

Mastering C++ Multithreading

Write robust, concurrent, and parallel applications

Maya Posch

BIRMINGHAM - MUMBAI

Mastering C++ Multithreading
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2017

Production reference: 1270717

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78712-170-6

www.packtpub.com

http://www.packtpub.com

Credits

Author
Maya Posch

Copy Editor
Sonia Mathur

Reviewer
Louis E. Mauget

Project Coordinator
Vaidehi Sawant

Commissioning Editor
Aaron Lazar

Proofreader
Safis Editing

Acquisition Editor
Chaitanya Nair

Indexer
Francy Puthiry

Content Development Editor
Rohit Kumar Singh

Graphics
Abhinash Sahu

Technical Editors
Ketan Kamble

Production Coordinator
Nilesh Mohite

About the Author
Maya Posch is a software engineer by trade and a self-professed electronics, robotics, and
AI nut, running her own software development company, Nyanko, with her good friend,
Trevor Purdy, where she works on various game development projects and some non-game
projects. Apart from this, she does various freelance jobs for companies around the globe.
You can visit her LinkedIn profile for more work-related details.

Aside from writing software, she likes to play with equations and write novels, such as her
awesome reimagining of the story of the Nintendo classic, Legend of Zelda: Ocarina of
Time, and the survival-horror novel she recently started, Viral Desire. You can check out
her Scribd profile for a full listing of her writings.

Maya is also interested in biochemistry, robotics, and reverse-engineering of the human
body. To know more about her, visit her blog, Artificial Human. If there's anything she
doesn't lack, it has to be sheer ambition, it seems.

About the Reviewer
Louis E. Mauget learned to program a long time ago at the Michigan State University as a
physics major learning to use software in designing a cyclotron. Later, he worked for 34
years at IBM. He went on to work for several consulting firms, including a long-term
engagement with the railroad industry. He is currently consulting for Keyhole Software at
Leawood, Kansas.

Lou has coded in C++, Java, JavaScript, Python, and newer languages, as each was
conceived. His current interests include reactive functional programming, containers, Node
JS, NoSQL, geospatial systems, mobile, and so on, in any new language or framework.

He occasionally blogs about software technology for Keyhole Software. He has coauthored
three computer books and authored two IBM DeveloperWorks XML tutorials and a
WebSphere Journal LDAP tutorial. Lou co-wrote several J2EE certification tests for IBM. He
has also worked as a reviewer for Packt Publishing and others.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://w w w . a m a z o n . c o m /d p /1787121704.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1787121704
https://www.amazon.com/dp/1786467356

Table of Contents
Preface 1

Chapter 1: Revisiting Multithreading 6

Getting started 6
The multithreaded application 7

Makefile 11
Other applications 13
Summary 14

Chapter 2: Multithreading Implementation on the Processor and OS 15

Defining processes and threads 16
Tasks in x86 (32-bit and 64-bit) 18
Process state in ARM 21

The stack 22
Defining multithreading 23

Flynn's taxonomy 25
Symmetric versus asymmetric multiprocessing 26
Loosely and tightly coupled multiprocessing 27
Combining multiprocessing with multithreading 27
Multithreading types 27

Temporal multithreading 27
Simultaneous multithreading (SMT) 28

Schedulers 28
Tracing the demo application 30
Mutual exclusion implementations 32

Hardware 33
Software 33

Summary 35

Chapter 3: C++ Multithreading APIs 36

API overview 36
POSIX threads 37

Windows support 39
PThreads thread management 40
Mutexes 42
Condition variables 43

[ii]

Synchronization 45
Semaphores 46
Thread local storage (TLC) 46

Windows threads 47
Thread management 48
Advanced management 50
Synchronization 51
Condition variables 51
Thread local storage 52

Boost 52
Qt 52

QThread 53
Thread pools 54
Synchronization 54
QtConcurrent 55
Thread local storage 55

POCO 55
Thread class 56
Thread pool 56
Thread local storage (TLS) 57
Synchronization 58

C++ threads 59
Putting it together 59
Summary 60

Chapter 4: Thread Synchronization and Communication 61

Safety first 61
The scheduler 62

High-level view 62
Implementation 63

Request class 65
Worker class 67

Dispatcher 69
Makefile 73
Output 74

Sharing data 77
Using r/w-locks 78
Using shared pointers 78

Summary 78

Chapter 5: Native C++ Threads and Primitives 79

[iii]

The STL threading API 79
Boost.Thread API 79

The 2011 standard 80
C++14 81
C++17 81
STL organization 82
Thread class 83

Basic use 83
Passing parameters 84
Return value 85
Moving threads 85
Thread ID 86
Sleeping 87
Yield 88
Detach 88
Swap 88

Mutex 89
Basic use 89

Non-blocking locking 91
Timed mutex 92
Lock guard 93
Unique lock 94
Scoped lock 95
Recursive mutex 95
Recursive timed mutex 96

Shared mutex 96
Shared timed mutex 97

Condition variable 97
Condition_variable_any 100
Notify all at thread exit 100

Future 101
Promise 102

Shared future 103
Packaged_task 104
Async 105

Launch policy 106
Atomics 106
Summary 106

Chapter 6: Debugging Multithreaded Code 107

[iv]

When to start debugging 107
The humble debugger 108

GDB 109
Debugging multithreaded code 110
Breakpoints 111
Back traces 112

Dynamic analysis tools 114
Limitations 115
Alternatives 115
Memcheck 116

Basic use 116
Error types 119

Illegal read / illegal write errors 119
Use of uninitialized values 119
Uninitialized or unaddressable system call values 121
Illegal frees 123
Mismatched deallocation 123
Overlapping source and destination 123
Fishy argument values 124
Memory leak detection 124

Helgrind 125
Basic use 125

Misuse of the pthreads API 130
Lock order problems 131
Data races 132
DRD 132
Basic use 132
Features 134
C++11 threads support 135

Summary 136

Chapter 7: Best Practices 137

Proper multithreading 137
Wrongful expectations - deadlocks 138
Being careless - data races 142
Mutexes aren't magic 147
Locks are fancy mutexes 149
Threads versus the future 150
Static order of initialization 150
Summary 153

Chapter 8: Atomic Operations - Working with the Hardware 154

[v]

Atomic operations 154
Visual C++ 155
GCC 161

Memory order 164
Other compilers 165
C++11 atomics 165
Example 168
Non-class functions 169
Example 170
Atomic flag 172
Memory order 172

Relaxed ordering 173
Release-acquire ordering 173
Release-consume ordering 174
Sequentially-consistent ordering 174
Volatile keyword 175

Summary 175

Chapter 9: Multithreading with Distributed Computing 176

Distributed computing, in a nutshell 176
MPI 178

Implementations 179
Using MPI 180

Compiling MPI applications 181
The cluster hardware 182

Installing Open MPI 186
Linux and BSDs 186
Windows 186

Distributing jobs across nodes 188
Setting up an MPI node 189
Creating the MPI host file 189
Running the job 190
Using a cluster scheduler 190

MPI communication 191
MPI data types 192

Custom types 193
Basic communication 195
Advanced communication 196
Broadcasting 196
Scattering and gathering 197

MPI versus threads 198

[vi]

Potential issues 200
Summary 200

Chapter 10: Multithreading with GPGPU 201

The GPGPU processing model 201
Implementations 202
OpenCL 203
Common OpenCL applications 203
OpenCL versions 204

OpenCL 1.0 204
OpenCL 1.1 204
OpenCL 1.2 205
OpenCL 2.0 206
OpenCL 2.1 206
OpenCL 2.2 207

Setting up a development environment 208
Linux 208
Windows 208
OS X/MacOS 209

A basic OpenCL application 209
GPU memory management 213
GPGPU and multithreading 215

Latency 216
Potential issues 216
Debugging GPGPU applications 217
Summary 218

Index 219

Preface
Multithreaded applications execute multiple threads in a single processor environment, to
achieve. Filled with practical examples, this book will help you become a master at writing
robust concurrent and parallel applications in C++. In this book, you will delve into the
fundamentals of multithreading and concurrency and find out how to implement them.
While doing so, you will explore atomic operations to optimize code performance and also
apply concurrency to both distributed computing and GPGPU processing.

What this book covers
Chapter 1, Revisiting Multithreading, summarizes multithreading in C++, revisiting all the
concepts you should already be familiar with and going through a basic example of
multithreading using the native threading support added in the 2011 revision of C++.

Chapter 2, Multithreading Implementation on the Processor and OS, builds upon the
fundamentals provided by the hardware implementations discussed in the preceding
chapter, showing how OSes have used the capabilities to their advantage and made them
available to applications. It also discusses how processes and threads are allowed to use the
memory and processor in order to prevent applications and threads from interfering with
each other.

Chapter 3, C++ Multithreading APIs, explores the wide variety of multithreading APIs
available as OS-level APIs (for example, Win32 and POSIX) or as provided by a framework
(for example, Boost, Qt, and POCO). It briefly runs through each API, listing the differences
compared to the others as well as the advantages and disadvantages it may have for your
application.

Chapter 4, Thread Synchronization and Communication, takes the topics learned in the
previous chapters and explores an advanced multithreading implementation implemented
using C++ 14's native threading API, which allows multiple threads to communicate
without any thread-safety issues. It also covers the differences between the many types of
synchronization mechanisms, including mutexes, locks, and condition variables.

Chapter 5, Native C++ Threads and Primitives, includes threads, concurrency, local storage, as
well as thread-safety supported by this API. Building upon the example in the preceding
chapter, it discusses and explores extending and optimizing thread-safty using the features
offered by the full feature set in C++ 11 and C++ 14.

Preface

[2]

Chapter 6, Debugging Multithreaded Code, teaches you how to use tools such as Valgrind
(Memcheck, DRD, Helgrind, and so on) to analyze the multithreaded performance of an
application, find hotspots, and resolve or prevent issues resulting from concurrent access.

Chapter 7, Best Practices, covers common pitfalls and gotchas and how to spot them before
they come back to haunt you. It also explores a number of common and less common
scenarios using examples.

Chapter 8, Atomic Operations – Working with the Hardware, covers atomic operations in
detail: what they are and how they are best used. Compiler support is looked at across CPU
architectures and an evaluation is made of when it is worth to invest time in implementing
atomic operations in your code. It also looks at how such optimizations will limit the
portability of your code.

Chapter 9, Multithreading with Distributed Computing, takes many of the lessons learned in
the preceding chapters and applies them on a multi-system, cluster-level scale. Using an
OpenMPI-based example, it shows how multithreading can be done across multiple
systems, such as the nodes in a computer cluster.

Chapter 10, Multithreading with GPGPU, shows the use of multithreading in GPGPU
applications (for example, CUDA and OpenCL). Using an OpenCL-based example, a basic
multithreaded application is explored that can execute tasks in parallel. This chapter takes
lessons learned in the preceding chapters and applies them to processing on video cards
and derived hardware (for example, rack-mounted vector processor hardware).

What you need for this book
To follow the instructions in this book, you will need any OS (Windows, Linux, or macOS)
and any C++ compiler installed on your systems.

Who this book is for
This book is for intermediate C++ developers who wish to extend their knowledge of
multithreading and concurrent processing. You should have basic experience with
multithreading and be comfortable using C++ development toolchains on the command
line.

Preface

[3]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The
randGen() method takes two parameters, defining the range of the returned value:"

A block of code is set as follows:

cout_mtx.lock();
 cout << "Thread " << tid << " adding " << rval << ". New value: " << val
<< ".\n";
 cout_mtx.unlock();

 values_mtx.lock();
 values.push_back(val);
 values_mtx.unlock();
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

cout_mtx.lock();
 cout << "Thread " << tid << " adding " << rval << ". New value: " << val
<< ".\n";
 cout_mtx.unlock();

 values_mtx.lock();
 values.push_back(val);
 values_mtx.unlock();
}

Any command-line input or output is written as follows:

$ make
g++ -o ch01_mt_example -std=c++11 ch01_mt_example.cpp

Preface

[4]

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text.

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-mail
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you. You can download the
code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /M a s t e r i n g - C P P - M u l t i t h r e a d i n g . We also have other code bundles from our rich
catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /. Check
them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k

s /c o n t e n t /s u p p o r t and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/Mastering-CPP-Multithreading
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
Revisiting Multithreading

Chances are that if you're reading this book, you have already done some multithreaded
programming in C++, or, possibly, other languages. This chapter is meant to recap the topic
purely from a C++ point of view, going through a basic multithreaded application, while
also covering the tools we'll be using throughout the book. At the end of this chapter, you
will have all the knowledge and information needed to proceed with the further chapters.

Topics covered in this chapter include the following:

Basic multithreading in C++ using the native API
Writing basic makefiles and usage of GCC/MinGW
Compiling a program using make and executing it on the command-line

Getting started
During the course of this book, we'll be assuming the use of a GCC-based toolchain (GCC or
MinGW on Windows). If you wish to use alternative toolchains (clang, MSVC, ICC, and so
on), please consult the documentation provided with these for compatible commands.

To compile the examples provided in this book, makefiles will be used. For those unfamiliar
with makefiles, they are a simple but powerful text-based format used with the make tool
for automating build tasks including compiling source code and adjusting the build
environment. First released in 1977, make remains among the most popular build
automation tools today.

Familiarity with the command line (Bash or equivalent) is assumed, with MSYS2 (Bash on
Windows) recommended for those using Windows.

Revisiting Multithreading

[7]

The multithreaded application
In its most basic form, a multithreaded application consists of a singular process with two
or more threads. These threads can be used in a variety of ways; for example, to allow the
process to respond to events in an asynchronous manner by using one thread per incoming
event or type of event, or to speed up the processing of data by splitting the work across
multiple threads.

Examples of asynchronous responses to events include the processing of the graphical user
interface (GUI) and network events on separate threads so that neither type of event has to
wait on the other, or can block events from being responded to in time. Generally, a single
thread performs a single task, such as the processing of GUI or network events, or the
processing of data.

For this basic example, the application will start with a singular thread, which will then
launch a number of threads, and wait for them to finish. Each of these new threads will
perform its own task before finishing.

Revisiting Multithreading

[8]

Let's start with the includes and global variables for our application:

#include <iostream>
#include <thread>
#include <mutex>
#include <vector>
#include <random>

using namespace std;

// --- Globals
mutex values_mtx;
mutex cout_mtx;
vector<int> values;

Both the I/O stream and vector headers should be familiar to anyone who has ever used
C++: the former is here used for the standard output (cout), and the vector for storing a
sequence of values.

The random header is new in c++11, and as the name suggests, it offers classes and
methods for generating random sequences. We use it here to make our threads do
something interesting.

Finally, the thread and mutex includes are the core of our multithreaded application; they
provide the basic means for creating threads, and allow for thread-safe interactions between
them.

Moving on, we create two mutexes: one for the global vector and one for cout, since the
latter is not thread-safe.

Next we create the main function as follows:

int main() {
 values.push_back(42);

We push a fixed value onto the vector instance; this one will be used by the threads we
create in a moment:

 thread tr1(threadFnc, 1);
 thread tr2(threadFnc, 2);
 thread tr3(threadFnc, 3);
 thread tr4(threadFnc, 4);

Revisiting Multithreading

[9]

We create new threads, and provide them with the name of the method to use, passing
along any parameters--in this case, just a single integer:

 tr1.join();
 tr2.join();
 tr3.join();
 tr4.join();

Next, we wait for each thread to finish before we continue by calling join() on each thread
instance:

 cout << "Input: " << values[0] << ", Result 1: " << values[1] << ",
Result 2: " << values[2] << ", Result 3: " << values[3] << ", Result 4: "
<< values[4] << "\n";

 return 1;
}

At this point, we expect that each thread has done whatever it's supposed to do, and added
the result to the vector, which we then read out and show the user.

Of course, this shows almost nothing of what really happens in the application, mostly just
the essential simplicity of using threads. Next, let's see what happens inside this method
that we pass to each thread instance:

void threadFnc(int tid) {
 cout_mtx.lock();
 cout << "Starting thread " << tid << ".\n";
 cout_mtx.unlock();

In the preceding code, we can see that the integer parameter being passed to the thread
method is a thread identifier. To indicate that the thread is starting, a message containing
the thread identifier is output. Since we're using a non-thread-safe method for this, we
use the cout_mtx mutex instance to do this safely, ensuring that just one thread can write
to cout at any time:

 values_mtx.lock();
 int val = values[0];
 values_mtx.unlock();

When we obtain the initial value set in the vector, we copy it to a local variable so that we
can immediately release the mutex for the vector to enable other threads to use the vector:

 int rval = randGen(0, 10);
 val += rval;

Revisiting Multithreading

[10]

These last two lines contain the essence of what the threads created do: they take the initial
value, and add a randomly generated value to it. The randGen() method takes two
parameters, defining the range of the returned value:

 cout_mtx.lock();
 cout << "Thread " << tid << " adding " << rval << ". New value: " <<
val << ".\n";
 cout_mtx.unlock();

 values_mtx.lock();
 values.push_back(val);
 values_mtx.unlock();
}

Finally, we (safely) log a message informing the user of the result of this action before
adding the new value to the vector. In both cases, we use the respective mutex to ensure
that there can be no overlap when accessing the resource with any of the other threads.

Once the method reaches this point, the thread containing it will terminate, and the main
thread will have one less thread to wait for to rejoin. The joining of a thread basically means
that it stops existing, usually with a return value passed to the thread which created the
thread. This can happen explicitly, with the main thread waiting for the child thread to
finish, or in the background.

Lastly, we'll take a look at the randGen() method. Here we can see some multithreaded
specific additions as well:

int randGen(const int& min, const int& max) {
 static thread_local mt19937
generator(hash<thread::id>()(this_thread::get_id()));
 uniform_int_distribution<int> distribution(min, max);
 return distribution(generator)
}

This preceding method takes a minimum and maximum value as explained earlier, which
limits the range of the random numbers this method can return. At its core, it uses a
mt19937-based generator, which employs a 32-bit Mersenne Twister algorithm with a
state size of 19937 bits. This is a common and appropriate choice for most applications.

Of note here is the use of the thread_local keyword. What this means is that even though
it is defined as a static variable, its scope will be limited to the thread using it. Every thread
will thus create its own generator instance, which is important when using the random
number API in the STL.

Revisiting Multithreading

[11]

A hash of the internal thread identifier is used as a seed for the generator. This ensures
that each thread gets a fairly unique seed for its generator instance, allowing for better
random number sequences.

Finally, we create a new uniform_int_distribution instance using the provided
minimum and maximum limits, and use it together with the generator instance to
generate the random number which we return.

Makefile
In order to compile the code described earlier, one could use an IDE, or type the command
on the command line. As mentioned in the beginning of this chapter, we'll be using
makefiles for the examples in this book. The big advantages of this are that one does not
have to repeatedly type in the same extensive command, and it is portable to any system
which supports make.

Further advantages include being able to have previous generated artifacts removed
automatically and to only compile those source files which have changed, along with a
detailed control over build steps.

The makefile for this example is rather basic:

GCC := g++

OUTPUT := ch01_mt_example
SOURCES := $(wildcard *.cpp)
CCFLAGS := -std=c++11 -pthread

all: $(OUTPUT)

$(OUTPUT):
 $(GCC) -o $(OUTPUT) $(CCFLAGS) $(SOURCES)

clean:
 rm $(OUTPUT)

.PHONY: all

Revisiting Multithreading

[12]

From the top down, we first define the compiler that we'll use (g++), set the name of the
output binary (the .exe extension on Windows will be post-fixed automatically), followed
by the gathering of the sources and any important compiler flags.

The wildcard feature allows one to collect the names of all files matching the string
following it in one go without having to define the name of each source file in the folder
individually.

For the compiler flags, we're only really interested in enabling the c++11 features, for which
GCC still requires one to supply this compiler flag.

For the all method, we just tell make to run g++ with the supplied information. Next we
define a simple clean method which just removes the produced binary, and finally, we tell
make to not interpret any folder or file named all in the folder, but to use the internal
method with the .PHONY section.

When we run this makefile, we see the following command-line output:

$ make
g++ -o ch01_mt_example -std=c++11 ch01_mt_example.cpp

Afterwards, we find an executable file called ch01_mt_example (with the .exe extension
attached on Windows) in the same folder. Executing this binary will result in a command-
line output akin to the following:

$./ch01_mt_example.exe

Starting thread 1.

Thread 1 adding 8. New value: 50.

Starting thread 2.

Thread 2 adding 2. New value: 44.

Starting thread 3.

Starting thread 4.

Thread 3 adding 0. New value: 42.

Thread 4 adding 8. New value: 50.

Input: 42, Result 1: 50, Result 2: 44, Result 3: 42, Result 4: 50

Revisiting Multithreading

[13]

What one can see here already is the somewhat asynchronous nature of threads and their
output. While threads 1 and 2 appear to run synchronously, starting and quitting
seemingly in order, threads 3 and 4 clearly run asynchronously as both start simultaneously
before logging their action. For this reason, and especially in longer-running threads, it's
virtually impossible to say in which order the log output and results will be returned.

While we use a simple vector to collect the results of the threads, there is no saying whether
Result 1 truly originates from the thread which we assigned ID 1 in the beginning. If we
need this information, we need to extend the data we return by using an information
structure with details on the processing thread or similar.

One could, for example, use struct like this:

struct result {
 int tid;
 int result;
};

The vector would then be changed to contain result instances rather than integer instances.
One could pass the initial integer value directly to the thread as part of its parameters, or
pass it via some other way.

Other applications
The example in this chapter is primarily useful for applications where data or tasks have to
be handled in parallel. For the earlier mentioned use case of a GUI-based application with
business logic and network-related features, the basic setup of a main application, which
launches the required threads, would remain the same. However, instead of having each
thread to be the same, each would be a completely different method.

Revisiting Multithreading

[14]

For this type of application, the thread layout would look like this:

As the graphic shows, the main thread would launch the GUI, network, and business logic
thread, with the latter communicating with the network thread to send and receive data.
The business logic thread would also receive user input from the GUI thread, and send
updates back to be displayed on the GUI.

Summary
In this chapter, we went over the basics of a multithreaded application in C++ using the
native threading API. We looked at how to have multiple threads perform a task in parallel,
and also explored how to properly use the random number API in the STL within a
multithreaded application.

In the next chapter, we'll discuss how multithreading is implemented both in hardware and
in operating systems. We'll see how this implementation differs per processor architecture
and operating system, and how this affects our multithreaded application.

2
Multithreading Implementation

on the Processor and OS
The foundation of any multithreaded application is formed by the implementation of the
required features by the hardware of the processor, as well as by the way these features are
translated into an API for use by applications by the operating system. An understanding of
this foundation is crucial for developing an intuitive understanding of how to best
implement a multithreaded application.

This chapter looks at how hardware and operating systems have evolved over the years to
arrive at the current implementations and APIs as they are in use today. It shows how the
example code of the previous chapter ultimately translates into commands to the processor
and related hardware.

Topics covered in this chapter include the following:

The evolution of processor hardware in order to support multithreading concepts
How operating systems changed to use these hardware features
Concepts behind memory safety and memory models in various architectures
Differences between various process and threading models by OSes

Multithreading Implementation on the Processor and OS

[16]

Defining processes and threads
Essentially, to the operating system (OS), a process consists of one or more threads, each
thread processing its own state and variables. One would regard this as a hierarchical
configuration, with the OS as the foundation, providing support for the running of (user)
processes. Each of these processes then consists of one or more threads. Communication
between processes is handled by inter-process communication (IPC), which is provided by
the operating system.

In a graphical view, this looks like the following:

Each process within the OS has its own state, with each thread in a process having its own
state as well as the relative to the other threads within that same process. While IPC allows
processes to communicate with each other, threads can communicate with other threads
within the process in a variety of ways, which we'll explore in more depth in upcoming
chapters. This generally involves some kind of shared memory between threads.

An application is loaded from binary data in a specific executable format such as, for
example, Executable and Linkable Format (ELF) which is generally used on Linux and
many other operating systems. With ELF binaries, the following number of sections should
always be present:

.bss

.data

.rodata

.text

Multithreading Implementation on the Processor and OS

[17]

The .bss section is, essentially, allocated with uninitialized memory including empty
arrays which thus do not take up any space in the binary, as it makes no sense to store rows
of pure zeroes in the executable. Similarly, there is the .data section with initialized data.
This contains global tables, variables, and the like. Finally, the .rodata section is like
.data, but it is, as the name suggests, read-only. It contains things such as hardcoded
strings.

In the .text section, we find the actual application instructions (code) which will be
executed by the processor. The whole of this will get loaded by the operating system, thus
creating a process. The layout of such a process looks like the following diagram:

This is what a process looks like when launched from an ELF-format binary, though the
final format in memory is roughly the same in basically any OS, including for a Windows
process launched from a PE-format binary. Each of the sections in the binary are loaded into
their respective sections, with the BSS section allocated to the specified size. The .text
section is loaded along with the other sections, and its initial instruction is executed once
this is done, which starts the process.

In system languages such as C++, one can see how variables and other program state
information within such a process are stored both on the stack (variables exist within the
scope) and heap (using the new operator). The stack is a section of memory (one allocated
per thread), the size of which depends on the operating system and its configuration. One
can generally also set the stack size programmatically when creating a new thread.

Multithreading Implementation on the Processor and OS

[18]

In an operating system, a process consists of a block of memory addresses, the size of which
is constant and limited by the size of its memory pointers. For a 32-bit OS, this would limit
this block to 4 GB. Within this virtual memory space, the OS allocates a basic stack and
heap, both of which can grow until all memory addresses have been exhausted, and further
attempts by the process to allocate more memory will be denied.

The stack is a concept both for the operating system and for the hardware. In essence, it's a
collection (stack) of so-called stack frames, each of which is composed of variables,
instructions, and other data relevant to the execution frame of a task.

In hardware terms, the stack is part of the task (x86) or process state (ARM), which is how
the processor defines an execution instance (program or thread). This hardware-defined
entity contains the entire state of a singular thread of execution. See the following sections
for further details on this.

Tasks in x86 (32-bit and 64-bit)
A task is defined as follows in the Intel IA-32 System Programming guide, Volume 3A:

"A task is a unit of work that a processor can dispatch, execute, and suspend. It can be used to
execute a program, a task or process, an operating-system service utility, an interrupt or exception
handler, or a kernel or executive utility."

"The IA-32 architecture provides a mechanism for saving the state of a task, for dispatching tasks for
execution, and for switching from one task to another. When operating in protected mode, all
processor execution takes place from within a task. Even simple systems must define at least one task.
More complex systems can use the processor's task management facilities to support multitasking
applications."

This excerpt from the IA-32 (Intel x86) manual summarizes how the hardware supports and
implements support for operating systems, processes, and the switching between these
processes.

It's important to realize here that, to the processor, there's no such thing as a process or
thread. All it knows of are threads of execution, defined as a series of instructions. These
instructions are loaded into memory somewhere, and the current position in these
instructions is kept track of along with the variable data (variables) being created, as the
application is executed within the data section of the process.

Multithreading Implementation on the Processor and OS

[19]

Each task also runs within a hardware-defined protection ring, with the OS's tasks generally
running on ring 0, and user tasks on ring 3. Rings 1 and 2 are rarely used except for specific
use cases with modern OSes on the x86 architecture. These rings are privilege-levels
enforced by the hardware and allow for example for the strict separation of kernel and user-
level tasks.

The task structure for both 32-bit and 64-bit tasks are quite similar in concept. The official
name for it is the Task State Structure (TSS). It has the following layout for 32-bit x86
CPUs:

Multithreading Implementation on the Processor and OS

[20]

Following are the firlds:

SS0: The first stack segment selector field
ESP0: The first SP field

For 64-bit x86_64 CPUs, the TSS layout looks somewhat different, since hardware-based
task switching is not supported in this mode:

Multithreading Implementation on the Processor and OS

[21]

Here, we have similar relevant fields, just with different names:

RSPn: SP for privilege levels 0 through 2
ISTn: Interrupt stack table pointers

Even though on x86 in 32-bit mode, the CPU supports hardware-based switching between
tasks, most operating systems will use just a single TSS structure per CPU regardless of the
mode, and do the actual switching between tasks in software. This is partially due to
efficiency reasons (swapping out only pointers which change), partially due to features
which are only possible this way, such as measuring CPU time used by a process/thread,
and to adjust the priority of a thread or process. Doing it in software also simplifies the
portability of code between 64-bit and 32-bit systems, since the former do not support
hardware-based task switching.

During a software-based task switch (usually via an interrupt), the ESP/RSP, and so on are
stored in memory and replaced with the values for the next scheduled task. This means that
once execution resumes, the TSS structure will now have the Stack Pointer (SP), segment
pointer(s), register contents, and all other details of the new task.

The source of the interrupt can be based in hardware or software. A hardware interrupt is
usually used by devices to signal to the CPU that they require attention by the OS. The act
of calling a hardware interrupt is called an Interrupt Request, or IRQ.

A software interrupt can be due to an exceptional condition in the CPU itself, or as a feature
of the CPU’s instruction set. The action of switching tasks by the OS’s kernel is also
performed by triggering a software interrupt.

Process state in ARM
In ARM architectures, applications usually run in the unprivileged Exception Level 0 (EL0)
level, which is comparable to ring 3 on x86 architectures, and the OS kernel in EL1. The
ARMv7 (AArch32, 32-bit) architecture has the SP in the general purpose register 13. For
ARMv8 (AArch64, 64-bit), a dedicated SP register is implemented for each exception level:
SP_EL0, SP_EL1, and so on.

For task state, the ARM architecture uses Program State Register (PSR) instances for the
Current Program State Register (CPSR) or the Saved Program State Register (SPSR)
program state's registers. The PSR is part of the Process State (PSTATE), which is an
abstraction of the process state information.

Multithreading Implementation on the Processor and OS

[22]

While the ARM architecture is significantly different from the x86 architecture, when using
software-based task switching, the basic principle does not change: save the current task's
SP, register state, and put the next task's detail in there instead before resuming processing.

The stack
As we saw in the preceding sections, the stack together with the CPU registers define a task.
As mentioned earlier, this stack consists of stack frames, each of which defines the (local)
variables, parameters, data, and instructions for that particular instance of task execution.
Of note is that although the stack and stack frames are primarily a software concept, it is an
essential feature of any modern OS, with hardware support in many CPU instruction sets.
Graphically, it can be be visualized like the following:

Multithreading Implementation on the Processor and OS

[23]

The SP (ESP on x86) points to the top of the stack, with another pointer (Extended Base
Pointer (EBP) for x86). Each frame contains a reference to the preceding frame (caller return
address), as set by the OS.

When using a debugger with one's C++ application, this is basically what one sees when
requesting the backtrack--the individual frames of the stack showing the initial stack frame
leading up until the current frame. Here, one can examine each individual frame's details.

Defining multithreading
Over the past decades, a lot of different terms related to the way tasks are processed by a
computer have been coined and come into common use. Many of these are also used
interchangeably, correctly or not. An example of this is multithreading in comparison with
multiprocessing.

Here, the latter means running one task per processor in a system with multiple physical
processors, while the former means running multiple tasks on a singular processor
simultaneously, thus giving the illusion that they are all being executed simultaneously:

Another interesting distinction between multiprocessing and multitasking is that the latter
uses time-slices in order to run multiple threads on a single processor core. This is different
from multithreading in the sense that in a multitasking system, no tasks will ever run in a
concurrent fashion on the same CPU core, though tasks can still be interrupted.

Multithreading Implementation on the Processor and OS

[24]

The concept of a process and a shared memory space between the threads contained within
the said process is at the very core of multithreaded systems from a software perspective.
Though the hardware is often not aware of this--seeing just a single task to the OS.
However, such a multithreaded process contains two or many more threads. Each of these
threads then perform its own series of tasks.

In other implementations, such as Intel's Hyper-Threading (HT) on x86 processors, this
multithreading is implemented in the hardware itself, where it's commonly referred to as
SMT (see the section Simultaneous multithreading (SMT) for details). When HT is enabled,
each physical CPU core is presented to the OS as being two cores. The hardware itself will
then attempt to execute the tasks assigned to these so-called virtual cores concurrently,
scheduling operations which can use different elements of a processing core at the same
time. In practice, this can give a noticeable boost in performance without the operating
system or application requiring any type of optimization.

The OS can of course still do its own scheduling to further optimize the execution of task,
since the hardware is not aware of many details about the instructions it is executing.

Having HT enabled looks like this in the visual format:

Multithreading Implementation on the Processor and OS

[25]

In this preceding graphic, we see the instructions of four different tasks in memory (RAM).
Out of these, two tasks (threads) are being executed simultaneously, with the CPU's
scheduler (in the frontend) attempting to schedule the instructions so that as many
instructions as possible can be executed in parallel. Where this is not possible, so-called
pipeline bubbles (in white) appear where the execution hardware is idle.

Together with internal CPU optimizations, this leads to a very high throughput of
instructions, also called Instructions Per Second (IPC). Instead of the GHz rating of a CPU,
this IPC number is generally far more significant for determining the sheer performance of
a CPU.

Flynn's taxonomy
Different types of computer architecture are classified using a system which was first
proposed by Michael J. Flynn, back in 1966. This classification system knows four
categories, defining the capabilities of the processing hardware in terms of the number of
input and output streams:

Single Instruction, Single Data (SISD): A single instruction is fetched to operate
on a single data stream. This is the traditional model for CPUs.
Single Instruction, Multiple Data (SIMD): With this model, a single instruction
operates on multiple data streams in parallel. This is what vector processors such
as graphics processing units (GPUs) use.
Multiple Instruction, Single Data (MISD): This model is most commonly used
for redundant systems, whereby the same operation is performed on the same
data by different processing units, validating the results at the end to detect
hardware failure. This is commonly used by avionics systems and similar.
Multiple Instruction, Multiple Data (MIMD): For this model, a multiprocessing
system lends itself very well. Multiple threads across multiple processors process
multiple streams of data. These threads are not identical, as is the case with
SIMD.

An important thing to note with these categories is that they are all defined in terms of
multiprocessing, meaning that they refer to the intrinsic capabilities of the hardware. Using
software techniques, virtually any method can be approximated on even a regular SISD-
style architecture. This is, however, part of multithreading.

Multithreading Implementation on the Processor and OS

[26]

Symmetric versus asymmetric multiprocessing
Over the past decades, many systems were created which contained multiple processing
units. These can be broadly divided into Symmetric Multiprocessing (SMP) and
Asymmetric Multiprocessing (AMP) systems.

AMP's main defining feature is that a second processor is attached as a peripheral to the
primary CPU. This means that it cannot run control software, but only user applications.
This approach has also been used to connect CPUs using a different architecture to allow
one to, for example, run x86 applications on an Amiga, 68k-based system.

With an SMP system, each of the CPUs are peers having access to the same hardware
resources, and set up in a cooperative fashion. Initially, SMP systems involved multiple
physical CPUs, but later, multiple processor cores got integrated on a single CPU die:

With the proliferation of multi-core CPUs, SMP is the most common type of processing
outside of embedded development, where uniprocessing (single core, single processor) is
still very common.

