

Java: High-Performance Apps
with Java 9

Optimize the powerful techniques of Java 9 to boost
your application's performance

Mayur Ramgir

Nick Samoylov

BIRMINGHAM - MUMBAI

Java: High-Performance Apps with Java 9

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2018

Production reference: 1080318

Published by Packt Publishing Ltd.
Livery Place, 35 Livery Street
Birmingham B3 2PB, UK.

ISBN: 978-1-78913-051-5

www.packtpub.com

Credits

This book is a blend of text and quizzes, all packaged up keeping your journey in
mind. It includes content from the following Packt product:

•	 Java 9 High Performance by Mayur Ramgir and Nick Samoylov

Meet Your Experts
We have the best works of the following esteemed authors to ensure that your
learning journey is smooth:

Mayur Ramgir has more than 16 years of experience in the software industry,
working	at	various	levels.	He	is	a	Sun	certified	Java	programmer	and	Oracle	certified	
SQL database expert. He completed an MS in computational science and engineering
at Georgia Tech, USA (rank 7th in the world for computer science), and an M.Sc.
in multimedia application and virtual environments at University of Sussex, UK.
He has also attended various universities for other degrees and books, such as MIT
for	applied	software	security,	and	University	of	Oxford	for	system	and	software	
security.	He	is	the	CEO	of	a	software	company,	Zonopact,	Inc.	headquartered	in	
Boston, USA, which specializes in bringing innovative applications based on AI,
robotics,	big	data,	and	more.	He	has	single-handedly	developed	Zonopact's	flagship	
product, Clintra (B2B-integrated AI-assisted business management software). He is
also	the	inventor	of	two	patent	pending	technologies,	ZPOD	(an	automated	cloud-
based	medical	kiosk	system)	and	ZPIC	(an	AI-enabled	robotic	in-car	camera	system).

Nick Samoylov is graduated as an engineer-physicist from Moscow Institute of
Physics and Technologies and has even worked as a theoretical physicist. He has
learned	programming	as	a	tool	for	testing	his	mathematical	models	using	FORTRAN	
and C++. After the demise of the USSR, Nick created and successfully ran a software
company, but was forced to close it under the pressure of governmental and criminal
rackets.	Nick	adopted	Java	in	1997	and	used	it	for	his	work	as	a	software	developer-
contractor for a variety of companies, including BEA Systems, Warner Telecom,
and	Boeing.	Nick's	current	projects	are	related	to	machine	learning	and	developing	
a highly scalable system of microservices using non-blocking reactive technologies,
including	Vert.x,	RxJava,	and	RESTful	web	services	on	Linux	deployed	in	a	cloud.

[i]

Table of Contents
Preface v

Lesson 1: Learning Java 9 Underlying Performance
Improvements 1

Introducing the New Features of Java 9 2
Modular Development and Its Impact 2

Quick Introduction to Modules 7
String Operations Performance 10

Compact String 11
The World of Heap 11

Why Bother Compressing Strings? 12
What Did They Do? 12
What is the Escape Route? 13
What is the Performance Gain? 13

Indify String Concatenation 13
Invokedynamic 16

Storing Interned Strings in CDS Archives 18
Concurrency Performance 18
Compiler Improvements 20

Tiered Attribution 20
Ahead-of-Time Compilation 20

Security Manager Improvements 21
Graphics Rasterizers 23
Summary 23
Assessments 24

Table of Contents

[ii]

Lesson 2: Tools for Higher Productivity and Faster Application 25
The JShell Tool Usage 25

Creating a JShell Session and Setting Context 26
JShell Commands 30

Ahead-of-Time (AOT) 40
Static versus Dynamic Compilation 41
The AOT Commands and Procedures 42

Summary 45
Assessments 45

Lesson 3: Multithreading and Reactive Programming 47
Prerequisites 48
Thread Pools 54
Monitoring Threads 62
Sizing Thread Pool Executors 73
Thread Synchronization 75
Tuning JVM 83
Reactive Programming 87
Summary 94
Assessments 95

Lesson 4: Microservices 97
Why Microservices? 98
Building Microservices 101
Container-Less Deployment 124
Self-Contained Microservices 126
In-Container Deployment 127
Summary 129
Assessments 130

Lesson 5: Making Use of New APIs to Improve Your Code 131
Filtering Streams 132

Basic Filtering 132
Using Other Stream Operations for Filtering 137

Table of Contents

[iii]

Stack-Walking APIs 144
Stack Analysis before Java 9 145
New Better Way to Walk the Stack 147

Convenience Factory Methods for Collections 151
Why New Factory Methods? 152
The New Factory Methods in Action 160

CompletableFuture in Support of Asynchronous Processing 163
The CompletableFuture API Overview 163
The CompletableFuture API Enhancements in Java 9 166
The Problem and the Solution using Future 166
The Solution with CompletableFuture 171
Other Useful Features of CompletableFuture 173

Stream API Improvements 176
Summary 178
Assessments 178

Appendix: Assessment Answers 181

Chapter No.

[v]

Preface
This	book	is	about	Java	9	which	is	one	of	the	most	popular	application	development	
languages.	The	latest	released	version	Java	9	comes	with	a	host	of	new	features	
and	new	APIs	with	lots	of	ready	to	use	components	to	build	efficient	and	scalable	
applications.	Streams,	parallel	and	asynchronous	processing,	multithreading,	JSON	
support, reactive programming, and microservices comprise the hallmark of modern
programming	and	are	now	fully	integrated	into	the	JDK.

So,	if	you	want	to	take	you	Java	knowledge	to	another	level	and	want	to	improve	
your	application's	performance,	you	are	in	the	right	path.

What's in It for Me?
Maps	are	vital	for	your	journey,	especially	when	you're	holidaying	in	another	
continent.	When	it	comes	to	learning,	a	roadmap	helps	you	in	giving	a	definitive	
path	for	progressing	towards	the	goal.	So,	here	you're	presented	with	a	roadmap	
before you begin your journey.

This book is meticulously designed and developed in order to empower you with all
the	right	and	relevant	information	on	Java.	We've	created	this	Learning	Path	for	you	
that	consists	of	five	lessons:

Lesson 1, Learning Java 9 Underlying Performance Improvements, covers the exciting
features	of	Java	9	that	will	improve	your	application's	performance.	It	focuses	on	
modular	development	and	its	impact	on	an	application's	performance.

Lesson 2, Tools for Higher Productivity and Faster Application, describes two new
tools	added	in	Java	9--JShell	and	Ahead-of-Time	(AOT)	compiler--that	boost	your	
productivity and also improve the overall performance of your applications.

Lesson 3, Multithreading and Reactive Programming,	shows	how	to	monitor	Java	
applications programmatically using command-line tools. You will also explore how
to	improve	the	application	performance	via	multithreading	and	how	to	tune	the	JVM	
itself after learning about the bottlenecks through monitoring.

Lesson 4, Microservices, describes the solution many leaders of the industry have
adopted	while	addressing	flexible	scaling	under	the	load.	It	talks	about	adding	
more workers by splitting the application into several microservices, each deployed
independently and each using multiple threads and reactive programming for better
performance, response, scalability, and fault-tolerance.

Preface

[vi]

Lesson 5, Making Use of New APIs to Improve Your Code, describes improvements
in	the	programming	tools,	including	stream	filters,	a	stack-walking	API,	the	new	
convenient static factory methods for creating immutable collections, a new powerful
CompletableFuture	class	in	support	of	asynchronous	processing,	and	the	JDK	9	
stream API improvements.

What Will I Get from This Book?
•	 Familiarize with modular development and its impact on performance
•	 Learn various string-related performance improvements, including compact

string and indify string concatenation
•	 Explore various underlying compiler improvements, such as tiered

attribution	and	Ahead-of-Time	(AOT)	compilation
•	 Learn security manager improvements
•	 Understand enhancements in graphics rasterizers
•	 Use of command-line tools to speed up application development
•	 Learn how to implement multithreading and reactive programming
•	 Build	microservices	in	Java	9
•	 Implement APIs to improve application code

Prerequisites
This	book	is	for	Java	developers	who	would	like	to	build	reliable	and	
high-performance applications. Some of the prerequisites that is required
before you begin this book are:

•	 Prior	Java	programming	knowledge	is	assumed

[1]

Learning Java 9 Underlying
Performance Improvements

Just	when	you	think	you	have	a	handle	on	lambdas	and	all	the	performance-related	
features	of	Java	8,	along	comes	Java	9.	What	follows	are	several	of	the	capabilities	
that	made	it	into	Java	9	that	you	can	use	to	help	improve	the	performance	of	your	
applications. These go beyond byte-level changes like for string storage or garbage
collection changes, which you have little control over. Also, ignore implementation
changes	like	those	for	faster	object	locking,	since	you	don't	have	to	do	anything	
differently and you automatically get these improvements. Instead, there are new
library features and completely new command-line tools that will help you create
apps quickly.

In this lesson, we will cover the following topics:

•	 Modular development and its impact on performance
•	 Various string-related performance improvements, including compact string

and indify string concatenation
•	 Advancement in concurrency
•	 Various underlying compiler improvements, such as tiered attribution and

Ahead-of-Time (AOT) compilation
•	 Security manager improvements
•	 Enhancements in graphics rasterizers

Learning Java 9 Underlying Performance Improvements

[2]

Introducing the New Features of Java 9
In this lesson, we will explore many under the cover improvements to performance
that you automatically get by just running your application in the new environment.
Internally, string changes also drastically reduce memory footprint requirements
for	times	when	you	don't	need	full-scale	Unicode	support	in	your	character	strings.	
If	most	of	your	strings	can	be	encoded	either	as	ISO-8859-1	or	Latin-1	(1	byte	per	
character),	they'll	be	stored	much	more	efficiently	in	Java	9.	So,	let's	dive	deep	into	
the core libraries and learn the underlying performance improvements.

Modular Development and Its Impact
In software engineering, modularity is an important concept. From the point of
view of performance as well as maintainability, it is important to create autonomous
units called modules. These modules can be tied together to make a complete
system. The modules provides encapsulation where the implementation is hidden
from other modules. Each module can expose distinct APIs that can act as connectors
so that other modules can communicate with it. This type of design is useful as it
promotes loose coupling, helps focus on singular functionality to make it cohesive,
and enables testing it in isolation. It also reduces system complexity and optimizes
application development process. Improving performance of each module helps
improving overall application performance. Hence, modular development is a very
important concept.

I	know	you	may	be	thinking,	wait	a	minute,	isn't	Java	already	modular?	Isn't	the	
object-oriented	nature	of	Java	already	providing	modular	operation?	Well,	object-
oriented certainly imposes uniqueness along with data encapsulation. It only
recommends loose coupling but does not strictly enforce it. In addition, it fails to
provide identity at the object level and also does not have any versioning provision
for	the	interfaces.	Now	you	may	be	asking,	what	about	JAR	files?	Aren't	they	
modular?	Well,	although	JARs	provide	modularization	to	some	extent,	they	don't	
have the uniqueness that is required for modularization. They do have a provision
to	specify	the	version	number,	but	it	is	rarely	used	and	also	hidden	in	the	JAR's	
manifest	file.

So we need a different design from what we already have. In simple terms, we need
a modular system in which each module can contain more than one package and
offers	robust	encapsulation	compared	to	the	standard	JAR	files.

This	is	what	Java	9's	modular	system	offers.	In	addition	to	this,	it	also	replaces	
the fallible classpath mechanism by declaring dependencies explicitly. These
enhancements improve the overall application performance as developers can now
optimize the individual self-contained unit without affecting the overall system.

Lesson 1

[3]

This also makes the application more scalable and provides high integrity.

Let's	look	at	some	of	the	basics	of	the	module	system	and	how	it	is	tied	together.	
To start off with, you can run the following commands to see how the module
system is structured:

$java --list-modules

Learning Java 9 Underlying Performance Improvements

[4]

If you are interested in a particular module, you can simply add the module name at
the end of the command, as shown in the following command:

$java --list-modules java.base

The earlier command will show all the exports in packages from the base module.
Java	base	is	the	core	of	the	system.

Lesson 1

[5]

This will show all the graphical user interface packages. This will also show
requires which are the dependencies:

$java --list-modules java.desktop

Learning Java 9 Underlying Performance Improvements

[6]

So	far	so	good,	right?	Now	you	may	be	wondering,	I	got	my	modules	developed	
but	how	to	integrate	them	together?	Let's	look	into	that.	Java	9's	modular	system	
comes with a tool called JLink. I know you can guess what I am going to say now.
You are right, it links a set of modules and creates a runtime image. Now imagine
the possibilities it can offer. You can create your own executable system with your
own	custom	modules.	Life	is	going	to	be	a	lot	more	fun	for	you,	I	hope!	Oh,	and	on	
the other hand, you will be able to control the execution and remove unnecessary
dependencies.

Let's	see	how	to	link	modules	together.	Well,	it's	very	simple.	Just	run	the	following	
command:

$jlink --module-path $JAVA_HOME/jmods:mlib --add-modules java.desktop
--output myawesomeimage

This linker command will link all the modules for you and create a runtime image.
You need to provide a module path and then add the module that you want to
generate	a	figure	and	give	a	name.	Isn't	it	simple?

Now,	let's	check	whether	the	previous	command	worked	properly	or	not.	Let's	verify	
the	modules	from	the	figure:

$myawesomeimage/bin/java --list-modules

The output looks like this:

With this, you will now be able to distribute a quick runtime with your application.
It	is	awesome,	isn't	it?	Now	you	can	see	how	we	moved	from	a	somewhat	monolithic	
design to a self-contained cohesive one. Each module contains its own exports and
dependencies	and	JLink	allows	you	to	create	your	own	runtime.	With	this,	we	got	
our modular platform.

Note that the aim of this section is to just introduce you to the modular system. There
is a lot more to explore but that is beyond the scope of this book. In this book, we will
focus on the performance enhancement areas.

Lesson 1

[7]

Quick Introduction to Modules
I am sure that after reading about the modular platform, you must be excited to dive
deep into the module architecture and see how to develop one. Hold your excitement
please, I will soon take you on a journey to the exciting world of modules.

As you must have guessed, every module has a property name and is organized
by packages. Each module acts as a self-contained unit and may have native code,
configurations,	commands,	resources,	and	so	on.	A	module's	details	are	stored	in	
a	file	named	module-info.java, which resides in the root directory of the module
source	code.	In	that	file,	a	module	can	be	defined	as	follows:

module <name>{
}

In	order	to	understand	it	better,	let's	go	through	an	example.	Let's	say,	our	module	
name is PerformanceMonitor. The purpose of this module is to monitor the
application performance. The input connectors will accept method names and the
required parameters for that method. This method will be called from our module to
monitor	the	module's	performance.	The	output	connectors	will	provide	performance	
feedback	for	the	given	module.	Let's	create	a	module-info.java	file	in	the	root	
directory of our performance application and insert the following section:

module com.java9highperformance.PerformanceMonitor{
}

Awesome!	You	got	your	first	module	declaration.	But	wait	a	minute,	it	does	not	
do	anything	yet.	Don't	worry,	we	have	just	created	a	skeleton	for	this.	Let's	put	
some	flesh	on	the	skeleton.	Let's	assume	that	our	module	needs	to	communicate	
with	our	other	(magnificent)	modules,	which	we	have	already	created	and	named--
PerformanceBase, StringMonitor, PrimitiveMonitor, GenericsMonitor, and so
on. In other words, our module has an external dependency. You may be wondering,
how	would	we	define	this	relationship	in	our	module	declaration?	Ok,	be	patient,	
this is what we will see now:

module com.java9highperformance.PerformanceMonitor{
 exports com.java9highperformance.StringMonitor;
 exports com.java9highperformance.PrimitiveMonitor;
 exports com.java9highperformance.GenericsMonitor;
 requires com.java9highperformance.PerformanceBase;
 requires com.java9highperformance.PerformanceStat;
 requires com.java9highperformance.PerformanceIO;
}

Learning Java 9 Underlying Performance Improvements

[8]

Yes, I know you have spotted two clauses, that is, exports and requires. And I am
sure	you	are	curious	to	know	what	they	mean	and	why	we	have	them	there.	We'll	first	
talk about these clauses and what they mean when used in the module declaration:

•	 exports: This clause is used when your module has a dependency on
another module. It denotes that this module exposes only public types
to other modules and none of the internal packages are visible. In our
case, the module com.java9highperformance.PerformanceMonitor
has a dependency on com.java9highperformance.StringMonitor,
com.java9highperformance.PrimitiveMonitor, and com.
java9highperformance.GenericsMonitor. These modules export
their API packages com.java9highperformance.StringMonitor,
com.java9highperformance.PrimitiveMonitor, and com.
java9highperformance.GenericsMonitor, respectively.

•	 requires: This clause denotes that the module depends upon the
declared module at both compile and runtime. In our case, com.
java9highperformance.PerformanceBase, com.java9highperformance.
PerformanceStat, and com.java9highperformance.PerformanceIO
modules are required by our com.java9highperformance.
PerformanceMonitor module. The module system then locates all the
observable modules to resolve all the dependencies recursively. This
transitive closure gives us a module graph which shows a directed edge
between two dependent modules.

Note: Every module is dependent on java.base even without
explicitly	declaring	it.	As	you	already	know,	everything	in	Java	
is an object.

Now	you	know	about	the	modules	and	their	dependencies.	So,	let's	draw	a	
module	representation	to	understand	it	better.	The	following	figure	shows	
the various packages that are dependent on com.java9highperformance.
PerformanceMonitor.

Lesson 1

[9]

Modules at the bottom are exports modules and modules on the right are
requires modules.

Now	let's	explore	a	concept	called	readability relationship. Readability relationship
is a relationship between two modules where one module is dependent on another
module.	This	readability	relationship	is	a	basis	for	reliable	configuration.	So	in	our	
example, we can say com.java9highperformance.PerformanceMonitor reads
com.java9highperformance.PerformanceStat.

Let's	look	at	com.java9highperformance.PerformanceStat	module's	description	
file	module-info.java:

module com.java9highperformance.PerformanceStat{
 requires transitive java.lang;
}

This module depends on the java.lang module.	Let's	look	at	the	PerformanceStat
module in detail:

package com.java9highperformance.PerformanceStat;
import java.lang.*;

public Class StringProcessor{
 public String processString(){...}
}

In this case, com.java9highperformance.PerformanceMonitor only depends on
com.java9highperformance.PerformanceStat but com.java9highperformance.
PerformanceStat depends on java.lang. The com.java9highperformance.
PerformanceMonitor module is not aware of the java.lang dependency from the
com.java9highperformance.PerformanceStat module. This type of problem is
taken	care	of	by	the	module	system.	It	has	added	a	new	modifier	called	transitive.
If you look at com.java9highperformance.PerformanceStat,	you	will	find	
it requires transitive java.lang. This means that any one depending on com.
java9highperformance.PerformanceStat reads on java.lang.

Learning Java 9 Underlying Performance Improvements

[10]

See the following graph which shows the readability graph:

Now, in order to compile the com.java9highperformance.PerformanceMonitor
module, the system must be able to resolve all the dependencies. These dependencies
can	be	found	from	the	module	path.	That's	obvious,	isn't	that?	However,	don't	
misunderstand the classpath with the module path. It is a completely different
breed.	It	doesn't	have	the	issues	that	the	packages	have.

String Operations Performance
If you are not new to programming, string must be your best friend so far. In many
cases,	you	may	like	it	more	than	your	spouse	or	partner.	As	we	all	know,	you	can't	
live	without	string,	in	fact,	you	can't	even	complete	your	application	without	a	single	
use	of	string.	OK,	enough	has	been	expressed	about	string	and	I	am	already	feeling	
dizzy	by	the	string	usage	just	like	JVM	in	the	earlier	versions.	Jokes	apart,	let's	talk	
about	what	has	changed	in	Java	9	that	will	help	your	application	perform	better.	
Although this is an internal change, as an application developer, it is important to
understand the concept so you know where to focus for performance improvements.

Java	9	has	taken	a	step	toward	improving	string	performance.	If	you	have	ever	
come	across	JDK	6's	failed	attempt	UseCompressedStrings, then you must be
looking for ways to improve string performance. Since UseCompressedStrings
was an experimental feature that was error prone and not designed very well, it
was	removed	in	JDK	7.	Don't	feel	bad	about	it,	I	know	it's	terrible	but	as	always	the	
golden	days	eventually	come.	The	JEP	team	has	gone	through	immense	pain	to	add	
a compact string feature that will reduce the footprint of string and its related classes.

Lesson 1

[11]

Compact strings will improve the footprint of string and help in using memory space
efficiently.	It	also	preserves	compatibility	for	all	related	Java	and	native	interfaces.	
The second important feature is Indify String Concatenation, which will optimize a
string at runtime.

In this section, we will take a closure look at these two features and their impact on
overall application performance.

Compact String
Before we talk about this feature, it is important to understand why we even care
about	this.	Let's	dive	deep	into	the	underworld	of	JVM	(or	as	any	star	wars	fan	
would	put	it,	the	dark	side	of	the	Force).	Let's	first	understand	how	JVM	treats	
our beloved string and that will help us understand this new shiny compact string
improvement.	Let's	enter	into	the	magical	world	of	heap.	And	as	a	matter	of	fact,	no	
performance book is complete without a discussion of this mystical world.

The World of Heap
Each	time	JVM	starts,	it	gets	some	memory	from	the	underlining	operating	system.	
It is separated into two distinct regions called heap space and Permgen. These are
home	to	all	your	application's	resources.	And	as	always	with	all	good	things	in	life,	
this	home	is	limited	in	size.	This	size	is	set	during	the	JVM	initialization;	however,	
you	can	increase	or	decrease	this	by	specifying	the	JVM	parameters,	-Xmx, and
-XX:MaxPermSize.

The heap size is divided into two areas, the nursery or young space and the old
space. As the name suggests, the young space is home to new objects. This all sounds
great	but	every	house	needs	a	cleanup.	Hence,	JVM	has	the	most	efficient	cleaner	
called garbage collector	(most	efficient?	Well...	let's	not	get	into	that	just	yet).	As	any	
productive	cleaner	would	do,	the	garbage	collector	efficiently	collects	all	the	unused	
objects	and	reclaims	memory.	When	this	young	space	gets	filled	up	with	new	objects,	
the garbage collector takes charge and moves any of those who have lived long
enough in the young space to the old space. This way, there is always room for more
objects in the young space.

And	in	the	same	way,	if	the	old	space	becomes	filled	up,	the	garbage	collector	
reclaims the memory used.

Learning Java 9 Underlying Performance Improvements

[12]

Why Bother Compressing Strings?
Now	you	know	a	little	bit	about	heap,	let's	look	at	the	String class and how strings
are represented on heap. If you dissect the heap of your application, you will notice
that	there	are	two	objects,	one	is	the	Java	language	Stringobject that references
the second object char[] that actually handles the data. The char datatype is
UTF-16	and	hence	takes	up	to	2	bytes.	Let's	look	at	the	following	example	of	
how two different language strings look:

2 byte per char[]
Latin1 String : 1 byte per char[]

So you can see that Latin1 String only consumes 1 byte, and hence we are losing
about 50% of the space here. There is an opportunity to represent it in a more dense
form and improve the footprint, which will eventually help in speeding up garbage
collection as well.

Now, before making any changes to this, it is important to understand its impact
on real-life applications. It is essential to know whether applications use 1 byte per
char[] strings or 2 bytes per char[] strings.

To	get	an	answer	to	this,	the	JPM	team	analyzed	a	lot	of	heap	dumps	of	real-world	
data. The result highlighted that a majority of heap dumps have around 18 percent to
30 percent of the entire heap consumed by chars[], which come from string. Also,
it was prominent that most strings were represented by a single byte per char[]. So,
it is clear that if we try to improve the footprint for strings with a single byte, it will
give	significant	performance	boost	to	many	real-life	applications.

What Did They Do?
After	having	gone	through	a	lot	of	different	solutions,	the	JPM	team	has	finally	
decided to come up with a strategy to compress string during its construction. First,
optimistically try to compress in 1 byte and if it is not successful, copy it as 2 bytes.
There are a few shortcuts possible, for example, the use of a special case encoder like
ISO-8851-1,	which	will	always	spit	1	byte.

This	implementation	is	a	lot	better	than	JDK	6's	UseCompressedStrings
implementation, which was only helpful to a handful of applications as it was
compressing string by repacking and unpacking on every single instance. Hence
the performance gain comes from the fact that it can now work on both the forms.

Lesson 1

[13]

What is the Escape Route?
Even though it all sounds great, it may affect the performance of your application if
it only uses 2 byte per char[]string. In that case, it make sense not to use the earlier
mentioned, check, and directly store string as 2 bytes per char[].	Hence,	the	JPM	
team has provided a kill switch --XX: -CompactStrings using which you can
disable this feature.

What is the Performance Gain?
The previous optimization affects the heap as we saw earlier that the string
is represented in the heap. Hence, it is affecting the memory footprint of the
application. In order to evaluate the performance, we really need to focus on the
garbage	collector.	We	will	explore	the	garbage	collection	topic	later,	but	for	now,	let's	
just focus on the run-time performance.

Indify String Concatenation
I am sure you must be thrilled by the concept of the compact string feature we
just	learned	about.	Now	let's	look	at	the	most	common	usage	of	string,	which	is	
concatenation. Have you ever wondered what really happens when we try to
concatenate	two	strings?	Let's	explore.	Take	the	following	example:

public static String getMyAwesomeString(){
 int javaVersion = 9;
 String myAwesomeString = "I love " + "Java " + javaVersion + "
high performance book by Mayur Ramgir";
 return myAwesomeString;
}

In the preceding example, we are trying to concatenate a few strings with the
int value. The compiler will then take your awesome strings, initialize a new
StringBuilder instance, and then append all these individuals strings. Take a look
at the following bytecode generation by javac. I have used the ByteCode Outline
plugin for Eclipse to visualize the disassembled bytecode of this method. You may
download it from http://andrei.gmxhome.de/bytecode/index.html:

// access flags 0x9
public static getMyAwesomeString()Ljava/lang/String;
 L0
 LINENUMBER 10 L0
 BIPUSH 9
 ISTORE 0
 L1
 LINENUMBER 11 L1

Learning Java 9 Underlying Performance Improvements

[14]

 NEW java/lang/StringBuilder
 DUP
 LDC "I love Java "
 INVOKESPECIAL java/lang/StringBuilder.<init> (Ljava/lang/String;)V
 ILOAD 0
 INVOKEVIRTUAL java/lang/StringBuilder.append (I)Ljava/lang/
StringBuilder;
 LDC " high performance book by Mayur Ramgir"
 INVOKEVIRTUAL java/lang/StringBuilder.append (Ljava/lang/String;)
Ljava/lang/StringBuilder;
 INVOKEVIRTUAL java/lang/StringBuilder.toString ()Ljava/lang/String;
 ASTORE 1
 L2
 LINENUMBER 12 L2
 ALOAD 1
 ARETURN
 L3
 LOCALVARIABLE javaVersion I L1 L3 0
 LOCALVARIABLE myAwesomeString Ljava/lang/String; L2 L3 1
 MAXSTACK = 3
 MAXLOCALS = 2

Quick	Note:	How	do	we	interpret	this?

•	 INVOKESTATIC: This is useful for invoking static methods
•	 INVOKEVIRTUAL: This uses of dynamic dispatch for invoking public and

protected non-static methods
•	 INVOKEINTERFACE: This is very similar to INVOKEVIRTUAL except that the

method dispatch is based on an interface type
•	 INVOKESPECIAL: This is useful for invoking constructors, methods of a

superclass, and private methods

However, at runtime, due to the inclusion of -XX:+-OptimizeStringConcat into
the	JIT	compiler,	it	can	now	identify	the	append	of	StringBuilder and the
toString	chains.	In	case	the	match	is	identified,	produce	low-level	code	for	
optimum	processing.	Compute	all	the	arguments'	length,	figure	out	the	final	
capacity, allocate the storage, copy the strings, and do the in place conversion of
primitives. After this, handover this array to the String instance without copying.
It	is	a	profitable	optimization.

But	this	also	has	a	few	drawbacks	in	terms	of	concatenation.	One	example	is	that	in	
case of a concatenating string with long or double, it will not optimize properly. This
is because the compiler has to do .getChar	first	which	adds	overhead.

Lesson 1

[15]

Also, if you are appending int to String,	then	it	works	great;	however,	if	you	
have an incremental operator like i++, then it breaks. The reason behind this is that
you need to rewind to the beginning of the expression and re-execute, so you are
essentially doing ++	twice.	And	now	the	most	important	change	in	Java	9	compact	
string. The length spell like value.length >> coder;	C2 cannot optimize it as it
does not know about the IR.

Hence, to solve the problem of compiler optimization and runtime support, we need
to control the bytecode, and we cannot expect javac to handle that.

We need to delay the decision of which concatenation can be done at runtime. So can
we have just method String.concat	which	will	do	the	magic.	Well,	don't	rush	into	
this yet as how would you design the method concat.	Let's	take	a	look.	One	way	to	
go about this is to accept an array of the String instance:

public String concat(String... n){
 //do the concatenation
}

However, this approach will not work with primitives as you now need to convert
each primitive to the Stringinstance and also, as we saw earlier, the problem is that
long and double string concatenation will not allow us to optimize it. I know, I can
sense the glow on your face like you got a brilliant idea to solve this painful problem.
You are thinking about using the Object instance instead of the String instance,
right?	As	you	know	the	Objectinstance	is	catch	all.	Let's	look	at	your	brilliant	idea:

public String concat(Object... n){
 //do the concatenation
}

First, if you are using the Object instance, then the compiler needs to do autoboxing.
Additionally, you are passing in the varargs array, so it will not perform optimally.
So,	are	we	stuck	here?	Does	it	mean	we	cannot	use	the	preeminent	compact	string	
feature	with	string	concatenation?	Let's	think	a	bit	more;	maybe	instead	of	using	the	
method runtime, let javac handle the concatenation and just give us the optimized
bytecode. That sounds like a good idea. Well, wait a minute, I know you are thinking
the	same	thing.	What	if	JDK	10	optimizes	this	further?	Does	that	mean,	when	I	
upgrade	to	the	new	JDK,	I	have	to	recompile	my	code	again	and	deploy	it	again?	
In some cases, its not a problem, in other cases, it is a big problem. So, we are back
to square one.

Learning Java 9 Underlying Performance Improvements

[16]

We	need	something	that	can	be	handled	at	runtime.	Ok,	so	that	means	we	need	
something which will dynamically invoke the methods. Well, that rings a bell. If we go
back	in	our	time	machine,	at	the	dawn	of	the	era	of	JDK	7	it	gave	us	invokedynamic. I
know you can see the solution, I can sense the sparkle in your eyes. Yes, you are right,
invokedynamic can help us here. If you are not aware of invokedynamic,	let's	spend	
some time to understand it. For those who have already mastered the topic, you could
skip it, but I would recommend you go through this again.

Invokedynamic
The invokedynamic	feature	is	the	most	notable	feature	in	the	history	of	Java.	Rather	
than	having	a	limit	to	JVM	bytecode,	we	now	can	define	our	own	way	for	operations	
to work. So what is invokedynamic?	In	simple	terms,	it	is	the	user-definable	
bytecode.	This	bytecode	(instead	of	JVM)	determines	the	execution	and	optimization	
strategies. It offers various method pointers and adapters which are in the form of
method	handling	APIs.	The	JVM	then	work	on	the	pointers	given	in	the	bytecode	
and	use	reflection-like	method	pointers	to	optimize	it.	This	way,	you,	as	a	developer,	
can get full control over the execution and optimization of code.

It	is	essentially	a	mix	of	user-defined	bytecode	(which	is	known	as	bytecode +
bootstrap) and method handles. I know you are also wondering about the method
handles--what	are	they	and	how	to	use	them?	Ok,	I	heard	you,	let's	talk	about	
method handles.

Method	handles	provide	various	pointers,	including	field,	array,	and	method,	to	pass	
data	and	get	results	back.	With	this,	you	can	do	argument	manipulation	and	flow	
control.	From	JVM's	point	of	view,	these	are	native	instructions	that	it	can	optimize	
as if it were bytecode. However, you have the option to programmatically generate
this bytecode.

Let's	zoom	in	to	the	method	handles	and	see	how	it	all	ties	up	together.	The	main	
package's	name	is	java.lang.invoke, which has MethodHandle, MethodType,
and MethodHandles. MethodHandle is the pointer that will be used to invoke the
function. MethodType is a representation of a set of arguments and return value
coming from the method. The utility class MethodHandles will act as a pointer to
a method which will get an instance of MethodHandle and map the arguments.

We	won't	be	going	in	deep	for	this	section,	as	the	aim	was	just	to	make	you	aware	
of what the invokedynamic feature is and how it works so you will understand the
string concatenation solution. So, this is where we get back to our discussion on
string concatenation. I know, you were enjoying the invokedynamic discussion, but
I guess I was able to give you just enough insight to make you understand the core
idea of Indify String Concatenation.

Lesson 1

[17]

Let's	get	back	on	the	concatenation	part	where	we	were	looking	for	a	solution	to	
concatenate our awesome compact strings. For concatenating the compact strings,
we need to take care of types and the number of types of methods and this is what
the invokedynamic gives us.

So	let's	use	invokedynamic for concat. Well, not so quick, my friend. There is a
fundamental problem with this approach. We cannot just use invokedynamic as
it	is	to	solve	this	problem.	Why?	Because	there	is	a	circular	reference.	The	concat
function needs java.lang.invoke, which uses concat. This continues, and
eventually you will get StackOverflowError.

Take a look at the following code:

String concat(int i, long l, String s){
 return s + i + l
}

So if we were to use invokedynamic here, the invokedynamic call would look
like this:

InvokeDynamic #0: makeConcat(String, int, long)

There	is	a	need	to	break	the	circular	reference.	However,	in	the	current	JDK	
implementation, you cannot control what java.invoke calls from the complete
JDK	library.	Also,	removing	the	complete	JDK	library	reference	from	java.invoke
has severe side effects. We only need the java.base module for Indify String
Concatenation,	and	if	we	can	figure	out	a	way	to	just	call	the	java.base module,
then	it	will	significantly	improve	the	performance	and	avoid	unpleasant	exceptions.	
I	know	what	you	are	thinking.	We	just	studied	the	coolest	addition	to	Java	9,	Project
Jigsaw. It provides modular source code and now we can only accept the java.base
module. This solves the biggest problem we were facing in terms of concatenating
two strings, primitives, and so on.

After	going	through	a	couple	of	different	strategies,	the	Java	Performance	
Management team has settled on the following strategy:

1. Make a call to the toString() method on all reference args.
2. Make a call to the tolength() method or since all the underlying methods

are exposed, just call T.stringSize(T t) on every args.
3. Figure out the coders and call coder() for all reference args.
4. Allocate byte[] storage and then copy all args. And then, convert primitives

in-place.
5. Invoke a private constructor String by handing over the array for

concatenation.

Learning Java 9 Underlying Performance Improvements

[18]

With this, we are able to get an optimized string concat in the same code and not in
C2 IR. This strategy gives us 2.9x better performance and 6.4x less garbage.

Storing Interned Strings in CDS Archives
The main goal of this feature is to reduce memory footprint caused by creating
new	instances	of	string	in	every	JVM	process.	All	the	classes	that	are	loaded	in	
any	JVM	process	can	be	shared	with	other	JVM	processes	via	Class Data Sharing
(CDS) archives.

