepMs);
 } catch (InterruptedException e) {}
}

We prefer this implementation instead of the traditional Thread.sleep() because it
is explicit about the time units used.

If we execute the previous code, the result will be similar to the following:

The printFuture() method has blocked the main thread execution until the first
thread has completed. Meanwhile, the second thread has completed too. If we call
the printFuture() method after the shutdown() method, both the threads would
complete by that time already because we have set a wait time of 1 second (see the
pool.awaitTermination() method), which is enough for them to finish their job:

Lesson 3

[65]

If you think it is not much information from a threads monitoring point of
view, the java.util.concurrent package provides more capabilities via the
Callable interface. It is a functional interface that allows returning any object
(containing results of the worker thread calculations) via the Future object using
ExecutiveService methods--submit(), invokeAll(), and invokeAny(). For
example, we can create a class that contains the result of a worker thread:

class Result {
 private double result;
 private String workerName;
 public Result(String workerName, double result) {
 this.result = result;
 this.workerName = workerName;
 }
 public String getWorkerName() { return workerName; }
 public double getResult() { return result;}
}

We have included the name of the worker thread too for monitoring which thread
generated the result that is presented. The class that implements the Callable
interface may look like this:

class MyCallable01<T> implements Callable {
 public Result call() {
 double result = IntStream.rangeClosed(1, 100)
 .flatMap(i -> IntStream.rangeClosed(1, 99999))
 .takeWhile(i -> !Thread.currentThread().isInterrupted())
 .asDoubleStream().map(Math::sqrt).average().getAsDouble();

 String workerName = Thread.currentThread().getName();
 if(Thread.currentThread().isInterrupted()){
 return new Result(workerName, 0);
 } else {
 return new Result(workerName, result);
 }
 }
}

And here is the code that uses the MyCallable01 class:

ExecutorService pool = Executors.newCachedThreadPool();
Future f1 = pool.submit(new MyCallable01<Result>());
Future f2 = pool.submit(new MyCallable01<Result>());
printResult(f1, 1);
printResult(f2, 2);
shutdown(pool);

Multithreading and Reactive Programming

[66]

The printResult() method contains the following code:

void printResult(Future<Result> future, int id) {
 System.out.println("printResult():");
 while (!future.isCancelled() && !future.isDone()){
 System.out.println(" Waiting for worker "
 + id + " to complete...");
 sleepMs(10);
 }
 try {
 Result result = future.get(1, TimeUnit.SECONDS);
 System.out.println(" Worker "
 + result.getWorkerName() + ": result = "
 + result.getResult());
 } catch (Exception ex) {
 ex.printStackTrace();
 }
}

The output of this code may look like this:

The earlier output shows, as in the previous examples, that the printResult()
method waits until the first of the worker threads finishes, so the second thread
manages to finish its job at the same time. The advantage of using Callable, as you
can see, is that we can retrieve the actual result from a Future object, if we need it.

The usage of the invokeAll() and invokeAny() methods looks similar:

ExecutorService pool = Executors.newCachedThreadPool();
try {
 List<Callable<Result>> callables =
 List.of(new MyCallable01<Result>(),
 new MyCallable01<Result>());

Lesson 3

[67]

 List<Future<Result>> futures =
 pool.invokeAll(callables);
 printResults(futures);
} catch (InterruptedException e) {
 e.printStackTrace();
}
shutdown(pool);

The printResults() method is using the printResult() method, which you
already know:

void printResults(List<Future<Result>> futures) {
 System.out.println("printResults():");
 int i = 1;
 for (Future<Result> future : futures) {
 printResult(future, i++);
 }
}

If we run the preceding code, the output will be as follows:

As you can see, there is no more waiting for the worker thread completing the job.
That is so because the invokeAll() method returns the collection of the Future
object after all the jobs have completed.

The invokeAny() method behaves similarly. If we run the following code:

System.out.println("demo_InvokeAny():");
ExecutorService pool = Executors.newCachedThreadPool();
try {
 List<Callable<Result>> callables =
 List.of(new MyCallable01<Result>(),
 new MyCallable01<Result>());
 Result result = pool.invokeAny(callables);
 System.out.println(" Worker "
 + result.getWorkerName()
 + ": result = " + result.getResult());
} catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
}
shutdown(pool);

Multithreading and Reactive Programming

[68]

The following will be the output:

These are the basic techniques for monitoring the threads programmatically, but one
can easily extend our examples to cover more complicated cases tailored to the needs
of a specific application. In Lesson 5, Making Use of New APIs to Improve Your Code, we
will also discuss another way to programmatically monitor worker threads using
the java.util.concurrent.CompletableFuture class introduced in JDK 8 and
extended in JDK 9.

If necessary, it is possible to get information not only about the application worker
threads, but also about all other threads in the JVM process using the java.lang.
Thread class:

void printAllThreads() {
 System.out.println("printAllThreads():");
 Map<Thread, StackTraceElement[]> map = Thread.getAllStackTraces();
 for(Thread t: map.keySet()){
 System.out.println(" " + t);
 }

Now, let's call this method as follows:

void demo_CheckResults() {
 ExecutorService pool = Executors.newCachedThreadPool();
 MyRunnable03 r1 = new MyRunnable03();
 MyRunnable03 r2 = new MyRunnable03();
 pool.execute(r1);
 pool.execute(r2);
 sleepMs(1000);
 printAllThreads();
 shutdown(pool);
}

Lesson 3

[69]

The result looks like this:

We took advantage of the toString() method of the Thread class that prints only
the thread name, priority, and the thread group it belongs to. And we see the two
application threads we have created explicitly (in addition to the main thread) in the
list under the names pool-1-thread-1 and pool-1-thread-2. But if we call the
printAllThreads() method after calling the shutdown() method, the output will
be as follows:

We do not see the pool-1-thread-1 and pool-1-thread-2 threads in the list
anymore because the ExecutorService pool has been shut down.

We could easily add the stack trace information pulled from the same map:

void printAllThreads() {
 System.out.println("printAllThreads():");
 Map<Thread, StackTraceElement[]> map
 = Thread.getAllStackTraces();
 for(Thread t: map.keySet()){
 System.out.println(" " + t);
 for(StackTraceElement ste: map.get(t)){
 System.out.println(" " + ste);
 }
 }
}

Multithreading and Reactive Programming

[70]

However, that would take too much space on the book page. In Lesson 5, Making Use
of New APIs to Improve Your Code, while presenting new Java capabilities that came
with JDK 9, we will also discuss a better way to access a stack trace via the java.
lang.StackWalker class.

The Thread class object has several other methods that provide information about
the thread, which are as follows:

•	 dumpStack(): This prints a stack trace to the standard error stream
•	 enumerate(Thread[] arr): This copies active threads in the current

thread's thread group and its subgroups into the specified array arr
•	 getId(): This provides the thread's ID
•	 getState(): This reads the state of the thread; the possible values from enum

Thread.State can be one of the following:
°° NEW: This is the thread that has not yet started
°° RUNNABLE: This is the thread that is currently being executed
°° BLOCKED: This is the thread that is blocked waiting for a monitor lock

to be released
°° WAITING: This is the thread that is waiting for an interrupt signal
°° TIMED_WAITING: This is the thread that is waiting for an interrupt

signal up to a specified waiting time
°° TERMINATED: This is the thread that has exited

•	 holdsLock(Object obj): This indicates whether the thread holds the
monitor lock on the specified object

•	 interrupted() or isInterrupted(): This indicates whether the thread
has been interrupted (received an interrupt signal, meaning that the flag
interrupted was set to true)

•	 isAlive(): This indicates whether the thread is alive
•	 isDaemon(): This indicates whether the thread is a daemon thread.

The java.lang.management package provides similar capabilities for monitoring
threads. Let's run this code snippet, for example:

void printThreadsInfo() {
 System.out.println("printThreadsInfo():");
 ThreadMXBean threadBean =
 ManagementFactory.getThreadMXBean();
 long ids[] = threadBean.getAllThreadIds();
 Arrays.sort(ids);

Lesson 3

[71]

 ThreadInfo[] tis = threadBean.getThreadInfo(ids, 0);
 for (ThreadInfo ti : tis) {
 if (ti == null) continue;
 System.out.println(" Id=" + ti.getThreadId()
 + ", state=" + ti.getThreadState()
 + ", name=" + ti.getThreadName());
 }
}

For better presentation, we took advantage of having thread IDs listed and, as you
could see previously, have sorted the output by ID. If we call the printThreadsInfo()
method before the shutdown() method the output will be as follows:

However, if we call the printThreadsInfo() method after the shutdown() method,
the output will not include our worker threads anymore, exactly as in the case of
using the Thread class API:

The java.lang.management.ThreadMXBean interface provides a lot of other useful
data about threads. You can refer to the official API on the Oracle website about
this interface for more information check this link: https://docs.oracle.com/
javase/8/docs/api/index.html?java/lang/management/ThreadMXBean.html.

Multithreading and Reactive Programming

[72]

In the list of threads mentioned earlier, you may have noticed the Monitor Ctrl-
Break thread. This thread provides another way to monitor the threads in the JVM
process. Pressing the Ctrl and Break keys on Windows causes the JVM to print
a thread dump to the application's standard output. On Oracle Solaris or Linux
operating systems, the same effect has the combination of the Ctrl key and the
backslash \. This brings us to the external tools for thread monitoring.

In case you don't have access to the source code or prefer to use the external tools
for the threads monitoring, there are several diagnostic utilities available with the
JDK installation. In the following list, we mention only the tools that allow for thread
monitoring and describe only this capability of the listed tools (although they have
other extensive functionality too):

•	 The jcmd utility sends diagnostic command requests to the JVM on the
same machine using the JVM process ID or the name of the main class: jcmd
<process id/main class> <command> [options], where the Thread.
print option prints the stack traces of all the threads in the process.

•	 The JConsole monitoring tool uses the built-in JMX instrumentation in
the JVM to provide information about the performance and resource
consumption of running applications. It has a thread tab pane that shows
thread usage over time, the current number of live threads, the highest
number of live threads since the JVM started. It is possible to select the
thread and its name, state, and stack trace, as well as, for a blocked thread,
the synchronizer that the thread is waiting to acquire, and the thread owning
the lock. Use the Deadlock Detection button to identify the deadlock.
The command to run the tool is jconsole <process id> or (for remote
application) jconsole <hostname>:<port> , where port is the port number
specified with the JVM start command that enabled the JMX agent.

•	 The jdb utility is an example command line debugger. It can be attached to
the JVM process and allows you to examine threads.

•	 The jstack command line utility can be attached to the JVM process and
print the stack traces of all threads, including JVM internal threads, and
optionally native stack frames. It allows you to detect deadlocks too.

•	 Java Flight Recorder (JFR) provides information about the Java process,
including threads waiting for locks, garbage collections, and so on. It also
allows getting thread dumps, which are similar to the one generated by
the Thread.print diagnostic command or by using the jstack tool. It is
possible to set up Java Mission Control (JMC) to dump a flight recording
if a condition is met. JMC UI contains information about threads, lock
contention, and other latencies. Although JFR is a commercial feature, it is
free for developer desktops/laptops, and for evaluation purposes in test,
development, and production environments.

Lesson 3

[73]

You can find more details about these and other diagnostic
tools in the official Oracle documentation at https://docs.
oracle.com/javase/9/troubleshoot/diagnostic-
tools.htm.

Sizing Thread Pool Executors
In our examples, we have used a cached thread pool that creates a new thread as
needed or, if available, reuses the thread already used, but which completed its job
and returned to the pool for a new assignment. We did not worry about too many
threads created because our demo application had two worker threads at the most
and they were quite short lived.

But in the case where an application does not have a fixed limit of the worker threads
it might need or there is no good way to predict how much memory a thread may
take or how long it can execute, setting a ceiling on the worker thread count prevents
an unexpected degradation of the application performance, running out of memory
or depletion of any other resources the worker threads use. If the thread behavior
is extremely unpredictable, a single thread pool might be the only solution, with
an option of using a custom thread pool executor (more about this last option is
explained later). But in most of the cases, a fixed-size thread pool executor is a good
practical compromise between the application needs and the code complexity.
Depending on the specific requirements, such an executor might be one of these
three flavors:

•	 A straightforward, fixed-sized ExecutorService.newFixedThreadPool(int
nThreads) pool that does not grow beyond the specified size, but does not
adopt either

•	 Several ExecutorService.newScheduledThreadPool(int nThreads)
pools that allow scheduling different groups of threads with a different delay
or cycle of execution

•	 ExecutorService.newWorkStealingPool(int parallelism) that adapts
to the specified number of CPUs, which you may set higher or smaller than
the actual CPUs count on your computer

Multithreading and Reactive Programming

[74]

Setting the fixed size in any of the preceding pools too low may deprive the
application of the chance to utilize the available resources effectively. So, before
selecting the pool size, it is advisable to spend some time on monitoring it and
tuning JVM (see how to do it in one of the sections of this lesson) with the goal of
the identification of the idiosyncrasy of the application behavior. In fact, the cycle
deploy-monitor-tune-adjust has to be repeated throughout the application life cycle
in order to accommodate and take advantage of the changes that happened in the
code or the executing environment.

The first parameter you take into account is the number of CPUs in your system, so
the thread pool size can be at least as big as the CPU's count. Then, you can monitor
the application and see how much time each thread engages the CPU and how
much of the time it uses other resources (such as I/O operations). If the time spent
not using the CPU is comparable with the total executing time of the thread, then
you can increase the pool size by time not using CPU/total executing time. But that
is in the case that another resource (disk or database) is not a subject of contention
between the threads. If the latter is the case, then you can use that resource instead
of the CPU as the delineating factor.

Assuming the worker threads of your application are not too big or too long
executing and belong to the mainstream population of the typical working threads
that complete their job in a reasonably short period of time, you can increase the
pool size by adding the (rounded up) ratio of the desired response time and the
time a thread uses CPU or another most contentious resource. This means that, with
the same desired response time, the less a thread uses CPU or another concurrently
accessed resource, the bigger the pool size should be. If the contentious resource has
its own ability to improve concurrent access (like a connection pool in the database),
consider utilizing that feature first.

If the required number of threads running at the same time changes at runtime
under the different circumstances, you can make the pool size dynamic and create
a new pool with a new size (shutting down the old pool after all its threads have
completed). The recalculation of the size of a new pool might be necessary also after
you add to remove the available resources. You can use Runtime.getRuntime().
availableProcessors() to programmatically adjust the pool size based on the
current count of the available CPUs, for example.

If none of the ready-to-use thread pool executor implementations that come with the
JDK suit the needs of a particular application, before writing the thread managing
code from scratch, try to use the java.util.concurrent.ThreadPoolExecutor
class first. It has several overloaded constructors.

Lesson 3

[75]

To give you an idea of its capabilities, here is the constructor with the biggest
number of options:

ThreadPoolExecutor (int corePoolSize, int maximumPoolSize, long
keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory, RejectedExecutionHandler handler)

The earlier mentioned parameters are (quoting from the JavaDoc):

•	 corePoolSize: This is the number of threads to keep in the pool, even if
they are idle unless allowCoreThreadTimeOut is set

•	 maximumPoolSize: This is the maximum number of threads to allow in
the pool

•	 keepAliveTime: When the number of threads is greater than the core, this
is the maximum time that excess idle threads will wait for new tasks before
terminating

•	 unit: This is the time unit for the keepAliveTime argument
•	 workQueue: This is the queue to use for holding tasks before they are

executed, this queue will hold only the Runnable tasks submitted by
the execute method

•	 threadFactory: This is the factory to use when the executor creates a
new thread

•	 handler: This is the handler to use when the execution is blocked because
the thread bounds and queue capacities are reached

Each of the previous constructor parameters except the workQueue parameter can
also be set via the corresponding setter after the object of the ThreadPoolExecutor
method has been created, thus allowing more flexibility in dynamic adjustment of
the existing pool characteristics.

Thread Synchronization
We have collected enough people and resources such as food, water, and tools for
the pyramid building. We have divided people into teams and assigned each team a
task. A number (a pool) of people are living in the nearby village on a standby mode,
ready to replace the ones that got sick or injured on their assignment. We adjusted
the workforce count so that there are only a few people who will remain idle in the
village. We rotate the teams through the work-rest cycle to keep the project going at
maximum speed. We monitored the process and have adjusted the number of teams
and the flow of supplies they need so that there are no visible delays and there is
steady measurable progress in the project as a whole. Yet, there are many moving
parts overall and various small and big unexpected incidents and problems happen
all the time.

Multithreading and Reactive Programming

[76]

To make sure that the workers and teams do not step on each other and that there is
some kind of traffic regulation so that the next technological step does not start until
the previous one is finished, the main architect sends his representatives to all the
critical points of the construction site. These representatives make sure that the tasks
are executed with the expected quality and in the prescribed order. They have the
power to stop the next team from starting their job until the previous team has not
finished yet. They act like traffic cops or the locks that can shut down the access to
the workplace or allow it, if/when necessary.

The job these representatives are doing can be defined in the modern language as
a coordination or synchronization of actions of the executing units. Without it, the
results of the efforts of the thousands of workers would be unpredictable. The big
picture from ten thousand feet would look smooth and harmonious, as the farmers'
fields from the windows of an airplane. But without closer inspection and attention
to the critical details, this perfect looking picture may bring a poor harvest, if any.

Similarly, in the quiet electronic space of the multithreaded execution environment,
the working threads have to be synchronized if they share access to the same
working place. For example, let's create the following class-worker for a thread:

class MyRunnable04 implements Runnable {
 private int id;
 public MyRunnable04(int id) { this.id = id; }
 public void run() {
 IntStream.rangeClosed(1, 5)
 .peek(i -> System.out.println("Thread "+id+": "+ i))
 .forEach(i -> Demo04Synchronization.result += i);
 }
}

As you can see, it sequentially adds 1, 2, 3, 4, 5 (so, that the resulting total is expected
to be 15) to the static property of the Demo04Synchronization class:

public class Demo04Synchronization {
 public static int result;
 public static void main(String... args) {
 System.out.println();
 demo_ThreadInterference();
 }
 private static void demo_ThreadInterference(){
 System.out.println("demo_ThreadInterference: ");
 MyRunnable04 r1 = new MyRunnable04(1);
 Thread t1 = new Thread(r1);
 MyRunnable04 r2 = new MyRunnable04(2);
 Thread t2 = new Thread(r2);

Lesson 3

[77]

 t1.start();
 sleepMs(100);
 t2.start();
 sleepMs(100);
 System.out.println("Result=" + result);
 }
 private static void sleepMs(int sleepMs) {
 try {
 TimeUnit.MILLISECONDS.sleep(sleepMs);
 } catch (InterruptedException e) {}
 }
}

In the earlier code, while the main thread pauses for 100 ms the first time, the thread
t1 brings the value of the variable result to 15, then the thread t2 adds another 15 to
get the total of 30. Here is the output:

If we remove the first pause of 100 ms, the threads will work concurrently:

Multithreading and Reactive Programming

[78]

The final result is still 30. We feel good about this code and deploy it to production
as a well-tested code. However, if we increase the number of additions from 5 to 250,
for example, the result becomes unstable and changes from run to run. Here is the
first run (we commented out the printout in each thread in order to save space):

And here is the output of another run:

It demonstrates the fact that the Demo04Synchronization.result += i operation is
not atomic. This means it consists of several steps, reading the value from the result
property, adding a value to it, assigning the resulting sum back to the result
property. This allows the following scenario, for example:

•	 Both the threads have read the current value of result (so each of the
threads has a copy of the same original result value)

•	 Each thread adds another integer to the same original one
•	 The first thread assigns the sum to the result property
•	 The second thread assigns its sum to the result property

As you can see, the second thread did not know about the addition the first thread
made and has overwritten the value assigned to the result property by the first
thread. But such thread interleaving does not happen every time. It is just a game
of chance. That's why we did not see such an effect with five numbers only. But
the probability of this happening increases with the growth of the number of
concurrent actions.

A similar thing could happen during the pyramid building too. The second team
could start doing something before the first team has finished their task. We
definitely need a synchronizer and it comes with a synchronized keyword. Using it,
we can create a method (an architect representative) in the Demo04Synchronization
class that will control access to the result property and add to it this keyword:

private static int result;
public static synchronized void incrementResult(int i){
 result += i;
}

Lesson 3

[79]

Now we have to modify the run() method in the worker thread too:

public void run() {
 IntStream.rangeClosed(1, 250)
 .forEach(Demo04Synchronization::incrementResult);
}

The output now shows the same final number for every run:

The synchronized keyword tells JVM that only one thread at a time is allowed
to enter this method. All the other threads will wait until the current visitor of the
method exits from it.

The same effect could be achieved by adding the synchronized keyword to a block
of code:

public static void incrementResult(int i){
 synchronized (Demo04Synchronization.class){
 result += i;
 }
}

The difference is that the block synchronization requires an object--a class object in
the case of static property synchronization (as in our case) or any other object in the
case of an instance property synchronization. Each object has an intrinsic lock or
monitor lock, often referred to simply as a monitor. Once a thread acquires a lock
on an object, no other thread can acquire it on the same object until the first thread
releases the lock after normal exit from the locked code or if the code throws
an exception.

In fact, in the case of a synchronized method, an object (the one to which the method
belongs) is used for locking, too. It just happens behind the scene automatically and
does not require the programmer to use an object's lock explicitly.