Technically, the sound, network, and graphic processors in a system can be considered to be
asymmetric processors related to the CPU. With an increase in General Purpose GPU
(GPGPU) processing, AMP is becoming more relevant.

Multithreading Implementation on the Processor and OS

[27]

Loosely and tightly coupled multiprocessing
A multiprocessing system does not necessarily have to be implemented within a single
system, but can also consist of multiple systems which are connected in a network. Such a
cluster is then called a loosely coupled multiprocessing system. We cover distributing
computing in Chapter 9, Multithreading with Distributed Computing.

This is in contrast with a tightly coupled multiprocessing system, whereby the system is
integrated on a single printed circuit board (PCB), using the same low-level, high-speed
bus or similar.

Combining multiprocessing with multithreading
Virtually any modern system combines multiprocessing with multithreading, courtesy of
multi-core CPUs, which combine two or more processing cores on a single processor die.
What this means for an operating system is that it has to schedule tasks both across multiple
processing cores while also scheduling them on specific cores in order to extract maximum
performance.

This is the area of task schedulers, which we will look at in a moment. Suffice it to say that
this is a topic worthy of its own book.

Multithreading types
Like multiprocessing, there is not a single implementation, but two main ones. The main
distinction between these is the maximum number of threads the processor can execute
concurrently during a single cycle. The main goal of a multithreading implementation is to
get as close to 100% utilization of the processor hardware as reasonably possible.
Multithreading utilizes both thread-level and process-level parallelism to accomplish this
goal.

The are two types of multithreading, which we will cover in the following sections.

Temporal multithreading
Also known as super-threading, the main subtypes for temporal multithreading (TMT) are
coarse-grained and fine-grained (or interleaved). The former switches rapidly between
different tasks, saving the context of each before switching to another task's context. The
latter type switches tasks with each cycle, resulting in a CPU pipeline containing
instructions from various tasks from which the term interleaved is derived.

Multithreading Implementation on the Processor and OS

[28]

The fine-grained type is implemented in barrel processors. They have an advantage over
x86 and other architectures that they can guarantee specific timing (useful for hard real-time
embedded systems) in addition to being less complex to implement due to assumptions that
one can make.

Simultaneous multithreading (SMT)
SMT is implemented on superscalar CPUs (implementing instruction-level parallelism),
which include the x86 and ARM architectures. The defining characteristic of SMT is also
indicated by its name, specifically, its ability to execute multiple threads in parallel, per
core.

Generally, two threads per core is common, but some designs support up to eight
concurrent threads per core. The main advantage of this is being able to share resources
among threads, with an obvious disadvantage of conflicting needs by multiple threads,
which has to be managed. Another advantage is that it makes the resulting CPU more
energy efficient due to a lack of hardware resource duplication.

Intel's HT technology is essentially Intel's SMT implementation, providing a basic two
thread SMT engine starting with some Pentium 4 CPUs in 2002.

Schedulers
A number of task-scheduling algorithms exist, each focusing on a different goal. Some may
seek to maximize throughput, others minimize latency, while others may seek to maximize
response time. Which scheduler is the optimal choice solely depends on the application the
system is being used for.

For desktop systems, the scheduler is generally kept as general-purpose as possible, usually
prioritizing foreground applications over background applications in order to give the user
the best possible desktop experience.

For embedded systems, especially in real-time, industrial applications would instead seek
to guarantee timing. This allows processes to be executed at exactly the right time, which is
crucial in, for example, driving machinery, robotics, or chemical processes where a delay of
even a few milliseconds could be costly or even fatal.

The scheduler type is also dependent on the multitasking state of the OS--a cooperative
multitasking system would not be able to provide many guarantees about when it can
switch out a running process for another one, as this depends on when the active process
yields.

Multithreading Implementation on the Processor and OS

[29]

With a preemptive scheduler, processes are switched without them being aware of it,
allowing the scheduler more control over when processes run at which time points.

Windows NT-based OSes (Windows NT, 2000, XP, and so on) use what is called a
multilevel feedback queue, featuring 32 priority levels. This type of priority scheduler
allows one to prioritize tasks over other tasks, allowing one to fine-tune the resulting
experience.

Linux originally (kernel 2.4) also used a multilevel feedback queue-based priority scheduler
like Windows NT with an O(n) scheduler. With version 2.6, this was replaced with an O(1)
scheduler, allowing processes to be scheduled within a constant amount of time. Starting
with Linux kernel 2.6.23, the default scheduler is the Completely Fair Scheduler (CFS),
which ensures that all tasks get a comparable share of CPU time.

The type of scheduling algorithm used for a number of commonly used or well-known
OSes is listed in this table:

Operating System Preemption Algorithm

Amiga OS Yes Prioritized round-robin scheduling

FreeBSD Yes Multilevel feedback queue

Linux kernel before 2.6.0 Yes Multilevel feedback queue

Linux kernel 2.6.0-2.6.23 Yes O(1) scheduler

Linux kernel after 2.6.23 Yes Completely Fair Scheduler

classic Mac OS pre-9 None Cooperative scheduler

Mac OS 9 Some Preemptive scheduler for MP tasks, and
cooperative for processes and threads

OS X/macOS Yes Multilevel feedback queue

NetBSD Yes Multilevel feedback queue

Solaris Yes Multilevel feedback queue

Windows 3.1x None Cooperative scheduler

Windows 95, 98, Me Half Preemptive scheduler for 32-bit processes,
and cooperative for 16-bit processes

Windows NT (including 2000,
XP, Vista, 7, and Server)

Yes Multilevel feedback queue

Multithreading Implementation on the Processor and OS

[30]

(Source: h t t p s ://e n . w i k i p e d i a . o r g /w i k i /S c h e d u l i n g _ (c o m p u t i n g))

The preemptive column indicates whether the scheduler is preemptive or not, with the next
column providing further details. As one can see, preemptive schedulers are very common,
and used by all modern desktop operating systems.

Tracing the demo application
In the demonstration code of Chapter 1, Revisiting Multithreading, we looked at a simple
c++11 application which used four threads to perform some processing. In this section, we
will look at the same application, but from a hardware and OS perspective.

When we look at the start of the code in the main function, we see that we create a data
structure containing a single (integer) value:

int main() {
 values.push_back(42);

After the OS creates a new task and associated stack structure, an instance of a vector data
structure (customized for integer types) is allocated on the stack. The size of this was
specified in the binary file's global data section (BSS for ELF).

When the application's execution is started using its entry function (main() by default), the
data structure is modified to contain the new integer value.

Next, we create four threads, providing each with some initial data:

 thread tr1(threadFnc, 1);
 thread tr2(threadFnc, 2);
 thread tr3(threadFnc, 3);
 thread tr4(threadFnc, 4);

For the OS, this means creating new data structures, and allocating a stack for each new
thread. For the hardware, this initially does not change anything if no hardware-based task
switching is used.

At this point, the OS's scheduler and the CPU can combine to execute this set of tasks
(threads) as efficiently and quickly as possible, employing features of the hardware
including SMP, SMT, and so on.

https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)
https://en.wikipedia.org/wiki/Scheduling_(computing)

Multithreading Implementation on the Processor and OS

[31]

After this, the main thread waits until the other threads stop executing:

 tr1.join();
 tr2.join();
 tr3.join();
 tr4.join();

These are blocking calls, which mark the main thread as being blocked until these four
threads (tasks) finish executing. At this point, the OS's scheduler will resume execution of
the main thread.

In each newly created thread, we first output a string on the standard output, making sure
that we lock the mutex to ensure synchronous access:

void threadFnc(int tid) {
 cout_mtx.lock();
 cout << "Starting thread " << tid << ".\n";
 cout_mtx.unlock();

A mutex, in essence, is a singular value being stored on the stack of heap, which then is
accessed using an atomic operation. This means that some form of hardware support is
required. Using this, a task can check whether it is allowed to proceed yet, or has to wait
and try again.

In this last particular piece of code, this mutex lock allows us to output on the standard C++
output stream without other threads interfering.

After this, we copy the initial value in the vector to a local variable, again ensuring that it's
done synchronously:

 values_mtx.lock();
 int val = values[0];
 values_mtx.unlock();

The same thing happens here, except now the mutex lock allows us to read the first value in
the vector without risking another thread accessing or even changing it while we use it.

This is followed by the generating of a random number as follows:

 int rval = randGen(0, 10);
 val += rval;

Multithreading Implementation on the Processor and OS

[32]

This uses the randGen() method, which is as follows:

int randGen(const int& min, const int& max) {
 static thread_local mt19937 generator(hash<thread::id>()
(this_thread::get_id()));
 uniform_int_distribution<int> distribution(min, max);
 return distribution(generator);
}

This method is interesting due to its use of a thread-local variable. Thread-local storage is a
section of a thread's memory which is specific to it, and used for global variables, which,
nevertheless, have to remain limited to that specific thread.

This is very useful for a static variable like the one used here. That the generator instance
is static is because we do not want to reinitialize it every single time we use this method, yet
we do not want to share this instance across all threads. By using a thread-local, static
instance, we can accomplish both goals. A static instance is created and used, but separately
for each thread.

The Thread function then ends with the same series of mutexes being locked, and the new
value being copied to the array.

 cout_mtx.lock();
 cout << "Thread " << tid << " adding " << rval << ". New value: " <<
val << ".\n";
 cout_mtx.unlock();

 values_mtx.lock();
 values.push_back(val);
 values_mtx.unlock();
}

Here we see the same synchronous access to the standard output stream, followed by
synchronous access to the values data structure.

Mutual exclusion implementations
Mutual exclusion is the principle which underlies thread-safe access of data within a
multithreaded application. One can implement this both in hardware and software. The
mutual exclusion (mutex) is the most elementary form of this functionality in most
implementations.

Multithreading Implementation on the Processor and OS

[33]

Hardware
The simplest hardware-based implementation on a uniprocessor (single processor core),
non-SMT system is to disable interrupts, and thus, prevent the task from being changed.
More commonly, a so-called busy-wait principle is employed. This is the basic principle
behind a mutex--due to how the processor fetches data, only one task can obtain and
read/write an atomic value in the shared memory, meaning, a variable sized the same (or
smaller) as the CPU's registers. This is further detailed in Chapter 8, Atomic Operations -
Working with the Hardware.

When our code tries to lock a mutex, what this does is read the value of such an atomic
section of memory, and try to set it to its locked value. Since this is a single operation, only
one task can change the value at any given time. Other tasks will have to wait until they can
gain access in this busy-wait cycle, as shown in this diagram:

Software
Software-defined mutual exclusion implementations are all based on busy-waiting. An
example is Dekker's algorithm, which defines a system in which two processes can
synchronize, employing busy-wait to wait for the other process to leave the critical section.

Multithreading Implementation on the Processor and OS

[34]

The pseudocode for this algorithm is as follows:

 variables
 wants_to_enter : array of 2 booleans
 turn : integer

 wants_to_enter[0] ← false
 wants_to_enter[1] ← false
 turn ← 0 // or 1

p0:
 wants_to_enter[0] ← true
 while wants_to_enter[1] {
 if turn ≠ 0 {
 wants_to_enter[0] ← false
 while turn ≠ 0 {
 // busy wait
 }
 wants_to_enter[0] ← true
 }
 }
 // critical section
 ...
 turn ← 1
 wants_to_enter[0] ← false
 // remainder section

p1:
 wants_to_enter[1] ← true
 while wants_to_enter[0] {
 if turn ≠ 1 {
 wants_to_enter[1] ← false
 while turn ≠ 1 {
 // busy wait
 }
 wants_to_enter[1] ← true
 }
 }
 // critical section
 ...
 turn ← 0
 wants_to_enter[1] ← false
 // remainder section

(Referenced from: h t t p s ://e n . w i k i p e d i a . o r g /w i k i /D e k k e r 's _ a l g o r i t h m)

https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Dekker's_algorithm

Multithreading Implementation on the Processor and OS

[35]

In this preceding algorithm, processes indicate the intent to enter a critical section, checking
whether it's their turn (using the process ID), then setting their intent to enter the section to
false after they have entered it. Only once a process has set its intent to enter to true again
will it enter the critical section again. If it wishes to enter, but turn does not match its
process ID, it'll busy-wait until the condition becomes true.

A major disadvantage of software-based mutual exclusion algorithms is that they only
work if out-of-order (OoO) execution of code is disabled. OoO means that the hardware
actively reorders incoming instructions in order to optimize their execution, thus changing
their order. Since these algorithms require that various steps are executed in order, they no
longer work on OoO processors.

Summary
In this chapter, we saw how processes and threads are implemented both in operating
systems and in hardware. We also looked at various configurations of processor hardware
and elements of operating systems involved in scheduling to see how they provide various
types of task processing.

Finally, we took the multithreaded program example of the previous chapter, and ran
through it again, this time considering what happens in the OS and processor while it is
being executed.

In the next chapter, we will take a look at the various multithreading APIs being offered via
OS and library-based implementations, along with examples comparing these APIs.

3
C++ Multithreading APIs

While C++ has a native multithreading implementation in the Standard Template Library
(STL), OS-level and framework-based multithreading APIs are still very common.
Examples of these APIs include Windows and POSIX (Portable Operating System
Interface) threads, and those provided by the Qt, Boost, and POCO libraries.

This chapter takes a detailed look at the features provided by each of these APIs, as well as
the similarities and differences between each of them. Finally, we'll look at common usage
scenarios using example code.

Topics covered by this chapter include the following:

A comparison of the available multithreading APIs
Examples of the usage of each of these APIs

API overview
Before the C++ 2011 (C++11) standard, many different threading implementations were
developed, many of which are limited to a specific software platform. Some of these are still
relevant today, such as Windows threads. Others have been superseded by standards, of
which POSIX Threads (Pthreads) has become the de facto standard on UNIX-like OSes.
This includes Linux-based and BSD-based OS, as well as OS X (macOS) and Solaris.

Many libraries were developed to make cross-platform development easier. Although
Pthreads helps to make UNIX-like OS more or less compatible one of the prerequisites to
make software portable across all major operating systems, a generic threading API is
needed. This is why libraries such as Boost, POCO, and Qt were created. Applications can
use these and rely on the library to handle any differences between platforms.

C++ Multithreading APIs

[37]

POSIX threads
Pthreads were first defined in the POSIX.1c standard (Threads extensions, IEEE Std
1003.1c-1995) from 1995 as an extension to the POSIX standard. At the time, UNIX had been
chosen as a manufacturer-neutral interface, with POSIX unifying the various APIs among
them.

Despite this standardization effort, differences still exist in Pthread implementations
between OS's which implement it (for example, between Linux and OS X), courtesy of non-
portable extensions (marked with _np in the method name).

For the pthread_setname_np method, the Linux implementation takes two parameters,
allowing one to set the name of a thread other than the current thread. On OS X (since 10.6),
this method only takes one parameter, allowing one to set the name of the current thread
only. If portability is a concern, one has to be mindful of such differences.

After 1997, the POSIX standard revisions were managed by the Austin Joint Working
Group. These revisions merge the threads extension into the main standard. The current
revision is 7, also known as POSIX.1-2008 and IEEE Std 1003.1, 2013 edition--with a free
copy of the standard available online.

OS's can be certified to conform to the POSIX standard. Currently, these are as mentioned in
this table:

Name Developer Since
version

Architecture(s)
(current)

Notes

AIX IBM 5L POWER Server OS

HP-UX Hewlett-Packard 11i v3 PA-RISC, IA-64
(Itanium)

Server OS

IRIX Silicon Graphics
(SGI)

6 MIPS Discontinued

Inspur K-UX Inspur 2 X86_64, Linux based

Integrity Green Hills Software 5 ARM, XScale,
Blackfin, Freescale
Coldfire, MIPS,
PowerPC, x86.

Real-time OS

OS X/MacOS Apple 10.5
(Leopard)

X86_64 Desktop OS

C++ Multithreading APIs

[38]

QNX
Neutrino

BlackBerry 1 Intel 8088, x86, MIPS,
PowerPC, SH-4,
ARM, StrongARM,
XScale

Real-time,
embedded OS

Solaris Sun/Oracle 2.5 SPARC, IA-32 (<11),
x86_64, PowerPC
(2.5.1)

Server OS

Tru64 DEC, HP, IBM,
Compaq

5.1B-4 Alpha Discontinued

UnixWare Novell, SCO, Xinuos 7.1.3 x86 Server OS

Other operating systems are mostly compliant. The following are examples of the same:

Name Platform Notes

Android ARM, x86, MIPS Linux based. Bionic C-library.

BeOS (Haiku) IA-32, ARM, x64_64 Limited to GCC 2.x for x86.

Darwin PowerPC, x86, ARM Uses the open source components on
which macOS is based.

FreeBSD IA-32, x86_64, sparc64,
PowerPC, ARM, MIPS, and
so on

Essentially POSIX compliant. One can
rely on documented POSIX behavior.
More strict on compliance than Linux,
in general.

Linux Alpha, ARC, ARM, AVR32,
Blackfin, H8/300, Itanium,
m68k, Microblaze, MIPS,
Nios II, OpenRISC, PA-
RISC, PowerPC, s390,
S+core, SuperH, SPARC,
x86, Xtensa, and so on

Some Linux distributions (see
previous table) are certified as being
POSIX compliant. This does not imply
that every Linux distribution is POSIX
compliant. Some tools and libraries
may differ from the standard.
For Pthreads, this may mean that the
behavior is sometimes different
between Linux distributions (different
scheduler, and so on) as well as
compared to other OS's implementing
Pthreads.

MINIX 3 IA-32, ARM Conforms to POSIX specification
standard 3 (SUSv3, 2004).

C++ Multithreading APIs

[39]

NetBSD Alpha, ARM, PA-RISC, 68k,
MIPS, PowerPC, SH3,
SPARC, RISC-V, VAX, x86,
and so on

Almost fully compatible with POSX.1
(1990), and mostly compliant with
POSIX.2 (1992).

Nuclear RTOS ARM, MIPS, PowerPC, Nios
II, MicroBlaze, SuperH, and
so on

Proprietary RTOS from Mentor
Graphics aimed at embedded
applications.

NuttX ARM, AVR, AVR32, HCS12,
SuperH, Z80, and so on

Light-weight RTOS, scalable from 8 to
32-bit systems with strong focus on
POSIX compliance.

OpenBSD Alpha, x86_64, ARM, PA-
RISC, IA-32, MIPS,
PowerPC, SPARC, and so
on

Forked from NetBSD in 1995. Similar
POSIX support.

OpenSolaris/illumos IA-32, x86_64, SPARC,
ARM

Compliant with the commercial
Solaris releases being certified
compatible.

VxWorks ARM, SH-4, x86, x86_64,
MIPS, PowerPC

POSIX compliant, with certification
for user-mode execution environment.

From this it should be obvious that it's not a clear matter of following the POSIX
specification, and being able to count on one's code compiling on each of these platforms.
Each platform will also have its own set of extensions to the standard for features which
were omitted in the standard, but are still desirable. Pthreads are, however, widely used by
Linux, BSD, and similar software.

Windows support
It's also possible to use the POSIX APIs in a limited fashion using, for example, the
following:

Name Compliance

Cygwin Mostly complete. Provides a full runtime environment for a POSIX
application, which can be distributed as a normal Windows application.

MinGW With MinGW-w64 (a redevelopment of MinGW), Pthreads support is
fairly complete, though some functionality may be absent.

C++ Multithreading APIs

[40]

Windows
Subsystem for
Linux

WSL is a Windows 10 feature, which allows a Ubuntu Linux 14.04 (64-
bit) image's tools and utilities to run natively on top of it though not
those using GUI features or missing kernel features. Otherwise, it offers
similar compliance as Linux.
This feature currently requires that one runs the Windows 10
Anniversary Update and install WSL by hand using instructions
provided by Microsoft.

POSIX on Windows is generally not recommended. Unless there are good reasons to use
POSIX (large existing code base, for example), it's far easier to use one of the cross-platform
APIs (covered later in this chapter), which smooth away any platform issues.

In the following sections, we'll look at the features offered by the Pthreads API.

PThreads thread management
These are all the functions which start with either pthread_ or pthread_attr_. These
functions all apply to threads themselves and their attribute objects.

The basic use of threads with Pthreads looks like the following:

#include <pthread.h>
#include <stdlib.h>
#define NUM_THREADS 5

The main Pthreads header is pthread.h. This gives access to everything but semaphores
(covered later in this section). We also define a constant for the number of threads we wish
to start here:

void* worker(void* arg) {
 int value = *((int*) arg);
 // More business logic.
 return 0;
}

We define a simple Worker function, which we'll pass to the new thread in a moment. For
demonstration and debugging purposes one could first add a simple cout or printf-based
bit of business logic to print out the value sent to the new thread.

C++ Multithreading APIs

[41]

Next, we define the main function as follows:

int main(int argc, char** argv) {
 pthread_t threads[NUM_THREADS];
 int thread_args[NUM_THREADS];
 int result_code;
 for (unsigned int i = 0; i < NUM_THREADS; ++i) {
 thread_args[i] = i;
 result_code = pthread_create(&threads[i], 0, worker, (void*)
&thread_args[i]);
 }

We create all of the threads in a loop in the preceding function. Each thread instance gets a
thread ID assigned (first argument) when created in addition to a result code (zero on
success) returned by the pthread_create() function. The thread ID is the handle to
reference the thread in future calls.

The second argument to the function is a pthread_attr_t structure instance, or 0 if none.
This allows for configuration characteristics of the new thread, such as the initial stack size.
When zero is passed, default parameters are used, which differ per platform and
configuration.

The third parameter is a pointer to the function which the new thread will start with. This
function pointer is defined as a function which returns a pointer to void data (that is,
custom data), and accepts a pointer to void data. Here, the data being passed to the new
thread as an argument is the thread ID:

 for (int i = 0; i < NUM_THREADS; ++i) {
 result_code = pthread_join(threads[i], 0);
 }

 exit(0);
}

Next, we wait for each worker thread to finish using the pthread_join() function. This
function takes two parameters, the ID of the thread to wait for, and a buffer for the return
value of the Worker function (or zero).

Other functions to manage threads are as follows:

void pthread_exit(void *value_ptr):
This function terminates the thread calling it, making the provided argument's
value available to any thread calling pthread_join() on it.

C++ Multithreading APIs

[42]

int pthread_cancel(pthread_t thread):
This function requests that the specified thread will be canceled. Depending on
the state of the target thread, this will invoke its cancellation handlers.

Beyond this, there are the pthread_attr_* functions to manipulate and obtain
information about a pthread_attr_t structure.

Mutexes
These are functions prefixed with either pthread_mutex_ or pthread_mutexattr_. They
apply to mutexes and their attribute objects.

Mutexes in Pthreads can be initialized, destroyed, locked, and unlocked. They can also have
their behavior customized using a pthread_mutexattr_t structure, which has its
corresponding pthread_mutexattr_* functions for initializing and destroying an
attribute on it.

A basic use of a Pthread mutex using static initialization looks as follows:

static pthread_mutex_t func_mutex = PTHREAD_MUTEX_INITIALIZER;

void func() {
 pthread_mutex_lock(&func_mutex);

 // Do something that's not thread-safe.

 pthread_mutex_unlock(&func_mutex);
}

In this last bit of code, we use the PTHREAD_MUTEX_INITIALIZER macro, which initializes
the mutex for us without having to type out the code for it every time. In comparison to
other APIs, one has to manually initialize and destroy mutexes, though the use of macros
helps somewhat.

After this, we lock and unlock the mutex. There's also the pthread_mutex_trylock()
function, which is like the regular lock version, but which will return immediately if the
referenced mutex is already locked instead of waiting for it to be unlocked.

In this example, the mutex is not explicitly destroyed. This is, however, a part of normal
memory management in a Pthreads-based application.

C++ Multithreading APIs

[43]

Condition variables
These are functions which are prefixed with either pthread_cond_ or
pthread_condattr_. They apply to condition variables and their attribute objects.

Condition variables in Pthreads follow the same pattern of having an initialization and a
destroy function in addition to having the same for managing a pthread_condattr_t
attribution structure.

This example covers basic usage of Pthreads condition variables:

#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>

 #define COUNT_TRIGGER 10
 #define COUNT_LIMIT 12

 int count = 0;
 int thread_ids[3] = {0,1,2};
 pthread_mutex_t count_mutex;
 pthread_cond_t count_cv;

In the preceding code, we get the standard headers, and define a count trigger and limit,
whose purpose will become clear in a moment. We also define a few global variables: a
count variable, the IDs for the threads we wish to create, as well as a mutex and condition
variable:

void* add_count(void* t) {
 int tid = (long) t;
 for (int i = 0; i < COUNT_TRIGGER; ++i) {
 pthread_mutex_lock(&count_mutex);
 count++;
 if (count == COUNT_LIMIT) {
 pthread_cond_signal(&count_cv);
 }

 pthread_mutex_unlock(&count_mutex);
 sleep(1);
 }

 pthread_exit(0);
}

C++ Multithreading APIs

[44]

This preceding function, essentially, just adds to the global counter variable after obtaining
exclusive access to it with the count_mutex. It also checks whether the count trigger value
has been reached. If it has, it will signal the condition variable.

To give the second thread, which also runs this function, a chance to get the mutex, we
sleep for 1 second in each cycle of the loop:

void* watch_count(void* t) {
 int tid = (int) t;

 pthread_mutex_lock(&count_mutex);
 if (count < COUNT_LIMIT) {
 pthread_cond_wait(&count_cv, &count_mutex);
 }

 pthread_mutex_unlock(&count_mutex);
 pthread_exit(0);
}

In this second function, we lock the global mutex before checking whether we have reached
the count limit yet. This is our insurance in case the thread running this function does not
get called before the count reaches the limit.

Otherwise, we wait on the condition variable providing the condition variable and locked
mutex. Once signaled, we unlock the global mutex, and exit the thread.

A point to note here is that this example does not account for spurious wake-ups. Pthreads
condition variables are susceptible to such wake-ups which necessitate one to use a loop
and check whether some kind of condition has been met:

int main (int argc, char* argv[]) {
 int tid1 = 1, tid2 = 2, tid3 = 3;
 pthread_t threads[3];
 pthread_attr_t attr;

 pthread_mutex_init(&count_mutex, 0);
 pthread_cond_init (&count_cv, 0);

 pthread_attr_init(&attr);
 pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
 pthread_create(&threads[0], &attr, watch_count, (void *) tid1);
 pthread_create(&threads[1], &attr, add_count, (void *) tid2);
 pthread_create(&threads[2], &attr, add_count, (void *) tid3);

 for (int i = 0; i < 3; ++i) {
 pthread_join(threads[i], 0);
 }

C++ Multithreading APIs

[45]

 pthread_attr_destroy(&attr);
 pthread_mutex_destroy(&count_mutex);
 pthread_cond_destroy(&count_cv);
 return 0;
}

Finally, in the main function, we create the three threads, with two running the function
which adds to the counter, and the third running the function which waits to have its
condition variable signaled.

In this method, we also initialize the global mutex and condition variable. The threads we
create further have the "joinable" attribute explicitly set.

Finally, we wait for each thread to finish, after which we clean up, destroying the attribute
structure instance, mutex, and condition variable before exiting.

Using the pthread_cond_broadcast() function, it's further possible to signal all threads
which are waiting for a condition variable instead of merely the first one in the queue. This
enables one to use condition variables more elegantly with some applications, such as
where one has a lot of worker threads waiting for new dataset to arrive without having to
notify every thread individually.

Synchronization
Functions which implement synchronization are prefixed with pthread_rwlock_ or
pthread_barrier_. These implement read/write locks and synchronization barriers.

A read/write lock (rwlock) is very similar to a mutex, except that it has the additional
feature of allowing infinite threads to read simultaneously, while only restricting write
access to a singular thread.

Using rwlock is very similar to using a mutex:

#include <pthread.h>
int pthread_rwlock_init(pthread_rwlock_t* rwlock, const
pthread_rwlockattr_t* attr);
pthread_rwlock_t rwlock = PTHREAD_RWLOCK_INITIALIZER;

C++ Multithreading APIs

[46]

In the last code, we include the same general header, and either use the initialization
function, or the generic macro. The interesting part is when we lock rwlock, which can be
done for just read-only access:

int pthread_rwlock_rdlock(pthread_rwlock_t* rwlock);
int pthread_rwlock_tryrdlock(pthread_rwlock_t* rwlock);

Here, the second variation returns immediately if the lock has been locked already. One can
also lock it for write access as follows:

int pthread_rwlock_wrlock(pthread_rwlock_t* rwlock);
int pthread_rwlock_trywrlock(pthread_rwlock_t * rwlock);

These functions work basically the same, except that only one writer is allowed at any given
time, whereas multiple readers can obtain a read-only lock.

Barriers are another concept with Pthreads. These are synchronization objects which act like
a barrier for a number of threads. All of these have to reach the barrier before any of them
can proceed past it. In the barrier initialization function, the thread count is specified. Only
once all of these threads have called the barrier object using the
pthread_barrier_wait() function will they continue executing.

Semaphores
Semaphores were, as mentioned earlier, not part of the original Pthreads extension to the
POSIX specification. They are declared in the semaphore.h header for this reason.

In essence, semaphores are simple integers, generally used as a resource count. To make
them thread-safe, atomic operations (check and lock) are used. POSIX semaphores support
the initializing, destroying, incrementing and decrementing of a semaphore as well as
waiting for the semaphore to reach a non-zero value.

Thread local storage (TLC)
With Pthreads, TLS is accomplished using keys and methods to set thread-specific data:

pthread_key_t global_var_key;
void* worker(void* arg) {
 int *p = new int;
 *p = 1;
 pthread_setspecific(global_var_key, p);
 int* global_spec_var = (int*) pthread_getspecific(global_var_key);
 *global_spec_var += 1;

C++ Multithreading APIs

[47]

 pthread_setspecific(global_var_key, 0);
 delete p;
 pthread_exit(0);
}

In the worker thread, we allocate a new integer on the heap, and set the global key to its
own value. After increasing the global variable by 1, its value will be 2, regardless of what
the other threads do. We can set the global variable to 0 once we're done with it for this
thread, and delete the allocated value:

int main(void) {
 pthread_t threads[5];
 pthread_key_create(&global_var_key, 0);
 for (int i = 0; i < 5; ++i)
 pthread_create(&threads[i],0,worker,0);
 for (int i = 0; i < 5; ++i) {
 pthread_join(threads[i], 0);
 }
 return 0;
}

A global key is set and used to reference the TLS variable, yet each of the threads we create
can set its own value for this key.

While a thread can create its own keys, this method of handling TLS is fairly involved
compared to the other APIs we're looking at in this chapter.

Windows threads
Relative to Pthreads, Windows threads are limited to Windows operating systems and
similar (for example ReactOS, and other OS's using Wine). This provides a fairly consistent
implementation, easily defined by the Windows version that the support corresponds to.

Prior to Windows Vista, threading support missed features such as condition variables,
while having features not found in Pthreads. Depending on one's perspective, having to use
the countless "type def" types defined by the Windows headers can be a bother as well.

C++ Multithreading APIs

[48]

Thread management
A basic example of using Windows threads, as adapted from the official MSDN
documentation sample code, looks like this:

#include <windows.h>
#include <tchar.h>
#include <strsafe.h>

#define MAX_THREADS 3
#define BUF_SIZE 255

After including a series of Windows-specific headers for the thread functions, character
strings, and more, we define the number of threads we wish to create as well as the size of
the message buffer in the Worker function.

We also define a struct type (passed by void pointer: LPVOID) to contain the sample
data we pass to each worker thread:

typedef struct MyData {
 int val1;
 int val2;
} MYDATA, *PMYDATA;

DWORD WINAPI worker(LPVOID lpParam) {
 HANDLE hStdout = GetStdHandle(STD_OUTPUT_HANDLE);
 if (hStdout == INVALID_HANDLE_VALUE) {
 return 1;
 }

 PMYDATA pDataArray = (PMYDATA) lpParam;

 TCHAR msgBuf[BUF_SIZE];
 size_t cchStringSize;
 DWORD dwChars;
 StringCchPrintf(msgBuf, BUF_SIZE, TEXT("Parameters = %d, %dn"),
 pDataArray->val1, pDataArray->val2);
 StringCchLength(msgBuf, BUF_SIZE, &cchStringSize);
 WriteConsole(hStdout, msgBuf, (DWORD) cchStringSize, &dwChars, NULL);

 return 0;
}

In the Worker function, we cast the provided parameter to our custom struct type before
using it to print its values to a string, which we output on the console.

C++ Multithreading APIs

[49]

We also validate that there's an active standard output (console or similar). The functions
used to print the string are all thread safe.

void errorHandler(LPTSTR lpszFunction) {
 LPVOID lpMsgBuf;
 LPVOID lpDisplayBuf;
 DWORD dw = GetLastError();

 FormatMessage(
 FORMAT_MESSAGE_ALLOCATE_BUFFER |
 FORMAT_MESSAGE_FROM_SYSTEM |
 FORMAT_MESSAGE_IGNORE_INSERTS,
 NULL,
 dw,
 MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
 (LPTSTR) &lpMsgBuf,
 0, NULL);

 lpDisplayBuf = (LPVOID) LocalAlloc(LMEM_ZEROINIT,
 (lstrlen((LPCTSTR) lpMsgBuf) + lstrlen((LPCTSTR) lpszFunction) +
40) * sizeof(TCHAR));
 StringCchPrintf((LPTSTR)lpDisplayBuf,
 LocalSize(lpDisplayBuf) / sizeof(TCHAR),
 TEXT("%s failed with error %d: %s"),
 lpszFunction, dw, lpMsgBuf);
 MessageBox(NULL, (LPCTSTR) lpDisplayBuf, TEXT("Error"), MB_OK);

 LocalFree(lpMsgBuf);
 LocalFree(lpDisplayBuf);
}

Here, an error handler function is defined, which obtains the system error message for the
last error code. After obtaining the code for the last error, the error message to be output is
formatted, and shown in a message box. Finally, the allocated memory buffers are freed.