Oh,	I	did	not	tell	you	about	CDS.	I	think	it's	important	to	spend	some	time	to	
understand	what	CDS	is,	so	you	can	understand	the	underlying	performance	
improvement.

Many times, small applications in particular spend a comparatively long time on
startup	operations.	To	reduce	this	startup	time,	a	concept	called	CDS	was	introduced.	
CDS	enables	sharing	of	a	set	of	classes	loaded	from	the	system	JAR	file	into	a	private	
internal	representation	during	the	JRE	installation.	This	helps	a	lot	as	then	any	
further	JVM	invocations	can	take	advantage	of	these	loaded	classes'	representation	
from the shared archive instead of loading these classes again. The metadata related
to	these	classes	is	shared	among	multiple	JVM	processes.

CDS	stores	strings	in	the	form	of	UTF-8	in	the	constant	pool.	When	a	class	from	these	
loaded classes begins the initialization process, these UTF-8 strings are converted
into String	objects	on	demand.	In	this	structure,	every	character	in	every	confined	
string takes 2 bytes in the String object and 1 byte to 3 bytes in the UTF-8, which
essentially wastes memory. Since these strings are created dynamically, different
JVM	processes	cannot	share	these	strings.

Shared strings need a feature called pinned regions in order to make use of the
garbage collector. Since the only HotSpot garbage collector that supports pinning
is	G1;	it	only	works	with	the	G1	garbage	collector.

Concurrency Performance
Multithreading is a very popular concept. It allows programs to run multiple tasks
at the same time. These multithreaded programs may have more than one unit
which can run concurrently. Every unit can handle a different task keeping the use
of available resources optimal. This can be managed by multiple threads that can
run in parallel.

Lesson 1

[19]

Java	9	improved	contended	locking.	You	may	be	wondering	what	is	contended	
locking.	Let's	explore.	Each	object	has	one	monitor	that	can	be	owned	by	one	
thread at a time. Monitors are the basic building blocks of concurrency. In order
for a thread to execute a block of code marked as synchronized on an object or a
synchronized	method	declared	by	an	object,	it	must	own	this	object's	monitor.	Since	
there	are	multiple	threads	trying	to	get	access	to	the	mentioned	monitor,	JVM	needs	
to orchestrate the process and only allow one thread at a time. It means the rest of
threads go in a wait state. This monitor is then called contended. Because of this
provision, the program wastes time in the waiting state.

Also, Java Virtual Machine (JVM) does some work orchestrating the lock
contention. Additionally, it has to manage threads, so once the existing thread
finishes	its	execution,	it	can	allow	a	new	thread	to	go	in.	This	certainly	adds	
overhead	and	affects	performance	adversely.	Java	9	has	taken	a	few	steps	to	improve	
in	this	area.	The	provision	refines	the	JVM's	orchestration,	which	will	ultimately	
result in performance improvement in highly contested code.

The following benchmarks and tests can be used to check the performance
improvements	of	contented	Java	object	monitors:

•	 CallTimerGrid (This is more of a stress test than a benchmark)
•	 Dacapo-bach (earlier dacapo2009)
•	 _ avrora

•	 _ batik

•	 _ fop

•	 _ h2

•	 _ luindex

•	 _ lusearch

•	 _ pmd

•	 _ sunflow

•	 _ tomcat

•	 _ tradebeans

•	 _ tradesoap

•	 _ xalan

•	 DerbyContentionModelCounted

•	 HighContentionSimulator

•	 LockLoops-JSR166-Doug-Sept2009 (earlier LockLoops)
•	 PointBase

•	 SPECjbb2013-critical (earlier specjbb2005)

Learning Java 9 Underlying Performance Improvements

[20]

•	 SPECjbb2013-max

•	 specjvm2008

•	 volano29 (earlier volano2509)

Compiler Improvements
Several	efforts	have	been	made	to	improve	the	compiler's	performance.	In	this	
section, we will focus on the improvements to the compiler side.

Tiered Attribution
The	first	and	foremost	change	providing	compiler	improvement	is	related	to	
Tiered Attribution (TA). This change is more related to lambda expressions. At the
moment, the type checking of poly expression is done by type checking the same
tree multiple times against different targets. This process is called Speculative
Attribution (SA), which enables the use of different overload resolution targets
to check a lambda expression.

This way of type checking, although a robust technique, adversely affects
performance	significantly.	For	example,	with	this	approach,	n number of overload
candidates check against the same argument expression up to n * 3 once per overload
phase,	strict,	loose,	and	varargs.	In	addition	to	this,	there	is	one	final	check	phase.	
Where lambda returns a poly method call results in combinatorial explosion of
attribution calls, this causes a huge performance problem. So we certainly need a
different method of type checking for poly expressions.

The core idea is to make sure that a method call creates bottom-up structural types
for each poly argument expression with every single details, which will be needed to
execute the overload resolution applicability check before performing the overload
resolution.

So in summary, the performance improvement was able to achieve an attribute of
a given expression by decreasing the total number of tries.

Ahead-of-Time Compilation
The second noticeable change for compiler improvement is Ahead-of-Time
compilation.	If	you	are	not	familiar	with	the	term,	let's	see	what	AOT	is.	As	you	
probably know, every program in any language needs a runtime environment to
execute.	Java	also	has	its	own	runtime	which	is	known	as	Java Virtual Machine
(JVM). The typical runtime that most of us use is a bytecode interpreter, which is
JIT	compiler	as	well.	This	runtime	is	known	as	HotSpot JVM.

Lesson 1

[21]

This	HotSpot	JVM	is	famous	for	improving	performance	by	JIT	compilation	as	
well as adaptive optimization. So far so good. However, this does not work well in
practice for every single application. What if you have a very light program, say, a
single	method	call?	In	this	case,	JIT	compilation	will	not	help	you	much.	You	need	
something	that	will	load	up	faster.	This	is	where	AOT	will	help	you.	With	AOT	as	
opposed	to	JIT,	instead	of	compiling	to	bytecode,	you	can	compile	into	native	machine	
code. The runtime then uses this native machine code to manage calls for new objects
into	mallocs	as	well	as	file	access	into	system	calls.	This	can	improve	performance.

Security Manager Improvements
Ok,	let's	talk	about	security.	If	you	are	not	one	of	those	who	cares	about	application	
security over pushing more features in a release, then the expression on your
face may be like Uh! What's that?	If	you	are	one	those,	then	let's	first	understand	
the	importance	of	security	and	find	a	way	to	consider	this	in	your	application	
development	tasks.	In	today's	SaaS-dominated	world,	everything	is	exposed	to	the	
outside world. A determined individual (a nice way of saying, a malicious hacker),
can get access to your application and exploit the security holes you may have
introduced through your negligence. I would love to talk about application security
in depth as this is another area I am very much interested in. However, application
security is out of the scope of this book. The reason we are talking about it here is
that	the	JPM	team	has	taken	an	initiative	to	improve	the	existing	security	manager.	
Hence,	it	is	important	to	first	understand	the	importance	of	security	before	talking	
about the security manager.

Hopefully, this one line of description may have generated secure programming
interest in you. However, I do understand that sometimes you may not have enough
time to implement a complete secure programming model due to tight schedules.
So,	let's	find	a	way	which	can	fit	with	your	tight	schedule.	Let's	think	for	a	minute;	
is	there	any	way	to	automate	security?	Can	we	have	a	way	to	create	a	blueprint	and	
ask	our	program	to	stay	within	the	boundaries?	Well,	you	are	in	luck,	Java	does	have	
a feature called security manager.	It	is	nothing	but	a	policy	manager	that	defines	
a	security	policy	for	the	application.	It	sounds	exciting,	doesn't	it?	But	what	does	
this	policy	look	like?	And	what	does	it	contain?	Both	are	fair	questions	to	ask.	This	
security policy basically states actions that are dangerous or sensitive in nature. If
your application does not comply with this policy, then the security manager throws
SecurityException.	On	the	other	side,	you	can	have	your	application	call	this	
security	manager	to	learn	about	the	permitted	actions.	Now,	let's	look	at	the	security	
manager in detail.

Learning Java 9 Underlying Performance Improvements

[22]

In	case	of	a	web	applet,	a	security	manager	is	provided	by	the	browser,	or	the	Java	
Web Start plugin runs this policy. In many cases, applications other than web applets
run	without	a	security	manager	unless	those	applications	implement	one.	It's	a	no	
brainer to say that if there is no security manager and no security policy attached,
the application acts without restrictions.

Now	we	know	a	little	about	the	security	manager,	let's	look	at	the	performance	
improvement	in	this	area.	As	per	the	Java	team,	there	may	be	a	possibility	that	an	
application running with a security manager installed degrades performance by
10 percent to 15 percent. However, it is not possible to remove all the performance
bottlenecks but narrowing this gap can assist in improving not only security but
also performance.

The	Java	9	team	looked	at	some	of	the	optimizations,	including	the	enforcement	
of security policy and the evaluation of permissions, which will help improve the
overall	performance	of	using	a	security	manager.	During	the	performance	testing	
phase, it was highlighted that even though the permission classes are thread safe,
they show up as a HotSpot. Numerous improvements have been made to decrease
thread contention and improve throughput.

Computing the hashcode method of java.security.CodeSource has been improved
to	use	a	string	form	of	the	code	source	URL	to	avoid	potentially	expensive	DNS	
lookups. Also, the checkPackageAccess method of java.lang.SecurityManager,
which contains the package checking algorithm, has been improved.

Some other noticeable changes in security manager improvements are as follows:

•	 The first noticeable change is that using ConcurrentHashMap in place
of Collections.synchronizedMap helps improving throughput of the
Policy.implie method. Look at the following graph, taken from the
OpenJDK	site,	which	highlights	the	significant	increase	in	the	throughput	
with ConcurrentHashMap:

Lesson 1

[23]

•	 In addition to this, HashMap, which had been used for maintaining internal
collection of CodeSource in java.security.SecureClassLoader, has been
replaced by ConcurrentHashMap.

•	 There are a few other small improvements like an improvement in the
throughput by removing the compatibility code from the getPermissions
method (CodeSource), which synchronizes on identities.

•	 Another significant gain in performance is achieved using
ConcurrentHashMap instead of HashMap surrounded by synchronized
blocks in the permission checking code, which yielded in greater thread
performance.

Graphics Rasterizers
If	you	are	into	Java	2D	and	using	OpenJDK,	you	will	appreciate	the	efforts	taken	by	
the	Java	9	team.	Java	9	is	mainly	related	to	a	graphics	rasterizer,	which	is	part	of	the	
current	JDK.	OpenJDK	uses	Pisces,	whereas	Oracle	JDK	uses	Ductus.	Oracle's	closed-
source	Ductus	rasterizer	performs	better	than	OpenJDK's	Pisces.

These graphics rasterizers are useful for anti-aliased rendering except fonts. Hence,
for a graphics-intensive application, the performance of this rasterizer is very
important. However, Pisces is failing in many fronts and its performance problems
are very visible. Hence, the team has decided to replace this with a different
rasterizer called Marlin Graphics Renderer.

Marlin	is	developed	in	Java	and,	most	importantly,	it	is	the	fork	of	the	Pisces	
rasterizer. Various tests have been done on it and the results are very promising. It
consistently performs better than Pisces. It demonstrates multithreaded scalability
and	even	outperforms	the	closed-source	Ductus	rasterizer	for	a	single-threaded	
application.

Summary
In this lesson, we have seen some of the exciting features that will improve your
application's	performance	without	making	any	effort	from	your	end.

In	the	next	lesson,	we	will	learn	about	JShell	and	the	Ahead-of-Time (AOT)
compiler. We will also learn about Read-Eval-Print Loop (REPL) tool.

Learning Java 9 Underlying Performance Improvements

[24]

Assessments
1. JLink	is	a	___________	of	Java	9	modular	system.
2. What is the relationship between two modules where one module is

dependent	on	another	module?
1. Readability relationship
2. Operability	relationship
3. Modular relationship
4. Entity relationship

3. State	whether	True	or	False:	Each	time	JVM	starts,	it	gets	some	memory	from	
the underlining operating system.

4. Which of the following perform some work orchestrating the lock
contention?

1. Pinned regions
2. Readability relationship
3. Java	Virtual	Machine
4. Class data sharing

5. Which of the following enables the use of different overload resolution
targets	to	check	a	lambda	expression?

1. Tiered attribution
2. HotSpot	JVM
3. Speculative attribution
4. Permgen

[25]

Tools for Higher Productivity
and Faster Application

Since the dawn of programming as a profession, the standing goals of every aspiring
coder were to quickly produce applications that perform the assigned tasks with
lightning	speed.	Otherwise,	why	bother?	We	could	slowly	do	whatever	we	were	doing	
for thousands of years. In the book of the last century, we made substantial progress
in	both	aspects,	and	now,	Java	9	makes	another	step	in	each	of	these	directions.

Two	new	tools	were	introduced	in	Java	9,	JShell	and	the	Ahead-of-Time (AOT)
compiler--both	were	expected	for	a	long	time.	JShell	is	a	Read–Eval–Print Loop
(REPL) tool that is well-known for those who program in Scala, Ruby, or Python,
for example. It takes a user input, evaluates it, and returns the result immediately.
The	AOT	compiler	takes	Java	bytecode	and	generates	a	native	(system-dependent)	
machine	code	so	that	the	resulting	binary	file	can	execute	natively.

These tools will be the focus of this lesson.

The JShell Tool Usage
JShell	helps	a	programmer	to	test	fragments	(snippets)	of	code	as	they	are	written.	
It shortens the time for development by avoiding the build-deploy-test part of
the development cycle. Programmers can easily copy an expression or even
several	methods	into	the	JShell	session	and	run-test-modify	them	multiple	times	
immediately. Such a quick turnaround also helps to understand the library API
better before using it and to tune the code to express exactly its purpose, thus
facilitating better quality software.

Tools for Higher Productivity and Faster Application

[26]

How	often	have	we	guessed	what	the	JavaDoc	for	a	particular	API	meant	and	wasted	
build-deploy-test	cycles	for	figuring	it	out?	Or	we	want	to	recall,	how	exactly	the	
string will be split by substring(3)?	Sometimes,	we	create	a	small	test	application	
where we run the code we are not sure about, using again the same build-deploy-test
cycle.	With	JShell,	we	can	copy,	paste,	and	run.	In	this	section,	we	will	describe	and	
show how to do it.

JShell	is	built	on	the	top	of	JVM,	so	it	processes	the	code	snippets	exactly	as	
JVM	does.	Only	a	few	constructs	that	do	not	make	sense	for	REPL	are	omitted.	
For example, you cannot use package declaration, static, or final	in	JShell	
(these keywords are going to be ignored). Also, the semicolon ; is allowed but
not required at the end of a statement.

JShell	comes	with	API	included	in	the	module	jdk.jshell which can be used for
the	integration	of	JShell	into	other	tools	(IDE,	for	example),	but	it	is	outside	of	the	
scope of this book.

Creating a JShell Session and Setting Context
JShell	comes	with	the	JDK	installation.	You	can	find	it	in	the	bin directory as
$JAVA_HOME/bin/jshell.	Execute	it	to	start	the	JShell	session.	Before	you	get	
familiar	with	JShell,	we	recommend	starting	the	session	with	the	option	-v, which
stands for verbose. This way, the shell will add more details to each of your actions,
explaining what has been accomplished with each of them. After launching jshell
in a terminal window, you will see the following output:

This	means	that	a	JShell	session	is	created	and	can	be	used	for	Java	code	running.	
Enter the recommended command /help intro	and	read	the	following	JShell	
introduction:

Lesson 2

[27]

The introduction tells us the very minimum we need to know in order to get
going.	So,	let's	follow	the	guide.	If	we	enter	/help,	we	get	the	list	of	possible	JShell	
commands with a short description (we will go over every command in more detail
later) and the following information:

Those are important tips to remember. Notice that the /? and /help commands
produce the same result, so from now on, we will use/? only. The commands /i,
/<id> (id is assigned to each snippet automatically and shown to the left of the
snippet when listed by the command /list), and /-<n> allow re-running of the
snippets that have been run previously.

Tools for Higher Productivity and Faster Application

[28]

Subject intro we saw already. Subject shortcuts can be viewed by entering the
command /? shortcuts:

As you can see, the Tab key can be used to complete the current entry, while double
Tab	brings	up	possible	completion	options	or	JavaDoc,	if	available.	Do	not	hesitate	
to press Tab	several	times	after	each	command.	It	will	help	you	to	find	more	ways	
to	utilize	JShell	features	to	your	advantage.

Press Shift + Tab and then press V to create a variable based on the just completed
expression. Here is an example:

•	 Type 2*2 on the console and press Enter.
•	 Press Shift + Tab together.
•	 Release the keys and press V.
•	 The shell will show int x = 2*2 and position the cursor just in front of =.
•	 Enter the variable (x, for example, and press Enter). The resulting screen will

show the following output:

Press Shift + Tab and then press I	after	an	unresolved	identifier	requests	JShell	to	
provide possible imports based on the content of the classpath. Here is an example:

•	 Type new Pair and press Enter.
•	 Press Shift + Tab together.

Lesson 2

[29]

•	 Release the keys and press I. The shell will show the following output:

•	 You will get two options with the values 0 and 1, respectively.
•	 In the shell, you will get a statement called Choice;	type	1 and press Enter.
•	 Now, the javafx.util.Pair class is imported.
•	 You can continue entering the code snippet.

JShell	was	able	to	provide	the	suggestion	because	the	JAR	file	with	the	compiled	
Pair	class	was	on	the	classpath	(set	there	by	default	as	part	of	JDK	libraries).	You	can	
also	add	to	the	classpath	any	other	JAR	file	with	the	compiled	classes	you	need	for	
your	coding.	You	can	do	it	by	setting	it	at	JShell	startup	by	the	option	--class-path
(can be also used with one dash -class-path):

In	the	earlier	example,	the	JAR	file	myclasses.jar is loaded from the folder
mylibrary	in	the	user's	home	directory.	To	set	several	JAR	files,	you	can	separate	
them by a colon:	(for	Linux	and	MacOS)	or	by	a	semicolon	; (for Windows).

The classpath can also be set by the command /env any time during the
JShell	session:

Notice that every time the classpath is set, all the snippets of the current session are
reloaded with the new classpath.

The commands /reset and /reload can be used instead of the /env command
to set the classpath too. We will describe the difference between these commands
in the next section.

If	you	do	not	want	to	collect	your	compiled	classes	in	a	JAR	file,	the	option	--class-
path (or -class-path) could point to the directory where the compiled classes
are	located.	Once	the	classpath	is	set,	the	classes	associated	with	it	can	be	imported	
during a snippet writing using keys Shift + Tab and then I as described earlier.

Tools for Higher Productivity and Faster Application

[30]

Other	context	options	are	related	to	the	usage	of	modules	and	can	be	seen	after	
entering the command /? context:

There are several more advanced options of running the jshell tool. To learn about
them,	refer	to	the	Oracle	documentation	(for	example,	https://docs.oracle.com/
javase/9/tools/jshell.htm).

The last important command we would like to mention in this section is /exit. It
allows	exiting	the	command	mode	and	closing	the	JShell	session.

JShell Commands
As	we	mentioned	in	the	previous	section,	the	full	list	of	JShell	commands	can	
be obtained by typing the /? command. Each command comes with a one-line
description. There is another way to get the same list but without description,
that is by typing / followed by Tab. The screen would show the following content:

Lesson 2

[31]

Pressing Tab the second time would bring the same list of the commands with
a synopsis (one-line description) for each. To make it easier for a user, while
typing, a command, subcommand, command argument, or command option
can be abbreviated, as long as it remains unique so that the tool can recognize it
unambiguously. For example, instead of the previous list of full-name commands,
you can use the corresponding list of their abbreviated versions: /!, /?, /d, /ed, /en,
/ex, /he, /hi, /i, /l, /m, /o, /rel, /res, /sa, /se, /t, /v. The preceding dash /
is necessary for distinguishing commands from snippets.

Now,	let's	review	each	of	these	commands.	While	doing	it,	we	will	create	a	few	
snippets, variables, and types so that we can demonstrate each command more
clearly	using	specific	examples.

You	can	start	a	new	JShell	session	by	running	jshell (with option -v) and enter the
following commands:

•	 /en: To view or change the evaluation context
•	 /h: To view history of what you have typed
•	 /l [<name or id>|-all|-start]: To list the source you have typed
•	 /m [<name or id>|-all|-start]L: To list the declared methods and

their signatures
•	 /t [<name or id>|-all|-start]: To list the declared types
•	 /v [<name or id>|-all|-start]: To list the declared variables and

their values

The result would be like this:

Tools for Higher Productivity and Faster Application

[32]

As you might be expecting, most of these commands yielded no results (except a
short history of your typing until that moment) because we have not entered any
code snippet yet. The last four commands have the same options:

•	 <name or id>:	This	is	the	name	or	ID	of	a	specific	snippet	or	method	or	type	
or variable (we will see examples later)

•	 -start: This shows snippets or methods or types or variables loaded at the
JShell	start	(we	will	see	later	how	to	do	it)

•	 -all: This shows snippets or methods or types or variables loaded at the
JShell	start	and	entered	later	during	the	session

By default, at the startup, several common packages are imported. You can see them
by typing the /l -start or /l -all command:

There is no java.lang package in this list, but it is always imported by default and
not listed among the imports.

In	the	left	column	of	the	previously	mentioned	list,	you	can	see	the	ID	of	each	
snippet. If you type the /l s5command, for example, it will retrieve the snippet
with	ID	s5:

To customize the startup entries, you can use the command /sa <file> to save in
the	specified	file	all	the	settings	and	snippets	you	have	entered	in	the	current	session.	
The next time you would like to continue with the same context, you can start the
JShell	session	with	this	file	jshell <file>.

Lesson 2

[33]

Let's	demonstrate	this	procedure	with	an	example:

In	the	previous	screenshot,	you	can	see	that	we	have	started	a	JShell	session	and	
entered the name of the class Pair (not imported yet), then pressed Shift + Tab
and I and selected option 1 (to import the class Pair).	After	that,	we	have	finished	
typing the snippet (created a variable pair),	saved	the	session	entries	in	the	file	
mysession.jsh	(in	the	home	directory),	and	closed	the	session.	Let's	look	in	the	
file	mysession.jsh now:

As	you	can	see,	the	file	contains	only	the	new	entries	from	the	saved	session.	If	we	
would like to load them into the next session, we will use the command jshell ~/
mysession.jsh and continue working in the same context:

Tools for Higher Productivity and Faster Application

[34]

In the previous screenshot, we started a new session, listed all the new entries
(reloaded from the previous session), and got a key from the object pair. This has
created variable $3 automatically.

We can also create a variable explicitly. Type pair.getValue() and press Shift + Tab
and then press V, which will prompt you to enter the variable name just in front of
the sign String = pair.getValue(). Enter value and see the result:

To see all the variables of the current session, type the command /v:

Let's	now	create	a	method	to2() that multiplies any integer by 2:

To complete the demonstration of the commands /l, /m, /t, and /v,	let's	create	a	
new type:

Lesson 2

[35]

Notice that the method to2() is visible inside a new class, which means that all
standalone variables, standalone methods, and code inside classes are executed
in the same context. This way, testing of a code fragment becomes easier but may
introduce	subtle	errors	and	even	unexpected	behavior	if	the	code's	author	relies	on	
the encapsulation and behavior isolation in different parts of a more complex system
than	just	a	flat	code	fragment.

Now, by using the /l command, we can see everything we have typed:

All these snippets are available for execution. Here is one example of using them:

Tools for Higher Productivity and Faster Application

[36]

In the previous screenshot, we typed new Demo and pressed Tab. Then, we
entered 2 and pressed Tab again. We saw the suggestion about pressing Tab to see
documentation and did it. Well, there was no documentation found (we did not type
any	JavaDoc	while	creating	the	class	DemoClass), so we just added) and pressed
Enter. As a result, a new variable $7 was created that held references to the object
of the class DemoClass. We can use this variable now like this, for example:

In the previous screenshot, we entered int y = $7. and pressed Tab, then pressed
Tab the second time to see other options. We did it just for demo purposes. Then,
we made our selection by typing getX after . and pressing Tab.	JShell	completed	
the statement with () for us and we pressed Enter, thus creating a new variable y
(with the current evaluated value of 4).

Finally,	let's	try	and	test	the	function	substring() to make sure it returns us the
substring we need:

We hope you now have a feel of how you can create and execute snippets.

Let's	review	other	JShell	commands.	The	command	/i lists the imported packages
and classes. In our case, if we use this command we will get the following output:

Lesson 2

[37]

You can see that the class Pair is listed as imported, although we have done it
in	the	previous	JShell	session	and	brought	it	in	the	new	session	by	using	the	file	
~/mysession.jsh.

The command /ed <name or id> allows you to edit any of the entries listed by the
command /l.	Let's	do	it:

Tools for Higher Productivity and Faster Application

[38]

In the previous screenshot, we listed all the snippets and entered /e 7 to edit
snippets	with	ID	7. It turned out that there are several commands starting with e,
so we added d and got the following editor window:

In the previous window, we changed 2 to 3 and clicked the Accept button. As a
result, a new variable $9was created that holds the reference to the new DemoClass
object. We can now use this new variable too:

In the previous screenshot, we entered $9.getX and pressed Tab.	The	JShell	
completed the statement by adding (). We press Enter, and the new variable $10
(with the current evaluated value 6) was created.

The command /d <name or id>	drops	a	snippet	referenced	by	name	or	ID.	Let's	use	
it	to	delete	a	snippet	with	ID	7:

Lesson 2

[39]

As you could guess, the expression that assigns a value to the variable 8 now cannot
be evaluated:

In	the	earlier	screenshot,	we	first	requested	to	evaluate	the	expression	that	generates	
a value for variable 10 (for demonstration purposes), and it was correctly calculated
as 6. Then, we attempted to do the same for variable 8 and received an error because
its expression was broken after deleting the variable 7. So, we have deleted it now,
too (this time by name, to demonstrate how a name can be used).

The command /sa [-all|-history|-start] <file>	saves	a	snippet	to	a	file.	It	is	
complemented by the command /o <file>	that	opens	the	file	as	the	source	input.

The commands /en, /res, and /rel have an overlapping functionality:

•	 /en [options]: This allows to view or change the evaluation context
•	 /res [options]: This discards all entered snippets and restarts the session
•	 /rel[options]: This reloads the session the same way the command /en

does

See	the	official	Oracle	documentation	(http://docs.oracle.com/javase/9/tools/
jshell.htm) for more details and possible options.

The command [/se [setting]	sets	configuration	information,	including	the	
external editor, startup settings, and feedback mode. This command is also used to
create a custom feedback mode with customized prompt, format, and truncation
values. If no setting is entered, then the current setting for the editor, startup settings,
and feedback mode are displayed. The documentation referred to earlier describes
all possible settings in all details.

The	JShell	is	going	to	be	even	more	helpful	when	integrated	inside	of	the	IDE	so	
that	a	programmer	can	evaluate	expressions	on	the	fly	or,	even	better,	they	can	be	
evaluated automatically the same way the compiler today evaluates the syntax.

Tools for Higher Productivity and Faster Application

[40]

Ahead-of-Time (AOT)
The	big	claim	of	Java	was	write-once-run-anywhere.	It	was	achieved	by	creating	an	
implementation of Java Runtime Environment (JRE) for practically all platforms, so
the	bytecode	generated	once	from	the	source	by	Java	compiler	(javac tool) could be
executed	everywhere	where	JRE	was	installed,	provided	the	version	of	the	compiler	
javac	was	compatible	with	the	version	of	JRE.

The	first	releases	of	JRE	were	primarily	the	interpreters	of	the	bytecode	and	yielded	
slower performance than some other languages and their compilers, such as C and
C++.	However,	over	time,	JRE	was	improved	substantially	and	now	produces	quite	
decent results, on a par with many other popular systems. In big part, it is due to the
JIT	dynamic	compiler	that	converts	the	bytecodes	of	the	most	frequently	used	methods	
to	the	native	code.	Once	generated,	the	compiled	methods	(the	platform-specific	
machine code) is executed as needed without any interpretation, thus decreasing
the execution time.

To	utilize	this	approach,	JRE	needs	some	time	for	figuring	out	which	methods	of	the	
application are used most often. The people working in this area of programming
call them hot methods. This period of discovery, until the peak performance is
reached,	is	often	called	a	JVM's	warm-up	time.	It	is	bigger	for	the	larger	and	more	
complex	Java	applications	and	can	be	just	a	few	seconds	for	smaller	ones.	However,	
even after the peak performance is reached, the application might, because of the
particular input, start utilizing an execution path never used before and calling the
methods that were not compiled yet, thus suddenly degrading the performance.
It can be especially consequential when the code not compiled yet belongs to the
complex procedures invoked in some rare critical situations, exactly when the best
possible performance is needed.

The natural solution was to allow the programmer to decide which components of
the application have to be precompiled into the native machine code--those that are
more	often	used	(thus	decreasing	the	application's	warm-up	time),	and	those	that	
are used not often but have to be executed as quickly as possible (in support of the
critical situations and stable performance overall). That was the motivation of the
Java Enhancement ProposalJEP 295: Ahead-of-Time Compilation:

JIT	compilers	are	fast,	but	Java	programs	can	become	so	large	that	it	takes	a	long	
time	for	the	JIT	to	warm	up	completely.	Infrequently	used	Java	methods	might	
never be compiled at all, potentially incurring a performance penalty due to
repeated interpreted invocations.

Lesson 2

[41]

It	is	worth	noticing	though	that	already	in	JIT	compiler,	it	is	possible	to	decrease	
the warm-up time by setting the compilation threshold--how many times a method
has to be called before it gets compiled into the native code. By default, the number
is 1,500. So, if we set it to less than that, the warm-up time will be shorter. It can be
done using the option -XX:CompileThreshold with the java tool. For example, we
can set the threshold to 500 as follows (where Test	is	the	compiled	Java	class	with	
the main() method in it):

java -XX:CompileThreshold=500 -XX:-TieredCompilation Test

The option -XX:-TieredCompilation was added to disable the tiered compilation
because it is enabled by default and does not honor the compilation threshold. The
possible drawback is that the 500 threshold might be too low and too many methods
will be compiled, thus slowing down the performance and increasing the warm-up
time. The best value for this option will vary from application to an application and
may even depend on the particular data input with the same application.

Static versus Dynamic Compilation
Many	higher	level	programming	languages	such	as	C	or	C++	used	AOT	compilation	
from the very beginning. They are also called statically compiled languages. Since
AOT	(or	static)	compilers	are	not	constrained	by	performance	requirements	(at	least	
not as much as the interpreters at runtime, also called dynamic compilers), they can
afford	to	spend	the	time	producing	complex	code	optimizations.	On	the	other	hand,	
the	static	compilers	do	not	have	the	runtime	(profiling)	data,	which	is	especially	
limiting	in	the	case	of	dynamically	typed	languages,	Java	being	one	of	them.	Since	
the	ability	of	dynamic	typing	in	Java--downcasting	to	the	subtype,	querying	an	
object for its type, and other type operations--is one of the pillars of object-oriented
programming	(principle	of	polymorphism),	AOT	compilation	for	Java	becomes	even	
more limited. Lambda expressions pause another challenge for static compilation
and are currently not supported yet.

Another advantage of a dynamic compiler is that it can make assumptions and
optimize the code accordingly. If the assumption turned out to be wrong, the
compiler can try another assumption until the performance goal is achieved. Such
a procedure may slow down the application and/or increase the warm-up time,
but	it	may	result	in	a	much	better	performance	in	the	long	run.	The	profile-guided	
optimization can help a static compiler to move along this path too, but it will always
remain limited in its opportunity to optimize by comparison with a dynamic one.

Tools for Higher Productivity and Faster Application

[42]

That	said,	we	should	not	be	surprised	that	the	current	AOT	implementation	in	JDK	
9 is experimental and limited, so far, to 64-bit Linux-based systems only, with both
Parallel or G1 garbage collection and the only supported module being java.base.
Further,	AOT	compilation	should	be	executed	on	the	same	system	or	a	system	with	
the	same	configuration	on	which	the	resulting	machine	code	will	be	executed.	Yet,	
despite	all	that,	the	JEP	295	states:

Performance	testing	shows	that	some	applications	benefit	from	AOT-compiled	code,	
while others clearly show regressions.

It	is	worth	noting	that	AOT	compilation	has	been	long	supported	in	Java Micro
Edition (ME),	but	more	use	cases	for	AOT	in	Java Standard Edition (SE) are yet to
be	identified,	which	was	one	of	the	reasons	the	experimental	AOT	implementation	
was	released	with	JDK	9--	in	order	to	facilitate	the	community	to	try	and	tell	about	
the practical needs.

The AOT Commands and Procedures
The	underlying	AOT	compilation	in	JDK	9	is	based	on	the	Oracle	project	Graal--an
open	source	compiler	introduced	with	JDK	8	with	a	goal	of	improving	the	performance	
of	the	Java	dynamic	compiler.	The	AOT	group	had	to	modify	it,	mostly	around	
constants	processing	and	optimization.	They	have	also	added	probabilistic	profiling	
and a special inlining policy, thus making Grall more suitable for static compilation.

In addition to the existing compiling tool javac, a new jaotc tool is included in the
JDK	9	installation.	The	resulting	AOT	shared	libraries	.so are generated using the
libelf library--the dependency that is going to be removed in the future releases.

To	start	AOT	compilation,	a	user	has	to	launch	jaotc	and	specify	classes,	JAR	files,	
or modules that have to be compiled. The name of the output library (that holds the
generated machine code) can also be passed as the jaotc	parameter.	If	not	specified,	
the default name of the output will be unnamed.so.	As	an	example,	let's	look	at	how	
the	AOT	compiler	can	work	with	the	class	HelloWorld:

public class HelloWorld {
 public static void main(String... args) {
 System.out.println("Hello, World!");
 }
}

First, we will generate the bytecode and produce HelloWorld.class using javac:

javac HelloWorld.java

Lesson 2

[43]

Then,	we	will	use	the	bytecode	from	the	file	HelloWorld.class to generate machine
code into the library libHelloWorld.so:

jaotc --output libHelloWorld.so HelloWorld.class

Now, we can execute the generated library (on the platform with the same
specification	as	the	one	where	jaotcwas executed) using the java tool with
an option -XX:AOTLibrary:

java -XX:AOTLibrary=./libHelloWorld.so HelloWorld

The option -XX:AOTLibrary	allows	us	to	list	several	AOT	libraries	separated	
by commas.

Notice that the java tool requires bytecode of all the applications in addition to the
native code of some of its components. This fact diminishes the alleged advantage
of	static	compilation,	which	some	AOT	enthusiasts	claim,	that	it	protects	code	
better from being decompiled. It might be so in the future when bytecode will not
be	required	at	runtime	if	the	same	class	or	method	is	in	the	AOT	library	already.	
However, as of today, it is not the case.

To	see	if	AOT-compiled	methods	were	used,	you	can	add	an	option	-XX:+PrintAOT:

java -XX:AOTLibrary=./libHelloWorld.so -XX:+PrintAOT HelloWorld

It will allow you to see the line loaded ./libHelloWorld.so	AOT	library	in	
the output.

If the source code of a class was changed but not pushed (through the jaotc tool)
into	the	AOT	library,	JVM	will	notice	it	at	runtime	because	the	fingerprint	of	each	
compiled	class	is	stored	with	its	native	code	in	the	AOT	library.	JIT	will	then	ignore	
the	code	in	the	AOT	library	and	use	the	bytecode	instead.