In case you do not have access to the main class code (as in the example earlier) you
can keep the result property public and add a synchronized method to the worker
thread (instead of the class as we have done):

class MyRunnable05 implements Runnable {
 public synchronized void incrementResult(int i){
 Demo04Synchronization.result += i;
 }

Multithreading and Reactive Programming

[80]

 public void run() {
 IntStream.rangeClosed(1, 250)
 .forEach(this::incrementResult);
 }
}

In this case, the object of the MyRunnable05 worker class provides its intrinsic lock
by default. This means, you need to use the same object of the MyRunnable05 class
for all the threads:

void demo_Synchronized(){
 System.out.println("demo_Synchronized: ");
 MyRunnable05 r1 = new MyRunnable05();
 Thread t1 = new Thread(r1);
 Thread t2 = new Thread(r1);
 t1.start();
 t2.start();
 sleepMs(100);
 System.out.println("Result=" + result);
}

The output of the preceding code is the same as before:

One can argue that this last implementation is preferable because it allocates the
responsibility of the synchronization with the thread (and the author of its code) and
not with the shared resource. This way the need for synchronization changes along
with the thread implementation evolution, provided that the client code (that uses
the same or different objects for the threads) can be changed as needed as well.

There is another possible concurrency issue that may happen in some operating
systems. Depending on how the thread caching is implemented, a thread might
preserve a local copy of the property result and not update it after another thread
has changed its value. By adding the volatile keyword to the shared (between
threads) property guarantees that its current value will be always read from the
main memory, so each thread will see the updates done by the other threads. In
our previous examples, we just set the Demo04Synchronization class property as
private static volatile int result, add a synchronized incrementResult()
method to the same class or to the thread and do not worry anymore about threads
stepping on each other.

Lesson 3

[81]

The described thread synchronization is usually sufficient for the mainstream
application. But the higher performance and highly concurrent processing often
require looking closer into the thread dump, which typically shows that method
synchronization is more efficient than block synchronization. Naturally, it also
depends on the size of the method and the block. Since all the other threads that try to
access the synchronized method or block are going to stop execution until the current
visitor of the method or block exits it, it is possible that despite the overhead a small
synchronized block yields better performance than the big synchronized method.

For some applications, the behavior of the default intrinsic lock, which just blocks
until the lock is released, maybe not well suited. If that is the case, consider using
locks from the java.util.concurrent.locks package. The access control based
on locks from that package has several differences if compared with using the
default intrinsic lock. These differences may be advantageous for your application or
provide the unnecessary complication, but it's important to know them, so you can
make an informed decision:

•	 The synchronized fragment of code does not need to belong to one method; it
can span several methods, delineated by the calls to the lock() and unlock()
methods (invoked on the object that implements the Lock interface)

•	 While creating an object of the Lock interface called ReentrantLock, it is
possible to pass into the constructor a fair flag that makes the lock able
to grant an access to the longest-waiting thread first, which helps to avoid
starvation (when the low priority thread never can get access to the lock)

•	 Allows a thread to test whether the lock is accessible before committing to
be blocked

•	 Allows interrupting a thread waiting for the lock, so it does not remain
blocked indefinitely

•	 You can implement the Lock interface yourself with whatever features you
need for your application

A typical pattern of usage of the Lock interface looks like this:

Lock lock = ...;
...
 lock.lock();
 try {
 // the fragment that is synchronized
 } finally {
 lock.unlock();
 }
...
}

Multithreading and Reactive Programming

[82]

Notice the finally block. It is the way to guarantee that the lock is released
eventually. Otherwise, the code inside the try-catch block can throw an exception
and the lock is never released.

In addition to the lock() and unlock() methods, the Lock interface has the
following methods:

•	 lockInterruptibly(): This acquires the lock unless the current thread
is interrupted. Similar to the lock() method, this method blocks while
waiting until the lock is acquired, in difference to the lock() method,
if another thread interrupts the waiting thread, this method throws the
InterruptedException exception

•	 tryLock(): This acquires the lock immediately if it is free at the time
of invocation

•	 tryLock(long time, TimeUnit unit): This acquires the lock if it is
free within the given waiting time and the current thread has not been
interrupted

•	 newCondition(): This returns a new Condition instance that is bound to
this Lock instance, after acquiring the lock, the thread can release it (calling
the await() method on the Condition object) until some other thread calls
signal() or signalAll() on the same Condition object, it is also possible
to specify the timeout period (by using an overloaded await() method), so
the thread will resume after the timeout if there was no signal received, see
the Condition API for more details

The scope of this book does not allow us to show all the possibilities for thread
synchronization provided in the java.util.concurrent.locks package. It would
take several lessons to describe all of them. But even from this short description,
you can see that one would be hard pressed to find a synchronization problem that
cannot be solved using the java.util.concurrent.locks package.

The synchronization of a method or block of code makes sense when several
lines of code have to be isolated as an atomic (all or nothing) operation. But in the
case of a simple assignment to a variable or increment/decrement of a number
(as in our earlier examples), there is a much better way to synchronize this
operation by using classes from the java.util.concurrent.atomic package
that support lock-free thread-safe programming on a single variable. The variety
of classes covers all the numbers and even arrays and reference types such as
AtomicBoolean, AtomicInteger, AtomicIntegerArray, AtomicReference, and
AtomicReferenceArray.

Lesson 3

[83]

There are 16 classes in total. Depending on the value type, each of them allows
a full imaginable range of operations, that is, set(), get(), addAndGet(),
compareAndSet(), incrementAndGet(), decrementAndGet(), and many others.
Each operation is implemented much more efficiently than the same operations
implemented with the synchronized keyword. And there is no need for the
volatile keyword because it uses it under the hood.

If the concurrently accessed resource is a collection, the java.util.concurrent
package offers a variety of thread-safe implementations that perform better than
synchronized HashMap, Hashtable, HashSet, Vector, and ArrayList (if we
compare the corresponding ConcurrentHashMap, CopyOnWriteArrayList, and
CopyOnWriteHashSet). The traditional synchronized collections lock the whole
collection while concurrent collections use such advanced techniques such as lock
stripping to achieve thread safety. The concurrent collections especially shine with
more reading and fewer updates and they are much more scalable than synchronized
collections. But if the size of your shared collection is small and writes dominate, the
advantage of concurrent collections is not as obvious.

Tuning JVM
Each pyramid building, as any big project, goes through the same life cycle of
design, planning, execution, and delivery. And throughout each of these phases, a
continuous tuning is going on, a complex project is called so for a reason. A software
system is not different in this respect. We design, plan and build it, then change
and tune continuously. If we are lucky, then the new changes do not go too far back
to the initial stages and do not require changing the design. To hedge against such
drastic steps, we use prototypes (if the waterfall model is used) or iterative delivery
(if the agile process is adopted) for early detection of possible problems. Like young
parents, we are always on alert, monitoring the progress of our child, day and night.

As we mentioned already in one of the previous sections, there are several
diagnostic tools that come with each JDK 9 installation or can be used in addition
to them for monitoring your Java application. The full list of these tools (and the
recommendations how to create a custom tool, if needed) can be found in official
Java SE documentation on the Oracle site: https://docs.oracle.com/javase/9/
troubleshoot/diagnostic-tools.htm.

Using these tools one identifies the bottleneck of the application and addresses it either
programmatically or by tuning the JVM itself or both. The biggest gain usually comes
with the good design decisions and from using certain programming techniques and
frameworks, some of which we have described in other sections. In this section, we
are going to look at the options available after all possible code changes are applied
or when changing code is not an option, so all we can do is to tune JVM itself.

Multithreading and Reactive Programming

[84]

The goal of the effort depends on the results of the application profiling and the
nonfunctional requirements for:

•	 Latency, or how responsive the application is to the input
•	 Throughput, or how much work the application is doing in a given unit

of time
•	 Memory footprint, or how much memory the application requires

The improvements in one of them often are possible only at the expense of the one
or both of the others. The decrease in the memory consumption may bring down
the throughput and latency, while the decrease in latency typically can be achieved
only via the increase in memory footprint unless you can bring in faster CPUs thus
improving all three characteristics.

Application profiling may show that one particular operation keeps allocating a lot
of memory in the loop. If you have an access to the code, you can try to optimize this
section of the code and thus ease the pressure on JVM. Alternatively, it may show
that there is an I/O or another interaction with a low device is involved, and there is
nothing you can do in the code to improve it.

Defining the goal of the application and JVM tuning requires establishing metrics.
For example, it is well known already that the traditional measure of latency as
the average response time hides more than it reveals about the performance. The
better latency metrics would be the maximum response time in conjunction with
99% best response time. For throughput, a good metrics would be the number of
transactions per a unit of time. Often the inverse of this metrics (time per transaction)
closely reflects latency. For the memory footprint, the maximum allocated memory
(under the load) allows for the hardware planning and setting guards against the
dreaded OutOfMemoryError exception. Avoiding full (stop-the-world) garbage
collection cycle would be ideal. In practice, though, it would be good enough if Full
GC happens not often, does not visibly affect the performance and ends up with
approximately the same heap size after several cycles.

Unfortunately, such simplicity of the requirements does happen in practice. Real life
brings more questions all the time as follows:

•	 Can the target latency (response time) be ever exceeded?
•	 If yes, how often and by how much?
•	 How long can the period of the poor response time last?
•	 Who/what measures the latency in production?
•	 Is the target performance the peak performance?

Lesson 3

[85]

•	 What is the expected peak load?
•	 How long is the expected peak load going to last?

Only after all these and similar questions are answered and the metrics (that reflect
the nonfunctional requirements) are established, we can start tweaking the code,
running it and profiling again and again, then tweaking the code and repeating the
cycle. This activity has to consume most of the efforts because tuning of the JVM
itself can bring only the fraction of the performance improvements by comparison
with the performance gained by the code changes.

Nevertheless, several passes of the JVM tuning must happen early in order to
avoid wasting of the efforts and trying to force the code in the not well-configured
environment. The JVM configuration has to be as generous as possible for the code
to take advantage of all the available resources.

First of all, select garbage collector from the four that JVM 9 supports, which are
as follows:

•	 Serial collector: This uses a single thread to perform all the garbage
collection work

•	 Parallel collector: This uses multiple threads to speed up garbage collection
•	 Concurrent Mark Sweep (CMS) collector: This uses shorter garbage

collection pauses at the expense of taking more of the processor time
•	 Garbage-First (G1) collector: This is intended for multiprocessor machines

with a large memory, but meets garbage collection pause-time goals with
high probability, while achieving high throughput.

The official Oracle documentation (https://docs.oracle.com/javase/9/
gctuning/available-collectors.htm) provides the following initial guidelines
for the garbage collection selection:

•	 If the application has a small dataset (up to approximately 100 MB), then
select the serial collector with the -XX:+UseSerialGC option

•	 If the application will be run on a single processor and there are no
pause-time requirements, then select the serial collector with the
-XX:+UseSerialGC option

•	 If (a) peak application performance is the first priority and (b) there are no
pause-time requirements or pauses of one second or longer are acceptable,
then let the VM select the collector or select the parallel collector with
-XX:+UseParallelGC

Multithreading and Reactive Programming

[86]

•	 If the response time is more important than the overall throughput and
garbage collection pauses must be kept shorter than approximately
one second, then select a concurrent collector with -XX:+UseG1GC or
-XX:+UseConcMarkSweepGC

But if you do not have particular preferences yet, let the JVM select garbage collector
until you learn more about your application's needs. In JDK 9, the G1 is selected
by default on certain platforms, and it is a good start if the hardware you use has
enough resources.

Oracle also recommends using G1 with its default settings, then later playing with a
different pause-time goal using the -XX:MaxGCPauseMillis option and maximum
Java heap size using the -Xmx option. Increasing either the pause-time goal or the
heap size typically leads to a higher throughput. The latency is affected by the
change of the pause-time goal too.

While tuning the GC, it is beneficial to keep the -Xlog:gc*=debug logging option. It
provides many useful details about garbage collection activity. The first goal of JVM
tuning is to decrease the number of full heap GC cycles (Full GC) because they are
very resource consuming and thus may slow down the application. It is caused by
too high occupancy of the old generation area. In the log, it is identified by the words
Pause Full (Allocation Failure). The following are the possible steps to reduce
chances of Full GC:

•	 Bring up the size of the heap using -Xmx. But make sure it does not exceed
the physical size of RAM. Better yet, leave some RAM space for other
applications.

•	 Increase the number of concurrent marking threads explicitly using
-XX:ConcGCThreads.

•	 If the humongous objects take too much of the heap (watch for gc+heap=info
logging that shows the number next to humongous regions) try to increase
the region size using -XX: G1HeapRegionSize.

•	 Watch the GC log and modify the code so that almost all the objects
created by your application are not moved beyond the young generation
(dying young).

•	 Add or change one option at a time, so you can understand the causes of the
change in the JVM's behavior clearly.

These few steps will help you go and create a trial-and-error cycle that will bring you
a better understanding of the platform you are using, the needs of your application,
and the sensitivity of the JVM and the selected GC to different options. Equipped
with this knowledge, you will then be able to meet the nonfunctional performance
requirements whether by changing the code, tuning the JVM, or reconfiguring
the hardware.

Lesson 3

[87]

Reactive Programming
After several false starts and a few disastrous disruptions, followed by heroic
recoveries, the process of pyramid building took shape and ancient builders were
able to complete a few projects. The final shape sometimes did not look exactly as
envisioned (the first pyramids have ended up bent), but, nevertheless, the pyramids
still decorate the desert today. The experience was passed from generation to
generation, and the design and the process were tuned well enough to produce
something magnificent and pleasant to look at more than 4,000 years later.

The software practices also change over time, albeit we have had only some 70 years
since Mr. Turing wrote the first modern program. In the beginning, when there
were only a handful of programmers in the world, a computer program used to
be a continuous list of instructions. Functional programming (pushing a function
around like a first-class citizen) was introduced very early too but has not become a
mainstream. Instead, the GOTO instruction allowed you to roll code in a spaghetti
bowl. Structural programming followed, then object-oriented programming,
with functional programming moving along and even thriving in certain areas.
Asynchronous processing of the events generated by the pressed keys became
routine for many programmers. JavaScript tried to use all of the best practices and
gained a lot of power, even if at the expense of programmers' frustration during the
debugging (fun) phase. Finally, with thread pools and lambda expressions being part
of JDK SE, adding reactive streams API to JDK 9 made Java part of the family that
allows reactive programming with asynchronous data streams.

To be fair, we were able to process data asynchronously even without this new
API--by spinning worker threads and using thread pools and callables (as we
described in the previous sections) or by passing the callbacks (even if lost once in a
while in the maze of the one who-calls-whom). But, after writing such a code a few
times, one notices that most of such code is just a plumbing that can be wrapped
inside a framework that can significantly simplify asynchronous processing. That's
how the Reactive Streams initiative (http://www.reactive-streams.org) came
to be created and the scope of the effort is defined as follows:

The scope of Reactive Streams is to find a minimal set of interfaces, methods and
protocols that will describe the necessary operations and entities to achieve the
goal--asynchronous streams of data with non-blocking back pressure.

Multithreading and Reactive Programming

[88]

The term non-blocking back pressure is an important one because it identifies one
of the problems of the existed asynchronous processing--coordination of the speed
rate of the incoming data with the ability of the system to process them without the
need of stopping (blocking) the data input. The solution would still include some
back pressure by informing the source that the consumer has difficulty in keeping
up with the input, but the new framework should react to the change of the rate of
the incoming data in a more flexible manner than just blocking the flow, thus the
name reactive.

The Reactive Streams API consists of the five interfaces included in the class which
are java.util.concurrent.Flow, Publisher, Subscriber, Subscription, and
Processor:

@FunctionalInterface
public static interface Flow.Publisher<T> {
 public void subscribe(Flow.Subscriber<? super T> subscriber);
}

public static interface Flow.Subscriber<T> {
 public void onSubscribe(Flow.Subscription subscription);
 public void onNext(T item);
 public void onError(Throwable throwable);
 public void onComplete();
}

public static interface Flow.Subscription {
 public void request(long numberOfItems);
 public void cancel();
}

public static interface Flow.Processor<T,R>
 extends Flow.Subscriber<T>, Flow.Publisher<R> {
}

A Flow.Subscriber object becomes a subscriber of the data produced by the
object of Flow.Publisher after the object of Flow.Subscriber is passed as a
parameter into the subscribe() method. The publisher (object of Flow.Publisher)
calls the subscriber's onSubscribe() method and passes as a parameter a Flow.
Subsctiption object. Now, the subscriber can request numberOffItems of data from
the publisher by calling the subscription's request() method. That is the way to
implement the pull model when a subscriber decides when to request another item
for processing. The subscriber can unsubscribe from the publisher services by calling
the cancel() subscription method.

Lesson 3

[89]

In return (or without any request, if the implementer has decided to do so, that
would be a push model), the publisher can pass to the subscriber a new item by
calling the subscriber's onNext() method. The publisher can also tell the subscriber
that the item production has encountered a problem (by calling the subscriber's
onError() method) or that no more data will be coming (by calling the subscriber's
onComplete() method).

The Flow.Processor interface describes an entity that can act as both a subscriber
and a publisher. It allows creating chains (pipelines) of such processors, so a
subscriber can receive an item from a publisher, tweak it, and then pass the result
to the next subscriber.

This is the minimal set of interfaces the Reactive Streams initiative has defined
(and it is a part of JDK 9 now) in support of the asynchronous data streams with
non-blocking back pressure. As you can see, it allows the subscriber and publisher
to talk to each other and coordinate, if need be, the rate of incoming data, thus
making possible a variety of solutions for the back pressure problem we discussed
in the beginning.

There are many ways to implement these interfaces. Currently, in JDK 9, there is only
one example of implementation of one of the interfaces--the SubmissionPublisher
class implements Flow.Publisher. But several other libraries already exist that
implemented Reactive Streams API: RxJava, Reactor, Akka Streams, and Vert.x are
among the most known. We will use RxJava 2.1.3 in our examples. You can find the
RxJava 2.x API on http://reactivex.io under the name ReactiveX, which stands
for Reactive Extension.

While doing that, we would also like to address the difference between the streams
of the java.util.stream package and Reactive Streams (as implemented in RxJava,
for example). It is possible to write very similar code using any of the streams. Let's
look at an example. Here is a program that iterates over five integers, selects even
numbers only (2 and 4), transforms each of them (takes a square root of each of the
selected numbers) and then calculates an average of the two square roots. It is based
on the traditional for loop.

Let's start with the similarity. It is possible to implement the same functionality using
any of the streams. For example, here is a method that iterates over five integers,
selects even numbers only (2 and 4, in this case), transforms each of them (takes a
square root of each of the even numbers) and then calculates an average of the two
square roots. It is based on the traditional for loop:

void demo_ForLoop(){
 List<Double> r = new ArrayList<>();
 for(int i = 1; i < 6; i++){
 System.out.println(i);

Multithreading and Reactive Programming

[90]

 if(i%2 == 0){
 System.out.println(i);
 r.add(doSomething(i));
 }
 }
 double sum = 0d;
 for(double d: r){ sum += d; }
 System.out.println(sum / r.size());
}
static double doSomething(int i){
 return Math.sqrt(1.*i);
}

If we run this program, the result will be as follows:

The same functionality (with the same output) can be implemented using the
package java.util.stream as follows:

void demo_Stream(){
 double a = IntStream.rangeClosed(1, 5)
 .peek(System.out::println)
 .filter(i -> i%2 == 0)
 .peek(System.out::println)
 .mapToDouble(i -> doSomething(i))
 .average().getAsDouble();
 System.out.println(a);
}

The same functionality can be implemented with RxJava:

void demo_Observable1(){
 Observable.just(1,2,3,4,5)
 .doOnNext(System.out::println)
 .filter(i -> i%2 == 0)
 .doOnNext(System.out::println)

Lesson 3

[91]

 .map(i -> doSomething(i))
 .reduce((r, d) -> r + d)
 .map(r -> r / 2)
 .subscribe(System.out::println);
}

RxJava is based on the Observable object (which plays the role of Publisher) and
Observer that subscribes to the Observable and waits for data to be emitted. Each
item of the emitted data (on the way from the Observable to the Observer) can be
processed by the operations chained in a fluent style (see the previous code). Each
operation takes a lambda expression. The operation functionality is obvious from
its name.

Despite being able to behave similarly to the streams, an Observable has
significantly different capabilities. For example, a stream, once closed, cannot be
reopened, while an Observable can be reused. Here is an example:

void demo_Observable2(){
 Observable<Double> observable = Observable
 .just(1,2,3,4,5)
 .doOnNext(System.out::println)
 .filter(i -> i%2 == 0)
 .doOnNext(System.out::println)
 .map(Demo05Reactive::doSomething);

 observable
 .reduce((r, d) -> r + d)
 .map(r -> r / 2)
 .subscribe(System.out::println);

 observable
 .reduce((r, d) -> r + d)
 .subscribe(System.out::println);
}

Multithreading and Reactive Programming

[92]

In the previous code, we use Observable twice--for average value calculation and
for the summing all the square roots of the even numbers. The output is as shown
in the following screenshot:

If we do not want Observable to run twice, we can cache its data, by adding the
.cache() operation:

void demo_Observable2(){
 Observable<Double> observable = Observable
 .just(1,2,3,4,5)
 .doOnNext(System.out::println)
 .filter(i -> i%2 == 0)
 .doOnNext(System.out::println)
 .map(Demo05Reactive::doSomething)
 .cache();

 observable
 .reduce((r, d) -> r + d)
 .map(r -> r / 2)
 .subscribe(System.out::println);

 observable
 .reduce((r, d) -> r + d)
 .subscribe(System.out::println);
}

Lesson 3

[93]

The result of the previous code is as follows:

You can see that the second usage of the same Observable took advantage of the
cached data, thus allowing for better performance.