Finally, the main function is as follows:

int _tmain() {
 PMYDATA pDataArray[MAX_THREADS];
 DWORD dwThreadIdArray[MAX_THREADS];
 HANDLE hThreadArray[MAX_THREADS];
 for (int i = 0; i < MAX_THREADS; ++i) {
 pDataArray[i] = (PMYDATA) HeapAlloc(GetProcessHeap(),
 HEAP_ZERO_MEMORY, sizeof(MYDATA));
if (pDataArray[i] == 0) {
 ExitProcess(2);
 }
 pDataArray[i]->val1 = i;

C++ Multithreading APIs

[50]

 pDataArray[i]->val2 = i+100;
 hThreadArray[i] = CreateThread(
 NULL, // default security attributes
 0, // use default stack size
 worker, // thread function name
 pDataArray[i], // argument to thread function
 0, // use default creation flags
 &dwThreadIdArray[i]);// returns the thread identifier
 if (hThreadArray[i] == 0) {
 errorHandler(TEXT("CreateThread"));
 ExitProcess(3);
 }
 }
 WaitForMultipleObjects(MAX_THREADS, hThreadArray, TRUE, INFINITE);
 for (int i = 0; i < MAX_THREADS; ++i) {
 CloseHandle(hThreadArray[i]);
 if (pDataArray[i] != 0) {
 HeapFree(GetProcessHeap(), 0, pDataArray[i]);
 }
 }
 return 0;
}

In the main function, we create our threads in a loop, allocate memory for thread data, and
generate unique data for each thread before starting the thread. Each thread instance is
passed its own unique parameters.

After this, we wait for the threads to finish and rejoin. This is essentially the same as calling
the join function on singular threads with Pthreads--only here, a single function call
suffices.

Finally, each thread handle is closed, and we clean up the memory we allocated earlier.

Advanced management
Advanced thread management with Windows threads includes jobs, fibers, and thread
pools. Jobs essentially allow one to link multiple threads together into a singular unit,
enabling one to change properties and the status of all these threads in one go.

Fibers are light-weight threads, which run within the context of the thread which creates
them. The creating thread is expected to schedule these fibers itself. Fibers also have Fiber
Local Storage (FLS) akin to TLS.

C++ Multithreading APIs

[51]

Finally, the Windows threads API provides a Thread Pool API, allowing one to easily use
such a thread pool in one's application. Each process is also provided with a default thread
pool.

Synchronization
With Windows threads, mutual exclusion and synchronization can be accomplished using
critical sections, mutexes, semaphores, slim reader/writer (SRW) locks, barriers, and
variations.

Synchronization objects include the following:

Name Description

Event Allows for signaling of events between threads and processes using
named objects.

Mutex Used for inter-thread and process synchronization to coordinate access
to shared resources.

Semaphore Standard semaphore counter object, used for inter-thread and process
synchronization.

Waitable timer Timer object usable by multiple processes with multiple usage modes.

Critical section Critical sections are essentially mutexes which are limited to a single
process, which makes them faster than using a mutex due to lack of
kernel space calls.

Slim reader/writer
lock

SRWs are akin to read/write locks in Pthreads, allowing multiple
readers or a single writer thread to access a shared resource.

Interlocked variable
access

Allows for atomic access to a range of variables which are otherwise not
guaranteed to be atomic. This enables threads to share a variable
without having to use mutexes.

Condition variables
The implementation of condition variables with Windows threads is fairly straightforward.
It uses a critical section (CRITICAL_SECTION) and condition variable
(CONDITION_VARIABLE) along with the condition variable functions to wait for a specific
condition variable, or to signal it.

C++ Multithreading APIs

[52]

Thread local storage
Thread local storage (TLS) with Windows threads is similar to Pthreads in that a central
key (TLS index) has to be created first after which individual threads can use that global
index to store and retrieve local values.

Like with Pthreads, this involves a similar amount of manual memory management, as the
TLS value has to be allocated and deleted by hand.

Boost
Boost threads is a relatively small part of the Boost collection of libraries. It was, however,
used as the basis for what became the multithreading implementation in C++11, similar to
how other Boost libraries ultimately made it, fully or partially, into new C++ standards.
Refer to the C++ threads section in this chapter for details on the multithreading API.

Features missing in the C++11 standard, which are available in Boost threads, include the
following:

Thread groups (like Windows jobs)
Thread interruption (cancellation)
Thread join with timeout
Additional mutual exclusion lock types (improved with C++14)

Unless one absolutely needs such features, or if one cannot use a compiler which supports
the C++11 standard (including STL threads), there is little reason to use Boost threads over
the C++11 implementation.

Since Boost provides wrappers around native OS features, using native C++ threads would
likely reduce overhead depending on the quality of the STL implementation.

Qt
Qt is a relatively high-level framework, which also reflects in its multithreading API.
Another defining feature of Qt is that it wraps its own code (QApplication and
QMainWindow) along with the use of a meta-compiler (qmake) to implement its signal-slot
architecture and other defining features of the framework.

As a result, Qt's threading support cannot be added into existing code as-is, but requires
one to adapt one's code to fit the framework.

C++ Multithreading APIs

[53]

QThread
A QThread class in Qt is not a thread, but an extensive wrapper around a thread instance,
which adds signal-slot communication, runtime support, and other features. This is
reflected in the basic usage of a QThread, as shown in the following code:

class Worker : public QObject {
 Q_OBJECT
 public:
 Worker();
 ~Worker();
 public slots:
 void process();
 signals:
 void finished();
 void error(QString err);
 private:
};

This preceding code is a basic Worker class, which will contain our business logic. It derives
from the QObject class, which also allows us to use signal-slot and other intrinsic QObject
features. Signal-slot architecture at its core is simply a way for listeners to register on
(connect to) signals declared by QObject-derived classes, allowing for cross-module, cross-
thread and asynchronous communication.

It has a single, which can be called to start processing, and two signals--one to signal
completion, and one to signal an error.

The implementation would look like the following:

Worker::Worker() { }
Worker::~Worker() { }
void Worker::process() {
 qDebug("Hello World!");
 emit finished();
}

The constructor could be extended to include parameters. Any heap-allocated variables
(using malloc or new) must be allocated in the process() method, and not in the
constructor due to the thread context the Worker instance will be operating in, as we will
see in a moment.

C++ Multithreading APIs

[54]

To create a new QThread, we would use the following setup:

QThread* thread = new QThread;
Worker* worker = new Worker();
worker->moveToThread(thread);
connect(worker, SIGNAL(error(QString)), this, SLOT(errorString(QString)));
connect(thread, SIGNAL(started()), worker, SLOT(process()));
connect(worker, SIGNAL(finished()), thread, SLOT(quit()));
connect(worker, SIGNAL(finished()), worker, SLOT(deleteLater()));
connect(thread, SIGNAL(finished()), thread, SLOT(deleteLater()));
thread->start();

The basic procedure is to create a new QThread instance on the heap (so it won't go out of
scope) along with a heap-allocated instance of our Worker class. This new worker would
then be moved to the new thread instance using its moveToThread() method.

Next, one will connect the various signals to relevant slots including our own finished()
and error() signals. The started() signal from the thread instance would be connected
to the slot on our worker which will start it.

Most importantly, one has to connect some kind of completion signal from the worker to
the quit() and deleteLater() slots on the thread. The finished() signal from the
thread will then be connected to the deleteLater() slot on the worker. This will ensure
that both the thread and worker instances are cleaned up when the worker is done.

Thread pools
Qt offers thread pools. These require one to inherit from the QRunnable class, and
implement the run() function. An instance of this custom class is then passed to the start
method of the thread pool (global default pool, or a new one). The life cycle of this worker is
then handled by the thread pool.

Synchronization
Qt offers the following synchronization objects:

QMutex

QReadWriteLock

QSemaphore

QWaitCondition (condition variable)

C++ Multithreading APIs

[55]

These should be fairly self-explanatory. Another nice feature of Qt's signal-slot architecture
is that these also allow one to communicate asynchronously between threads without
having to concern oneself with the low-level implementation details.

QtConcurrent
The QtConcurrent namespace contains high-level API aimed at making writing
multithreading applications possible without having to concern oneself with the low-level
details.

Functions include concurrent filtering and mapping algorithms as well as a method to allow
running a function in a separate thread. All of these return a QFuture instance, which
contains the result of an asynchronous operation.

Thread local storage
Qt offers TLS through its QThreadStorage class. Memory management of pointer type
values is handled by it. Generally, one would set some kind of data structure as a TLS value
to store more than one value per thread, as described, for example, in the QThreadStorage
class documentation:

QThreadStorage<QCache<QString, SomeClass> > caches;

void cacheObject(const QString &key, SomeClass* object) {
 caches.localData().insert(key, object);
}

void removeFromCache(const QString &key) {
 if (!caches.hasLocalData()) { return; }

 caches.localData().remove(key);
}

POCO
The POCO library is a fairly lightweight wrapper around operating system functionality. It
does not require a C++11 compatible compiler or any kind of pre-compiling or meta-
compiling.

C++ Multithreading APIs

[56]

Thread class
The Thread class is a simple wrapper around an OS-level thread. It takes Worker class
instances which inherit from the Runnable class. The official documentation provides a
basic example of this as follows:

#include "Poco/Thread.h"
#include "Poco/Runnable.h"
#include <iostream>

class HelloRunnable: public Poco::Runnable {
 virtual void run() {
 std::cout << "Hello, world!" << std::endl;
 }
};

int main(int argc, char** argv) {
 HelloRunnable runnable;
 Poco::Thread thread;
 thread.start(runnable);
 thread.join();
 return 0;
}

This preceding code is a very simple "Hello world" example with a worker which only
outputs a string via the standard output. The thread instance is allocated on the stack, and
kept within the scope of the entry function waiting for the worker to finish using the
join() function.

With many of its thread functions, POCO is quite reminiscent of Pthreads, though it does
deviate significantly on points such as configuring a thread and other objects. Being a C++
library, it sets properties using class methods rather than filling in a struct and passing it as
a parameter.

Thread pool
POCO provides a default thread pool with 16 threads. This number can be changed
dynamically. Like with regular threads, a thread pool requires one to pass a Worker class
instance which inherits from the Runnable class:

#include "Poco/ThreadPool.h"
#include "Poco/Runnable.h"
#include <iostream>

C++ Multithreading APIs

[57]

class HelloRunnable: public Poco::Runnable {
 virtual void run() {
 std::cout << "Hello, world!" << std::endl;
 }
};

int main(int argc, char** argv) {
 HelloRunnable runnable;
 Poco::ThreadPool::defaultPool().start(runnable);
 Poco::ThreadPool::defaultPool().joinAll();
 return 0;
}

The worker instance is added to the thread pool, which runs it. The thread pool cleans up
threads which have been idle for a certain time when we add another worker instance,
change the capacity, or call joinAll(). As a result, the single worker thread will join, and
with no active threads left, the application exits.

Thread local storage (TLS)
With POCO, TLS is implemented as a class template, allowing one to use it with almost any
type.

As detailed by the official documentation:

#include "Poco/Thread.h"
#include "Poco/Runnable.h"
#include "Poco/ThreadLocal.h"
#include <iostream>

class Counter: public Poco::Runnable {
 void run() {
 static Poco::ThreadLocal<int> tls;
 for (*tls = 0; *tls < 10; ++(*tls)) {
 std::cout << *tls << std::endl;
 }
 }
};

int main(int argc, char** argv) {
 Counter counter1;
 Counter counter2;
 Poco::Thread t1;
 Poco::Thread t2;
 t1.start(counter1);
 t2.start(counter2);

C++ Multithreading APIs

[58]

 t1.join();
 t2.join();
 return 0;
}

In this preceding worker example, we create a static TLS variable using the ThreadLocal
class template, and define it to contain an integer.

Because we define it as static, it will only be created once per thread. In order to use our TLS
variable, we can use either the arrow (->) or asterisk (*) operator to access its value. In this
example, we increase the TLS value once per cycle of the for loop until the limit has been
reached.

This example demonstrates that both threads will generate their own series of 10 integers,
counting through the same numbers without affecting each other.

Synchronization
The synchronization primitives offered by POCO are listed as follows:

Mutex
FastMutex
Event
Condition
Semaphore
RWLock

Noticeable here is the FastMutex class. This is generally a non-recursive mutex type, except
on Windows, where it is recursive. This means one should generally assume either type to
be recursive in the sense that the same mutex can be locked multiple times by the same
thread.

One can also use mutexes with the ScopedLock class, which ensures that a mutex which it
encapsulates is released at the end of the current scope.

Events are akin to Windows events, except that they are limited to a single process. They
form the basis of condition variables in POCO.

C++ Multithreading APIs

[59]

POCO condition variables function much in the same way as they do with Pthreads and
others, except that they are not subject to spurious wake-ups. Normally condition variables
are subject to these random wake-ups for optimization reasons. By not having to deal with
explicitly having to check whether its condition was met or not upon a condition variable
wait returning less burden is placed on the developer.

C++ threads
The native multithreading support in C++ is covered extensively in Chapter 5, Native C++
Threads and Primitives.

As mentioned earlier in the Boost section of this chapter, the C++ multithreading support is
heavily based on the Boost threads API, using virtually the same headers and names. The
API itself is again reminiscent of Pthreads, though with significant differences when it
comes to, for example, condition variables.

Upcoming chapters will use the C++ threading support exclusively for examples.

Putting it together
Of the APIs covered in this chapter, only the Qt multithreading API can be considered to be
truly high level. Although the other APIs (including C++11) have some higher-level
concepts including thread pools and asynchronous runners which do not require one to use
threads directly, Qt offers a full-blown signal-slot architecture, which makes inter-thread
communication exceptionally easy.

As covered in this chapter, this ease also comes with a cost, namely, that of having to
develop one's application to fit the Qt framework. This may not be acceptable depending on
the project.

Which of these APIs is the right one depends on one's requirements. It is, however,
relatively fair to say that using straight Pthreads, Windows threads, and kin does not make
a lot of sense when one can use APIs such as C++11 threads, POCO, and so on, which ease
the development process with no significant reduction in performance while also gaining
extensive portability across platforms.

All the APIs are at least somewhat comparable at their core in what they offer in features.

C++ Multithreading APIs

[60]

Summary
In this chapter, we looked in some detail at a number of the more popular multithreading
APIs and frameworks, putting them next to each other to get an idea of their strengths and
weaknesses. We went through a number of examples showing how to implement basic
functionality using each of these APIs.

In the next chapter, we will look in detail at how to synchronize threads and communicate
between them.

4
Thread Synchronization and

Communication
While, generally, threads are used to work on a task more or less independently from other
threads, there are many occasions where one would want to pass data between threads, or
even control other threads, such as from a central task scheduler thread. This chapter looks
at how such tasks are accomplished with the C++11 threading API.

Topics covered in this chapter include the following:

Using mutexes, locks, and similar synchronization structures
Using condition variables and signals to control threads
Safely passing and sharing data between threads

Safety first
The central problem with concurrency is that of ensuring safe access to shared resources
even when communicating between threads. There is also the issue of threads being able to
communicate and synchronize themselves.

What makes multithreaded programming such a challenge is to be able to keep track of
each interaction between threads, and to ensure that each and every form of access is
secured while not falling into the trap of deadlocks and data races.

Thread Synchronization and Communication

[62]

In this chapter, we will look at a fairly complex example involving a task scheduler. This is
a form of high-concurrency, high-throughput situation where many different requirements
come together with many potential traps, as we will see in a moment.

The scheduler
A good example of multithreading with a significant amount of synchronization and
communication between threads is the scheduling of tasks. Here, the goal is to accept
incoming tasks and assign them to work threads as quickly as possible.

In this scenario, a number of different approaches are possible. Often one has worker
threads running in an active loop, constantly polling a central queue for new tasks.
Disadvantages of this approach include wasting of processor cycles on the said polling, and
the congestion which forms at the synchronization mechanism used, generally a mutex.
Furthermore, this active polling approach scales very poorly when the number of worker
threads increase.

Ideally, each worker thread would wait idly until it is needed again. To accomplish this, we
have to approach the problem from the other side: not from the perspective of the worker
threads, but from that of the queue. Much like the scheduler of an operating system, it is the
scheduler which is aware of both the tasks which require processing as well as the available
worker threads.

In this approach, a central scheduler instance would accept new tasks and actively assign
them to worker threads. The said scheduler instance may also manage these worker
threads, such as their number and priority, depending on the number of incoming tasks and
the type of task or other properties.

High-level view
At its core, our scheduler or dispatcher is quite simple, functioning like a queue with all of
the scheduling logic built into it, as seen in the following diagram:

Thread Synchronization and Communication

[63]

As one can see from the preceding high-level view, there really isn't much to it. However, as
we'll see in a moment, the actual implementation does have a number of complications.

Implementation
As is usual, we start off with the main function, contained in main.cpp:

#include "dispatcher.h"
#include "request.h"

#include <iostream>
#include <string>
#include <csignal>
#include <thread>
#include <chrono>

using namespace std;

sig_atomic_t signal_caught = 0;
mutex logMutex;

The custom headers we include are those for our dispatcher implementation, as well as the
request class that we'll use.

Thread Synchronization and Communication

[64]

Globally, we define an atomic variable to be used with the signal handler, as well as a
mutex which will synchronize the output (on the standard output) from our logging
method:

void sigint_handler(int sig) {
 signal_caught = 1;
}

Our signal handler function (for SIGINT signals) simply sets the global atomic variable that
we defined earlier:

void logFnc(string text) {
 logMutex.lock();
 cout << text << "\n";
 logMutex.unlock();
}

In our logging function, we use the global mutex to ensure that writing to the standard
output is synchronized:

int main() {
 signal(SIGINT, &sigint_handler);
 Dispatcher::init(10);

In the main function, we install the signal handler for SIGINT to allow us to interrupt the
execution of the application. We also call the static init() function on the Dispatcher
class to initialize it:

 cout << "Initialised.\n";
 int cycles = 0;
 Request* rq = 0;
 while (!signal_caught && cycles < 50) {
 rq = new Request();
 rq->setValue(cycles);
 rq->setOutput(&logFnc);
 Dispatcher::addRequest(rq);
 cycles++;
 }

Next, we set up the loop in which we will create new requests. In each cycle, we create a
new Request instance, and use its setValue() function to set an integer value (current
cycle number). We also set our logging function on the request instance before adding this
new request to Dispatcher using its static addRequest() function.

Thread Synchronization and Communication

[65]

This loop will continue until the maximum number of cycles have been reached, or SIGINT
has been signaled using Ctrl+C or similar:

 this_thread::sleep_for(chrono::seconds(5));
 Dispatcher::stop();
 cout << "Clean-up done.\n";
 return 0;
}

Finally, we wait for 5 seconds using the thread's sleep_for() function, and the
chrono::seconds() function from the chrono STL header.

We also call the stop() function on Dispatcher before returning.

Request class
A request for Dispatcher always derives from the pure virtual AbstractRequest class:

#pragma once
#ifndef ABSTRACT_REQUEST_H
#define ABSTRACT_REQUEST_H

class AbstractRequest {
 //
 public:
 virtual void setValue(int value) = 0;
 virtual void process() = 0;
 virtual void finish() = 0;
};
#endif

This AbstractRequest class defines an API with three functions, which a deriving class
always has to implement. Out of these, the process() and finish() functions are the
most generic and likely to be used in any practical implementation. The setValue()
function is specific to this demonstration implementation, and would likely be adapted or
extended to fit a real-life scenario.

The advantage of using an abstract class as the basis for a request is that it allows the
Dispatcher class to handle many different types of requests as long as they all adhere to
this same basic API.

Thread Synchronization and Communication

[66]

Using this abstract interface, we implement a basic Request class as follows:

#pragma once
#ifndef REQUEST_H
#define REQUEST_H

#include "abstract_request.h"

#include <string>

using namespace std;

typedef void (*logFunction)(string text);

class Request : public AbstractRequest {
 int value;
 logFunction outFnc;
 public: void setValue(int value) { this->value = value; }
 void setOutput(logFunction fnc) { outFnc = fnc; }
 void process();
 void finish();
};
#endif

In its header file, we first define the function pointer's format. After this, we implement the
request API, and add the setOutput() function to the base API, which accepts a function
pointer for logging. Both setter functions merely assign the provided parameter to their
respective private class members.

Next, the class function implementations are given as follows:

#include "request.h"
void Request::process() {
 outFnc("Starting processing request " + std::to_string(value) + "...");
 //
}
void Request::finish() {
 outFnc("Finished request " + std::to_string(value));
}

Both of these implementations are very basic; they merely use the function pointer to
output a string indicating the status of the worker thread.

In a practical implementation, one would add the business logic to the process() function
with the finish() function containing any functionality to finish up a request such as
writing a map into a string.

Thread Synchronization and Communication

[67]

Worker class
Next is the Worker class. This contains the logic which will be called by Dispatcher in
order to process a request.

#pragma once
#ifndef WORKER_H
#define WORKER_H

#include "abstract_request.h"

#include <condition_variable>
#include <mutex>

using namespace std;

class Worker {
 condition_variable cv;
 mutex mtx;
 unique_lock<mutex> ulock;
 AbstractRequest* request;
 bool running;
 bool ready;
 public:
 Worker() { running = true; ready = false; ulock =
unique_lock<mutex>(mtx); }
 void run();
 void stop() { running = false; }
 void setRequest(AbstractRequest* request) { this->request = request;
ready = true; }
 void getCondition(condition_variable* &cv);
};
#endif

Whereas the adding of a request to Dispatcher does not require any special logic, the
Worker class does require the use of condition variables to synchronize itself with the
dispatcher. For the C++11 threads API, this requires a condition variable, a mutex, and a
unique lock.

The unique lock encapsulates the mutex, and will ultimately be used with the condition
variable as we will see in a moment.

Beyond this, we define methods to start and stop the worker, to set a new request for
processing, and to obtain access to its internal condition variable.

Thread Synchronization and Communication

[68]

Moving on, the rest of the implementation is written as follows:

#include "worker.h"
#include "dispatcher.h"

#include <chrono>

using namespace std;

void Worker::getCondition(condition_variable* &cv) {
 cv = &(this)->cv;
}

void Worker::run() {
 while (running) {
 if (ready) {
 ready = false;
 request->process();
 request->finish();
 }
 if (Dispatcher::addWorker(this)) {
 // Use the ready loop to deal with spurious wake-ups.
 while (!ready && running) {
 if (cv.wait_for(ulock, chrono::seconds(1)) ==
cv_status::timeout) {
 // We timed out, but we keep waiting unless
 // the worker is
 // stopped by the dispatcher.
 }
 }
 }
 }
}

Beyond the getter function for the condition variable, we define the run() function,
which dispatcher will run for each worker thread upon starting it.

Its main loop merely checks that the stop() function hasn't been called yet, which would
have set the running Boolean value to false, and ended the work thread. This is used by
Dispatcher when shutting down, allowing it to terminate the worker threads. Since
Boolean values are generally atomic, setting and checking can be done simultaneously
without risk or requiring a mutex.

Thread Synchronization and Communication

[69]

Moving on, the check of the ready variable is to ensure that a request is actually waiting
when the thread is first run. On the first run of the worker thread, no request will be
waiting, and thus, attempting to process one would result in a crash. Upon Dispatcher
setting a new request, this Boolean variable will be set to true.

If a request is waiting, the ready variable will be set to false again, after which the request
instance will have its process() and finish() functions called. This will run the business
logic of the request on the worker thread's thread, and finalize it.

Finally, the worker thread adds itself to the dispatcher using its static addWorker()
function. This function will return false if no new request is available, and cause the
worker thread to wait until a new request has become available. Otherwise, the worker
thread will continue with the processing of the new request that Dispatcher will have set
on it.

If asked to wait, we enter a new loop. This loop will ensure that when the condition variable
is woken up, it is because we got signaled by Dispatcher (ready variable set to true), and
not because of a spurious wake-up.

Last of all, we enter the actual wait() function of the condition variable using the unique
lock instance we created before along with a timeout. If a timeout occurs, we can either
terminate the thread, or keep waiting. Here, we choose to do nothing and just re-enter the
waiting loop.

Dispatcher
As the last item, we have the Dispatcher class itself:

 #pragma once
 #ifndef DISPATCHER_H
 #define DISPATCHER_H

 #include "abstract_request.h"
 #include "worker.h"

 #include <queue>
 #include <mutex>
 #include <thread>
 #include <vector>

 using namespace std;

 class Dispatcher {

Thread Synchronization and Communication

[70]

 static queue<AbstractRequest*> requests;
 static queue<Worker*> workers;
 static mutex requestsMutex;
 static mutex workersMutex;
 static vector<Worker*> allWorkers;
 static vector<thread*> threads;
 public:
 static bool init(int workers);
 static bool stop();
 static void addRequest(AbstractRequest* request);
 static bool addWorker(Worker* worker);
 };
 #endif

Most of this will look familiar. As you will have surmised by now, this is a fully static class.

Moving on, its implementation is as follows:

 #include "dispatcher.h"

 #include <iostream>
 using namespace std;

 queue<AbstractRequest*> Dispatcher::requests;
 queue<Worker*> Dispatcher::workers;
 mutex Dispatcher::requestsMutex;
 mutex Dispatcher::workersMutex;
 vector<Worker*> Dispatcher::allWorkers;
 vector<thread*> Dispatcher::threads;

 bool Dispatcher::init(int workers) {
 thread* t = 0;
 Worker* w = 0;
 for (int i = 0; i < workers; ++i) {
 w = new Worker;
 allWorkers.push_back(w);
 t = new thread(&Worker::run, w);
 threads.push_back(t);
 }
 return true;
 }

Thread Synchronization and Communication

[71]

After setting up the static class members, the init() function is defined. It starts the
specified number of worker threads keeping a reference to each worker and thread instance
in their respective vector data structures:

 bool Dispatcher::stop() {
 for (int i = 0; i < allWorkers.size(); ++i) {
 allWorkers[i]->stop();
 }
 cout << "Stopped workers.\n";
 for (int j = 0; j < threads.size(); ++j) {
 threads[j]->join();
 cout << "Joined threads.\n";
 }
 }

In the stop() function, each worker instance has its stop() function called. This will cause
each worker thread to terminate, as we saw earlier in the Worker class description.

Finally, we wait for each thread to join (that is, finish) prior to returning:

 void Dispatcher::addRequest(AbstractRequest* request) {
 workersMutex.lock();
 if (!workers.empty()) {
 Worker* worker = workers.front();
 worker->setRequest(request);
 condition_variable* cv;
 worker->getCondition(cv);
 cv->notify_one();
 workers.pop();
 workersMutex.unlock();
 }
 else {
 workersMutex.unlock();
 requestsMutex.lock();
 requests.push(request);
 requestsMutex.unlock();
 }
 }

The addRequest() function is where things get interesting. In this function, a new request
is added. What happens next depends on whether a worker thread is waiting for a new
request or not. If no worker thread is waiting (worker queue is empty), the request is added
to the request queue.

The use of mutexes ensures that the access to these queues occurs safely, as the worker
threads will simultaneously try to access both queues as well.

Thread Synchronization and Communication

[72]

An important gotcha to note here is the possibility of a deadlock. That is, a situation where
two threads will hold the lock on a resource, with the second thread waiting for the first one
to release its lock before releasing its own. Every situation where more than one mutex is
used in a single scope holds this potential.

In this function, the potential for a deadlock lies in releasing of the lock on the workers
mutex, and when the lock on the requests mutex is obtained. In the case that this function
holds the workers mutex and tries to obtain the requests lock (when no worker thread is
available), there is a chance that another thread holds the requests mutex (looking for new
requests to handle) while simultaneously trying to obtain the workers mutex (finding no
requests and adding itself to the workers queue).

The solution here is simple: release a mutex before obtaining the next one. In the situation
where one feels that more than one mutex lock has to be held, it is paramount to examine
and test one's code for potential deadlocks. In this particular situation, the workers mutex
lock is explicitly released when it is no longer needed, or before the requests mutex lock is
obtained, thus preventing a deadlock.

Another important aspect of this particular section of code is the way it signals a worker
thread. As one can see in the first section of the if/else block, when the workers queue is not
empty, a worker is fetched from the queue, has the request set on it, and then has its
condition variable referenced and signaled, or notified.

Internally, the condition variable uses the mutex we handed it before in the Worker class
definition to guarantee only atomic access to it. When the notify_one() function
(generally called signal() in other APIs) is called on the condition variable, it will notify
the first thread in the queue of threads waiting for the condition variable to return and
continue.

In the Worker class run() function, we would be waiting for this notification event. Upon
receiving it, the worker thread would continue and process the new request. The thread
reference will then be removed from the queue until it adds itself again once it is done
processing the request:

 bool Dispatcher::addWorker(Worker* worker) {
 bool wait = true;
 requestsMutex.lock();
 if (!requests.empty()) {
 AbstractRequest* request = requests.front();
 worker->setRequest(request);
 requests.pop();
 wait = false;
 requestsMutex.unlock();
 }

Thread Synchronization and Communication

[73]

 else {
 requestsMutex.unlock();
 workersMutex.lock();
 workers.push(worker);
 workersMutex.unlock();
 }
 return wait;
 }

With this last function, a worker thread will add itself to the queue once it is done
processing a request. It is similar to the earlier function in that the incoming worker is first
actively matched with any request which may be waiting in the request queue. If none are
available, the worker is added to the worker queue.

It is important to note here that we return a Boolean value which indicates whether the
calling thread should wait for a new request, or whether it already has received a new
request while trying to add itself to the queue.

While this code is less complex than that of the previous function, it still holds the same
potential deadlock issue due to the handling of two mutexes within the same scope. Here,
too, we first release the mutex we hold before obtaining the next one.

Makefile
The makefile for this Dispatcher example is very basic again--it gathers all C++ source files
in the current folder, and compiles them into a binary using g++:

 GCC := g++

 OUTPUT := dispatcher_demo
 SOURCES := $(wildcard *.cpp)
 CCFLAGS := -std=c++11 -g3

 all: $(OUTPUT)
 $(OUTPUT):
 $(GCC) -o $(OUTPUT) $(CCFLAGS) $(SOURCES)
 clean:
 rm $(OUTPUT)
 .PHONY: all

Thread Synchronization and Communication

[74]

Output
After compiling the application, running it produces the following output for the 50 total
requests:

 $./dispatcher_demo.exe
 Initialised.
 Starting processing request 1...
 Starting processing request 2...
 Finished request 1
 Starting processing request 3...
 Finished request 3
 Starting processing request 6...
 Finished request 6
 Starting processing request 8...
 Finished request 8
 Starting processing request 9...
 Finished request 9
 Finished request 2
 Starting processing request 11...
 Finished request 11
 Starting processing request 12...
 Finished request 12
 Starting processing request 13...
 Finished request 13
 Starting processing request 14...
 Finished request 14
 Starting processing request 7...
 Starting processing request 10...
 Starting processing request 15...
 Finished request 7
 Finished request 15
 Finished request 10
 Starting processing request 16...
 Finished request 16
 Starting processing request 17...
 Starting processing request 18...
 Starting processing request 0...

At this point, we can already clearly see that even with each request taking almost no time
to process, the requests are clearly being executed in parallel. The first request (request 0)
only starts being processed after the sixteenth request, while the second request already
finishes after the ninth request, long before this.

Thread Synchronization and Communication

[75]

The factors which determine which thread, and thus, which request is processed first
depends on the OS scheduler and hardware-based scheduling as described in chapter 2,
Multithreading Implementation on the Processor and OS. This clearly shows just how few
assumptions can be made about how a multithreaded application will be executed even on
a single platform.

 Starting processing request 5...
 Finished request 5
 Starting processing request 20...
 Finished request 18
 Finished request 20
 Starting processing request 21...
 Starting processing request 4...
 Finished request 21
 Finished request 4

In the preceding code, the fourth and fifth requests also finish in a rather delayed fashion.

 Starting processing request 23...
 Starting processing request 24...
 Starting processing request 22...
 Finished request 24
 Finished request 23
 Finished request 22
 Starting processing request 26...
 Starting processing request 25...
 Starting processing request 28...
 Finished request 26
 Starting processing request 27...
 Finished request 28
 Finished request 27
 Starting processing request 29...
 Starting processing request 30...
 Finished request 30
 Finished request 29
 Finished request 17
 Finished request 25
 Starting processing request 19...
 Finished request 0

Thread Synchronization and Communication

[76]

At this point, the first request finally finishes. This may indicate that the initialization time
for the first request will always be delayed as compared to the successive requests. Running
the application multiple times can confirm this. It's important that if the order of processing
is relevant, this randomness does not negatively affect one's application.

 Starting processing request 33...
 Starting processing request 35...
 Finished request 33
 Finished request 35
 Starting processing request 37...
 Starting processing request 38...
 Finished request 37
 Finished request 38
 Starting processing request 39...
 Starting processing request 40...
 Starting processing request 36...
 Starting processing request 31...
 Finished request 40
 Finished request 39
 Starting processing request 32...
 Starting processing request 41...
 Finished request 32
 Finished request 41
 Starting processing request 42...
 Finished request 31
 Starting processing request 44...
 Finished request 36
 Finished request 42
 Starting processing request 45...
 Finished request 44
 Starting processing request 47...
 Starting processing request 48...
 Finished request 48
 Starting processing request 43...
 Finished request 47
 Finished request 43
 Finished request 19
 Starting processing request 34...
 Finished request 34
 Starting processing request 46...
 Starting processing request 49...
 Finished request 46
 Finished request 49
 Finished request 45

Thread Synchronization and Communication

[77]

Request 19 also became fairly delayed, showing once again just how unpredictable a
multithreaded application can be. If we were processing a large dataset in parallel here,
with chunks of data in each request, we might have to pause at some points to account for
these delays, as otherwise, our output cache might grow too large.

As doing so would negatively affect an application's performance, one might have to look
at low-level optimizations, as well as the scheduling of threads on specific processor cores
in order to prevent this from happening.

 Stopped workers.
 Joined threads.
 Joined threads.
 Joined threads.
 Joined threads.
 Joined threads.
 Joined threads.
 Joined threads.
 Joined threads.
 Joined threads.
 Joined threads.
 Clean-up done.

All 10 worker threads which were launched in the beginning terminate here as we call the
stop() function of the Dispatcher.

Sharing data
In the example given in this chapter, we saw how to share information between threads in
addition to synchronizing threads--this in the form of the requests we passed from the main
thread into the dispatcher from which each request gets passed on to a different thread.

The essential idea behind the sharing of data between threads is that the data to be shared
exists somewhere in a way which is accessible to two threads or more. After this, we have to
ensure that only one thread can modify the data, and that the data does not get modified
while it's being read. Generally, we would use mutexes or similar to ensure this.

Thread Synchronization and Communication

[78]

Using r/w-locks
Read-write locks are a possible optimization here, because they allow multiple threads to
read simultaneously from a single data source. If one has an application in which multiple
worker threads read the same information repeatedly, it would be more efficient to use
read-write locks than basic mutexes, because the attempts to read the data will not block the
other threads.

A read-write lock can thus be used as a more advanced version of a mutex, namely, as one
which adapts its behavior to the type of access. Internally, it builds on mutexes (or
semaphores) and condition variables.

Using shared pointers
First available via the Boost library and introduced natively with C++11, shared pointers are
an abstraction of memory management using reference counting for heap-allocated
instances. They are partially thread-safe in that creating multiple shared pointer instances
can be created, but the referenced object itself is not thread-safe.

Depending on the application, this may suffice, however. To make them properly thread-
safe, one can use atomics. We will look at this in more detail in Chapter 8, Atomic Operations
- Working with the Hardware.