The java	tool	in	JDK	9	supports	a	few	other	flags	and	options	related	to	AOT:

•	 -XX:+/-UseAOT	tells	the	JVM	to	use	or	to	ignore	AOT-compiled	files	(by	
default,	it	is	set	to	use	AOT)

•	 -XX:+/-UseAOTStrictLoading	turns	on/off	the	AOT	strict	loading;	if	on,	it	
directs	JVM	to	exit	if	any	of	the	AOT	libraries	were	generated	on	a	platform	
with a configuration different from the current runtime configuration

The	JEP	295	describes	the	jaotc	tool's	command	format	as	follows:

jaotc <options> <name or list>

Tools for Higher Productivity and Faster Application

[44]

The name	is	a	class	name	or	JAR	file.	The	list is a colon : separated list of class
names,	modules,	JAR	files,	or	directories	that	contain	class	files.	The	options is one
or	many	flags	from	the	following	list:

•	 --output <file>: This is the output file name (by default, unnamed.so)
•	 --class-name <class names>:	This	is	the	list	of	Java	classes	to	compile
•	 --jar <jar files>:	This	is	the	list	of	JAR	files	to	compile
•	 --module <modules>:	This	is	the	list	of	Java	modules	to	compile
•	 --directory <dirs>: This is the list of directories where you can search for

files to compile
•	 --search-path <dirs>: This is the list of directories where to search for

specified files
•	 --compile-commands <file>: This is the name of the file with compile

commands;	here	is	an	example:
exclude sun.util.resources..*.TimeZoneNames_.*.getContents\(\)\[\
[Ljava/lang/Object;

exclude sun.security.ssl.*

compileOnly java.lang.String.*

AOT	recognizes	two	compile	commands	currently:

•	 exclude: This excludes the compilation of specified methods
•	 compileOnly: This compiles only specified methods

Regular expressions are used to specify classes and methods, which are
mentioned here:

•	 --compile-for-tiered: This generates profiling code for tiered compilation
(by default, profiling code is not generated)

•	 --compile-with-assertions:	This	generates	code	with	Java	assertions	
(by default, assertions code is not generated)

•	 --compile-threads <number>: This is the number of compilation threads to
be used (by default, the smaller value of 16 and number of available CPUs)

•	 --ignore-errors: This ignores all exceptions thrown during class loading
(by default, exits on compilation if class loading throws an exception)

•	 --exit-on-error: This exits on compilation errors (by default, failed
compilation is skipped, while the compilation of other methods continues)

•	 --info: This prints information about compilation phases
•	 --verbose: This prints more details about compilation phases

Lesson 2

[45]

•	 --debug: This prints even more details
•	 --help: This prints help information
•	 --version: This prints version information
•	 -J<flag>:	This	passes	a	flag	directly	to	the	JVM	runtime	system

As	we	mentioned	already,	some	applications	can	improve	performance	using	AOT,	
while	others	may	become	slower.	Only	testing	will	provide	a	definite	answer	to	the	
question	about	the	usefulness	of	AOT	for	each	application.	In	any	case,	one	of	the	
ways	to	improve	performance	is	to	compile	and	use	the	AOT	library	of	the	java.
base module:

jaotc --output libjava.base.so --module java.base

At	runtime,	the	AOT	initialization	code	looks	for	shared	libraries	in	the	$JAVA_HOME/
lib directory or among the libraries listed by the -XX:AOTLibrary option. If shared
libraries are found, they are picked up and used. If no shared libraries can be found,
AOT	will	be	turned	off.

Summary
In this lesson, we described two new tools that can help a developer be more
productive	(JShell	tool)	and	help	improve	Java	application	performance	(jaotc tool).
The	examples	and	steps	to	use	them	will	help	you	understand	the	benefits	of	their	
usage and get you started in case you decide to try them.

In	the	next	lesson,	we	will	discuss	how	to	monitor	Java	applications	
programmatically using command-line tools. We will also explore how to improve
the	application	performance	via	multithreading	and	how	to	tune	the	JVM	itself	after	
learning about the bottlenecks through monitoring.

Assessments
1. The	________	compiler	takes	Java	bytecode	and	generates	a	native	machine	

code	so	that	the	resulting	binary	file	can	execute	natively.
2. Which of the following commands drops a snippet referenced by a name or

on	ID?
1. /d <name or id>

2. /drop <name or id>

3. /dr <name or id>

4. /dp <name or id>

Tools for Higher Productivity and Faster Application

[46]

3. State whether True or False: Shell is Ahead-of-Time tool that is well-known
for those who program in Scala, Ruby. It takes a user input, evaluates it, and
returns the result after sometime.

4. Which of the following commands is used to list the source you have typed
in	JShell?

1. /l [<name or id>|-all|-start]

2. /m [<name or id>|-all|-start]L

3. /t [<name or id>|-all|-start]

4. /v [<name or id>|-all|-start]

5. Which of the following regular expressions ignores all exceptions thrown
during	class	loading?

1. --exit-on-error

2. –ignores-errors

3. --ignore-errors

4. --exits-on-error

[47]

Multithreading and Reactive
Programming

In this lesson, we will look at an approach to support a high performance of an
application by programmatically splitting the task between several workers. That
was how the pyramids were built 4,500 years ago, and this method has not failed to
deliver since then. But there is a limitation on how many laborers can be brought to
work on the same project. The shared resources provide a ceiling to how much the
workforce can be increased, whether the resources are counted in square feet and
gallons (as the living quarters and water in the time of the pyramids) or in gigabytes
and gigahertz (as the memory and processing power of a computer).

Allocation, usage, and limitations of a living space and computer memory are very
similar. However, we perceive the processing power of the human workforce and
CPU quite differently. Historians tell us that thousands of ancient Egyptians worked
on cutting and moving massive stone blocks at the same time. We do not have any
problem understanding what they mean even if we know that these workers rotated
all the time, some of them resting or attending to other matters temporarily and then
coming	back	to	replace	the	ones	who	have	finished	their	annual	assignment,	others	
died or got injured and were replaced by the new recruits.

But in case of computer data processing, when we hear about working threads
executing at the same time, we automatically assume that they literally do what
they	are	programmed	to	do	in	parallel.	Only	after	we	look	under	the	hood	of	such	a	
system we realize that such parallel processing is possible only when the threads are
executed	each	by	a	different	CPU.	Otherwise,	they	time	share	the	same	processing	
power, and we perceive them working at the same time only because the time slots
they use are very short--a fraction of the time units we have used in our everyday
life. When the threads share the same resource, in computer science we say they
do it concurrently.

Multithreading and Reactive Programming

[48]

In	this	lesson,	we	will	discuss	the	ways	to	increase	Java	application	performance	
by using the workers (threads) that process data concurrently. We will show how
to use threads effectively by pooling them, how to synchronize the concurrently
accessed data, how to monitor and tune worker threads at runtime, and how to
take advantage of the reactive programming concept.

But	before	doing	that,	let's	revisit	the	basics	of	creating	and	running	multiple	threads	
in	the	same	Java	process.

Prerequisites
There are principally two ways to create worker threads--by extending the java.
lang.Thread class and by implementing the java.lang.Runnable interface. While
extending the java.lang.Thread class, we are not required to implement anything:

class MyThread extends Thread {
}

Our	MyThread class inherits the name property with an automatically generated
value and the start() method. We can run this method and check the name:

System.out.print("demo_thread_01(): ");
MyThread t1 = new MyThread();
t1.start();
System.out.println("Thread name=" + t1.getName());

If we run this code, the result will be as follows:

As you can see, the generated name is Thread-0. If we created another thread in the
same	Java	process,	the	name would be Thread-1 and so on. The start() method
does nothing. The source code shows that it calls the run() method if such a method
is implemented.

We can add any other method to the MyThread class as follows:

class MyThread extends Thread {
 private double result;
 public MyThread(String name){ super(name); }
 public void calculateAverageSqrt(){
 result = IntStream.rangeClosed(1, 99999)
 .asDoubleStream()
 .map(Math::sqrt)

Lesson 3

[49]

 .average()
 .getAsDouble();
 }
 public double getResult(){ return this.result; }
}

The calculateAverageSqrt()	method	calculates	the	average	square	root	of	the	first	
99,999 integers and assigns the result to a property that can be accessed anytime. The
following code demonstrates how we can use it:

System.out.print("demo_thread_02(): ");
MyThread t1 = new MyThread("Thread01");
t1.calculateAverageSqrt();
System.out.println(t1.getName() + ": result=" + t1.getResult());

Running this brings up the following result:

As you would expect, the calculateAverageSqrt() method blocks until the
calculations are completed. It was executed in the main thread without it taking
advantage of multithreading. To do this, we move the functionality in the run()
method:

class MyThread01 extends Thread {
 private double result;
 public MyThread01(String name){ super(name); }
 public void run(){
 result = IntStream.rangeClosed(1, 99999)
 .asDoubleStream()
 .map(Math::sqrt)
 .average()
 .getAsDouble();
 }
 public double getResult(){ return this.result; }
}

Now we call the start()	method	again,	as	in	the	first	example	and	expect	the	result	
to be calculated:

System.out.print("demo_thread_03(): ");
MyThread01 t1 = new MyThread01("Thread01");
t1.start();
System.out.println(t1.getName() + ": result=" + t1.getResult());

Multithreading and Reactive Programming

[50]

However, the output of this code may surprise you:

This means that the main thread accessed (and printed) the t1.getResult()
function before the new t1	thread	finished	its	calculations.	We	can	experiment	
and change the implementation of the run() method to see if the t1.getResult()
function can get a partial result:

public void run() {
 for (int i = 1; i < 100000; i++) {
 double s = Math.sqrt(1. * i);
 result = result + s;
 }
 result = result / 99999;
}

However, if we run the demo_thread_03() method again, the result remains
the same:

It takes time to create a new thread and get it going. Meanwhile, the main thread
calls the t1.getResult() function immediately, thus getting no results yet.

To give the new (child) thread time to complete the calculations, we add the
following code:

try {
 t1.join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

The join() method tells the current thread to wait until the t1	thread	is	finished	
executing.	Let's	run	the	following	snippet	of	code:

System.out.print("demo_thread_04(): ");
MyThread01 t1 = new MyThread01("Thread01");
t1.start();
try {
 t1.join();
} catch (InterruptedException e) {

Lesson 3

[51]

 e.printStackTrace();
}
System.out.println(t1.getName()
 + ": result=" + t1.getResult());
System.out.println("Thread name="
 + Thread.currentThread().getName());

You have noticed that we have paused the main thread by 100 ms and added
printing of the current thread name, to illustrate what we mean by main thread, the
name that is assigned automatically to the thread that executes the main() method.
The output of the previous code is as follows:

The delay of 100 ms was enough for the t1	thread	to	finish	the	calculations.	That	
was	the	first	of	two	ways	of	creating	threads	for	multithreaded	calculation.	The	
second way is to implement the Runnable interface. It may be the only way possible
if the class that does calculations already extends some other class and you cannot
or	don't	want	to	use	composition	for	some	reasons.	The	Runnable interface is a
functional interface (has only one abstract method) with the run() method that
has to be implemented:

@FunctionalInterface
public interface Runnable {
 /**
 * When an object implementing interface <code>Runnable</code> is
used
 * to create a thread, starting the thread causes the object's
 * <code>run</code> method to be called in that separately
executing
 * thread.
 */
 public abstract void run();

We implement this interface in the MyRunnable class:

class MyRunnable01 implements Runnable {
 private String id;
 private double result;
 public MyRunnable01(int id) {
 this.id = String.valueOf(id);
 }
 public String getId() { return this.id; }

Multithreading and Reactive Programming

[52]

 public double getResult() { return this.result; }
 public void run() {
 result = IntStream.rangeClosed(1, 99999)
 .asDoubleStream()
 .map(Math::sqrt)
 .average()
 .getAsDouble();
 }
}

It has the same functionality as the Thread01 class earlier plus we have added id that
allows identifying the thread if necessary since the Runnable interface does not have
the built-in getName() method like the Thread class has.

Similarly, if we execute this class without pausing the main thread, like this:

System.out.print("demo_runnable_01(): ");
MyRunnable01 myRunnable = new MyRunnable01(1);
Thread t1 = new Thread(myRunnable);
t1.start();
System.out.println("Worker " + myRunnable.getId()
 + ": result=" + myRunnable.getResult());

The output will be as follows:

We will now add the pause as follows:

System.out.print("demo_runnable_02(): ");
MyRunnable01 myRunnable = new MyRunnable01(1);
Thread t1 = new Thread(myRunnable);
t1.start();
try {
 t1.join();
} catch (InterruptedException e) {
 e.printStackTrace();
}
System.out.println("Worker " + myRunnable.getId()
 + ": result=" + myRunnable.getResult());

Lesson 3

[53]

The result is exactly the same as the one produced by the Thread01 class:

All the previous examples stored the generated result in the class property. But it is
not always the case. Typically, the worker thread either passes its value to another
thread or stores it in a database or somewhere else externally. In such a case, one can
take advantage of the Runnable interface being a functional interface and pass the
necessary processing function into a new thread as a lambda expression:

System.out.print("demo_lambda_01(): ");
String id = "1";
Thread t1 =
 new Thread(() -> IntStream.rangeClosed(1, 99999)
 .asDoubleStream().map(Math::sqrt).average()
 .ifPresent(d -> System.out.println("Worker "
 + id + ": result=" + d)));
t1.start();
try {
 t1.join();
} catch (InterruptedException e) {
 e.printStackTrace();
}

The result is going to be exactly the same, as shown here:

Depending	on	the	preferred	style,	you	can	re-arrange	the	code	and	isolate	the	
lambda expression in a variable, as follows:

Runnable r = () -> IntStream.rangeClosed(1, 99999)
 .asDoubleStream().map(Math::sqrt).average()
 .ifPresent(d -> System.out.println("Worker "
 + id + ": result=" + d));
Thread t1 = new Thread(r);

Alternatively, you can put the lambda expression in a separate method:

void calculateAverage(String id) {
 IntStream.rangeClosed(1, 99999)
 .asDoubleStream().map(Math::sqrt).average()
 .ifPresent(d -> System.out.println("Worker "

Multithreading and Reactive Programming

[54]

 + id + ": result=" + d));
}
void demo_lambda_03() {
 System.out.print("demo_lambda_03(): ");
 Thread t1 = new Thread(() -> calculateAverage("1"));
 ...
}

The result is going to be the same, as shown here:

With the basic understanding of threads creation in place, we can now return to
the discussion about using the multithreading for building a high-performance
application. In other words, after we understand the abilities and resources needed
for each worker, we can now talk about logistics of bringing in many of them for
such a big-scale project as the Great Pyramid of Giza.

To write code that manages the life cycle of worker threads and their access to
the shared resources is possible, but it is quite the same from one application to
another.	That's	why,	after	several	releases	of	Java,	the	thread	management	plumbing	
became	part	of	the	standard	JDK	library	as	the	java.util.concurrent package.
This package has a wealth of interfaces and classes that support multithreading
and concurrency. We will discuss how to use most of this functionality in the
subsequent sections, while talking about thread pools, threads monitoring, thread
synchronization, and the related subjects.

Thread Pools
In this section, we will look into the Executor interfaces and their implementations
provided in the java.util.concurrent package. They encapsulate thread
management and minimize the time an application developer spends on the writing
code	related	to	threads'	life	cycles.

There are three Executor	interfaces	defined	in	the	java.util.concurrent package.
The	first	is	the	base	Executor interface has only one void execute(Runnable r)
method in it. It basically replaces the following:

Runnable r = ...;
(new Thread(r)).start()

Lesson 3

[55]

However, we can also avoid a new thread creation by getting it from a pool.

The second is the ExecutorService interface extends Executor and adds the
following groups of methods that manage the life cycle of the worker threads
and of the executor itself:

•	 submit(): Place in the queue for the execution of an object of the interface
Runnable or interface Callable	(allows	the	worker	thread	to	return	a	value);	
return object of Future interface, which can be used to access the value
returned by the Callable and to manage the status of the worker thread

•	 invokeAll(): Place in the queue for the execution of a collection of interface
Callable objects return, list of Future objects when all the worker threads
are complete (there is also an overloaded invokeAll() method with timeout)

•	 invokeAny(): Place in the queue for the execution of a collection of interface
Callable	objects;	return	one	Future object of any of the worker threads,
which has completed (there is also an overloaded invokeAny() method
with timeout)

Methods that manage the worker threads status and the service itself:

•	 shutdown(): This prevents new worker threads from being submitted
to the service

•	 isShutdown(): This checks whether the shutdown of the executor
was initiated

•	 awaitTermination(long timeout, TimeUnit timeUnit): This waits until
all worker threads have completed execution after a shutdown request, or the
timeout occurs, or the current thread is interrupted, whichever happens first

•	 isTerminated(): This checks whether all the worker threads have
completed	after	the	shutdown	was	initiated;	it	never	returns	true unless
either shutdown() or shutdownNow() was called first

•	 shutdownNow():	This	interrupts	each	worker	thread	that	is	not	completed;	
a worker thread should be written so that it checks its own status (using
Thread.currentThread().isInterrupted(), for example) periodically and
gracefully	shuts	down	on	its	own;	otherwise,	it	will	continue	running	even	
after shutdownNow() was called

The third interface is ScheduledExecutorService that extends ExecutorService
and adds methods that allow scheduling of the execution (one-time and periodic
one) of the worker threads.

Multithreading and Reactive Programming

[56]

A pool-based implementation of ExecutorService can be created using the
java.util.concurrent.ThreadPoolExecutor or java.util.concurrent.
ScheduledThreadPoolExecutor class. There is also a java.util.concurrent.
Executors factory class that covers most of the practical cases. So, before writing a
custom code for worker threads pool creation, we highly recommend looking into
using the following factory methods of the java.util.concurrent.Executors class:

•	 newSingleThreadExecutor(): This creates an ExecutorService (pool)
instance that executes worker threads sequentially

•	 newFixedThreadPool(): This creates a thread pool that reuses a fixed
number	of	worker	threads;	if	a	new	task	is	submitted	when	all	the	worker	
threads are still executing, it will be set into the queue until a worker thread
is available

•	 newCachedThreadPool(): This creates a thread pool that adds a new thread
as	needed,	unless	there	is	an	idle	thread	created	before;	threads	that	have	
been idle for sixty seconds are removed from the cache

•	 newScheduledThreadPool(): This creates a thread pool of a fixed size that
can schedule commands to run after a given delay, or to execute periodically

•	 newSingleThreadScheduledExecutor(): This creates a single-threaded
executor that can schedule commands to run after a given delay, or to
execute periodically

•	 newWorkStealingThreadPool(): This creates a thread pool that uses the
same work-stealing mechanism used by ForkJoinPool, which is particularly
useful in case the worker threads generate other threads, such as in recursive
algorithms

Each of these methods has an overloaded version that allows passing in a
ThreadFactory	that	is	used	to	create	a	new	thread	when	needed.	Let's	see	
how it all works in a code sample.

First, we create a MyRunnable02 class that implements Runnable—our future
worker threads:

class MyRunnable02 implements Runnable {
 private String id;
 public MyRunnable02(int id) {
 this.id = String.valueOf(id);
 }
 public String getId(){ return this.id; }
 public void run() {
 double result = IntStream.rangeClosed(1, 100)
 .flatMap(i -> IntStream.rangeClosed(1, 99999))
 .takeWhile(i ->

Lesson 3

[57]

 !Thread.currentThread().isInterrupted())
 .asDoubleStream()
 .map(Math::sqrt)
 .average()
 .getAsDouble();
 if(Thread.currentThread().isInterrupted()){
 System.out.println(" Worker " + getId()
 + ": result=ignored: " + result);
 } else {
 System.out.println(" Worker " + getId()
 + ": result=" + result);
 }
}

Notice the important difference of this implementation from the previous
examples--the takeWhile(i -> !Thread.currentThread().isInterrupted())
operation	allows	the	stream	flowing	as	long	as	the	thread	worker	status	is	not	set	to	
interrupted, which happens when the shutdownNow() method is called. As soon as
the predicate of the takeWhile() returns false (the worker thread is interrupted),
the thread stops producing the result (just ignores the current result value). In a
real system, it would equate to skipping storing result value in the database,
for example.

It is worth noting here that using the interrupted() status method for checking
the thread status in the preceding code may lead to inconsistent results. Since the
interrupted() method returns the correct state value and then clears the thread
state, the second call to this method (or the call to the method isInterrupted()
after the call to the method interrupted()) always returns false.

Although it is not the case in this code, we would like to mention here a mistake
some developers make while implementing try/catch block in a worker thread. For
example, if the worker needs to pause and wait for an interrupt signal, the code often
looks like this:

try {
 Thread.currentThread().wait();
} catch (InterruptedException e) {}
// Do what has to be done

The problem with the preceding snippet is that the thread status never becomes
interrupted, while the higher level code might be monitoring the worker thread and
changes behavior depending on whether the worker has been interrupted or not.

Multithreading and Reactive Programming

[58]

The better implementation is as follows:

try {
 Thread.currentThread().wait();
} catch (InterruptedException e) {
 Thread.currentThread().interrupt();
}
// Do what has to be done

This way the status interrupted is set on the thread and can be checked later by
the isInterrupted() method. To be fair, in many applications, once the thread
is interrupted, its code is not checked again. But setting the correct state is a good
practice, especially in the cases when you are not the author of the client code.

In the snippet of code with the join() method, we did not need to do that because
that was the main code (the highest level code) that had to be paused.

Now we can show how to execute the earlier MyRunnable02 class with a cached pool
implementation of the ExecutiveService pool (other types of thread pool are used
similarly). First, we create the pool, submit three instances of the MyRunnable02 class
for execution and shut down the pool:

ExecutorService pool = Executors.newCachedThreadPool();
IntStream.rangeClosed(1, 3).
 forEach(i -> pool.execute(new MyRunnable02(i)));
System.out.println("Before shutdown: isShutdown()="
 + pool.isShutdown() + ", isTerminated()="
 + pool.isTerminated());
pool.shutdown(); // New threads cannot be submitted
System.out.println("After shutdown: isShutdown()="
 + pool.isShutdown() + ", isTerminated()="
 + pool.isTerminated());

If we run these lines, we will see the following output:

No surprises here! The isShutdown() method returns a false value before the
shutdown() method is called and a true value afterward. The isTerminated()
method returns a false value, because none of the worker threads has completed yet.

Lesson 3

[59]

Let's	test	the	shutdown() method by adding the following code after it:

try {
 pool.execute(new MyRunnable02(100));
} catch(RejectedExecutionException ex){
 System.err.println("Cannot add another worker-thread to the
service queue:\n" + ex.getMessage());
}

The output will now have the following message (the screenshot would be either
too	big	for	this	page	or	not	readable	when	fitting):

Cannot add another worker-thread to the service queue:
Task com.packt.java9hp.ch09_threads.MyRunnable02@6f7fd0e6
 rejected from java.util.concurrent.ThreadPoolExecutor
 [Shutting down, pool size = 3, active threads = 3,
 queued tasks = 0, completed tasks = 0]

As expected, after the shutdown() method is called, no more worker threads can be
added to the pool.

Now,	let's	see	what	we	can	do	after	the	shutdown	was	initiated:

long timeout = 100;
TimeUnit timeUnit = TimeUnit.MILLISECONDS;
System.out.println("Waiting for all threads completion "
 + timeout + " " + timeUnit + "...");
// Blocks until timeout or all threads complete execution
boolean isTerminated =
 pool.awaitTermination(timeout, timeUnit);
System.out.println("isTerminated()=" + isTerminated);
if (!isTerminated) {
 System.out.println("Calling shutdownNow()...");
 List<Runnable> list = pool.shutdownNow();
 printRunningThreadIds(list);
 System.out.println("Waiting for threads completion "
 + timeout + " " + timeUnit + "...");
 isTerminated =
 pool.awaitTermination(timeout, timeUnit);
 if (!isTerminated){
 System.out.println("Some threads are running...");
 }
 System.out.println("Exiting.");
}

Multithreading and Reactive Programming

[60]

The printRunningThreadIds() method looks like this:

void printRunningThreadIds(List<Runnable> l){
 String list = l.stream()
 .map(r -> (MyRunnable02)r)
 .map(mr -> mr.getId())
 .collect(Collectors.joining(","));
 System.out.println(l.size() + " thread"
 + (l.size() == 1 ? " is" : "s are") + " running"
 + (l.size() > 0 ? ": " + list : "") + ".");
}

The output of the preceding code will be as follows:

This means that 100 ms was enough for each worker thread to complete the
calculations. (Notice, if you try to reproduce this data on your computer, the results
might be slightly different because of the difference in performance, so you would
need to adjust the timeout.)

When we have decreased the wait time to 75 ms, the output became as follows:

The 75 ms on our computer was not enough to let all the threads complete, so they
were interrupted by shutdownNow() and their partial results were ignored.

Let's	now	remove	the	check	of	the	interrupted	status	in	the	MyRunnable01 class:

class MyRunnable02 implements Runnable {
 private String id;
 public MyRunnable02(int id) {
 this.id = String.valueOf(id);
 }

Lesson 3

[61]

 public String getId(){ return this.id; }
 public void run() {
 double result = IntStream.rangeClosed(1, 100)
 .flatMap(i -> IntStream.rangeClosed(1, 99999))
 .asDoubleStream()
 .map(Math::sqrt)
 .average()
 .getAsDouble();
 System.out.println(" Worker " + getId()
 + ": result=" + result);
}

Without the check, even if we decrease the timeout to 1 ms, the result will be
as follows:

That is because the worker threads have never noticed that somebody tried to
interrupt them and completed their assigned calculations. This last test demonstrates
the importance of watching for the interrupted state in a work thread in order to
avoid many possible problems, namely, data corruption and memory leak.

The	demonstrated	cached	pool	works	fine	and	poses	no	problem	if	the	worker	
threads perform short tasks and their number cannot grow excessively large. If you
need to have more control over the max number of worker threads running at any
time,	use	the	fixed	size	thread	pool.	We	will	discuss	how	to	choose	the	pool	size	in	
one of the following sections of this lesson.

The	single-thread	pool	is	a	good	fit	for	executing	tasks	in	a	certain	order	or	in	the	
case when each of them requires so many resources that cannot be executed in
parallel with another. Yet another case for using a single-thread execution would be
for workers that modify the same data, but the data cannot be protected from the
parallel access another way. The thread synchronization will be discussed in more
detail in one of the following sections of this lesson, too.

Multithreading and Reactive Programming

[62]

In our sample code, so far we have only included the execute() method of the
Executor interface. We will demonstrate the other methods of the ExecutorService
pool in the following section while discussing threads monitoring.

And the last remark in this section. The worker threads are not required to be objects
of the same class. They may represent completely different functionality and still be
managed by one pool.

Monitoring Threads
There are two ways to monitor threads, programmatically and using the external
tools. We have already seen how the result of a worker calculation could be checked.
Let's	revisit	that	code.	We	will	also	slightly	modify	our	worker	implementation:

class MyRunnable03 implements Runnable {
 private String name;
 private double result;
 public String getName(){ return this.name; }
 public double getResult() { return this.result; }
 public void run() {
 this.name = Thread.currentThread().getName();
 double result = IntStream.rangeClosed(1, 100)
 .flatMap(i -> IntStream.rangeClosed(1, 99999))
 .takeWhile(i -> !Thread.currentThread().isInterrupted())
 .asDoubleStream().map(Math::sqrt).average().getAsDouble();
 if(!Thread.currentThread().isInterrupted()){
 this.result = result;
 }
 }
}

For	the	worker	thread	identification,	instead	of	custom	ID,	we	now	use	the	thread	
name assigned automatically at the time of the execution (that is why we assign
the name property in the run() method that is called in the context of the execution
when the thread acquires its name). The new class MyRunnable03 can be used
like this:

void demo_CheckResults() {
 ExecutorService pool = Executors.newCachedThreadPool();
 MyRunnable03 r1 = new MyRunnable03();
 MyRunnable03 r2 = new MyRunnable03();
 pool.execute(r1);
 pool.execute(r2);
 try {

Lesson 3

[63]

 t1.join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.println("Worker " + r1.getName() + ": result=" +
r1.getResult());
 System.out.println("Worker " + r2.getName() + ": result=" +
r2.getResult());
 shutdown(pool);
}

The shutdown() method contains the following code:

void shutdown(ExecutorService pool) {
 pool.shutdown();
 try {
 if(!pool.awaitTermination(1, TimeUnit.SECONDS)){
 pool.shutdownNow();
 }
 } catch (InterruptedException ie) {}
}

If we run the preceding code, the output will be as follows:

If the result on your computer is different, try to increase the input value to the
sleepMs() method.

Another way to get information about the application worker threads is by using
the Future interface. We can access this interface using the submit() method of the
ExecutorService pool, instead of the execute(), invokeAll(), or invokeAny()
methods. This code shows how to use the submit() method:

ExecutorService pool = Executors.newCachedThreadPool();
Future f1 = pool.submit(new MyRunnable03());
Future f2 = pool.submit(new MyRunnable03());
printFuture(f1, 1);
printFuture(f2, 2);
shutdown(pool);

The printFuture() method has the following implementation:

void printFuture(Future future, int id) {
 System.out.println("printFuture():");

Multithreading and Reactive Programming

[64]

 while (!future.isCancelled() && !future.isDone()){
 System.out.println(" Waiting for worker "
 + id + " to complete...");
 sleepMs(10);
 }
 System.out.println(" Done...");
}

The sleepMs() method contains the following code:

void sleepMs(int sleepMs) {
 try {
 TimeUnit.MILLISECONDS.sleep(sleepMs);
 } catch (InterruptedException e) {}
}

We prefer this implementation instead of the traditional Thread.sleep() because it
is explicit about the time units used.

If we execute the previous code, the result will be similar to the following:

The printFuture()	method	has	blocked	the	main	thread	execution	until	the	first	
thread has completed. Meanwhile, the second thread has completed too. If we call
the printFuture() method after the shutdown() method, both the threads would
complete by that time already because we have set a wait time of 1 second (see the
pool.awaitTermination()	method),	which	is	enough	for	them	to	finish	their	job:

Lesson 3

[65]

If you think it is not much information from a threads monitoring point of
view, the java.util.concurrent package provides more capabilities via the
Callable interface. It is a functional interface that allows returning any object
(containing results of the worker thread calculations) via the Future object using
ExecutiveService methods--submit(), invokeAll(), and invokeAny(). For
example, we can create a class that contains the result of a worker thread:

class Result {
 private double result;
 private String workerName;
 public Result(String workerName, double result) {
 this.result = result;
 this.workerName = workerName;
 }
 public String getWorkerName() { return workerName; }
 public double getResult() { return result;}
}

We have included the name of the worker thread too for monitoring which thread
generated the result that is presented. The class that implements the Callable
interface may look like this:

class MyCallable01<T> implements Callable {
 public Result call() {
 double result = IntStream.rangeClosed(1, 100)
 .flatMap(i -> IntStream.rangeClosed(1, 99999))
 .takeWhile(i -> !Thread.currentThread().isInterrupted())
 .asDoubleStream().map(Math::sqrt).average().getAsDouble();

 String workerName = Thread.currentThread().getName();
 if(Thread.currentThread().isInterrupted()){
 return new Result(workerName, 0);
 } else {
 return new Result(workerName, result);
 }
 }
}

And here is the code that uses the MyCallable01 class:

ExecutorService pool = Executors.newCachedThreadPool();
Future f1 = pool.submit(new MyCallable01<Result>());
Future f2 = pool.submit(new MyCallable01<Result>());
printResult(f1, 1);
printResult(f2, 2);
shutdown(pool);

Multithreading and Reactive Programming

[66]

The printResult() method contains the following code:

void printResult(Future<Result> future, int id) {
 System.out.println("printResult():");
 while (!future.isCancelled() && !future.isDone()){
 System.out.println(" Waiting for worker "
 + id + " to complete...");
 sleepMs(10);
 }
 try {
 Result result = future.get(1, TimeUnit.SECONDS);
 System.out.println(" Worker "
 + result.getWorkerName() + ": result = "
 + result.getResult());
 } catch (Exception ex) {
 ex.printStackTrace();
 }
}

The output of this code may look like this:

The earlier output shows, as in the previous examples, that the printResult()
method	waits	until	the	first	of	the	worker	threads	finishes,	so	the	second	thread	
manages	to	finish	its	job	at	the	same	time.	The	advantage	of	using	Callable, as you
can see, is that we can retrieve the actual result from a Future object, if we need it.

The usage of the invokeAll() and invokeAny() methods looks similar:

ExecutorService pool = Executors.newCachedThreadPool();
try {
 List<Callable<Result>> callables =
 List.of(new MyCallable01<Result>(),
 new MyCallable01<Result>());

Lesson 3

[67]

 List<Future<Result>> futures =
 pool.invokeAll(callables);
 printResults(futures);
} catch (InterruptedException e) {
 e.printStackTrace();
}
shutdown(pool);

The printResults() method is using the printResult() method, which you
already know:

void printResults(List<Future<Result>> futures) {
 System.out.println("printResults():");
 int i = 1;
 for (Future<Result> future : futures) {
 printResult(future, i++);
 }
}

If we run the preceding code, the output will be as follows:

As you can see, there is no more waiting for the worker thread completing the job.
That is so because the invokeAll() method returns the collection of the Future
object after all the jobs have completed.

The invokeAny() method behaves similarly. If we run the following code:

System.out.println("demo_InvokeAny():");
ExecutorService pool = Executors.newCachedThreadPool();
try {
 List<Callable<Result>> callables =
 List.of(new MyCallable01<Result>(),
 new MyCallable01<Result>());
 Result result = pool.invokeAny(callables);
 System.out.println(" Worker "
 + result.getWorkerName()
 + ": result = " + result.getResult());
} catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
}
shutdown(pool);

Multithreading and Reactive Programming

[68]

The following will be the output:

These are the basic techniques for monitoring the threads programmatically, but one
can easily extend our examples to cover more complicated cases tailored to the needs
of	a	specific	application.	In	Lesson 5, Making Use of New APIs to Improve Your Code, we
will also discuss another way to programmatically monitor worker threads using
the java.util.concurrent.CompletableFuture	class	introduced	in	JDK	8	and	
extended	in	JDK	9.

If necessary, it is possible to get information not only about the application worker
threads,	but	also	about	all	other	threads	in	the	JVM	process	using	the	java.lang.
Thread class:

void printAllThreads() {
 System.out.println("printAllThreads():");
 Map<Thread, StackTraceElement[]> map = Thread.getAllStackTraces();
 for(Thread t: map.keySet()){
 System.out.println(" " + t);
 }

Now,	let's	call	this	method	as	follows:

void demo_CheckResults() {
 ExecutorService pool = Executors.newCachedThreadPool();
 MyRunnable03 r1 = new MyRunnable03();
 MyRunnable03 r2 = new MyRunnable03();
 pool.execute(r1);
 pool.execute(r2);
 sleepMs(1000);
 printAllThreads();
 shutdown(pool);
}

Lesson 3

[69]

The result looks like this:

We took advantage of the toString() method of the Thread class that prints only
the thread name, priority, and the thread group it belongs to. And we see the two
application threads we have created explicitly (in addition to the main thread) in the
list under the names pool-1-thread-1 and pool-1-thread-2. But if we call the
printAllThreads() method after calling the shutdown() method, the output will
be as follows:

We do not see the pool-1-thread-1 and pool-1-thread-2 threads in the list
anymore because the ExecutorService pool has been shut down.