Another Observable advantage is that the exception can be caught by Observer:

subscribe(v -> System.out.println("Result=" + v),
 e -> {
 System.out.println("Error: " + e.getMessage());
 e.printStackTrace();
 },
 () -> System.out.println("All the data processed"));

The subscribe() method is overloaded and allows to pass in one, two, or three
functions:

•	 The first is to be used in case of success
•	 The second is to be used in case of an exception
•	 The third is to be called after all the data is processed

The Observable model also allows more control over multithreaded processing.
Using .parallel() in the streams does not allow you to specify the thread pool to
be used. But, in RxJava, you can set the type of pool you prefer using the method
subscribeOn() in Observable:

observable.subscribeOn(Schedulers.io())
 .subscribe(System.out::println);

The subscribeOn() method tells Observable on which thread to put the data. The
Schedulers class has methods that generate thread pools dealing mostly with I/O
operations (as in our example), or heavy on computation (method computation()), or
creating a new thread for each unit of work (method newThread()), and several others,
including passing in a custom thread pool (method from(Executor executor)).

Multithreading and Reactive Programming

[94]

The format of this book does not allow us to describe all the richness of RxJava API
and other Reactive Streams implementations. Their main thrust is reflected in Reactive
Manifesto (http://www.reactivemanifesto.org/) that describes Reactive Systems
as a new generation of high performing software solutions. Built on asynchronous
message-driven processes and Reactive Streams, such systems are able to demonstrate
the qualities declared in the Reactive Manifesto:

•	 Elasticity: This has the ability to expand and contract as needed based on
the load

•	 Better responsiveness: Here, the processing can be parallelized using
asynchronous calls

•	 Resilience: Here, the system is broken into multiple (loosely coupled via
messages) components, thus facilitating flexible replication, containment,
and isolation

Writing code for Reactive Systems using Reactive Streams for implementing the
previously mentioned qualities constitutes reactive programming. The typical
application of such systems today is microservices, which is described in the
next lesson.

Summary
In this lesson, we have discussed the ways to improve Java application performance
by using multithreading. We described how to decrease an overhead of creating
the threads using thread pools and various types of such pools suited for different
processing requirements. We also brought up the considerations used for selecting
the pool size and how to synchronize threads so that they do not interfere with
each other and yield the best performance results. We pointed out that every
decision on the performance improvements has to be made and tested through
direct monitoring of the application, and we discussed the possible options for such
monitoring programmatically and using various external tools. The final step, the
JVM tuning, can be done via Java tool flags that we listed and commented in the
corresponding section. Yet more gains in Java application performance might be
achieved by adopting the concept of reactive programming, which we presented as
the strong contender among most effective moves toward highly scalable and highly
performing Java applications.

In the next lesson, we will talk about adding more workers by splitting the
application into several microservices, each deployed independently and each
using multiple threads and reactive programming for better performance, response,
scalability, and fault-tolerance.

Lesson 3

[95]

Assessments
1.	 Name the method that calculates the average square root of the first 99,999

integers and assigns the result to a property that can be accessed anytime.
2.	 Which of the following methods creates a thread pool of a fixed size that can

schedule commands to run after a given delay, or to execute periodically:
1.	 newscheduledThreadPool()

2.	 newWorkStealingThreadPool()

3.	 newSingleThreadScheduledExecutor()

4.	 newFixedThreadPool()

3.	 State whether True or False: One can take advantage of the Runnable
interface being a functional interface and pass the necessary processing
function into a new thread as a lambda expression.

4.	 After the __________ method is called, no more worker threads can be
added to the pool.

1.	 shutdownNow()

2.	 shutdown()

3.	 isShutdown()

4.	 isShutdownComplete()

5.	 ________ is based on the Observable object, which plays the role of
a Publisher.

[97]

Microservices
As long as we kept talking about the designing, implementation, and tuning of
one process, we were able to keep illustrating it with vivid images (albeit in our
imagination only) of pyramid building. Multiple thread management, based on the
democratic principle of equality between thread pool members, had also a sense of
centralized planning and supervision. Different priorities were assigned to threads
programmatically, hardcoded (for most cases) after thoughtful consideration by the
programmer in accordance with the expected load, and adjusted after monitoring.
The upper limits of the available resources were fixed, although they could be
increased after, again, a relatively big centralized decision.

Such systems had great success and still constitute the majority of the web
applications currently deployed to production. Many of them are monoliths, sealed
inside a single .ear or .war file. This works fine for relatively small applications
and a corresponding team size that supports them. They are easy (if the code is
well structured) to maintain, build, and if the production load is not very high, they
can be easily deployed. If the business does not grow or has little impact on the
company's internet presence, they continue to do the job and will do so probably
for the foreseeable future. Many service providers are eager to host such websites
by charging a small fee and relieving the website owner of the technical worries of
production maintenance not directly related to the business. But that is not the case
for everybody.

The higher the load, the more difficult and expensive the scaling becomes unless the
code and the overall architecture is restructured in order to become more flexible and
resilient to the growing load. This lesson describes the solution many leaders of the
industry have adopted while addressing the issue and the motivation behind it.

Microservices

[98]

The particular aspects of the microservices we are going to discuss in this lesson
include the following:

•	 The motivation for the microservices rising
•	 The frameworks that were developed recently in support of microservices
•	 The process of microservices development with practical examples,

including the considerations and decision-making process during
microservices building

•	 Pros and cons of the three main deployment methods such as container-less,
self-contained, and in-container

Why Microservices?
Some businesses have a higher demand for the deployment plan because of the need
to keep up with the bigger volume of traffic. The natural answer to this challenge
would be and was to add servers with the same .ear or .war file deployed and join
all the servers into a cluster. So, one failed server could be automatically replaced
with another one from the cluster, and the site user would never experience
disconnect of the service. The database that backed all the clustered servers could
be clustered too. A connection to each of the clusters went through a load balancer,
making sure that none of the cluster members worked more than the others.

The web server and database clustering help but only to a degree, because as the
code base grows, its structure can create one or several bottlenecks unless such and
similar issues are addressed with a scalable design. One of the ways to do it is to split
the code into tiers: front end (or web tier), middle tier (or app tier) and back end
(or backend tier). Then, again, each tier can be deployed independently (if the protocol
between tiers has not changed) and in its own cluster of servers, as each tier can grow
horizontally as needed independently of other tiers. Such a solution provides more
flexibility for scaling up, but makes the deployment plan more complex, especially if
the new code introduces breaking changes. One of the approaches is to create a second
cluster that will host a new code, then take the servers one by one from the old cluster,
deploy the new code, and put them in the new cluster. The new cluster would be
turned on as soon as at least one server in each tier has the new code. This approach
worked fine for the web and app tiers but was more complex for the backend,
which once in a while required data migration and similar joyful exercises. Add to it
unexpected outages in the middle of the deployment caused by human errors, defects
in the code, pure accidents, or some combination of all the earlier mentioned (one time,
for example, an electric power cable was cut by an excavator in the nearby construction
site), and it is easy to understand why very few people love a deployment of a major
release to production.

Lesson 4

[99]

Programmers, being by nature problem solvers, tried to prevent the earlier scenario
as best as they could by writing defensive code, deprecating instead of changing,
testing, and so on. One of the approaches was to break the application into more
independently deployable parts with the hope of avoiding deploying everything at
the same time. They called these independent units services, and Service-Oriented
Architecture (SOA) was born.

Unfortunately, in many companies, the natural growth of the code base was not
adjusted to the new challenges in a timely manner. Like the frog that was eventually
boiled in a slowly heated pot of water, they never had time to jump out of the hot
spot by changing the design. It was always cheaper to add another feature to the
blob of the existing functionality than redesign the whole app. Business metrics of
the time-to-market and keeping the bottom line in the black always were and will
remain the main criterion for the decision making, until the poorly structured source
code eventually stops working, pulling down all the business transactions with it or,
if the company is lucky, allows them to weather the storm and shows the importance
of the investment in the redesign.

As a result of all that, some lucky companies remained in the business with
their monolithic application still running as expected (maybe not for long, but
who knows), some went out of business, some learned from their mistakes and
progressed into the brave world of the new challenges, and others learned from
their mistakes and designed their systems to be SOA upfront.

It is interesting to observe similar tendencies in the social sphere. Society moved
from the strong centralized governments to more loosely coupled confederations
of semi-independent states tied together by the mutually beneficial economic and
cultural exchange.

Unfortunately, maintaining such a loose structure comes with a price. Each
participant has to be more responsible in maintaining the contract (social, in the case
of a society, and API, in the case of the software) not only formally but also in spirit.
Otherwise, for example, the data flowing from a new version of one component,
although correct by type, might be unacceptable to another component by value
(too big or too small). Maintaining a cross-team understanding and overlapping
of responsibility requires constant vigilance in keeping the culture alive and
enlightening. Encouraging innovation and risk taking, which can lead to a business
breakthrough, contradict the protecting tendencies for stability and risk aversion
coming from the same business people.

Microservices

[100]

Moving from monolithic single-team development to multiple teams and an
independent components-based system requires an effort on all levels of the
enterprise. What do you mean by No more Quality Assurance Department? Who
then will care about the professional growth of the testers? And what about the IT
group? What do you mean by The developers are going to support production?
Such changes affect human lives and are not easy to implement. That's why SOA
architecture is not just a software principle. It affects everybody in the company.

Meanwhile, the industry leaders, who have managed to grow beyond anything we
could imagine just a decade ago, were forced to solve even more daunting problems
and came back to the software community with their solutions. And that is where
our analogy with the pyramid building does not work anymore. Because the new
challenge is not just to build something so big that was never built before but also
to do it quickly not in a matter of years, but in a few weeks and even days. And the
result has to last not for a thousand years but has to be able to evolve constantly and
be flexible enough to adapt to new, unexpected requirements in real time. If only one
aspect of the functionality has changed, we should be able to redeploy only this one
service. If the demand for any service grows, we should be able to scale only along
this one service and release resources when the demand drops.

To avoid big deployments with all hands on deck and to come closer to the
continuous deployment (which decreases time-to-market and is thus supported
by business), the functionality continued to split into smaller chunks of services.
In response to the demand, more sophisticated and robust cloud environments,
deployment tools (including containers and container orchestration), and monitoring
systems supported this move. The reactive streams, described in the previous lesson,
started to develop even before the Reactive Manifesto came out and plugged a snag
into the stack of modern frameworks.

Splitting an application into independent deployment units brought several not
quite expected benefits that have increased the motivation for plowing ahead. The
physical isolation of services allows more flexibility in choosing a programming
language and platform of implementation. It helps not only to select technology that
is the best for the job but also to hire people able to implement it, not being bound by
a certain technological stack of the company. It also helped the recruiters to spread
the net wider and use smaller cells for bringing in new talent, which is not a small
advantage with a limited number of available specialists and the unlimited demand
of the fast-growing data processing industry.

Also, such architecture enforced a discussion and explicit definition of the interfaces
between smaller parts of the complex system, thus creating a solid foundation for
further growth and tuning of the processing sophistication.

Lesson 4

[101]

And that is how microservices came into the picture and were put to work by giants
of traffic such as Netflix, Google, Twitter, eBay, Amazon, and Uber. Now, let's talk
about the results of this effort and the lessons learned.

Building Microservices
Before diving into the building process, let's revisit the characteristics a chunk of
code has to possess in order to be qualified as a microservice. We will do it in no
particular order:

•	 The size of the source code of one microservice should be smaller to that
of an SOA, and one development team should be able to support several
of them.

•	 It has to be deployed independently of other services.
•	 Each has to have its own database (or schema or set of tables), although this

statement is still under debate, especially in cases when several services
modify the same data set or the inter-dependent data sets; if the same team
owns all of the related services, it is easier to accomplish. Otherwise, there
are several possible strategies we will discuss later.

•	 It has to be stateless and idempotent. If one instance of the service has failed,
another should be able to accomplish what was expected from the service.

•	 It should provide a way to check its health, meaning that the service is up
and running and ready to do the job.

Sharing resources has to be considered during the design, development, and, after
deployment, monitored for validation of the assumptions. In the previous lesson,
we talked about threads synchronization. You could see that this problem was
not easy to solve, and we have presented several possible ways to do it. Similar
approaches can be applied toward microservices. Although they are run in different
processes, they can communicate to each other if need be, so they can coordinate
and synchronize their actions.

Special care has to be taken during modification of the same persistent data whether
shared across databases, schemas, or tables within the same schema. If an eventual
consistency is acceptable (which is often the case for larger sets of data, used for
statistical purposes, for example) then no special measures are necessary. However,
the need for transactional integrity poses a more difficult problem.

Microservices

[102]

One way to support a transaction across several microservices is to create a service
that would play the role of a Distributed Transaction Manager (DTM). Other
services that need coordination would pass to it the new modified values. The DTM
service could keep the concurrently modified data temporarily in a database table
and would move it into the main table(s) in one transaction after all the data is ready
(and consistent).

If the time to access the data is an issue or you need to protect the database from an
excessive number of concurrent connections, dedicating a database to some services
may be an answer. Alternatively, if you would like to try another option, memory
cache could be the way to go. Adding a service that provides access to the cache
(and updates it as needed) increases isolation from the services that use it, but
requires (sometimes difficult) synchronization between the peers that are managing
the same cache too.

After considering all the options and possible solutions for data sharing, it is
often helpful to revisit the idea of creating its own database (or schema) for each
microservice. One may discover that the effort of the data isolation (and subsequent
synchronization on the database level) does not look as daunting as before if
compared with the effort to synchronize the data dynamically.

That said, let's look over the field of the frameworks for microservices
implementation. One can definitely write the microservices from scratch, but before
doing that, it is always worth looking at what is out there already, even if to find
eventually that nothing fits your particular needs.

There are more than a dozen frameworks that are currently used for building
microservices. Two most popular are Spring Boot (https://projects.spring.
io/spring-boot/) and raw J2EE. The J2EE community founded the initiative
MicroProfile (https://microprofile.io/) with a declared goal of Optimizing
Enterprise Java for a microservices architecture. KumuluzEE (https://ee.kumuluz.
com/) is a lightweight open-source microservice framework coplined with
MicroProfile.

The list of some other frameworks include the following (in alphabetical order):

•	 Akka: This is a toolkit for building highly concurrent, distributed, and
resilient message-driven applications for Java and Scala (akka.io)

•	 Bootique: This is a minimally opinionated framework for runnable Java
apps (bootique.io)

•	 Dropwizard: This is a Java framework for developing ops-friendly,
high-performance, RESTful web services (www.dropwizard.io)

•	 Jodd: This is a set of Java microframeworks, tools, and utilities, under 1.7 MB
(jodd.org)

https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-boot/
https://microprofile.io/
https://ee.kumuluz.com/
https://ee.kumuluz.com/
http://akka.io/
http://bootique.io/
http://www.dropwizard.io/
http://jodd.org/

Lesson 4

[103]

•	 Lightbend Lagom: This is an opinionated microservice framework built on
Akka and Play (www.lightbend.com)

•	 Ninja: This is a full stack web framework for Java (www.ninjaframework.org)
•	 Spotify Apollo: This is a set of Java libraries used at Spotify for writing

microservices (spotify.github.io/apollo)
•	 Vert.x: This is a toolkit for building reactive applications on the JVM

(vertx.io)

All frameworks support HTTP/JSON communication between microservices;
some of them also have an additional way to send messages. If not the latter, any
lightweight messaging system can be used. We mentioned it here because, as you
may recall, message-driven asynchronous processing is a foundation for elasticity,
responsiveness, and resilience of a reactive system composed of microservices.

To demonstrate the process of microservices building, we will use Vert.x, an
event-driven, non-blocking, lightweight, and polyglot toolkit (components can be
written in Java, JavaScript, Groovy, Ruby, Scala, Kotlin, and Ceylon). It supports an
asynchronous programming model and a distributed event bus that reaches even
into in-browser JavaScript (thus allowing the creation of real-time web applications).

One starts using Vert.x by creating a Verticle class that implements the interface
io.vertx.core.Verticle:

package io.vertx.core;
public interface Verticle {
 Vertx getVertx();
 void init(Vertx vertx, Context context);
 void start(Future<Void> future) throws Exception;
 void stop(Future<Void> future) throws Exception;
}

The method names previously mentioned are self-explanatory. The method
getVertex() provides access to the Vertx object the entry point into the Vert.x
Core API. It provides access to the following functionality necessary for the
microservices building:

•	 Creating TCP and HTTP clients and servers
•	 Creating DNS clients
•	 Creating Datagram sockets
•	 Creating periodic services
•	 Providing access to the event bus and file system API
•	 Providing access to the shared data API
•	 Deploying and undeploying verticles

http://www.lightbend.com/
http://www.ninjaframework.org/
http://spotify.github.io/apollo
http://vertx.io/

Microservices

[104]

Using this Vertx object, various verticles can be deployed, which talk to each other,
receive an external request, and process and store data as any other Java application,
thus forming a system of microservices. Using RxJava implementation from the
package io.vertx.rxjava, we will show how one can create a reactive system
of microservices.

A verticle is a building block in Vert.x world. It can easily be created by extending
the io.vertx.rxjava.core.AbstractVerticle class:

package io.vertx.rxjava.core;
import io.vertx.core.Context;
import io.vertx.core.Vertx;
public class AbstractVerticle
 extends io.vertx.core.AbstractVerticle {
 protected io.vertx.rxjava.core.Vertx vertx;
 public void init(Vertx vertx, Context context) {
 super.init(vertx, context);
 this.vertx = new io.vertx.rxjava.core.Vertx(vertx);
 }
}

The earlier mentioned class, in turn, extends io.vertx.core.AbstractVerticle:

package io.vertx.core;
import io.vertx.core.json.JsonObject;
import java.util.List;
public abstract class AbstractVerticle
 implements Verticle {
 protected Vertx vertx;
 protected Context context;
 public Vertx getVertx() { return vertx; }
 public void init(Vertx vertx, Context context) {
 this.vertx = vertx;
 this.context = context;
 }
 public String deploymentID() {
 return context.deploymentID();
 }
 public JsonObject config() {
 return context.config();
 }
 public List<String> processArgs() {
 return context.processArgs();
 }
 public void start(Future<Void> startFuture)

Lesson 4

[105]

 throws Exception {
 start();
 startFuture.complete();
 }
 public void stop(Future<Void> stopFuture)
 throws Exception {
 stop();
 stopFuture.complete();
 }
 public void start() throws Exception {}
 public void stop() throws Exception {}

}

A verticle can be created by extending the class io.vertx.core.AbstractVerticle,
too. However, we will write reactive microservices, so we will extend its rx-fied
version, io.vertx.rxjava.core.AbstractVerticle.

To use Vert.x and run the provided example, all you need to do is to add the
following dependencies:

<dependency>
 <groupId>io.vertx</groupId>
 <artifactId>vertx-web</artifactId>
 <version>${vertx.version}</version>
</dependency>

<dependency>
 <groupId>io.vertx</groupId>
 <artifactId>vertx-rx-java</artifactId>
 <version>${vertx.version}</version>
</dependency>

Other Vert.x functionality can be added as needed by including other Maven
dependencies.

What makes Vert.x Verticle reactive is the underlying implementation of an event
loop (a thread) that receives an event and delivers it a Handler (we will show how
to write the code for it). When a Handler gets the result, the event loop invokes
the callback.

As you see, it is important not to write a code that blocks the
event loop, thus the Vert.x golden rule: don't block the event
loop.

Microservices

[106]

If not blocked, the event loop works very quickly and delivers a huge number
of events in a short period of time. This is called the reactor pattern (https://
en.wikipedia.org/wiki/Reactor_pattern). Such an event-driven non-blocking
programming model is a very good fit for reactive microservices. For certain types
of code that are blocking by nature (JDBC calls and long computations are good
examples) a worker verticle can be executed asynchronously (not by the event loop,
but by a separate thread using the method vertx.executeBlocking()), which
keeps the golden rule intact.