Summary
In this chapter, we looked at how to pass data between threads in a safe manner as part of a
fairly complex scheduler implementation. We also looked at the resulting asynchronous
processing of the said scheduler, and considered some potential alternatives and
optimizations for passing data between threads.

At this point, you should be able to safely pass data between threads, as well as synchronize
access to other shared resources.

In the next chapter, we will look at native C++ threading and the primitives API.

5
Native C++ Threads and

Primitives
Starting with the 2011 revision of the C++ standard, a multithreading API is officially part of
the C++ Standard Template Library (STL). This means that threads, thread primitives, and
synchronization mechanisms are available to any new C++ application without the need to
install a third-party library, or to rely on the operating system's APIs.

This chapter looks at the multithreading features available in this native API up to the
features added by the 2014 standard. A number of examples will be shown to use these
features in detail.

Topics in this chapter include the following:

The features covered by the multithreading API in C++'s STL
Detailed examples of the usage of each feature

The STL threading API
In Chapter 3, C++ Multithreading APIs, we looked at the various APIs that are available to
us when developing a multithreaded C++ application. In Chapter 4, Thread Synchronization
and Communication, we implemented a multithreaded scheduler application using the native
C++ threading API.

Native C++ Threads and Primitives

[80]

Boost.Thread API
By including the <thread> header from the STL, we gain access to the std::thread class
with facilities for mutual exclusion (mutex, and so on) provided by further headers. This
API is, essentially, the same as the multithreading API from Boost.Thread, the main
differences being more control over threads (join with timeout, thread groups, and thread
interruption), and a number of additional lock types implemented on top of primitives such
as mutexes and condition variables.

In general, Boost.Thread should be used as a fall back for when C++11 support isn't
present, or when these additional Boost.Thread features are a requirement of one's
application, and not easily added otherwise. Since Boost.Thread builds upon the available
(native) threading support, it's also likely to add overhead as compared to the C++11 STL
implementation.

The 2011 standard
The 2011 revision to the C++ standard (commonly referred to as C++11) adds a wide range
of new features, the most crucial one being the addition of native multithreading support,
which adds the ability to create, manage, and use threads within C++ without the use of
third-party libraries.

This standard standardizes the memory model for the core language to allow multiple
threads to coexist as well as enables features such as thread-local storage. Initial support
was added in the C++03 standard, but the C++11 standard is the first to make full use of this.

As noted earlier, the actual threading API itself is implemented in the STL. One of the goals
for the C++11 (C++0x) standard was to have as many of the new features as possible in the
STL, and not as part of the core language. As a result, in order to use threads, mutexes, and
kin, one has to first include the relevant STL header.

The standards committee which worked on the new multithreading API each had their own
sets of goals, and as a result, a few features which were desired by some did not make it
into the final standard. This includes features such as terminating another thread, or thread
cancellation, which was strongly opposed by the POSIX representatives on account of
canceling threads likely to cause issues with resource clean-up in the thread being
destroyed.

Native C++ Threads and Primitives

[81]

Following are the features provided by this API implementation:

std::thread

std::mutex

std::recursive_mutex

std::condition_variable

std::condition_variable_any

std::lock_guard

std::unique_lock

std::packaged_task

std::async

std::future

In a moment, we will look at detailed examples of each of these features. First we will see
what the next revisions of the C++ standard have added to this initial set.

C++14
The 2014 standard adds the following features to the standard library:

std::shared_lock

std::shared_timed_mutex

Both of these are defined in the <shared_mutex> STL header. Since locks are based on
mutexes, a shared lock is, therefore, reliant on a shared mutex.

C++17
The 2017 standard adds another set of features to the standard library, namely:

std::shared_mutex

std::scoped_lock

Here, a scoped lock is a mutex wrapper providing an RAII-style mechanism to own a mutex
for the duration of a scoped block.

Native C++ Threads and Primitives

[82]

STL organization
In the STL, we find the following header organization, and their provided functionality:

Header Provides

<thread> The std::thread class. Methods under std::this_thread
namespace:
• yield
• get_id
• sleep_for
• sleep_until

<mutex> Classes:
• mutex
• timed_mutex
• recursive_mutex
• recursive_timed_mutex
• lock_guard
• scoped_lock (C++17)
• unique_lock
Functions:
• try_lock
• lock
• call_once
• std::swap (std::unique_lock)

<shared_mutex> Classes:
• shared_mutex (C++17)
• shared_timed_mutex (C++14)
• shared_lock (C++14)
Functions:
• std::swap (std::shared_lock)

Native C++ Threads and Primitives

[83]

<future> Classes:
• promise
• packaged_task
• future
• shared_future
Functions:
• async
• future_category
• std::swap (std::promise)
• std::swap (std::packaged_task)

<condition_variable> Classes:
• condition_variable
• condition_variable_any
Function:
• notify_all_at_thread_exit

In the preceding table, we can see the functionality provided by each header along with the
features introduced with the 2014 and 2017 standards. In the following sections, we will
take a detailed look at each function and class.

Thread class
The thread class is the core of the entire threading API; it wraps the underlying operating
system's threads, and provides the functionality we need to start and stop threads.

This functionality is made accessible by including the <thread> header.

Basic use
Upon creating a thread it is started immediately:

#include <thread>

void worker() {
 // Business logic.
}

int main () {
 std::thread t(worker);

Native C++ Threads and Primitives

[84]

 return 0;
}

This preceding code would start the thread to then immediately terminate the application,
because we are not waiting for the new thread to finish executing.

To do this properly, we need to wait for the thread to finish, or rejoin as follows:

#include <thread>

void worker() {
 // Business logic.
}

int main () {
 std::thread t(worker);
 t.join();
 return 0;
}

This last code would execute, wait for the new thread to finish, and then return.

Passing parameters
It's also possible to pass parameters to a new thread. These parameter values have to be
move constructible, which means that it's a type which has a move or copy constructor
(called for rvalue references). In practice, this is the case for all basic types and most (user-
defined) classes:

#include <thread>
#include <string>

void worker(int n, std::string t) {
 // Business logic.
}

int main () {
 std::string s = "Test";
 int i = 1;
 std::thread t(worker, i, s);
 t.join();
 return 0;
}

Native C++ Threads and Primitives

[85]

In this preceding code, we pass an integer and string to the thread function. This function
will receive copies of both variables. When passing references or pointers, things get more
complicated with life cycle issues, data races, and such becoming a potential problem.

Return value
Any value returned by the function passed to the thread class constructor is ignored. To
return information to the thread which created the new thread, one has to use inter-thread
synchronization mechanisms (like mutexes) and some kind of a shared variable.

Moving threads
The 2011 standard adds std::move to the <utility> header. Using this template method,
one can move resources between objects. This means that it can also move thread instances:

#include <thread>
#include <string>
#include <utility>

void worker(int n, string t) {
 // Business logic.
}

int main () {
 std::string s = "Test";
 std::thread t0(worker, 1, s);
 std::thread t1(std::move(t0));
 t1.join();
 return 0;
}

In this version of the code, we create a thread before moving it to another thread. Thread 0
thus ceases to exist (since it instantly finishes), and the execution of the thread function
resumes in the new thread that we create.

As a result of this, we do not have to wait for the first thread to re join, but only for the
second one.

Native C++ Threads and Primitives

[86]

Thread ID
Each thread has an identifier associated with it. This ID, or handle, is a unique identifier
provided by the STL implementation. It can be obtained by calling the get_id() function
of the thread class instance, or by calling std::this_thread::get_id() to get the ID of
the thread calling the function:

#include <iostream>
 #include <thread>
 #include <chrono>
 #include <mutex>

 std::mutex display_mutex;

 void worker() {
 std::thread::id this_id = std::this_thread::get_id();

 display_mutex.lock();
 std::cout << "thread " << this_id << " sleeping...\n";
 display_mutex.unlock();

 std::this_thread::sleep_for(std::chrono::seconds(1));
 }

 int main() {
 std::thread t1(worker);
 std::thread::id t1_id = t1.get_id();

 std::thread t2(worker);
 std::thread::id t2_id = t2.get_id();

 display_mutex.lock();
 std::cout << "t1's id: " << t1_id << "\n";
 std::cout << "t2's id: " << t2_id << "\n";
 display_mutex.unlock();

 t1.join();
 t2.join();

 return 0;
 }

Native C++ Threads and Primitives

[87]

This code would produce output similar to this:

t1's id: 2
t2's id: 3
thread 2 sleeping...
thread 3 sleeping...

Here, one sees that the internal thread ID is an integer (std::thread::id type), relative to
the initial thread (ID 1). This is comparable to most native thread IDs such as those for
POSIX. These can also be obtained using native_handle(). That function will return
whatever is the underlying native thread handle. It is particularly useful when one wishes
to use a very specific PThread or Win32 thread functionality that's not available in the STL
implementation.

Sleeping
It's possible to delay the execution of a thread (sleep) using either of two methods. One is
sleep_for(), which delays execution by at least the specified duration, but possibly
longer:

#include <iostream>
#include <chrono>
#include <thread>
 using namespace std::chrono_literals;

 typedef std::chrono::time_point<std::chrono::high_resolution_clock>
timepoint;
int main() {
 std::cout << "Starting sleep.\n";

 timepoint start = std::chrono::high_resolution_clock::now();

 std::this_thread::sleep_for(2s);

 timepoint end = std::chrono::high_resolution_clock::now();
 std::chrono::duration<double, std::milli> elapsed = end -
 start;
 std::cout << "Slept for: " << elapsed.count() << " ms\n";
}

This preceding code shows how to sleep for roughly 2 seconds, measuring the exact
duration using a counter with the highest precision possible on the current OS.

Native C++ Threads and Primitives

[88]

Note that we are able to specify the number of seconds directly, with the seconds post-fix.
This is a C++14 feature that got added to the <chrono> header. For the C++11 version, one
has to create an instance of std::chrono::seconds and pass it to the sleep_for() function.

The other method is sleep_until(), which takes a single parameter of type
std::chrono::time_point<Clock, Duration>. Using this function, one can set a
thread to sleep until the specified time point has been reached. Due to the operating
system's scheduling priorities, this wake-up time might not be the exact time as specified.

Yield
One can indicate to the OS that the current thread can be rescheduled so that other threads
can run instead. For this, one uses the std::this_thread::yield() function. The exact
result of this function depends on the underlying OS implementation and its scheduler. In
the case of a FIFO scheduler, it's likely that the calling thread will be put at the back of the
queue.

This is a highly specialized function, with special use cases. It should not be used without
first validating its effect on the application's performance.

Detach
After starting a thread, one can call detach() on the thread object. This effectively detaches
the new thread from the calling thread, meaning that the former will continue executing
even after the calling thread has exited.

Swap
Using swap(), either as a standalone method or as function of a thread instance, one can
exchange the underlying thread handles of thread objects:

#include <iostream>
#include <thread>
#include <chrono>
void worker() {
 std::this_thread::sleep_for(std::chrono::seconds(1));
}
int main() {
 std::thread t1(worker);
 std::thread t2(worker);

Native C++ Threads and Primitives

[89]

 std::cout << "thread 1 id: " << t1.get_id() << "\n";
 std::cout << "thread 2 id: " << t2.get_id() << "\n";
 std::swap(t1, t2);
 std::cout << "Swapping threads..." << "\n";

 std::cout << "thread 1 id: " << t1.get_id() << "\n";
 std::cout << "thread 2 id: " << t2.get_id() << "\n";
 t1.swap(t2);
 std::cout << "Swapping threads..." << "\n";

 std::cout << "thread 1 id: " << t1.get_id() << "\n";
 std::cout << "thread 2 id: " << t2.get_id() << "\n";
 t1.join();
 t2.join();
}

The possible output from this code might look like the following:

thread 1 id: 2
thread 2 id: 3
Swapping threads...
thread 1 id: 3
thread 2 id: 2
Swapping threads...
thread 1 id: 2
thread 2 id: 3

The effect of this is that the state of each thread is swapped with that of the other thread,
essentially exchanging their identities.

Mutex
The <mutex> header contains multiple types of mutexes and locks. The mutex type is the
most commonly used type, and provides the basic lock/unlock functionality without any
further complications.

Basic use
At its core, the goal of a mutex is to exclude the possibility of simultaneous access so as to
prevent data corruption, and to prevent crashes due to the use of non-thread-safe routines.

Native C++ Threads and Primitives

[90]

An example of where one would need to use a mutex is the following code:

#include <iostream>
#include <thread>
void worker(int i) {
 std::cout << "Outputting this from thread number: " << i << "\n";
}
int main() {
 std::thread t1(worker, 1);
 std::thread t2(worker, 2);
 t1.join();
 t2.join();

 return 0;
}

If one were to try and run this preceding code as-is, one would notice that the text output
from both threads would be mashed together instead of being output one after the other.
The reason for this is that the standard output (whether C or C++-style) is not thread-safe.
Though the application will not crash, the output will be a jumble.

The fix for this is simple, and is given as follows:

#include <iostream>
#include <thread>
#include <mutex>

std::mutex globalMutex;
void worker(int i) {
 globalMutex.lock();
 std::cout << "Outputting this from thread number: " << i << "\n";
 globalMutex.unlock();
}
int main() {
 std::thread t1(worker, 1);
 std::thread t2(worker, 2);
 t1.join();
 t2.join();

 return 0;
}

Native C++ Threads and Primitives

[91]

In this situation, each thread would first need to obtain access to the mutex object. Since
only one thread can have access to the mutex object, the other thread will end up waiting
for the first thread to finish writing to the standard output, and the two strings will appear
one after the other, as intended.

Non-blocking locking
It's possible to not want the thread to block and wait for the mutex object to become
available: for example, when one just wants to know whether a request is already being
handled by another thread, and there's no use in waiting for it to finish.

For this, a mutex comes with the try_lock() function which does exactly that.

In the following example, we can see two threads trying to increment the same counter, but
with one incrementing its own counter whenever it fails to immediately obtain access to the
shared counter:

#include <chrono>
#include <mutex>
#include <thread>
#include <iostream>
std::chrono::milliseconds interval(50);
std::mutex mutex;
int shared_counter = 0;
int exclusive_counter = 0;
void worker0() {
 std::this_thread::sleep_for(interval);
 while (true) {
 if (mutex.try_lock()) {
 std::cout << "Shared (" << job_shared << ")\n";
 mutex.unlock();
 return;
 }
 else {
 ++exclusive_counter;
 std::cout << "Exclusive (" << exclusive_counter
<< ")\n";
 std::this_thread::sleep_for(interval);
 }
 }
}
void worker1() {
 mutex.lock();
 std::this_thread::sleep_for(10 * interval);
 ++shared_counter;

Native C++ Threads and Primitives

[92]

 mutex.unlock();
}
int main() {
 std::thread t1(worker0);
 std::thread t2(worker1);
 t1.join();
 t2.join();
}

Both threads in this preceding example run a different worker function, yet both have in
common the fact that they sleep for a period of time, and try to acquire the mutex for the
shared counter when they wake up. If they do, they'll increase the counter, but only the first
worker will output this fact.

The first worker also logs when it did not get the shared counter, but only increased its
exclusive counter. The resulting output might look something like this:

Exclusive (1)
Exclusive (2)
Exclusive (3)
Shared (1)
Exclusive (4)

Timed mutex
A timed mutex is a regular mutex type, but with a number of added functions which give
one control over the time period during which it should be attempted to obtain the lock,
that is, try_lock_for and try_lock_until.

The former tries to obtain the lock during the specified time period (std::chrono object)
before returning the result (true or false). The latter will wait until a specific point in the
future before returning the result.

The use of these functions mostly lies in offering a middle path between the blocking (lock)
and non-blocking (try_lock) methods of the regular mutex. One may want to wait for a
number of tasks using only a single thread without knowing when a task will become
available, or a task may expire at a certain point in time at which waiting for it makes no
sense any more.

Native C++ Threads and Primitives

[93]

Lock guard
A lock guard is a simple mutex wrapper, which handles the obtaining of a lock on the
mutex object as well as its release when the lock guard goes out of scope. This is a helpful
mechanism to ensure that one does not forget to release a mutex lock, and to help reduce
clutter in one's code when one has to release the same mutex in multiple locations.

While refactoring of, for example, big if/else blocks can reduce the instances in which the
release of a mutex lock is required, it's much easier to just use this lock guard wrapper and
not worry about such details:

#include <thread>
#include <mutex>
#include <iostream>
int counter = 0;
std::mutex counter_mutex;
void worker() {
 std::lock_guard<std::mutex> lock(counter_mutex);
 if (counter == 1) { counter += 10; }
 else if (counter >= 10) { counter += 15; }
 else if (counter >= 50) { return; }
 else { ++counter; }
 std::cout << std::this_thread::get_id() << ": " << counter << '\n';
}
int main() {
 std::cout << __func__ << ": " << counter << '\n';
 std::thread t1(worker);
 std::thread t2(worker);
 t1.join();
 t2.join();
 std::cout << __func__ << ": " << counter << '\n';
}

In the preceding example, we see that we have a small if/else block with one condition
leading to the worker function immediately returning. Without a lock guard, we would
have to make sure that we also unlocked the mutex in this condition before returning from
the function.

With the lock guard, however, we do not have to worry about such details, which allows us
to focus on the business logic instead of worrying about mutex management.

Native C++ Threads and Primitives

[94]

Unique lock
The unique lock is a general-purpose mutex wrapper. It's similar to the timed mutex, but
with additional features, primary of which is the concept of ownership. Unlike other lock
types, a unique lock does not necessarily own the mutex it wraps if it contains any at all.
Mutexes can be transferred between unique lock instances along with ownership of the said
mutexes using the swap() function.

Whether a unique lock instance has ownership of its mutex, and whether it's locked or not,
is first determined when creating the lock, as can be seen with its constructors. For example:

std::mutex m1, m2, m3;
std::unique_lock<std::mutex> lock1(m1, std::defer_lock);
std::unique_lock<std::mutex> lock2(m2, std::try_lock);
std::unique_lock<std::mutex> lock3(m3, std::adopt_lock);

The first constructor in the last code does not lock the assigned mutex (defers). The second
attempts to lock the mutex using try_lock(). Finally, the third constructor assumes that it
already owns the provided mutex.

In addition to these, other constructors allow the functionality of a timed mutex. That is, it
will wait for a time period until a time point has been reached, or until the lock has been
acquired.

Finally, the association between the lock and the mutex is broken by using the release()
function, and a pointer is returned to the mutex object. The caller is then responsible for the
releasing of any remaining locks on the mutex and for the further handling of it.

This type of lock isn't one which one will tend to use very often on its own, as it's extremely
generic. Most of the other types of mutexes and locks are significantly less complex, and
likely to fulfil all the needs in 99% of all cases. The complexity of a unique lock is, thus, both
a benefit and a risk.

It is, however, commonly used by other parts of the C++11 threading API, such as condition
variables, as we will see in a moment.

One area where a unique lock may be useful is as a scoped lock, allowing one to use scoped
locks without having to rely on the native scoped locks in the C++17 standard. See this
example:

#include <mutex>
std::mutex my_mutex
int count = 0;
int function() {
 std::unique_lock<mutex> lock(my_mutex);

Native C++ Threads and Primitives

[95]

 count++;
}

As we enter the function, we create a new unique_lock with the global mutex instance. The
mutex is locked at this point, after which we can perform any critical operations.

When the function scope ends, the destructor of the unique_lock is called, which results in
the mutex getting unlocked again.

Scoped lock
First introduced in the 2017 standard, the scoped lock is a mutex wrapper which obtains
access to (locks) the provided mutex, and ensures it is unlocked when the scoped lock goes
out of scope. It differs from a lock guard in that it is a wrapper for not one, but multiple
mutexes.

This can be useful when one deals with multiple mutexes in a single scope. One reason to
use a scoped lock is to avoid accidentally introducing deadlocks and other unpleasant
complications with, for example, one mutex being locked by the scoped lock, another lock
still being waited upon, and another thread instance having the exactly opposite situation.

One property of a scoped lock is that it tries to avoid such a situation, theoretically making
this type of lock deadlock-safe.

Recursive mutex
The recursive mutex is another subtype of mutex. Even though it has exactly the same
functions as a regular mutex, it allows the calling thread, which initially locked the mutex,
to lock the same mutex repeatedly. By doing this, the mutex doesn't become available for
other threads until the owning thread has unlocked the mutex as many times as it has
locked it.

One good reason to use a recursive mutex is for example when using recursive functions.
With a regular mutex one would need to invent some kind of entry point which would lock
the mutex before entering the recursive function.

With a recursive mutex, each iteration of the recursive function would lock the recursive
mutex again, and upon finishing one iteration, it would unlock the mutex. As a result the
mutex would be unlocked and unlocked the same number of times.

Native C++ Threads and Primitives

[96]

A potential complication hereby is that the maximum number of times that a recursive
mutex can be locked is not defined in the standard. When the implementation's limit has
been reached, a std::system_error will be thrown if one tries to lock it, or false is
returned when using the non-blocking try_lock function.

Recursive timed mutex
The recursive timed mutex is, as the name suggests, an amalgamation of the functionality of
the timed mutex and recursive mutex. As a result, it allows one to recursively lock the
mutex using a timed conditional function.

Although this adds challenges to ensuring that the mutex is unlocked as many times as the
thread locks it, it nevertheless offers possibilities for more complex algorithms such as the
aforementioned task-handlers.

Shared mutex
The <shared_mutex> header was first added with the 2014 standard, by adding the
shared_timed_mutex class. With the 2017 standard, the shared_mutex class was also
added.

The shared mutex header has been present since C++17. In addition to the usual mutual
exclusive access, this mutex class adds the ability to provide shared access to the mutex.
This allows one to, for example, provide read access to a resource by multiple threads,
while a writing thread would still be able to gain exclusive access. This is similar to the
read-write locks of Pthreads.

The functions added to this mutex type are the following:

lock_shared()

try_lock_shared()

unlock_shared()

The use of this mutex's share functionality should be fairly self-explanatory. A theoretically
infinite number of readers can gain read access to the mutex, while ensuring that only a
single thread can write to the resource at any time.

Native C++ Threads and Primitives

[97]

Shared timed mutex
This header has been present since C++14. It adds shared locking functionality to the timed
mutex with these functions:

lock_shared()

try_lock_shared()

try_lock_shared_for()

try_lock_shared_until()

unlock_shared()

This class is essentially an amalgamation of the shared mutex and timed mutex, as the name
suggests. The interesting thing here is that it was added to the standard before the more
basic shared mutex.

Condition variable
In essence, a condition variable provides a mechanism through which a thread's execution
can be controlled by another thread. This is done by having a shared variable which a
thread will wait for until signaled by another thread. It is an essential part of the scheduler
implementation we looked at in Chapter 4, Thread Synchronization and Communication.

For the C++11 API, condition variables and their associated functionality are defined in the
<condition_variable> header.

The basic usage of a condition variable can be summarized from that scheduler's code in
Chapter 4, Thread Synchronization and Communication.

 #include "abstract_request.h"

 #include <condition_variable>
 #include <mutex>

using namespace std;

 class Worker {
 condition_variable cv;
 mutex mtx;
 unique_lock<mutex> ulock;
 AbstractRequest* request;
 bool running;

Native C++ Threads and Primitives

[98]

 bool ready;
 public:
 Worker() { running = true; ready = false; ulock =
unique_lock<mutex>(mtx); }
 void run();
 void stop() { running = false; }
 void setRequest(AbstractRequest* request) { this->request = request;
ready = true; }
 void getCondition(condition_variable* &cv);
 };

In the constructor, as defined in the preceding Worker class declaration, we see the way a
condition variable in the C++11 API is initialized. The steps are listed as follows:

Create a condition_variable and mutex instance.1.
Assign the mutex to a new unique_lock instance. With the constructor we use2.
here for the lock, the assigned mutex is also locked upon assignment.
The condition variable is now ready for use:3.

#include <chrono>
using namespace std;
void Worker::run() {
 while (running) {
 if (ready) {
 ready = false;
 request->process();
 request->finish();
 }
 if (Dispatcher::addWorker(this)) {
 while (!ready && running) {
 if (cv.wait_for(ulock, chrono::seconds(1)) ==
 cv_status::timeout) {
 // We timed out, but we keep waiting unless the
 worker is
 // stopped by the dispatcher.
 }
 }
 }
 }
}

Here, we use the wait_for() function of the condition variable, and pass both the unique
lock instance we created earlier and the amount of time which we want to wait for. Here we
wait for 1 second. If we time out on this wait, we are free to re-enter the wait (as is done
here) in a continuous loop, or continue execution.

Native C++ Threads and Primitives

[99]

It's also possible to perform a blocking wait using the simple wait() function, or wait until
a certain point in time with wait_for().

As noted, when we first looked at this code, the reason why this worker's code uses the
ready Boolean variable is to check that it was really another thread which signaled the
condition variable, and not just a spurious wake-up. It's an unfortunate complication of
most condition variable implementations--including the C++11 one--that they are
susceptible to this.

As a result of these random wake-up events, it is necessary to have some way to ensure that
we really did wake up intentionally. In the scheduler code, this is done by having the
thread which wakes up the worker thread also set a Boolean value which the worker
thread can wake up.

Whether we timed out, or were notified, or suffered a spurious wake-up can be checked
with the cv_status enumeration. This enumeration knows these two possible conditions:

timeout

no_timeout

The signaling, or notifying, itself is quite straightforward:

void Dispatcher::addRequest(AbstractRequest* request) {
 workersMutex.lock();
 if (!workers.empty()) {
 Worker* worker = workers.front();
 worker->setRequest(request);
 condition_variable* cv;
 worker->getCondition(cv);
 cv->notify_one();
 workers.pop();
 workersMutex.unlock();
 }
 else {
 workersMutex.unlock();
 requestsMutex.lock();
 requests.push(request);
 requestsMutex.unlock();
 }
 }

Native C++ Threads and Primitives

[100]

In this preceding function from the Dispatcher class, we attempt to obtain an available
worker thread instance. If found, we obtain a reference to the worker thread's condition
variable as follows:

void Worker::getCondition(condition_variable* &cv) {
 cv = &(this)->cv;
 }

Setting the new request on the worker thread also changes the value of the ready variable
to true, allowing the worker to check that it is indeed allowed to continue.

Finally, the condition variable is notified that any threads which are waiting on it can now
continue using notify_one(). This particular function will signal the first thread in the
FIFO queue for this condition variable to continue. Here, only one thread will ever be
notified, but if there are multiple threads waiting for the same condition variable, the calling
of notify_all() will allow all threads in the FIFO queue to continue.

Condition_variable_any
The condition_variable_any class is a generalization of the condition_variable
class. It differs from the latter in that it allows for other mutual exclusion mechanisms to be
used beyond unique_lock<mutex>. The only requirement is that the lock used meets the
BasicLockable requirements, meaning that it provides a lock() and unlock() function.

Notify all at thread exit
The std::notify_all_at_thread_exit() function allows a (detached) thread to notify
other threads that it has completely finished, and is in the process of having all objects
within its scope (thread-local) destroyed. It functions by moving the provided lock to
internal storage before signaling the provided condition variable.

The result is exactly as if the lock was unlocked and notify_all() was called on the
condition variable.

A basic (non-functional) example can be given as follows:

#include <mutex>
#include <thread>
#include <condition_variable>
using namespace std;
mutex m;
condition_variable cv;

Native C++ Threads and Primitives

[101]

bool ready = false;
ThreadLocal result;
void worker() {
 unique_lock<mutex> ulock(m);
 result = thread_local_method();
 ready = true;
 std::notify_all_at_thread_exit(cv, std::move(ulock));
}
int main() {
 thread t(worker);
 t.detach();
 // Do work here.

 unique_lock<std::mutex> ulock(m);
 while(!ready) {
 cv.wait(ulock);
 }

 // Process result
}

Here, the worker thread executes a method which creates thread-local objects. It's therefore
essential that the main thread waits for the detached worker thread to finish first. If the
latter isn't done yet when the main thread finishes its tasks, it will enter a wait using the
global condition variable. In the worker thread, std::notify_all_at_thread_exit() is
called after setting the ready Boolean.

What this accomplishes is twofold. After calling the function, no more threads are allowed
to wait on the condition variable. It also allows the main thread to wait for the result of the
detached worker thread to become available.

Future
The last part of the C++11 thread support API is defined in <future>. It offers a range of
classes, which implement more high-level multithreading concepts aimed more at easy
asynchronous processing rather than the implementation of a multithreaded architecture.

Here we have to distinguish two concepts: that of a future and that of a promise. The former
is the end result (the future product) that’ll be used by a reader/consumer. The latter is what
the writer/producer uses.

Native C++ Threads and Primitives

[102]

A basic example of a future would be:

#include <iostream>
#include <future>
#include <chrono>

bool is_prime (int x) {
 for (int i = 2; i < x; ++i) if (x%i==0) return false;
 return true;
}

int main () {
 std::future<bool> fut = std::async (is_prime, 444444443);
 std::cout << "Checking, please wait";
 std::chrono::milliseconds span(100);
 while (fut.wait_for(span) == std::future_status::timeout) {
std::cout << '.' << std::flush;
 }

 bool x = fut.get();
 std::cout << "\n444444443 " << (x?"is":"is not") << " prime.\n";
 return 0;
}

This code asynchronously calls a function, passing it a parameter (potential prime number).
It then enters an active loop while it waits for the future it received from the asynchronous
function call to finish. It sets a 100 ms timeout on its wait function.

Once the future finishes (not returning a timeout on the wait function), we obtain the
resulting value, in this case telling us that the value we provided the function with is in fact
a prime number.

In the async section of this chapter, we will look a bit more at asynchronous function calls.

Promise
A promise allows one to transfer states between threads. For example:

#include <iostream>
#include <functional>
#include <thread>
#include <future>

void print_int (std::future<int>& fut) {

Native C++ Threads and Primitives

[103]

 int x = fut.get();
 std::cout << "value: " << x << '\n';
}

int main () {
 std::promise<int> prom;
 std::future<int> fut = prom.get_future();
 std::thread th1 (print_int, std::ref(fut));
 prom.set_value (10);
 th1.join();
 return 0;

This preceding code uses a promise instance passed to a worker thread to transfer a value
to the other thread, in this case an integer. The new thread waits for the future we created
from the promise, and which it received from the main thread to complete.

The promise is completed when we set the value on the promise. This completes the future
and finishes the worker thread.

In this particular example, we use a blocking wait on the future object, but one can also
use wait_for() and wait_until(), to wait for a time period or a point in time
respectively, as we saw in the previous example for a future.

Shared future
A shared_future is just like a regular future object, but can be copied, which allows
multiple threads to read its results.

Creating a shared_future is similar to a regular future.

std::promise<void> promise1;
std::shared_future<void> sFuture(promise1.get_future());

The biggest difference is that the regular future is passed to its constructor.

After this, all threads which have access to the future object can wait for it, and obtain its
value. This can also be used to signal threads in a way similar to condition variables.

Native C++ Threads and Primitives

[104]

Packaged_task
A packaged_task is a wrapper for any callable target (function, bind, lambda, or other
function object). It allows for asynchronous execution with the result available in a future
object. It is similar to std::function, but automatically transfers its results to a future
object.

For example:

#include <iostream>
#include <future>
#include <chrono>
#include <thread>

using namespace std;

int countdown (int from, int to) {
 for (int i = from; i != to; --i) {
 cout << i << '\n';
 this_thread::sleep_for(chrono::seconds(1));
 }

 cout << "Finished countdown.\n";
 return from - to;
}

int main () {
 packaged_task<int(int, int)> task(countdown);
 future<int> result = task.get_future();
 thread t (std::move(task), 10, 0);

 // Other logic.

 int value = result.get();

 cout << "The countdown lasted for " << value << " seconds.\n";

 t.join();
 return 0;
}

This preceding code implements a simple countdown feature, counting down from 10 to 0.
After creating the task and obtaining a reference to its future object, we push it onto a
thread along with the parameters of the worker function.

Native C++ Threads and Primitives

[105]

The result from the countdown worker thread becomes available as soon as it finishes. We
can use the future object's waiting functions here the same way as for a promise.

Async
A more straightforward version of promise and packaged_task can be found in
std::async(). This is a simple function, which takes a callable object (function, bind,
lambda, and similar) along with any parameters for it, and returns a future object.

The following is a basic example of the async() function:

#include <iostream>
#include <future>

using namespace std;

bool is_prime (int x) {
 cout << "Calculating prime...\n";
 for (int i = 2; i < x; ++i) {
 if (x % i == 0) {
 return false;
 }
 }

 return true;
}

int main () {
 future<bool> pFuture = std::async (is_prime, 343321);

 cout << "Checking whether 343321 is a prime number.\n";

 // Wait for future object to be ready.

 bool result = pFuture.get();
 if (result) {
 cout << "Prime found.\n";
 }
 else {
 cout << "No prime found.\n";
 }

 return 0;
}

Native C++ Threads and Primitives

[106]

The worker function in the preceding code determines whether a provided integer is a
prime number or not. As we can see, the resulting code is a lot more simple than with a
packaged_task or promise.

Launch policy
In addition to the basic version of std::async(), there is a second version which allows
one to specify the launch policy as its first argument. This is a bitmask value of type
std::launch with the following possible values:

* launch::async
* launch::deferred

The async flag means that a new thread and execution context for the worker function is
created immediately. The deferred flag means that this is postponed until wait() or
get() is called on the future object. Specifying both flags causes the function to choose the
method automatically depending on the current system situation.

The std::async() version, without explicitly specified bitmask values, defaults to the
latter, automatic method.

Atomics
With multithreading, the use of atomics is also very important. The C++11 STL offers an
<atomic> header for this reason. This topic is covered extensively in Chapter 8, Atomic
Operations - Working with the Hardware.

Summary
In this chapter, we explored the entirety of the multithreading support in the C++11 API,
along with the features added in C++14 and C++17.

We saw how to use each feature using descriptions and example code. We can now use the
native C++ multithreading API to implement multithreaded, thread-safe code as well as use
the asynchronous execution features in order to speed up and execute functions in parallel.

In the next chapter, we will take a look at the inevitable next step in the implementation of
multithreaded code: debugging and validating of the resulting application.

6
Debugging Multithreaded Code

Ideally, one's code would work properly the first time around, and contain no hidden bugs
that are waiting to crash the application, corrupt data, or cause other issues. Realistically,
this is, of course, impossible. Thus it is that tools were developed which make it easy to
examine and debug multithreaded applications.

In this chapter, we will look at a number of them including a regular debugger as well as
some of the tools which are part of the Valgrind suite, specifically, Helgrind and DRD. We
will also look at profiling a multithreaded application in order to find hotspots and
potential issues in its design.

Topics covered in this chapter include the following:

Introducing the Valgrind suite of tools
Using the Helgrind and DRD tools
Interpreting the Helgrind and DRD analysis results
Profiling an application, and analyzing the results

When to start debugging
Ideally, one would test and validate one's code every time one has reached a certain
milestone, whether it's for a singular module, a number of modules, or the application as a
whole. It's important to ascertain that the assumptions one makes match up with the
ultimate functionality.