We could easily add the stack trace information pulled from the same map:

void printAllThreads() {
 System.out.println("printAllThreads():");
 Map<Thread, StackTraceElement[]> map
 = Thread.getAllStackTraces();
 for(Thread t: map.keySet()){
 System.out.println(" " + t);
 for(StackTraceElement ste: map.get(t)){
 System.out.println(" " + ste);
 }
 }
}

Multithreading and Reactive Programming

[70]

However, that would take too much space on the book page. In Lesson 5, Making Use
of New APIs to Improve Your Code,	while	presenting	new	Java	capabilities	that	came	
with	JDK	9,	we	will	also	discuss	a	better	way	to	access	a	stack	trace	via	the	java.
lang.StackWalker class.

The Thread class object has several other methods that provide information about
the thread, which are as follows:

•	 dumpStack(): This prints a stack trace to the standard error stream
•	 enumerate(Thread[] arr): This copies active threads in the current

thread's	thread	group	and	its	subgroups	into	the	specified	array	arr
•	 getId():	This	provides	the	thread's	ID
•	 getState():	This	reads	the	state	of	the	thread;	the	possible	values	from	enum

Thread.State can be one of the following:
 ° NEW: This is the thread that has not yet started
 ° RUNNABLE: This is the thread that is currently being executed
 ° BLOCKED: This is the thread that is blocked waiting for a monitor lock

to be released
 ° WAITING: This is the thread that is waiting for an interrupt signal
 ° TIMED_WAITING: This is the thread that is waiting for an interrupt

signal up to a specified waiting time
 ° TERMINATED: This is the thread that has exited

•	 holdsLock(Object obj): This indicates whether the thread holds the
monitor lock on the specified object

•	 interrupted() or isInterrupted(): This indicates whether the thread
has been interrupted (received an interrupt signal, meaning that the flag
interrupted was set to true)

•	 isAlive(): This indicates whether the thread is alive
•	 isDaemon(): This indicates whether the thread is a daemon thread.

The java.lang.management package provides similar capabilities for monitoring
threads.	Let's	run	this	code	snippet,	for	example:

void printThreadsInfo() {
 System.out.println("printThreadsInfo():");
 ThreadMXBean threadBean =
 ManagementFactory.getThreadMXBean();
 long ids[] = threadBean.getAllThreadIds();
 Arrays.sort(ids);

Lesson 3

[71]

 ThreadInfo[] tis = threadBean.getThreadInfo(ids, 0);
 for (ThreadInfo ti : tis) {
 if (ti == null) continue;
 System.out.println(" Id=" + ti.getThreadId()
 + ", state=" + ti.getThreadState()
 + ", name=" + ti.getThreadName());
 }
}

For	better	presentation,	we	took	advantage	of	having	thread	IDs	listed	and,	as	you	
could	see	previously,	have	sorted	the	output	by	ID.	If	we	call	the	printThreadsInfo()
method before the shutdown() method the output will be as follows:

However, if we call the printThreadsInfo() method after the shutdown() method,
the output will not include our worker threads anymore, exactly as in the case of
using the Thread class API:

The java.lang.management.ThreadMXBean interface provides a lot of other useful
data	about	threads.	You	can	refer	to	the	official	API	on	the	Oracle	website	about	
this interface for more information check this link: https://docs.oracle.com/
javase/8/docs/api/index.html?java/lang/management/ThreadMXBean.html.

Multithreading and Reactive Programming

[72]

In the list of threads mentioned earlier, you may have noticed the Monitor Ctrl-
Break	thread.	This	thread	provides	another	way	to	monitor	the	threads	in	the	JVM	
process. Pressing the Ctrl and Break	keys	on	Windows	causes	the	JVM	to	print	
a	thread	dump	to	the	application's	standard	output.	On	Oracle	Solaris	or	Linux	
operating systems, the same effect has the combination of the Ctrl key and the
backslash \. This brings us to the external tools for thread monitoring.

In	case	you	don't	have	access	to	the	source	code	or	prefer	to	use	the	external	tools	
for the threads monitoring, there are several diagnostic utilities available with the
JDK	installation.	In	the	following	list,	we	mention	only	the	tools	that	allow	for	thread	
monitoring and describe only this capability of the listed tools (although they have
other extensive functionality too):

•	 The jcmd	utility	sends	diagnostic	command	requests	to	the	JVM	on	the	
same	machine	using	the	JVM	process	ID	or	the	name	of	the	main	class:	jcmd
<process id/main class> <command> [options], where the Thread.
print option prints the stack traces of all the threads in the process.

•	 The	JConsole	monitoring	tool	uses	the	built-in	JMX	instrumentation	in	
the	JVM	to	provide	information	about	the	performance	and	resource	
consumption of running applications. It has a thread tab pane that shows
thread usage over time, the current number of live threads, the highest
number	of	live	threads	since	the	JVM	started.	It	is	possible	to	select	the	
thread and its name, state, and stack trace, as well as, for a blocked thread,
the synchronizer that the thread is waiting to acquire, and the thread owning
the lock. Use the Deadlock Detection button to identify the deadlock.
The command to run the tool is jconsole <process id> or (for remote
application) jconsole <hostname>:<port> , where port is the port number
specified	with	the	JVM	start	command	that	enabled	the	JMX	agent.

•	 The jdb utility is an example command line debugger. It can be attached to
the	JVM	process	and	allows	you	to	examine	threads.

•	 The jstack	command	line	utility	can	be	attached	to	the	JVM	process	and	
print	the	stack	traces	of	all	threads,	including	JVM	internal	threads,	and	
optionally native stack frames. It allows you to detect deadlocks too.

•	 Java Flight Recorder (JFR)	provides	information	about	the	Java	process,	
including threads waiting for locks, garbage collections, and so on. It also
allows getting thread dumps, which are similar to the one generated by
the Thread.print diagnostic command or by using the jstack tool. It is
possible to set up Java Mission Control (JMC) to dump a flight recording
if	a	condition	is	met.	JMC	UI	contains	information	about	threads,	lock	
contention,	and	other	latencies.	Although	JFR	is	a	commercial	feature,	it	is	
free for developer desktops/laptops, and for evaluation purposes in test,
development, and production environments.

Lesson 3

[73]

You	can	find	more	details	about	these	and	other	diagnostic	
tools	in	the	official	Oracle	documentation	at	https://docs.
oracle.com/javase/9/troubleshoot/diagnostic-
tools.htm.

Sizing Thread Pool Executors
In our examples, we have used a cached thread pool that creates a new thread as
needed or, if available, reuses the thread already used, but which completed its job
and returned to the pool for a new assignment. We did not worry about too many
threads created because our demo application had two worker threads at the most
and they were quite short lived.

But	in	the	case	where	an	application	does	not	have	a	fixed	limit	of	the	worker	threads	
it might need or there is no good way to predict how much memory a thread may
take or how long it can execute, setting a ceiling on the worker thread count prevents
an unexpected degradation of the application performance, running out of memory
or depletion of any other resources the worker threads use. If the thread behavior
is extremely unpredictable, a single thread pool might be the only solution, with
an option of using a custom thread pool executor (more about this last option is
explained	later).	But	in	most	of	the	cases,	a	fixed-size	thread	pool	executor	is	a	good	
practical compromise between the application needs and the code complexity.
Depending	on	the	specific	requirements,	such	an	executor	might	be	one	of	these	
three	flavors:

•	 A straightforward, fixed-sized ExecutorService.newFixedThreadPool(int
nThreads) pool that does not grow beyond the specified size, but does not
adopt either

•	 Several ExecutorService.newScheduledThreadPool(int nThreads)
pools that allow scheduling different groups of threads with a different delay
or cycle of execution

•	 ExecutorService.newWorkStealingPool(int parallelism) that adapts
to the specified number of CPUs, which you may set higher or smaller than
the actual CPUs count on your computer

Multithreading and Reactive Programming

[74]

Setting	the	fixed	size	in	any	of	the	preceding	pools	too	low	may	deprive	the	
application of the chance to utilize the available resources effectively. So, before
selecting the pool size, it is advisable to spend some time on monitoring it and
tuning	JVM	(see	how	to	do	it	in	one	of	the	sections	of	this	lesson)	with	the	goal	of	
the	identification	of	the	idiosyncrasy	of	the	application	behavior.	In	fact,	the	cycle	
deploy-monitor-tune-adjust has to be repeated throughout the application life cycle
in order to accommodate and take advantage of the changes that happened in the
code or the executing environment.

The	first	parameter	you	take	into	account	is	the	number	of	CPUs	in	your	system,	so	
the	thread	pool	size	can	be	at	least	as	big	as	the	CPU's	count.	Then,	you	can	monitor	
the application and see how much time each thread engages the CPU and how
much	of	the	time	it	uses	other	resources	(such	as	I/O	operations).	If	the	time	spent	
not using the CPU is comparable with the total executing time of the thread, then
you can increase the pool size by time not using CPU/total executing time. But that
is in the case that another resource (disk or database) is not a subject of contention
between the threads. If the latter is the case, then you can use that resource instead
of the CPU as the delineating factor.

Assuming the worker threads of your application are not too big or too long
executing and belong to the mainstream population of the typical working threads
that complete their job in a reasonably short period of time, you can increase the
pool size by adding the (rounded up) ratio of the desired response time and the
time a thread uses CPU or another most contentious resource. This means that, with
the same desired response time, the less a thread uses CPU or another concurrently
accessed resource, the bigger the pool size should be. If the contentious resource has
its own ability to improve concurrent access (like a connection pool in the database),
consider	utilizing	that	feature	first.

If the required number of threads running at the same time changes at runtime
under the different circumstances, you can make the pool size dynamic and create
a new pool with a new size (shutting down the old pool after all its threads have
completed). The recalculation of the size of a new pool might be necessary also after
you add to remove the available resources. You can use Runtime.getRuntime().
availableProcessors() to programmatically adjust the pool size based on the
current count of the available CPUs, for example.

If none of the ready-to-use thread pool executor implementations that come with the
JDK	suit	the	needs	of	a	particular	application,	before	writing	the	thread	managing	
code from scratch, try to use the java.util.concurrent.ThreadPoolExecutor
class	first.	It	has	several	overloaded	constructors.	

Lesson 3

[75]

To give you an idea of its capabilities, here is the constructor with the biggest
number of options:

ThreadPoolExecutor (int corePoolSize, int maximumPoolSize, long
keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory, RejectedExecutionHandler handler)

The	earlier	mentioned	parameters	are	(quoting	from	the	JavaDoc):

•	 corePoolSize: This is the number of threads to keep in the pool, even if
they are idle unless allowCoreThreadTimeOut is set

•	 maximumPoolSize: This is the maximum number of threads to allow in
the pool

•	 keepAliveTime: When the number of threads is greater than the core, this
is the maximum time that excess idle threads will wait for new tasks before
terminating

•	 unit: This is the time unit for the keepAliveTime argument
•	 workQueue: This is the queue to use for holding tasks before they are

executed, this queue will hold only the Runnable tasks submitted by
the execute method

•	 threadFactory: This is the factory to use when the executor creates a
new thread

•	 handler: This is the handler to use when the execution is blocked because
the thread bounds and queue capacities are reached

Each of the previous constructor parameters except the workQueue parameter can
also be set via the corresponding setter after the object of the ThreadPoolExecutor
method	has	been	created,	thus	allowing	more	flexibility	in	dynamic	adjustment	of	
the existing pool characteristics.

Thread Synchronization
We have collected enough people and resources such as food, water, and tools for
the pyramid building. We have divided people into teams and assigned each team a
task. A number (a pool) of people are living in the nearby village on a standby mode,
ready to replace the ones that got sick or injured on their assignment. We adjusted
the workforce count so that there are only a few people who will remain idle in the
village. We rotate the teams through the work-rest cycle to keep the project going at
maximum speed. We monitored the process and have adjusted the number of teams
and	the	flow	of	supplies	they	need	so	that	there	are	no	visible	delays	and	there	is	
steady measurable progress in the project as a whole. Yet, there are many moving
parts overall and various small and big unexpected incidents and problems happen
all the time.

Multithreading and Reactive Programming

[76]

To make sure that the workers and teams do not step on each other and that there is
some	kind	of	traffic	regulation	so	that	the	next	technological	step	does	not	start	until	
the	previous	one	is	finished,	the	main	architect	sends	his	representatives	to	all	the	
critical points of the construction site. These representatives make sure that the tasks
are executed with the expected quality and in the prescribed order. They have the
power to stop the next team from starting their job until the previous team has not
finished	yet.	They	act	like	traffic	cops	or	the	locks	that	can	shut	down	the	access	to	
the workplace or allow it, if/when necessary.

The	job	these	representatives	are	doing	can	be	defined	in	the	modern	language	as	
a coordination or synchronization of actions of the executing units. Without it, the
results of the efforts of the thousands of workers would be unpredictable. The big
picture	from	ten	thousand	feet	would	look	smooth	and	harmonious,	as	the	farmers'	
fields	from	the	windows	of	an	airplane.	But	without	closer	inspection	and	attention	
to the critical details, this perfect looking picture may bring a poor harvest, if any.

Similarly, in the quiet electronic space of the multithreaded execution environment,
the working threads have to be synchronized if they share access to the same
working	place.	For	example,	let's	create	the	following	class-worker	for	a	thread:

class MyRunnable04 implements Runnable {
 private int id;
 public MyRunnable04(int id) { this.id = id; }
 public void run() {
 IntStream.rangeClosed(1, 5)
 .peek(i -> System.out.println("Thread "+id+": "+ i))
 .forEach(i -> Demo04Synchronization.result += i);
 }
}

As you can see, it sequentially adds 1, 2, 3, 4, 5 (so, that the resulting total is expected
to be 15) to the static property of the Demo04Synchronization class:

public class Demo04Synchronization {
 public static int result;
 public static void main(String... args) {
 System.out.println();
 demo_ThreadInterference();
 }
 private static void demo_ThreadInterference(){
 System.out.println("demo_ThreadInterference: ");
 MyRunnable04 r1 = new MyRunnable04(1);
 Thread t1 = new Thread(r1);
 MyRunnable04 r2 = new MyRunnable04(2);
 Thread t2 = new Thread(r2);

Lesson 3

[77]

 t1.start();
 sleepMs(100);
 t2.start();
 sleepMs(100);
 System.out.println("Result=" + result);
 }
 private static void sleepMs(int sleepMs) {
 try {
 TimeUnit.MILLISECONDS.sleep(sleepMs);
 } catch (InterruptedException e) {}
 }
}

In	the	earlier	code,	while	the	main	thread	pauses	for	100	ms	the	first	time,	the	thread	
t1 brings the value of the variable result to 15, then the thread t2 adds another 15 to
get the total of 30. Here is the output:

If	we	remove	the	first	pause	of	100	ms,	the	threads	will	work	concurrently:

Multithreading and Reactive Programming

[78]

The	final	result	is	still	30.	We	feel	good	about	this	code	and	deploy	it	to	production	
as a well-tested code. However, if we increase the number of additions from 5 to 250,
for example, the result becomes unstable and changes from run to run. Here is the
first	run	(we	commented	out	the	printout	in	each	thread	in	order	to	save	space):

And here is the output of another run:

It demonstrates the fact that the Demo04Synchronization.result += i operation is
not atomic. This means it consists of several steps, reading the value from the result
property, adding a value to it, assigning the resulting sum back to the result
property. This allows the following scenario, for example:

•	 Both the threads have read the current value of result (so each of the
threads has a copy of the same original result value)

•	 Each thread adds another integer to the same original one
•	 The first thread assigns the sum to the result property
•	 The second thread assigns its sum to the result property

As	you	can	see,	the	second	thread	did	not	know	about	the	addition	the	first	thread	
made and has overwritten the value assigned to the result	property	by	the	first	
thread. But such thread interleaving does not happen every time. It is just a game
of	chance.	That's	why	we	did	not	see	such	an	effect	with	five	numbers	only.	But	
the probability of this happening increases with the growth of the number of
concurrent actions.

A similar thing could happen during the pyramid building too. The second team
could	start	doing	something	before	the	first	team	has	finished	their	task.	We	
definitely	need	a	synchronizer and it comes with a synchronized keyword. Using it,
we can create a method (an architect representative) in the Demo04Synchronization
class that will control access to the result property and add to it this keyword:

private static int result;
public static synchronized void incrementResult(int i){
 result += i;
}

Lesson 3

[79]

Now we have to modify the run() method in the worker thread too:

public void run() {
 IntStream.rangeClosed(1, 250)
 .forEach(Demo04Synchronization::incrementResult);
}

The	output	now	shows	the	same	final	number	for	every	run:

The synchronized	keyword	tells	JVM	that	only	one	thread	at	a	time	is	allowed	
to enter this method. All the other threads will wait until the current visitor of the
method exits from it.

The same effect could be achieved by adding the synchronized keyword to a block
of code:

public static void incrementResult(int i){
 synchronized (Demo04Synchronization.class){
 result += i;
 }
}

The difference is that the block synchronization requires an object--a class object in
the case of static property synchronization (as in our case) or any other object in the
case of an instance property synchronization. Each object has an intrinsic lock or
monitor	lock,	often	referred	to	simply	as	a	monitor.	Once	a	thread	acquires	a	lock	
on	an	object,	no	other	thread	can	acquire	it	on	the	same	object	until	the	first	thread	
releases the lock after normal exit from the locked code or if the code throws
an exception.

In fact, in the case of a synchronized method, an object (the one to which the method
belongs) is used for locking, too. It just happens behind the scene automatically and
does	not	require	the	programmer	to	use	an	object's	lock	explicitly.

In case you do not have access to the main class code (as in the example earlier) you
can keep the result property public and add a synchronized method to the worker
thread (instead of the class as we have done):

class MyRunnable05 implements Runnable {
 public synchronized void incrementResult(int i){
 Demo04Synchronization.result += i;
 }

Multithreading and Reactive Programming

[80]

 public void run() {
 IntStream.rangeClosed(1, 250)
 .forEach(this::incrementResult);
 }
}

In this case, the object of the MyRunnable05 worker class provides its intrinsic lock
by default. This means, you need to use the same object of the MyRunnable05 class
for all the threads:

void demo_Synchronized(){
 System.out.println("demo_Synchronized: ");
 MyRunnable05 r1 = new MyRunnable05();
 Thread t1 = new Thread(r1);
 Thread t2 = new Thread(r1);
 t1.start();
 t2.start();
 sleepMs(100);
 System.out.println("Result=" + result);
}

The output of the preceding code is the same as before:

One	can	argue	that	this	last	implementation	is	preferable	because	it	allocates	the	
responsibility of the synchronization with the thread (and the author of its code) and
not with the shared resource. This way the need for synchronization changes along
with the thread implementation evolution, provided that the client code (that uses
the same or different objects for the threads) can be changed as needed as well.

There is another possible concurrency issue that may happen in some operating
systems.	Depending	on	how	the	thread	caching	is	implemented,	a	thread	might	
preserve a local copy of the property result and not update it after another thread
has changed its value. By adding the volatile keyword to the shared (between
threads) property guarantees that its current value will be always read from the
main memory, so each thread will see the updates done by the other threads. In
our previous examples, we just set the Demo04Synchronization class property as
private static volatile int result, add a synchronized incrementResult()
method to the same class or to the thread and do not worry anymore about threads
stepping on each other.

Lesson 3

[81]

The	described	thread	synchronization	is	usually	sufficient	for	the	mainstream	
application. But the higher performance and highly concurrent processing often
require looking closer into the thread dump, which typically shows that method
synchronization	is	more	efficient	than	block	synchronization.	Naturally,	it	also	
depends on the size of the method and the block. Since all the other threads that try to
access the synchronized method or block are going to stop execution until the current
visitor of the method or block exits it, it is possible that despite the overhead a small
synchronized block yields better performance than the big synchronized method.

For some applications, the behavior of the default intrinsic lock, which just blocks
until the lock is released, maybe not well suited. If that is the case, consider using
locks from the java.util.concurrent.locks package. The access control based
on locks from that package has several differences if compared with using the
default intrinsic lock. These differences may be advantageous for your application or
provide	the	unnecessary	complication,	but	it's	important	to	know	them,	so	you	can	
make an informed decision:

•	 The	synchronized	fragment	of	code	does	not	need	to	belong	to	one	method;	it	
can span several methods, delineated by the calls to the lock() and unlock()
methods (invoked on the object that implements the Lock interface)

•	 While creating an object of the Lock interface called ReentrantLock, it is
possible to pass into the constructor a fair flag that makes the lock able
to grant an access to the longest-waiting thread first, which helps to avoid
starvation (when the low priority thread never can get access to the lock)

•	 Allows a thread to test whether the lock is accessible before committing to
be blocked

•	 Allows interrupting a thread waiting for the lock, so it does not remain
blocked indefinitely

•	 You can implement the Lock interface yourself with whatever features you
need for your application

A typical pattern of usage of the Lock interface looks like this:

Lock lock = ...;
...
 lock.lock();
 try {
 // the fragment that is synchronized
 } finally {
 lock.unlock();
 }
...
}

Multithreading and Reactive Programming

[82]

Notice the finally block. It is the way to guarantee that the lock is released
eventually.	Otherwise,	the	code	inside	the	try-catch block can throw an exception
and the lock is never released.

In addition to the lock() and unlock() methods, the Lock interface has the
following methods:

•	 lockInterruptibly(): This acquires the lock unless the current thread
is interrupted. Similar to the lock() method, this method blocks while
waiting until the lock is acquired, in difference to the lock() method,
if another thread interrupts the waiting thread, this method throws the
InterruptedException exception

•	 tryLock(): This acquires the lock immediately if it is free at the time
of invocation

•	 tryLock(long time, TimeUnit unit): This acquires the lock if it is
free within the given waiting time and the current thread has not been
interrupted

•	 newCondition(): This returns a new Condition instance that is bound to
this Lock instance, after acquiring the lock, the thread can release it (calling
the await() method on the Condition object) until some other thread calls
signal() or signalAll() on the same Condition object, it is also possible
to specify the timeout period (by using an overloaded await() method), so
the thread will resume after the timeout if there was no signal received, see
the Condition API for more details

The scope of this book does not allow us to show all the possibilities for thread
synchronization provided in the java.util.concurrent.locks package. It would
take several lessons to describe all of them. But even from this short description,
you	can	see	that	one	would	be	hard	pressed	to	find	a	synchronization	problem	that	
cannot be solved using the java.util.concurrent.locks package.

The synchronization of a method or block of code makes sense when several
lines of code have to be isolated as an atomic (all or nothing) operation. But in the
case of a simple assignment to a variable or increment/decrement of a number
(as in our earlier examples), there is a much better way to synchronize this
operation by using classes from the java.util.concurrent.atomic package
that support lock-free thread-safe programming on a single variable. The variety
of classes covers all the numbers and even arrays and reference types such as
AtomicBoolean, AtomicInteger, AtomicIntegerArray, AtomicReference, and
AtomicReferenceArray.

Lesson 3

[83]

There	are	16	classes	in	total.	Depending	on	the	value	type,	each	of	them	allows	
a full imaginable range of operations, that is, set(), get(), addAndGet(),
compareAndSet(), incrementAndGet(), decrementAndGet(), and many others.
Each	operation	is	implemented	much	more	efficiently	than	the	same	operations	
implemented with the synchronized keyword. And there is no need for the
volatile keyword because it uses it under the hood.

If the concurrently accessed resource is a collection, the java.util.concurrent
package offers a variety of thread-safe implementations that perform better than
synchronized HashMap, Hashtable, HashSet, Vector, and ArrayList (if we
compare the corresponding ConcurrentHashMap, CopyOnWriteArrayList, and
CopyOnWriteHashSet). The traditional synchronized collections lock the whole
collection while concurrent collections use such advanced techniques such as lock
stripping to achieve thread safety. The concurrent collections especially shine with
more reading and fewer updates and they are much more scalable than synchronized
collections. But if the size of your shared collection is small and writes dominate, the
advantage of concurrent collections is not as obvious.

Tuning JVM
Each pyramid building, as any big project, goes through the same life cycle of
design, planning, execution, and delivery. And throughout each of these phases, a
continuous tuning is going on, a complex project is called so for a reason. A software
system is not different in this respect. We design, plan and build it, then change
and tune continuously. If we are lucky, then the new changes do not go too far back
to the initial stages and do not require changing the design. To hedge against such
drastic steps, we use prototypes (if the waterfall model is used) or iterative delivery
(if the agile process is adopted) for early detection of possible problems. Like young
parents, we are always on alert, monitoring the progress of our child, day and night.

As we mentioned already in one of the previous sections, there are several
diagnostic	tools	that	come	with	each	JDK	9	installation	or	can	be	used	in	addition	
to	them	for	monitoring	your	Java	application.	The	full	list	of	these	tools	(and	the	
recommendations	how	to	create	a	custom	tool,	if	needed)	can	be	found	in	official	
Java	SE	documentation	on	the	Oracle	site:	https://docs.oracle.com/javase/9/
troubleshoot/diagnostic-tools.htm.

Using	these	tools	one	identifies	the	bottleneck	of	the	application	and	addresses	it	either	
programmatically	or	by	tuning	the	JVM	itself	or	both.	The	biggest	gain	usually	comes	
with the good design decisions and from using certain programming techniques and
frameworks, some of which we have described in other sections. In this section, we
are going to look at the options available after all possible code changes are applied
or	when	changing	code	is	not	an	option,	so	all	we	can	do	is	to	tune	JVM	itself.

Multithreading and Reactive Programming

[84]

The	goal	of	the	effort	depends	on	the	results	of	the	application	profiling	and	the	
nonfunctional requirements for:

•	 Latency, or how responsive the application is to the input
•	 Throughput, or how much work the application is doing in a given unit

of time
•	 Memory footprint, or how much memory the application requires

The improvements in one of them often are possible only at the expense of the one
or both of the others. The decrease in the memory consumption may bring down
the throughput and latency, while the decrease in latency typically can be achieved
only via the increase in memory footprint unless you can bring in faster CPUs thus
improving all three characteristics.

Application	profiling	may	show	that	one	particular	operation	keeps	allocating	a	lot	
of memory in the loop. If you have an access to the code, you can try to optimize this
section	of	the	code	and	thus	ease	the	pressure	on	JVM.	Alternatively,	it	may	show	
that	there	is	an	I/O	or	another	interaction	with	a	low	device	is	involved,	and	there	is	
nothing you can do in the code to improve it.

Defining	the	goal	of	the	application	and	JVM	tuning	requires	establishing	metrics.	
For example, it is well known already that the traditional measure of latency as
the average response time hides more than it reveals about the performance. The
better latency metrics would be the maximum response time in conjunction with
99% best response time. For throughput, a good metrics would be the number of
transactions	per	a	unit	of	time.	Often	the	inverse	of	this	metrics	(time	per	transaction)	
closely	reflects	latency.	For	the	memory	footprint,	the	maximum	allocated	memory	
(under the load) allows for the hardware planning and setting guards against the
dreaded OutOfMemoryError exception. Avoiding full (stop-the-world) garbage
collection cycle would be ideal. In practice, though, it would be good enough if Full
GC happens not often, does not visibly affect the performance and ends up with
approximately the same heap size after several cycles.

Unfortunately, such simplicity of the requirements does happen in practice. Real life
brings more questions all the time as follows:

•	 Can	the	target	latency	(response	time)	be	ever	exceeded?
•	 If	yes,	how	often	and	by	how	much?
•	 How	long	can	the	period	of	the	poor	response	time	last?
•	 Who/what	measures	the	latency	in	production?
•	 Is	the	target	performance	the	peak	performance?

Lesson 3

[85]

•	 What	is	the	expected	peak	load?
•	 How	long	is	the	expected	peak	load	going	to	last?

Only	after	all	these	and	similar	questions	are	answered	and	the	metrics	(that	reflect	
the nonfunctional requirements) are established, we can start tweaking the code,
running	it	and	profiling	again	and	again,	then	tweaking	the	code	and	repeating	the	
cycle.	This	activity	has	to	consume	most	of	the	efforts	because	tuning	of	the	JVM	
itself can bring only the fraction of the performance improvements by comparison
with the performance gained by the code changes.

Nevertheless,	several	passes	of	the	JVM	tuning	must	happen	early	in	order	to	
avoid	wasting	of	the	efforts	and	trying	to	force	the	code	in	the	not	well-configured	
environment.	The	JVM	configuration	has	to	be	as	generous	as	possible	for	the	code	
to take advantage of all the available resources.

First	of	all,	select	garbage	collector	from	the	four	that	JVM	9	supports,	which	are	
as follows:

•	 Serial collector: This uses a single thread to perform all the garbage
collection work

•	 Parallel collector: This uses multiple threads to speed up garbage collection
•	 Concurrent Mark Sweep (CMS) collector: This uses shorter garbage

collection pauses at the expense of taking more of the processor time
•	 Garbage-First (G1) collector: This is intended for multiprocessor machines

with a large memory, but meets garbage collection pause-time goals with
high probability, while achieving high throughput.

The	official	Oracle	documentation	(https://docs.oracle.com/javase/9/
gctuning/available-collectors.htm) provides the following initial guidelines
for the garbage collection selection:

•	 If the application has a small dataset (up to approximately 100 MB), then
select the serial collector with the -XX:+UseSerialGC option

•	 If the application will be run on a single processor and there are no
pause-time requirements, then select the serial collector with the
-XX:+UseSerialGC option

•	 If (a) peak application performance is the first priority and (b) there are no
pause-time requirements or pauses of one second or longer are acceptable,
then let the VM select the collector or select the parallel collector with
-XX:+UseParallelGC

Multithreading and Reactive Programming

[86]

•	 If the response time is more important than the overall throughput and
garbage collection pauses must be kept shorter than approximately
one second, then select a concurrent collector with -XX:+UseG1GC or
-XX:+UseConcMarkSweepGC

But	if	you	do	not	have	particular	preferences	yet,	let	the	JVM	select	garbage	collector	
until	you	learn	more	about	your	application's	needs.	In	JDK	9,	the	G1	is	selected	
by default on certain platforms, and it is a good start if the hardware you use has
enough resources.

Oracle	also	recommends	using	G1	with	its	default	settings,	then	later	playing	with	a	
different pause-time goal using the -XX:MaxGCPauseMillis option and maximum
Java	heap	size	using	the	-Xmx option. Increasing either the pause-time goal or the
heap size typically leads to a higher throughput. The latency is affected by the
change of the pause-time goal too.

While	tuning	the	GC,	it	is	beneficial	to	keep	the	-Xlog:gc*=debug logging option. It
provides	many	useful	details	about	garbage	collection	activity.	The	first	goal	of	JVM	
tuning is to decrease the number of full heap GC cycles (Full GC) because they are
very resource consuming and thus may slow down the application. It is caused by
too	high	occupancy	of	the	old	generation	area.	In	the	log,	it	is	identified	by	the	words	
Pause Full (Allocation Failure). The following are the possible steps to reduce
chances of Full GC:

•	 Bring up the size of the heap using -Xmx. But make sure it does not exceed
the physical size of RAM. Better yet, leave some RAM space for other
applications.

•	 Increase the number of concurrent marking threads explicitly using
-XX:ConcGCThreads.

•	 If the humongous objects take too much of the heap (watch for gc+heap=info
logging that shows the number next to humongous regions) try to increase
the region size using -XX: G1HeapRegionSize.

•	 Watch the GC log and modify the code so that almost all the objects
created by your application are not moved beyond the young generation
(dying young).

•	 Add or change one option at a time, so you can understand the causes of the
change	in	the	JVM's	behavior	clearly.

These few steps will help you go and create a trial-and-error cycle that will bring you
a better understanding of the platform you are using, the needs of your application,
and	the	sensitivity	of	the	JVM	and	the	selected	GC	to	different	options.	Equipped	
with this knowledge, you will then be able to meet the nonfunctional performance
requirements	whether	by	changing	the	code,	tuning	the	JVM,	or	reconfiguring	
the hardware.

Lesson 3

[87]

Reactive Programming
After several false starts and a few disastrous disruptions, followed by heroic
recoveries, the process of pyramid building took shape and ancient builders were
able	to	complete	a	few	projects.	The	final	shape	sometimes	did	not	look	exactly	as	
envisioned	(the	first	pyramids	have	ended	up	bent),	but,	nevertheless,	the	pyramids	
still decorate the desert today. The experience was passed from generation to
generation, and the design and the process were tuned well enough to produce
something	magnificent	and	pleasant	to	look	at	more	than	4,000	years	later.

The software practices also change over time, albeit we have had only some 70 years
since	Mr.	Turing	wrote	the	first	modern	program.	In	the	beginning,	when	there	
were only a handful of programmers in the world, a computer program used to
be a continuous list of instructions. Functional programming (pushing a function
around	like	a	first-class	citizen)	was	introduced	very	early	too	but	has	not	become	a	
mainstream. Instead, the GOTO instruction allowed you to roll code in a spaghetti
bowl. Structural programming followed, then object-oriented programming,
with functional programming moving along and even thriving in certain areas.
Asynchronous processing of the events generated by the pressed keys became
routine	for	many	programmers.	JavaScript	tried	to	use	all	of	the	best	practices	and	
gained	a	lot	of	power,	even	if	at	the	expense	of	programmers'	frustration	during	the	
debugging (fun) phase. Finally, with thread pools and lambda expressions being part
of	JDK	SE,	adding	reactive	streams	API	to	JDK	9	made	Java	part	of	the	family	that	
allows reactive programming with asynchronous data streams.

To be fair, we were able to process data asynchronously even without this new
API--by spinning worker threads and using thread pools and callables (as we
described in the previous sections) or by passing the callbacks (even if lost once in a
while in the maze of the one who-calls-whom). But, after writing such a code a few
times, one notices that most of such code is just a plumbing that can be wrapped
inside	a	framework	that	can	significantly	simplify	asynchronous	processing.	That's	
how the Reactive Streams initiative (http://www.reactive-streams.org) came
to	be	created	and	the	scope	of	the	effort	is	defined	as	follows:

The	scope	of	Reactive	Streams	is	to	find	a	minimal	set	of	interfaces,	methods	and	
protocols that will describe the necessary operations and entities to achieve the
goal--asynchronous streams of data with non-blocking back pressure.

Multithreading and Reactive Programming

[88]

The term non-blocking back pressure	is	an	important	one	because	it	identifies	one	
of the problems of the existed asynchronous processing--coordination of the speed
rate of the incoming data with the ability of the system to process them without the
need of stopping (blocking) the data input. The solution would still include some
back	pressure	by	informing	the	source	that	the	consumer	has	difficulty	in	keeping	
up with the input, but the new framework should react to the change of the rate of
the	incoming	data	in	a	more	flexible	manner	than	just	blocking	the	flow,	thus	the	
name reactive.