Let's look at a few examples. Here is a Verticle class that works as an HTTP server:

import io.vertx.rxjava.core.http.HttpServer;
import io.vertx.rxjava.core.AbstractVerticle;

public class Server extends AbstractVerticle{
 private int port;
 public Server(int port) {
 this.port = port;
 }
 public void start() throws Exception {
 HttpServer server = vertx.createHttpServer();
 server.requestStream().toObservable()
 .subscribe(request -> request.response()
 .end("Hello from " +
 Thread.currentThread().getName() +
 " on port " + port + "!\n\n")
);
 server.rxListen(port).subscribe();
 System.out.println(Thread.currentThread().getName()
 + " is waiting on port " + port + "...");
 }
}

In the previous code, the server is created, and the stream of data from a possible
request is wrapped into an Observable. We then subscribed to the data coming
from the Observable and passed in a function (a request handler) that will process
the request and generate a necessary response. We also told the server which port
to listen. Using this Verticle, we can deploy several instances of an HTTP server
listening on different ports. Here is an example:

import io.vertx.rxjava.core.RxHelper;
import static io.vertx.rxjava.core.Vertx.vertx;
public class Demo01Microservices {
 public static void main(String... args) {
 RxHelper.deployVerticle(vertx(), new Server(8082));

https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern

Lesson 4

[107]

 RxHelper.deployVerticle(vertx(), new Server(8083));
 }
}

If we run this application, the output would be as follows:

As you can see, the same thread is listening on both ports. If we now place a request
to each of the running servers, we will get the response we have hardcoded:

We ran our examples from the main() method. A plugin maven-shade-plugin
allows you to specify which verticle you would like to be the starting point of your
application. Here is an example from http://vertx.io/blog/my-first-vert-x-
3-application:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>2.3</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <transformers>
 <transformer
 implementation="org.apache.maven.plugins.shade.resource.
ManifestResourceTransformer">
 <manifestEntries>
 <Main-Class>io.vertx.core.Starter</Main-Class>
 <Main-Verticle>io.vertx.blog.first.MyFirstVerticle</
Main-Verticle>
 </manifestEntries>

http://vertx.io/blog/my-first-vert-x-3-application
http://vertx.io/blog/my-first-vert-x-3-application

Microservices

[108]

 </transformer>
 </transformers>
 <artifactSet/>
 <outputFile>${project.build.directory}/${project.artifactId}-
${project.version}-fat.jar</outputFile>
 </configuration>
 </execution>
 </executions>
</plugin>

Now, run the following command:

mvn package

It will generate a specified JAR file (called target/my-first-app-1.0-SNAPSHOT-
fat.jar, in this example). It is called fat because it contains all the necessary
dependencies. This file will also contain MANIFEST.MF with the following entries in it:

Main-Class: io.vertx.core.Starter
Main-Verticle: io.vertx.blog.first.MyFirstVerticle

You can use any verticle instead of io.vertx.blog.first.MyFirstVerticle,
used in this example, but io.vertx.core.Starter has to be there because that is
the name of the Vert.x class that knows how to read the manifest and execute the
method start() of the specified verticle. Now, you can run the following command:

java -jar target/my-first-app-1.0-SNAPSHOT-fat.jar

This command will execute the start() method of the MyFirstVerticle class the
same way the main() method is executed in our example, which we will continue
to use for the simplicity of demonstration.

To compliment the HTTP server, we can create an HTTP client too. However,
first, we will modify the method start() in the server verticle to accept the
parameter name:

public void start() throws Exception {
 HttpServer server = vertx.createHttpServer();
 server.requestStream().toObservable()
 .subscribe(request -> request.response()
 .end("Hi, " + request.getParam("name") +
 "! Hello from " +
 Thread.currentThread().getName() +
 " on port " + port + "!\n\n")
);

Lesson 4

[109]

 server.rxListen(port).subscribe();
 System.out.println(Thread.currentThread().getName()
 + " is waiting on port " + port + "...");
}

Now, we can create an HTTP client verticle that sends a request and prints out the
response every second for 3 seconds, then stops:

import io.vertx.rxjava.core.AbstractVerticle;
import io.vertx.rxjava.core.http.HttpClient;
import java.time.LocalTime;
import java.time.temporal.ChronoUnit;

public class Client extends AbstractVerticle {
 private int port;
 public Client(int port) {
 this.port = port;
 }
 public void start() throws Exception {
 HttpClient client = vertx.createHttpClient();
 LocalTime start = LocalTime.now();
 vertx.setPeriodic(1000, v -> {
 client.getNow(port, "localhost", "?name=Nick",
 r -> r.bodyHandler(System.out::println));
 if(ChronoUnit.SECONDS.between(start,
 LocalTime.now()) > 3){
 vertx.undeploy(deploymentID());
 }
 });
 }
}

Let's assume we deploy both verticles as follows:

RxHelper.deployVerticle(vertx(), new Server2(8082));
RxHelper.deployVerticle(vertx(), new Client(8082));

The output will be as follows:

Microservices

[110]

In this last example, we demonstrated how to create an HTTP client and periodic
service. Now, let's add more functionality to our system. For example, let's add
another verticle that will interact with the database and use it via the HTTP server
we have already created.

First, we need to add this dependency:

<dependency>
 <groupId>io.vertx</groupId>
 <artifactId>vertx-jdbc-client</artifactId>
 <version>${vertx.version}</version>
</dependency>

The newly added JAR file allows us to create an in-memory database and a handler
to access it:

public class DbHandler {
 private JDBCClient dbClient;
 private static String SQL_CREATE_WHO_CALLED =
 "CREATE TABLE IF NOT EXISTS " +
 "who_called (name VARCHAR(10), " +
 "create_ts TIMESTAMP(6) DEFAULT now())";
 private static String SQL_CREATE_PROCESSED =
 "CREATE TABLE IF NOT EXISTS " +
 "processed (name VARCHAR(10), " +
 "length INTEGER, " +
 "create_ts TIMESTAMP(6) DEFAULT now())";

 public DbHandler(Vertx vertx){
 JsonObject config = new JsonObject()
 .put("driver_class", "org.hsqldb.jdbcDriver")
 .put("url", "jdbc:hsqldb:mem:test?shutdown=true");
 dbClient = JDBCClient.createShared(vertx, config);
 dbClient.rxGetConnection()
 .flatMap(conn ->
 conn.rxUpdate(SQL_CREATE_WHO_CALLED)
 .doAfterTerminate(conn::close))
 .subscribe(r ->
 System.out.println("Table who_called created"),
 Throwable::printStackTrace);
 dbClient.rxGetConnection()
 .flatMap(conn ->
 conn.rxUpdate(SQL_CREATE_PROCESSED)
 .doAfterTerminate(conn::close))
 .subscribe(r ->

Lesson 4

[111]

 System.out.println("Table processed created"),
 Throwable::printStackTrace);

 }
}

Those familiar with RxJava can see that Vert.x code closely follows the style and
naming convention of RxJava. Nevertheless, we encourage you to go through
Vert.x documentation, because it has a very rich API that covers many more cases
than just demonstrated. In the previous code, the operation flatMap() receives
the function that runs the script and then closes the connection. The operation
doAfterTerminate() in this case acts as if it was placed inside a finally block in a
traditional code and closes the connection either in case of success or if an exception
is generated. The subscribe() method has several overloaded versions. For our
code, we have selected the one that takes two functions one is going to be executed in
the case of success (we print a message about the table being created) and another in
the case of an exception (we just print the stack trace then).

To use the created database, we can add to DbHandler methods insert(),
process(), and readProcessed() that will allow us to demonstrate how to build a
reactive system. The code for the method insert() can look like this:

private static String SQL_INSERT_WHO_CALLED =
 "INSERT INTO who_called(name) VALUES (?)";
public void insert(String name, Action1<UpdateResult>
 onSuccess, Action1<Throwable> onError){
 printAction("inserts " + name);
 dbClient.rxGetConnection()
 .flatMap(conn ->
 conn.rxUpdateWithParams(SQL_INSERT_WHO_CALLED,
 new JsonArray().add(name))
 .doAfterTerminate(conn::close))
 .subscribe(onSuccess, onError);
}

The insert() method, as well as other methods we are going to write, takes full
advantage of Java functional interfaces. It creates a record in the table who_called
(using the passed in parameter name). Then, the operation subscribe() executes one
of the two functions passed in by the code that calls this method. We use the method
printAction() only for better traceability:

private void printAction(String action) {
 System.out.println(this.getClass().getSimpleName()
 + " " + action);
}

Microservices

[112]

The method process() also accepts two functions but does not need other
parameters. It processes all the records from the table who_called that are not
processed yet (not listed in the table processed):

private static String SQL_SELECT_TO_PROCESS =
 "SELECT name FROM who_called w where name not in " +
 "(select name from processed) order by w.create_ts " +
 "for update";
private static String SQL_INSERT_PROCESSED =
 "INSERT INTO processed(name, length) values(?, ?)";
public void process(Func1<JsonArray, Observable<JsonArray>>
 process, Action1<Throwable> onError) {
 printAction("process all records not processed yet");
 dbClient.rxGetConnection()
 .flatMapObservable(conn ->
 conn.rxQueryStream(SQL_SELECT_TO_PROCESS)
 .flatMapObservable(SQLRowStream::toObservable)
 .flatMap(process)
 .flatMap(js ->
 conn.rxUpdateWithParams(SQL_INSERT_PROCESSED, js)
 .flatMapObservable(ur->Observable.just(js)))
 .doAfterTerminate(conn::close))
 .subscribe(js -> printAction("processed " + js), onError);
}

If two threads are reading the table who_called for the purpose of selecting records
not processed yet, the clause for update in the SQL query makes sure that only
one gets each record, so they are not going to be processed twice. The significant
advantage of the method process() code is its usage of the rxQUeryStream()
operation that emits the found records one at a time so that they are processed
independently of each other. In the case of a big number of not processed records,
such a solution guarantees a smooth delivery of the results without the spiking of the
resources consumption. The following flatMap() operation does processing using
the function passed in. The only requirement for that function is that it must return
one integer value (in JsonArray) that is going to be used as a parameter for the
SQL_INSERT_PROCESSED statement. So, it is up to the code that calls this method
to decide the nature of the processing. The rest of the code is similar to the method
insert(). The code indentation helps to follow the nesting of the operations.

The method readProcessed() has code that looks very similar to the code of the
method insert():

private static String SQL_READ_PROCESSED =
 "SELECT name, length, create_ts FROM processed
 order by create_ts desc limit ?";

Lesson 4

[113]

public void readProcessed(String count, Action1<ResultSet>
 onSuccess, Action1<Throwable> onError) {
 printAction("reads " + count +
 " last processed records");
 dbClient.rxGetConnection()
 .flatMap(conn ->
 conn.rxQueryWithParams(SQL_READ_PROCESSED,
 new JsonArray().add(count))
 .doAfterTerminate(conn::close))
 .subscribe(onSuccess, onError);
}

The preceding code reads the specified number of the latest processed records. The
difference from the method process() is that the method readProcessed() returns
all the read records in one result set, so it is up to the user of this method to decide
how to process the result in bulk or one at a time. We show all these possibilities just
to demonstrate the variety of the possible options. With the DbHandler class in place,
we are ready to use it and create the DbServiceHttp microservice, which allows a
remote access to the DbHandler capabilities by wrapping around it an HTTP server.
Here is the constructor of the new microservice:

public class DbServiceHttp extends AbstractVerticle {
 private int port;
 private DbHandler dbHandler;
 public DbServiceHttp(int port) {
 this.port = port;
 }
 public void start() throws Exception {
 System.out.println(this.getClass().getSimpleName() +
 "(" + port + ") starts...");
 dbHandler = new DbHandler(vertx);
 Router router = Router.router(vertx);
 router.put("/insert/:name").handler(this::insert);
 router.get("/process").handler(this::process);
 router.get("/readProcessed")
 .handler(this::readProcessed);
 vertx.createHttpServer()
 .requestHandler(router::accept).listen(port);
 }
}

Microservices

[114]

In the earlier mentioned code, you can see how the URL mapping is done in Vert.x.
For each possible route, a corresponding Verticle method is assigned, each
accepting the RoutingContext object that contains all the data of HTTP context,
including the HttpServerRequest and HttpServerResponse objects. A variety
of convenience methods allows us to easily access the URL parameters and other
data necessary to process the request. Here is the method insert() referred in the
start() method:

private void insert(RoutingContext routingContext) {
 HttpServerResponse response = routingContext.response();
 String name = routingContext.request().getParam("name");
 printAction("insert " + name);
 Action1<UpdateResult> onSuccess =
 ur -> response.setStatusCode(200).end(ur.getUpdated() +
 " record for " + name + " is inserted");
 Action1<Throwable> onError = ex -> {
 printStackTrace("process", ex);
 response.setStatusCode(400)
 .end("No record inserted due to backend error");
 };
 dbHandler.insert(name, onSuccess, onError);
}

All it does is extracts the parameter name from the request and constructs the two
functions necessary to call method insert() of DbHandler we discussed earlier.
The method process() looks similar to the previous method insert():

private void process(RoutingContext routingContext) {
 HttpServerResponse response = routingContext.response();
 printAction("process all");
 response.setStatusCode(200).end("Processing...");
 Func1<JsonArray, Observable<JsonArray>> process =
 jsonArray -> {
 String name = jsonArray.getString(0);
 JsonArray js =
 new JsonArray().add(name).add(name.length());
 return Observable.just(js);
 };
 Action1<Throwable> onError = ex -> {
 printStackTrace("process", ex);
 response.setStatusCode(400).end("Backend error");
 };
 dbHandler.process(process, onError);
}

Lesson 4

[115]

The function process mentioned earlier defines what should be done with the
records coming from the SQL_SELECT_TO_PROCESS statement inside the method
process() in DbHandler. In our case, it calculates the length of the caller's name and
passes it as a parameter along with the name itself (as a return value) to the next SQL
statement that inserts the result into the table processed.

Here is the method readProcessed():

private void readProcessed(RoutingContext routingContext) {
 HttpServerResponse response = routingContext.response();
 String count = routingContext.request().getParam("count");
 printAction("readProcessed " + count + " entries");
 Action1<ResultSet> onSuccess = rs -> {
 Observable.just(rs.getResults().size() > 0 ?
 rs.getResults().stream().map(Object::toString)
 .collect(Collectors.joining("\n")) : "")
 .subscribe(s -> response.setStatusCode(200).end(s));
 };
 Action1<Throwable> onError = ex -> {
 printStackTrace("readProcessed", ex);
 response.setStatusCode(400).end("Backend error");
 };
 dbHandler.readProcessed(count, onSuccess, onError);
}

That is where (in the previous code in the function onSuccess()) the result set from
the query SQL_READ_PROCESSED is read and used to construct the response. Notice
that we do it by creating an Observable first, then subscribing to it and passing
the result of the subscription as the response into method end(). Otherwise, the
response can be returned without waiting for the response to be constructed.

Now, we can launch our reactive system by deploying the DbServiceHttp verticle:

RxHelper.deployVerticle(vertx(), new DbServiceHttp(8082));

If we do that, in the output we will see the following lines of code:

DbServiceHttp(8082) starts...
Table processed created
Table who_called created

In another window, we can issue the command that generates an HTTP request:

Microservices

[116]

If we read the processed records now, there should be none:

The log messages show the following:

Now, we can request processing of the existing records and then read the
results again:

In principle, it is enough already to build a reactive system. We can deploy many
DbServiceHttp microservices on different ports or cluster them to increase
processing capacity, resilience, and responsiveness. We can wrap other services
inside an HTTP client or an HTTP server and let them talk to each other, processing
the input and passing the results along the processing pipeline.

However, Vert.x also has a feature that even better suits the message-driven
architecture (without using HTTP). It is called an event bus. Any verticle has access
to the event bus and can send any message to any address (which is just a string)
using either method send() (rxSend() in the case of reactive programming) or
method publish(). One or many verticles can register themselves as a consumer
for a certain address.

If many verticles are consumers for the same address, then the method send()
(rxSend()) delivers the message only to one of them (using a round-robin algorithm
to pick the next consumer). The method publish(), as you would expect, delivers
the message to all consumers with the same address. Let's see an example, using
the already familiar DbHandler as the main working horse.

Lesson 4

[117]

A microservice, based on an event bus, looks very similar to the one based on the
HTTP protocol we discussed already:

public class DbServiceBus extends AbstractVerticle {
 private int id;
 private String instanceId;
 private DbHandler dbHandler;
 public static final String INSERT = "INSERT";
 public static final String PROCESS = "PROCESS";
 public static final String READ_PROCESSED
 = "READ_PROCESSED";
 public DbServiceBus(int id) { this.id = id; }
 public void start() throws Exception {
 this.instanceId = this.getClass().getSimpleName()
 + "(" + id + ")";
 System.out.println(instanceId + " starts...");
 this.dbHandler = new DbHandler(vertx);
 vertx.eventBus().consumer(INSERT).toObservable()
 .subscribe(msg -> {
 printRequest(INSERT, msg.body().toString());
 Action1<UpdateResult> onSuccess
 = ur -> msg.reply(...);
 Action1<Throwable> onError
 = ex -> msg.reply("Backend error");
 dbHandler.insert(msg.body().toString(),
 onSuccess, onError);
 });

 vertx.eventBus().consumer(PROCESS).toObservable()
 .subscribe(msg -> {

 dbHandler.process(process, onError);
 });

 vertx.eventBus().consumer(READ_PROCESSED).toObservable()
 .subscribe(msg -> {
 ...
 dbHandler.readProcessed(msg.body().toString(),
 onSuccess, onError);
 });
 }

Microservices

[118]

We simplified the preceding code by skipping some sections (that are very similar
to the DbServiceHttp class) and trying to highlight the code structure. For demo
purposes, we will deploy two instances of this class and send three messages
to each of the addresses INSERT, PROCESS, and READ_PROCESSED:

void demo_DbServiceBusSend() {
 Vertx vertx = vertx();
 RxHelper.deployVerticle(vertx, new DbServiceBus(1));
 RxHelper.deployVerticle(vertx, new DbServiceBus(2));
 delayMs(200);
 String[] msg1 = {"Mayur", "Rohit", "Nick" };
 RxHelper.deployVerticle(vertx,
 new PeriodicServiceBusSend(DbServiceBus.INSERT, msg1, 1));
 String[] msg2 = {"all", "all", "all" };
 RxHelper.deployVerticle(vertx,
 new PeriodicServiceBusSend(DbServiceBus.PROCESS, msg2, 1));
 String[] msg3 = {"1", "1", "2", "3" };
 RxHelper.deployVerticle(vertx,
 new PeriodicServiceBusSend(DbServiceBus.READ_PROCESSED,
 msg3, 1));
}

Notice the delay for 200 ms we inserted using the method delayMs():

void delayMs(int ms){
 try {
 TimeUnit.MILLISECONDS.sleep(ms);
 } catch (InterruptedException e) {}
}

The delay is necessary to let the DbServiceBus verticle to be deployed and started
(and the consumers registered with the address). Otherwise, an attempt to send a
message may fail because the consumer is not registered with the address yet. The
PeriodicServiceBusSend() verticle code is as follows:

public class PeriodicServiceBusSend
 extends AbstractVerticle {
 private EventBus eb;
 private LocalTime start;
 private String address;
 private String[] caller;
 private int delaySec;
 public PeriodicServiceBusSend(String address,
 String[] caller, int delaySec) {
 this.address = address;
 this.caller = caller;

Lesson 4

[119]

 this.delaySec = delaySec;
 }
 public void start() throws Exception {
 System.out.println(this.getClass().getSimpleName()
 + "(" + address + ", " + delaySec + ") starts...");
 this.eb = vertx.eventBus();
 this.start = LocalTime.now();
 vertx.setPeriodic(delaySec * 1000, v -> {
 int i = (int)ChronoUnit.SECONDS.between(start,
 LocalTime.now()) - 1;
 System.out.println(this.getClass().getSimpleName()
 + " to address " + address + ": " + caller[i]);
 eb.rxSend(address, caller[i]).subscribe(reply -> {
 System.out.println(this.getClass().getSimpleName()
 + " got reply from address " + address
 + ":\n " + reply.body());
 if(i + 1 >= caller.length){
 vertx.undeploy(deploymentID());
 }
 }, Throwable::printStackTrace);
 });
 }
}

The previous code sends a message to an address every delaySec seconds as many
times as the length of the array caller[], and then undeploys the verticle (itself). If
we run the demo, the beginning of the output will be as follows:

Microservices

[120]

As you can see, for each address, only DbServiceBus(1) was a receiver of
the first message. The second message to the same address was received by
DbServiceBus(2). That was the round-robin algorithm (which we mentioned
earlier) in action. The final section of the output looks like this:

We can deploy as many verticles of the same type as needed. For example, let's
deploy four verticles that send messages to the address INSERT:

String[] msg1 = {"Mayur", "Rohit", "Nick" };
RxHelper.deployVerticle(vertx,
 new PeriodicServiceBusSend(DbServiceBus.INSERT, msg1, 1));
RxHelper.deployVerticle(vertx,
 new PeriodicServiceBusSend(DbServiceBus.INSERT, msg1, 1));
RxHelper.deployVerticle(vertx,
 new PeriodicServiceBusSend(DbServiceBus.INSERT, msg1, 1));
RxHelper.deployVerticle(vertx,
 new PeriodicServiceBusSend(DbServiceBus.INSERT, msg1, 1));

To see the results, we will also ask the reading Verticle to read the last eight records:

String[] msg3 = {"1", "1", "2", "8" };
RxHelper.deployVerticle(vertx,
 new PeriodicServiceBusSend(DbServiceBus.READ_PROCESSED,
 msg3, 1));

Lesson 4

[121]

The result (the final section of the output) then will be as expected:

Four verticles have sent the same messages, so each name was sent four times and
processed that is what we see in the previous output.