Debugging Multithreaded Code

[108]

Especially, with multithreaded code, there's a large element of coincidence in that a
particular error state is not guaranteed to be reached during each run of the application.
Signs of an improperly implemented multithreaded application may result in symptoms
such as seemingly random crashes.

Likely the first hint one will get that something isn't correct is when the application crashes,
and one is left with a core dump. This is a file which contains the memory content of the
application at the time when it crashed, including the stack.

This core dump can be used in almost the same fashion as running a debugger with the
running process. It is particularly useful to examine the location in the code at which we
crashed, and in which thread. We can also examine memory contents this way.

One of the best indicators that one is dealing with a multithreading issue is when the
application never crashes in the same location (different stack trace), or when it always
crashes around a point where one performs mutual exclusion operations, such as
manipulating a global data structure.

To start off, we'll first take a more in-depth look at using a debugger for diagnosing and
debugging before diving into the Valgrind suite of tools.

The humble debugger
Of all the questions a developer may have, the question of why did my application just crash?
is probably among the most important. This is also one of the questions which are most
easily answered with a debugger. Regardless of whether one is live debugging a process, or
analyzing the core dump of a crashed process, the debugger can (hopefully) generate a back
trace, also known as a stack trace. This trace contains a chronological list of all the functions
which were called since the application was started as one would find them on the stack
(see Chapter 2, Multithreading Implementation on the Processor and OS, for details on how a
stack works).

The last few entries of this back trace will thus show us in which part of the code things
went wrong. If the debug information was compiled into the binary, or provided to the
debugger, we can also see the code at that line along with the names of the variables.

Even better, since we're looking at the stack frames, we can also examine the variables
within that stack frame. This means the parameters passed to the function along with any
local variables and their values.

Debugging Multithreaded Code

[109]

In order to have the debug information (symbols) available, one has to compile the source
code with the appropriate compiler flags set. For GCC, one can select a host of debug
information levels and types. Most commonly, one would use the -g flag with an integer
specifying the debug level attached, as follows:

-g0: produces no debug information (negates -g)
-g1: minimal information on function descriptions and external variables
-g3: all information including macro definitions

This flag instructs GCC to generate debug information in the native format for the OS. One
can also use different flags to generate the debug information in a specific format; however,
this is not necessary for use with GCC's debugger (GDB) as well as with the Valgrind tools.

Both GDB and Valgrind will use this debug information. While it's technically possible to
use both without having the debug information available, that's best left as an exercise for
truly desperate times.

GDB
One of the most commonly used debuggers for C-based and C++-based code is the GNU
Debugger, or GDB for short. In the following example, we'll use this debugger due to it
being both widely used and freely available. Originally written in 1986, it's now used with a
wide variety of programming languages, and has become the most commonly used
debugger, both in personal and professional use.

The most elemental interface for GDB is a command-line shell, but it can be used with
graphical frontends, which also include a number of IDEs such as Qt Creator, Dev-C++, and
Code::Blocks. These frontends and IDEs can make it easier and more intuitive to manage
breakpoints, set up watch variables, and perform other common operations. Their use is,
however, not required.

On Linux and BSD distributions, gdb is easily installed from a package, just as it is on
Windows with MSYS2 and similar UNIX-like environments. For OS X/MacOS, one may
have to install gdb using a third-party package manager such as Homebrew.

Since gdb is not normally code signed on MacOS, it cannot gain the system-level access it
requires for normal operation. Here one can either run gdb as root (not recommended), or
follow a tutorial relevant to your version of MacOS.

Debugging Multithreaded Code

[110]

Debugging multithreaded code
As mentioned earlier, there are two ways to use a debugger, either by starting the
application from within the debugger (or attaching to the running process), or by loading a
core dump file. Within the debugging session, one can either interrupt the running process
(with Ctrl+C, which sends the SIGINT signal), or load the debug symbols for the loaded
core dump. After this, we can examine the active threads in this frame:

Thread 1 received signal SIGINT, Interrupt.
0x00007fff8a3fff72 in mach_msg_trap () from
/usr/lib/system/libsystem_kernel.dylib
(gdb) info threads
Id Target Id Frame
* 1 Thread 0x1703 of process 72492 0x00007fff8a3fff72 in mach_msg_trap
() from /usr/lib/system/libsystem_kernel.dylib
3 Thread 0x1a03 of process 72492 0x00007fff8a406efa in kevent_qos ()
from /usr/lib/system/libsystem_kernel.dylib
10 Thread 0x2063 of process 72492 0x00007fff8a3fff72 in mach_msg_trap ()
from /usr/lib/system/libsystem_kernel.dylibs
14 Thread 0x1e0f of process 72492 0x00007fff8a405d3e in __pselect () from
/usr/lib/system/libsystem_kernel.dylib
(gdb) c
Continuing.

In the preceding code, we can see how after sending the SIGINT signal to the application (a
Qt-based application running on OS X), we request the list of all threads which exist at this
point in time along with their thread number, ID, and the function which they are currently
executing. This also shows clearly which threads are likely waiting based on the latter
information, as is often the case of a graphical user interface application like this one. Here
we also see that the thread which is currently active in the application as marked by the
asterisk in front of its number (thread 1).

We can also switch between threads at will by using the thread <ID> command, and
move up and down between a thread's stack frames. This allows us to examine every aspect
of individual threads.

When full debug information is available, one would generally also see the exact line of
code that a thread is executing. This means that during the development stage of an
application, it makes sense to have as much debug information available as possible to
make debugging much easier.

Debugging Multithreaded Code

[111]

Breakpoints
For the dispatcher code we looked at in Chapter 4, Threading Synchronization and
Communication, we can set a breakpoint to allow us to examine the active threads as well:

$ gdb dispatcher_demo.exe
GNU gdb (GDB) 7.9
Copyright (C) 2015 Free Software Foundation, Inc.
Reading symbols from dispatcher_demo.exe...done.
(gdb) break main.cpp:67
Breakpoint 1 at 0x4017af: file main.cpp, line 67.
(gdb) run
Starting program: dispatcher_demo.exe
[New Thread 10264.0x2a90]
[New Thread 10264.0x2bac]
[New Thread 10264.0x2914]
[New Thread 10264.0x1b80]
[New Thread 10264.0x213c]
[New Thread 10264.0x2228]
[New Thread 10264.0x2338]
[New Thread 10264.0x270c]
[New Thread 10264.0x14ac]
[New Thread 10264.0x24f8]
[New Thread 10264.0x1a90]

As we can see in the above command line output, we start GDB with the name of the
application we wish to debug as a parameter, here from a Bash shell under Windows. After
this, we can set a breakpoint here, using the filename of the source file and the line we wish
to break at after the (gdb) of the gdb command line input. We select the first line after the
loop in which the requests get sent to the dispatcher, then run the application. This is
followed by the list of the new threads which are being created by the dispatcher, as
reported by GDB.

Next, we wait until the breakpoint is hit:

Breakpoint 1, main () at main.cpp:67
67 this_thread::sleep_for(chrono::seconds(5));
(gdb) info threads
Id Target Id Frame
11 Thread 10264.0x1a90 0x00000000775ec2ea in
ntdll!ZwWaitForMultipleObjects () from /c/Windows/SYSTEM32/ntdll.dll
10 Thread 10264.0x24f8 0x00000000775ec2ea in
ntdll!ZwWaitForMultipleObjects () from /c/Windows/SYSTEM32/ntdll.dll
9 Thread 10264.0x14ac 0x00000000775ec2ea in
ntdll!ZwWaitForMultipleObjects () from /c/Windows/SYSTEM32/ntdll.dll
8 Thread 10264.0x270c 0x00000000775ec2ea in
ntdll!ZwWaitForMultipleObjects () from /c/Windows/SYSTEM32/ntdll.dll

Debugging Multithreaded Code

[112]

7 Thread 10264.0x2338 0x00000000775ec2ea in
ntdll!ZwWaitForMultipleObjects () from /c/Windows/SYSTEM32/ntdll.dll
6 Thread 10264.0x2228 0x00000000775ec2ea in
ntdll!ZwWaitForMultipleObjects () from /c/Windows/SYSTEM32/ntdll.dll
5 Thread 10264.0x213c 0x00000000775ec2ea in
ntdll!ZwWaitForMultipleObjects () from /c/Windows/SYSTEM32/ntdll.dll
4 Thread 10264.0x1b80 0x0000000064942eaf in ?? () from
/mingw64/bin/libwinpthread-1.dll
3 Thread 10264.0x2914 0x00000000775c2385 in ntdll!LdrUnloadDll () from
/c/Windows/SYSTEM32/ntdll.dll
2 Thread 10264.0x2bac 0x00000000775c2385 in ntdll!LdrUnloadDll () from
/c/Windows/SYSTEM32/ntdll.dll
* 1 Thread 10264.0x2a90 main () at main.cpp:67
(gdb) bt
#0 main () at main.cpp:67
(gdb) c
Continuing.

Upon reaching the breakpoint, an info threads command lists the active threads. Here we can
clearly see the use of condition variables where a thread is waiting in
ntdll!ZwWaitForMultipleObjects(). As covered in Chapter 3, C++ Multithreading
APIs, this is part of the condition variable implementation on Windows using its native
multithreading API.

When we create a back trace (bt command), we see that the current stack for thread 1 (the
current thread) is just one frame, only for the main method, since we didn't call into another
function from this starting point at this line.

Back traces
During normal application execution, such as with the GUI application we looked at earlier,
sending SIGINT to the application can also be followed by the command to create a back
trace like this:

Thread 1 received signal SIGINT, Interrupt.
0x00007fff8a3fff72 in mach_msg_trap () from
/usr/lib/system/libsystem_kernel.dylib
(gdb) bt
#0 0x00007fff8a3fff72 in mach_msg_trap () from
/usr/lib/system/libsystem_kernel.dylib
#1 0x00007fff8a3ff3b3 in mach_msg () from
/usr/lib/system/libsystem_kernel.dylib
#2 0x00007fff99f37124 in __CFRunLoopServiceMachPort () from
/System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundati
on

Debugging Multithreaded Code

[113]

#3 0x00007fff99f365ec in __CFRunLoopRun () from
/System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundati
on
#4 0x00007fff99f35e38 in CFRunLoopRunSpecific () from
/System/Library/Frameworks/CoreFoundation.framework/Versions/A/CoreFoundati
on
#5 0x00007fff97b73935 in RunCurrentEventLoopInMode ()
from
/System/Library/Frameworks/Carbon.framework/Versions/A/Frameworks/HIToolbox
.framework/Versions/A/HIToolbox
#6 0x00007fff97b7376f in ReceiveNextEventCommon ()
from
/System/Library/Frameworks/Carbon.framework/Versions/A/Frameworks/HIToolbox
.framework/Versions/A/HIToolbox
#7 0x00007fff97b735af in _BlockUntilNextEventMatchingListInModeWithFilter
()
from
/System/Library/Frameworks/Carbon.framework/Versions/A/Frameworks/HIToolbox
.framework/Versions/A/HIToolbox
#8 0x00007fff9ed3cdf6 in _DPSNextEvent () from
/System/Library/Frameworks/AppKit.framework/Versions/C/AppKit
#9 0x00007fff9ed3c226 in -[NSApplication
_nextEventMatchingEventMask:untilDate:inMode:dequeue:] ()
from /System/Library/Frameworks/AppKit.framework/Versions/C/AppKit
#10 0x00007fff9ed30d80 in -[NSApplication run] () from
/System/Library/Frameworks/AppKit.framework/Versions/C/AppKit
#11 0x0000000102a25143 in qt_plugin_instance () from
/usr/local/Cellar/qt/5.8.0_1/plugins/platforms/libqcocoa.dylib
#12 0x0000000100cd3811 in
QEventLoop::exec(QFlags<QEventLoop::ProcessEventsFlag>) () from
/usr/local/opt/qt5/lib/QtCore.framework/Versions/5/QtCore
#13 0x0000000100cd80a7 in QCoreApplication::exec() () from
/usr/local/opt/qt5/lib/QtCore.framework/Versions/5/QtCore
#14 0x0000000100003956 in main (argc=<optimized out>, argv=<optimized out>)
at main.cpp:10
(gdb) c
Continuing.

In this preceding code, we can see the execution of thread ID 1 from its creation, through
the entry point (main). Each subsequent function call is added to the stack. When a function
finishes, it is removed from the stack. This is both a benefit and a disadvantage. While it
does keep the back trace nice and clean, it also means that the history of what happened
before the last function call is no longer there.

Debugging Multithreaded Code

[114]

If we create a back trace with a core dump file, not having this historical information can be
very annoying, and possibly make one start on a wild goose chase as one tries to narrow
down the presumed cause of a crash. This means that a certain level of experience is
required for successful debugging.

In case of a crashed application, the debugger will start us on the thread which suffered the
crash. Often, this is the thread with the problematic code, but it could be that the real fault
lies with code executed by another thread, or even the unsafe use of variables. If one thread
were to change the information that another thread is currently reading, the latter thread
could end up with garbage data. The result of this could be a crash, or even worse--
corruption, later in the application.

The worst-case scenario consists of the stack getting overwritten by, for example, a wild
pointer. In this case, a buffer or similar on the stack gets written past its limit, thus erasing
parts of the stack by filling it with new data. This is a buffer overflow, and can both lead to
the application crashing, or the (malicious) exploitation of the application.

Dynamic analysis tools
Although the value of a debugger is hard to dismiss, there are times when one needs a
different type of tool to answer questions about things such as memory usage, leaks, and to
diagnose or prevent threading issues. This is where tools such as those which are part of the
Valgrind suite of dynamic analysis tools can be of great help. As a framework for building
dynamic analysis tools, the Valgrind distribution currently contains the following tools
which are of interest to us:

Memcheck
Helgrind
DRD

Memcheck is a memory error detector, which allows us to discover memory leaks, illegal
reads and writes, as well as allocation, deallocation, and similar memory-related issues.

Debugging Multithreaded Code

[115]

Helgrind and DRD are both thread error detectors. This basically means that they will
attempt to detect any multithreading issues such as data races and incorrect use of mutexes.
Where they differ is that Helgrind can detect locking order violations, and DRD supports
detached threads, while also using less memory than Helgrind.

Limitations
A major limitation with dynamic analysis tools is that they require tight integration with the
host operating system. This is the primary reason why Valgrind is focused on POSIX
threads, and does not currently work on Windows.

The Valgrind website (at http://valgrind.org/info/platforms.html) describes the issue
as follows:

"Windows is not under consideration because porting to it would require so many changes
it would almost be a separate project. (However, Valgrind + Wine can be made to work
with some effort.) Also, non-open-source OSes are difficult to deal with; being able to see
the OS and associated (libc) source code makes things much easier. However, Valgrind is
quite usable in conjunction with Wine, which means that it is possible to run Windows
programs under Valgrind with some effort."

Basically, this means that Windows applications can be debugged with Valgrind under
Linux with some difficulty, but using Windows as the OS won't happen any time soon.

Valgrind does work on OS X/macOS, starting with OS X 10.8 (Mountain Lion). Support for
the latest version of macOS may be somewhat incomplete due to changes made by Apple,
however. As with the Linux version of Valgrind, it's generally best to always use the latest
version of Valgrind. As with gdb, use the distro's package manager, or a third-party one
like Homebrew on MacOS.

Alternatives
Alternatives to the Valgrind tools on Windows and other platforms include the ones listed
in the following table:

Name Type Platforms License

Dr. Memory Memory checker All major platforms Open source

gperftools (Google) Heap, CPU, and call
profiler

Linux (x86) Open source

http://valgrind.org/info/platforms.html

Debugging Multithreaded Code

[116]

Visual Leak Detector Memory checker Windows (Visual
Studio)

Open Source

Intel Inspector Memory and thread
debugger

Windows, Linux Proprietary

PurifyPlus Memory, performance Windows, Linux Proprietary

Parasoft Insure++ Memory and thread
debugger

Windows, Solaris,
Linux, AIX

Proprietary

Memcheck
Memcheck is the default Valgrind tool when no other tool is specified in the parameters to
its executable. Memcheck itself is a memory error detector capable of detecting the
following types of issues:

Accessing memory outside of allocated bounds, overflowing of the stack, and
accessing previously freed memory blocks
The use of undefined values, which are variables which have not been initialized
Improper freeing of heap memory including repeatedly freeing blocks
Mismatched use of C- and C++-style memory allocations as well as array
allocators and deallocators (new[] and delete[])
Overlapping source and destination pointers in functions such as memcpy
The passing of an invalid (for example, negative) value as the size parameter to
malloc or similar functions
Memory leaks; that is, heap blocks without any valid reference to them

Using a debugger or a simple task manager, it's practically impossible to detect issues such
as the ones given in the preceding list. The value of Memcheck lies in being able to detect
and fix issues early in development, which otherwise can lead to corrupted data and
mysterious crashes.

Basic use
Using Memcheck is fairly easy. If we take the demo application we created in Chapter 4,
Thread Synchronization and Communication, we know that normally we start it using this:

$./dispatcher_demo

Debugging Multithreaded Code

[117]

To run Valgrind with the default Memcheck tool while also logging the resulting output to
a log file, we would start it as follows:

$ valgrind --log-file=dispatcher.log --read-var-info=yes --leak-check=full
./dispatcher_demo

With the preceding command, we will log Memcheck's output to a file called
dispatcher.log, and also enable the full checking of memory leaks, including detailed
reporting of where these leaks occur, using the available debug information in the binary.
By also reading the variable information (--read-var-info=yes), we get even more
detailed information on where a memory leak occurred.

One cannot log to a file, but unless it's a very simple application, the produced output from
Valgrind will likely be so much that it probably won't fit into the terminal buffer. Having
the output as a file allows one to use it as a reference later as well as search it using more
advanced tools than what the terminal usually provides.

After running this, we can examine the produced log file's contents as follows:

==5764== Memcheck, a memory error detector
==5764== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==5764== Using Valgrind-3.11.0 and LibVEX; rerun with -h for copyright info
==5764== Command: ./dispatcher_demo
==5764== Parent PID: 2838
==5764==
==5764==
==5764== HEAP SUMMARY:
==5764== in use at exit: 75,184 bytes in 71 blocks
==5764== total heap usage: 260 allocs, 189 frees, 88,678 bytes allocated
==5764==
==5764== 80 bytes in 10 blocks are definitely lost in loss record 1 of 5
==5764== at 0x4C2E0EF: operator new(unsigned long) (in
/usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==5764== by 0x402EFD: Dispatcher::init(int) (dispatcher.cpp:40)
==5764== by 0x409300: main (main.cpp:51)
==5764==
==5764== 960 bytes in 40 blocks are definitely lost in loss record 3 of 5
==5764== at 0x4C2E0EF: operator new(unsigned long) (in
/usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==5764== by 0x409338: main (main.cpp:60)
==5764==
==5764== 1,440 (1,200 direct, 240 indirect) bytes in 10 blocks are
definitely lost in loss record 4 of 5
==5764== at 0x4C2E0EF: operator new(unsigned long) (in
/usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==5764== by 0x402EBB: Dispatcher::init(int) (dispatcher.cpp:38)
==5764== by 0x409300: main (main.cpp:51)

Debugging Multithreaded Code

[118]

==5764==
==5764== LEAK SUMMARY:
==5764== definitely lost: 2,240 bytes in 60 blocks
==5764== indirectly lost: 240 bytes in 10 blocks
==5764== possibly lost: 0 bytes in 0 blocks
==5764== still reachable: 72,704 bytes in 1 blocks
==5764== suppressed: 0 bytes in 0 blocks
==5764== Reachable blocks (those to which a pointer was found) are not
shown.
==5764== To see them, rerun with: --leak-check=full --show-leak-kinds=all
==5764==
==5764== For counts of detected and suppressed errors, rerun with: -v
==5764== ERROR SUMMARY: 3 errors from 3 contexts (suppressed: 0 from 0)

Here we can see that we have a total of three memory leaks. Two are from allocations in the
dispatcher class on lines 38 and 40:

w = new Worker;

And the other one is this:

t = new thread(&Worker::run, w);

We also see a leak from an allocation at line 60 in main.cpp:

rq = new Request();

Although there is nothing wrong with these allocations themselves, if we trace them during
the application life cycle, we notice that we never call delete on these objects. If we were to
fix these memory leaks, we would need to delete those Request instances once we're done
with them, and clean up the Worker and thread instances in the destructor of the
dispatcher class.

Since in this demo application the entire application is terminated and cleaned up by the OS
at the end of its run, this is not really a concern. For an application where the same
dispatcher is used in a way where new requests are being generated and added constantly,
while possibly also dynamically scaling the number of worker threads, this would,
however, be a real concern. In this situation, care would have to be taken that such memory
leaks are resolved.

Debugging Multithreaded Code

[119]

Error types
Memcheck can detect a wide range of memory-related issues. The following sections
summarize these errors and their meanings.

Illegal read / illegal write errors
These errors are usually reported in the following format:

Invalid read of size <bytes>
at 0x<memory address>: (location)
by 0x<memory address>: (location)
by 0x<memory address>: (location)
Address 0x<memory address> <error description>

The first line in the preceding error message tells one whether it was an invalid read or
write access. The next few lines will be a back trace detailing the location (and possibly, the
line in the source file) from which the invalid read or write was performed, and from where
that code was called.

Finally, the last line will detail the type of illegal access that occurred, such as the reading of
an already freed block of memory.

This type of error is indicative of writing into or reading from a section of memory which
one should not have access to. This can happen because one accesses a wild pointer (that is,
referencing a random memory address), or due to an earlier issue in the code which caused
a wrong memory address to be calculated, or a memory boundary not being respected, and
reading past the bounds of an array or similar.

Usually, when this type of error is reported, it should be taken highly seriously, as it
indicates a fundamental issue which can lead not only to data corruption and crashes, but
also to bugs which can be exploited by others.

Use of uninitialized values
In short, this is the issue where a variable's value is used without the said variable having
been assigned a value. At this point, it's likely that these contents are just whichever bytes
were in that part of RAM which just got allocated. As a result, this can lead to unpredictable
behavior whenever these contents are used or accessed.

When encountered, Memcheck will throw errors similar to these:

$ valgrind --read-var-info=yes --leak-check=full ./unval
==6822== Memcheck, a memory error detector
==6822== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.

Debugging Multithreaded Code

[120]

==6822== Using Valgrind-3.11.0 and LibVEX; rerun with -h for copyright info
==6822== Command: ./unval
==6822==
==6822== Conditional jump or move depends on uninitialised value(s)
==6822== at 0x4E87B83: vfprintf (vfprintf.c:1631)
==6822== by 0x4E8F898: printf (printf.c:33)
==6822== by 0x400541: main (unval.cpp:6)
==6822==
==6822== Use of uninitialised value of size 8
==6822== at 0x4E8476B: _itoa_word (_itoa.c:179)
==6822== by 0x4E8812C: vfprintf (vfprintf.c:1631)
==6822== by 0x4E8F898: printf (printf.c:33)
==6822== by 0x400541: main (unval.cpp:6)
==6822==
==6822== Conditional jump or move depends on uninitialised value(s)
==6822== at 0x4E84775: _itoa_word (_itoa.c:179)
==6822== by 0x4E8812C: vfprintf (vfprintf.c:1631)
==6822== by 0x4E8F898: printf (printf.c:33)
==6822== by 0x400541: main (unval.cpp:6)
==6822==
==6822== Conditional jump or move depends on uninitialised value(s)
==6822== at 0x4E881AF: vfprintf (vfprintf.c:1631)
==6822== by 0x4E8F898: printf (printf.c:33)
==6822== by 0x400541: main (unval.cpp:6)
==6822==
==6822== Conditional jump or move depends on uninitialised value(s)
==6822== at 0x4E87C59: vfprintf (vfprintf.c:1631)
==6822== by 0x4E8F898: printf (printf.c:33)
==6822== by 0x400541: main (unval.cpp:6)
==6822==
==6822== Conditional jump or move depends on uninitialised value(s)
==6822== at 0x4E8841A: vfprintf (vfprintf.c:1631)
==6822== by 0x4E8F898: printf (printf.c:33)
==6822== by 0x400541: main (unval.cpp:6)
==6822==
==6822== Conditional jump or move depends on uninitialised value(s)
==6822== at 0x4E87CAB: vfprintf (vfprintf.c:1631)
==6822== by 0x4E8F898: printf (printf.c:33)
==6822== by 0x400541: main (unval.cpp:6)
==6822==
==6822== Conditional jump or move depends on uninitialised value(s)
==6822== at 0x4E87CE2: vfprintf (vfprintf.c:1631)
==6822== by 0x4E8F898: printf (printf.c:33)
==6822== by 0x400541: main (unval.cpp:6)
==6822==
==6822==
==6822== HEAP SUMMARY:
==6822== in use at exit: 0 bytes in 0 blocks

Debugging Multithreaded Code

[121]

==6822== total heap usage: 1 allocs, 1 frees, 1,024 bytes allocated
==6822==
==6822== All heap blocks were freed -- no leaks are possible
==6822==
==6822== For counts of detected and suppressed errors, rerun with: -v
==6822== Use --track-origins=yes to see where uninitialised values come
from
==6822== ERROR SUMMARY: 8 errors from 8 contexts (suppressed: 0 from 0)

This particular series of errors was caused by the following small bit of code:

#include <cstring>
 #include <cstdio>

 int main() {
 int x;
 printf ("x = %d\n", x);
 return 0;
 }

As we can see in the preceding code, we never initialize our variable, which would be set to
just any random value. If one is lucky, it'll be set to zero, or an equally (hopefully) harmless
value. This code shows just how any of our uninitialized variables enter into library code.

Whether or not the use of uninitialized variables is harmful is hard to say, and depends
heavily on the type of variable and the affected code. It is, however, far easier to simply
assign a safe, default value than it is to hunt down and debug mysterious issues which may
be caused (at random) by an uninitialized variable.

For additional information on where an uninitialized variable originates, one can pass the -
track-origins=yes flag to Memcheck. This will tell it to keep more information per
variable, which will make the tracking down of this type of issue much easier.

Uninitialized or unaddressable system call values
Whenever a function is called, it's possible that uninitialized values are passed as
parameters, or even pointers to a buffer which is unaddressable. In either case, Memcheck
will log this:

$ valgrind --read-var-info=yes --leak-check=full ./unsyscall
==6848== Memcheck, a memory error detector
==6848== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.
==6848== Using Valgrind-3.11.0 and LibVEX; rerun with -h for copyright info
==6848== Command: ./unsyscall
==6848==
==6848== Syscall param write(buf) points to uninitialised byte(s)

Debugging Multithreaded Code

[122]

==6848== at 0x4F306E0: __write_nocancel (syscall-template.S:84)
==6848== by 0x4005EF: main (unsyscall.cpp:7)
==6848== Address 0x5203040 is 0 bytes inside a block of size 10 alloc'd
==6848== at 0x4C2DB8F: malloc (in /usr/lib/valgrind/vgpreload_memcheck-
amd64-linux.so)
==6848== by 0x4005C7: main (unsyscall.cpp:5)
==6848==
==6848== Syscall param exit_group(status) contains uninitialised byte(s)
==6848== at 0x4F05B98: _Exit (_exit.c:31)
==6848== by 0x4E73FAA: __run_exit_handlers (exit.c:97)
==6848== by 0x4E74044: exit (exit.c:104)
==6848== by 0x4005FC: main (unsyscall.cpp:8)
==6848==
==6848==
==6848== HEAP SUMMARY:
==6848== in use at exit: 14 bytes in 2 blocks
==6848== total heap usage: 2 allocs, 0 frees, 14 bytes allocated
==6848==
==6848== LEAK SUMMARY:
==6848== definitely lost: 0 bytes in 0 blocks
==6848== indirectly lost: 0 bytes in 0 blocks
==6848== possibly lost: 0 bytes in 0 blocks
==6848== still reachable: 14 bytes in 2 blocks
==6848== suppressed: 0 bytes in 0 blocks
==6848== Reachable blocks (those to which a pointer was found) are not
shown.
==6848== To see them, rerun with: --leak-check=full --show-leak-kinds=all
==6848==
==6848== For counts of detected and suppressed errors, rerun with: -v
==6848== Use --track-origins=yes to see where uninitialised values come
from
==6848== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from 0)

The preceding log was generated by this code:

#include <cstdlib>
 #include <unistd.h>

 int main() {
 char* arr = (char*) malloc(10);
 int* arr2 = (int*) malloc(sizeof(int));
 write(1, arr, 10);
 exit(arr2[0]);
 }

Debugging Multithreaded Code

[123]

Much like the general use of uninitialized values as detailed in the previous section, the
passing of uninitialized, or otherwise dodgy, parameters is, at the very least, risky, and in
the worst case, a source of crashes, data corruption, or worse.

Illegal frees
An illegal free or delete is usually an attempt to repeatedly call free() or delete() on an
already deallocated block of memory. While not necessarily harmful, this would be
indicative of bad design, and would absolutely have to be fixed.

It can also occur when one tries to free a memory block using a pointer which does not
point to the beginning of that memory block. This is one of the primary reasons why one
should never perform pointer arithmetic on the original pointer one obtains from a call to
malloc() or new(), but use a copy instead.

Mismatched deallocation
Allocation and deallocation of memory blocks should always be performed using matching
functions. This means that when we allocate using C-style functions, we deallocate with the
matching function from the same API. The same is true for C++-style allocation and
deallocation.

Briefly, this means the following:

If we allocate using malloc, calloc, valloc, realloc, or memalign, we
deallocate with free
If we allocate with new, we deallocate with delete
If we allocate with new[], we deallocate with delete[]

Mixing these up won't necessarily cause problems, but doing so is undefined behavior. The
latter type of allocating and deallocating is specific to arrays. Not using delete[] for an
array that was allocated with new[] likely leads to a memory leak, or worse.

Overlapping source and destination
This type of error indicates that the pointers passed for a source and destination memory
block overlap (based on expected size). The result of this type of bug is usually a form of
corruption or system crash.

Debugging Multithreaded Code

[124]

Fishy argument values
For memory allocation functions, Memcheck validates whether the arguments passed to
them actually make sense. One example of this would be the passing of a negative size, or if
it would far exceed a reasonable allocation size: for example, an allocation request for a
petabyte of memory. Most likely, these values would be the result of a faulty calculation
earlier in the code.

Memcheck would report this error like in this example from the Memcheck manual:

==32233== Argument 'size' of function malloc has a fishy (possibly
negative) value: -3
==32233== at 0x4C2CFA7: malloc (vg_replace_malloc.c:298)
==32233== by 0x400555: foo (fishy.c:15)
==32233== by 0x400583: main (fishy.c:23)

Here it was attempted to pass the value of -3 to malloc, which obviously doesn't make a lot
of sense. Since this is obviously a nonsensical operation, it's indicative of a serious bug in
the code.

Memory leak detection
The most important thing to keep in mind for Memcheck's reporting of memory leaks is
that a lot of reported leaks may in fact not be leaks. This is reflected in the way Memcheck
reports any potential issues it finds, which is as follows:

Definitely lost
Indirectly lost
Possibly lost

Of the three possible report types, the Definitely lost type is the only one where it is
absolutely certain that the memory block in question is no longer reachable, with no pointer
or reference remaining, which makes it impossible for the application to ever free the
memory.

In case of the Indirectly lost type, we did not lose the pointer to these memory blocks
themselves, but, the pointer to a structure which refers to these blocks instead. This could,
for example, occur when we directly lose access to the root node of a data structure (such as
a red/black or binary tree). As a result, we also lose the ability to access any of the child
nodes.

Debugging Multithreaded Code

[125]

Finally, Possibly lost is the catch-all type where Memcheck isn't entirely certain whether
there is still a reference to the memory block. This can happen where interior pointers exist,
such as in the case of particular types of array allocations. It can also occur through the use
of multiple inheritance, where a C++ object uses self-reference.

As mentioned earlier in the basic use section for Memcheck, it's advisable to always run
Memcheck with --leak-check=full specified to get detailed information on exactly
where a memory leak was found.

Helgrind
The purpose of Helgrind is to detect issues with synchronization implementations within a
multithreaded application. It can detect wrongful use of POSIX threads, potential deadlock
issues due to wrong locking order as well as data races--the reading or writing of data
without thread synchronization.

Basic use
We start Helgrind on our application in the following manner:

$ valgrind --tool=helgrind --read-var-info=yes --log-
file=dispatcher_helgrind.log ./dispatcher_demo

Similar to running Memcheck, this will run the application and log all generated output to a
log file, while explicitly using all available debugging information in the binary.