The	Reactive	Streams	API	consists	of	the	five	interfaces	included	in	the	class	which	
are java.util.concurrent.Flow, Publisher, Subscriber, Subscription, and
Processor:

@FunctionalInterface
public static interface Flow.Publisher<T> {
 public void subscribe(Flow.Subscriber<? super T> subscriber);
}

public static interface Flow.Subscriber<T> {
 public void onSubscribe(Flow.Subscription subscription);
 public void onNext(T item);
 public void onError(Throwable throwable);
 public void onComplete();
}

public static interface Flow.Subscription {
 public void request(long numberOfItems);
 public void cancel();
}

public static interface Flow.Processor<T,R>
 extends Flow.Subscriber<T>, Flow.Publisher<R> {
}

A Flow.Subscriber object becomes a subscriber of the data produced by the
object of Flow.Publisher after the object of Flow.Subscriber is passed as a
parameter into the subscribe() method. The publisher (object of Flow.Publisher)
calls	the	subscriber's	onSubscribe() method and passes as a parameter a Flow.
Subsctiption object. Now, the subscriber can request numberOffItems of data from
the	publisher	by	calling	the	subscription's	request() method. That is the way to
implement the pull model when a subscriber decides when to request another item
for processing. The subscriber can unsubscribe from the publisher services by calling
the cancel() subscription method.

Lesson 3

[89]

In return (or without any request, if the implementer has decided to do so, that
would be a push model), the publisher can pass to the subscriber a new item by
calling	the	subscriber's	onNext() method. The publisher can also tell the subscriber
that	the	item	production	has	encountered	a	problem	(by	calling	the	subscriber's	
onError()	method)	or	that	no	more	data	will	be	coming	(by	calling	the	subscriber's	
onComplete() method).

The Flow.Processor interface describes an entity that can act as both a subscriber
and a publisher. It allows creating chains (pipelines) of such processors, so a
subscriber can receive an item from a publisher, tweak it, and then pass the result
to the next subscriber.

This	is	the	minimal	set	of	interfaces	the	Reactive	Streams	initiative	has	defined	
(and	it	is	a	part	of	JDK	9	now)	in	support	of	the	asynchronous	data	streams	with	
non-blocking back pressure. As you can see, it allows the subscriber and publisher
to talk to each other and coordinate, if need be, the rate of incoming data, thus
making possible a variety of solutions for the back pressure problem we discussed
in the beginning.

There	are	many	ways	to	implement	these	interfaces.	Currently,	in	JDK	9,	there	is	only	
one example of implementation of one of the interfaces--the SubmissionPublisher
class implements Flow.Publisher. But several other libraries already exist that
implemented	Reactive	Streams	API:	RxJava,	Reactor,	Akka	Streams,	and	Vert.x	are	
among	the	most	known.	We	will	use	RxJava	2.1.3	in	our	examples.	You	can	find	the	
RxJava	2.x	API	on	http://reactivex.io	under	the	name	ReactiveX,	which	stands	
for Reactive Extension.

While doing that, we would also like to address the difference between the streams
of the java.util.stream	package	and	Reactive	Streams	(as	implemented	in	RxJava,	
for	example).	It	is	possible	to	write	very	similar	code	using	any	of	the	streams.	Let's	
look	at	an	example.	Here	is	a	program	that	iterates	over	five	integers,	selects	even	
numbers only (2 and 4), transforms each of them (takes a square root of each of the
selected numbers) and then calculates an average of the two square roots. It is based
on the traditional for loop.

Let's	start	with	the	similarity.	It	is	possible	to	implement	the	same	functionality	using	
any	of	the	streams.	For	example,	here	is	a	method	that	iterates	over	five	integers,	
selects even numbers only (2 and 4, in this case), transforms each of them (takes a
square root of each of the even numbers) and then calculates an average of the two
square roots. It is based on the traditional for loop:

void demo_ForLoop(){
 List<Double> r = new ArrayList<>();
 for(int i = 1; i < 6; i++){
 System.out.println(i);

Multithreading and Reactive Programming

[90]

 if(i%2 == 0){
 System.out.println(i);
 r.add(doSomething(i));
 }
 }
 double sum = 0d;
 for(double d: r){ sum += d; }
 System.out.println(sum / r.size());
}
static double doSomething(int i){
 return Math.sqrt(1.*i);
}

If we run this program, the result will be as follows:

The same functionality (with the same output) can be implemented using the
package java.util.stream as follows:

void demo_Stream(){
 double a = IntStream.rangeClosed(1, 5)
 .peek(System.out::println)
 .filter(i -> i%2 == 0)
 .peek(System.out::println)
 .mapToDouble(i -> doSomething(i))
 .average().getAsDouble();
 System.out.println(a);
}

The	same	functionality	can	be	implemented	with	RxJava:

void demo_Observable1(){
 Observable.just(1,2,3,4,5)
 .doOnNext(System.out::println)
 .filter(i -> i%2 == 0)
 .doOnNext(System.out::println)

Lesson 3

[91]

 .map(i -> doSomething(i))
 .reduce((r, d) -> r + d)
 .map(r -> r / 2)
 .subscribe(System.out::println);
}

RxJava	is	based	on	the	Observable object (which plays the role of Publisher) and
Observer that subscribes to the Observable and waits for data to be emitted. Each
item of the emitted data (on the way from the Observable to the Observer) can be
processed	by	the	operations	chained	in	a	fluent	style	(see	the	previous	code).	Each	
operation takes a lambda expression. The operation functionality is obvious from
its name.

Despite	being	able	to	behave	similarly	to	the	streams,	an	Observable has
significantly	different	capabilities.	For	example,	a	stream,	once	closed,	cannot	be	
reopened, while an Observable can be reused. Here is an example:

void demo_Observable2(){
 Observable<Double> observable = Observable
 .just(1,2,3,4,5)
 .doOnNext(System.out::println)
 .filter(i -> i%2 == 0)
 .doOnNext(System.out::println)
 .map(Demo05Reactive::doSomething);

 observable
 .reduce((r, d) -> r + d)
 .map(r -> r / 2)
 .subscribe(System.out::println);

 observable
 .reduce((r, d) -> r + d)
 .subscribe(System.out::println);
}

Multithreading and Reactive Programming

[92]

In the previous code, we use Observable twice--for average value calculation and
for the summing all the square roots of the even numbers. The output is as shown
in the following screenshot:

If we do not want Observable to run twice, we can cache its data, by adding the
.cache() operation:

void demo_Observable2(){
 Observable<Double> observable = Observable
 .just(1,2,3,4,5)
 .doOnNext(System.out::println)
 .filter(i -> i%2 == 0)
 .doOnNext(System.out::println)
 .map(Demo05Reactive::doSomething)
 .cache();

 observable
 .reduce((r, d) -> r + d)
 .map(r -> r / 2)
 .subscribe(System.out::println);

 observable
 .reduce((r, d) -> r + d)
 .subscribe(System.out::println);
}

Lesson 3

[93]

The result of the previous code is as follows:

You can see that the second usage of the same Observable took advantage of the
cached data, thus allowing for better performance.

Another Observable advantage is that the exception can be caught by Observer:

subscribe(v -> System.out.println("Result=" + v),
 e -> {
 System.out.println("Error: " + e.getMessage());
 e.printStackTrace();
 },
 () -> System.out.println("All the data processed"));

The subscribe() method is overloaded and allows to pass in one, two, or three
functions:

•	 The first is to be used in case of success
•	 The second is to be used in case of an exception
•	 The third is to be called after all the data is processed

The Observable model also allows more control over multithreaded processing.
Using .parallel() in the streams does not allow you to specify the thread pool to
be	used.	But,	in	RxJava,	you	can	set	the	type	of	pool	you	prefer	using	the	method	
subscribeOn() in Observable:

observable.subscribeOn(Schedulers.io())
 .subscribe(System.out::println);

The subscribeOn() method tells Observable on which thread to put the data. The
Schedulers	class	has	methods	that	generate	thread	pools	dealing	mostly	with	I/O	
operations (as in our example), or heavy on computation (method computation()), or
creating a new thread for each unit of work (method newThread()), and several others,
including passing in a custom thread pool (method from(Executor executor)).

Multithreading and Reactive Programming

[94]

The	format	of	this	book	does	not	allow	us	to	describe	all	the	richness	of	RxJava	API	
and	other	Reactive	Streams	implementations.	Their	main	thrust	is	reflected	in	Reactive	
Manifesto (http://www.reactivemanifesto.org/) that describes Reactive Systems
as a new generation of high performing software solutions. Built on asynchronous
message-driven processes and Reactive Streams, such systems are able to demonstrate
the qualities declared in the Reactive Manifesto:

•	 Elasticity: This has the ability to expand and contract as needed based on
the load

•	 Better responsiveness: Here, the processing can be parallelized using
asynchronous calls

•	 Resilience: Here, the system is broken into multiple (loosely coupled via
messages) components, thus facilitating flexible replication, containment,
and isolation

Writing code for Reactive Systems using Reactive Streams for implementing the
previously mentioned qualities constitutes reactive programming. The typical
application of such systems today is microservices, which is described in the
next lesson.

Summary
In	this	lesson,	we	have	discussed	the	ways	to	improve	Java	application	performance	
by using multithreading. We described how to decrease an overhead of creating
the threads using thread pools and various types of such pools suited for different
processing requirements. We also brought up the considerations used for selecting
the pool size and how to synchronize threads so that they do not interfere with
each other and yield the best performance results. We pointed out that every
decision on the performance improvements has to be made and tested through
direct monitoring of the application, and we discussed the possible options for such
monitoring	programmatically	and	using	various	external	tools.	The	final	step,	the	
JVM	tuning,	can	be	done	via	Java	tool	flags	that	we	listed	and	commented	in	the	
corresponding	section.	Yet	more	gains	in	Java	application	performance	might	be	
achieved by adopting the concept of reactive programming, which we presented as
the strong contender among most effective moves toward highly scalable and highly
performing	Java	applications.

In the next lesson, we will talk about adding more workers by splitting the
application into several microservices, each deployed independently and each
using multiple threads and reactive programming for better performance, response,
scalability, and fault-tolerance.

Lesson 3

[95]

Assessments
1. Name	the	method	that	calculates	the	average	square	root	of	the	first	99,999	

integers and assigns the result to a property that can be accessed anytime.
2. Which	of	the	following	methods	creates	a	thread	pool	of	a	fixed	size	that	can	

schedule commands to run after a given delay, or to execute periodically:
1. newscheduledThreadPool()

2. newWorkStealingThreadPool()

3. newSingleThreadScheduledExecutor()

4. newFixedThreadPool()

3. State	whether	True	or	False:	One	can	take	advantage	of	the	Runnable
interface being a functional interface and pass the necessary processing
function into a new thread as a lambda expression.

4. After the __________ method is called, no more worker threads can be
added to the pool.

1. shutdownNow()

2. shutdown()

3. isShutdown()

4. isShutdownComplete()

5. ________	is	based	on	the	Observable object, which plays the role of
a Publisher.

[97]

Microservices
As long as we kept talking about the designing, implementation, and tuning of
one process, we were able to keep illustrating it with vivid images (albeit in our
imagination only) of pyramid building. Multiple thread management, based on the
democratic principle of equality between thread pool members, had also a sense of
centralized	planning	and	supervision.	Different	priorities	were	assigned	to	threads	
programmatically, hardcoded (for most cases) after thoughtful consideration by the
programmer in accordance with the expected load, and adjusted after monitoring.
The	upper	limits	of	the	available	resources	were	fixed,	although	they	could	be	
increased after, again, a relatively big centralized decision.

Such systems had great success and still constitute the majority of the web
applications currently deployed to production. Many of them are monoliths, sealed
inside a single .ear or .war	file.	This	works	fine	for	relatively	small	applications	
and a corresponding team size that supports them. They are easy (if the code is
well structured) to maintain, build, and if the production load is not very high, they
can be easily deployed. If the business does not grow or has little impact on the
company's	internet	presence,	they	continue	to	do	the	job	and	will	do	so	probably	
for the foreseeable future. Many service providers are eager to host such websites
by charging a small fee and relieving the website owner of the technical worries of
production maintenance not directly related to the business. But that is not the case
for everybody.

The	higher	the	load,	the	more	difficult	and	expensive	the	scaling	becomes	unless	the	
code	and	the	overall	architecture	is	restructured	in	order	to	become	more	flexible	and	
resilient to the growing load. This lesson describes the solution many leaders of the
industry have adopted while addressing the issue and the motivation behind it.

Microservices

[98]

The particular aspects of the microservices we are going to discuss in this lesson
include the following:

•	 The motivation for the microservices rising
•	 The frameworks that were developed recently in support of microservices
•	 The process of microservices development with practical examples,

including the considerations and decision-making process during
microservices building

•	 Pros and cons of the three main deployment methods such as container-less,
self-contained, and in-container

Why Microservices?
Some businesses have a higher demand for the deployment plan because of the need
to	keep	up	with	the	bigger	volume	of	traffic.	The	natural	answer	to	this	challenge	
would be and was to add servers with the same .ear or .war	file	deployed	and	join	
all the servers into a cluster. So, one failed server could be automatically replaced
with another one from the cluster, and the site user would never experience
disconnect of the service. The database that backed all the clustered servers could
be clustered too. A connection to each of the clusters went through a load balancer,
making sure that none of the cluster members worked more than the others.

The web server and database clustering help but only to a degree, because as the
code base grows, its structure can create one or several bottlenecks unless such and
similar	issues	are	addressed	with	a	scalable	design.	One	of	the	ways	to	do	it	is	to	split	
the code into tiers: front end (or web tier), middle tier (or app tier) and back end
(or backend tier). Then, again, each tier can be deployed independently (if the protocol
between tiers has not changed) and in its own cluster of servers, as each tier can grow
horizontally as needed independently of other tiers. Such a solution provides more
flexibility	for	scaling	up,	but	makes	the	deployment	plan	more	complex,	especially	if	
the	new	code	introduces	breaking	changes.	One	of	the	approaches	is	to	create	a	second	
cluster that will host a new code, then take the servers one by one from the old cluster,
deploy the new code, and put them in the new cluster. The new cluster would be
turned on as soon as at least one server in each tier has the new code. This approach
worked	fine	for	the	web	and	app	tiers	but	was	more	complex	for	the	backend,	
which once in a while required data migration and similar joyful exercises. Add to it
unexpected outages in the middle of the deployment caused by human errors, defects
in the code, pure accidents, or some combination of all the earlier mentioned (one time,
for example, an electric power cable was cut by an excavator in the nearby construction
site), and it is easy to understand why very few people love a deployment of a major
release to production.

Lesson 4

[99]

Programmers, being by nature problem solvers, tried to prevent the earlier scenario
as best as they could by writing defensive code, deprecating instead of changing,
testing,	and	so	on.	One	of	the	approaches	was	to	break	the	application	into	more	
independently deployable parts with the hope of avoiding deploying everything at
the same time. They called these independent units services, and Service-Oriented
Architecture (SOA) was born.

Unfortunately, in many companies, the natural growth of the code base was not
adjusted to the new challenges in a timely manner. Like the frog that was eventually
boiled in a slowly heated pot of water, they never had time to jump out of the hot
spot by changing the design. It was always cheaper to add another feature to the
blob of the existing functionality than redesign the whole app. Business metrics of
the time-to-market and keeping the bottom line in the black always were and will
remain the main criterion for the decision making, until the poorly structured source
code eventually stops working, pulling down all the business transactions with it or,
if the company is lucky, allows them to weather the storm and shows the importance
of the investment in the redesign.

As a result of all that, some lucky companies remained in the business with
their monolithic application still running as expected (maybe not for long, but
who knows), some went out of business, some learned from their mistakes and
progressed into the brave world of the new challenges, and others learned from
their	mistakes	and	designed	their	systems	to	be	SOA	upfront.

It is interesting to observe similar tendencies in the social sphere. Society moved
from the strong centralized governments to more loosely coupled confederations
of	semi-independent	states	tied	together	by	the	mutually	beneficial	economic	and	
cultural exchange.

Unfortunately, maintaining such a loose structure comes with a price. Each
participant has to be more responsible in maintaining the contract (social, in the case
of a society, and API, in the case of the software) not only formally but also in spirit.
Otherwise,	for	example,	the	data	flowing	from	a	new	version	of	one	component,	
although correct by type, might be unacceptable to another component by value
(too big or too small). Maintaining a cross-team understanding and overlapping
of responsibility requires constant vigilance in keeping the culture alive and
enlightening. Encouraging innovation and risk taking, which can lead to a business
breakthrough, contradict the protecting tendencies for stability and risk aversion
coming from the same business people.

Microservices

[100]

Moving from monolithic single-team development to multiple teams and an
independent components-based system requires an effort on all levels of the
enterprise. What do you mean by No more Quality Assurance Department?	Who	
then	will	care	about	the	professional	growth	of	the	testers?	And	what	about	the	IT	
group?	What	do	you	mean	by	The developers are going to support production?	
Such	changes	affect	human	lives	and	are	not	easy	to	implement.	That's	why	SOA	
architecture is not just a software principle. It affects everybody in the company.

Meanwhile, the industry leaders, who have managed to grow beyond anything we
could imagine just a decade ago, were forced to solve even more daunting problems
and came back to the software community with their solutions. And that is where
our analogy with the pyramid building does not work anymore. Because the new
challenge is not just to build something so big that was never built before but also
to do it quickly not in a matter of years, but in a few weeks and even days. And the
result has to last not for a thousand years but has to be able to evolve constantly and
be	flexible	enough	to	adapt	to	new,	unexpected	requirements	in	real	time.	If	only	one	
aspect of the functionality has changed, we should be able to redeploy only this one
service. If the demand for any service grows, we should be able to scale only along
this one service and release resources when the demand drops.

To avoid big deployments with all hands on deck and to come closer to the
continuous deployment (which decreases time-to-market and is thus supported
by business), the functionality continued to split into smaller chunks of services.
In response to the demand, more sophisticated and robust cloud environments,
deployment tools (including containers and container orchestration), and monitoring
systems supported this move. The reactive streams, described in the previous lesson,
started to develop even before the Reactive Manifesto came out and plugged a snag
into the stack of modern frameworks.

Splitting an application into independent deployment units brought several not
quite	expected	benefits	that	have	increased	the	motivation	for	plowing	ahead.	The	
physical	isolation	of	services	allows	more	flexibility	in	choosing	a	programming	
language and platform of implementation. It helps not only to select technology that
is the best for the job but also to hire people able to implement it, not being bound by
a certain technological stack of the company. It also helped the recruiters to spread
the net wider and use smaller cells for bringing in new talent, which is not a small
advantage with a limited number of available specialists and the unlimited demand
of the fast-growing data processing industry.

Also,	such	architecture	enforced	a	discussion	and	explicit	definition	of	the	interfaces	
between smaller parts of the complex system, thus creating a solid foundation for
further growth and tuning of the processing sophistication.

Lesson 4

[101]

And that is how microservices came into the picture and were put to work by giants
of	traffic	such	as	Netflix,	Google,	Twitter,	eBay,	Amazon,	and	Uber.	Now,	let's	talk	
about the results of this effort and the lessons learned.

Building Microservices
Before	diving	into	the	building	process,	let's	revisit	the	characteristics	a	chunk	of	
code	has	to	possess	in	order	to	be	qualified	as	a	microservice.	We	will	do	it	in	no	
particular order:

•	 The size of the source code of one microservice should be smaller to that
of	an	SOA,	and	one	development	team	should	be	able	to	support	several	
of them.

•	 It has to be deployed independently of other services.
•	 Each has to have its own database (or schema or set of tables), although this

statement is still under debate, especially in cases when several services
modify	the	same	data	set	or	the	inter-dependent	data	sets;	if	the	same	team	
owns	all	of	the	related	services,	it	is	easier	to	accomplish.	Otherwise,	there	
are several possible strategies we will discuss later.

•	 It has to be stateless and idempotent. If one instance of the service has failed,
another should be able to accomplish what was expected from the service.

•	 It should provide a way to check its health, meaning that the service is up
and running and ready to do the job.

Sharing resources has to be considered during the design, development, and, after
deployment, monitored for validation of the assumptions. In the previous lesson,
we talked about threads synchronization. You could see that this problem was
not easy to solve, and we have presented several possible ways to do it. Similar
approaches can be applied toward microservices. Although they are run in different
processes, they can communicate to each other if need be, so they can coordinate
and synchronize their actions.

Special	care	has	to	be	taken	during	modification	of	the	same	persistent	data	whether	
shared across databases, schemas, or tables within the same schema. If an eventual
consistency is acceptable (which is often the case for larger sets of data, used for
statistical purposes, for example) then no special measures are necessary. However,
the	need	for	transactional	integrity	poses	a	more	difficult	problem.

Microservices

[102]

One	way	to	support	a	transaction	across	several	microservices	is	to	create	a	service	
that would play the role of a Distributed Transaction Manager (DTM).	Other	
services	that	need	coordination	would	pass	to	it	the	new	modified	values.	The	DTM	
service	could	keep	the	concurrently	modified	data	temporarily	in	a	database	table	
and would move it into the main table(s) in one transaction after all the data is ready
(and consistent).

If the time to access the data is an issue or you need to protect the database from an
excessive number of concurrent connections, dedicating a database to some services
may be an answer. Alternatively, if you would like to try another option, memory
cache could be the way to go. Adding a service that provides access to the cache
(and updates it as needed) increases isolation from the services that use it, but
requires	(sometimes	difficult)	synchronization	between	the	peers	that	are	managing	
the same cache too.

After considering all the options and possible solutions for data sharing, it is
often helpful to revisit the idea of creating its own database (or schema) for each
microservice.	One	may	discover	that	the	effort	of	the	data	isolation	(and	subsequent	
synchronization on the database level) does not look as daunting as before if
compared with the effort to synchronize the data dynamically.

That	said,	let's	look	over	the	field	of	the	frameworks	for	microservices	
implementation.	One	can	definitely	write	the	microservices	from	scratch,	but	before	
doing	that,	it	is	always	worth	looking	at	what	is	out	there	already,	even	if	to	find	
eventually	that	nothing	fits	your	particular	needs.

There are more than a dozen frameworks that are currently used for building
microservices. Two most popular are Spring Boot (https://projects.spring.
io/spring-boot/)	and	raw	J2EE.	The	J2EE	community	founded	the	initiative	
MicroProfile	(https://microprofile.io/) with a declared goal of Optimizing
Enterprise Java for a microservices architecture. KumuluzEE (https://ee.kumuluz.
com/) is a lightweight open-source microservice framework coplined with
MicroProfile.

The list of some other frameworks include the following (in alphabetical order):

•	 Akka: This is a toolkit for building highly concurrent, distributed, and
resilient	message-driven	applications	for	Java	and	Scala	(akka.io)

•	 Bootique:	This	is	a	minimally	opinionated	framework	for	runnable	Java	
apps (bootique.io)

•	 Dropwizard:	This	is	a	Java	framework	for	developing	ops-friendly,	
high-performance, RESTful web services (www.dropwizard.io)

•	 Jodd:	This	is	a	set	of	Java	microframeworks,	tools,	and	utilities,	under	1.7	MB	
(jodd.org)

https://projects.spring.io/spring-boot/
https://projects.spring.io/spring-boot/
https://microprofile.io/
https://ee.kumuluz.com/
https://ee.kumuluz.com/
http://akka.io/
http://bootique.io/
http://www.dropwizard.io/
http://jodd.org/

Lesson 4

[103]

•	 Lightbend Lagom: This is an opinionated microservice framework built on
Akka and Play (www.lightbend.com)

•	 Ninja:	This	is	a	full	stack	web	framework	for	Java	(www.ninjaframework.org)
•	 Spotify Apollo:	This	is	a	set	of	Java	libraries	used	at	Spotify	for	writing	

microservices (spotify.github.io/apollo)
•	 Vert.x:	This	is	a	toolkit	for	building	reactive	applications	on	the	JVM	

(vertx.io)

All	frameworks	support	HTTP/JSON	communication	between	microservices;	
some of them also have an additional way to send messages. If not the latter, any
lightweight messaging system can be used. We mentioned it here because, as you
may recall, message-driven asynchronous processing is a foundation for elasticity,
responsiveness, and resilience of a reactive system composed of microservices.

To demonstrate the process of microservices building, we will use Vert.x, an
event-driven, non-blocking, lightweight, and polyglot toolkit (components can be
written	in	Java,	JavaScript,	Groovy,	Ruby,	Scala,	Kotlin,	and	Ceylon).	It	supports	an	
asynchronous programming model and a distributed event bus that reaches even
into	in-browser	JavaScript	(thus	allowing	the	creation	of	real-time	web	applications).

One	starts	using	Vert.x	by	creating	a	Verticle class that implements the interface
io.vertx.core.Verticle:

package io.vertx.core;
public interface Verticle {
 Vertx getVertx();
 void init(Vertx vertx, Context context);
 void start(Future<Void> future) throws Exception;
 void stop(Future<Void> future) throws Exception;
}

The method names previously mentioned are self-explanatory. The method
getVertex() provides access to the Vertx object the entry point into the Vert.x
Core API. It provides access to the following functionality necessary for the
microservices building:

•	 Creating TCP and HTTP clients and servers
•	 Creating	DNS	clients
•	 Creating	Datagram	sockets
•	 Creating periodic services
•	 Providing access to the event bus and file system API
•	 Providing access to the shared data API
•	 Deploying	and	undeploying	verticles

http://www.lightbend.com/
http://www.ninjaframework.org/
http://spotify.github.io/apollo
http://vertx.io/

Microservices

[104]

Using this Vertx object, various verticles can be deployed, which talk to each other,
receive	an	external	request,	and	process	and	store	data	as	any	other	Java	application,	
thus	forming	a	system	of	microservices.	Using	RxJava	implementation	from	the	
package io.vertx.rxjava, we will show how one can create a reactive system
of microservices.

A verticle is a building block in Vert.x world. It can easily be created by extending
the io.vertx.rxjava.core.AbstractVerticle class:

package io.vertx.rxjava.core;
import io.vertx.core.Context;
import io.vertx.core.Vertx;
public class AbstractVerticle
 extends io.vertx.core.AbstractVerticle {
 protected io.vertx.rxjava.core.Vertx vertx;
 public void init(Vertx vertx, Context context) {
 super.init(vertx, context);
 this.vertx = new io.vertx.rxjava.core.Vertx(vertx);
 }
}

The earlier mentioned class, in turn, extends io.vertx.core.AbstractVerticle:

package io.vertx.core;
import io.vertx.core.json.JsonObject;
import java.util.List;
public abstract class AbstractVerticle
 implements Verticle {
 protected Vertx vertx;
 protected Context context;
 public Vertx getVertx() { return vertx; }
 public void init(Vertx vertx, Context context) {
 this.vertx = vertx;
 this.context = context;
 }
 public String deploymentID() {
 return context.deploymentID();
 }
 public JsonObject config() {
 return context.config();
 }
 public List<String> processArgs() {
 return context.processArgs();
 }
 public void start(Future<Void> startFuture)

Lesson 4

[105]

 throws Exception {
 start();
 startFuture.complete();
 }
 public void stop(Future<Void> stopFuture)
 throws Exception {
 stop();
 stopFuture.complete();
 }
 public void start() throws Exception {}
 public void stop() throws Exception {}

}

A verticle can be created by extending the class io.vertx.core.AbstractVerticle,
too.	However,	we	will	write	reactive	microservices,	so	we	will	extend	its	rx-fied	
version, io.vertx.rxjava.core.AbstractVerticle.

To use Vert.x and run the provided example, all you need to do is to add the
following dependencies:

<dependency>
 <groupId>io.vertx</groupId>
 <artifactId>vertx-web</artifactId>
 <version>${vertx.version}</version>
</dependency>

<dependency>
 <groupId>io.vertx</groupId>
 <artifactId>vertx-rx-java</artifactId>
 <version>${vertx.version}</version>
</dependency>

Other	Vert.x	functionality	can	be	added	as	needed	by	including	other	Maven	
dependencies.

What makes Vert.x Verticle reactive is the underlying implementation of an event
loop (a thread) that receives an event and delivers it a Handler (we will show how
to write the code for it). When a Handler gets the result, the event loop invokes
the callback.

As you see, it is important not to write a code that blocks the
event	loop,	thus	the	Vert.x	golden	rule:	don't	block	the	event	
loop.

Microservices

[106]

If not blocked, the event loop works very quickly and delivers a huge number
of events in a short period of time. This is called the reactor pattern (https://
en.wikipedia.org/wiki/Reactor_pattern). Such an event-driven non-blocking
programming	model	is	a	very	good	fit	for	reactive	microservices.	For	certain	types	
of	code	that	are	blocking	by	nature	(JDBC	calls	and	long	computations	are	good	
examples) a worker verticle can be executed asynchronously (not by the event loop,
but by a separate thread using the method vertx.executeBlocking()), which
keeps the golden rule intact.

Let's	look	at	a	few	examples.	Here	is	a	Verticle class that works as an HTTP server:

import io.vertx.rxjava.core.http.HttpServer;
import io.vertx.rxjava.core.AbstractVerticle;

public class Server extends AbstractVerticle{
 private int port;
 public Server(int port) {
 this.port = port;
 }
 public void start() throws Exception {
 HttpServer server = vertx.createHttpServer();
 server.requestStream().toObservable()
 .subscribe(request -> request.response()
 .end("Hello from " +
 Thread.currentThread().getName() +
 " on port " + port + "!\n\n")
);
 server.rxListen(port).subscribe();
 System.out.println(Thread.currentThread().getName()
 + " is waiting on port " + port + "...");
 }
}

In the previous code, the server is created, and the stream of data from a possible
request is wrapped into an Observable. We then subscribed to the data coming
from the Observable and passed in a function (a request handler) that will process
the request and generate a necessary response. We also told the server which port
to listen. Using this Verticle, we can deploy several instances of an HTTP server
listening on different ports. Here is an example:

import io.vertx.rxjava.core.RxHelper;
import static io.vertx.rxjava.core.Vertx.vertx;
public class Demo01Microservices {
 public static void main(String... args) {
 RxHelper.deployVerticle(vertx(), new Server(8082));

https://en.wikipedia.org/wiki/Reactor_pattern
https://en.wikipedia.org/wiki/Reactor_pattern

Lesson 4

[107]

 RxHelper.deployVerticle(vertx(), new Server(8083));
 }
}

If we run this application, the output would be as follows:

As you can see, the same thread is listening on both ports. If we now place a request
to each of the running servers, we will get the response we have hardcoded:

We ran our examples from the main() method. A plugin maven-shade-plugin
allows you to specify which verticle you would like to be the starting point of your
application. Here is an example from http://vertx.io/blog/my-first-vert-x-
3-application:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>2.3</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 <configuration>
 <transformers>
 <transformer
 implementation="org.apache.maven.plugins.shade.resource.
ManifestResourceTransformer">
 <manifestEntries>
 <Main-Class>io.vertx.core.Starter</Main-Class>
 <Main-Verticle>io.vertx.blog.first.MyFirstVerticle</
Main-Verticle>
 </manifestEntries>

http://vertx.io/blog/my-first-vert-x-3-application
http://vertx.io/blog/my-first-vert-x-3-application

Microservices

[108]

 </transformer>
 </transformers>
 <artifactSet/>
 <outputFile>${project.build.directory}/${project.artifactId}-
${project.version}-fat.jar</outputFile>
 </configuration>
 </execution>
 </executions>
</plugin>

Now, run the following command:

mvn package

It	will	generate	a	specified	JAR	file	(called	target/my-first-app-1.0-SNAPSHOT-
fat.jar, in this example). It is called fat because it contains all the necessary
dependencies.	This	file	will	also	contain	MANIFEST.MF with the following entries in it:

Main-Class: io.vertx.core.Starter
Main-Verticle: io.vertx.blog.first.MyFirstVerticle

You can use any verticle instead of io.vertx.blog.first.MyFirstVerticle,
used in this example, but io.vertx.core.Starter has to be there because that is
the name of the Vert.x class that knows how to read the manifest and execute the
method start()	of	the	specified	verticle.	Now,	you	can	run	the	following	command:

java -jar target/my-first-app-1.0-SNAPSHOT-fat.jar

This command will execute the start() method of the MyFirstVerticle class the
same way the main() method is executed in our example, which we will continue
to use for the simplicity of demonstration.

To compliment the HTTP server, we can create an HTTP client too. However,
first,	we	will	modify	the	method	start() in the server verticle to accept the
parameter name:

public void start() throws Exception {
 HttpServer server = vertx.createHttpServer();
 server.requestStream().toObservable()
 .subscribe(request -> request.response()
 .end("Hi, " + request.getParam("name") +
 "! Hello from " +
 Thread.currentThread().getName() +
 " on port " + port + "!\n\n")
);

Lesson 4

[109]

 server.rxListen(port).subscribe();
 System.out.println(Thread.currentThread().getName()
 + " is waiting on port " + port + "...");
}

Now, we can create an HTTP client verticle that sends a request and prints out the
response every second for 3 seconds, then stops:

import io.vertx.rxjava.core.AbstractVerticle;
import io.vertx.rxjava.core.http.HttpClient;
import java.time.LocalTime;
import java.time.temporal.ChronoUnit;

public class Client extends AbstractVerticle {
 private int port;
 public Client(int port) {
 this.port = port;
 }
 public void start() throws Exception {
 HttpClient client = vertx.createHttpClient();
 LocalTime start = LocalTime.now();
 vertx.setPeriodic(1000, v -> {
 client.getNow(port, "localhost", "?name=Nick",
 r -> r.bodyHandler(System.out::println));
 if(ChronoUnit.SECONDS.between(start,
 LocalTime.now()) > 3){
 vertx.undeploy(deploymentID());
 }
 });
 }
}

Let's	assume	we	deploy	both	verticles	as	follows:

RxHelper.deployVerticle(vertx(), new Server2(8082));
RxHelper.deployVerticle(vertx(), new Client(8082));

The output will be as follows:

Microservices

[110]

In this last example, we demonstrated how to create an HTTP client and periodic
service.	Now,	let's	add	more	functionality	to	our	system.	For	example,	let's	add	
another verticle that will interact with the database and use it via the HTTP server
we have already created.

First, we need to add this dependency:

<dependency>
 <groupId>io.vertx</groupId>
 <artifactId>vertx-jdbc-client</artifactId>
 <version>${vertx.version}</version>
</dependency>

The	newly	added	JAR	file	allows	us	to	create	an	in-memory	database	and	a	handler	
to access it:

public class DbHandler {
 private JDBCClient dbClient;
 private static String SQL_CREATE_WHO_CALLED =
 "CREATE TABLE IF NOT EXISTS " +
 "who_called (name VARCHAR(10), " +
 "create_ts TIMESTAMP(6) DEFAULT now())";
 private static String SQL_CREATE_PROCESSED =
 "CREATE TABLE IF NOT EXISTS " +
 "processed (name VARCHAR(10), " +
 "length INTEGER, " +
 "create_ts TIMESTAMP(6) DEFAULT now())";

 public DbHandler(Vertx vertx){
 JsonObject config = new JsonObject()
 .put("driver_class", "org.hsqldb.jdbcDriver")
 .put("url", "jdbc:hsqldb:mem:test?shutdown=true");
 dbClient = JDBCClient.createShared(vertx, config);
 dbClient.rxGetConnection()
 .flatMap(conn ->
 conn.rxUpdate(SQL_CREATE_WHO_CALLED)
 .doAfterTerminate(conn::close))
 .subscribe(r ->
 System.out.println("Table who_called created"),
 Throwable::printStackTrace);
 dbClient.rxGetConnection()
 .flatMap(conn ->
 conn.rxUpdate(SQL_CREATE_PROCESSED)
 .doAfterTerminate(conn::close))
 .subscribe(r ->

Lesson 4

[111]

 System.out.println("Table processed created"),
 Throwable::printStackTrace);

 }
}

Those	familiar	with	RxJava	can	see	that	Vert.x	code	closely	follows	the	style	and	
naming	convention	of	RxJava.	Nevertheless,	we	encourage	you	to	go	through	
Vert.x documentation, because it has a very rich API that covers many more cases
than just demonstrated. In the previous code, the operation flatMap() receives
the function that runs the script and then closes the connection. The operation
doAfterTerminate()	in	this	case	acts	as	if	it	was	placed	inside	a	finally	block	in	a	
traditional code and closes the connection either in case of success or if an exception
is generated. The subscribe() method has several overloaded versions. For our
code, we have selected the one that takes two functions one is going to be executed in
the case of success (we print a message about the table being created) and another in
the case of an exception (we just print the stack trace then).