We will now return to one inserting periodic verticle but will change it from using
the method rxSend() to the method publish():

PeriodicServiceBusPublish(String address, String[] caller, int
delaySec) {
 ...
 vertx.setPeriodic(delaySec * 1000, v -> {
 int i = (int)ChronoUnit.SECONDS.between(start,
 LocalTime.now()) - 1;
 System.out.println(this.getClass().getSimpleName()
 + " to address " + address + ": " + caller[i]);
 eb.publish(address, caller[i]);
 if(i + 1 == caller.length){
 vertx.undeploy(deploymentID());
 }
 });
}

This change would mean that the message has to be sent to all verticles that are
registered as the consumers at that address. Now, let's run the following code:

Vertx vertx = vertx();
RxHelper.deployVerticle(vertx, new DbServiceBus(1));
RxHelper.deployVerticle(vertx, new DbServiceBus(2));
delayMs(200);
String[] msg1 = {"Mayur", "Rohit", "Nick" };
RxHelper.deployVerticle(vertx,

Microservices

[122]

 new PeriodicServiceBusPublish(DbServiceBus.INSERT,
 msg1, 1));
delayMs(200);
String[] msg2 = {"all", "all", "all" };
RxHelper.deployVerticle(vertx,
 new PeriodicServiceBusSend(DbServiceBus.PROCESS,
 msg2, 1));
String[] msg3 = {"1", "1", "2", "8" };
RxHelper.deployVerticle(vertx,
 new PeriodicServiceBusSend(DbServiceBus.READ_PROCESSED,
 msg3, 1));

We have included another delay for 200 ms to give the publishing verticle time
to send the message. The output (in the final section) now shows that each message
was processed twice:

That is because two consumers DbServiceBus(1) and DbServiceBus(2) were
deployed, and each received a message to the address INSERT and inserted it in
the table who_called.

All the previous examples we have run in one JVM process. If necessary, Vert.x
instances can be deployed in different JVM processes and clustered by adding the
-cluster option to the run command. Therefore, they share the event bus and the
addresses are visible to all Vert.x instances. This way, the resources can be added
to each address as needed. For example, we can increase the number of processing
microservices only and compensate the load's increase.

Other frameworks we mentioned earlier have similar capabilities. They make
microservices creation easy and may encourage breaking the application into tiny
single-method operations with an expectation of assembling a very resilient and
responsive system.

Lesson 4

[123]

However, these are not the only criteria of good quality. System decomposition
increases the complexity of its deployment. Also, if one development team is
responsible for many microservices, the complexity of versioning so many pieces in
different stages (development, test, integration test, certification, staging, production)
may lead to confusion and a very challenging deployment process, which, in turn,
may slow down the rate of changes necessary to keep the system in sync with the
market requirements.

In addition to the developing of the microservices, many other aspects have to be
addressed to support the reactive system:

•	 A monitoring system has to be designed to provide an insight into the state
of the application, but it should not be so complex as to pull the development
resources away from the main application.

•	 Alerts have to be installed to warn the team about possible and actual issues
in a timely manner, so they can be addressed before affecting the business.

•	 If possible, self-correcting automated processes have to be implemented.
For example, the system should be able to add and release resources in
accordance with the current load; the retry logic has to be implemented with
a reasonable upper limit of a attempts before declaring the failure.

•	 A layer of circuit breakers has to protect the system from the domino effect
when failure of one component deprives other components of the necessary
resources.

•	 An embedded testing system should be able to introduce disruptions
and simulate processing load to ensure that the application resilience and
responsiveness do not degrade over time. For example, the Netflix team has
introduced a chaos monkey a system that is able to shut down various parts
of the production system to test the ability to recover. They use it even in
production because a production environment has a specific configuration,
and no test in another environment can guarantee that all possible issues
are found.

One of the main considerations of a reactive system design is the selection of the
deployment methodology that can be either container-less, self-contained, or in-
container. We will look into the pros and cons of each of these approaches in the
following sections of this lesson.

Microservices

[124]

Container-Less Deployment
People use the term container to refer to very different things. In the original usage,
a container was something that carried its content from one location to another
without changing anything inside. However, when servers were introduced, only one
aspect was emphasized the ability to hold an application to contain it. Also, another
meaning was added to provide life-supportive infrastructure so that the container's
content (an application) can not only survive but also be active and respond to the
external requests. Such a redefined notion of a container was applied to web servers
(servlet container), application servers (an application container with or without an
EJB container), and other software facilities that provided the supportive environment
for applications. Sometimes, even the JVM itself was called a container, but this
association did not survive, probably, because the ability to actively engage (execute)
the content does not align well with the original meaning of a container.

That is why, later, when people started talking about container-less deployment,
they typically meant the ability to deploy an application into a JVM directly, without
first installing WebSphere, WebLogic, JBoss, or any other mediating software that
provides the runtime environment for the application.

In the previous sections, we described many frameworks that allow us to build and
deploy an application (or rather a reactive system of microservices) without the need
for any other container beyond the JVM itself. All you need to do is to build a fat JAR
file that includes all the dependencies (except those that come from the JVM itself)
and then run it as a standalone Java process:

$ java -jar myfatjar.jar

Well, you also need to make sure that MANIFEST.MF in your JAR file has an entry
main class that points to the fully qualified class name that has the main() method
and will be run at the startup. We have described how to do it in the previous
section, Building Microservices.

That is the promised compile-once-run-everywhere of Java, everywhere meaning
everywhere where JVM of a certain version or higher is installed. There are several
advantages and disadvantages of this approach. We will discuss them not relative
to the traditional deployment in a server container. The advantages of deployment
without using the traditional containers are quite obvious, starting with much
fewer (if any) licensing costs and ending up with much a lighter deployment and
scalability process, not even mentioning much less consumption of resources.
Instead, we will compare container-less deployment not with the traditional one,
but with a self-contained and an in-container in a new generation of containers
that have been developed a few years ago.

Lesson 4

[125]

They allow the ability not only to contain and execute the contained code, which the
traditional containers did too, but also to move it to a different location without any
change to the contained code. From now on, by a container, we are going to mean
only the new ones.

The advantages of container-less deployment are as follows:

•	 It is easy to add more Java processes either inside the same physical (or
virtual or in the cloud) machine or on new hardware

•	 An isolation level between processes is high, which is especially important in
the shared environment when you have no control over other co-deployed
applications, and it is possible that a rogue application would try to penetrate
the neighboring execution environment

•	 It has a small footprint since it does not include anything else beyond the
application itself or a group of microservices

The disadvantages of container-less deployment are as follows:

•	 Each JAR file requires the JVM of a certain version or higher, which may
force you to bring up a new physical or virtual machine just for this reason,
to deploy one particular JAR file

•	 In the case of an environment you do not control, your code might be
deployed with a wrong version of JVM, which could lead to unpredictable
results

•	 Processes in the same JVM compete for resources, which are especially hard
to manage in the case of the environments shared by different teams or
different companies

•	 When several microservices are bundled into the same JAR file, they might
require different versions of a third-party library or even incompatible
libraries

Microservices can be deployed one per JAR or bundled together by a team, by related
services, by the unit of scale, or using another criterion. Not the least important
consideration is the total number of such JAR files. As this number grows (Google
today deals with hundreds of thousands of deployment units at a time), it may
become impossible to handle deployment via simple bash script and require a
complex process that allows account ability for possible incompatibilities. If that is the
case, then it is reasonable to consider using virtual machines or containers (in their
new incarnation, see the following section) for better isolation and management.

Microservices

[126]

Self-Contained Microservices
Self-contained microservices look much similar to container-less. The only difference
is that the JVM (or JRE, actually) or any other external frameworks and servers
necessary for the application to run are included in the fat JAR file too. There are
many ways to build such an all-inclusive JAR file.

Spring Boot, for example, provides a convenient GUI with checkbox list that allows
you to select which parts of your Spring Boot application and the external tools you
would like to package. Similarly, WildFly Swarm allows you to choose which parts
of the Java EE components you would like to bundle along with your application.
Alternatively, you can do it yourself using the javapackager tool. It compiles and
packages the application and JRE in the same JAR file (it can also be .exe or .dmg)
for distribution. You can read about the tool on the Oracle website https://docs.
oracle.com/javase/9/tools/javapackager.htm or you can just run the command
javapackager on a computer where JDK is installed (it comes with Java 8 too) you
will get the list of tool options and their brief description.

Basically, to use the javapackager tool, all you need to do is to prepare a project
with everything you would like to package together, including all the dependencies
(packaged in JAR files), and run the javapackager command with the necessary
options that allow you to specify the type of output you would like to have (.exe or
.dmg, for example), the JRE location you would like to bundle together, the icon to
use, the main class entry for MANIFEST.MF, and so on. There are also Maven plugins
that make the packaging command simpler because much of the setup has to be
configured in pom.xml.

The advantages of self-contained deployment are as follows:

•	 It is one file (with all the microservices that compose the reactive system or
some part of it) to handle, which is simpler for a user and for a distributor

•	 There is no need to pre-install JRE and no risk of mismatching the required
version

•	 The isolation level is high because your application has a dedicated JRE,
so the risk of an intrusion from a co-deployed application is minimal

•	 You have full control over the dependencies included in the bundle

The disadvantages are as follows:

•	 The size of the file is bigger, which might be an impediment if it has to be
downloaded

•	 The configuration is more complex than in the case of a container-less
JAR file

https://docs.oracle.com/javase/9/tools/javapackager.htm
https://docs.oracle.com/javase/9/tools/javapackager.htm

Lesson 4

[127]

•	 The bundle has to be generated on a platform that matches the target one,
which might lead to mismatch if you have no control over the installation
process

•	 Other processes deployed on the same hardware or virtual machine can hog
the resources critical for your application needs, which are especially hard
to manage if your application is downloaded and run not by the team that
has developed it

In-Container Deployment
Those who are familiar with Virtual Machine (VM) and not familiar with modern
containers (such as Docker, Rocket by CoreOS, VMware Photon, or similar) could get
the impression that we were talking about VM while saying that a container could
not only contain and execute the contained code, but also to move it to a different
location without any change to the contained code. If so, that would be quite an apt
assumption. VM does allow all of that, and a modern container can be considered a
lightweight VM as it also allows the allocation of resources and provides the feeling
of a separate machine. Yet, a container is not a full-blown isolated virtual computer.

The key difference is that the bundle that can be passed around as a VM includes
an entire operating system (with the application deployed). So, it is quite possible
that a physical server running two VMs would have two different operating systems
running on it. By contrast, a physical server (or a VM) running three containerized
applications has only one operating system running, and the two containers share
(read-only) the operating system kernel, each having its own access (mount) for
writing to the resources they do not share. This means, for example, a much shorter
start time, because starting a container does not require us to boot the operating
system (as in the case of a VM).

For an example, let's take a closer look at Docker the community leader in container.
In 2015, an initiative called Open Container Project was announced, later renamed
the Open Container Initiative (OCI), which was supported by Google, IBM,
Amazon, Microsoft, Red Hat, Oracle, VMware, HP, Twitter, and many other
companies. Its purpose was to develop industry standards for a container format and
container runtime software for all platforms. Docker has donated about 5 percent of
its code base to the project because its solution was chosen as the starting point.

Microservices

[128]

There is an extensive Docker documentation at: https://docs.docker.com. Using
Docker, one can include in the package all the Java EE Container and the application
as a Docker image, achieving essentially the same result as with a self-contained
deployment. Then, you can launch your application by starting the Docker image
in the Docker engine using this command:

$ docker run mygreatapplication

It starts a process that looks like running an OS on a physical computer, although it
can also be happening in a cloud inside a VM that is running on the physical Linux
server shared by many different companies and individuals. That is why an isolation
level (which, in the case of containers, is almost as high as in a VM) may be critical
in choosing between different deployment models.

A typical recommendation would be to put one microservice in each container, but
nothing prevents you from putting several microservices in one Docker image (or
any other container for that matter). However, there are already mature systems
of container management (in the world of containers called orchestration) that can
help you with deployment, so the complexity of having many containers, although a
valid consideration, should not be a big obstacle if resilience and responsiveness are
at stake. One of the popular orchestrations called Kubernetes supports microservice
registry, discovery, and load balancing. Kubernetes can be used in any cloud or in a
private infrastructure.

Containers allow a fast, reliable, and consistent deployment in practically any of
the current deployment environments, whether it is your own infrastructure or
a cloud at Amazon, Google, or Microsoft. They also allow the easy movement of
an application through the development, testing, and production stages. Such
infrastructure independence allows you, if necessary, to use a public cloud for
development and testing and your own computers for production.

Once a base operating image is created, each development team can then build their
application on top, thus avoiding the complexities of environment configuration.
The versions of a container can also be tracked in a version control system.

The advantages of using containers are as follows:

•	 The level of isolation is the highest if compared with container-less and
self-contained deployment. In addition, more efforts were put recently into
adding security to containers.

•	 Each container is managed, distributed, deployed, started, and stopped by
the same set of commands.

https://docs.docker.com/

Lesson 4

[129]

•	 There is no need to pre-install JRE and risk of mismatching the required
version.

•	 You have full control over the dependencies included in the container.
•	 It is straightforward to scale up/down each microservice by adding/

removing container instances.

The disadvantages of using containers are as follows:

•	 You and your team have to learn a whole new set of tools and become
involved more heavily in the production stage. On the other hand, that
seems to be the general tendency in recent years.

Summary
Microservices is a new architectural and design solution for highly loaded processing
systems that became popular after being successfully used in production by such
giants as Amazon, Google, Twitter, Microsoft, IBM, and others. It does not mean
though that you must adopt it too, but you can consider the new approach and see if
some or any of it can help your applications to be more resilient and responsive.

Using microservices can provide a substantial value, but it is not free. It comes
with increased complexity of the need to manage many more units through all the
lifecycle from requirements and development through testing to production. Before
committing to the full-scale microservice architecture, give it a shot by implementing
just a few microservices and move them all the way to production. Then, let it run
for some time and gauge the experience. It will be very specific to your organization.
Any successful solution must not be blindly copied but adopted as fit for your
particular needs and abilities.

Better performance and overall efficiency often can be achieved by gradual
improvements of what is already in place than by radical redesign and re-architecture.

In the next lesson, we will discuss and demonstrate new API that can improve your
code by making it more readable and faster performing.

Microservices

[130]

Assessments
1.	 Using the _________ object, various verticles can be deployed, which talk

to each other, receive an external request, and process and store data as any
other Java application, thus forming a system of microservices.

2.	 Which of the following is advantage of container-less deployment?
1.	 Each JAR file requires the JVM of a certain version or higher, which

may force you to bring up a new physical or virtual machine just for
this reason, to deploy one particular JAR file

2.	 In the case of an environment you do not control, your code might
be deployed with a right version of JVM, which could lead to
unpredictable results

3.	 Processes in the same JVM compete for resources, which are
especially hard to manage in the case of the environments shared by
different teams or different companies

4.	 It has a small footprint since it does not include anything else beyond
the application itself or a group of microservices

3.	 State whether True or False: One way to support a transaction across several
microservices is to create a service that would play the role of a Parallel
Transaction Manager.

4.	 Which of the following are the Java frameworks that are included in Java 9?
1.	 Akka
2.	 Ninja
3.	 Orange
4.	 Selenium

5.	 State whether True or False: The level of isolation in a container is the highest
if compared with container-less and self-contained deployment.

[131]

Making Use of New APIs to
Improve Your Code

In the previous lessons, we talked about possible ways to improve the performance
of your Java application--from using the new command and monitoring tools to
adding multithreading and introducing reactive programming and even to radically
re-architecting your current solution into an unruly and flexible bunch of small
independent deployment units and microservices. Without knowing your particular
situation, there is no way for us to guess which of the provided recommendations
can be helpful to you. That's why, in this lesson, we will describe a few recent
additions to the JDK that can be helpful to you too. As we mentioned in the previous
lesson, the gain in performance and overall code improvement does not always
require us to radically redesign it. Small incremental changes can sometimes
bring more significant improvements than we could have expected.

To bring back our analogy of a pyramid building, instead of trying to change the
logistics of the delivery of the stones to the final destination--in order to shorten
the construction time--it is often prudent to look closer at the tools the builders are
using first. If each operation can be completed in half the time, the overall time of
the project's delivery can be shortened accordingly, even if each of the stone blocks
travels the same, if not a larger, distance.

These are the improvements of the programming tools we will discuss in this lesson:

•	 Using filters on streams as a way to find what you need and to decrease
workload

•	 A new stack-walking API as the way analyze the stack trace
programmatically in order to apply an automatic correction

•	 New convenient static factory methods that create compact, unmodifiable
collection instances

Making Use of New APIs to Improve Your Code

[132]

•	 The new CompletableFuture class as a way to access the results of
asynchronous processing

•	 The JDK 9 stream API improvements that can speed up processing while
making your code more readable

Filtering Streams
The java.util.streams.Stream interface was introduced in Java 8. It emits elements
and supports a variety of operations that perform computations based on these
elements. A stream can be finite or infinite, slow or fast emitting. Naturally, there
is always a concern that the rate of the newly emitted elements may be higher than
the rate of the processing. Besides, the ability to keep up with the input reflects the
application's performance. The Stream implementations address the backpressure
(when the rate of the element processing is lower than their emitting rate) by adjusting
the emitting and processing rates using a buffer and various other techniques. In
addition, it is always helpful if an application developer makes sure that the decision
about processing or skipping each particular element is made as early as possible so
that the processing resources are not wasted. Depending on the situation, different
operations can be used for filtering the data.

Basic Filtering
The first and the most straightforward way to do filtering is using the filter()
operation. To demonstrate all the following capabilities, we will use the Senator
class:

public class Senator {
 private int[] voteYes, voteNo;
 private String name, party;
 public Senator(String name, String party,
 int[] voteYes, int[] voteNo) {
 this.voteYes = voteYes;
 this.voteNo = voteNo;
 this.name = name;
 this.party = party;
 }
 public int[] getVoteYes() { return voteYes; }
 public int[] getVoteNo() { return voteNo; }
 public String getName() { return name; }
 public String getParty() { return party; }
 public String toString() {
 return getName() + ", P" +

Lesson 5

[133]

 getParty().substring(getParty().length() - 1);
 }
}

As you can see, this class captures a senator's name, party, and how they voted
for each of the issues (0 means No and 1 means Yes). If for a particular issue i,
voteYes[i]=0 , and voteNo[i]=0, it means that the senator was not present.
It is not possible to have voteYes[i]=1 and voteNo[i]=1 for the same issue.

Let's assume that there are 100 senators, each belonging to one of the two parties:
Party1 or Party2. We can use these objects to collect statistics of how senators
voted for the last 10 issues using the Senate class:

public class Senate {
 public static List<Senator> getSenateVotingStats(){
 List<Senator> results = new ArrayList<>();
 results.add(new Senator("Senator1", "Party1",
 new int[]{1,0,0,0,0,0,1,0,0,1},
 new int[]{0,1,0,1,0,0,0,0,1,0}));
 results.add(new Senator("Senator2", "Party2",
 new int[]{0,1,0,1,0,1,0,1,0,0},
 new int[]{1,0,1,0,1,0,0,0,0,1}));
 results.add(new Senator("Senator3", "Party1",
 new int[]{1,0,0,0,0,0,1,0,0,1},
 new int[]{0,1,0,1,0,0,0,0,1,0}));
 results.add(new Senator("Senator4", "Party2",
 new int[]{1,0,1,0,1,0,1,0,0,1},
 new int[]{0,1,0,1,0,0,0,0,1,0}));
 results.add(new Senator("Senator5", "Party1",
 new int[]{1,0,0,1,0,0,0,0,0,1},
 new int[]{0,1,0,0,0,0,1,0,1,0}));
 IntStream.rangeClosed(6, 98).forEach(i -> {
 double r1 = Math.random();
 String name = "Senator" + i;
 String party = r1 > 0.5 ? "Party1" : "Party2";
 int[] voteNo = new int[10];
 int[] voteYes = new int[10];
 IntStream.rangeClosed(0, 9).forEach(j -> {
 double r2 = Math.random();
 voteNo[j] = r2 > 0.4 ? 0 : 1;
 voteYes[j] = r2 < 0.6 ? 0 : 1;
 });
 results.add(new Senator(name,party,voteYes,voteNo));
 });

Making Use of New APIs to Improve Your Code

[134]

 results.add(new Senator("Senator99", "Party1",
 new int[]{0,0,0,0,0,0,0,0,0,0},
 new int[]{1,1,1,1,1,1,1,1,1,1}));
 results.add(new Senator("Senator100", "Party2",
 new int[]{1,1,1,1,1,1,1,1,1,1},
 new int[]{0,0,0,0,0,0,0,0,0,0}));
 return results;
 }
 public static int timesVotedYes(Senator senator){
 return Arrays.stream(senator.getVoteYes()).sum();
 }
}

We hardcoded statistics for the first five senators so we can get predictable results
while testing our filters and verify that the filters work. We also hardcoded voting
statistics for the last two senators so we can have a predictable count while looking
for senators who voted only Yes or only No for each of the ten issues. And we added
the timesVotedYes() method, which provides the count of how many times the
given senator voted Yes.