After running the application, we examine the generated log file:

==6417== Helgrind, a thread error detector
==6417== Copyright (C) 2007-2015, and GNU GPL'd, by OpenWorks LLP et al.
==6417== Using Valgrind-3.11.0 and LibVEX; rerun with -h for copyright info
==6417== Command: ./dispatcher_demo
==6417== Parent PID: 2838
==6417==
==6417== ---Thread-Announcement--
==6417==
==6417== Thread #1 is the program's root thread

After the initial basic information about the application and the Valgrind version, we are
informed that the root thread has been created:

==6417==
==6417== ---Thread-Announcement--
==6417==

Debugging Multithreaded Code

[126]

==6417== Thread #2 was created
==6417== at 0x56FB7EE: clone (clone.S:74)
==6417== by 0x53DE149: create_thread (createthread.c:102)
==6417== by 0x53DFE83: pthread_create@@GLIBC_2.2.5
(pthread_create.c:679)
==6417== by 0x4C34BB7: ??? (in /usr/lib/valgrind/vgpreload_helgrind-
amd64-linux.so)
==6417== by 0x4EF8DC2:
std::thread::_M_start_thread(std::shared_ptr<std::thread::_Impl_base>, void
(*)()) (in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21)
==6417== by 0x403AD7: std::thread::thread<void (Worker::*)(),
Worker*&>(void (Worker::*&&)(), Worker*&) (thread:137)
==6417== by 0x4030E6: Dispatcher::init(int) (dispatcher.cpp:40)
==6417== by 0x4090A0: main (main.cpp:51)
==6417==
==6417== --

The first thread is created by the dispatcher and logged. Next we get the first warning:

==6417==
==6417== Lock at 0x60F4A0 was first observed
==6417== at 0x4C321BC: ??? (in /usr/lib/valgrind/vgpreload_helgrind-
amd64-linux.so)
==6417== by 0x401CD1: __gthread_mutex_lock(pthread_mutex_t*) (gthr-
default.h:748)
==6417== by 0x402103: std::mutex::lock() (mutex:135)
==6417== by 0x40337E: Dispatcher::addWorker(Worker*)
(dispatcher.cpp:108)
==6417== by 0x401DF9: Worker::run() (worker.cpp:49)
==6417== by 0x408FA4: void std::_Mem_fn_base<void (Worker::*)(),
true>::operator()<, void>(Worker*) const (in
/media/sf_Projects/Cerflet/dispatcher/dispatcher_demo)
==6417== by 0x408F38: void std::_Bind_simple<std::_Mem_fn<void
(Worker::*)()> (Worker*)>::_M_invoke<0ul>(std::_Index_tuple<0ul>)
(functional:1531)
==6417== by 0x408E3F: std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)>::operator()() (functional:1520)
==6417== by 0x408D47:
std::thread::_Impl<std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)> >::_M_run() (thread:115)
==6417== by 0x4EF8C7F: ??? (in /usr/lib/x86_64-linux-
gnu/libstdc++.so.6.0.21)
==6417== by 0x4C34DB6: ??? (in /usr/lib/valgrind/vgpreload_helgrind-
amd64-linux.so)
==6417== by 0x53DF6B9: start_thread (pthread_create.c:333)
==6417== Address 0x60f4a0 is 0 bytes inside data symbol
"_ZN10Dispatcher12workersMutexE"
==6417==

Debugging Multithreaded Code

[127]

==6417== Possible data race during write of size 1 at 0x5CD9261 by thread
#1
==6417== Locks held: 1, at address 0x60F4A0
==6417== at 0x403650: Worker::setRequest(AbstractRequest*) (worker.h:38)
==6417== by 0x403253: Dispatcher::addRequest(AbstractRequest*)
(dispatcher.cpp:70)
==6417== by 0x409132: main (main.cpp:63)
==6417==
==6417== This conflicts with a previous read of size 1 by thread #2
==6417== Locks held: none
==6417== at 0x401E02: Worker::run() (worker.cpp:51)
==6417== by 0x408FA4: void std::_Mem_fn_base<void (Worker::*)(),
true>::operator()<, void>(Worker*) const (in
/media/sf_Projects/Cerflet/dispatcher/dispatcher_demo)
==6417== by 0x408F38: void std::_Bind_simple<std::_Mem_fn<void
(Worker::*)()> (Worker*)>::_M_invoke<0ul>(std::_Index_tuple<0ul>)
(functional:1531)
==6417== by 0x408E3F: std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)>::operator()() (functional:1520)
==6417== by 0x408D47:
std::thread::_Impl<std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)> >::_M_run() (thread:115)
==6417== by 0x4EF8C7F: ??? (in /usr/lib/x86_64-linux-
gnu/libstdc++.so.6.0.21)
==6417== by 0x4C34DB6: ??? (in /usr/lib/valgrind/vgpreload_helgrind-
amd64-linux.so)
==6417== by 0x53DF6B9: start_thread (pthread_create.c:333)
==6417== Address 0x5cd9261 is 97 bytes inside a block of size 104 alloc'd
==6417== at 0x4C2F50F: operator new(unsigned long) (in
/usr/lib/valgrind/vgpreload_helgrind-amd64-linux.so)
==6417== by 0x40308F: Dispatcher::init(int) (dispatcher.cpp:38)
==6417== by 0x4090A0: main (main.cpp:51)
==6417== Block was alloc'd by thread #1
==6417==
==6417== --

In the preceding warning, we are being told by Helgrind about a conflicting read of size 1
between thread IDs 1 and 2. Since the C++11 threading API uses a fair amount of templates,
the trace can be somewhat hard to read. The essence is found in these lines:

==6417== at 0x403650: Worker::setRequest(AbstractRequest*) (worker.h:38)
==6417== at 0x401E02: Worker::run() (worker.cpp:51)

This corresponds to the following lines of code:

void setRequest(AbstractRequest* request) { this->request = request; ready
= true; }
while (!ready && running) {

Debugging Multithreaded Code

[128]

The only variable of size 1 in these lines of code is the Boolean variable ready. Since this is a
Boolean variable, we know that it is an atomic operation (see Chapter 8, Atomic Operations -
Working with the Hardware, for details). As a result, we can ignore this warning.

Next, we get another warning for this thread:

==6417== Possible data race during write of size 1 at 0x5CD9260 by thread
#1
==6417== Locks held: none
==6417== at 0x40362C: Worker::stop() (worker.h:37)
==6417== by 0x403184: Dispatcher::stop() (dispatcher.cpp:50)
==6417== by 0x409163: main (main.cpp:70)
==6417==
==6417== This conflicts with a previous read of size 1 by thread #2
==6417== Locks held: none
==6417== at 0x401E0E: Worker::run() (worker.cpp:51)
==6417== by 0x408FA4: void std::_Mem_fn_base<void (Worker::*)(),
true>::operator()<, void>(Worker*) const (in
/media/sf_Projects/Cerflet/dispatcher/dispatcher_demo)
==6417== by 0x408F38: void std::_Bind_simple<std::_Mem_fn<void
(Worker::*)()> (Worker*)>::_M_invoke<0ul>(std::_Index_tuple<0ul>)
(functional:1531)
==6417== by 0x408E3F: std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)>::operator()() (functional:1520)
==6417== by 0x408D47:
std::thread::_Impl<std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)> >::_M_run() (thread:115)
==6417== by 0x4EF8C7F: ??? (in /usr/lib/x86_64-linux-
gnu/libstdc++.so.6.0.21)
==6417== by 0x4C34DB6: ??? (in /usr/lib/valgrind/vgpreload_helgrind-
amd64-linux.so)
==6417== by 0x53DF6B9: start_thread (pthread_create.c:333)
==6417== Address 0x5cd9260 is 96 bytes inside a block of size 104 alloc'd
==6417== at 0x4C2F50F: operator new(unsigned long) (in
/usr/lib/valgrind/vgpreload_helgrind-amd64-linux.so)
==6417== by 0x40308F: Dispatcher::init(int) (dispatcher.cpp:38)
==6417== by 0x4090A0: main (main.cpp:51)
==6417== Block was alloc'd by thread #1

Similar to the first warning, this also refers to a Boolean variable--here, the running
variable in the Worker instance. Since this is also an atomic operation, we can again ignore
this warning.

Debugging Multithreaded Code

[129]

Following this warning, we get a repeat of these warnings for other threads. We also see
this warning repeated a number of times:

==6417== Lock at 0x60F540 was first observed
==6417== at 0x4C321BC: ??? (in /usr/lib/valgrind/vgpreload_helgrind-
amd64-linux.so)
==6417== by 0x401CD1: __gthread_mutex_lock(pthread_mutex_t*) (gthr-
default.h:748)
==6417== by 0x402103: std::mutex::lock() (mutex:135)
==6417== by 0x409044: logFnc(std::__cxx11::basic_string<char,
std::char_traits<char>, std::allocator<char> >) (main.cpp:40)
==6417== by 0x40283E: Request::process() (request.cpp:19)
==6417== by 0x401DCE: Worker::run() (worker.cpp:44)
==6417== by 0x408FA4: void std::_Mem_fn_base<void (Worker::*)(),
true>::operator()<, void>(Worker*) const (in
/media/sf_Projects/Cerflet/dispatcher/dispatcher_demo)
==6417== by 0x408F38: void std::_Bind_simple<std::_Mem_fn<void
(Worker::*)()> (Worker*)>::_M_invoke<0ul>(std::_Index_tuple<0ul>)
(functional:1531)
==6417== by 0x408E3F: std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)>::operator()() (functional:1520)
==6417== by 0x408D47:
std::thread::_Impl<std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)> >::_M_run() (thread:115)
==6417== by 0x4EF8C7F: ??? (in /usr/lib/x86_64-linux-
gnu/libstdc++.so.6.0.21)
==6417== by 0x4C34DB6: ??? (in /usr/lib/valgrind/vgpreload_helgrind-
amd64-linux.so)
==6417== Address 0x60f540 is 0 bytes inside data symbol "logMutex"
==6417==
==6417== Possible data race during read of size 8 at 0x60F238 by thread #1
==6417== Locks held: none
==6417== at 0x4F4ED6F: std::basic_ostream<char, std::char_traits<char>
>& std::__ostream_insert<char, std::char_traits<char>
>(std::basic_ostream<char, std::char_traits<char> >&, char const*, long)
(in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21)
==6417== by 0x4F4F236: std::basic_ostream<char, std::char_traits<char>
>& std::operator<< <std::char_traits<char> >(std::basic_ostream<char,
std::char_traits<char> >&, char const*) (in /usr/lib/x86_64-linux-
gnu/libstdc++.so.6.0.21)
==6417== by 0x403199: Dispatcher::stop() (dispatcher.cpp:53)
==6417== by 0x409163: main (main.cpp:70)
==6417==
==6417== This conflicts with a previous write of size 8 by thread #7
==6417== Locks held: 1, at address 0x60F540
==6417== at 0x4F4EE25: std::basic_ostream<char, std::char_traits<char>
>& std::__ostream_insert<char, std::char_traits<char>
>(std::basic_ostream<char, std::char_traits<char> >&, char const*, long)

Debugging Multithreaded Code

[130]

(in /usr/lib/x86_64-linux-gnu/libstdc++.so.6.0.21)
==6417== by 0x409055: logFnc(std::__cxx11::basic_string<char,
std::char_traits<char>, std::allocator<char> >) (main.cpp:41)
==6417== by 0x402916: Request::finish() (request.cpp:27)
==6417== by 0x401DED: Worker::run() (worker.cpp:45)
==6417== by 0x408FA4: void std::_Mem_fn_base<void (Worker::*)(),
true>::operator()<, void>(Worker*) const (in
/media/sf_Projects/Cerflet/dispatcher/dispatcher_demo)
==6417== by 0x408F38: void std::_Bind_simple<std::_Mem_fn<void
(Worker::*)()> (Worker*)>::_M_invoke<0ul>(std::_Index_tuple<0ul>)
(functional:1531)
==6417== by 0x408E3F: std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)>::operator()() (functional:1520)
==6417== by 0x408D47:
std::thread::_Impl<std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)> >::_M_run() (thread:115)
==6417== Address 0x60f238 is 24 bytes inside data symbol
"_ZSt4cout@@GLIBCXX_3.4"

This warning is triggered by not having the use of standard output synchronized between
threads. Even though the logging function of this demo application uses a mutex to
synchronize the text logged by worker threads, we also write to standard output in an
unsafe manner in a few locations.

This is relatively easy to fix by using a central, thread-safe logging function. Even though
it's unlikely to cause any stability issues, it will very likely cause any logging output to end
up as a garbled, unusable mess.

Misuse of the pthreads API
Helgrind detects a large number of errors involving the pthreads API, as summarized by its
manual, and listed next:

Unlocking an invalid mutex
Unlocking a not-locked mutex
Unlocking a mutex held by a different thread
Destroying an invalid or a locked mutex
Recursively locking a non-recursive mutex
Deallocation of memory that contains a locked mutex
Passing mutex arguments to functions expecting reader-writer lock arguments,
and vice versa

Debugging Multithreaded Code

[131]

Failure of a POSIX pthread function fails with an error code that must be handled
A thread exits whilst still holding locked locks
Calling pthread_cond_wait with a not-locked mutex, an invalid mutex, or one
locked by a different thread
Inconsistent bindings between condition variables and their associated mutexes
Invalid or duplicate initialization of a pthread barrier
Initialization of a pthread barrier on which threads are still waiting
Destruction of a pthread barrier object which was never initialized, or on which
threads are still waiting
Waiting on an uninitialized pthread barrier

In addition to this, if Helgrind itself does not detect an error, but the pthreads library itself
returns an error for each function which Helgrind intercepts, an error is reported by
Helgrind as well.

Lock order problems
Lock order detection uses the assumption that once a series of locks have been accessed in a
particular order, that is the order in which they will always be used. Imagine, for example, a
resource that's guarded by two locks. As we saw with the dispatcher demonstration from
Chapter 4, Thread Synchronization and Communication, we use two mutexes in its Dispatcher
class, one to manage access to the worker threads, and one to the request instances.

In the correct implementation of that code, we always make sure to unlock one mutex
before we attempt to obtain the other, as there's a chance that another thread already has
obtained access to that second mutex, and attempts to obtain access to the first, thus
creating a deadlock situation.

While useful, it is important to realize that there are some areas where this detection
algorithm is, as of yet, imperfect. This is mostly apparent with the use of, for example,
condition variables, which naturally uses a locking order that tends to get reported by
Helgrind as wrong.

The take-away message here is that one has to examine these log messages and judge their
merit, but unlike straight misuse of the multithreading API, whether or not the reported
issue is a false-positive or not is far less clear-cut.

Debugging Multithreaded Code

[132]

Data races
In essence, a data race is when two more threads attempt to read or write to the same
resource without any synchronization mechanism in place. Here, only a concurrent read
and write, or two simultaneous writes, are actually harmful; therefore, only these two types
of access get reported.

In an earlier section on basic Helgrind usage, we saw some examples of this type of error in
the log. There it concerned the simultaneous writing and reading of a variable. As we also
covered in that section, Helgrind does not concern itself with whether a write or read was
atomic, but merely reports a potential issue.

Much like with lock order problems, this again means that one has to judge each data race
report on its merit, as many will likely be false-positives.

DRD
DRD is very similar to Helgrind, in that it also detects issues with threading and
synchronization in the application. The main ways in which DRD differs from Helgrind are
the following:

DRD uses less memory
DRD doesn't detect locking order violations
DRD supports detached threads

Generally, one wants to run both DRD and Helgrind to compare the output from both with
each other. Since a lot of potential issues are highly non-deterministic, using both tools
generally helps to pinpoint the most serious issues.

Basic use
Starting DRD is very similar to starting the other tools--we just have to specify our desired
tool like this:

$ valgrind --tool=drd --log-file=dispatcher_drd.log --read-var-info=yes
./dispatcher_demo

Debugging Multithreaded Code

[133]

After the application finishes, we examine the generated log file's contents.

==6576== drd, a thread error detector
==6576== Copyright (C) 2006-2015, and GNU GPL'd, by Bart Van Assche.
==6576== Using Valgrind-3.11.0 and LibVEX; rerun with -h for copyright info
==6576== Command: ./dispatcher_demo
==6576== Parent PID: 2838
==6576==
==6576== Conflicting store by thread 1 at 0x05ce51b1 size 1
==6576== at 0x403650: Worker::setRequest(AbstractRequest*) (worker.h:38)
==6576== by 0x403253: Dispatcher::addRequest(AbstractRequest*)
(dispatcher.cpp:70)
==6576== by 0x409132: main (main.cpp:63)
==6576== Address 0x5ce51b1 is at offset 97 from 0x5ce5150. Allocation
context:
==6576== at 0x4C3150F: operator new(unsigned long) (in
/usr/lib/valgrind/vgpreload_drd-amd64-linux.so)
==6576== by 0x40308F: Dispatcher::init(int) (dispatcher.cpp:38)
==6576== by 0x4090A0: main (main.cpp:51)
==6576== Other segment start (thread 2)
==6576== at 0x4C3818C: pthread_mutex_unlock (in
/usr/lib/valgrind/vgpreload_drd-amd64-linux.so)
==6576== by 0x401D00: __gthread_mutex_unlock(pthread_mutex_t*) (gthr-
default.h:778)
==6576== by 0x402131: std::mutex::unlock() (mutex:153)
==6576== by 0x403399: Dispatcher::addWorker(Worker*)
(dispatcher.cpp:110)
==6576== by 0x401DF9: Worker::run() (worker.cpp:49)
==6576== by 0x408FA4: void std::_Mem_fn_base<void (Worker::*)(),
true>::operator()<, void>(Worker*) const (in
/media/sf_Projects/Cerflet/dispatcher/dispatcher_demo)
==6576== by 0x408F38: void std::_Bind_simple<std::_Mem_fn<void
(Worker::*)()> (Worker*)>::_M_invoke<0ul>(std::_Index_tuple<0ul>)
(functional:1531)
==6576== by 0x408E3F: std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)>::operator()() (functional:1520)
==6576== by 0x408D47:
std::thread::_Impl<std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)> >::_M_run() (thread:115)
==6576== by 0x4F04C7F: ??? (in /usr/lib/x86_64-linux-
gnu/libstdc++.so.6.0.21)
==6576== by 0x4C3458B: ??? (in /usr/lib/valgrind/vgpreload_drd-amd64-
linux.so)
==6576== by 0x53EB6B9: start_thread (pthread_create.c:333)
==6576== Other segment end (thread 2)
==6576== at 0x4C3725B: pthread_mutex_lock (in
/usr/lib/valgrind/vgpreload_drd-amd64-linux.so)
==6576== by 0x401CD1: __gthread_mutex_lock(pthread_mutex_t*) (gthr-

Debugging Multithreaded Code

[134]

default.h:748)
==6576== by 0x402103: std::mutex::lock() (mutex:135)
==6576== by 0x4023F8: std::unique_lock<std::mutex>::lock() (mutex:485)
==6576== by 0x40219D:
std::unique_lock<std::mutex>::unique_lock(std::mutex&) (mutex:415)
==6576== by 0x401E33: Worker::run() (worker.cpp:52)
==6576== by 0x408FA4: void std::_Mem_fn_base<void (Worker::*)(),
true>::operator()<, void>(Worker*) const (in
/media/sf_Projects/Cerflet/dispatcher/dispatcher_demo)
==6576== by 0x408F38: void std::_Bind_simple<std::_Mem_fn<void
(Worker::*)()> (Worker*)>::_M_invoke<0ul>(std::_Index_tuple<0ul>)
(functional:1531)
==6576== by 0x408E3F: std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)>::operator()() (functional:1520)
==6576== by 0x408D47:
std::thread::_Impl<std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)> >::_M_run() (thread:115)
==6576== by 0x4F04C7F: ??? (in /usr/lib/x86_64-linux-
gnu/libstdc++.so.6.0.21)
==6576== by 0x4C3458B: ??? (in /usr/lib/valgrind/vgpreload_drd-amd64-
linux.so)

The preceding summary basically repeats what we saw with the Helgrind log. We see the
same data race report (conflicting store), which we can safely ignore due to atomics. For this
particular code at least, the use of DRD did not add anything we didn't already know from
using Helgrind.

Regardless, it's always a good idea to use both tools just in case one tools spots something
which the other didn't.

Features
DRD will detect the following errors:

Data races
Lock contention (deadlocks and delays)
Misuse of the pthreads API

For the third point, this list of errors detected by DRD, according to its manual, is very
similar to that of Helgrind:

Passing the address of one type of synchronization object (for example, a mutex)
to a POSIX API call that expects a pointer to another type of synchronization
object (for example, a condition variable)

Debugging Multithreaded Code

[135]

Attempt to unlock a mutex that has not been locked
Attempt to unlock a mutex that was locked by another thread
Attempt to lock a mutex of type PTHREAD_MUTEX_NORMAL or a spinlock
recursively
Destruction or deallocation of a locked mutex
Sending a signal to a condition variable while no lock is held on the mutex
associated with the condition variable
Calling pthread_cond_wait on a mutex that is not locked, that is, locked by
another thread or that has been locked recursively
Associating two different mutexes with a condition variable through
pthread_cond_wait

Destruction or deallocation of a condition variable that is being waited upon
Destruction or deallocation of a locked reader-writer synchronization object
Attempt to unlock a reader-writer synchronization object that was not locked by
the calling thread
Attempt to recursively lock a reader-writer synchronization object exclusively
Attempt to pass the address of a user-defined reader-writer synchronization
object to a POSIX threads function
Attempt to pass the address of a POSIX reader-writer synchronization object to
one of the annotations for user-defined reader-writer synchronization objects
Reinitialization of a mutex, condition variable, reader-writer lock, semaphore, or
barrier
Destruction or deallocation of a semaphore or barrier that is being waited upon
Missing synchronization between barrier wait and barrier destruction
Exiting a thread without first unlocking the spinlocks, mutexes, or reader-writer
synchronization objects that were locked by that thread
Passing an invalid thread ID to pthread_join or pthread_cancel

As mentioned earlier, helpful here is the fact that DRD also supports detached threads.
Whether locking order checks are important depends on one's application.

C++11 threads support
The DRD manual contains this section on C++11 threads support.

Debugging Multithreaded Code

[136]

If you want to use the c++11 class std::thread you will need to do the following to
annotate the std::shared_ptr<> objects used in the implementation of that class:

Add the following code at the start of a common header or at the start of each
source file, before any C++ header files are included:

 #include <valgrind/drd.h>
 #define _GLIBCXX_SYNCHRONIZATION_HAPPENS_BEFORE(addr)
 ANNOTATE_HAPPENS_BEFORE(addr)
 #define _GLIBCXX_SYNCHRONIZATION_HAPPENS_AFTER(addr)
 ANNOTATE_HAPPENS_AFTER(addr)

Download the GCC source code and from the source file libstdc++-
v3/src/c++11/thread.cc, copy the implementation of the
execute_native_thread_routine() and
std::thread::_M_start_thread() functions into a source file that is linked
with your application. Make sure that also in this source file the
_GLIBCXX_SYNCHRONIZATION_HAPPENS_*() macros are defined properly.

One might see a lot of false positives when using DRD with an application that uses the
C++11 threads API, which would be fixed by the preceding fix.

However, when using GCC 5.4 and Valgrind 3.11 (possibly, using older versions too) this
issue does not seem to be present any more. It is, however, something to keep in mind when
one suddenly sees a lot of false positives in one's DRD output while using the C++11
threads API.

Summary
In this chapter, we took a look at how to approach the debugging of multithreaded
applications. We explored the basics of using a debugger in a multithreaded context. Next,
we saw how to use three tools in the Valgrind framework, which can assist us in tracking
down multithreading and other crucial issues.

At this point, we can take applications written using the information in the preceding
chapters and analyze them for any issues which should be fixed including memory leaks
and improper use of synchronization mechanisms.

In the next chapter, we will take all that we have learned, and look at some best practices
when it comes to multithreaded programming and developing in general.

7
Best Practices

As with most things, it's best to avoid making mistakes rather than correcting them
afterwards. This chapter looks at a number of common mistakes and design issues with
multithreaded applications, and shows ways to avoid the common - and less common -
issues.

Topics in this chapter include:

Common multithreading issues, such as deadlocks and data races.
The proper use of mutexes, locks, and pitfalls.
Potential issues when using static initialization.

Proper multithreading
In the preceding chapters, we have seen a variety of potential issues which can occur when
writing multithreaded code. These range from the obvious ones, such as two threads not
being able to write to the same location at the same time, to the more subtle, such as
incorrect usage of a mutex.

There are also many issues with elements which aren't directly part of multithreaded code,
yet which can nevertheless cause seemingly random crashes and other frustrating issues.
One example of this is static initialization of variables. In the following sections, we'll be
looking at all of these issues and many more, as well as ways to prevent ever having to deal
with them.

As with many things in life, they are interesting experiences, but you generally do not care
to repeat them.

Best Practices

[138]

Wrongful expectations - deadlocks
A deadlock is described pretty succinctly by its name already. It occurs when two or more
processes attempt to gain access to a resource which the other is holding, while that other
thread is simultaneously waiting to gain access to a resource which it is holding.

For example:

Thread 1 gains access to resource A1.
Thread 1 and 2 both want to gain access to resource B2.
Thread 2 wins and now owns B, with thread 1 still waiting on B3.
Thread 2 wants to use A now, and waits for access4.
Both thread 1 and 2 wait forever for a resource5.

In this situation, we assume that the thread will be able to gain access to each resource at
some point, while the opposite is true, thanks to each thread holding on to the resource
which the other thread needs.

Visualized, this deadlock process would look like this:

Best Practices

[139]

This makes it clear that two basic rules when it comes to preventing deadlocks are:

Try to never hold more than one lock at any time.
Release any held locks as soon as you can.

We saw a real-life example of this in Chapter 4, Thread Synchronization and Communication,
when we looked at the dispatcher demonstration code. This code involves two mutexes, to
safe-guard access to two data structures:

void Dispatcher::addRequest(AbstractRequest* request) {
 workersMutex.lock();
 if (!workers.empty()) {
 Worker* worker = workers.front();
 worker->setRequest(request);
 condition_variable* cv;
 mutex* mtx;
 worker->getCondition(cv);
 worker->getMutex(mtx);
 unique_lock<mutex> lock(*mtx);
 cv->notify_one();
 workers.pop();
 workersMutex.unlock();
 }
 else {
 workersMutex.unlock();
 requestsMutex.lock();
 requests.push(request);
 requestsMutex.unlock();
 }
 }

The mutexes here are the workersMutex and requestsMutex variables. We can clearly see
how at no point do we hold onto a mutex before trying to obtain access to the other one. We
explicitly lock the workersMutex at the beginning of the method, so that we can safely
check whether the workers data structure is empty or not.

If it's not empty, we hand the new request to a worker. Then, as we are done with the
workers, data structure, we release the mutex. At this point, we retain zero mutexes.
Nothing too complex here, as we just use a single mutex.

Best Practices

[140]

The interesting thing is in the else statement, for when there is no waiting worker and we
need to obtain the second mutex. As we enter this scope, we retain one mutex. We could
just attempt to obtain the requestsMutex and assume that it will work, yet this may
deadlock, for this simple reason:

bool Dispatcher::addWorker(Worker* worker) {
 bool wait = true;
 requestsMutex.lock();
 if (!requests.empty()) {
 AbstractRequest* request = requests.front();
 worker->setRequest(request);
 requests.pop();
 wait = false;
 requestsMutex.unlock();
 }
 else {
 requestsMutex.unlock();
 workersMutex.lock();
 workers.push(worker);
 workersMutex.unlock();
 }
 return wait;
 }

The accompanying function to the earlier preceding function we see also uses these two
mutexes. Worse, this function runs in a separate thread. As a result, when the first function
holds the workersMutex as it tries to obtain the requestsMutex, with this second function
simultaneously holding the latter, while trying to obtain the former, we hit a deadlock.

In the functions, as we see them here, however, both rules have been implemented
successfully; we never hold more than one lock at a time, and we release any locks we hold
as soon as we can. This can be seen in both else cases, where as we enter them, we first
release any locks we do not need any more.

As in either case, we do not need to check respectively, the workers or requests data
structures any more; we can release the relevant lock before we do anything else. This
results in the following visualization:

Best Practices

[141]

It is of course possible that we may need to use data contained in two or more data
structures or variables; data which is used by other threads simultaneously. It may be
difficult to ensure that there is no chance of a deadlock in the resulting code.

Here, one may want to consider using temporary variables or similar. By locking the mutex,
copying the relevant data, and immediately releasing the lock, there is no chance of
deadlock with that mutex. Even if one has to write back results to the data structure, this
can be done in a separate action.

This adds two more rules in preventing deadlocks:

Try to never hold more than one lock at a time.
Release any held locks as soon as you can.
Never hold a lock any longer than is absolutely necessary.
When holding multiple locks, mind their order.

Best Practices

[142]

Being careless - data races
A data race, also known as a race condition, occurs when two or more threads attempt to
write to the same shared memory simultaneously. As a result, the state of the shared
memory during and at the end of the sequence of instructions executed by each thread is by
definition, non-deterministic.

As we saw in Chapter 6, Debugging Multithreaded Code, data races are reported quite often
by tools used to debug multi-threaded applications. For example:

 ==6984== Possible data race during write of size 1 at 0x5CD9260 by
thread #1
 ==6984== Locks held: none
 ==6984== at 0x40362C: Worker::stop() (worker.h:37)
 ==6984== by 0x403184: Dispatcher::stop() (dispatcher.cpp:50)
 ==6984== by 0x409163: main (main.cpp:70)
 ==6984==
 ==6984== This conflicts with a previous read of size 1 by thread #2
 ==6984== Locks held: none
 ==6984== at 0x401E0E: Worker::run() (worker.cpp:51)
 ==6984== by 0x408FA4: void std::_Mem_fn_base<void (Worker::*)(),
true>::operator()<, void>(Worker*) const (in
/media/sf_Projects/Cerflet/dispatcher/dispatcher_demo)
 ==6984== by 0x408F38: void std::_Bind_simple<std::_Mem_fn<void
(Worker::*)()> (Worker*)>::_M_invoke<0ul>(std::_Index_tuple<0ul>)
(functional:1531)
 ==6984== by 0x408E3F: std::_Bind_simple<std::_Mem_fn<void
(Worker::*)()> (Worker*)>::operator()() (functional:1520)
 ==6984== by 0x408D47:
std::thread::_Impl<std::_Bind_simple<std::_Mem_fn<void (Worker::*)()>
(Worker*)> >::_M_run() (thread:115)
 ==6984== by 0x4EF8C7F: ??? (in /usr/lib/x86_64-linux-
gnu/libstdc++.so.6.0.21)
 ==6984== by 0x4C34DB6: ??? (in /usr/lib/valgrind/vgpreload_helgrind-
amd64-linux.so)
 ==6984== by 0x53DF6B9: start_thread (pthread_create.c:333)
 ==6984== Address 0x5cd9260 is 96 bytes inside a block of size 104 alloc'd
 ==6984== at 0x4C2F50F: operator new(unsigned long) (in
/usr/lib/valgrind/vgpreload_helgrind-amd64-linux.so)
 ==6984== by 0x40308F: Dispatcher::init(int) (dispatcher.cpp:38)
 ==6984== by 0x4090A0: main (main.cpp:51)
 ==6984== Block was alloc'd by thread #1

Best Practices

[143]

The code which generated the preceding warning was the following:

bool Dispatcher::stop() {
 for (int i = 0; i < allWorkers.size(); ++i) {
 allWorkers[i]->stop();
 }
 cout << "Stopped workers.\n";
 for (int j = 0; j < threads.size(); ++j) {
 threads[j]->join();
 cout << "Joined threads.\n";
 }
 }

Consider this code in the Worker instance:

 void stop() { running = false; }

We also have:

void Worker::run() {
 while (running) {
 if (ready) {
 ready = false;
 request->process();
 request->finish();
 }
 if (Dispatcher::addWorker(this)) {
 while (!ready && running) {
 unique_lock<mutex> ulock(mtx);
 if (cv.wait_for(ulock, chrono::seconds(1)) ==
cv_status::timeout) {
 }
 }
 }
 }
 }

Best Practices

[144]

Here, running is a Boolean variable that is being set to false (writing to it from one
thread), signaling the worker thread that it should terminate its waiting loop, where
reading the Boolean variable is done from a different process, the main thread versus the
worker thread:

This particular example's warning was due to a Boolean variable being simultaneously
written and read. Naturally, the reason why this specific situation is safe has to do with
atomics, as explained in detail in Chapter 8, Atomic Operations - Working with the Hardware.

Best Practices

[145]

The reason why even an operation like this is potentially risky is because the reading
operation may occur while the variable is still in the process of being updated. In the case
of, for example, a 32-bit integer, depending on the hardware architecture, updating this
variable might be done in one operation, or multiple. In the latter case, the reading
operation might read an intermediate value with unpredictable results:

Best Practices

[146]

A more comical situation occurs when multiple threads write to a standard with out using,
for example, cout. As this stream is not thread-safe, the resulting output stream will
contain bits and pieces of the input streams, from whenever either of the threads got a
chance to write:

The basic rules to prevent data races thus are:

Never write to an unlocked, non-atomic, shared resource
Never read from an unlocked, non-atomic, shared resource

This essentially means that any write or read has to be thread-safe. If one writes to shared
memory, no other thread should be able to write to it at the same time. Similarly, when we
read from a shared resource, we need to ensure that, at most, only other threads are also
reading the shared resource.

Best Practices

[147]

This level of mutual exclusion is naturally accomplished by mutexes as we have seen in the
preceding chapters, with a refinement offered in read-write locks, which allows for
simultaneous readers while having writes as fully mutually exclusive events.

Of course, there are also gotchas with mutexes, as we will see in the following section.

Mutexes aren't magic
Mutexes form the basis of practically all forms of mutual exclusion APIs. At their core, they
seem extremely simple, only one thread can own a mutex, with other threads neatly waiting
in a queue until they can obtain the lock on the mutex.

One might even picture this process as follows:

Best Practices

[148]

The reality is of course less pretty, mostly owing to the practical limitations imposed on us
by the hardware. One obvious limitation is that synchronization primitives aren't free. Even
though they are implemented in the hardware, it takes multiple calls to make them work.

The two most common ways to implement mutexes in the hardware is to use either the test-
and-set (TAS) or compare-and-swap (CAS) CPU features.

Test-and-set is usually implemented as two assembly-level instructions, which are executed
autonomously, meaning that they cannot be interrupted. The first instruction tests whether
a certain memory area is set to a 1 or zero. The second instruction is executed only when the
value is a zero (false). This means that the mutex was not locked yet. The second
instruction thus sets the memory area to a 1, locking the mutex.

In pseudo-code, this would look like this:

bool TAS(bool lock) {
 if (lock) {
 return true;
 }
 else {
 lock = true;
 return false;
 }
}

Compare-and-swap is a lesser used variation on this, which performs a comparison
operation on a memory location and a given value, only replacing the contents of that
memory location if the first two match:

bool CAS(int* p, int old, int new) {
 if (*p != old) {
 return false;
 }
 *p = new;
 return true;
}

In either case, one would have to actively repeat either function until a positive value is
returned:

volatile bool lock = false;
 void critical() {
 while (TAS(&lock) == false);
 // Critical section
 lock = 0;
 }

Best Practices

[149]

Here, a simple while loop is used to constantly poll the memory area (marked as volatile to
prevent possibly problematic compiler optimizations). Generally, an algorithm is used for
this which slowly reduces the rate at which it is being polled. This is to reduce the amount
of pressure on the processor and memory systems.

This makes it clear that the use of a mutex is not free, but that each thread which waits for a
mutex lock actively uses resources. As a result, the general rules here are:

Ensure that threads wait for mutexes and similar locks as briefly as possible.
Use condition variables or timers for longer waiting periods.

Locks are fancy mutexes
As we saw earlier in the section on mutexes, there are some issues to keep in mind when
using mutexes. Naturally these also apply when using locks and other mechanisms based
on mutexes, even if some of these issues are smoothed over by these APIs.

One of the things one may get confused about when first using multithreading APIs is what
the actual difference is between the different synchronization types. As we covered earlier
in this chapter, mutexes underlie virtually all synchronization mechanisms, merely differing
in the way that they use mutexes to implement the provided functionality.

The important thing here is that they are not distinct synchronization mechanisms, but
merely specializations of the basic mutex type. Whether one would use a regular mutex, a
read/write lock, a semaphore - or even something as esoteric as a reentrant (recursive)
mutex or lock - depends fully on the particular problem which one is trying to solve.

For the scheduler, we first encountered in Chapter 4, Thread Aynchronization and
Communication, we used regular mutexes to protect the data structures containing the
queued worker threads and requests. Since any access of either data structure would likely
not only involve reading actions, but also the manipulation of the structure, it would not
make sense there to use read/write locks. Similarly, recursive locks would not serve any
purpose over the humble mutex.

For each synchronization problem, one therefore has to ask the following questions:

Which requirements do I have?
Which synchronization mechanism best fits these requirements?