To use the created database, we can add to DbHandler methods insert(),
process(), and readProcessed() that will allow us to demonstrate how to build a
reactive system. The code for the method insert() can look like this:

private static String SQL_INSERT_WHO_CALLED =
 "INSERT INTO who_called(name) VALUES (?)";
public void insert(String name, Action1<UpdateResult>
 onSuccess, Action1<Throwable> onError){
 printAction("inserts " + name);
 dbClient.rxGetConnection()
 .flatMap(conn ->
 conn.rxUpdateWithParams(SQL_INSERT_WHO_CALLED,
 new JsonArray().add(name))
 .doAfterTerminate(conn::close))
 .subscribe(onSuccess, onError);
}

The insert() method, as well as other methods we are going to write, takes full
advantage	of	Java	functional	interfaces.	It	creates	a	record	in	the	table	who_called
(using the passed in parameter name). Then, the operation subscribe() executes one
of the two functions passed in by the code that calls this method. We use the method
printAction() only for better traceability:

private void printAction(String action) {
 System.out.println(this.getClass().getSimpleName()
 + " " + action);
}

Microservices

[112]

The method process() also accepts two functions but does not need other
parameters. It processes all the records from the table who_called that are not
processed yet (not listed in the table processed):

private static String SQL_SELECT_TO_PROCESS =
 "SELECT name FROM who_called w where name not in " +
 "(select name from processed) order by w.create_ts " +
 "for update";
private static String SQL_INSERT_PROCESSED =
 "INSERT INTO processed(name, length) values(?, ?)";
public void process(Func1<JsonArray, Observable<JsonArray>>
 process, Action1<Throwable> onError) {
 printAction("process all records not processed yet");
 dbClient.rxGetConnection()
 .flatMapObservable(conn ->
 conn.rxQueryStream(SQL_SELECT_TO_PROCESS)
 .flatMapObservable(SQLRowStream::toObservable)
 .flatMap(process)
 .flatMap(js ->
 conn.rxUpdateWithParams(SQL_INSERT_PROCESSED, js)
 .flatMapObservable(ur->Observable.just(js)))
 .doAfterTerminate(conn::close))
 .subscribe(js -> printAction("processed " + js), onError);
}

If two threads are reading the table who_called for the purpose of selecting records
not processed yet, the clause for update in the SQL query makes sure that only
one	gets	each	record,	so	they	are	not	going	to	be	processed	twice.	The	significant	
advantage of the method process() code is its usage of the rxQUeryStream()
operation that emits the found records one at a time so that they are processed
independently of each other. In the case of a big number of not processed records,
such a solution guarantees a smooth delivery of the results without the spiking of the
resources consumption. The following flatMap() operation does processing using
the function passed in. The only requirement for that function is that it must return
one integer value (in JsonArray) that is going to be used as a parameter for the
SQL_INSERT_PROCESSED statement. So, it is up to the code that calls this method
to decide the nature of the processing. The rest of the code is similar to the method
insert(). The code indentation helps to follow the nesting of the operations.

The method readProcessed() has code that looks very similar to the code of the
method insert():

private static String SQL_READ_PROCESSED =
 "SELECT name, length, create_ts FROM processed
 order by create_ts desc limit ?";

Lesson 4

[113]

public void readProcessed(String count, Action1<ResultSet>
 onSuccess, Action1<Throwable> onError) {
 printAction("reads " + count +
 " last processed records");
 dbClient.rxGetConnection()
 .flatMap(conn ->
 conn.rxQueryWithParams(SQL_READ_PROCESSED,
 new JsonArray().add(count))
 .doAfterTerminate(conn::close))
 .subscribe(onSuccess, onError);
}

The	preceding	code	reads	the	specified	number	of	the	latest	processed	records.	The	
difference from the method process() is that the method readProcessed() returns
all the read records in one result set, so it is up to the user of this method to decide
how to process the result in bulk or one at a time. We show all these possibilities just
to demonstrate the variety of the possible options. With the DbHandler class in place,
we are ready to use it and create the DbServiceHttp microservice, which allows a
remote access to the DbHandler capabilities by wrapping around it an HTTP server.
Here is the constructor of the new microservice:

public class DbServiceHttp extends AbstractVerticle {
 private int port;
 private DbHandler dbHandler;
 public DbServiceHttp(int port) {
 this.port = port;
 }
 public void start() throws Exception {
 System.out.println(this.getClass().getSimpleName() +
 "(" + port + ") starts...");
 dbHandler = new DbHandler(vertx);
 Router router = Router.router(vertx);
 router.put("/insert/:name").handler(this::insert);
 router.get("/process").handler(this::process);
 router.get("/readProcessed")
 .handler(this::readProcessed);
 vertx.createHttpServer()
 .requestHandler(router::accept).listen(port);
 }
}

Microservices

[114]

In the earlier mentioned code, you can see how the URL mapping is done in Vert.x.
For each possible route, a corresponding Verticle method is assigned, each
accepting the RoutingContext object that contains all the data of HTTP context,
including the HttpServerRequest and HttpServerResponse objects. A variety
of convenience methods allows us to easily access the URL parameters and other
data necessary to process the request. Here is the method insert() referred in the
start() method:

private void insert(RoutingContext routingContext) {
 HttpServerResponse response = routingContext.response();
 String name = routingContext.request().getParam("name");
 printAction("insert " + name);
 Action1<UpdateResult> onSuccess =
 ur -> response.setStatusCode(200).end(ur.getUpdated() +
 " record for " + name + " is inserted");
 Action1<Throwable> onError = ex -> {
 printStackTrace("process", ex);
 response.setStatusCode(400)
 .end("No record inserted due to backend error");
 };
 dbHandler.insert(name, onSuccess, onError);
}

All it does is extracts the parameter name from the request and constructs the two
functions necessary to call method insert() of DbHandler we discussed earlier.
The method process() looks similar to the previous method insert():

private void process(RoutingContext routingContext) {
 HttpServerResponse response = routingContext.response();
 printAction("process all");
 response.setStatusCode(200).end("Processing...");
 Func1<JsonArray, Observable<JsonArray>> process =
 jsonArray -> {
 String name = jsonArray.getString(0);
 JsonArray js =
 new JsonArray().add(name).add(name.length());
 return Observable.just(js);
 };
 Action1<Throwable> onError = ex -> {
 printStackTrace("process", ex);
 response.setStatusCode(400).end("Backend error");
 };
 dbHandler.process(process, onError);
}

Lesson 4

[115]

The function process	mentioned	earlier	defines	what	should	be	done	with	the	
records coming from the SQL_SELECT_TO_PROCESS statement inside the method
process() in DbHandler.	In	our	case,	it	calculates	the	length	of	the	caller's	name	and	
passes it as a parameter along with the name itself (as a return value) to the next SQL
statement that inserts the result into the table processed.

Here is the method readProcessed():

private void readProcessed(RoutingContext routingContext) {
 HttpServerResponse response = routingContext.response();
 String count = routingContext.request().getParam("count");
 printAction("readProcessed " + count + " entries");
 Action1<ResultSet> onSuccess = rs -> {
 Observable.just(rs.getResults().size() > 0 ?
 rs.getResults().stream().map(Object::toString)
 .collect(Collectors.joining("\n")) : "")
 .subscribe(s -> response.setStatusCode(200).end(s));
 };
 Action1<Throwable> onError = ex -> {
 printStackTrace("readProcessed", ex);
 response.setStatusCode(400).end("Backend error");
 };
 dbHandler.readProcessed(count, onSuccess, onError);
}

That is where (in the previous code in the function onSuccess()) the result set from
the query SQL_READ_PROCESSED is read and used to construct the response. Notice
that we do it by creating an Observable	first,	then	subscribing	to	it	and	passing	
the result of the subscription as the response into method end().	Otherwise,	the	
response can be returned without waiting for the response to be constructed.

Now, we can launch our reactive system by deploying the DbServiceHttp verticle:

RxHelper.deployVerticle(vertx(), new DbServiceHttp(8082));

If we do that, in the output we will see the following lines of code:

DbServiceHttp(8082) starts...
Table processed created
Table who_called created

In another window, we can issue the command that generates an HTTP request:

Microservices

[116]

If we read the processed records now, there should be none:

The log messages show the following:

Now, we can request processing of the existing records and then read the
results again:

In principle, it is enough already to build a reactive system. We can deploy many
DbServiceHttp microservices on different ports or cluster them to increase
processing capacity, resilience, and responsiveness. We can wrap other services
inside an HTTP client or an HTTP server and let them talk to each other, processing
the input and passing the results along the processing pipeline.

However, Vert.x also has a feature that even better suits the message-driven
architecture (without using HTTP). It is called an event bus. Any verticle has access
to the event bus and can send any message to any address (which is just a string)
using either method send() (rxSend() in the case of reactive programming) or
method publish().	One	or	many	verticles	can	register	themselves	as	a	consumer	
for a certain address.

If many verticles are consumers for the same address, then the method send()
(rxSend()) delivers the message only to one of them (using a round-robin algorithm
to pick the next consumer). The method publish(), as you would expect, delivers
the	message	to	all	consumers	with	the	same	address.	Let's	see	an	example,	using	
the already familiar DbHandler as the main working horse.

Lesson 4

[117]

A microservice, based on an event bus, looks very similar to the one based on the
HTTP protocol we discussed already:

public class DbServiceBus extends AbstractVerticle {
 private int id;
 private String instanceId;
 private DbHandler dbHandler;
 public static final String INSERT = "INSERT";
 public static final String PROCESS = "PROCESS";
 public static final String READ_PROCESSED
 = "READ_PROCESSED";
 public DbServiceBus(int id) { this.id = id; }
 public void start() throws Exception {
 this.instanceId = this.getClass().getSimpleName()
 + "(" + id + ")";
 System.out.println(instanceId + " starts...");
 this.dbHandler = new DbHandler(vertx);
 vertx.eventBus().consumer(INSERT).toObservable()
 .subscribe(msg -> {
 printRequest(INSERT, msg.body().toString());
 Action1<UpdateResult> onSuccess
 = ur -> msg.reply(...);
 Action1<Throwable> onError
 = ex -> msg.reply("Backend error");
 dbHandler.insert(msg.body().toString(),
 onSuccess, onError);
 });

 vertx.eventBus().consumer(PROCESS).toObservable()
 .subscribe(msg -> {

 dbHandler.process(process, onError);
 });

 vertx.eventBus().consumer(READ_PROCESSED).toObservable()
 .subscribe(msg -> {
 ...
 dbHandler.readProcessed(msg.body().toString(),
 onSuccess, onError);
 });
 }

Microservices

[118]

We	simplified	the	preceding	code	by	skipping	some	sections	(that	are	very	similar	
to the DbServiceHttp class) and trying to highlight the code structure. For demo
purposes, we will deploy two instances of this class and send three messages
to each of the addresses INSERT, PROCESS, and READ_PROCESSED:

void demo_DbServiceBusSend() {
 Vertx vertx = vertx();
 RxHelper.deployVerticle(vertx, new DbServiceBus(1));
 RxHelper.deployVerticle(vertx, new DbServiceBus(2));
 delayMs(200);
 String[] msg1 = {"Mayur", "Rohit", "Nick" };
 RxHelper.deployVerticle(vertx,
 new PeriodicServiceBusSend(DbServiceBus.INSERT, msg1, 1));
 String[] msg2 = {"all", "all", "all" };
 RxHelper.deployVerticle(vertx,
 new PeriodicServiceBusSend(DbServiceBus.PROCESS, msg2, 1));
 String[] msg3 = {"1", "1", "2", "3" };
 RxHelper.deployVerticle(vertx,
 new PeriodicServiceBusSend(DbServiceBus.READ_PROCESSED,
 msg3, 1));
}

Notice the delay for 200 ms we inserted using the method delayMs():

void delayMs(int ms){
 try {
 TimeUnit.MILLISECONDS.sleep(ms);
 } catch (InterruptedException e) {}
}

The delay is necessary to let the DbServiceBus verticle to be deployed and started
(and	the	consumers	registered	with	the	address).	Otherwise,	an	attempt	to	send	a	
message may fail because the consumer is not registered with the address yet. The
PeriodicServiceBusSend() verticle code is as follows:

public class PeriodicServiceBusSend
 extends AbstractVerticle {
 private EventBus eb;
 private LocalTime start;
 private String address;
 private String[] caller;
 private int delaySec;
 public PeriodicServiceBusSend(String address,
 String[] caller, int delaySec) {
 this.address = address;
 this.caller = caller;

Lesson 4

[119]

 this.delaySec = delaySec;
 }
 public void start() throws Exception {
 System.out.println(this.getClass().getSimpleName()
 + "(" + address + ", " + delaySec + ") starts...");
 this.eb = vertx.eventBus();
 this.start = LocalTime.now();
 vertx.setPeriodic(delaySec * 1000, v -> {
 int i = (int)ChronoUnit.SECONDS.between(start,
 LocalTime.now()) - 1;
 System.out.println(this.getClass().getSimpleName()
 + " to address " + address + ": " + caller[i]);
 eb.rxSend(address, caller[i]).subscribe(reply -> {
 System.out.println(this.getClass().getSimpleName()
 + " got reply from address " + address
 + ":\n " + reply.body());
 if(i + 1 >= caller.length){
 vertx.undeploy(deploymentID());
 }
 }, Throwable::printStackTrace);
 });
 }
}

The previous code sends a message to an address every delaySec seconds as many
times as the length of the array caller[], and then undeploys the verticle (itself). If
we run the demo, the beginning of the output will be as follows:

Microservices

[120]

As you can see, for each address, only DbServiceBus(1) was a receiver of
the	first	message.	The	second	message	to	the	same	address	was	received	by	
DbServiceBus(2). That was the round-robin algorithm (which we mentioned
earlier)	in	action.	The	final	section	of	the	output	looks	like	this:

We	can	deploy	as	many	verticles	of	the	same	type	as	needed.	For	example,	let's	
deploy four verticles that send messages to the address INSERT:

String[] msg1 = {"Mayur", "Rohit", "Nick" };
RxHelper.deployVerticle(vertx,
 new PeriodicServiceBusSend(DbServiceBus.INSERT, msg1, 1));
RxHelper.deployVerticle(vertx,
 new PeriodicServiceBusSend(DbServiceBus.INSERT, msg1, 1));
RxHelper.deployVerticle(vertx,
 new PeriodicServiceBusSend(DbServiceBus.INSERT, msg1, 1));
RxHelper.deployVerticle(vertx,
 new PeriodicServiceBusSend(DbServiceBus.INSERT, msg1, 1));

To see the results, we will also ask the reading Verticle to read the last eight records:

String[] msg3 = {"1", "1", "2", "8" };
RxHelper.deployVerticle(vertx,
 new PeriodicServiceBusSend(DbServiceBus.READ_PROCESSED,
 msg3, 1));

Lesson 4

[121]

The	result	(the	final	section	of	the	output)	then	will	be	as	expected:

Four verticles have sent the same messages, so each name was sent four times and
processed that is what we see in the previous output.

We will now return to one inserting periodic verticle but will change it from using
the method rxSend() to the method publish():

PeriodicServiceBusPublish(String address, String[] caller, int
delaySec) {
 ...
 vertx.setPeriodic(delaySec * 1000, v -> {
 int i = (int)ChronoUnit.SECONDS.between(start,
 LocalTime.now()) - 1;
 System.out.println(this.getClass().getSimpleName()
 + " to address " + address + ": " + caller[i]);
 eb.publish(address, caller[i]);
 if(i + 1 == caller.length){
 vertx.undeploy(deploymentID());
 }
 });
}

This change would mean that the message has to be sent to all verticles that are
registered	as	the	consumers	at	that	address.	Now,	let's	run	the	following	code:

Vertx vertx = vertx();
RxHelper.deployVerticle(vertx, new DbServiceBus(1));
RxHelper.deployVerticle(vertx, new DbServiceBus(2));
delayMs(200);
String[] msg1 = {"Mayur", "Rohit", "Nick" };
RxHelper.deployVerticle(vertx,

Microservices

[122]

 new PeriodicServiceBusPublish(DbServiceBus.INSERT,
 msg1, 1));
delayMs(200);
String[] msg2 = {"all", "all", "all" };
RxHelper.deployVerticle(vertx,
 new PeriodicServiceBusSend(DbServiceBus.PROCESS,
 msg2, 1));
String[] msg3 = {"1", "1", "2", "8" };
RxHelper.deployVerticle(vertx,
 new PeriodicServiceBusSend(DbServiceBus.READ_PROCESSED,
 msg3, 1));

We have included another delay for 200 ms to give the publishing verticle time
to	send	the	message.	The	output	(in	the	final	section)	now	shows	that	each	message	
was processed twice:

That is because two consumers DbServiceBus(1) and DbServiceBus(2) were
deployed, and each received a message to the address INSERT and inserted it in
the table who_called.

All	the	previous	examples	we	have	run	in	one	JVM	process.	If	necessary,	Vert.x	
instances	can	be	deployed	in	different	JVM	processes	and	clustered	by	adding	the	
-cluster option to the run command. Therefore, they share the event bus and the
addresses are visible to all Vert.x instances. This way, the resources can be added
to each address as needed. For example, we can increase the number of processing
microservices	only	and	compensate	the	load's	increase.

Other	frameworks	we	mentioned	earlier	have	similar	capabilities.	They	make	
microservices creation easy and may encourage breaking the application into tiny
single-method operations with an expectation of assembling a very resilient and
responsive system.

Lesson 4

[123]

However, these are not the only criteria of good quality. System decomposition
increases the complexity of its deployment. Also, if one development team is
responsible for many microservices, the complexity of versioning so many pieces in
different	stages	(development,	test,	integration	test,	certification,	staging,	production)	
may lead to confusion and a very challenging deployment process, which, in turn,
may slow down the rate of changes necessary to keep the system in sync with the
market requirements.

In addition to the developing of the microservices, many other aspects have to be
addressed to support the reactive system:

•	 A monitoring system has to be designed to provide an insight into the state
of the application, but it should not be so complex as to pull the development
resources away from the main application.

•	 Alerts have to be installed to warn the team about possible and actual issues
in a timely manner, so they can be addressed before affecting the business.

•	 If possible, self-correcting automated processes have to be implemented.
For example, the system should be able to add and release resources in
accordance	with	the	current	load;	the	retry	logic	has	to	be	implemented	with	
a reasonable upper limit of a attempts before declaring the failure.

•	 A layer of circuit breakers has to protect the system from the domino effect
when failure of one component deprives other components of the necessary
resources.

•	 An embedded testing system should be able to introduce disruptions
and simulate processing load to ensure that the application resilience and
responsiveness do not degrade over time. For example, the Netflix team has
introduced a chaos monkey a system that is able to shut down various parts
of the production system to test the ability to recover. They use it even in
production because a production environment has a specific configuration,
and no test in another environment can guarantee that all possible issues
are found.

One	of	the	main	considerations	of	a	reactive	system	design	is	the	selection	of	the	
deployment methodology that can be either container-less, self-contained, or in-
container. We will look into the pros and cons of each of these approaches in the
following sections of this lesson.

Microservices

[124]

Container-Less Deployment
People use the term container to refer to very different things. In the original usage,
a container was something that carried its content from one location to another
without changing anything inside. However, when servers were introduced, only one
aspect was emphasized the ability to hold an application to contain it. Also, another
meaning	was	added	to	provide	life-supportive	infrastructure	so	that	the	container's	
content (an application) can not only survive but also be active and respond to the
external	requests.	Such	a	redefined	notion	of	a	container	was	applied	to	web	servers	
(servlet container), application servers (an application container with or without an
EJB	container),	and	other	software	facilities	that	provided	the	supportive	environment	
for	applications.	Sometimes,	even	the	JVM	itself	was	called	a	container,	but	this	
association did not survive, probably, because the ability to actively engage (execute)
the content does not align well with the original meaning of a container.

That is why, later, when people started talking about container-less deployment,
they	typically	meant	the	ability	to	deploy	an	application	into	a	JVM	directly,	without	
first	installing	WebSphere,	WebLogic,	JBoss,	or	any	other	mediating	software	that	
provides the runtime environment for the application.

In the previous sections, we described many frameworks that allow us to build and
deploy an application (or rather a reactive system of microservices) without the need
for	any	other	container	beyond	the	JVM	itself.	All	you	need	to	do	is	to	build	a	fat	JAR	
file	that	includes	all	the	dependencies	(except	those	that	come	from	the	JVM	itself)	
and	then	run	it	as	a	standalone	Java	process:

$ java -jar myfatjar.jar

Well, you also need to make sure that MANIFEST.MF	in	your	JAR	file	has	an	entry	
main	class	that	points	to	the	fully	qualified	class	name	that	has	the	main() method
and will be run at the startup. We have described how to do it in the previous
section, Building Microservices.

That	is	the	promised	compile-once-run-everywhere	of	Java,	everywhere	meaning	
everywhere	where	JVM	of	a	certain	version	or	higher	is	installed.	There	are	several	
advantages and disadvantages of this approach. We will discuss them not relative
to the traditional deployment in a server container. The advantages of deployment
without using the traditional containers are quite obvious, starting with much
fewer (if any) licensing costs and ending up with much a lighter deployment and
scalability process, not even mentioning much less consumption of resources.
Instead, we will compare container-less deployment not with the traditional one,
but with a self-contained and an in-container in a new generation of containers
that have been developed a few years ago.

Lesson 4

[125]

They allow the ability not only to contain and execute the contained code, which the
traditional containers did too, but also to move it to a different location without any
change to the contained code. From now on, by a container, we are going to mean
only the new ones.

The advantages of container-less deployment are as follows:

•	 It	is	easy	to	add	more	Java	processes	either	inside	the	same	physical	(or	
virtual or in the cloud) machine or on new hardware

•	 An isolation level between processes is high, which is especially important in
the shared environment when you have no control over other co-deployed
applications, and it is possible that a rogue application would try to penetrate
the neighboring execution environment

•	 It has a small footprint since it does not include anything else beyond the
application itself or a group of microservices

The disadvantages of container-less deployment are as follows:

•	 Each	JAR	file	requires	the	JVM	of	a	certain	version	or	higher,	which	may	
force you to bring up a new physical or virtual machine just for this reason,
to	deploy	one	particular	JAR	file

•	 In the case of an environment you do not control, your code might be
deployed	with	a	wrong	version	of	JVM,	which	could	lead	to	unpredictable	
results

•	 Processes	in	the	same	JVM	compete	for	resources,	which	are	especially	hard	
to manage in the case of the environments shared by different teams or
different companies

•	 When	several	microservices	are	bundled	into	the	same	JAR	file,	they	might	
require different versions of a third-party library or even incompatible
libraries

Microservices	can	be	deployed	one	per	JAR	or	bundled	together	by	a	team,	by	related	
services, by the unit of scale, or using another criterion. Not the least important
consideration	is	the	total	number	of	such	JAR	files.	As	this	number	grows	(Google	
today deals with hundreds of thousands of deployment units at a time), it may
become impossible to handle deployment via simple bash script and require a
complex process that allows account ability for possible incompatibilities. If that is the
case, then it is reasonable to consider using virtual machines or containers (in their
new incarnation, see the following section) for better isolation and management.

Microservices

[126]

Self-Contained Microservices
Self-contained microservices look much similar to container-less. The only difference
is	that	the	JVM	(or	JRE,	actually)	or	any	other	external	frameworks	and	servers	
necessary	for	the	application	to	run	are	included	in	the	fat	JAR	file	too.	There	are	
many	ways	to	build	such	an	all-inclusive	JAR	file.

Spring Boot, for example, provides a convenient GUI with checkbox list that allows
you to select which parts of your Spring Boot application and the external tools you
would like to package. Similarly, WildFly Swarm allows you to choose which parts
of	the	Java	EE	components	you	would	like	to	bundle	along	with	your	application.	
Alternatively, you can do it yourself using the javapackager tool. It compiles and
packages	the	application	and	JRE	in	the	same	JAR	file	(it	can	also	be	.exe or .dmg)
for	distribution.	You	can	read	about	the	tool	on	the	Oracle	website	https://docs.
oracle.com/javase/9/tools/javapackager.htm or you can just run the command
javapackager	on	a	computer	where	JDK	is	installed	(it	comes	with	Java	8	too)	you	
will get the list of tool options and their brief description.

Basically, to use the javapackager tool, all you need to do is to prepare a project
with everything you would like to package together, including all the dependencies
(packaged	in	JAR	files),	and	run	the	javapackager command with the necessary
options that allow you to specify the type of output you would like to have (.exe or
.dmg,	for	example),	the	JRE	location	you	would	like	to	bundle	together,	the	icon	to	
use, the main class entry for MANIFEST.MF, and so on. There are also Maven plugins
that make the packaging command simpler because much of the setup has to be
configured	in	pom.xml.

The advantages of self-contained deployment are as follows:

•	 It is one file (with all the microservices that compose the reactive system or
some part of it) to handle, which is simpler for a user and for a distributor

•	 There	is	no	need	to	pre-install	JRE	and	no	risk	of	mismatching	the	required	
version

•	 The	isolation	level	is	high	because	your	application	has	a	dedicated	JRE,	
so the risk of an intrusion from a co-deployed application is minimal

•	 You have full control over the dependencies included in the bundle

The disadvantages are as follows:

•	 The size of the file is bigger, which might be an impediment if it has to be
downloaded

•	 The configuration is more complex than in the case of a container-less
JAR	file

https://docs.oracle.com/javase/9/tools/javapackager.htm
https://docs.oracle.com/javase/9/tools/javapackager.htm

Lesson 4

[127]

•	 The bundle has to be generated on a platform that matches the target one,
which might lead to mismatch if you have no control over the installation
process

•	 Other	processes	deployed	on	the	same	hardware	or	virtual	machine	can	hog	
the resources critical for your application needs, which are especially hard
to manage if your application is downloaded and run not by the team that
has developed it

In-Container Deployment
Those who are familiar with Virtual Machine (VM) and not familiar with modern
containers	(such	as	Docker,	Rocket	by	CoreOS,	VMware	Photon,	or	similar)	could	get	
the impression that we were talking about VM while saying that a container could
not only contain and execute the contained code, but also to move it to a different
location without any change to the contained code. If so, that would be quite an apt
assumption. VM does allow all of that, and a modern container can be considered a
lightweight VM as it also allows the allocation of resources and provides the feeling
of a separate machine. Yet, a container is not a full-blown isolated virtual computer.

The key difference is that the bundle that can be passed around as a VM includes
an entire operating system (with the application deployed). So, it is quite possible
that a physical server running two VMs would have two different operating systems
running on it. By contrast, a physical server (or a VM) running three containerized
applications has only one operating system running, and the two containers share
(read-only) the operating system kernel, each having its own access (mount) for
writing to the resources they do not share. This means, for example, a much shorter
start time, because starting a container does not require us to boot the operating
system (as in the case of a VM).

For	an	example,	let's	take	a	closer	look	at	Docker	the	community	leader	in	container.	
In 2015, an initiative called Open Container Project was announced, later renamed
the Open Container Initiative (OCI), which was supported by Google, IBM,
Amazon,	Microsoft,	Red	Hat,	Oracle,	VMware,	HP,	Twitter,	and	many	other	
companies. Its purpose was to develop industry standards for a container format and
container	runtime	software	for	all	platforms.	Docker	has	donated	about	5	percent	of	
its code base to the project because its solution was chosen as the starting point.

Microservices

[128]

There	is	an	extensive	Docker	documentation	at:	https://docs.docker.com. Using
Docker,	one	can	include	in	the	package	all	the	Java	EE	Container	and	the	application	
as	a	Docker	image,	achieving	essentially	the	same	result	as	with	a	self-contained	
deployment.	Then,	you	can	launch	your	application	by	starting	the	Docker	image	
in	the	Docker	engine	using	this	command:

$ docker run mygreatapplication

It	starts	a	process	that	looks	like	running	an	OS	on	a	physical	computer,	although	it	
can also be happening in a cloud inside a VM that is running on the physical Linux
server shared by many different companies and individuals. That is why an isolation
level (which, in the case of containers, is almost as high as in a VM) may be critical
in choosing between different deployment models.

A typical recommendation would be to put one microservice in each container, but
nothing	prevents	you	from	putting	several	microservices	in	one	Docker	image	(or	
any other container for that matter). However, there are already mature systems
of container management (in the world of containers called orchestration) that can
help you with deployment, so the complexity of having many containers, although a
valid consideration, should not be a big obstacle if resilience and responsiveness are
at	stake.	One	of	the	popular	orchestrations	called	Kubernetes supports microservice
registry, discovery, and load balancing. Kubernetes can be used in any cloud or in a
private infrastructure.

Containers allow a fast, reliable, and consistent deployment in practically any of
the current deployment environments, whether it is your own infrastructure or
a cloud at Amazon, Google, or Microsoft. They also allow the easy movement of
an application through the development, testing, and production stages. Such
infrastructure independence allows you, if necessary, to use a public cloud for
development and testing and your own computers for production.

Once	a	base	operating	image	is	created,	each	development	team	can	then	build	their	
application	on	top,	thus	avoiding	the	complexities	of	environment	configuration.	
The versions of a container can also be tracked in a version control system.

The advantages of using containers are as follows:

•	 The level of isolation is the highest if compared with container-less and
self-contained deployment. In addition, more efforts were put recently into
adding security to containers.

•	 Each container is managed, distributed, deployed, started, and stopped by
the same set of commands.

https://docs.docker.com/

Lesson 4

[129]

•	 There	is	no	need	to	pre-install	JRE	and	risk	of	mismatching	the	required	
version.

•	 You have full control over the dependencies included in the container.
•	 It is straightforward to scale up/down each microservice by adding/

removing container instances.

The disadvantages of using containers are as follows:

•	 You and your team have to learn a whole new set of tools and become
involved	more	heavily	in	the	production	stage.	On	the	other	hand,	that	
seems to be the general tendency in recent years.

Summary
Microservices is a new architectural and design solution for highly loaded processing
systems that became popular after being successfully used in production by such
giants as Amazon, Google, Twitter, Microsoft, IBM, and others. It does not mean
though that you must adopt it too, but you can consider the new approach and see if
some or any of it can help your applications to be more resilient and responsive.

Using microservices can provide a substantial value, but it is not free. It comes
with increased complexity of the need to manage many more units through all the
lifecycle from requirements and development through testing to production. Before
committing to the full-scale microservice architecture, give it a shot by implementing
just a few microservices and move them all the way to production. Then, let it run
for	some	time	and	gauge	the	experience.	It	will	be	very	specific	to	your	organization.	
Any	successful	solution	must	not	be	blindly	copied	but	adopted	as	fit	for	your	
particular needs and abilities.

Better	performance	and	overall	efficiency	often	can	be	achieved	by	gradual	
improvements of what is already in place than by radical redesign and re-architecture.

In the next lesson, we will discuss and demonstrate new API that can improve your
code by making it more readable and faster performing.

Microservices

[130]

Assessments
1. Using	the	_________	object,	various	verticles	can	be	deployed,	which	talk	

to each other, receive an external request, and process and store data as any
other	Java	application,	thus	forming	a	system	of	microservices.

2. Which	of	the	following	is	advantage	of	container-less	deployment?
1. Each	JAR	file	requires	the	JVM	of	a	certain	version	or	higher,	which	

may force you to bring up a new physical or virtual machine just for
this	reason,	to	deploy	one	particular	JAR	file

2. In the case of an environment you do not control, your code might
be	deployed	with	a	right	version	of	JVM,	which	could	lead	to	
unpredictable results

3. Processes	in	the	same	JVM	compete	for	resources,	which	are	
especially hard to manage in the case of the environments shared by
different teams or different companies

4. It has a small footprint since it does not include anything else beyond
the application itself or a group of microservices

3. State	whether	True	or	False:	One	way	to	support	a	transaction	across	several	
microservices is to create a service that would play the role of a Parallel
Transaction Manager.

4. Which	of	the	following	are	the	Java	frameworks	that	are	included	in	Java	9?
1. Akka
2. Ninja
3. Orange
4. Selenium

5. State whether True or False: The level of isolation in a container is the highest
if compared with container-less and self-contained deployment.

[131]

Making Use of New APIs to
Improve Your Code

In the previous lessons, we talked about possible ways to improve the performance
of	your	Java	application--from	using	the	new	command	and	monitoring	tools	to	
adding multithreading and introducing reactive programming and even to radically
re-architecting	your	current	solution	into	an	unruly	and	flexible	bunch	of	small	
independent deployment units and microservices. Without knowing your particular
situation, there is no way for us to guess which of the provided recommendations
can	be	helpful	to	you.	That's	why,	in	this	lesson,	we	will	describe	a	few	recent	
additions	to	the	JDK	that	can	be	helpful	to	you	too.	As	we	mentioned	in	the	previous	
lesson, the gain in performance and overall code improvement does not always
require us to radically redesign it. Small incremental changes can sometimes
bring	more	significant	improvements	than	we	could	have	expected.

To bring back our analogy of a pyramid building, instead of trying to change the
logistics	of	the	delivery	of	the	stones	to	the	final	destination--in	order	to	shorten	
the construction time--it is often prudent to look closer at the tools the builders are
using	first.	If	each	operation	can	be	completed	in	half	the	time,	the	overall	time	of	
the	project's	delivery	can	be	shortened	accordingly,	even	if	each	of	the	stone	blocks	
travels the same, if not a larger, distance.

These are the improvements of the programming tools we will discuss in this lesson:

•	 Using filters on streams as a way to find what you need and to decrease
workload

•	 A new stack-walking API as the way analyze the stack trace
programmatically in order to apply an automatic correction

•	 New convenient static factory methods that create compact, unmodifiable
collection instances

Making Use of New APIs to Improve Your Code

[132]

•	 The new CompletableFuture class as a way to access the results of
asynchronous processing

•	 The	JDK	9	stream	API	improvements	that	can	speed	up	processing	while	
making your code more readable

Filtering Streams
The java.util.streams.Stream	interface	was	introduced	in	Java	8.	It	emits	elements	
and supports a variety of operations that perform computations based on these
elements.	A	stream	can	be	finite	or	infinite,	slow	or	fast	emitting.	Naturally,	there	
is always a concern that the rate of the newly emitted elements may be higher than
the	rate	of	the	processing.	Besides,	the	ability	to	keep	up	with	the	input	reflects	the	
application's	performance.	The	Stream implementations address the backpressure
(when the rate of the element processing is lower than their emitting rate) by adjusting
the emitting and processing rates using a buffer and various other techniques. In
addition, it is always helpful if an application developer makes sure that the decision
about processing or skipping each particular element is made as early as possible so
that	the	processing	resources	are	not	wasted.	Depending	on	the	situation,	different	
operations	can	be	used	for	filtering	the	data.