Now we can collect some data from the Senate class. For example, let's see how
many members of each party comprise the Senate class:

List<Senator> senators = Senate.getSenateVotingStats();
long c1 = senators.stream()
 .filter(s -> s.getParty() == "Party1").count();
System.out.println("Members of Party1: " + c1);

long c2 = senators.stream()
 .filter(s -> s.getParty() == "Party2").count();
System.out.println("Members of Party2: " + c2);
System.out.println("Members of the senate: " + (c1 + c2));

The result of the preceding code differs from run to run because of the random
value generator we used in the Senate class, so do not expect to see exactly the
same numbers if you try to run the examples. What is important is that the total of
the two party members should be equal 100--the total number of the senators in the
Senate class:

Lesson 5

[135]

The expression s -> s.getParty()=="Party1" is the predicate that filters out
only those senators who are members of Party1. So, the elements (Senator objects)
of Party2 do not get through and are not included in the count. That was pretty
straightforward.

Now let's look at a more complex example of filtering. Let's count how many
senators of each party voted on issue 3:

int issue = 3;
c1 = senators.stream()
 .filter(s -> s.getParty() == "Party1")
 .filter(s -> s.getVoteNo()[issue] != s.getVoteYes()[issue])
 .count();
System.out.println("Members of Party1 who voted on Issue" +
 issue + ": " + c1);

c2 = senators.stream()
 .filter(s -> s.getParty() == "Party2" &&
 s.getVoteNo()[issue] != s.getVoteYes()[issue])
 .count();
System.out.println("Members of Party2 who voted on Issue" +
 issue + ": " + c2);
System.out.println("Members of the senate who voted on Issue"
 + issue + ": " + (c1 + c2));

For Party1, we used two filters. For Party2, we combined them just to show
another possible solution. The important point here is to use the filter by a party (s
-> s.getParty() == "Party1") first before the filter that selects only those who
voted. This way, the second filter is used only for approximately half of the elements.
Otherwise, if the filter that selects only those who voted were placed first, it would
be applied to all 100 of Senate members.

The result looks like this:

Similarly, we can calculate how many members of each party voted Yes on issue 3:

c1 = senators.stream()
 .filter(s -> s.getParty() == "Party1" &&
 s.getVoteYes()[issue] == 1)
 .count();

Making Use of New APIs to Improve Your Code

[136]

System.out.println("Members of Party1 who voted Yes on Issue"
 + issue + ": " + c1);

c2 = senators.stream()
 .filter(s -> s.getParty() == "Party2" &&
 s.getVoteYes()[issue] == 1)
 .count();
System.out.println("Members of Party2 who voted Yes on Issue"
 + issue + ": " + c2);
System.out.println("Members of the senate voted Yes on Issue"
 + issue + ": " + (c1 + c2));

The result of the preceding code is as follows:

We can refactor the preceding examples by taking advantage of the Java
functional programming capability (using lambda expressions) and creating the
countAndPrint() method:

long countAndPrint(List<Senator> senators,
 Predicate<Senator> pred1, Predicate<Senator> pred2,
 String prefix) {
 long c = senators.stream().filter(pred1::test)
 .filter(pred2::test).count();
 System.out.println(prefix + c);
 return c;
}

Now all the earlier code can be expressed in a more compact way:

int issue = 3;

Predicate<Senator> party1 = s -> s.getParty() == "Party1";
Predicate<Senator> party2 = s -> s.getParty() == "Party2";
Predicate<Senator> voted3 =
 s -> s.getVoteNo()[issue] != s.getVoteYes()[issue];
Predicate<Senator> yes3 = s -> s.getVoteYes()[issue] == 1;

long c1 = countAndPrint(senators, party1, s -> true,
 "Members of Party1: ");
long c2 = countAndPrint(senators, party2, s -> true,

Lesson 5

[137]

 "Members of Party2: ");
System.out.println("Members of the senate: " + (c1 + c2));

c1 = countAndPrint(senators, party1, voted3,
 "Members of Party1 who voted on Issue" + issue + ": ");
c2 = countAndPrint(senators, party2, voted3,
 "Members of Party2 who voted on Issue" + issue + ": ");
System.out.println("Members of the senate who voted on Issue"
 + issue + ": " + (c1 + c2));

c1 = countAndPrint(senators, party1, yes3,
 "Members of Party1 who voted Yes on Issue" + issue + ": ");
c2 = countAndPrint(senators, party2, yes3,
 "Members of Party2 who voted Yes on Issue" + issue + ": ");
System.out.println("Members of the senate voted Yes on Issue"
 + issue + ": " + (c1 + c2));

We created four predicates, party1, party2, voted3, and yes3, and we used each
of them several times as parameters of the countAndPrint() method. The output
of this code is the same as that of the earlier examples:

Using the filter() method of the Stream interface is the most popular way
of filtering. But it is possible to use other Stream methods to accomplish the
same effect.

Using Other Stream Operations for Filtering
Alternatively, or in addition to the basic filtering described in the previous section,
other operations (methods of the Stream interface) can be used for selection and
filtering emitted stream elements.

Making Use of New APIs to Improve Your Code

[138]

For example, let's use the flatMap() method to filter out the members of the Senate
by their party membership:

long c1 = senators.stream()
 .flatMap(s -> s.getParty() == "Party1" ?
 Stream.of(s) : Stream.empty())
 .count();
System.out.println("Members of Party1: " + c1);

This method takes advantage of the Stream.of() (produces a stream of one
element) and Stream.empty()factory methods (it produces a stream without
elements, so nothing is emitted further downstream). Alternatively, the same
effect can be achieved using a new factory method (introduced in Java 9) called
Stream.ofNullable():

c1 = senators.stream().flatMap(s ->
 Stream.ofNullable(s.getParty() == "Party1" ? s : null))
 .count();
System.out.println("Members of Party1: " + c1);

The Stream.ofNullable() method creates a stream of one element if not null;
otherwise, it creates an empty stream, as in the previous example. Both the
preceding code snippets--produce the same output if we run them for the same
senate composition:

However, the same result can be achieved using a java.uti.Optional class that
may or may not contain a value. If a value is present (and not null), its isPresent()
method returns true and the get() method returns the value. Here is how we can
use it to filter out the members of one party:

long c2 = senators.stream()
 .map(s -> s.getParty() == "Party2" ?
 Optional.of(s) : Optional.empty())
 .flatMap(o -> o.map(Stream::of).orElseGet(Stream::empty))
 .count();
System.out.println("Members of Party2: " + c2);

Lesson 5

[139]

First, we map (transform) an element (the Senator object) to an Optional object
with or without the value. Next, we use the flatMap() method to either generate a
stream of a single element or else an empty stream, and then we count the elements
that made it through. In Java 9, the Optional class acquired a new factory stream()
method that produces a stream of one element if the Optional object carries a non-
null value; otherwise, it produces an empty stream. Using this new method, we can
rewrite the previous code as follows:

long c2 = senators.stream()
 .map(s -> s.getParty() == "Party2" ?
 Optional.of(s) : Optional.empty())
 .flatMap(Optional::stream)
 .count();
System.out.println("Members of Party2: " + c2);

Both the previous examples produce the same output if we run them for the same
senate composition:

We can apply another kind of filtering when we need to capture the first element
emitted by the stream. This means that we terminate the stream after the first
element is emitted. For example, let's find the first senator of Party1who voted
Yes on issue 3:

senators.stream()
 .filter(s -> s.getParty() == "Party1" &&
 s.getVoteYes()[3] == 1)
 .findFirst()
 .ifPresent(s -> System.out.println("First senator "
 "of Party1 found who voted Yes on issue 3: "
 + s.getName()));

In the preceding code snippet, we highlighted the findFirst() method, which
does the described job. It returns the Optional object, so we have added another
ifPresent() operator that is invoked only if the Optionalobject contains a
non-null value. The resulting output is as follows:

Making Use of New APIs to Improve Your Code

[140]

This was exactly what we expected when we seeded data in the Senate class.

Similarly, we can use the findAny() method to find any senator who voted Yes
on issue 3:

senators.stream().filter(s -> s.getVoteYes()[3] == 1)
 .findAny()
 .ifPresent(s -> System.out.println("A senator " +
 "found who voted Yes on issue 3: " + s));

The result is also as we expected:

It is typically (but not necessarily) the first element of the stream. But one should not
rely on this assumption, especially in the case of parallel processing.

The Stream interface also has three match methods that, although they return a
Boolean value, can be used for filtering too if the specific object is not required and
we only need to establish the fact that such an object exists or not. The names of
these methods are anyMatch(), allMatch(), and noneMatch(). Each of them takes
a predicate and returns a Boolean. Let's start by demonstrating the anyMatch()
method. We will use it to find out if there is at least one senator of Party1 who
voted Yes on issue 3:

boolean found = senators.stream()
 .anyMatch(s -> (s.getParty() == "Party1" &&
 s.getVoteYes()[3] == 1));
String res = found ?
 "At least one senator of Party1 voted Yes on issue 3"
 : "Nobody of Party1 voted Yes on issue 3";
System.out.println(res);

The result of running the previous code should look like the following:

To demonstrate the allMatch() method, we will use it to find out if all the members
of Party1 in the Senate class have voted Yes on issue 3:

boolean yes = senators.stream()
 .allMatch(s -> (s.getParty() == "Party1" &&
 s.getVoteYes()[3] == 1));

Lesson 5

[141]

String res = yes ?
 "All senators of Party1 voted Yes on issue 3"
 : "Not all senators of Party1 voted Yes on issue 3";
System.out.println(res);

The result of the previous code may look like this:

And the last of the three match methods--the noneMatch() method--will be used to
figure out if some senators of Party1 have voted Yes on issue 3:

boolean yes = senators.stream()
 .noneMatch(s -> (s.getParty() == "Party1" &&
 s.getVoteYes()[3] == 1));
String res = yes ?
 "None of the senators of Party1 voted Yes on issue 3"
 : "Some of senators of Party1 voted Yes on issue 3";
System.out.println(res);

The result of the earlier example is as follows:

However, in real life, it could be very different because quite a few issues in the
Senate class are voted for along party lines.

Yet another type of filtering is required when we need to skip all the duplicate
elements in a stream and select only unique ones. The distinct() method is
designed for the purpose. We will use it to find the names of the parties that have
their members in the Senate class:

senators.stream().map(s -> s.getParty())
 .distinct().forEach(System.out::println);

The result, as expected, is as follows:

Making Use of New APIs to Improve Your Code

[142]

Well, no surprise there?

We can also filter out all the elements of the stream except the certain count of the
first ones, using the limit() method:

System.out.println("These are the first 3 senators "
 + "of Party1 in the list:");
senators.stream()
 .filter(s -> s.getParty() == "Party1")
.limit(3)
 .forEach(System.out::println);

System.out.println("These are the first 2 senators "
 + "of Party2 in the list:");
senators.stream().filter(s -> s.getParty() == "Party2")
.limit(2)
 .forEach(System.out::println);

If you remember how we have set up the first five senators in the list, you could
predict that the result will be as follows:

Now let's find only one element in a stream--the biggest one. To do this, we can use
the max() method of the Stream interface and the Senate.timeVotedYes() method
(we will apply it on each senator):

senators.stream()
 .max(Comparator.comparing(Senate::timesVotedYes))
 .ifPresent(s -> System.out.println("A senator voted "
 + "Yes most of times (" + Senate.timesVotedYes(s)
 + "): " + s));

In the preceding snippet, we use the result of the timesVotedYes() method to select
the senator who voted Yes most often. You might remember, we have assigned all
instances of Yes to Senator100. Let's see if that would be the result:

Lesson 5

[143]

Yes, we got Senator100 filtered as the one who voted Yes on all 10 issues.

Similarly, we can find the senator who voted No on all 10 issues:

senators.stream()
 .min(Comparator.comparing(Senate::timesVotedYes))
 .ifPresent(s -> System.out.println("A senator voted "
 + "Yes least of times (" + Senate.timesVotedYes(s)
 + "): " + s));

We expect it to be Senator99, and here is the result:

That's why we hardcoded several stats in the Senate class, so we can verify that our
queries work correctly.

As the last two methods can help us with filtering, we will demonstrate the
takeWhile() and dropWhile()methods introduced in JDK 9. We will first print the
data of all the first five senators and then use the takeWhile()method to print the
first senators until we encounter the one who voted Yes more than four times, and
then stop printing:

System.out.println("Here is count of times the first "
 + "5 senators voted Yes:");
senators.stream().limit(5)
 .forEach(s -> System.out.println(s + ": "
 + Senate.timesVotedYes(s)));
System.out.println("Stop printing at a senator who "
 + "voted Yes more than 4 times:");
senators.stream().limit(5)
 .takeWhile(s -> Senate.timesVotedYes(s) < 5)
 .forEach(s -> System.out.println(s + ": "
 + Senate.timesVotedYes(s)));

The result for the previous code is as follows:

Making Use of New APIs to Improve Your Code

[144]

The dropWhile() method can be used for the opposite effect, that is, to filter away,
to skip the first senators until we encounter the one who voted Yes more than four
times, then continue printing all the rest of the senators:

System.out.println("Here is count of times the first "
 + "5 senators voted Yes:");
senators.stream().limit(5)
 .forEach(s -> System.out.println(s + ": "
 + Senate.timesVotedYes(s)));
System.out.println("Start printing at a senator who "
 + "voted Yes more than 4 times:");
senators.stream().limit(5)
 .dropWhile(s -> Senate.timesVotedYes(s) < 5)
 .forEach(s -> System.out.println(s + ": "
 + Senate.timesVotedYes(s)));
System.out.println("...");

The result will be as follows:

This concludes our demonstration of the ways in which a stream of elements can be
filtered. We hope you have learned enough to be able to find a solution for any of
your filtering needs. Nevertheless, we encourage you to study and experiment with
the Stream API on your own, so you can retain what you have learned so far and
acquire your own view on the rich APIs of Java 9.

Stack-Walking APIs
Exceptions do happen, especially during development or the period of software
stabilization. But in a big complex system, the chance of getting an exception is
possible even in production, especially when several third-party systems are brought
together and the need arises to analyze the stack trace programmatically in order to
apply an automatic correction. In this section, we will discuss how it can be done.

Lesson 5

[145]

Stack Analysis before Java 9
The traditional reading of the stack trace, using objects of the java.lang.Thread
and java.lang.Throwableclasses, was accomplished by capturing it from the
standard output. For example, we can include this line in any section of the code:

Thread.currentThread().dumpStack();

The previous line will produce the following output:

Similarly, we can include this line in the code:

new Throwable().printStackTrace();

The output will then look like this:

This output can be captured, read, and analyzed programmatically, but requires
quite a bit of custom code writing.

JDK 8 made this easier via the usage of streams. Here is the code that allows reading
the stack trace from the stream:

Arrays.stream(Thread.currentThread().getStackTrace())
 .forEach(System.out::println);

The previous line produces the following output:

Alternatively, we could use this code:

Arrays.stream(new Throwable().getStackTrace())
 .forEach(System.out::println);

Making Use of New APIs to Improve Your Code

[146]

The output of the previous code shows the stack trace in a similar way:

If, for example, you would like to find the fully qualified name of the caller class,
you can use one of these approaches:

new Throwable().getStackTrace()[1].getClassName();

Thread.currentThread().getStackTrace()[2].getClassName();

Such coding is possible because the getStackTrace() method returns an array
of objects of the java.lang.StackTraceElement class, each representing a stack
frame in a stack trace. Each object carries stack trace information accessible by the
getFileName(), getClassName(), getMethodName(), and getLineNumber()
methods.

To demonstrate how it works, we have created three classes, Clazz01, Clazz02,
and Clazz03, that call each other:

public class Clazz01 {
 public void method(){ new Clazz02().method(); }
}
public class Clazz02 {
 public void method(){ new Clazz03().method(); }
}
public class Clazz03 {
 public void method(){
 Arrays.stream(Thread.currentThread()
 .getStackTrace()).forEach(ste -> {
 System.out.println();
 System.out.println("ste=" + ste);
 System.out.println("ste.getFileName()=" +
 ste.getFileName());
 System.out.println("ste.getClassName()=" +
 ste.getClassName());
 System.out.println("ste.getMethodName()=" +
 ste.getMethodName());
 System.out.println("ste.getLineNumber()=" +
 ste.getLineNumber());
 });
 }
}

Lesson 5

[147]

Now, let's call the method() method of Clazz01:

public class Demo02StackWalking {
 public static void main(String... args) {
 demo_walking();
 }
 private static void demo_walking(){
 new Clazz01().method();
 }
}

Here are two (the second and the third) of the six stack trace frames printed out by
the preceding code:

In principle, every called class has access to this information. But to find out which
class called the current class may not be so easy because you need to figure out
which frame represents the caller. Also, in order to provide this info, JVM captures
the entire stack (except for the hidden stack frames), and it may affect performance.

That was the motivation for introducing the java.lang.StackWalker class, its
nested Option class, and the StackWalker.StackFrame interface in JDK 9.

New Better Way to Walk the Stack
The StackWalker class has four getInstance() static factory methods:

•	 getInstance(): This returns a StackWalker class instance configured to
skip all hidden frames and the caller class reference

•	 getInstance(StackWalker.Option option): This creates a StackWalker
class instance with the given option specifying the stack frame information it
can access

Making Use of New APIs to Improve Your Code

[148]

•	 getInstance(Set<StackWalker.Option> options): This creates a
StackWalker class instance with the given set of options

•	 getInstance(Set<StackWalker.Option> options, int
estimatedDepth): This allows you to pass in the estimatedDepth
parameter that specifies the estimated number of stack frames this instance
will traverse so that the Java machine can allocate the appropriate buffer
size it might need

The value passed as an option can be one of the following:

•	 StackWalker.Option.RETAIN_CLASS_REFERENCE

•	 StackWalker.Option.SHOW_HIDDEN_FRAMES

•	 StackWalker.Option.SHOW_REFLECT_FRAMES

The other three methods of the StackWalker class are as follows:

•	 T walk(Function<Stream<StackWalker.StackFrame>, T> function):
This applies the passed in function to the stream of stack frames, the first
frame representing the method that called this walk() method

•	 void forEach(Consumer<StackWalker.StackFrame> action): This
performs the passed in action on each element (of the StalkWalker.
StackFrame interface type) of the stream of the current thread

•	 Class<?> getCallerClass(): This gets objects of the Class class of the
caller class

As you can see, it allows much more straightforward stack trace analysis. Let's
modify our demo classes using the following code and access the caller name in
one line:

public class Clazz01 {
 public void method(){
 System.out.println("Clazz01 was called by " +
 StackWalker.getInstance(StackWalker
 .Option.RETAIN_CLASS_REFERENCE)
 .getCallerClass().getSimpleName());
 new Clazz02().method();
 }
}
public class Clazz02 {
 public void method(){
 System.out.println("Clazz02 was called by " +
 StackWalker.getInstance(StackWalker
 .Option.RETAIN_CLASS_REFERENCE)

Lesson 5

[149]

 .getCallerClass().getSimpleName());
 new Clazz03().method();
 }
}
public class Clazz03 {
 public void method(){
 System.out.println("Clazz01 was called by " +
 StackWalker.getInstance(StackWalker
 .Option.RETAIN_CLASS_REFERENCE)
 .getCallerClass().getSimpleName());
 }
}

The previous code will produce this output:

You can appreciate the simplicity of the solution. If we need to see the entire stack
trace, we can add the following line to the code in Clazz03:

StackWalker.getInstance().forEach(System.out::println);

The resulting output will be as follows:

Again, with only one line of code, we have achieved much more readable output. We
could achieve the same result by using the walk() method:

StackWalker.getInstance().walk(sf -> {
 sf.forEach(System.out::println); return null;
});

Making Use of New APIs to Improve Your Code

[150]

Instead of just printing StackWalker.StackFrame, we also could run a deeper
analysis on it, if need be, using its API, which is more extensive than the API of
java.lang.StackTraceElement. Let's run the code example that prints every
stack frame and its information:

StackWalker stackWalker =
 StackWalker.getInstance(Set.of(StackWalker
 .Option.RETAIN_CLASS_REFERENCE), 10);
stackWalker.forEach(sf -> {
 System.out.println();
 System.out.println("sf="+sf);
 System.out.println("sf.getFileName()=" +
 sf.getFileName());
 System.out.println("sf.getClass()=" + sf.getClass());
 System.out.println("sf.getMethodName()=" +
 sf.getMethodName());
 System.out.println("sf.getLineNumber()=" +
 sf.getLineNumber());
 System.out.println("sf.getByteCodeIndex()=" +
 sf.getByteCodeIndex());
 System.out.println("sf.getClassName()=" +
 sf.getClassName());
 System.out.println("sf.getDeclaringClass()=" +
 sf.getDeclaringClass());
 System.out.println("sf.toStackTraceElement()=" +
 sf.toStackTraceElement());
});

The output of the previous code is as follows:

Note the StackFrameInfo class that implements the StackWalker.StackFrame
interface and actually does the job. The API also allows converting back to the familiar
StackTraceElement object for backward compatibility and for the enjoyment of those
who are used to it and do not want to change their code and habits.

Lesson 5

[151]

In contrast, with the full stack trace generated and stored in the array in the memory
(like in the case of the traditional stack trace implementation), the StackWalker class
brings only the requested elements. This is another motivation for its introduction in
addition to the demonstrated simplicity of use. More details about the StackWalker
class API and its usage can be found at https://docs.oracle.com/javase/9/
docs/api/java/lang/StackWalker.html.