Best Practices

[150]

It's therefore attractive to go for a complex type, but generally it's best to stick with the
simpler type which fulfills all the requirements. When it comes to debugging one's
implementation, precious time can be saved over a fancier implementation.

Threads versus the future
Recently it has become popular to advise against the use of threads, instead advocating the
use of other asynchronous processing mechanisms, such as promise. The reasons behind
this are that the use of threads and the synchronization involved is complex and error-
prone. Often one just wants to run a task in parallel and not concern oneself with how the
result is obtained.

For simple tasks which would run only briefly, this can certainly make sense. The main
advantage of a thread-based implementation will always be that one can fully customize its
behavior. With a promise, one sends in a task to run and at the end, one gets the result out
of a future instance. This is convenient for simple tasks, but obviously does not cover a lot
of situations.

The best approach here is to first learn threads and synchronization mechanisms well, along
with their limitations. Only after that does it really make sense to consider whether one
wishes to use a promise, packaged_task, or a full-blown thread.

Another major consideration with these fancier, future-based APIs is that they are heavily
template-based, which can make the debugging and troubleshooting of any issues which
may occur significantly less easy than when using the more straightforward and low-level
APIs.

Static order of initialization
Static variables are variables which are declared only once, essentially existing in a global
scope, though potentially only shared between instances of a particular class. It's also
possible to have classes which are completely static:

class Foo {
 static std::map<int, std::string> strings;
 static std::string oneString;

public:
 static void init(int a, std::string b, std::string c) {
 strings.insert(std::pair<int, std::string>(a, b));
 oneString = c;

Best Practices

[151]

 }
};

std::map<int, std::string> Foo::strings;
std::string Foo::oneString;

As we can see here, static variables along with static functions seem like a very simple, yet
powerful concept. While at its core this is true, there's a major issue which will catch the
unwary when it comes to static variables and the initialization of classes. This is in the form
of initialization order.

Imagine what happens if we wish to use the preceding class from another class' static
initialization, like this:

class Bar {
 static std::string name;
 static std::string initName();

public:
 void init();
};

// Static initializations.
std::string Bar::name = Bar::initName();

std::string Bar::initName() {
 Foo::init(1, "A", "B");
 return "Bar";
}

While this may seem like it would work fine, adding the first string to the class' map
structure with the integer as key means there is a very good chance that this code will crash.
The reason for this is simple, there is no guarantee that Foo::string is initialized at the
point when we call Foo::init(). Trying to use an uninitialized map structure will thus
lead to an exception.

In short, the initialization order of static variables is basically random, leading to non-
deterministic behavior if this is not taken into account.

The solution to this problem is fairly simple. Basically, the goal is to make the initialization
of more complex static variables explicit instead of implicit like in the preceding example.
For this we modify the Foo class:

class Foo {
 static std::map<int, std::string>& strings();

Best Practices

[152]

 static std::string oneString;

public:
 static void init(int a, std::string b, std::string c) {
 static std::map<int, std::string> stringsStatic = Foo::strings();
 stringsStatic.insert(std::pair<int, std::string>(a, b));
 oneString = c;
 }
};

std::string Foo::oneString;

std::map<int, std::string>& Foo::strings() {
 static std::map<int, std::string>* stringsStatic = new std::map<int,
std::string>();
 return *stringsStatic;
}

Starting at the top, we see that we no longer define the static map directly. Instead, we have
a private function with the same name. This function's implementation is found at the
bottom of this sample code. In it, we have a static pointer to a map structure with the
familiar map definition.

When this function is called, a new map is created when there's no instance yet, due to it
being a static variable. In the modified init() function, we see that we call the strings()
function to obtain a reference to this instance. This is the explicit initialization part, as
calling the function will always ensure that the map structure is initialized before we use it,
solving the earlier problem we had.

We also see a small optimization here: the stringsStatic variable we create is also static,
meaning that we will only ever call the strings() function once. This makes repeated
function calls unnecessary and regains the speed we would have had with the previous
simple--but unstable--implementation.

The essential rule with static variable initialization is thus, always use explicit initialization
for non-trivial static variables.

Best Practices

[153]

Summary
In this chapter, we looked at a number of good practices and rules to keep in mind when
writing multithreaded code, along with some general advice. At this point, one should be
able to avoid some of the bigger pitfalls and major sources of confusion when writing such
code.

In the next chapter, we will be looking at how to use the underlying hardware to our
advantage with atomic operations, along with the <atomics> header that was also
introduced with C++11.

8
Atomic Operations - Working

with the Hardware
A lot of optimization and thread-safety depends on one's understanding of the underlying
hardware: from aligned memory access on some architectures, to knowing which data sizes
and thus C++ types can be safely addressed without performance penalties or the need for
mutexes and similar.

This chapter looks at how one can make use of the characteristics of a number of processor
architectures in order to, for example, prevent the use of mutexes where atomic operations
would prevent any access conflicts regardless. Compiler-specific extensions such as those in
GCC are also examined.

Topics in this chapter include:

The types of atomic operations and how to use them
How to target a specific processor architecture
Compiler-based atomic operations

Atomic operations
Briefly put, an atomic operation is an operation which the processor can execute with a
single instruction. This makes it atomic in the sense that nothing (barring interrupts) can
interfere with it, or change any variables or data it may be using.

Applications include guaranteeing the order of instruction execution, lock-free
implementations, and related uses where instruction execution order and memory access
guarantees are important.

Atomic Operations - Working with the Hardware

[155]

Before the 2011 C++ standard, the access to such atomic operations as provided by the
processor was only provided by the compiler, using extensions.

Visual C++
For Microsoft's MSVC compiler there are the interlocked functions, as summarized from the
MSDN documentation, starting with the adding features:

Interlocked function Description

InterlockedAdd Performs an atomic addition operation on the specified LONG
values.

InterlockedAddAcquire Performs an atomic addition operation on the specified LONG
values. The operation is performed with acquire memory
ordering semantics.

InterlockedAddRelease Performs an atomic addition operation on the specified LONG
values. The operation is performed with release memory
ordering semantics.

InterlockedAddNoFence Performs an atomic addition operation on the specified LONG
values. The operation is performed atomically, but without
using memory barriers (covered in this chapter).

These are the 32-bit versions of this feature. There are also 64-bit versions of this and other
methods in the API. Atomic functions tend to be focused on a specific variable type, but
variations in this API have been left out of this summary to keep it brief.

We can also see the acquire and release variations. These provide the guarantee that the
respective read or write access will be protected from memory reordering (on a hardware
level) with any subsequent read or write operation. Finally, the no fence variation (also
known as a memory barrier) performs the operation without the use of any memory
barriers.

Normally CPUs perform instructions (including memory reads and writes) out of order to
optimize performance. Since this type of behavior is not always desirable, memory barriers
were added to prevent this instruction reordering.

Atomic Operations - Working with the Hardware

[156]

Next is the atomic AND feature:

Interlocked function Description

InterlockedAnd Performs an atomic AND operation on the specified LONG
values.

InterlockedAndAcquire Performs an atomic AND operation on the specified LONG
values. The operation is performed with acquire memory
ordering semantics.

InterlockedAndRelease Performs an atomic AND operation on the specified LONG
values. The operation is performed with release memory
ordering semantics.

InterlockedAndNoFence Performs an atomic AND operation on the specified LONG
values. The operation is performed atomically, but without
using memory barriers.

The bit-test features are as follows:

Interlocked function Description

InterlockedBitTestAndComplement Tests the specified bit of the specified LONG
value and complements it.

InterlockedBitTestAndResetAcquire Tests the specified bit of the specified LONG
value and sets it to 0. The operation is
atomic, and it is performed with acquire
memory ordering semantics.

InterlockedBitTestAndResetRelease Tests the specified bit of the specified LONG
value and sets it to 0. The operation is
atomic, and it is performed using memory
release semantics.

InterlockedBitTestAndSetAcquire Tests the specified bit of the specified LONG
value and sets it to 1. The operation is
atomic, and it is performed with acquire
memory ordering semantics.

Atomic Operations - Working with the Hardware

[157]

Interlocked function Description

InterlockedBitTestAndSetRelease Tests the specified bit of the specified LONG
value and sets it to 1. The operation is
atomic, and it is performed with release
memory ordering semantics.

InterlockedBitTestAndReset Tests the specified bit of the specified LONG
value and sets it to 0.

InterlockedBitTestAndSet Tests the specified bit of the specified LONG
value and sets it to 1.

The comparison features can be listed as shown:

Interlocked function Description

InterlockedCompareExchange Performs an atomic compare-and-exchange operation on the
specified values. The function compares two specified 32-bit
values and exchanges with another 32-bit value based on the
outcome of the comparison.

InterlockedCompareExchangeAcquire Performs an atomic compare-and-exchange operation on the
specified values. The function compares two specified 32-bit
values and exchanges with another 32-bit value based on the
outcome of the comparison. The operation is performed with
acquire memory ordering semantics.

InterlockedCompareExchangeRelease Performs an atomic compare-and-exchange operation on the
specified values. The function compares two specified 32-bit
values and exchanges with another 32-bit value based on the
outcome of the comparison. The exchange is performed with
release memory ordering semantics.

InterlockedCompareExchangeNoFence Performs an atomic compare-and-exchange operation on the
specified values. The function compares two specified 32-bit
values and exchanges with another 32-bit value based on the
outcome of the comparison. The operation is performed
atomically, but without using memory barriers.

InterlockedCompareExchangePointer Performs an atomic compare-and-exchange operation on the
specified pointer values. The function compares two specified
pointer values and exchanges with another pointer value
based on the outcome of the comparison.

InterlockedCompareExchangePointerAcquire Performs an atomic compare-and-exchange operation on the
specified pointer values. The function compares two specified
pointer values and exchanges with another pointer value
based on the outcome of the comparison. The operation is
performed with acquire memory ordering semantics.

Atomic Operations - Working with the Hardware

[158]

Interlocked function Description

InterlockedCompareExchangePointerRelease Performs an atomic compare-and-exchange operation on the
specified pointer values. The function compares two specified
pointer values and exchanges with another pointer value
based on the outcome of the comparison. The operation is
performed with release memory ordering semantics.

InterlockedCompareExchangePointerNoFence Performs an atomic compare-and-exchange operation on the
specified values. The function compares two specified pointer
values and exchanges with another pointer value based on
the outcome of the comparison. The operation is performed
atomically, but without using memory barriers

The decrement features are:

Interlocked function Description

InterlockedDecrement Decrements (decreases by one) the value of the
specified 32-bit variable as an atomic operation.

InterlockedDecrementAcquire Decrements (decreases by one) the value of the
specified 32-bit variable as an atomic operation. The
operation is performed with acquire memory
ordering semantics.

InterlockedDecrementRelease Decrements (decreases by one) the value of the
specified 32-bit variable as an atomic operation. The
operation is performed with release memory ordering
semantics.

InterlockedDecrementNoFence Decrements (decreases by one) the value of the
specified 32-bit variable as an atomic operation. The
operation is performed atomically, but without using
memory barriers.

Atomic Operations - Working with the Hardware

[159]

The exchange (swap) features are:

Interlocked function Description

InterlockedExchange Sets a 32-bit variable to the specified value as
an atomic operation.

InterlockedExchangeAcquire Sets a 32-bit variable to the specified value as
an atomic operation. The operation is
performed with acquire memory ordering
semantics.

InterlockedExchangeNoFence Sets a 32-bit variable to the specified value as
an atomic operation. The operation is
performed atomically, but without using
memory barriers.

InterlockedExchangePointer Atomically exchanges a pair of pointer values.

InterlockedExchangePointerAcquire Atomically exchanges a pair of pointer values.
The operation is performed with acquire
memory ordering semantics.

InterlockedExchangePointerNoFence Atomically exchanges a pair of addresses. The
operation is performed atomically, but
without using memory barriers.

InterlockedExchangeSubtract Performs an atomic subtraction of two values.

InterlockedExchangeAdd Performs an atomic addition of two 32-bit
values.

InterlockedExchangeAddAcquire Performs an atomic addition of two 32-bit
values. The operation is performed with
acquire memory ordering semantics.

InterlockedExchangeAddRelease Performs an atomic addition of two 32-bit
values. The operation is performed with
release memory ordering semantics.

InterlockedExchangeAddNoFence Performs an atomic addition of two 32-bit
values. The operation is performed
atomically, but without using memory
barriers.

Atomic Operations - Working with the Hardware

[160]

The increment features are:

Interlocked function Description

InterlockedIncrement Increments (increases by one) the value of the
specified 32-bit variable as an atomic operation.

InterlockedIncrementAcquire Increments (increases by one) the value of the
specified 32-bit variable as an atomic operation. The
operation is performed using acquire memory
ordering semantics.

InterlockedIncrementRelease Increments (increases by one) the value of the
specified 32-bit variable as an atomic operation. The
operation is performed using release memory
ordering semantics.

InterlockedIncrementNoFence Increments (increases by one) the value of the
specified 32-bit variable as an atomic operation. The
operation is performed atomically, but without using
memory barriers.

The OR feature:

Interlocked function Description

InterlockedOr Performs an atomic OR operation on the specified LONG values.

InterlockedOrAcquire Performs an atomic OR operation on the specified LONG values.
The operation is performed with acquire memory ordering
semantics.

InterlockedOrRelease Performs an atomic OR operation on the specified LONG values.
The operation is performed with release memory ordering
semantics.

InterlockedOrNoFence Performs an atomic OR operation on the specified LONG values.
The operation is performed atomically, but without using
memory barriers.

Atomic Operations - Working with the Hardware

[161]

Finally, the exclusive OR (XOR) features are:

Interlocked function Description

InterlockedXor Performs an atomic XOR operation on the specified LONG
values.

InterlockedXorAcquire Performs an atomic XOR operation on the specified LONG
values. The operation is performed with acquire memory
ordering semantics.

InterlockedXorRelease Performs an atomic XOR operation on the specified LONG
values. The operation is performed with release memory
ordering semantics.

InterlockedXorNoFence Performs an atomic XOR operation on the specified LONG
values. The operation is performed atomically, but without
using memory barriers.

GCC
Like Visual C++, GCC also comes with a set of built-in atomic functions. These differ based
on the underlying architecture that the GCC version and the standard library one uses.
Since GCC is used on a considerably larger number of platforms and operating systems
than VC++, this is definitely a big factor when considering portability.

For example, not every built-in atomic function provided on the x86 platform will be
available on ARM, partially due to architectural differences, including variations of the
specific ARM architecture. For example, ARMv6, ARMv7, or the current ARMv8, along
with the Thumb instruction set, and so on.

Before the C++11 standard, GCC used __sync-prefixed extensions for atomics:

type __sync_fetch_and_add (type *ptr, type value, ...)
type __sync_fetch_and_sub (type *ptr, type value, ...)
type __sync_fetch_and_or (type *ptr, type value, ...)
type __sync_fetch_and_and (type *ptr, type value, ...)
type __sync_fetch_and_xor (type *ptr, type value, ...)
type __sync_fetch_and_nand (type *ptr, type value, ...)

Atomic Operations - Working with the Hardware

[162]

These operations fetch a value from memory and perform the specified operation on it,
returning the value that was in memory. These all use a memory barrier.

type __sync_add_and_fetch (type *ptr, type value, ...)
type __sync_sub_and_fetch (type *ptr, type value, ...)
type __sync_or_and_fetch (type *ptr, type value, ...)
type __sync_and_and_fetch (type *ptr, type value, ...)
type __sync_xor_and_fetch (type *ptr, type value, ...)
type __sync_nand_and_fetch (type *ptr, type value, ...)

These operations are similar to the first set, except they return the new value after the
specified operation.

bool __sync_bool_compare_and_swap (type *ptr, type oldval, type newval,
...)
type __sync_val_compare_and_swap (type *ptr, type oldval, type newval, ...)

These comparison operations will write the new value if the old value matches the provided
value. The Boolean variation returns true if the new value has been written.

__sync_synchronize (...)

This function creates a full memory barrier.

type __sync_lock_test_and_set (type *ptr, type value, ...)

This method is actually an exchange operation unlike what the name suggests. It updates
the pointer value and returns the previous value. This uses not a full memory barrier, but
an acquire barrier, meaning that it does not release the barrier.

void __sync_lock_release (type *ptr, ...)

This function releases the barrier obtained by the previous method.

To adapt to the C++11 memory model, GCC added the __atomic built-in methods, which
also changes the API considerably:

type __atomic_load_n (type *ptr, int memorder)
void __atomic_load (type *ptr, type *ret, int memorder)
void __atomic_store_n (type *ptr, type val, int memorder)
void __atomic_store (type *ptr, type *val, int memorder)
type __atomic_exchange_n (type *ptr, type val, int memorder)
void __atomic_exchange (type *ptr, type *val, type *ret, int memorder)
bool __atomic_compare_exchange_n (type *ptr, type *expected, type desired,
bool weak, int success_memorder, int failure_memorder)
bool __atomic_compare_exchange (type *ptr, type *expected, type *desired,
bool weak, int success_memorder, int failure_memorder)

Atomic Operations - Working with the Hardware

[163]

First are the generic load, store, and exchange functions. They are fairly self-explanatory.
Load functions read a value in memory, store functions store a value in memory, and
exchange functions swap the existing value with a new value. Compare and exchange
functions make the swapping conditional.

type __atomic_add_fetch (type *ptr, type val, int memorder)
type __atomic_sub_fetch (type *ptr, type val, int memorder)
type __atomic_and_fetch (type *ptr, type val, int memorder)
type __atomic_xor_fetch (type *ptr, type val, int memorder)
type __atomic_or_fetch (type *ptr, type val, int memorder)
type __atomic_nand_fetch (type *ptr, type val, int memorder)

These functions are essentially the same as in the old API, returning the result of the specific
operation.

type __atomic_fetch_add (type *ptr, type val, int memorder)
type __atomic_fetch_sub (type *ptr, type val, int memorder)
type __atomic_fetch_and (type *ptr, type val, int memorder)
type __atomic_fetch_xor (type *ptr, type val, int memorder)
type __atomic_fetch_or (type *ptr, type val, int memorder)
type __atomic_fetch_nand (type *ptr, type val, int memorder)

And again, the same functions, updated for the new API. These return the original value
(fetch before operation).

bool __atomic_test_and_set (void *ptr, int memorder)

Unlike the similarly named function in the old API, this function performs a real test and set
operation instead of the exchange operation of the old API's function, which still requires
one to release the memory barrier afterwards. The test is for some defined value.

void __atomic_clear (bool *ptr, int memorder)

This function clears the pointer address, setting it to 0.

void __atomic_thread_fence (int memorder)

A synchronization memory barrier (fence) between threads can be created using this
function.

void __atomic_signal_fence (int memorder)

Atomic Operations - Working with the Hardware

[164]

This function creates a memory barrier between a thread and signal handlers within that
same thread.

bool __atomic_always_lock_free (size_t size, void *ptr)

The function checks whether objects of the specified size will always create lock-free atomic
instructions for the current processor architecture.

bool __atomic_is_lock_free (size_t size, void *ptr)

This is essentially the same as the previous function.

Memory order
Memory barriers (fences) are not always used in the C++11 memory model for atomic
operations. In the GCC built-in atomics API, this is reflected in the memorder parameter in
its functions. The possible values for this map directly to the values in the C++11 atomics
API:

__ATOMIC_RELAXED: Implies no inter-thread ordering constraints.
__ATOMIC_CONSUME: This is currently implemented using the stronger
__ATOMIC_ACQUIRE memory order because of a deficiency in C++11's semantics
for memory_order_consume.
__ATOMIC_ACQUIRE: Creates an inter-thread happens-before constraint from the
release (or stronger) semantic store to this acquire load
__ATOMIC_RELEASE: Creates an inter-thread happens-before constraint to
acquire (or stronger) semantic loads that read from this release store
__ATOMIC_ACQ_REL: Combines the effects of both __ATOMIC_ACQUIRE and
__ATOMIC_RELEASE.
__ATOMIC_SEQ_CST: Enforces total ordering with all other __ATOMIC_SEQ_CST
operations.

The preceding list was copied from the GCC manual's chapter on atomics for GCC 7.1.
Along with the comments in that chapter, it makes it quite clear that trade-offs were made
when implementing both the C++11 atomics support within its memory model and in the
compiler's implementation.

Atomic Operations - Working with the Hardware

[165]

Since atomics rely on the underlying hardware support, there will never be a single piece of
code using atomics that will work across a wide variety of architectures.

Other compilers
There are many more compiler toolchains for C/C++ than just VC++ and GCC, of course,
including the Intel Compiler Collection (ICC) and other, usually proprietary tools.. These all
have their own collection of built-in atomic functions. Fortunately, thanks to the C++11
standard, we now have a fully portable standard for atomics between compilers. Generally,
this means that outside of very specific use cases (or maintenance of existing code), one
would use the C++ standard over compiler-specific extensions.

C++11 atomics
In order to use the native C++11 atomics features, all one has to do is include the <atomic>
header. This makes available the atomic class, which uses templates to adapt itself to the
required type, with a large number of predefined typedefs:

Typedef name Full specialization

std::atomic_bool std::atomic<bool>

std::atomic_char std::atomic<char>

std::atomic_schar std::atomic<signed char>

std::atomic_uchar std::atomic<unsigned char>

std::atomic_short std::atomic<short>

std::atomic_ushort std::atomic<unsigned short>

std::atomic_int std::atomic<int>

std::atomic_uint std::atomic<unsigned int>

std::atomic_long std::atomic<long>

std::atomic_ulong std::atomic<unsigned long>

std::atomic_llong std::atomic<long long>

std::atomic_ullong std::atomic<unsigned long long>

std::atomic_char16_t std::atomic<char16_t>

Atomic Operations - Working with the Hardware

[166]

std::atomic_char32_t std::atomic<char32_t>

std::atomic_wchar_t std::atomic<wchar_t>

std::atomic_int8_t std::atomic<std::int8_t>

std::atomic_uint8_t std::atomic<std::uint8_t>

std::atomic_int16_t std::atomic<std::int16_t>

std::atomic_uint16_t std::atomic<std::uint16_t>

std::atomic_int32_t std::atomic<std::int32_t>

std::atomic_uint32_t std::atomic<std::uint32_t>

std::atomic_int64_t std::atomic<std::int64_t>

std::atomic_uint64_t std::atomic<std::uint64_t>

std::atomic_int_least8_t std::atomic<std::int_least8_t>

std::atomic_uint_least8_t std::atomic<std::uint_least8_t>

std::atomic_int_least16_t std::atomic<std::int_least16_t>

std::atomic_uint_least16_t std::atomic<std::uint_least16_t>

std::atomic_int_least32_t std::atomic<std::int_least32_t>

std::atomic_uint_least32_t std::atomic<std::uint_least32_t>

std::atomic_int_least64_t std::atomic<std::int_least64_t>

std::atomic_uint_least64_t std::atomic<std::uint_least64_t>

std::atomic_int_fast8_t std::atomic<std::int_fast8_t>

std::atomic_uint_fast8_t std::atomic<std::uint_fast8_t>

std::atomic_int_fast16_t std::atomic<std::int_fast16_t>

std::atomic_uint_fast16_t std::atomic<std::uint_fast16_t>

std::atomic_int_fast32_t std::atomic<std::int_fast32_t>

std::atomic_uint_fast32_t std::atomic<std::uint_fast32_t>

std::atomic_int_fast64_t std::atomic<std::int_fast64_t>

std::atomic_uint_fast64_t std::atomic<std::uint_fast64_t>

std::atomic_intptr_t std::atomic<std::intptr_t>

std::atomic_uintptr_t std::atomic<std::uintptr_t>

Atomic Operations - Working with the Hardware

[167]

std::atomic_size_t std::atomic<std::size_t>

std::atomic_ptrdiff_t std::atomic<std::ptrdiff_t>

std::atomic_intmax_t std::atomic<std::intmax_t>

std::atomic_uintmax_t std::atomic<std::uintmax_t>

This atomic class defines the following generic functions:

Function Description

operator= Assigns a value to an atomic object.

is_lock_free Returns true if the atomic object is lock-free.

store Replaces the value of the atomic object with a non-atomic
argument, atomically.

load Atomically obtains the value of the atomic object.

operator T Loads a value from an atomic object.

exchange Atomically replaces the value of the object with the new
value and returns the old value.

compare_exchange_weak
compare_exchange_strong

Atomically compares the value of the object and swaps
values if equal, or else returns the current value.

With the C++17 update, the is_always_lock_free constant is added. This allows one to
inquire whether the type is always lock-free.

Finally, we have the specialized atomic functions:

Function Description

fetch_add Atomically adds the argument to the value stored in the atomic
object and returns the old value.

fetch_sub Atomically subtracts the argument from the value stored in the
atomic object and returns the old value.

fetch_and Atomically performs bitwise AND between the argument and the
value of the atomic object and returns the old value.

fetch_or Atomically performs bitwise OR between the argument and the value
of the atomic object and returns the old value.

Atomic Operations - Working with the Hardware

[168]

fetch_xor Atomically performs bitwise XOR between the argument and the
value of the atomic object and returns the old value.

operator++
operator++(int)
operator--
operator--(int)

Increments or decrements the atomic value by one.

operator+=
operator-=
operator&=
operator|=
operator^=

Adds, subtracts, or performs a bitwise AND, OR, XOR operation with
the atomic value.

Example
A basic example using fetch_add would look like this:

#include <iostream>
#include <thread>
#include <atomic>
std::atomic<long long> count;
void worker() {
 count.fetch_add(1, std::memory_order_relaxed);
}
int main() {
 std::thread t1(worker);
 std::thread t2(worker);
 std::thread t3(worker);
 std::thread t4(worker);
 std::thread t5(worker);
 t1.join();
 t2.join();
 t3.join();
 t4.join();
 t5.join();
 std::cout << "Count value:" << count << '\n';
}

The result of this example code would be 5. As we can see here, we can implement a basic
counter this way with atomics, instead of having to use any mutexes or similar in order to
provide thread synchronization.

Atomic Operations - Working with the Hardware

[169]

Non-class functions
In addition to the atomic class, there are also a number of template-based functions
defined in the <atomic> header which we can use in a manner more akin to the compiler's
built-in atomic functions:

Function Description

atomic_is_lock_free Checks whether the atomic type's
operations are lock-free.

atomic_storeatomic_store_explicit Atomically replaces the value of the
atomic object with a non-atomic
argument.

atomic_load
atomic_load_explicit

Atomically obtains the value stored in
an atomic object.

atomic_exchange
atomic_exchange_explicit

Atomically replaces the value of the
atomic object with a non-atomic
argument and returns the old value of
atomic.

atomic_compare_exchange_weak
atomic_compare_exchange_weak_explicit
atomic_compare_exchange_strong
atomic_compare_exchange_strong_explicit

Atomically compares the value of the
atomic object with a non-atomic
argument and performs an atomic
exchange if equal or atomic load if
not.

atomic_fetch_add
atomic_fetch_add_explicit

Adds a non-atomic value to an
atomic object and obtains the
previous value of atomic.

atomic_fetch_sub
atomic_fetch_sub_explicit

Subtracts a non-atomic value from an
atomic object and obtains the
previous value of atomic.

atomic_fetch_and
atomic_fetch_and_explicit

Replaces the atomic object with the
result of logical AND with a non-atomic
argument and obtains the previous
value of the atomic.

Atomic Operations - Working with the Hardware

[170]

atomic_fetch_or
atomic_fetch_or_explicit

Replaces the atomic object with the
result of logical OR with a non-atomic
argument and obtains the previous
value of atomic.

atomic_fetch_xor
atomic_fetch_xor_explicit

Replaces the atomic object with the
result of logical XOR with a non-atomic
argument and obtains the previous
value of atomic.

atomic_flag_test_and_set
atomic_flag_test_and_set_explicit

Atomically sets the flag to true and
returns its previous value.

atomic_flag_clear
atomic_flag_clear_explicit

Atomically sets the value of the flag to
false.

atomic_init Non-atomic initialization of a default-
constructed atomic object.

kill_dependency Removes the specified object from the
std::memory_order_consume

dependency tree.

atomic_thread_fence Generic memory order-dependent
fence synchronization primitive.

atomic_signal_fence Fence between a thread and a signal
handler executed in the same thread.

The difference between the regular and explicit functions is that the latter allows one to
actually set the memory order to use. The former always uses memory_order_seq_cst as
the memory order.

Example
In this example using atomic_fetch_sub, an indexed container is processed by multiple
threads concurrently, without the use of locks:

#include <string>
#include <thread>
#include <vector>
#include <iostream>
#include <atomic>
#include <numeric>

Atomic Operations - Working with the Hardware

[171]

const int N = 10000;
std::atomic<int> cnt;
std::vector<int> data(N);
void reader(int id) {
 for (;;) {
 int idx = atomic_fetch_sub_explicit(&cnt, 1,
std::memory_order_relaxed);
 if (idx >= 0) {
 std::cout << "reader " << std::to_string(id) <<
" processed item "
 << std::to_string(data[idx]) <<
'\n';
 }
 else {
 std::cout << "reader " << std::to_string(id) <<
" done.\n";
 break;
 }
 }
}
int main() {
 std::iota(data.begin(), data.end(), 1);
 cnt = data.size() - 1;
 std::vector<std::thread> v;
 for (int n = 0; n < 10; ++n) {
 v.emplace_back(reader, n);
 }

 for (std::thread& t : v) {
 t.join();
 }
}

This example code uses a vector filled with integers of size N as the data source, filling it
with 1s. The atomic counter object is set to the size of the data vector. After this, 10 threads
are created (initialized in place using the vector's emplace_back C++11 feature), which run
the reader function.

In that function, we read the current value of the index counter from memory using the
atomic_fetch_sub_explicit function, which allows us to use the
memory_order_relaxed memory order. This function also subtracts the value we pass
from this old value, counting the index down by 1.

So long as the index number we obtain this way is higher or equal to zero, the function
continues, otherwise it will quit. Once all the threads have finished, the application exits.

Atomic Operations - Working with the Hardware

[172]

Atomic flag
std::atomic_flag is an atomic Boolean type. Unlike the other specializations of the
atomic class, it is guaranteed to be lock-free. It does not however, offer any load or store
operations.

Instead, it offers the assignment operator, and functions to either clear, or test_and_set
the flag. The former thereby sets the flag to false, and the latter will test and set it to true.

Memory order
This property is defined as an enumeration in the <atomic> header:

enum memory_order {
 memory_order_relaxed,
 memory_order_consume,
 memory_order_acquire,
 memory_order_release,
 memory_order_acq_rel,
 memory_order_seq_cst
};

In the GCC section, we already touched briefly on the topic of memory order. As mentioned
there, this is one of the parts where the characteristics of the underlying hardware
architecture surface somewhat.

Basically, memory order determines how non-atomic memory accesses are to be ordered
(memory access order) around an atomic operation. What this affects is how different
threads will see the data in memory as they're executing their instructions:

Enum Description

memory_order_relaxed Relaxed operation: there are no synchronization or ordering
constraints imposed on other reads or writes, only this
operation's atomicity is guaranteed.

memory_order_consume A load operation with this memory order performs a consume
operation on the affected memory location: no reads or writes in
the current thread dependent on the value currently loaded
can be reordered before this load. Writes to data-dependent
variables in other threads that release the same atomic variable
are visible in the current thread. On most platforms, this affects
compiler optimizations only.

Atomic Operations - Working with the Hardware

[173]

memory_order_acquire A load operation with this memory order performs the acquire
operation on the affected memory location: no reads or writes in
the current thread can be reordered before this load. All writes
in other threads that release the same atomic variable are
visible in the current thread.

memory_order_release A store operation with this memory order performs the release
operation: no reads or writes in the current thread can be
reordered after this store. All writes in the current thread are
visible in other threads that acquire the same atomic variable
and writes that carry a dependency into the atomic variable
become visible in other threads that consume the same atomic.

memory_order_acq_rel A read-modify-write operation with this memory order is both
an acquire operation and a release operation. No memory reads or
writes in the current thread can be reordered before or after
this store. All writes in other threads that release the same
atomic variable are visible before the modification and the
modification is visible in other threads that acquire the same
atomic variable.

memory_order_seq_cst Any operation with this memory order is both an acquire
operation and a release operation, plus a single total order exists
in which all threads observe all modifications in the same
order.

Relaxed ordering
With relaxed memory ordering, no order is enforced among concurrent memory accesses.
All that this type of ordering guarantees is atomicity and modification order.

A typical use for this type of ordering is for counters, whether incrementing--or
decrementing, as we saw earlier in the example code in the previous section.

Release-acquire ordering
If an atomic store in thread A is tagged memory_order_release and an atomic load in
thread B from the same variable is tagged memory_order_acquire, all memory writes
(non-atomic and relaxed atomic) that happened before the atomic store from the point of
view of thread A, become visible side-effects in thread B. That is, once the atomic load has
been completed, thread B is guaranteed to see everything thread A wrote to memory.

Atomic Operations - Working with the Hardware

[174]

This type of operation is automatic on so-called strongly ordered architectures, including
x86, SPARC, and POWER. Weakly-ordered architectures, such as ARM, PowerPC, and
Itanium, will require the use of memory barriers here.

Typical applications of this type of memory ordering include mutual exclusion
mechanisms, such as a mutex or atomic spinlock.

Release-consume ordering
If an atomic store in thread A is tagged memory_order_release and an atomic load in
thread B from the same variable is tagged memory_order_consume, all memory writes
(non-atomic and relaxed atomic) that are dependency-ordered before the atomic store from the
point of view of thread A, become visible side-effects within those operations in thread B into
which the load operation carries dependency. That is, once the atomic load has been
completed, those operators and functions in thread B that use the value obtained from the
load are guaranteed to see what thread A wrote to memory.

This type of ordering is automatic on virtually all architectures. The only major exception is
the (obsolete) Alpha architecture. A typical use case for this type of ordering would be read
access to data that rarely gets changed.

As of C++17, this type of memory ordering is being revised, and the use of
memory_order_consume is temporarily discouraged.

Sequentially-consistent ordering
Atomic operations tagged memory_order_seq_cst not only order memory the same way
as release/acquire ordering (everything that happened before a store in one thread becomes
a visible side effect in the thread that did a load), but also establishes a single total modification
order of all atomic operations that are so tagged.

This type of ordering may be necessary for situations where all consumers must observe the
changes being made by other threads in exactly the same order. It requires full memory
barriers as a consequence on multi-core or multi-CPU systems.

As a result of such a complex setup, this type of ordering is significantly slower than the
other types. It also requires that every single atomic operation has to be tagged with this
type of memory ordering, or the sequential ordering will be lost.

Atomic Operations - Working with the Hardware

[175]

Volatile keyword
The volatile keyword is probably quite familiar to anyone who has ever written complex
multithreaded code. Its basic use is to tell the compiler that the relevant variable should
always be loaded from memory, never making assumptions about its value. It also ensures
that the compiler will not make any aggressive optimizations to the variable.