Basic Filtering
The	first	and	the	most	straightforward	way	to	do	filtering	is	using	the	filter()
operation. To demonstrate all the following capabilities, we will use the Senator
class:

public class Senator {
 private int[] voteYes, voteNo;
 private String name, party;
 public Senator(String name, String party,
 int[] voteYes, int[] voteNo) {
 this.voteYes = voteYes;
 this.voteNo = voteNo;
 this.name = name;
 this.party = party;
 }
 public int[] getVoteYes() { return voteYes; }
 public int[] getVoteNo() { return voteNo; }
 public String getName() { return name; }
 public String getParty() { return party; }
 public String toString() {
 return getName() + ", P" +

Lesson 5

[133]

 getParty().substring(getParty().length() - 1);
 }
}

As	you	can	see,	this	class	captures	a	senator's	name,	party,	and	how	they	voted	
for each of the issues (0 means No and 1 means Yes). If for a particular issue i,
voteYes[i]=0 , and voteNo[i]=0, it means that the senator was not present.
It is not possible to have voteYes[i]=1 and voteNo[i]=1 for the same issue.

Let's	assume	that	there	are	100	senators,	each	belonging	to	one	of	the	two	parties:	
Party1 or Party2. We can use these objects to collect statistics of how senators
voted for the last 10 issues using the Senate class:

public class Senate {
 public static List<Senator> getSenateVotingStats(){
 List<Senator> results = new ArrayList<>();
 results.add(new Senator("Senator1", "Party1",
 new int[]{1,0,0,0,0,0,1,0,0,1},
 new int[]{0,1,0,1,0,0,0,0,1,0}));
 results.add(new Senator("Senator2", "Party2",
 new int[]{0,1,0,1,0,1,0,1,0,0},
 new int[]{1,0,1,0,1,0,0,0,0,1}));
 results.add(new Senator("Senator3", "Party1",
 new int[]{1,0,0,0,0,0,1,0,0,1},
 new int[]{0,1,0,1,0,0,0,0,1,0}));
 results.add(new Senator("Senator4", "Party2",
 new int[]{1,0,1,0,1,0,1,0,0,1},
 new int[]{0,1,0,1,0,0,0,0,1,0}));
 results.add(new Senator("Senator5", "Party1",
 new int[]{1,0,0,1,0,0,0,0,0,1},
 new int[]{0,1,0,0,0,0,1,0,1,0}));
 IntStream.rangeClosed(6, 98).forEach(i -> {
 double r1 = Math.random();
 String name = "Senator" + i;
 String party = r1 > 0.5 ? "Party1" : "Party2";
 int[] voteNo = new int[10];
 int[] voteYes = new int[10];
 IntStream.rangeClosed(0, 9).forEach(j -> {
 double r2 = Math.random();
 voteNo[j] = r2 > 0.4 ? 0 : 1;
 voteYes[j] = r2 < 0.6 ? 0 : 1;
 });
 results.add(new Senator(name,party,voteYes,voteNo));
 });

Making Use of New APIs to Improve Your Code

[134]

 results.add(new Senator("Senator99", "Party1",
 new int[]{0,0,0,0,0,0,0,0,0,0},
 new int[]{1,1,1,1,1,1,1,1,1,1}));
 results.add(new Senator("Senator100", "Party2",
 new int[]{1,1,1,1,1,1,1,1,1,1},
 new int[]{0,0,0,0,0,0,0,0,0,0}));
 return results;
 }
 public static int timesVotedYes(Senator senator){
 return Arrays.stream(senator.getVoteYes()).sum();
 }
}

We	hardcoded	statistics	for	the	first	five	senators	so	we	can	get	predictable	results	
while	testing	our	filters	and	verify	that	the	filters	work.	We	also	hardcoded	voting	
statistics for the last two senators so we can have a predictable count while looking
for senators who voted only Yes or only No for each of the ten issues. And we added
the timesVotedYes() method, which provides the count of how many times the
given senator voted Yes.

Now we can collect some data from the Senate	class.	For	example,	let's	see	how	
many members of each party comprise the Senate class:

List<Senator> senators = Senate.getSenateVotingStats();
long c1 = senators.stream()
 .filter(s -> s.getParty() == "Party1").count();
System.out.println("Members of Party1: " + c1);

long c2 = senators.stream()
 .filter(s -> s.getParty() == "Party2").count();
System.out.println("Members of Party2: " + c2);
System.out.println("Members of the senate: " + (c1 + c2));

The result of the preceding code differs from run to run because of the random
value generator we used in the Senate class, so do not expect to see exactly the
same numbers if you try to run the examples. What is important is that the total of
the two party members should be equal 100--the total number of the senators in the
Senate class:

Lesson 5

[135]

The expression s -> s.getParty()=="Party1"	is	the	predicate	that	filters	out	
only those senators who are members of Party1. So, the elements (Senator objects)
of Party2 do not get through and are not included in the count. That was pretty
straightforward.

Now	let's	look	at	a	more	complex	example	of	filtering.	Let's	count	how	many	
senators of each party voted on issue 3:

int issue = 3;
c1 = senators.stream()
 .filter(s -> s.getParty() == "Party1")
 .filter(s -> s.getVoteNo()[issue] != s.getVoteYes()[issue])
 .count();
System.out.println("Members of Party1 who voted on Issue" +
 issue + ": " + c1);

c2 = senators.stream()
 .filter(s -> s.getParty() == "Party2" &&
 s.getVoteNo()[issue] != s.getVoteYes()[issue])
 .count();
System.out.println("Members of Party2 who voted on Issue" +
 issue + ": " + c2);
System.out.println("Members of the senate who voted on Issue"
 + issue + ": " + (c1 + c2));

For Party1,	we	used	two	filters.	For	Party2, we combined them just to show
another	possible	solution.	The	important	point	here	is	to	use	the	filter	by	a	party	(s
-> s.getParty() == "Party1")	first	before	the	filter	that	selects	only	those	who	
voted.	This	way,	the	second	filter	is	used	only	for	approximately	half	of	the	elements.	
Otherwise,	if	the	filter	that	selects	only	those	who	voted	were	placed	first,	it	would	
be applied to all 100 of Senate members.

The result looks like this:

Similarly, we can calculate how many members of each party voted Yes on issue 3:

c1 = senators.stream()
 .filter(s -> s.getParty() == "Party1" &&
 s.getVoteYes()[issue] == 1)
 .count();

Making Use of New APIs to Improve Your Code

[136]

System.out.println("Members of Party1 who voted Yes on Issue"
 + issue + ": " + c1);

c2 = senators.stream()
 .filter(s -> s.getParty() == "Party2" &&
 s.getVoteYes()[issue] == 1)
 .count();
System.out.println("Members of Party2 who voted Yes on Issue"
 + issue + ": " + c2);
System.out.println("Members of the senate voted Yes on Issue"
 + issue + ": " + (c1 + c2));

The result of the preceding code is as follows:

We	can	refactor	the	preceding	examples	by	taking	advantage	of	the	Java	
functional programming capability (using lambda expressions) and creating the
countAndPrint() method:

long countAndPrint(List<Senator> senators,
 Predicate<Senator> pred1, Predicate<Senator> pred2,
 String prefix) {
 long c = senators.stream().filter(pred1::test)
 .filter(pred2::test).count();
 System.out.println(prefix + c);
 return c;
}

Now all the earlier code can be expressed in a more compact way:

int issue = 3;

Predicate<Senator> party1 = s -> s.getParty() == "Party1";
Predicate<Senator> party2 = s -> s.getParty() == "Party2";
Predicate<Senator> voted3 =
 s -> s.getVoteNo()[issue] != s.getVoteYes()[issue];
Predicate<Senator> yes3 = s -> s.getVoteYes()[issue] == 1;

long c1 = countAndPrint(senators, party1, s -> true,
 "Members of Party1: ");
long c2 = countAndPrint(senators, party2, s -> true,

Lesson 5

[137]

 "Members of Party2: ");
System.out.println("Members of the senate: " + (c1 + c2));

c1 = countAndPrint(senators, party1, voted3,
 "Members of Party1 who voted on Issue" + issue + ": ");
c2 = countAndPrint(senators, party2, voted3,
 "Members of Party2 who voted on Issue" + issue + ": ");
System.out.println("Members of the senate who voted on Issue"
 + issue + ": " + (c1 + c2));

c1 = countAndPrint(senators, party1, yes3,
 "Members of Party1 who voted Yes on Issue" + issue + ": ");
c2 = countAndPrint(senators, party2, yes3,
 "Members of Party2 who voted Yes on Issue" + issue + ": ");
System.out.println("Members of the senate voted Yes on Issue"
 + issue + ": " + (c1 + c2));

We created four predicates, party1, party2, voted3, and yes3, and we used each
of them several times as parameters of the countAndPrint() method. The output
of this code is the same as that of the earlier examples:

Using the filter() method of the Stream interface is the most popular way
of	filtering.	But	it	is	possible	to	use	other	Stream methods to accomplish the
same effect.

Using Other Stream Operations for Filtering
Alternatively,	or	in	addition	to	the	basic	filtering	described	in	the	previous	section,	
other operations (methods of the Stream interface) can be used for selection and
filtering	emitted	stream	elements.

Making Use of New APIs to Improve Your Code

[138]

For	example,	let's	use	the	flatMap()	method	to	filter	out	the	members	of	the	Senate	
by their party membership:

long c1 = senators.stream()
 .flatMap(s -> s.getParty() == "Party1" ?
 Stream.of(s) : Stream.empty())
 .count();
System.out.println("Members of Party1: " + c1);

This method takes advantage of the Stream.of() (produces a stream of one
element) and Stream.empty()factory methods (it produces a stream without
elements, so nothing is emitted further downstream). Alternatively, the same
effect	can	be	achieved	using	a	new	factory	method	(introduced	in	Java	9)	called	
Stream.ofNullable():

c1 = senators.stream().flatMap(s ->
 Stream.ofNullable(s.getParty() == "Party1" ? s : null))
 .count();
System.out.println("Members of Party1: " + c1);

The Stream.ofNullable() method creates a stream of one element if not null;	
otherwise, it creates an empty stream, as in the previous example. Both the
preceding code snippets--produce the same output if we run them for the same
senate composition:

However, the same result can be achieved using a java.uti.Optional class that
may or may not contain a value. If a value is present (and not null), its isPresent()
method returns true and the get() method returns the value. Here is how we can
use	it	to	filter	out	the	members	of	one	party:

long c2 = senators.stream()
 .map(s -> s.getParty() == "Party2" ?
 Optional.of(s) : Optional.empty())
 .flatMap(o -> o.map(Stream::of).orElseGet(Stream::empty))
 .count();
System.out.println("Members of Party2: " + c2);

Lesson 5

[139]

First, we map (transform) an element (the Senator object) to an Optional object
with or without the value. Next, we use the flatMap() method to either generate a
stream of a single element or else an empty stream, and then we count the elements
that	made	it	through.	In	Java	9,	the	Optional class acquired a new factory stream()
method that produces a stream of one element if the Optional object carries a non-
null	value;	otherwise,	it	produces	an	empty	stream.	Using	this	new	method,	we	can	
rewrite the previous code as follows:

long c2 = senators.stream()
 .map(s -> s.getParty() == "Party2" ?
 Optional.of(s) : Optional.empty())
 .flatMap(Optional::stream)
 .count();
System.out.println("Members of Party2: " + c2);

Both the previous examples produce the same output if we run them for the same
senate composition:

We	can	apply	another	kind	of	filtering	when	we	need	to	capture	the	first	element	
emitted	by	the	stream.	This	means	that	we	terminate	the	stream	after	the	first	
element	is	emitted.	For	example,	let's	find	the	first	senator	of	Party1who voted
Yes on issue 3:

senators.stream()
 .filter(s -> s.getParty() == "Party1" &&
 s.getVoteYes()[3] == 1)
 .findFirst()
 .ifPresent(s -> System.out.println("First senator "
 "of Party1 found who voted Yes on issue 3: "
 + s.getName()));

In the preceding code snippet, we highlighted the findFirst() method, which
does the described job. It returns the Optional object, so we have added another
ifPresent() operator that is invoked only if the Optionalobject contains a
non-null value. The resulting output is as follows:

Making Use of New APIs to Improve Your Code

[140]

This was exactly what we expected when we seeded data in the Senate class.

Similarly, we can use the findAny()	method	to	find	any	senator who voted Yes
on issue 3:

senators.stream().filter(s -> s.getVoteYes()[3] == 1)
 .findAny()
 .ifPresent(s -> System.out.println("A senator " +
 "found who voted Yes on issue 3: " + s));

The result is also as we expected:

It	is	typically	(but	not	necessarily)	the	first	element	of	the	stream.	But	one	should	not	
rely on this assumption, especially in the case of parallel processing.

The Stream interface also has three match methods that, although they return a
Boolean	value,	can	be	used	for	filtering	too	if	the	specific	object	is	not	required	and	
we only need to establish the fact that such an object exists or not. The names of
these methods are anyMatch(), allMatch(), and noneMatch(). Each of them takes
a	predicate	and	returns	a	Boolean.	Let's	start	by	demonstrating	the	anyMatch()
method.	We	will	use	it	to	find	out	if	there	is	at	least	one	senator of Party1 who
voted Yes on issue 3:

boolean found = senators.stream()
 .anyMatch(s -> (s.getParty() == "Party1" &&
 s.getVoteYes()[3] == 1));
String res = found ?
 "At least one senator of Party1 voted Yes on issue 3"
 : "Nobody of Party1 voted Yes on issue 3";
System.out.println(res);

The result of running the previous code should look like the following:

To demonstrate the allMatch()	method,	we	will	use	it	to	find	out	if	all	the	members	
of Party1 in the Senate class have voted Yes on issue 3:

boolean yes = senators.stream()
 .allMatch(s -> (s.getParty() == "Party1" &&
 s.getVoteYes()[3] == 1));

Lesson 5

[141]

String res = yes ?
 "All senators of Party1 voted Yes on issue 3"
 : "Not all senators of Party1 voted Yes on issue 3";
System.out.println(res);

The result of the previous code may look like this:

And the last of the three match methods--the noneMatch() method--will be used to
figure	out	if	some	senators	of	Party1 have voted Yes on issue 3:

boolean yes = senators.stream()
 .noneMatch(s -> (s.getParty() == "Party1" &&
 s.getVoteYes()[3] == 1));
String res = yes ?
 "None of the senators of Party1 voted Yes on issue 3"
 : "Some of senators of Party1 voted Yes on issue 3";
System.out.println(res);

The result of the earlier example is as follows:

However, in real life, it could be very different because quite a few issues in the
Senate class are voted for along party lines.

Yet	another	type	of	filtering	is	required	when	we	need	to	skip	all	the	duplicate	
elements in a stream and select only unique ones. The distinct() method is
designed	for	the	purpose.	We	will	use	it	to	find	the	names	of	the	parties	that	have	
their members in the Senate class:

senators.stream().map(s -> s.getParty())
 .distinct().forEach(System.out::println);

The result, as expected, is as follows:

Making Use of New APIs to Improve Your Code

[142]

Well,	no	surprise	there?

We	can	also	filter	out	all	the	elements	of	the	stream except the certain count of the
first	ones,	using	the	limit() method:

System.out.println("These are the first 3 senators "
 + "of Party1 in the list:");
senators.stream()
 .filter(s -> s.getParty() == "Party1")
.limit(3)
 .forEach(System.out::println);

System.out.println("These are the first 2 senators "
 + "of Party2 in the list:");
senators.stream().filter(s -> s.getParty() == "Party2")
.limit(2)
 .forEach(System.out::println);

If	you	remember	how	we	have	set	up	the	first	five	senators	in	the	list,	you	could	
predict that the result will be as follows:

Now	let's	find	only	one	element	in	a	stream--the	biggest	one.	To	do	this,	we	can	use	
the max() method of the Stream interface and the Senate.timeVotedYes() method
(we will apply it on each senator):

senators.stream()
 .max(Comparator.comparing(Senate::timesVotedYes))
 .ifPresent(s -> System.out.println("A senator voted "
 + "Yes most of times (" + Senate.timesVotedYes(s)
 + "): " + s));

In the preceding snippet, we use the result of the timesVotedYes() method to select
the senator who voted Yes most often. You might remember, we have assigned all
instances of Yes to Senator100.	Let's	see	if	that	would	be	the	result:

Lesson 5

[143]

Yes, we got Senator100	filtered	as	the	one	who	voted	Yes on all 10 issues.

Similarly,	we	can	find	the	senator	who	voted	No on all 10 issues:

senators.stream()
 .min(Comparator.comparing(Senate::timesVotedYes))
 .ifPresent(s -> System.out.println("A senator voted "
 + "Yes least of times (" + Senate.timesVotedYes(s)
 + "): " + s));

We expect it to be Senator99, and here is the result:

That's	why	we	hardcoded	several	stats	in	the	Senate class, so we can verify that our
queries work correctly.

As	the	last	two	methods	can	help	us	with	filtering,	we	will	demonstrate	the	
takeWhile() and dropWhile()methods	introduced	in	JDK	9.	We	will	first	print	the	
data	of	all	the	first	five	senators	and	then	use	the	takeWhile()method to print the
first	senators	until	we	encounter	the	one	who	voted	Yes more than four times, and
then stop printing:

System.out.println("Here is count of times the first "
 + "5 senators voted Yes:");
senators.stream().limit(5)
 .forEach(s -> System.out.println(s + ": "
 + Senate.timesVotedYes(s)));
System.out.println("Stop printing at a senator who "
 + "voted Yes more than 4 times:");
senators.stream().limit(5)
 .takeWhile(s -> Senate.timesVotedYes(s) < 5)
 .forEach(s -> System.out.println(s + ": "
 + Senate.timesVotedYes(s)));

The result for the previous code is as follows:

Making Use of New APIs to Improve Your Code

[144]

The dropWhile()	method	can	be	used	for	the	opposite	effect,	that	is,	to	filter	away,	
to	skip	the	first	senators	until	we	encounter	the	one	who	voted	Yes more than four
times, then continue printing all the rest of the senators:

System.out.println("Here is count of times the first "
 + "5 senators voted Yes:");
senators.stream().limit(5)
 .forEach(s -> System.out.println(s + ": "
 + Senate.timesVotedYes(s)));
System.out.println("Start printing at a senator who "
 + "voted Yes more than 4 times:");
senators.stream().limit(5)
 .dropWhile(s -> Senate.timesVotedYes(s) < 5)
 .forEach(s -> System.out.println(s + ": "
 + Senate.timesVotedYes(s)));
System.out.println("...");

The result will be as follows:

This concludes our demonstration of the ways in which a stream of elements can be
filtered.	We	hope	you	have	learned	enough	to	be	able	to	find	a	solution	for	any	of	
your	filtering	needs.	Nevertheless,	we	encourage	you	to	study	and	experiment	with	
the Stream API on your own, so you can retain what you have learned so far and
acquire	your	own	view	on	the	rich	APIs	of	Java	9.

Stack-Walking APIs
Exceptions do happen, especially during development or the period of software
stabilization. But in a big complex system, the chance of getting an exception is
possible even in production, especially when several third-party systems are brought
together and the need arises to analyze the stack trace programmatically in order to
apply an automatic correction. In this section, we will discuss how it can be done.

Lesson 5

[145]

Stack Analysis before Java 9
The traditional reading of the stack trace, using objects of the java.lang.Thread
and java.lang.Throwableclasses, was accomplished by capturing it from the
standard output. For example, we can include this line in any section of the code:

Thread.currentThread().dumpStack();

The previous line will produce the following output:

Similarly, we can include this line in the code:

new Throwable().printStackTrace();

The output will then look like this:

This output can be captured, read, and analyzed programmatically, but requires
quite a bit of custom code writing.

JDK	8	made	this	easier	via	the	usage	of	streams.	Here	is	the	code	that	allows	reading	
the stack trace from the stream:

Arrays.stream(Thread.currentThread().getStackTrace())
 .forEach(System.out::println);

The previous line produces the following output:

Alternatively, we could use this code:

Arrays.stream(new Throwable().getStackTrace())
 .forEach(System.out::println);

Making Use of New APIs to Improve Your Code

[146]

The output of the previous code shows the stack trace in a similar way:

If,	for	example,	you	would	like	to	find	the	fully	qualified	name	of	the	caller	class,	
you can use one of these approaches:

new Throwable().getStackTrace()[1].getClassName();

Thread.currentThread().getStackTrace()[2].getClassName();

Such coding is possible because the getStackTrace() method returns an array
of objects of the java.lang.StackTraceElement class, each representing a stack
frame in a stack trace. Each object carries stack trace information accessible by the
getFileName(), getClassName(), getMethodName(), and getLineNumber()
methods.

To demonstrate how it works, we have created three classes, Clazz01, Clazz02,
and Clazz03, that call each other:

public class Clazz01 {
 public void method(){ new Clazz02().method(); }
}
public class Clazz02 {
 public void method(){ new Clazz03().method(); }
}
public class Clazz03 {
 public void method(){
 Arrays.stream(Thread.currentThread()
 .getStackTrace()).forEach(ste -> {
 System.out.println();
 System.out.println("ste=" + ste);
 System.out.println("ste.getFileName()=" +
 ste.getFileName());
 System.out.println("ste.getClassName()=" +
 ste.getClassName());
 System.out.println("ste.getMethodName()=" +
 ste.getMethodName());
 System.out.println("ste.getLineNumber()=" +
 ste.getLineNumber());
 });
 }
}

Lesson 5

[147]

Now,	let's	call	the	method() method of Clazz01:

public class Demo02StackWalking {
 public static void main(String... args) {
 demo_walking();
 }
 private static void demo_walking(){
 new Clazz01().method();
 }
}

Here are two (the second and the third) of the six stack trace frames printed out by
the preceding code:

In	principle,	every	called	class	has	access	to	this	information.	But	to	find	out	which	
class	called	the	current	class	may	not	be	so	easy	because	you	need	to	figure	out	
which	frame	represents	the	caller.	Also,	in	order	to	provide	this	info,	JVM	captures	
the entire stack (except for the hidden stack frames), and it may affect performance.

That was the motivation for introducing the java.lang.StackWalker class, its
nested Option class, and the StackWalker.StackFrame	interface	in	JDK	9.

New Better Way to Walk the Stack
The StackWalker class has four getInstance() static factory methods:

•	 getInstance(): This returns a StackWalker class instance configured to
skip all hidden frames and the caller class reference

•	 getInstance(StackWalker.Option option): This creates a StackWalker
class instance with the given option specifying the stack frame information it
can access

Making Use of New APIs to Improve Your Code

[148]

•	 getInstance(Set<StackWalker.Option> options): This creates a
StackWalker class instance with the given set of options

•	 getInstance(Set<StackWalker.Option> options, int
estimatedDepth): This allows you to pass in the estimatedDepth
parameter that specifies the estimated number of stack frames this instance
will	traverse	so	that	the	Java	machine	can	allocate	the	appropriate	buffer	
size it might need

The value passed as an option can be one of the following:

•	 StackWalker.Option.RETAIN_CLASS_REFERENCE

•	 StackWalker.Option.SHOW_HIDDEN_FRAMES

•	 StackWalker.Option.SHOW_REFLECT_FRAMES

The other three methods of the StackWalker class are as follows:

•	 T walk(Function<Stream<StackWalker.StackFrame>, T> function):
This applies the passed in function to the stream of stack frames, the first
frame representing the method that called this walk() method

•	 void forEach(Consumer<StackWalker.StackFrame> action): This
performs the passed in action on each element (of the StalkWalker.
StackFrame interface type) of the stream of the current thread

•	 Class<?> getCallerClass(): This gets objects of the Class class of the
caller class

As	you	can	see,	it	allows	much	more	straightforward	stack	trace	analysis.	Let's	
modify our demo classes using the following code and access the caller name in
one line:

public class Clazz01 {
 public void method(){
 System.out.println("Clazz01 was called by " +
 StackWalker.getInstance(StackWalker
 .Option.RETAIN_CLASS_REFERENCE)
 .getCallerClass().getSimpleName());
 new Clazz02().method();
 }
}
public class Clazz02 {
 public void method(){
 System.out.println("Clazz02 was called by " +
 StackWalker.getInstance(StackWalker
 .Option.RETAIN_CLASS_REFERENCE)

Lesson 5

[149]

 .getCallerClass().getSimpleName());
 new Clazz03().method();
 }
}
public class Clazz03 {
 public void method(){
 System.out.println("Clazz01 was called by " +
 StackWalker.getInstance(StackWalker
 .Option.RETAIN_CLASS_REFERENCE)
 .getCallerClass().getSimpleName());
 }
}

The previous code will produce this output:

You can appreciate the simplicity of the solution. If we need to see the entire stack
trace, we can add the following line to the code in Clazz03:

StackWalker.getInstance().forEach(System.out::println);

The resulting output will be as follows:

Again, with only one line of code, we have achieved much more readable output. We
could achieve the same result by using the walk() method:

StackWalker.getInstance().walk(sf -> {
 sf.forEach(System.out::println); return null;
});

Making Use of New APIs to Improve Your Code

[150]

Instead of just printing StackWalker.StackFrame, we also could run a deeper
analysis on it, if need be, using its API, which is more extensive than the API of
java.lang.StackTraceElement.	Let's	run	the	code	example	that	prints	every	
stack frame and its information:

StackWalker stackWalker =
 StackWalker.getInstance(Set.of(StackWalker
 .Option.RETAIN_CLASS_REFERENCE), 10);
stackWalker.forEach(sf -> {
 System.out.println();
 System.out.println("sf="+sf);
 System.out.println("sf.getFileName()=" +
 sf.getFileName());
 System.out.println("sf.getClass()=" + sf.getClass());
 System.out.println("sf.getMethodName()=" +
 sf.getMethodName());
 System.out.println("sf.getLineNumber()=" +
 sf.getLineNumber());
 System.out.println("sf.getByteCodeIndex()=" +
 sf.getByteCodeIndex());
 System.out.println("sf.getClassName()=" +
 sf.getClassName());
 System.out.println("sf.getDeclaringClass()=" +
 sf.getDeclaringClass());
 System.out.println("sf.toStackTraceElement()=" +
 sf.toStackTraceElement());
});

The output of the previous code is as follows:

Note the StackFrameInfo class that implements the StackWalker.StackFrame
interface and actually does the job. The API also allows converting back to the familiar
StackTraceElement object for backward compatibility and for the enjoyment of those
who are used to it and do not want to change their code and habits.

Lesson 5

[151]

In contrast, with the full stack trace generated and stored in the array in the memory
(like in the case of the traditional stack trace implementation), the StackWalker class
brings only the requested elements. This is another motivation for its introduction in
addition to the demonstrated simplicity of use. More details about the StackWalker
class API and its usage can be found at https://docs.oracle.com/javase/9/
docs/api/java/lang/StackWalker.html.

Convenience Factory Methods for
Collections
With	the	introduction	of	functional	programming	in	Java,	the	interest	in	and	need	
for immutable objects increased. The functions passed into the methods may be
executed in substantially different contexts than the one they were created in,
so the need to decrease the chances of unexpected side effects made the case for
immutability	stronger.	Besides,	the	Java	way	of	creating	an	unmodifiable	collection	
was	quite	verbose	anyway,	so	the	issue	was	addressed	in	Java	9.	Here	is	an	example	
of the code that creates an immutable collection of the Set	interface	in	Java	8:

Set<String> set = new HashSet<>();
set.add("Life");
set.add("is");
set.add("good!");
set = Collections.unmodifiableSet(set);

After one does it several times, the need for a convenience method comes up
naturally as the basic refactoring consideration that always lingers in the background
thinking	of	any	software	professional.	In	Java	8,	the	previous	code	could	be	changed	
to the following:

Set<String> immutableSet =
 Collections.unmodifiableSet(new HashSet<>(Arrays
 .asList("Life", "is", "good!")));

Alternatively, if streams are your friends, you could write the following:

Set<String> immutableSet = Stream.of("Life","is","good!")
 .collect(Collectors.collectingAndThen(Collectors.toSet(),
 Collections::unmodifiableSet));

Another version of the previous code is as follows:

Set<String> immutableSet =
 Collections.unmodifiableSet(Stream.of("Life","is","good!")
 .collect(Collectors.toSet()));

Making Use of New APIs to Improve Your Code

[152]

However, it has more boilerplate code than the values you are trying to encapsulate.
So,	in	Java	9,	a	shorter	version	of	the	previous	code	became	possible:

Set<String> immutableSet = Set.of("Life","is","good!");

Similar factories were introduced to generate immutable collections of List
interfaces and Map interfaces:

List<String> immutableList = List.of("Life","is","good!");

Map<Integer,String> immutableMap1 =
 Map.of(1, "Life", 2, "is", 3, "good!");

Map<Integer,String> immutableMap2 =
 Map.ofEntries(entry(1, "Life "), entry(2, "is"),
 entry(3, "good!");

Map.Entry<Integer,String> entry1 = Map.entry(1,"Life");
Map.Entry<Integer,String> entry2 = Map.entry(2,"is");
Map.Entry<Integer,String> entry3 = Map.entry(3,"good!");
Map<Integer,String> immutableMap3 =
 Map.ofEntries(entry1, entry2, entry3);

Why New Factory Methods?
The ability to express the same functionality in more compact manner is very helpful,
but it would probably not be enough motivation to introduce these new factories. It
was much more important to address the weakness of the existing implementation
of Collections.unmodifiableList(), Collections.unmodifiableSet(), and
Collections.unmodifiableMap(). Although the collections created using these
methods throw an UnsupportedOperationException class when you try to modify
or add/remove their elements, they are just wrappers around the traditional
modifiable	collections	and	can	thus	be	susceptible	to	modifications,	depending	on	the	
way	you	construct	them.	Let's	walk	through	examples	to	illustrate	the	point.	By	the	
way,	another	weakness	of	the	existing	unmodifiable	implementation	is	that	it	does	
not change how the source collection is constructed, so the difference between List,
Set, and Map--the ways in which they can be constructed--remains in place, which
may be a source of bugs or even frustration when a programmer uses them. The new
factory	methods	address	this	issue	too,	providing	a	more	unified	approach	using	the	
of() factory method (and the additional ofEntries() method for Map) only. Having
said	that,	let's	get	back	to	the	examples.	Look	at	the	following	code	snippet:

List<String> list = new ArrayList<>();
list.add("unmodifiableList1: Life");
list.add(" is");

Lesson 5

[153]

list.add(" good! ");
list.add(null);
list.add("\n\n");
List<String> unmodifiableList1 =
 Collections.unmodifiableList(list);
//unmodifiableList1.add(" Well..."); //throws exception
//unmodifiableList1.set(2, " sad."); //throws exception
unmodifiableList1.stream().forEach(System.out::print);

list.set(2, " sad. ");
list.set(4, " ");
list.add("Well...\n\n");
unmodifiableList1.stream().forEach(System.out::print);

Attempts	of	direct	modification	of	the	elements	of	unmodifiableList1 lead to
UnsupportedOperationException. Nevertheless, we can modify them via the
underlying list object. If we run the previous example, the output will be as follows:

Even if we use Arrays.asList() for the source list creation, it will only protect the
created collection from adding a new element, but not from modifying the existing
one. Here is a code example:

List<String> list2 =
 Arrays.asList("unmodifiableList2: Life",
 " is", " good! ", null, "\n\n");
List<String> unmodifiableList2 =
 Collections.unmodifiableList(list2);
//unmodifiableList2.add(" Well..."); //throws exception
//unmodifiableList2.set(2, " sad."); //throws exception
unmodifiableList2.stream().forEach(System.out::print);

list2.set(2, " sad. ");
//list2.add("Well...\n\n"); //throws exception
unmodifiableList2.stream().forEach(System.out::print);

Making Use of New APIs to Improve Your Code

[154]

If we run the previous code, the output will be as follows:

We also included a null element to demonstrate how the existing implementation
treats them, because, by contrast, the new factories of immutable collections do
not allow null to be included. By the way, they do not allow duplicate elements
in Set either (while the existing implementation just ignores them), but we will
demonstrate this aspect later while using the new factory methods in code examples.

To be fair, there is a way to create a truly immutable collection of List interfaces
with the existing implementation too. Look at the following code:

List<String> immutableList1 =
 Collections.unmodifiableList(new ArrayList<>() {{
 add("immutableList1: Life");
 add(" is");
 add(" good! ");
 add(null);
 add("\n\n");
 }});
//immutableList1.set(2, " sad."); //throws exception
//immutableList1.add("Well...\n\n"); //throws exception
immutableList1.stream().forEach(System.out::print);

Another way to create an immutable list is as follows:

List<String> immutableList2 =
 Collections.unmodifiableList(Stream
 .of("immutableList2: Life"," is"," good! ",null,"\n\n")
 .collect(Collectors.toList()));
//immutableList2.set(2, " sad."); //throws exception
//immutableList2.add("Well...\n\n"); //throws exception
immutableList2.stream().forEach(System.out::print);

The following is a variation of the earlier code:

List<String> immutableList3 =
 Stream.of("immutableList3: Life",
 " is"," good! ",null,"\n\n")
 .collect(Collectors.collectingAndThen(Collectors.toList(),
 Collections::unmodifiableList));

Lesson 5

[155]

//immutableList3.set(2, " sad."); //throws exception
//immutableList3.add("Well...\n\n"); //throws exception
immutableList3.stream().forEach(System.out::print);

If we run the previous three examples, we will see the following output:

Note that although we cannot modify the content of these lists, we can put null
in them.

The situation with Set is quite similar to what we have seen with the lists earlier.
Here	is	the	code	that	shows	how	an	unmodifiable	collection	of	Set interfaces can be
modified:

Set<String> set = new HashSet<>();
set.add("unmodifiableSet1: Life");
set.add(" is");
set.add(" good! ");
set.add(null);
Set<String> unmodifiableSet1 =
 Collections.unmodifiableSet(set);
//unmodifiableSet1.remove(" good! "); //throws exception
//unmodifiableSet1.add("...Well..."); //throws exception
unmodifiableSet1.stream().forEach(System.out::print);
System.out.println("\n");

set.remove(" good! ");
set.add("...Well...");
unmodifiableSet1.stream().forEach(System.out::print);
System.out.println("\n");

The resulting collection of Set	interfaces	can	be	modified	even	if	we	convert	the	
original collection from an array to a list and then to a set, as follows:

Set<String> set2 =
 new HashSet<>(Arrays.asList("unmodifiableSet2: Life",
 " is", " good! ", null));
Set<String> unmodifiableSet2 =
 Collections.unmodifiableSet(set2);
//unmodifiableSet2.remove(" good! "); //throws exception
//unmodifiableSet2.add("...Well..."); //throws exception

Making Use of New APIs to Improve Your Code

[156]

unmodifiableSet2.stream().forEach(System.out::print);
System.out.println("\n");

set2.remove(" good! ");
set2.add("...Well...");
unmodifiableSet2.stream().forEach(System.out::print);
System.out.println("\n");

Here is the output of running the previous two examples:

If	you	have	not	worked	with	sets	in	Java	9,	you	may	be	surprised	to	see	the	
unusually messed up order of the set elements in the output. In fact, it is another
new	feature	of	set	and	maps	introduced	in	JDK	9.	In	the	past,	Set and Map
implementations	did	not	guarantee	to	preserve	the	elements'	order.	But	more	often	
than not, the order was preserved and some programmers wrote code that relied on
it, thus introducing an annoyingly inconsistent and not easily reproducible defect
into an application. The new Set and Map implementations change the order more
often, if not at every new run of the code. This way, it exposes potential defects early
in development and decreases the chance of its propagation into production.