Convenience Factory Methods for
Collections
With the introduction of functional programming in Java, the interest in and need
for immutable objects increased. The functions passed into the methods may be
executed in substantially different contexts than the one they were created in,
so the need to decrease the chances of unexpected side effects made the case for
immutability stronger. Besides, the Java way of creating an unmodifiable collection
was quite verbose anyway, so the issue was addressed in Java 9. Here is an example
of the code that creates an immutable collection of the Set interface in Java 8:

Set<String> set = new HashSet<>();
set.add("Life");
set.add("is");
set.add("good!");
set = Collections.unmodifiableSet(set);

After one does it several times, the need for a convenience method comes up
naturally as the basic refactoring consideration that always lingers in the background
thinking of any software professional. In Java 8, the previous code could be changed
to the following:

Set<String> immutableSet =
 Collections.unmodifiableSet(new HashSet<>(Arrays
 .asList("Life", "is", "good!")));

Alternatively, if streams are your friends, you could write the following:

Set<String> immutableSet = Stream.of("Life","is","good!")
 .collect(Collectors.collectingAndThen(Collectors.toSet(),
 Collections::unmodifiableSet));

Another version of the previous code is as follows:

Set<String> immutableSet =
 Collections.unmodifiableSet(Stream.of("Life","is","good!")
 .collect(Collectors.toSet()));

Making Use of New APIs to Improve Your Code

[152]

However, it has more boilerplate code than the values you are trying to encapsulate.
So, in Java 9, a shorter version of the previous code became possible:

Set<String> immutableSet = Set.of("Life","is","good!");

Similar factories were introduced to generate immutable collections of List
interfaces and Map interfaces:

List<String> immutableList = List.of("Life","is","good!");

Map<Integer,String> immutableMap1 =
 Map.of(1, "Life", 2, "is", 3, "good!");

Map<Integer,String> immutableMap2 =
 Map.ofEntries(entry(1, "Life "), entry(2, "is"),
 entry(3, "good!");

Map.Entry<Integer,String> entry1 = Map.entry(1,"Life");
Map.Entry<Integer,String> entry2 = Map.entry(2,"is");
Map.Entry<Integer,String> entry3 = Map.entry(3,"good!");
Map<Integer,String> immutableMap3 =
 Map.ofEntries(entry1, entry2, entry3);

Why New Factory Methods?
The ability to express the same functionality in more compact manner is very helpful,
but it would probably not be enough motivation to introduce these new factories. It
was much more important to address the weakness of the existing implementation
of Collections.unmodifiableList(), Collections.unmodifiableSet(), and
Collections.unmodifiableMap(). Although the collections created using these
methods throw an UnsupportedOperationException class when you try to modify
or add/remove their elements, they are just wrappers around the traditional
modifiable collections and can thus be susceptible to modifications, depending on the
way you construct them. Let's walk through examples to illustrate the point. By the
way, another weakness of the existing unmodifiable implementation is that it does
not change how the source collection is constructed, so the difference between List,
Set, and Map--the ways in which they can be constructed--remains in place, which
may be a source of bugs or even frustration when a programmer uses them. The new
factory methods address this issue too, providing a more unified approach using the
of() factory method (and the additional ofEntries() method for Map) only. Having
said that, let's get back to the examples. Look at the following code snippet:

List<String> list = new ArrayList<>();
list.add("unmodifiableList1: Life");
list.add(" is");

Lesson 5

[153]

list.add(" good! ");
list.add(null);
list.add("\n\n");
List<String> unmodifiableList1 =
 Collections.unmodifiableList(list);
//unmodifiableList1.add(" Well..."); //throws exception
//unmodifiableList1.set(2, " sad."); //throws exception
unmodifiableList1.stream().forEach(System.out::print);

list.set(2, " sad. ");
list.set(4, " ");
list.add("Well...\n\n");
unmodifiableList1.stream().forEach(System.out::print);

Attempts of direct modification of the elements of unmodifiableList1 lead to
UnsupportedOperationException. Nevertheless, we can modify them via the
underlying list object. If we run the previous example, the output will be as follows:

Even if we use Arrays.asList() for the source list creation, it will only protect the
created collection from adding a new element, but not from modifying the existing
one. Here is a code example:

List<String> list2 =
 Arrays.asList("unmodifiableList2: Life",
 " is", " good! ", null, "\n\n");
List<String> unmodifiableList2 =
 Collections.unmodifiableList(list2);
//unmodifiableList2.add(" Well..."); //throws exception
//unmodifiableList2.set(2, " sad."); //throws exception
unmodifiableList2.stream().forEach(System.out::print);

list2.set(2, " sad. ");
//list2.add("Well...\n\n"); //throws exception
unmodifiableList2.stream().forEach(System.out::print);

Making Use of New APIs to Improve Your Code

[154]

If we run the previous code, the output will be as follows:

We also included a null element to demonstrate how the existing implementation
treats them, because, by contrast, the new factories of immutable collections do
not allow null to be included. By the way, they do not allow duplicate elements
in Set either (while the existing implementation just ignores them), but we will
demonstrate this aspect later while using the new factory methods in code examples.

To be fair, there is a way to create a truly immutable collection of List interfaces
with the existing implementation too. Look at the following code:

List<String> immutableList1 =
 Collections.unmodifiableList(new ArrayList<>() {{
 add("immutableList1: Life");
 add(" is");
 add(" good! ");
 add(null);
 add("\n\n");
 }});
//immutableList1.set(2, " sad."); //throws exception
//immutableList1.add("Well...\n\n"); //throws exception
immutableList1.stream().forEach(System.out::print);

Another way to create an immutable list is as follows:

List<String> immutableList2 =
 Collections.unmodifiableList(Stream
 .of("immutableList2: Life"," is"," good! ",null,"\n\n")
 .collect(Collectors.toList()));
//immutableList2.set(2, " sad."); //throws exception
//immutableList2.add("Well...\n\n"); //throws exception
immutableList2.stream().forEach(System.out::print);

The following is a variation of the earlier code:

List<String> immutableList3 =
 Stream.of("immutableList3: Life",
 " is"," good! ",null,"\n\n")
 .collect(Collectors.collectingAndThen(Collectors.toList(),
 Collections::unmodifiableList));

Lesson 5

[155]

//immutableList3.set(2, " sad."); //throws exception
//immutableList3.add("Well...\n\n"); //throws exception
immutableList3.stream().forEach(System.out::print);

If we run the previous three examples, we will see the following output:

Note that although we cannot modify the content of these lists, we can put null
in them.

The situation with Set is quite similar to what we have seen with the lists earlier.
Here is the code that shows how an unmodifiable collection of Set interfaces can be
modified:

Set<String> set = new HashSet<>();
set.add("unmodifiableSet1: Life");
set.add(" is");
set.add(" good! ");
set.add(null);
Set<String> unmodifiableSet1 =
 Collections.unmodifiableSet(set);
//unmodifiableSet1.remove(" good! "); //throws exception
//unmodifiableSet1.add("...Well..."); //throws exception
unmodifiableSet1.stream().forEach(System.out::print);
System.out.println("\n");

set.remove(" good! ");
set.add("...Well...");
unmodifiableSet1.stream().forEach(System.out::print);
System.out.println("\n");

The resulting collection of Set interfaces can be modified even if we convert the
original collection from an array to a list and then to a set, as follows:

Set<String> set2 =
 new HashSet<>(Arrays.asList("unmodifiableSet2: Life",
 " is", " good! ", null));
Set<String> unmodifiableSet2 =
 Collections.unmodifiableSet(set2);
//unmodifiableSet2.remove(" good! "); //throws exception
//unmodifiableSet2.add("...Well..."); //throws exception

Making Use of New APIs to Improve Your Code

[156]

unmodifiableSet2.stream().forEach(System.out::print);
System.out.println("\n");

set2.remove(" good! ");
set2.add("...Well...");
unmodifiableSet2.stream().forEach(System.out::print);
System.out.println("\n");

Here is the output of running the previous two examples:

If you have not worked with sets in Java 9, you may be surprised to see the
unusually messed up order of the set elements in the output. In fact, it is another
new feature of set and maps introduced in JDK 9. In the past, Set and Map
implementations did not guarantee to preserve the elements' order. But more often
than not, the order was preserved and some programmers wrote code that relied on
it, thus introducing an annoyingly inconsistent and not easily reproducible defect
into an application. The new Set and Map implementations change the order more
often, if not at every new run of the code. This way, it exposes potential defects early
in development and decreases the chance of its propagation into production.

Similar to the lists, we can create immutable sets even without using Java 9's new
immutable set factory. One way to do it is as follows:

Set<String> immutableSet1 =
 Collections.unmodifiableSet(new HashSet<>() {{
 add("immutableSet1: Life");
 add(" is");
 add(" good! ");
 add(null);
 }});
//immutableSet1.remove(" good! "); //throws exception
//immutableSet1.add("...Well..."); //throws exception
immutableSet1.stream().forEach(System.out::print);
System.out.println("\n");

Lesson 5

[157]

Also, as in the case with lists, here is another way to do it:

Set<String> immutableSet2 =
 Collections.unmodifiableSet(Stream
 .of("immutableSet2: Life"," is"," good! ", null)
 .collect(Collectors.toSet()));
//immutableSet2.remove(" good!"); //throws exception
//immutableSet2.add("...Well..."); //throws exception
immutableSet2.stream().forEach(System.out::print);
System.out.println("\n");

Another variant of the previous code is as follows:

Set<String> immutableSet3 =
 Stream.of("immutableSet3: Life"," is"," good! ", null)
 .collect(Collectors.collectingAndThen(Collectors.toSet(),
 Collections::unmodifiableSet));
//immutableList5.set(2, "sad."); //throws exception
//immutableList5.add("Well..."); //throws exception
immutableSet3.stream().forEach(System.out::print);
System.out.println("\n");

If we run all three examples of creating an immutable collection of iSet interfaces
that we have just introduced, the result would be as follows:

With Map interfaces, we were able to come up with only one way to modify the
unmodifiableMap object:

Map<Integer, String> map = new HashMap<>();
map.put(1, "unmodifiableleMap: Life");
map.put(2, " is");
map.put(3, " good! ");
map.put(4, null);
map.put(5, "\n\n");
Map<Integer, String> unmodifiableleMap =
 Collections.unmodifiableMap(map);
//unmodifiableleMap.put(3, " sad."); //throws exception
//unmodifiableleMap.put(6, "Well..."); //throws exception
unmodifiableleMap.values().stream()

Making Use of New APIs to Improve Your Code

[158]

 .forEach(System.out::print);
map.put(3, " sad. ");
map.put(4, "");
map.put(5, "");
map.put(6, "Well...\n\n");
unmodifiableleMap.values().stream()
 .forEach(System.out::print);

The output of the previous code is as follows:

We found four ways to create an immutable collection of Map interfaces without
using Java 9 enhancements. Here is the first example:

Map<Integer, String> immutableMap1 =
 Collections.unmodifiableMap(new HashMap<>() {{
 put(1, "immutableMap1: Life");
 put(2, " is");
 put(3, " good! ");
 put(4, null);
 put(5, "\n\n");
 }});
//immutableMap1.put(3, " sad. "); //throws exception
//immutableMap1.put(6, "Well..."); //throws exception
immutableMap1.values().stream().forEach(System.out::print);

The second example has a bit of a complication:

String[][] mapping =
 new String[][] {{"1", "immutableMap2: Life"},
 {"2", " is"}, {"3", " good! "},
 {"4", null}, {"5", "\n\n"}};

Map<Integer, String> immutableMap2 =
 Collections.unmodifiableMap(Arrays.stream(mapping)
 .collect(Collectors.toMap(a -> Integer.valueOf(a[0]),
 a -> a[1] == null? "" : a[1])));
immutableMap2.values().stream().forEach(System.out::print);

Lesson 5

[159]

We tried first to use Collectors.toMap(a -> Integer.valueOf(a[0]), a ->
a[1]), but the toMap() method uses the merge() functions which does not allow
null as a value. So, we had to add a check for null and replace it with an empty
String value. This, in effect, brought us to the next version of the previous code
snippet--without a null value in the source array:

String[][] mapping =
 new String[][]{{"1", "immutableMap3: Life"},
 {"2", " is"}, {"3", " good! "}, {"4", "\n\n"}};
Map<Integer, String> immutableMap3 =
 Collections.unmodifiableMap(Arrays.stream(mapping)
 .collect(Collectors.toMap(a -> Integer.valueOf(a[0]),
a -> a[1])));
//immutableMap3.put(3, " sad."); //throws Exception
//immutableMap3.put(6, "Well..."); //throws exception
immutableMap3.values().stream().forEach(System.out::print);

A variant of the previous code is as follows:

mapping[0][1] = "immutableMap4: Life";
Map<Integer, String> immutableMap4 = Arrays.stream(mapping)
 .collect(Collectors.collectingAndThen(Collectors
 .toMap(a -> Integer.valueOf(a[0]), a -> a[1]),
 Collections::unmodifiableMap));
//immutableMap4.put(3, " sad."); //throws exception
//immutableMap4.put(6, "Well..."); //throws exception
immutableMap4.values().stream().forEach(System.out::print);

After we run all the four last examples, the output is as follows:

With that revision of the existing collections implementations, we can now discuss
and appreciate the new factory methods of collections in Java 9.

Making Use of New APIs to Improve Your Code

[160]

The New Factory Methods in Action
After revisiting the existing methods of collection creation, we can now review and
enjoy the related API introduced in Java 9. As in a previous section, we start with the
List interface. Here is how simple and consistent the immutable list creation can be
using the new List.of() factory method:

List<String> immutableList =
 List.of("immutableList: Life",
 " is", " is", " good!\n\n"); //, null);
//immutableList.set(2, "sad."); //throws exception
//immutableList.add("Well..."); //throws exception
immutableList.stream().forEach(System.out::print);

As you can see from the previous code comments, the new factory method does not
allow including null as the list value.

The immutableSet creation looks similar to this:

Set<String> immutableSet =
 Set.of("immutableSet: Life", " is", " good!");
 //, " is" , null);
//immutableSet.remove(" good!\n\n"); //throws exception
//immutableSet.add("...Well...\n\n"); //throws exception
immutableSet.stream().forEach(System.out::print);
System.out.println("\n");

As you can see from the previous code comments, the Set.of() factory method does
not allow adding null or a duplicate element when creating an immutable collection
of Set interfaces.

The immutable collection of Map interfaces has similar format too:

Map<Integer, String> immutableMap =
 Map.of(1, "immutableMap: Life", 2, " is", 3, " good!");
 //, 4, null);
//immutableMap.put(3, " sad."); //throws exception
//immutableMap.put(4, "Well..."); //throws exception
immutableMap.values().stream().forEach(System.out::print);
System.out.println("\n");

The Map.of() method does not allow null as a value either. Another feature of the
Map.of() method is that it allows a compile-time check of the element type, which
decreases the chances of a runtime problem.

Lesson 5

[161]

For those who prefer more compact code, here is another way to express the same
functionality:

Map<Integer, String> immutableMap3 =
 Map.ofEntries(entry(1, "immutableMap3: Life"),
 entry(2, " is"), entry(3, " good!"));
immutableMap3.values().stream().forEach(System.out::print);
System.out.println("\n");

And here is the output if we run all the previous examples of the usage of the new
factory methods:

As we mentioned already, the ability to have immutable collections, including empty
ones, is very helpful for functional programming as this feature makes sure that such
a collection cannot be modified as a side effect and cannot introduce unexpected and
difficult to trace defects. The full variety of the new factories methods includes up to
10 explicit entries plus one with an arbitrary number of elements. Here's how it looks
for List interface:

static <E> List<E> of()
static <E> List<E> of(E e1)
static <E> List<E> of(E e1, E e2)
static <E> List<E> of(E e1, E e2, E e3)
static <E> List<E> of(E e1, E e2, E e3, E e4)
static <E> List<E> of(E e1, E e2, E e3, E e4, E e5)
static <E> List<E> of(E e1, E e2, E e3, E e4, E e5, E e6)
static <E> List<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E e7)
static <E> List<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8)
static <E> List<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8,
E e9)
static <E> List<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8,
E e9, E e10)
static <E> List<E> of(E... elements)

Making Use of New APIs to Improve Your Code

[162]

The Set factory methods look similar:

static <E> Set<E> of()
static <E> Set<E> of(E e1)
static <E> Set<E> of(E e1, E e2)
static <E> Set<E> of(E e1, E e2, E e3)
static <E> Set<E> of(E e1, E e2, E e3, E e4)
static <E> Set<E> of(E e1, E e2, E e3, E e4, E e5)
static <E> Set<E> of(E e1, E e2, E e3, E e4, E e5, E e6)
static <E> Set<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E e7)
static <E> Set<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8)
static <E> Set<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8, E
e9)
static <E> Set<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8, E
e9, E e10)
static <E> Set<E> of(E... elements)

Also, the Map factory methods follow suit:

static <K,V> Map<K,V> of()
static <K,V> Map<K,V> of(K k1, V v1)
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2)
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3)
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V
v4)
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V
v4, K k5, V v5
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V
v4, K k5, V v5, K k6, V v6)
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V
v4, K k5, V v5, K k6, V v6, K k7, V v7
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V
v4, K k5, V v5, K k6, V v6, K k7, V v7,
K k8, V v8)
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V
v4, K k5, V v5, K k6, V v6, K k7, V v7,
K k8, V v8, K k9, V v9)
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V
v4, K k5, V v5, K k6, V v6, K k7, V v7,
K k8, V v8, K k9, V v9, K k10, V v10)
static <K,V> Map<K,V> ofEntries(Map.Entry<? extends K,? extends V>...
entries

Lesson 5

[163]

The decision not to add new interfaces for immutable collections left them
susceptible to causing occasional confusion when programmers assumed they could
call add() or put() on them. Such an assumption, if not tested, will cause a runtime
error that throws an UnsupportedOperationException. Despite this potential
pitfall, the new factory methods for immutable collection creation are very useful
additions to Java.

CompletableFuture in Support of
Asynchronous Processing
The java.util.concurrent.CompletableFuture<T> class was first introduced in
Java 8. It is the next level of asynchronous call control over java.util.concurrent.
Future<T> interface. It actually implements Future, as well as java.util.
concurrent.CompletionStage<T>. In Java 9, CompletableFuture was enhanced
by adding new factory methods, support for delays and timeouts, and improved
subclassing--we will discuss these features in more details in the sections to follow.
But first, let's have an overview of the CompletableFuture API.

The CompletableFuture API Overview
The CompletableFuture API consists of more than 70 methods, 38 of which
are implementations of the CompletionStage interface, and five are the
implementations of Future. Because the CompletableFutureclass implements
the Future interface, it can be treated as Future and will not break the existing
functionality based on the Future API.

So, the bulk of the API comes from CompletionStage. Most of the methods
return CompletableFuture (in the CompletionStage interface, they return
CompletionStage, but they are converted to CompletableFuturewhen implemented
in CompletableFuture class), which means that they allow chaining the operations
similar to how the Stream methods do when only one element goes through a
pipe. Each method has a signature that accepts a function. Some methods accept
Function<T,U>, which is going to be applied to the passed-in value T and return the
result U. Other methods accept Consumer<T>, which takes the passed-in value and
returns void. Yet other methods accept Runnable, which does not take any input and
returns void. Here is one group of these methods:

thenRun(Runnable action)
thenApply(Function<T,U> fn)
thenAccept(Consumer<T> action)

Making Use of New APIs to Improve Your Code

[164]

They all return CompletableFuture, which carries the result of the function or
void (in the case of Runnableand Consumer). Each of them has two companion
methods that perform the same function asynchronously. For example, let's take
the thenRun(Runnable action) method. The following are its companions:

•	 The thenRunAsync(Runnable action) method, which runs the action in
another thread from the default ForkJoinPool.commonPool() pool

•	 The thenRun(Runnable action, Executor executor) method, which
runs the action in another thread from the pool passed in as the parameter
executor

With that, we have covered nine methods of the CompletionStage interface.

Another group of methods consists of the following:

thenCompose(Function<T,CompletionStage<U>> fn)
applyToEither(CompletionStage other, Function fn)
acceptEither(CompletionStage other, Consumer action)
runAfterBoth(CompletionStage other, Runnable action)
runAfterEither(CompletionStage other, Runnable action)
thenCombine(CompletionStage<U> other, BiFunction<T,U,V> fn)
thenAcceptBoth(CompletionStage other, BiConsumer<T,U> action)

These methods execute the passed in action after one or both the
CompletableFuture (or CompletionStage) objects produce a result that is used
as an input to the action. By both, we mean the CompletableFuture that provides
the method and the one that is passed in as a parameter of the method. From the
name of these methods, you can quite reliably guess what their intent is. We will
demonstrate some of them in the following examples. Each of these seven methods
has two companions for asynchronous processing, too. This means that we have
already described 30 (out of 38) methods of the CompletionStage interface.

There is a group of two methods that are typically used as terminal operations
because they can handle either the result of the previous method (passed in as T)
or an exception (passed in as Throwable):

handle(BiFunction<T,Throwable,U> fn)
whenComplete(BiConsumer<T,Throwable> action)

We will see an example of the use of these methods later. When an exception is
thrown by a method in the chain, all the rest of the chained methods are skipped
until the first handle() method or whenComplete() is encountered. If neither of
these two methods are present in the chain, then the exception will bubble up as any
other Java exception. These two also have asynchronous companions, which means
that we talked about 36 (out of 38) methods of CompletionStage interface already.