Similar	to	the	lists,	we	can	create	immutable	sets	even	without	using	Java	9's	new	
immutable	set	factory.	One	way	to	do	it	is	as	follows:

Set<String> immutableSet1 =
 Collections.unmodifiableSet(new HashSet<>() {{
 add("immutableSet1: Life");
 add(" is");
 add(" good! ");
 add(null);
 }});
//immutableSet1.remove(" good! "); //throws exception
//immutableSet1.add("...Well..."); //throws exception
immutableSet1.stream().forEach(System.out::print);
System.out.println("\n");

Lesson 5

[157]

Also, as in the case with lists, here is another way to do it:

Set<String> immutableSet2 =
 Collections.unmodifiableSet(Stream
 .of("immutableSet2: Life"," is"," good! ", null)
 .collect(Collectors.toSet()));
//immutableSet2.remove(" good!"); //throws exception
//immutableSet2.add("...Well..."); //throws exception
immutableSet2.stream().forEach(System.out::print);
System.out.println("\n");

Another variant of the previous code is as follows:

Set<String> immutableSet3 =
 Stream.of("immutableSet3: Life"," is"," good! ", null)
 .collect(Collectors.collectingAndThen(Collectors.toSet(),
 Collections::unmodifiableSet));
//immutableList5.set(2, "sad."); //throws exception
//immutableList5.add("Well..."); //throws exception
immutableSet3.stream().forEach(System.out::print);
System.out.println("\n");

If we run all three examples of creating an immutable collection of iSet interfaces
that we have just introduced, the result would be as follows:

With Map interfaces, we were able to come up with only one way to modify the
unmodifiableMap object:

Map<Integer, String> map = new HashMap<>();
map.put(1, "unmodifiableleMap: Life");
map.put(2, " is");
map.put(3, " good! ");
map.put(4, null);
map.put(5, "\n\n");
Map<Integer, String> unmodifiableleMap =
 Collections.unmodifiableMap(map);
//unmodifiableleMap.put(3, " sad."); //throws exception
//unmodifiableleMap.put(6, "Well..."); //throws exception
unmodifiableleMap.values().stream()

Making Use of New APIs to Improve Your Code

[158]

 .forEach(System.out::print);
map.put(3, " sad. ");
map.put(4, "");
map.put(5, "");
map.put(6, "Well...\n\n");
unmodifiableleMap.values().stream()
 .forEach(System.out::print);

The output of the previous code is as follows:

We found four ways to create an immutable collection of Map interfaces without
using	Java	9	enhancements.	Here	is	the	first	example:

Map<Integer, String> immutableMap1 =
 Collections.unmodifiableMap(new HashMap<>() {{
 put(1, "immutableMap1: Life");
 put(2, " is");
 put(3, " good! ");
 put(4, null);
 put(5, "\n\n");
 }});
//immutableMap1.put(3, " sad. "); //throws exception
//immutableMap1.put(6, "Well..."); //throws exception
immutableMap1.values().stream().forEach(System.out::print);

The second example has a bit of a complication:

String[][] mapping =
 new String[][] {{"1", "immutableMap2: Life"},
 {"2", " is"}, {"3", " good! "},
 {"4", null}, {"5", "\n\n"}};

Map<Integer, String> immutableMap2 =
 Collections.unmodifiableMap(Arrays.stream(mapping)
 .collect(Collectors.toMap(a -> Integer.valueOf(a[0]),
 a -> a[1] == null? "" : a[1])));
immutableMap2.values().stream().forEach(System.out::print);

Lesson 5

[159]

We	tried	first	to	use	Collectors.toMap(a -> Integer.valueOf(a[0]), a ->
a[1]), but the toMap() method uses the merge() functions which does not allow
null as a value. So, we had to add a check for null and replace it with an empty
String value. This, in effect, brought us to the next version of the previous code
snippet--without a null value in the source array:

String[][] mapping =
 new String[][]{{"1", "immutableMap3: Life"},
 {"2", " is"}, {"3", " good! "}, {"4", "\n\n"}};
Map<Integer, String> immutableMap3 =
 Collections.unmodifiableMap(Arrays.stream(mapping)
 .collect(Collectors.toMap(a -> Integer.valueOf(a[0]),
a -> a[1])));
//immutableMap3.put(3, " sad."); //throws Exception
//immutableMap3.put(6, "Well..."); //throws exception
immutableMap3.values().stream().forEach(System.out::print);

A variant of the previous code is as follows:

mapping[0][1] = "immutableMap4: Life";
Map<Integer, String> immutableMap4 = Arrays.stream(mapping)
 .collect(Collectors.collectingAndThen(Collectors
 .toMap(a -> Integer.valueOf(a[0]), a -> a[1]),
 Collections::unmodifiableMap));
//immutableMap4.put(3, " sad."); //throws exception
//immutableMap4.put(6, "Well..."); //throws exception
immutableMap4.values().stream().forEach(System.out::print);

After we run all the four last examples, the output is as follows:

With that revision of the existing collections implementations, we can now discuss
and	appreciate	the	new	factory	methods	of	collections	in	Java	9.

Making Use of New APIs to Improve Your Code

[160]

The New Factory Methods in Action
After revisiting the existing methods of collection creation, we can now review and
enjoy	the	related	API	introduced	in	Java	9.	As	in	a	previous	section,	we	start	with	the	
List interface. Here is how simple and consistent the immutable list creation can be
using the new List.of() factory method:

List<String> immutableList =
 List.of("immutableList: Life",
 " is", " is", " good!\n\n"); //, null);
//immutableList.set(2, "sad."); //throws exception
//immutableList.add("Well..."); //throws exception
immutableList.stream().forEach(System.out::print);

As you can see from the previous code comments, the new factory method does not
allow including null as the list value.

The immutableSet creation looks similar to this:

Set<String> immutableSet =
 Set.of("immutableSet: Life", " is", " good!");
 //, " is" , null);
//immutableSet.remove(" good!\n\n"); //throws exception
//immutableSet.add("...Well...\n\n"); //throws exception
immutableSet.stream().forEach(System.out::print);
System.out.println("\n");

As you can see from the previous code comments, the Set.of() factory method does
not allow adding null or a duplicate element when creating an immutable collection
of Set interfaces.

The immutable collection of Map interfaces has similar format too:

Map<Integer, String> immutableMap =
 Map.of(1, "immutableMap: Life", 2, " is", 3, " good!");
 //, 4, null);
//immutableMap.put(3, " sad."); //throws exception
//immutableMap.put(4, "Well..."); //throws exception
immutableMap.values().stream().forEach(System.out::print);
System.out.println("\n");

The Map.of() method does not allow null as a value either. Another feature of the
Map.of() method is that it allows a compile-time check of the element type, which
decreases the chances of a runtime problem.

Lesson 5

[161]

For those who prefer more compact code, here is another way to express the same
functionality:

Map<Integer, String> immutableMap3 =
 Map.ofEntries(entry(1, "immutableMap3: Life"),
 entry(2, " is"), entry(3, " good!"));
immutableMap3.values().stream().forEach(System.out::print);
System.out.println("\n");

And here is the output if we run all the previous examples of the usage of the new
factory methods:

As we mentioned already, the ability to have immutable collections, including empty
ones, is very helpful for functional programming as this feature makes sure that such
a	collection	cannot	be	modified	as	a	side	effect	and	cannot	introduce	unexpected	and	
difficult	to	trace	defects.	The	full	variety	of	the	new	factories	methods	includes	up	to	
10	explicit	entries	plus	one	with	an	arbitrary	number	of	elements.	Here's	how	it	looks	
for List interface:

static <E> List<E> of()
static <E> List<E> of(E e1)
static <E> List<E> of(E e1, E e2)
static <E> List<E> of(E e1, E e2, E e3)
static <E> List<E> of(E e1, E e2, E e3, E e4)
static <E> List<E> of(E e1, E e2, E e3, E e4, E e5)
static <E> List<E> of(E e1, E e2, E e3, E e4, E e5, E e6)
static <E> List<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E e7)
static <E> List<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8)
static <E> List<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8,
E e9)
static <E> List<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8,
E e9, E e10)
static <E> List<E> of(E... elements)

Making Use of New APIs to Improve Your Code

[162]

The Set factory methods look similar:

static <E> Set<E> of()
static <E> Set<E> of(E e1)
static <E> Set<E> of(E e1, E e2)
static <E> Set<E> of(E e1, E e2, E e3)
static <E> Set<E> of(E e1, E e2, E e3, E e4)
static <E> Set<E> of(E e1, E e2, E e3, E e4, E e5)
static <E> Set<E> of(E e1, E e2, E e3, E e4, E e5, E e6)
static <E> Set<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E e7)
static <E> Set<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8)
static <E> Set<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8, E
e9)
static <E> Set<E> of(E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8, E
e9, E e10)
static <E> Set<E> of(E... elements)

Also, the Map factory methods follow suit:

static <K,V> Map<K,V> of()
static <K,V> Map<K,V> of(K k1, V v1)
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2)
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3)
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V
v4)
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V
v4, K k5, V v5
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V
v4, K k5, V v5, K k6, V v6)
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V
v4, K k5, V v5, K k6, V v6, K k7, V v7
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V
v4, K k5, V v5, K k6, V v6, K k7, V v7,
K k8, V v8)
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V
v4, K k5, V v5, K k6, V v6, K k7, V v7,
K k8, V v8, K k9, V v9)
static <K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V v3, K k4, V
v4, K k5, V v5, K k6, V v6, K k7, V v7,
K k8, V v8, K k9, V v9, K k10, V v10)
static <K,V> Map<K,V> ofEntries(Map.Entry<? extends K,? extends V>...
entries

Lesson 5

[163]

The decision not to add new interfaces for immutable collections left them
susceptible to causing occasional confusion when programmers assumed they could
call add() or put() on them. Such an assumption, if not tested, will cause a runtime
error that throws an UnsupportedOperationException.	Despite	this	potential	
pitfall, the new factory methods for immutable collection creation are very useful
additions	to	Java.

CompletableFuture in Support of
Asynchronous Processing
The java.util.concurrent.CompletableFuture<T>	class	was	first	introduced	in	
Java	8.	It	is	the	next	level	of	asynchronous	call	control	over	java.util.concurrent.
Future<T> interface. It actually implements Future, as well as java.util.
concurrent.CompletionStage<T>.	In	Java	9,	CompletableFuture was enhanced
by adding new factory methods, support for delays and timeouts, and improved
subclassing--we will discuss these features in more details in the sections to follow.
But	first,	let's	have	an	overview	of	the	CompletableFuture API.

The CompletableFuture API Overview
The CompletableFuture API consists of more than 70 methods, 38 of which
are implementations of the CompletionStage	interface,	and	five	are	the	
implementations of Future. Because the CompletableFutureclass implements
the Future interface, it can be treated as Future and will not break the existing
functionality based on the Future API.

So, the bulk of the API comes from CompletionStage. Most of the methods
return CompletableFuture (in the CompletionStage interface, they return
CompletionStage, but they are converted to CompletableFuturewhen implemented
in CompletableFuture class), which means that they allow chaining the operations
similar to how the Stream methods do when only one element goes through a
pipe. Each method has a signature that accepts a function. Some methods accept
Function<T,U>, which is going to be applied to the passed-in value T and return the
result U.	Other	methods	accept	Consumer<T>, which takes the passed-in value and
returns void. Yet other methods accept Runnable, which does not take any input and
returns void. Here is one group of these methods:

thenRun(Runnable action)
thenApply(Function<T,U> fn)
thenAccept(Consumer<T> action)

Making Use of New APIs to Improve Your Code

[164]

They all return CompletableFuture, which carries the result of the function or
void (in the case of Runnableand Consumer). Each of them has two companion
methods	that	perform	the	same	function	asynchronously.	For	example,	let's	take	
the thenRun(Runnable action) method. The following are its companions:

•	 The thenRunAsync(Runnable action) method, which runs the action in
another thread from the default ForkJoinPool.commonPool() pool

•	 The thenRun(Runnable action, Executor executor) method, which
runs the action in another thread from the pool passed in as the parameter
executor

With that, we have covered nine methods of the CompletionStage interface.

Another group of methods consists of the following:

thenCompose(Function<T,CompletionStage<U>> fn)
applyToEither(CompletionStage other, Function fn)
acceptEither(CompletionStage other, Consumer action)
runAfterBoth(CompletionStage other, Runnable action)
runAfterEither(CompletionStage other, Runnable action)
thenCombine(CompletionStage<U> other, BiFunction<T,U,V> fn)
thenAcceptBoth(CompletionStage other, BiConsumer<T,U> action)

These methods execute the passed in action after one or both the
CompletableFuture (or CompletionStage) objects produce a result that is used
as an input to the action. By both, we mean the CompletableFuture that provides
the method and the one that is passed in as a parameter of the method. From the
name of these methods, you can quite reliably guess what their intent is. We will
demonstrate some of them in the following examples. Each of these seven methods
has two companions for asynchronous processing, too. This means that we have
already described 30 (out of 38) methods of the CompletionStage interface.

There is a group of two methods that are typically used as terminal operations
because they can handle either the result of the previous method (passed in as T)
or an exception (passed in as Throwable):

handle(BiFunction<T,Throwable,U> fn)
whenComplete(BiConsumer<T,Throwable> action)

We will see an example of the use of these methods later. When an exception is
thrown by a method in the chain, all the rest of the chained methods are skipped
until	the	first	handle() method or whenComplete() is encountered. If neither of
these two methods are present in the chain, then the exception will bubble up as any
other	Java	exception.	These	two	also	have	asynchronous	companions,	which	means	
that we talked about 36 (out of 38) methods of CompletionStage interface already.

Lesson 5

[165]

There is also a method that handles exceptions only (similar to a catch block in the
traditional programming):

exceptionally(Function<Throwable,T> fn)

This method does not have asynchronous companions, just like the last remaining
method:

toCompletableFuture()

It just returns a CompletableFuture object with the same properties as this stage.
With that, we have described all 38 methods of the CompletionStage interface.

There are also some 30 methods in the CompletableFuture class that do not belong
to any of the implemented interfaces. Some of them return the CompletableFuture
object after asynchronously executing the provided function:

runAsync(Runnable runnable)
runAsync(Runnable runnable, Executor executor)
supplyAsync(Supplier<U> supplier)
supplyAsync(Supplier<U> supplier, Executor executor)

Others	execute	several	objects	of	CompletableFuture in parallel:

allOf(CompletableFuture<?>... cfs)
anyOf(CompletableFuture<?>... cfs)

There is also a group of the methods that generate completed futures, so the get()
method on the returned CompletableFuture object will not block any more:

complete(T value)
completedStage(U value)
completedFuture(U value)
failedStage(Throwable ex)
failedFuture(Throwable ex)
completeAsync(Supplier<T> supplier)
completeExceptionally(Throwable ex)
completeAsync(Supplier<T> supplier, Executor executor)
completeOnTimeout(T value, long timeout, TimeUnit unit)

The rest of the methods perform various other functions that can be helpful:

join()
defaultExecutor()
newIncompleteFuture()
getNow(T valueIfAbsent)
getNumberOfDependents()
minimalCompletionStage()

Making Use of New APIs to Improve Your Code

[166]

isCompletedExceptionally()
obtrudeValue(T value)
obtrudeException(Throwable ex)
orTimeout(long timeout, TimeUnit unit)
delayedExecutor(long delay, TimeUnit unit)

Refer	to	the	official	Oracle	documentation,	which	describes	these	and	other	methods	
of the CompletableFuture API at http://download.java.net/java/jdk9/docs/
api/index.html?java/util/concurrent/CompletableFuture.html.

The CompletableFuture API Enhancements
in Java 9
Java	9	introduces	several	enhancements	to	CompletableFuture:

•	 The CompletionStage<U> failedStage(Throwable ex) factory method
returns the CompletionStage object completed with the given exception

•	 The CompletableFuture<U> failedFuture(Throwable ex) factory
method returns the CompletableFutureobject completed with the
given exception

•	 The new CompletionStage<U> completedStage(U value) factory method
returns the CompletionStage object completed with the given U value

•	 CompletableFuture<T> completeOnTimeout(T value, long timeout,
TimeUnit unit) completes CompletableFuture task with the given T value
if not otherwise completed before the given timeout

•	 CompletableFuture<T> orTimeout(long timeout, TimeUnit
unit) completes CompletableFuture with java.util.concurrent.
TimeoutException if not completed before the given timeout

•	 It is possible now to override the defaultExecutor() method to support
another default executor

•	 A new method, newIncompleteFuture(), makes it easier to subclass the
CompletableFuture class

The Problem and the Solution using Future
To demonstrate and appreciate the power of CompletableFuture,	let's	start	with	a	
problem implemented using just Future and then see how much more effectively
it can be solved with CompletableFuture.	Let's	imagine	that	we	are	tasked	with	
modeling a building that consists of four stages:

•	 Collecting materials for the foundation, walls, and roof
•	 Installing the foundation

Lesson 5

[167]

•	 Raising up the walls
•	 Constructing and finishing the roof

In the traditional sequential programming for the single thread, the model would
look like this:

StopWatch stopWatch = new StopWatch();
Stage failedStage;
String SUCCESS = "Success";

stopWatch.start();
String result11 = doStage(Stage.FoundationMaterials);
String result12 = doStage(Stage.Foundation, result11);
String result21 = doStage(Stage.WallsMaterials);
String result22 = doStage(Stage.Walls,
 getResult(result21, result12));
String result31 = doStage(Stage.RoofMaterials);
String result32 = doStage(Stage.Roof,
 getResult(result31, result22));
System.out.println("House was" +
 (isSuccess(result32)?"":" not") + " built in "
 + stopWatch.getTime()/1000. + " sec");

Here, Stage is an enumeration:

enum Stage {
 FoundationMaterials,
 WallsMaterials,
 RoofMaterials,
 Foundation,
 Walls,
 Roof
}

The doStage()	method	has	two	overloaded	versions.	Here	is	the	first	one:

String doStage(Stage stage) {
 String result = SUCCESS;
 boolean failed = stage.equals(failedStage);
 if (failed) {
 sleepSec(2);
 result = stage + " were not collected";
 System.out.println(result);
 } else {
 sleepSec(1);

Making Use of New APIs to Improve Your Code

[168]

 System.out.println(stage + " are ready");
 }
 return result;
}

The second version is as follows:

String doStage(Stage stage, String previousStageResult) {
 String result = SUCCESS;
 boolean failed = stage.equals(failedStage);
 if (isSuccess(previousStageResult)) {
 if (failed) {
 sleepSec(2);
 result = stage + " stage was not completed";
 System.out.println(result);
 } else {
 sleepSec(1);
 System.out.println(stage + " stage is completed");
 }
 } else {
 result = stage + " stage was not started because: "
 + previousStageResult;
 System.out.println(result);
 }
 return result;
}

The sleepSec(), isSuccess(), and getResult() methods look like this:

private static void sleepSec(int sec) {
 try {
 TimeUnit.SECONDS.sleep(sec);
 } catch (InterruptedException e) {
 }
}
boolean isSuccess(String result) {
 return SUCCESS.equals(result);
}
String getResult(String result1, String result2) {
 if (isSuccess(result1)) {
 if (isSuccess(result2)) {
 return SUCCESS;
 } else {
 return result2;
 }

Lesson 5

[169]

 } else {
 return result1;
 }
}

The successful house construction (if we run the previous code without assigning
any value to the failedStage variable) looks like this:

If we set failedStage=Stage.Walls, the result will be as follows:

Using Future, we can shorten the time it takes to build the house:

ExecutorService execService = Executors.newCachedThreadPool();
Callable<String> t11 =
 () -> doStage(Stage.FoundationMaterials);
Future<String> f11 = execService.submit(t11);
List<Future<String>> futures = new ArrayList<>();
futures.add(f11);

Callable<String> t21 = () -> doStage(Stage.WallsMaterials);
Future<String> f21 = execService.submit(t21);
futures.add(f21);

Callable<String> t31 = () -> doStage(Stage.RoofMaterials);
Future<String> f31 = execService.submit(t31);
futures.add(f31);

String result1 = getSuccessOrFirstFailure(futures);

Making Use of New APIs to Improve Your Code

[170]

String result2 = doStage(Stage.Foundation, result1);
String result3 =
 doStage(Stage.Walls, getResult(result1, result2));
String result4 =
 doStage(Stage.Roof, getResult(result1, result3));

Here, the getSuccessOrFirstFailure() method looks like this:

String getSuccessOrFirstFailure(
 List<Future<String>> futures) {
 String result = "";
 int count = 0;
 try {
 while (count < futures.size()) {
 for (Future<String> future : futures) {
 if (future.isDone()) {
 result = getResult(future);
 if (!isSuccess(result)) {
 break;
 }
 count++;
 } else {
 sleepSec(1);
 }
 }
 if (!isSuccess(result)) {
 break;
 }
 }
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 return result;
}

The successful building of the house now is faster because material collection
happens in parallel:

Lesson 5

[171]

By	taking	advantage	of	Java	functional	programming,	we	can	change	the	second	half	
of our implementation to the following:

Supplier<String> supplier1 =
 () -> doStage(Stage.Foundation, result1);
Supplier<String> supplier2 =
 () -> getResult(result1, supplier1.get());
Supplier<String> supplier3 =
 () -> doStage(Stage.Walls, supplier2.get());
Supplier<String> supplier4 =
 () -> getResult(result1, supplier3.get());
Supplier<String> supplier5 =
 () -> doStage(Stage.Roof, supplier4.get());
System.out.println("House was" +
 (isSuccess(supplier5.get()) ? "" : " not") +
 " built in " + stopWatch.getTime() / 1000. + " sec");

The chain of the previous nested functions is triggered by supplier5.get() in the
last line. It blocks until all the functions are completed sequentially, so there is no
performance improvement:

And that is as far as we can go with Future.	Now	let's	see	if	we	can	improve	the	
previous code using CompletableFuture.

The Solution with CompletableFuture
Here's	how	we	can	chain	the	same	operations	using	the	CompletableFuture API:

stopWatch.start();
ExecutorService pool = Executors.newCachedThreadPool();
CompletableFuture<String> cf1 =
 CompletableFuture.supplyAsync(() ->
 doStageEx(Stage.FoundationMaterials), pool);
CompletableFuture<String> cf2 =
 CompletableFuture.supplyAsync(() ->
 doStageEx(Stage.WallsMaterials), pool);

Making Use of New APIs to Improve Your Code

[172]

CompletableFuture<String> cf3 =
 CompletableFuture.supplyAsync(() ->
 doStageEx(Stage.RoofMaterials), pool);
CompletableFuture.allOf(cf1, cf2, cf3)
 .thenComposeAsync(result ->
 CompletableFuture.supplyAsync(() -> SUCCESS), pool)
 .thenApplyAsync(result ->
 doStage(Stage.Foundation, result), pool)
 .thenApplyAsync(result ->
 doStage(Stage.Walls, result), pool)
 .thenApplyAsync(result ->
 doStage(Stage.Roof, result), pool)
 .handleAsync((result, ex) -> {
 System.out.println("House was" +
 (isSuccess(result) ? "" : " not") + " built in "
 + stopWatch.getTime() / 1000. + " sec");
 if (result == null) {
 System.out.println("Because: " + ex.getMessage());
 return ex.getMessage();
 } else {
 return result;
 }
 }, pool);
System.out.println("Out!!!!!");

To make it work, we had to change the implementation of one of the doStage()
to doStageEx() methods:

String doStageEx(Stage stage) {
 boolean failed = stage.equals(failedStage);
 if (failed) {
 sleepSec(2);
 throw new RuntimeException(stage +
 " stage was not completed");
 } else {
 sleepSec(1);
 System.out.println(stage + " stage is completed");
 }
 return SUCCESS;
}

Lesson 5

[173]

The reason we do this is because the CompletableFuture.allOf() method returns
CompletableFuture<Void>, while we need to communicate to the further stages the
result	of	the	first	three	stages	of	collecting	materials.	The	result	looks	now	as	follows:

There are two points to note:

•	 We used a dedicated pool of threads to run all the operations
asynchronously;	if	there	were	several	CPUs	or	some	operations	use	IO	while	
others do not, the result could be even better

•	 The last line of the code snippet (Out!!!!!) came out first, which means that
all the chains of the operations related to building the house were executed
asynchronously

Now,	let's	see	how	the	system	behaves	if	one	of	the	first	stages	of	collecting	materials	
fails (failedStage = Stage.WallsMaterials):

The exception was thrown by the WallsMaterials stage and caught by the
handleAsync() method, as expected. And, again, the processing was done
asynchronously after the Out!!!!! message was printed.

Other Useful Features of CompletableFuture
One	of	the	great	advantages	of	CompletableFuture is that it can be passed around
as an object and used several times to start different chains of operations. To
demonstrate	this	capability,	let's	create	several	new	operations:

String getData() {
 System.out.println("Getting data from some source...");
 sleepSec(1);
 return "Some input";

Making Use of New APIs to Improve Your Code

[174]

}
SomeClass doSomething(String input) {
 System.out.println(
 "Doing something and returning SomeClass object...");
 sleepSec(1);
 return new SomeClass();
}
AnotherClass doMore(SomeClass input) {
 System.out.println("Doing more of something and " +
 "returning AnotherClass object...");
 sleepSec(1);
 return new AnotherClass();
}
YetAnotherClass doSomethingElse(AnotherClass input) {
 System.out.println("Doing something else and " +
 "returning YetAnotherClass object...");
 sleepSec(1);
 return new YetAnotherClass();
}
int doFinalProcessing(YetAnotherClass input) {
 System.out.println("Processing and finally " +
 "returning result...");
 sleepSec(1);
 return 42;
}
AnotherType doSomethingAlternative(SomeClass input) {
 System.out.println("Doing something alternative " +
 "and returning AnotherType object...");
 sleepSec(1);
 return new AnotherType();
}
YetAnotherType doMoreAltProcessing(AnotherType input) {
 System.out.println("Doing more alternative and " +
 "returning YetAnotherType object...");
 sleepSec(1);
 return new YetAnotherType();
}
int doFinalAltProcessing(YetAnotherType input) {
 System.out.println("Alternative processing and " +
 "finally returning result...");
 sleepSec(1);
 return 43;
}

Lesson 5

[175]

The results of these operations are going to be handled by the myHandler() method:

int myHandler(Integer result, Throwable ex) {
 System.out.println("And the answer is " + result);
 if (result == null) {
 System.out.println("Because: " + ex.getMessage());
 return -1;
 } else {
 return result;
 }
}

Note all the different types returned by the operations. Now we can build a chain
that forks in two at some point:

ExecutorService pool = Executors.newCachedThreadPool();
CompletableFuture<SomeClass> completableFuture =
 CompletableFuture.supplyAsync(() -> getData(), pool)
 .thenApplyAsync(result -> doSomething(result), pool);

completableFuture
 .thenApplyAsync(result -> doMore(result), pool)
 .thenApplyAsync(result -> doSomethingElse(result), pool)
 .thenApplyAsync(result -> doFinalProcessing(result), pool)
 .handleAsync((result, ex) -> myHandler(result, ex), pool);

completableFuture
 .thenApplyAsync(result -> doSomethingAlternative(result), pool)
 .thenApplyAsync(result -> doMoreAltProcessing(result), pool)
 .thenApplyAsync(result -> doFinalAltProcessing(result), pool)
 .handleAsync((result, ex) -> myHandler(result, ex), pool);

System.out.println("Out!!!!!");

The result of this example is as follows:

Making Use of New APIs to Improve Your Code

[176]

The CompletableFuture API provides a very rich and well-thought-through API
that supports, among other things, the latest trends in reactive microservices because
it	allows	processing	data	fully	asynchronously	as	it	comes	in,	splitting	the	flow	if	
needed, and scaling to accommodate the increase of the input. We encourage you
to study the examples (many more are provided in the code that accompanies this
book) and look at the API at http://download.java.net/java/jdk9/docs/api/
index.html?java/util/concurrent/CompletableFuture.html.

Stream API Improvements
Most of the new Stream	API	features	in	Java	9	have	already	been	demonstrated	in	
the section that describes Stream	filtering.	To	remind	you,	here	are	the	examples	
we have demonstrated based on the Stream	API	improvements	in	JDK	9:

long c1 = senators.stream()
 .flatMap(s -> Stream.ofNullable(s.getParty()
 == "Party1" ? s : null))
 .count();
System.out.println("OfNullable: Members of Party1: " + c1);

long c2 = senators.stream()
 .map(s -> s.getParty() == "Party2" ? Optional.of(s)
 : Optional.empty())
 .flatMap(Optional::stream)
 .count();
System.out.println("Optional.stream(): Members of Party2: "
 + c2);

senators.stream().limit(5)
 .takeWhile(s -> Senate.timesVotedYes(s) < 5)
 .forEach(s -> System.out.println("takeWhile(<5): "
 + s + ": " + Senate.timesVotedYes(s)));

senators.stream().limit(5)
 .dropWhile(s -> Senate.timesVotedYes(s) < 5)
 .forEach(s -> System.out.println("dropWhile(<5): "
 + s + ": " + Senate.timesVotedYes(s)));

Lesson 5

[177]

The only one we have not mentioned yet is the new overloaded iterate() method:

static <T> Stream<T> iterate(T seed, UnaryOperator<T> f)

An example of its usage is as follows:

String result =

 IntStream.iterate(1, i -> i + 2)

 .limit(5)

 .mapToObj(i -> String.valueOf(i))

 .collect(Collectors.joining(", "));

System.out.println("Iterate: " + result);

We had to add limit(5) because this version of the iterate() method creates an
unlimited stream of integer numbers. The result of the previous code is as follows:

In	Java	9,	an	overloaded	iterate() method was added:

static <T> Stream<T> iterate(T seed,
 Predicate<? super T> hasNext, UnaryOperator<T> next)

As you see, it has now a Predicate functional interface as a parameter that allows
limiting the stream as needed. For example, the following code produces exactly
the same result as the previous example with limit(5):

String result =
 IntStream.iterate(1, i -> i < 11, i -> i + 2)
 .mapToObj(i -> String.valueOf(i))
 .collect(Collectors.joining(", "));
System.out.println("Iterate: " + result);

Note that the type of the stream element does not need to be an integer. It can be any
type produced by the source. So, the new iterate() method can be used to provide
criteria for the termination of the stream of any type of data.

Making Use of New APIs to Improve Your Code

[178]

Summary
In this lesson, we covered a lot of ground in the area of the new features introduced
with	Java	9.	First,	we	looked	at	many	ways	to	stream	filtering,	starting	with	the	basic	
filter() method and ending up using the Stream	API	additions	of	JDK	9.	Then,	
you learned a better way to analyze the stack trace using the new StackWalker class.
The	discussion	was	illustrated	by	specific	examples	that	help	you	to	see	the	real	
working code.

We used the same approach while presenting new convenient factory methods for
creating immutable collections and new capabilities for asynchronous processing
that came with the CompletableFuture	class	and	its	enhancements	in	JDK	9.

We ended this lesson by enumerating the improvements to the Stream API--those
we	have	demonstrated	in	the	filtering	code	examples	and	the	new	iterate()
method.

With this, we come to the end of this book. You can now try and apply the tips and
techniques you have learned to your project or, if it is not suitable for that, to build
your	own	Java	project	for	high	performance.	While	doing	that,	try	to	solve	real	
problems. That will force you to learn new skills and frameworks instead of just
applying the knowledge you have already, although the latter is helpful too--it
keeps your knowledge fresh and practical.

The	best	way	to	learn	is	to	do	it	yourself.	As	Java	continues	to	improve	and	expand,	
watch out for new editions of this and similar books by Packt.

Assessments
1. The	_______	interface	was	introduced	in	Java	8	to	emit	elements	and	supports	

a variety of operations that perform computations based on stream elements.
2. Which of the following factory methods of the StackWalker class creates

a StackWalker class instance with the given option of specifying the stack
frame	information	that	it	can	access?

1. getInstance()

2. getInstance(StackWalker.Option option)

3. getInstance(Set<StackWalker.Option> options)

4. getInstance(Set<StackWalker.Option> options, int
estimatedDepth)

Lesson 5

[179]

3. State whether True or False: The CompletableFuture API consists of many
methods which are implementations of the CompletionStage interface,
and are the implementations of Future.

4. Which	among	the	following	methods	is	used	when	a	type	of	filtering	is	
required to skip all the duplicate elements in a stream and select only
unique element.

1. distinct()

2. unique()

3. selectall()

4. filtertype()

5. State	whether	True	or	False:	One	of	the	great	advantages	of	
CompletableFuture is that it can be passed around as an object
and used several times to start different chains of operations.

[181]

Assessment Answers

Lesson 1: Learning Java 9 Underlying
Performance Improvements

Question Number Answer
1 tool
2 1
3 True
4 3
5 3

Lesson 2: Tools for Higher Productivity
and Faster Application

Question Number Answer
1 Ahead-of-Time
2 1
3 False
4 1
5 3

Assessment Answers

[182]

Lesson 3: Multithreading and Reactive
Programming

Question Number Answer
1 calculateAverageSqrt()

2 3
3 False
4 2
5 RxJava

Lesson 4: Microservices
Question Number Answer

1 Vertx
2 4
3 False
4 1,2
5 True

Lesson 5: Making Use of New APIs to
Improve Your Code

Question Number Answer
1 java.util.streams.Stream

2 2
3 True
4 1
5 True

	Cover
	Copyright
	Credits
	Table of Contents
	Preface
	Lesson 1: Learning Java 9 Underlying Performance Improvements
	Introducing the New Features of Java 9
	Modular Development and Its Impact
	Quick Introduction to Modules

	String Operations Performance
	Compact String
	The World of Heap

	Why Bother Compressing Strings?
	What Did They Do?
	What is the Escape Route?
	What is the Performance Gain?

	Indify String Concatenation
	Invokedynamic

	Storing Interned Strings in CDS Archives
	Concurrency Performance
	Compiler Improvements
	Tiered Attribution
	Ahead-of-Time Compilation

	Security Manager Improvements
	Graphics Rasterizers
	Summary
	Assessments

	Lesson 2: Tools for Higher Productivity and Faster Application
	The JShell Tool Usage
	Creating a JShell Session and Setting Context
	JShell Commands

	Ahead-of-Time (AOT)
	Static versus Dynamic Compilation
	The AOT Commands and Procedures

	Summary
	Assessments

	Lesson 3: Multithreading and Reactive Programming
	Prerequisites
	Thread Pools
	Monitoring Threads
	Sizing Thread Pool Executors
	Thread Synchronization
	Tuning JVM
	Reactive Programming
	Summary
	Assessments

	Lesson 4: Microservices
	Why Microservices?
	Building Microservices
	Container-Less Deployment
	Self-Contained Microservices
	In-Container Deployment
	Summary
	Assessments

	Lesson 5: Making Use of New APIs to Improve Your Code
	Filtering Streams
	Basic Filtering
	Using Other Stream Operations for Filtering

	Stack-Walking APIs
	Stack Analysis before Java 9
	New Better Way to Walk the Stack

	Convenience Factory Methods for Collections
	Why New Factory Methods?
	The New Factory Methods in Action

	CompletableFuture in Support of Asynchronous Processing
	The CompletableFuture API Overview
	The CompletableFuture API Enhancements
in Java 9
	The Problem and the Solution using Future
	The Solution with CompletableFuture
	Other Useful Features of CompletableFuture

	Stream API Improvements
	Summary
	Assessments

	Appendix: Assessment Answers