Lesson 5

[165]

There is also a method that handles exceptions only (similar to a catch block in the
traditional programming):

exceptionally(Function<Throwable,T> fn)

This method does not have asynchronous companions, just like the last remaining
method:

toCompletableFuture()

It just returns a CompletableFuture object with the same properties as this stage.
With that, we have described all 38 methods of the CompletionStage interface.

There are also some 30 methods in the CompletableFuture class that do not belong
to any of the implemented interfaces. Some of them return the CompletableFuture
object after asynchronously executing the provided function:

runAsync(Runnable runnable)
runAsync(Runnable runnable, Executor executor)
supplyAsync(Supplier<U> supplier)
supplyAsync(Supplier<U> supplier, Executor executor)

Others execute several objects of CompletableFuture in parallel:

allOf(CompletableFuture<?>... cfs)
anyOf(CompletableFuture<?>... cfs)

There is also a group of the methods that generate completed futures, so the get()
method on the returned CompletableFuture object will not block any more:

complete(T value)
completedStage(U value)
completedFuture(U value)
failedStage(Throwable ex)
failedFuture(Throwable ex)
completeAsync(Supplier<T> supplier)
completeExceptionally(Throwable ex)
completeAsync(Supplier<T> supplier, Executor executor)
completeOnTimeout(T value, long timeout, TimeUnit unit)

The rest of the methods perform various other functions that can be helpful:

join()
defaultExecutor()
newIncompleteFuture()
getNow(T valueIfAbsent)
getNumberOfDependents()
minimalCompletionStage()

Making Use of New APIs to Improve Your Code

[166]

isCompletedExceptionally()
obtrudeValue(T value)
obtrudeException(Throwable ex)
orTimeout(long timeout, TimeUnit unit)
delayedExecutor(long delay, TimeUnit unit)

Refer to the official Oracle documentation, which describes these and other methods
of the CompletableFuture API at http://download.java.net/java/jdk9/docs/
api/index.html?java/util/concurrent/CompletableFuture.html.

The CompletableFuture API Enhancements
in Java 9
Java 9 introduces several enhancements to CompletableFuture:

•	 The CompletionStage<U> failedStage(Throwable ex) factory method
returns the CompletionStage object completed with the given exception

•	 The CompletableFuture<U> failedFuture(Throwable ex) factory
method returns the CompletableFutureobject completed with the
given exception

•	 The new CompletionStage<U> completedStage(U value) factory method
returns the CompletionStage object completed with the given U value

•	 CompletableFuture<T> completeOnTimeout(T value, long timeout,
TimeUnit unit) completes CompletableFuture task with the given T value
if not otherwise completed before the given timeout

•	 CompletableFuture<T> orTimeout(long timeout, TimeUnit
unit) completes CompletableFuture with java.util.concurrent.
TimeoutException if not completed before the given timeout

•	 It is possible now to override the defaultExecutor() method to support
another default executor

•	 A new method, newIncompleteFuture(), makes it easier to subclass the
CompletableFuture class

The Problem and the Solution using Future
To demonstrate and appreciate the power of CompletableFuture, let's start with a
problem implemented using just Future and then see how much more effectively
it can be solved with CompletableFuture. Let's imagine that we are tasked with
modeling a building that consists of four stages:

•	 Collecting materials for the foundation, walls, and roof
•	 Installing the foundation

Lesson 5

[167]

•	 Raising up the walls
•	 Constructing and finishing the roof

In the traditional sequential programming for the single thread, the model would
look like this:

StopWatch stopWatch = new StopWatch();
Stage failedStage;
String SUCCESS = "Success";

stopWatch.start();
String result11 = doStage(Stage.FoundationMaterials);
String result12 = doStage(Stage.Foundation, result11);
String result21 = doStage(Stage.WallsMaterials);
String result22 = doStage(Stage.Walls,
 getResult(result21, result12));
String result31 = doStage(Stage.RoofMaterials);
String result32 = doStage(Stage.Roof,
 getResult(result31, result22));
System.out.println("House was" +
 (isSuccess(result32)?"":" not") + " built in "
 + stopWatch.getTime()/1000. + " sec");

Here, Stage is an enumeration:

enum Stage {
 FoundationMaterials,
 WallsMaterials,
 RoofMaterials,
 Foundation,
 Walls,
 Roof
}

The doStage() method has two overloaded versions. Here is the first one:

String doStage(Stage stage) {
 String result = SUCCESS;
 boolean failed = stage.equals(failedStage);
 if (failed) {
 sleepSec(2);
 result = stage + " were not collected";
 System.out.println(result);
 } else {
 sleepSec(1);

Making Use of New APIs to Improve Your Code

[168]

 System.out.println(stage + " are ready");
 }
 return result;
}

The second version is as follows:

String doStage(Stage stage, String previousStageResult) {
 String result = SUCCESS;
 boolean failed = stage.equals(failedStage);
 if (isSuccess(previousStageResult)) {
 if (failed) {
 sleepSec(2);
 result = stage + " stage was not completed";
 System.out.println(result);
 } else {
 sleepSec(1);
 System.out.println(stage + " stage is completed");
 }
 } else {
 result = stage + " stage was not started because: "
 + previousStageResult;
 System.out.println(result);
 }
 return result;
}

The sleepSec(), isSuccess(), and getResult() methods look like this:

private static void sleepSec(int sec) {
 try {
 TimeUnit.SECONDS.sleep(sec);
 } catch (InterruptedException e) {
 }
}
boolean isSuccess(String result) {
 return SUCCESS.equals(result);
}
String getResult(String result1, String result2) {
 if (isSuccess(result1)) {
 if (isSuccess(result2)) {
 return SUCCESS;
 } else {
 return result2;
 }

Lesson 5

[169]

 } else {
 return result1;
 }
}

The successful house construction (if we run the previous code without assigning
any value to the failedStage variable) looks like this:

If we set failedStage=Stage.Walls, the result will be as follows:

Using Future, we can shorten the time it takes to build the house:

ExecutorService execService = Executors.newCachedThreadPool();
Callable<String> t11 =
 () -> doStage(Stage.FoundationMaterials);
Future<String> f11 = execService.submit(t11);
List<Future<String>> futures = new ArrayList<>();
futures.add(f11);

Callable<String> t21 = () -> doStage(Stage.WallsMaterials);
Future<String> f21 = execService.submit(t21);
futures.add(f21);

Callable<String> t31 = () -> doStage(Stage.RoofMaterials);
Future<String> f31 = execService.submit(t31);
futures.add(f31);

String result1 = getSuccessOrFirstFailure(futures);

Making Use of New APIs to Improve Your Code

[170]

String result2 = doStage(Stage.Foundation, result1);
String result3 =
 doStage(Stage.Walls, getResult(result1, result2));
String result4 =
 doStage(Stage.Roof, getResult(result1, result3));

Here, the getSuccessOrFirstFailure() method looks like this:

String getSuccessOrFirstFailure(
 List<Future<String>> futures) {
 String result = "";
 int count = 0;
 try {
 while (count < futures.size()) {
 for (Future<String> future : futures) {
 if (future.isDone()) {
 result = getResult(future);
 if (!isSuccess(result)) {
 break;
 }
 count++;
 } else {
 sleepSec(1);
 }
 }
 if (!isSuccess(result)) {
 break;
 }
 }
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 return result;
}

The successful building of the house now is faster because material collection
happens in parallel:

Lesson 5

[171]

By taking advantage of Java functional programming, we can change the second half
of our implementation to the following:

Supplier<String> supplier1 =
 () -> doStage(Stage.Foundation, result1);
Supplier<String> supplier2 =
 () -> getResult(result1, supplier1.get());
Supplier<String> supplier3 =
 () -> doStage(Stage.Walls, supplier2.get());
Supplier<String> supplier4 =
 () -> getResult(result1, supplier3.get());
Supplier<String> supplier5 =
 () -> doStage(Stage.Roof, supplier4.get());
System.out.println("House was" +
 (isSuccess(supplier5.get()) ? "" : " not") +
 " built in " + stopWatch.getTime() / 1000. + " sec");

The chain of the previous nested functions is triggered by supplier5.get() in the
last line. It blocks until all the functions are completed sequentially, so there is no
performance improvement:

And that is as far as we can go with Future. Now let's see if we can improve the
previous code using CompletableFuture.

The Solution with CompletableFuture
Here's how we can chain the same operations using the CompletableFuture API:

stopWatch.start();
ExecutorService pool = Executors.newCachedThreadPool();
CompletableFuture<String> cf1 =
 CompletableFuture.supplyAsync(() ->
 doStageEx(Stage.FoundationMaterials), pool);
CompletableFuture<String> cf2 =
 CompletableFuture.supplyAsync(() ->
 doStageEx(Stage.WallsMaterials), pool);

Making Use of New APIs to Improve Your Code

[172]

CompletableFuture<String> cf3 =
 CompletableFuture.supplyAsync(() ->
 doStageEx(Stage.RoofMaterials), pool);
CompletableFuture.allOf(cf1, cf2, cf3)
 .thenComposeAsync(result ->
 CompletableFuture.supplyAsync(() -> SUCCESS), pool)
 .thenApplyAsync(result ->
 doStage(Stage.Foundation, result), pool)
 .thenApplyAsync(result ->
 doStage(Stage.Walls, result), pool)
 .thenApplyAsync(result ->
 doStage(Stage.Roof, result), pool)
 .handleAsync((result, ex) -> {
 System.out.println("House was" +
 (isSuccess(result) ? "" : " not") + " built in "
 + stopWatch.getTime() / 1000. + " sec");
 if (result == null) {
 System.out.println("Because: " + ex.getMessage());
 return ex.getMessage();
 } else {
 return result;
 }
 }, pool);
System.out.println("Out!!!!!");

To make it work, we had to change the implementation of one of the doStage()
to doStageEx() methods:

String doStageEx(Stage stage) {
 boolean failed = stage.equals(failedStage);
 if (failed) {
 sleepSec(2);
 throw new RuntimeException(stage +
 " stage was not completed");
 } else {
 sleepSec(1);
 System.out.println(stage + " stage is completed");
 }
 return SUCCESS;
}

Lesson 5

[173]

The reason we do this is because the CompletableFuture.allOf() method returns
CompletableFuture<Void>, while we need to communicate to the further stages the
result of the first three stages of collecting materials. The result looks now as follows:

There are two points to note:

•	 We used a dedicated pool of threads to run all the operations
asynchronously; if there were several CPUs or some operations use IO while
others do not, the result could be even better

•	 The last line of the code snippet (Out!!!!!) came out first, which means that
all the chains of the operations related to building the house were executed
asynchronously

Now, let's see how the system behaves if one of the first stages of collecting materials
fails (failedStage = Stage.WallsMaterials):

The exception was thrown by the WallsMaterials stage and caught by the
handleAsync() method, as expected. And, again, the processing was done
asynchronously after the Out!!!!! message was printed.

Other Useful Features of CompletableFuture
One of the great advantages of CompletableFuture is that it can be passed around
as an object and used several times to start different chains of operations. To
demonstrate this capability, let's create several new operations:

String getData() {
 System.out.println("Getting data from some source...");
 sleepSec(1);
 return "Some input";

Making Use of New APIs to Improve Your Code

[174]

}
SomeClass doSomething(String input) {
 System.out.println(
 "Doing something and returning SomeClass object...");
 sleepSec(1);
 return new SomeClass();
}
AnotherClass doMore(SomeClass input) {
 System.out.println("Doing more of something and " +
 "returning AnotherClass object...");
 sleepSec(1);
 return new AnotherClass();
}
YetAnotherClass doSomethingElse(AnotherClass input) {
 System.out.println("Doing something else and " +
 "returning YetAnotherClass object...");
 sleepSec(1);
 return new YetAnotherClass();
}
int doFinalProcessing(YetAnotherClass input) {
 System.out.println("Processing and finally " +
 "returning result...");
 sleepSec(1);
 return 42;
}
AnotherType doSomethingAlternative(SomeClass input) {
 System.out.println("Doing something alternative " +
 "and returning AnotherType object...");
 sleepSec(1);
 return new AnotherType();
}
YetAnotherType doMoreAltProcessing(AnotherType input) {
 System.out.println("Doing more alternative and " +
 "returning YetAnotherType object...");
 sleepSec(1);
 return new YetAnotherType();
}
int doFinalAltProcessing(YetAnotherType input) {
 System.out.println("Alternative processing and " +
 "finally returning result...");
 sleepSec(1);
 return 43;
}

Lesson 5

[175]

The results of these operations are going to be handled by the myHandler() method:

int myHandler(Integer result, Throwable ex) {
 System.out.println("And the answer is " + result);
 if (result == null) {
 System.out.println("Because: " + ex.getMessage());
 return -1;
 } else {
 return result;
 }
}

Note all the different types returned by the operations. Now we can build a chain
that forks in two at some point:

ExecutorService pool = Executors.newCachedThreadPool();
CompletableFuture<SomeClass> completableFuture =
 CompletableFuture.supplyAsync(() -> getData(), pool)
 .thenApplyAsync(result -> doSomething(result), pool);

completableFuture
 .thenApplyAsync(result -> doMore(result), pool)
 .thenApplyAsync(result -> doSomethingElse(result), pool)
 .thenApplyAsync(result -> doFinalProcessing(result), pool)
 .handleAsync((result, ex) -> myHandler(result, ex), pool);

completableFuture
 .thenApplyAsync(result -> doSomethingAlternative(result), pool)
 .thenApplyAsync(result -> doMoreAltProcessing(result), pool)
 .thenApplyAsync(result -> doFinalAltProcessing(result), pool)
 .handleAsync((result, ex) -> myHandler(result, ex), pool);

System.out.println("Out!!!!!");

The result of this example is as follows:

Making Use of New APIs to Improve Your Code

[176]

The CompletableFuture API provides a very rich and well-thought-through API
that supports, among other things, the latest trends in reactive microservices because
it allows processing data fully asynchronously as it comes in, splitting the flow if
needed, and scaling to accommodate the increase of the input. We encourage you
to study the examples (many more are provided in the code that accompanies this
book) and look at the API at http://download.java.net/java/jdk9/docs/api/
index.html?java/util/concurrent/CompletableFuture.html.

Stream API Improvements
Most of the new Stream API features in Java 9 have already been demonstrated in
the section that describes Stream filtering. To remind you, here are the examples
we have demonstrated based on the Stream API improvements in JDK 9:

long c1 = senators.stream()
 .flatMap(s -> Stream.ofNullable(s.getParty()
 == "Party1" ? s : null))
 .count();
System.out.println("OfNullable: Members of Party1: " + c1);

long c2 = senators.stream()
 .map(s -> s.getParty() == "Party2" ? Optional.of(s)
 : Optional.empty())
 .flatMap(Optional::stream)
 .count();
System.out.println("Optional.stream(): Members of Party2: "
 + c2);

senators.stream().limit(5)
 .takeWhile(s -> Senate.timesVotedYes(s) < 5)
 .forEach(s -> System.out.println("takeWhile(<5): "
 + s + ": " + Senate.timesVotedYes(s)));

senators.stream().limit(5)
 .dropWhile(s -> Senate.timesVotedYes(s) < 5)
 .forEach(s -> System.out.println("dropWhile(<5): "
 + s + ": " + Senate.timesVotedYes(s)));

Lesson 5

[177]

The only one we have not mentioned yet is the new overloaded iterate() method:

static <T> Stream<T> iterate(T seed, UnaryOperator<T> f)

An example of its usage is as follows:

String result =

 IntStream.iterate(1, i -> i + 2)

 .limit(5)

 .mapToObj(i -> String.valueOf(i))

 .collect(Collectors.joining(", "));

System.out.println("Iterate: " + result);

We had to add limit(5) because this version of the iterate() method creates an
unlimited stream of integer numbers. The result of the previous code is as follows:

In Java 9, an overloaded iterate() method was added:

static <T> Stream<T> iterate(T seed,
 Predicate<? super T> hasNext, UnaryOperator<T> next)

As you see, it has now a Predicate functional interface as a parameter that allows
limiting the stream as needed. For example, the following code produces exactly
the same result as the previous example with limit(5):

String result =
 IntStream.iterate(1, i -> i < 11, i -> i + 2)
 .mapToObj(i -> String.valueOf(i))
 .collect(Collectors.joining(", "));
System.out.println("Iterate: " + result);

Note that the type of the stream element does not need to be an integer. It can be any
type produced by the source. So, the new iterate() method can be used to provide
criteria for the termination of the stream of any type of data.

Making Use of New APIs to Improve Your Code

[178]

Summary
In this lesson, we covered a lot of ground in the area of the new features introduced
with Java 9. First, we looked at many ways to stream filtering, starting with the basic
filter() method and ending up using the Stream API additions of JDK 9. Then,
you learned a better way to analyze the stack trace using the new StackWalker class.
The discussion was illustrated by specific examples that help you to see the real
working code.

We used the same approach while presenting new convenient factory methods for
creating immutable collections and new capabilities for asynchronous processing
that came with the CompletableFuture class and its enhancements in JDK 9.

We ended this lesson by enumerating the improvements to the Stream API--those
we have demonstrated in the filtering code examples and the new iterate()
method.

With this, we come to the end of this book. You can now try and apply the tips and
techniques you have learned to your project or, if it is not suitable for that, to build
your own Java project for high performance. While doing that, try to solve real
problems. That will force you to learn new skills and frameworks instead of just
applying the knowledge you have already, although the latter is helpful too--it
keeps your knowledge fresh and practical.

The best way to learn is to do it yourself. As Java continues to improve and expand,
watch out for new editions of this and similar books by Packt.

Assessments
1.	 The _______ interface was introduced in Java 8 to emit elements and supports

a variety of operations that perform computations based on stream elements.
2.	 Which of the following factory methods of the StackWalker class creates

a StackWalker class instance with the given option of specifying the stack
frame information that it can access?

1.	 getInstance()

2.	 getInstance(StackWalker.Option option)

3.	 getInstance(Set<StackWalker.Option> options)

4.	 getInstance(Set<StackWalker.Option> options, int
estimatedDepth)

Lesson 5

[179]

3.	 State whether True or False: The CompletableFuture API consists of many
methods which are implementations of the CompletionStage interface,
and are the implementations of Future.

4.	 Which among the following methods is used when a type of filtering is
required to skip all the duplicate elements in a stream and select only
unique element.

1.	 distinct()

2.	 unique()

3.	 selectall()

4.	 filtertype()

5.	 State whether True or False: One of the great advantages of
CompletableFuture is that it can be passed around as an object
and used several times to start different chains of operations.

[181]

Assessment Answers

Lesson 1: Learning Java 9 Underlying
Performance Improvements

Question Number Answer
1 tool
2 1
3 True
4 3
5 3

Lesson 2: Tools for Higher Productivity
and Faster Application

Question Number Answer
1 Ahead-of-Time
2 1
3 False
4 1
5 3

Assessment Answers

[182]

Lesson 3: Multithreading and Reactive
Programming

Question Number Answer
1 calculateAverageSqrt()

2 3
3 False
4 2
5 RxJava

Lesson 4: Microservices
Question Number Answer

1 Vertx
2 4
3 False
4 1,2
5 True

Lesson 5: Making Use of New APIs to
Improve Your Code

Question Number Answer
1 java.util.streams.Stream

2 2
3 True
4 1
5 True

	Cover
	Copyright
	Credits
	Table of Contents
	Preface
	Lesson 1: Learning Java 9 Underlying Performance Improvements
	Introducing the New Features of Java 9
	Modular Development and Its Impact
	Quick Introduction to Modules

	String Operations Performance
	Compact String
	The World of Heap

	Why Bother Compressing Strings?
	What Did They Do?
	What is the Escape Route?
	What is the Performance Gain?

	Indify String Concatenation
	Invokedynamic

	Storing Interned Strings in CDS Archives
	Concurrency Performance
	Compiler Improvements
	Tiered Attribution
	Ahead-of-Time Compilation

	Security Manager Improvements
	Graphics Rasterizers
	Summary
	Assessments

	Lesson 2: Tools for Higher Productivity and Faster Application
	The JShell Tool Usage
	Creating a JShell Session and Setting Context
	JShell Commands

	Ahead-of-Time (AOT)
	Static versus Dynamic Compilation
	The AOT Commands and Procedures

	Summary
	Assessments

	Lesson 3: Multithreading and Reactive Programming
	Prerequisites
	Thread Pools
	Monitoring Threads
	Sizing Thread Pool Executors
	Thread Synchronization
	Tuning JVM
	Reactive Programming
	Summary
	Assessments

	Lesson 4: Microservices
	Why Microservices?
	Building Microservices
	Container-Less Deployment
	Self-Contained Microservices
	In-Container Deployment
	Summary
	Assessments

	Lesson 5: Making Use of New APIs to Improve Your Code
	Filtering Streams
	Basic Filtering
	Using Other Stream Operations for Filtering

	Stack-Walking APIs
	Stack Analysis before Java 9
	New Better Way to Walk the Stack

	Convenience Factory Methods for Collections
	Why New Factory Methods?
	The New Factory Methods in Action

	CompletableFuture in Support of Asynchronous Processing
	The CompletableFuture API Overview
	The CompletableFuture API Enhancements
in Java 9
	The Problem and the Solution using Future
	The Solution with CompletableFuture
	Other Useful Features of CompletableFuture

	Stream API Improvements
	Summary
	Assessments

	Appendix: Assessment Answers