For multithreaded applications, it is generally ineffective, however, its use is discouraged.
The main issue with the volatile specification is that it does not define a multithreaded
memory model, meaning that the result of this keyword may not be deterministic across
platforms, CPUs and even toolchains.

Within the area of atomics, this keyword is not required, and in fact is unlikely to be
helpful. To guarantee that one obtains the current version of a variable that is shared
between multiple CPU cores and their caches, one would have to use an operation like
atomic_compare_exchange_strong, atomic_fetch_add, or atomic_exchange to let
the hardware fetch the correct and current value.

For multithreaded code, it is recommended to not use the volatile keyword and use atomics
instead, to guarantee proper behavior.

Summary
In this chapter, we looked at atomic operations and exactly how they are integrated into
compilers to allow one's code to work as closely with the underlying hardware as possible.
The reader will now be familiar with the types of atomic operations, the use of a memory
barrier (fencing), as well as the various types of memory ordering and their implications.

The reader is now capable of using atomic operations in their own code to accomplish lock-
free designs and to make proper use of the C++11 memory model.

In the next chapter, we will take everything we have learned so far and move away from
CPUs, instead taking a look at GPGPU, the general-purpose processing of data on video
cards (GPUs).

9
Multithreading with Distributed

Computing
Distributed computing was one of the original applications of multithreaded programming.
Back when every personal computer just contained a single processor with a single core,
government and research institutions, as well as some companies would have multi-
processor systems, often in the form of clusters. These would be capable of multithreaded
processing; by splitting tasks across processors, they could speed up various tasks,
including simulations, rendering of CGI movies, and the like.

Nowadays virtually every desktop-level or better system has more than a single processor
core, and assembling a number of systems together into a cluster is very easy, using cheap
Ethernet wiring. Combined with frameworks such as OpenMP and Open MPI, it's quite
easy to expand a C++ based (multithreaded) application to run on a distributed system.

Topics in this chapter include:

Integrating OpenMP and MPI in a multithreaded C++ application
Implementing a distributed, multithreaded application
Common applications and issues with distributed, multithreaded programming

Distributed computing, in a nutshell
When it comes to processing large datasets in parallel, it would be ideal if one could take
the data, chop it up into lots of small parts, and push it to a lot of threads, thus significantly
shortening the total time spent processing the said data.

Multithreading with Distributed Computing

[177]

The idea behind distributed computing is exactly this: on each node in a distributed system
one or more instances of our application run, whereby this application can either be single
or multithreaded. Due to the overhead of inter-process communication, it's generally more
efficient to use a multithreaded application, as well as due to other possible optimizations--
courtesy of resource sharing.

If one already has a multithreaded application ready to use, then one can move straight to
using MPI to make it work on a distributed system. Otherwise, OpenMP is a compiler
extension (for C/C++ and Fortran) which can make it relatively painless to make an
application multithreaded without refactoring.

To do this, OpenMP allows one to mark a common code segment, to be executed on all
slave threads. A master thread creates a number of slave threads which will concurrently
process that same code segment. A basic Hello World OpenMP application looks like this:

/**

 * FILE: omp_hello.c
 * DESCRIPTION:
 * OpenMP Example - Hello World - C/C++ Version
 * In this simple example, the master thread forks a parallel region.
 * All threads in the team obtain their unique thread number and print
it.
 * The master thread only prints the total number of threads. Two OpenMP
 * library routines are used to obtain the number of threads and each
 * thread's number.
 * AUTHOR: Blaise Barney 5/99
 * LAST REVISED: 04/06/05

***/
 #include <omp.h>
 #include <stdio.h>
 #include <stdlib.h>

 int main (int argc, char *argv[]) {
 int nthreads, tid;

 /* Fork a team of threads giving them their own copies of variables */
 #pragma omp parallel private(nthreads, tid) {
 /* Obtain thread number */
 tid = omp_get_thread_num();
 printf("Hello World from thread = %d\n", tid);

 /* Only master thread does this */
 if (tid == 0) {
 nthreads = omp_get_num_threads();
 printf("Number of threads = %d\n", nthreads);

Multithreading with Distributed Computing

[178]

 }

 } /* All threads join master thread and disband */
}

What one can easily tell from this basic sample is that OpenMP provides a C based API
through the <omp.h> header. We can also see the section that will be executed by each
thread, as marked by a #pragma omp preprocessor macro.

The advantage of OpenMP over the examples of multithreaded code which we saw in the
preceding chapters, is the ease with which a section of code can be marked as being
multithreaded without having to make any actual code changes. The obvious limitation that
comes with this is that every thread instance will execute the exact same code and further
optimization options are limited.

MPI
In order to schedule the execution of code on specific nodes, MPI (Message Passing
Interface) is commonly used. Open MPI is a free library implementation of this, and used
by many high-ranking supercomputers. MPICH is another popular implementation.

MPI itself is defined as a communication protocol for the programming of parallel
computers. It is currently at its third revision (MPI-3).

In summary, MPI offers the following basic concepts:

Communicators: A communicator object connects a group of processes within an
MPI session. It both assigns unique identifiers to processes and arranges
processes within an ordered topology.
Point-to-point operations: This type of operation allows for direct
communication between specific processes.
Collective functions: These functions involve broadcasting communications
within a process group. They can also be used in the reverse manner, which
would take the results from all processes in a group and, for example, sum them
on a single node. A more selective version would ensure that a specific data item
is sent to a specific node.
Derived datatype: Since not every node in an MPI cluster is guaranteed to have
the same definition, byte order, and interpretation of data types, MPI requires
that it is specified what type each data segment is, so that MPI can do data
conversion.

Multithreading with Distributed Computing

[179]

One-sided communications: These are operations which allow one to write or
read to or from remote memory, or perform a reduction operation across a
number of tasks without having to synchronize between tasks. This can be useful
for certain types of algorithms, such as those involving distributed matrix
multiplication.
Dynamic process management: This is a feature which allows MPI processes to
create new MPI processes, or establish communication with a newly created MPI
process.
Parallel I/O: Also called MPI-IO, this is an abstraction for I/O management on
distributed systems, including file access, for easy use with MPI.

Of these, MPI-IO, dynamic process management, and one-sided communication are MPI-2
features. Migration from MPI-1 based code and the incompatibility of dynamic process
management with some setups, along with many applications not requiring MPI-2 features,
means that uptake of MPI-2 has been relatively slow.

Implementations
The initial implementation of MPI was MPICH, by Argonne National Laboratory (ANL)
and Mississippi State University. It is currently one of the most popular implementations,
used as the foundation for MPI implementations, including those by IBM (Blue Gene), Intel,
QLogic, Cray, Myricom, Microsoft, Ohio State University (MVAPICH), and others.

Another very common implementation is Open MPI, which was formed out of the merger
of three MPI implementations:

FT-MPI (University of Tennessee)
LA-MPI (Los Alamos National Laboratory)
LAM/MPI (Indiana University)

These, along with the PACX-MPI team at the University of Stuttgart, are the founding
members of the Open MPI team. One of the primary goals of Open MPI is to create a high-
quality, open source MPI-3 implementation.

MPI implementations are mandated to support C and Fortran. C/C++ and Fortran along
with assembly support is very common, along with bindings for other languages.

Multithreading with Distributed Computing

[180]

Using MPI
Regardless of the implementation chosen, the resulting API will always match the official
MPI standard, differing only by the MPI version that the library one has picked supports.
All MPI-1 (revision 1.3) features should be supported by any MPI implementation,
however.

This means that the canonical Hello World (as, for example, found on the MPI Tutorial site:
http://mpitutorial.com/tutorials/mpi-hello-world/) for MPI should work regardless
of which library one picks:

#include <mpi.h>
#include <stdio.h>

int main(int argc, char** argv) {
 // Initialize the MPI environment
 MPI_Init(NULL, NULL);

 // Get the number of processes
 int world_size;
 MPI_Comm_size(MPI_COMM_WORLD, &world_size);

 // Get the rank of the process
 int world_rank;
 MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

 // Get the name of the processor
 char processor_name[MPI_MAX_PROCESSOR_NAME];
 int name_len;
 MPI_Get_processor_name(processor_name, &name_len);

 // Print off a hello world message
 printf("Hello world from processor %s, rank %d"
 " out of %d processors\n",
 processor_name, world_rank, world_size);

 // Finalize the MPI environment.
 MPI_Finalize();
}

When reading through this basic example of an MPI-based application, it's important to be
familiar with the terms used with MPI, in particular:

World: The registered MPI processes for this job
Communicator: The object which connects all MPI processes within a session

http://mpitutorial.com/tutorials/mpi-hello-world/

Multithreading with Distributed Computing

[181]

Rank: The identifier for a process within a communicator
Processor: A physical CPU, a singular core of a multi-core CPU, or the hostname
of the system

In this Hello World example, we can see that we include the <mpi.h> header. This MPI
header will always be the same, regardless of the implementation we use.

Initializing the MPI environment requires a single call to MPI_Init(), which can take two
parameters, both of which are optional at this point.

Getting the size of the world (meaning, number of processes available) is the next step. This
is done using MPI_Comm_size(), which takes the MPI_COMM_WORLD global variable
(defined by MPI for our use) and updates the second parameter with the number of
processes in that world.

The rank we then obtain is essentially the unique ID assigned to this process by MPI.
Obtaining this UID is performed with MPI_Comm_rank(). Again, this takes the
MPI_COMM_WORLD variable as the first parameter and returns our numeric rank as the
second parameter. This rank is useful for self-identification and communication between
processes.

Obtaining the name of the specific piece of hardware on which one is running can also be
useful, particularly for diagnostic purposes. For this we can call
MPI_Get_processor_name(). The returned string will be of a globally defined maximum
length and will identify the hardware in some manner. The exact format of this string is
implementation defined.

Finally, we print out the information we gathered and clean up the MPI environment before
terminating the application.

Compiling MPI applications
In order to compile an MPI application, the mpicc compiler wrapper is used. This
executable should be part of whichever MPI implementation has been installed.

Using it is, however, identical to how one would use, for example, GCC:

 $ mpicc -o mpi_hello_world mpi_hello_world.c

This can be compared to:

 $ gcc mpi_hello_world.c -lmsmpi -o mpi_hello_world

Multithreading with Distributed Computing

[182]

This would compile and link our Hello World example into a binary, ready to be executed.
Executing this binary is, however, not done by starting it directly, but instead a launcher is
used, like this:

 $ mpiexec.exe -n 4 mpi_hello_world.exe
 Hello world from processor Generic_PC, rank 0 out of 4 processors
 Hello world from processor Generic_PC, rank 2 out of 4 processors
 Hello world from processor Generic_PC, rank 1 out of 4 processors
 Hello world from processor Generic_PC, rank 3 out of 4 processors

The preceding output is from Open MPI running inside a Bash shell on a Windows system.
As we can see, we launch four processes in total (4 ranks). The processor name is reported
as the hostname for each process ("PC").

The binary to launch MPI applications with is called mpiexec or mpirun, or orterun. These
are synonyms for the same binary, though not all implementations will have all synonyms.
For Open MPI, all three are present and one can use any of these.

The cluster hardware
The systems an MPI based or similar application will run on consist of multiple
independent systems (nodes), each of which is connected to the others using some kind of
network interface. For high-end applications, these tend to be custom nodes with high-
speed, low-latency interconnects. At the other end of the spectrum are so-called Beowulf
and similar type clusters, made out of standard (desktop) computers and usually connected
using regular Ethernet.

At the time of writing, the fastest supercomputer (according to the TOP500 listing) is the
Sunway TaihuLight supercomputer at the National Supercomputing Center in Wuxi,
China. It uses a total of 40,960 Chinese-designed SW26010 manycore RISC architecture-
based CPUs, with 256 cores per CPU (divided in 4 64-core groups), along with four
management cores. The term manycore refers to a specialized CPU design which focuses
more on explicit parallelism as opposed to the single-thread and general-purpose focus of
most CPU cores. This type of CPU is similar to a GPU architecture and vector processors in
general.

Each of these nodes contains a single SW26010 along with 32 GB of DDR3 memory. They
are connected via a PCIe 3.0-based network, itself consisting of a three-level hierarchy: the
central switching network (for supernodes), the supernode network (connecting all 256
nodes in a supernode), and the resource network, which provides access to I/O and other
resource services. The bandwidth for this network between individual nodes is 12
GB/second, with a latency of about 1 microsecond.

Multithreading with Distributed Computing

[183]

The following graphic (from "The Sunway TaihuLight Supercomputer: System and
Applications", DOI: 10.1007/s11432-016-5588-7) provides a visual overview of this system:

Multithreading with Distributed Computing

[184]

For situations where the budget does not allow for such an elaborate and highly customized
system, or where the specific tasks do not warrant such an approach, there always remains
the "Beowulf" approach. A Beowulf cluster is a term used to refer to a distributed
computing system constructed out of common computer systems. These can be Intel or
AMD-based x86 systems, with ARM-based processors now becoming popular.

It's generally helpful to have each node in a cluster to be roughly identical to the other
nodes. Although it's possible to have an asymmetric cluster, management and job
scheduling becomes much easier when one can make broad assumptions about each node.

At the very least, one would want to match the processor architecture, with a base level of
CPU extensions, such as SSE2/3 and perhaps AVX and kin, common across all nodes. Doing
this would allow one to use the same compiled binary across the nodes, along with the
same algorithms, massively simplifying the deployment of jobs and the maintenance of the
code base.

For the network between the nodes, Ethernet is a very popular option, delivering
communication times measured in tens to hundreds of microseconds, while costing only a
fraction of faster options. Usually each node would be connected to a single Ethernet
network, as in this graphic:

Multithreading with Distributed Computing

[185]

There is also the option to add a second or even third Ethernet link to each or specific nodes
to give them access to files, I/O, and other resources, without having to compete with
bandwidth on the primary network layer. For very large clusters, one could consider an
approach such as that used with the Sunway TaihuLight and many other supercomputers:
splitting nodes up into supernodes, each with their own inter-node network. This would
allow one to optimize traffic on the network by limiting it to only associated nodes.

An example of such an optimized Beowulf cluster would look like this:

Multithreading with Distributed Computing

[186]

Clearly there is a wide range of possible configurations with MPI-based clusters, utilizing
custom, off-the-shelf, or a combination of both types of hardware. The intended purpose of
the cluster often determines the most optimal layout for a specific cluster, such as running
simulations, or the processing of large datasets. Each type of job presents its own set of
limitations and requirements, which is also reflected in the software implementation.

Installing Open MPI
For the remainder of this chapter, we will focus on Open MPI. In order to get a working
development environment for Open MPI, one will have to install its headers and library
files, along with its supporting tools and binaries.

Linux and BSDs
On Linux and BSD distributions with a package management system, it's quite easy: simply
install the Open MPI package and everything should be set up and configured, ready to be
used. Consult the manual for one's specific distribution, to see how to search for and install
specific packages.

On Debian-based distributions, one would use:

 $ sudo apt-get install openmpi-bin openmpi-doc libopenmpi-dev

The preceding command would install the Open MPI binaries, documentation, and
development headers. The last two packages can be omitted on compute nodes.

Windows
On Windows things get slightly complex, mostly because of the dominating presence of
Visual C++ and the accompanying compiler toolchain. If one wishes to use the same
development environment as on Linux or BSD, using MinGW, one has to take some
additional steps.

This chapter assumes the use of either GCC or MinGW. If one wishes to
develop MPI applications using the Visual Studio environment, please
consult the relevant documentation for this.

Multithreading with Distributed Computing

[187]

The easiest to use and most up to date MinGW environment is MSYS2, which provides a
Bash shell along with most of the tools one would be familiar with under Linux and BSD. It
also features the Pacman package manager, as known from the Linux Arch distribution.
Using this, it's easy to install the requisite packages for Open MPI development.

After installing the MSYS2 environment from https://msys2.github.io/, install the
MinGW toolchain:

 $ pacman -S base-devel mingw-w64-x86_64-toolchain

This assumes that the 64-bit version of MSYS2 was installed. For the 32-bit version, select
i686 instead of x86_64. After installing these packages, we will have both MinGW and the
basic development tools installed. In order to use them, start a new shell using the MinGW
64-bit postfix in the name, either via the shortcut in the start menu, or by using the
executable file in the MSYS2 install folder.

With MinGW ready, it's time to install MS-MPI version 7.x. This is Microsoft's
implementation of MPI and the easiest way to use MPI on Windows. It's an implementation
of the MPI-2 specification and mostly compatible with the MPICH2 reference
implementation. Since MS-MPI libraries are not compatible between versions, we use this
specific version.

Though version 7 of MS-MPI has been archived, it can still be downloaded via the Microsoft
Download Center at
https://www.microsoft.com/en-us/download/details.aspx?id=49926.

MS-MPI version 7 comes with two installers, msmpisdk.msi and MSMpiSetup.exe. Both
need to be installed. Afterwards, we should be able to open a new MSYS2 shell and find the
following environment variable set up:

 $ printenv | grep "WIN\|MSMPI"
 MSMPI_INC=D:\Dev\MicrosoftSDKs\MPI\Include\
 MSMPI_LIB32=D:\Dev\MicrosoftSDKs\MPI\Lib\x86\
 MSMPI_LIB64=D:\Dev\MicrosoftSDKs\MPI\Lib\x64\
 WINDIR=C:\Windows

This output for the printenv command shows that the MS-MPI SDK and runtime was
properly installed. Next, we need to convert the static library from the Visual C++ LIB
format to the MinGW A format:

 $ mkdir ~/msmpi
 $ cd ~/msmpi
 $ cp "$MSMPI_LIB64/msmpi.lib" .
 $ cp "$WINDIR/system32/msmpi.dll" .
 $ gendef msmpi.dll

https://msys2.github.io/
https://www.microsoft.com/en-us/download/details.aspx?id=49926

Multithreading with Distributed Computing

[188]

 $ dlltool -d msmpi.def -D msmpi.dll -l libmsmpi.a
 $ cp libmsmpi.a /mingw64/lib/.

We first copy the original LIB file into a new temporary folder in our home folder, along
with the runtime DLL. Next, we use the gendef tool on the DLL in order to create the
definitions which we will need in order to convert it to a new format.

This last step is done with dlltool, which takes the definitions file along with the DLL and
outputs a static library file which is compatible with MinGW. This file we then copy to a
location where MinGW can find it later when linking.

Next, we need to copy the MPI header:

 $ cp "$MSMPI_INC/mpi.h" .

After copying this header file, we must open it and locate the section that starts with:

typedef __int64 MPI_Aint

Immediately above that line, we need to add the following line:

 #include <stdint.h>

This include adds the definition for __int64, which we will need for the code to compile
correctly.

Finally, copy the header file to the MinGW include folder:

 $ cp mpi.h /mingw64/include

With this we have the libraries and headers all in place for MPI development with MinGW.
allowing us to compile and run the earlier Hello World example, and continue with the rest
of this chapter.

Distributing jobs across nodes
In order to distribute MPI jobs across the nodes in a cluster, one has to either specify these
nodes as a parameter to the mpirun/mpiexec command or make use of a host file. This host
file contains the names of the nodes on the network which will be available for a run, along
with the number of available slots on the host.

Multithreading with Distributed Computing

[189]

A prerequisite for running MPI applications on a remote node is that the MPI runtime is
installed on that node, and that password-less access has been configured for that node.
This means that so long as the master node has the SSH keys installed, it can log into each of
these nodes in order to launch the MPI application on it.

Setting up an MPI node
After installing MPI on a node, the next step is to set up password-less SSH access for the
master node. This requires the SSH server to be installed on the node (part of the ssh
package on Debian-based distributions). After this we need to generate and install the SSH
key.

One way to easily do this is by having a common user on the master node and other nodes,
and using an NFS network share or similar to mount the user folder on the master node on
the compute nodes. This way all nodes would have the same SSH key and known hosts file.
One disadvantage of this approach is the lack of security. For an internet-connected cluster,
this would not be a very good approach.

It is, however, a definitely good idea to run the job on each node as the same user to prevent
any possible permission issues, especially when using files and other resources. With the
common user account created on each node, and with the SSH key generated, we can
transfer the public key to the node using the following command:

 $ ssh-copy-id mpiuser@node1

Alternatively, we can copy the public key into the authorized_keys file on the node
system while we are setting it up. If creating and configuring a large number of nodes, it
would make sense to use an image to copy onto each node's system drive, use a setup
script, or possibly boot from an image through PXE boot.

With this step completed, the master node can now log into each compute node in order to
run jobs.

Creating the MPI host file
As mentioned earlier, in order to run a job on other nodes, we need to specify these nodes.
The easiest way to do this is to create a file containing the names of the compute nodes we
wish to use, along with optional parameters.

Multithreading with Distributed Computing

[190]

To allow us to use names for the nodes instead of IP addresses, we have to modify the
operating system's host file first: for example, /etc/hosts on Linux:

 192.168.0.1 master
 192.168.0.2 node0
 192.168.0.3 node1

Next we create a new file which will be the host file for use with MPI:

 master
 node0
 node1

With this configuration, a job would be executed on both compute nodes, as well as the
master node. We can take the master node out of this file to prevent this.

Without any optional parameter provided, the MPI runtime will use all available processors
on the node. If it is desirable, we can limit this number:

 node0 slots=2
 node1 slots=4

Assuming that both nodes are quad-core CPUs, this would mean that only half the cores on
node0 would be used, and all of them on node1.

Running the job
Running an MPI job across multiple MPI nodes is basically the same as executing it only
locally, as in the example earlier in this chapter:

 $ mpirun --hostfile my_hostfile hello_mpi_world

This command would tell the MPI launcher to use a host file called my_hostfile and run a
copy of the specified MPI application on each processor of each node found in that host file.

Using a cluster scheduler
In addition to using a manual command and host files to create and start jobs on specific
nodes, there are also cluster scheduler applications. These generally involve the running of
a daemon process on each node as well as the master node. Using the provided tools, one
can then manage resources and jobs, scheduling allocation and keeping track of job status.

Multithreading with Distributed Computing

[191]

One of the most popular cluster management scheduler's is SLURM, which short for Simple
Linux Utility for Resource management (though now renamed to Slurm Workload Manager
with the website at h t t p s ://s l u r m . s c h e d m d . c o m /). It is commonly used by
supercomputers as well as many computer clusters. Its primary functions consist out of:

Allocating exclusive or non-exclusive access to resources (nodes) to specific users
using time slots
The starting and monitoring of jobs such as MPI-based applications on a set of
nodes
Managing a queue of pending jobs to arbitrate contention for shared resources

The setting up of a cluster scheduler is not required for a basic cluster operation, but can be
very useful for larger clusters, when running multiple jobs simultaneously, or when having
multiple users of the cluster wishing to run their own job.

MPI communication
At this point, we have a functional MPI cluster, which can be used to execute MPI-based
applications (and others, as well) in a parallel fashion. While for some tasks it might be okay
to just send dozens or hundreds of processes on their merry way and wait for them to
finish, very often it is crucial that these parallel processes are able to communicate with each
other.

This is where the true meaning of MPI (being "Message Passing Interface") comes into play.
Within the hierarchy created by an MPI job, processes can communicate and share data in a
variety of ways. Most fundamentally, they can share and receive messages.

An MPI message has the following properties:

A sender
A receiver
A message tag (ID)
A count of the elements in the message
An MPI datatype

The sender and receiver should be fairly obvious. The message tag is a numeric ID which
the sender can set and which the receiver can use to filter messages, to, for example, allow
for the prioritizing of specific messages. The data type determines the type of information
contained in the message.

https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/

Multithreading with Distributed Computing

[192]

The send and receive functions look like this:

int MPI_Send(
 void* data,
 int count,
 MPI_Datatype datatype,
 int destination,
 int tag,
 MPI_Comm communicator)

int MPI_Recv(
 void* data,
 int count,
 MPI_Datatype datatype,
 int source,
 int tag,
 MPI_Comm communicator,
 MPI_Status* status)

An interesting thing to note here is that the count parameter in the send function indicates
the number of elements that the function will be sending, whereas the same parameter in
the receive function indicates the maximum number of elements that this thread will accept.

The communicator refers to the MPI communicator instance being used, and the receive
function contains a final parameter which can be used to check the status of the MPI
message.

MPI data types
MPI defines a number of basic types, which one can use directly:

MPI datatype C equivalent

MPI_SHORT short int

MPI_INT int

MPI_LONG long int

MPI_LONG_LONG long long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

Multithreading with Distributed Computing

[193]

MPI datatype C equivalent

MPI_UNSIGNED_LONG unsigned long int

MPI_UNSIGNED_LONG_LONG unsigned long long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE char

MPI guarantees that when using these types, the receiving side will always get the message
data in the format it expects, regardless of endianness and other platform-related issues.

Custom types
In addition to these basic formats, one can also create new MPI data types. These use a
number of MPI functions, including MPI_Type_create_struct:

int MPI_Type_create_struct(
 int count,
 int array_of_blocklengths[],
 const MPI_Aint array_of_displacements[],
 const MPI_Datatype array_of_types[],
 MPI_Datatype *newtype)

With this function, one can create an MPI type that contains a struct, to be passed just like a
basic MPI data type:

#include <cstdio>
#include <cstdlib>
#include <mpi.h>
#include <cstddef>

struct car {
 int shifts;
 int topSpeed;
};

int main(int argc, char **argv) {
 const int tag = 13;
 int size, rank;

 MPI_Init(&argc, &argv);

Multithreading with Distributed Computing

[194]

 MPI_Comm_size(MPI_COMM_WORLD, &size);

 if (size < 2) {
 fprintf(stderr,"Requires at least two processes.\n");
 MPI_Abort(MPI_COMM_WORLD, 1);
 }

 const int nitems = 2;
 int blocklengths[2] = {1,1};
 MPI_Datatype types[2] = {MPI_INT, MPI_INT};
 MPI_Datatype mpi_car_type;
 MPI_Aint offsets[2];

 offsets[0] = offsetof(car, shifts);
 offsets[1] = offsetof(car, topSpeed);

 MPI_Type_create_struct(nitems, blocklengths, offsets, types,
&mpi_car_type);
 MPI_Type_commit(&mpi_car_type);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 if (rank == 0) {
 car send;
 send.shifts = 4;
 send.topSpeed = 100;

 const int dest = 1;
 MPI_Send(&send, 1, mpi_car_type, dest, tag, MPI_COMM_WORLD);

 printf("Rank %d: sent structure car\n", rank);
 }
 if (rank == 1) {
 MPI_Status status;
 const int src = 0;

 car recv;

 MPI_Recv(&recv, 1, mpi_car_type, src, tag, MPI_COMM_WORLD,
&status);
 printf("Rank %d: Received: shifts = %d topSpeed = %d\n", rank,
recv.shifts, recv.topSpeed);
 }

 MPI_Type_free(&mpi_car_type);
 MPI_Finalize();

 return 0;
}

Multithreading with Distributed Computing

[195]

Here we see how a new MPI data type called mpi_car_type is defined and used to
message between two processes. To create a struct type like this, we need to define the
number of items in the struct, the number of elements in each block, their byte
displacement, and their basic MPI types.

Basic communication
A simple example of MPI communication is the sending of a single value from one process
to another. In order to do this, one needs to use the following listed code and run the
compiled binary to start at least two processes. It does not matter whether these processes
run locally or on two compute nodes.

The following code was gratefully borrowed from h t t p ://m p i t u t o r i a l . c o m /t u t o r i a l s /m

p i - h e l l o - w o r l d /:

#include <mpi.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char** argv) {
 // Initialize the MPI environment.
 MPI_Init(NULL, NULL);
 // Find out rank, size.
 int world_rank;
 MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);
 int world_size;
 MPI_Comm_size(MPI_COMM_WORLD, &world_size);

 // We are assuming at least 2 processes for this task.
 if (world_size < 2) {
 fprintf(stderr, "World size must be greater than 1 for
%s.\n", argv[0]);
 MPI_Abort(MPI_COMM_WORLD, 1);
 }

 int number;
 if (world_rank == 0) {
 // If we are rank 0, set the number to -1 and send it to process
1.
 number = -1;
 MPI_Send(&number, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);
 }
 else if (world_rank == 1) {
 MPI_Recv(&number, 1, MPI_INT, 0, 0,
 MPI_COMM_WORLD,

http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/
http://mpitutorial.com/tutorials/mpi-hello-world/

Multithreading with Distributed Computing

[196]

 MPI_STATUS_IGNORE);
 printf("Process 1 received number %d from process 0.\n",
number);
 }
 MPI_Finalize();
}

There isn't a lot to this code. We work through the usual MPI initialization, followed by a
check to ensure that our world size is at least two processes large.

The process with rank 0 will then send an MPI message of data type MPI_INT and value -1.
The process with rank 1 will wait to receive this message. The receiving process specifies for
MPI_Status MPI_STATUS_IGNORE to indicate that the process will not be checking the
status of the message. This is a useful optimization technique.

Finally, the expected output is the following:

 $ mpirun -n 2 ./send_recv_demo
 Process 1 received number -1 from process 0

Here we start the compiled demo code with a total of two processes. The output shows that
the second process received the MPI message from the first process, with the correct value.

Advanced communication
For advanced MPI communication, one would use the MPI_Status field to obtain more
information about a message. One can use MPI_Probe to discover a message's size before
accepting it with MPI_Recv. This can be useful for situations where it is not known
beforehand what the size of a message will be.

Broadcasting
Broadcasting a message means that all processes in the world will receive it. This simplifies
the broadcast function relative to the send function:

int MPI_Bcast(
 void *buffer,
 int count,
 MPI_Datatype datatype,
 int root,
 MPI_Comm comm)

Multithreading with Distributed Computing

[197]

The receiving processes would simply use a normal MPI_Recv function. All that the
broadcast function does is optimize the sending of many messages using an algorithm that
uses multiple network links simultaneously, instead of just one.

Scattering and gathering
Scattering is very similar to broadcasting a message, with one very important distinction:
instead of sending the same data in each message, instead it sends a different part of an
array to each recipient. Its function definition looks as follows:

int MPI_Scatter(
 void* send_data,
 int send_count,
 MPI_Datatype send_datatype,
 void* recv_data,
 int recv_count,
 MPI_Datatype recv_datatype,
 int root,
 MPI_Comm communicator)

Each receiving process will get the same data type, but we can specify how many items will
be sent to each process (send_count). This function is used on both the sending and
receiving side, with the latter only having to define the last set of parameters relating to
receiving data, with the world rank of the root process and the relevant communicator
being provided.

Gathering is the inverse of scattering. Here multiple processes will send data that ends up at
a single process, with this data sorted by the rank of the process which sent it. Its function
definition looks as follows:

int MPI_Gather(
 void* send_data,
 int send_count,
 MPI_Datatype send_datatype,
 void* recv_data,
 int recv_count,
 MPI_Datatype recv_datatype,
 int root,
 MPI_Comm communicator)

One may notice that this function looks very similar to the scatter function. This is because
it works basically the same way, only this time around the sending nodes have to all fill in
the parameters related to sending the data, while the receiving process has to fill in the
parameters related to receiving data.

Multithreading with Distributed Computing

[198]

It is important to note here that the recv_count parameter relates to the amount of data
received from each sending process, not the size in total.

There exist further specializations of these two basic functions, but these will not be covered
here.

MPI versus threads
One might think that it would be easiest to use MPI to allocate one instance of the MPI
application to a single CPU core on each cluster node, and this would be true. It would,
however, not be the fastest solution.

Although for communication between processes across a network MPI is likely the best
choice in this context, within a single system (single or multi-CPU system) using
multithreading makes a lot of sense.

The main reason for this is simply that communication between threads is significantly
faster than inter-process communication, especially when using a generalized
communication layer such as MPI.

One could write an application that uses MPI to communicate across the cluster’s network,
whereby one allocates one instance of the application to each MPI node. The application
itself would detect the number of CPU cores on that system, and create one thread for each
core. Hybrid MPI, as it’s often called, is therefore commonly used, for the advantages it
provides:

Faster communication – using fast inter-thread communication.
Fewer MPI messages – fewer messages means a reduction in bandwidth and
latency.
Avoiding data duplication – data can be shared between threads instead of
sending the same message to a range of processes.

Implementing this can be done the way we have seen in previous chapters, by using the
multithreading features found in C++11 and successive versions. The other option is to use
OpenMP, as we saw at the very beginning of this chapter.

The obvious advantage of using OpenMP is that it takes very little effort from the
developer’s side. If all that one needs is to get more instances of the same routine running,
all it takes is are the small modifications to mark the code to be used for the worker threads.

Multithreading with Distributed Computing

[199]

For example:

#include <stdio.h>
#include <mpi.h>
#include <omp.h>

int main(int argc, char *argv[]) {
 int numprocs, rank, len;
 char procname[MPI_MAX_PROCESSOR_NAME];
 int tnum = 0, tc = 1;

 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Get_processor_name(procname, &len);

 #pragma omp parallel default(shared) private(tnum, tc) {
 np = omp_get_num_threads();
 tnum = omp_get_thread_num();
 printf("Thread %d out of %d from process %d out of %d on %s\n",
 tnum, tc, rank, numprocs, procname);
 }

 MPI_Finalize();
}

The above code combines an OpenMP application with MPI. To compile it we would run
for example:

$ mpicc -openmp hellohybrid.c -o hellohybrid

Next, to run the application, we would use mpirun or equivalent:

$ export OMP_NUM_THREADS=8
$ mpirun -np 2 --hostfile my_hostfile -x OMP_NUM_THREADS ./hellohybrid

The mpirun command would run two MPI processes using the hellohybrid binary, passing
the environment variable we exported with the -x flag to each new process. The value
contained in that variable will then be used by the OpenMP runtime to create that number
of threads.

Assuming we have at least two MPI nodes in our MPI host file, we would end up with two
MPI processes across two nodes, each of which running eight threads, which would fit a
quad-core CPU with Hyper-Threading or an octo-core CPU.

Multithreading with Distributed Computing

[200]

Potential issues
When writing MPI-based applications and executing them on either a multi-core CPU or
cluster, the issues one may encounter are very much the same as those we already came
across with the multithreaded code in the preceding chapters.

However, an additional worry with MPI is that one relies on the availability of network
resources. Since a send buffer used for an MPI_Send call cannot be reclaimed until the
network stack can process the buffer, and this call is a blocking type, sending lots of small
messages can lead to one process waiting for another, which in turn is waiting for a call to
complete.

This type of deadlock should be kept in mind when designing the messaging structure of an
MPI application. One can, for example, ensure that there are no send calls building up on
one side, which would lead to such a scenario. Providing feedback messages on, queue
depth and similar could be used to the ease pressure.

MPI also contains a synchronization mechanism using a so-called barrier. This is meant to
be used between MPI processes to allow them to synchronize on for example a task. Using
an MPI barrier (MPI_Barrier) call is similarly problematic as a mutex in that if an MPI
process does not manage to get synchronized, everything will hang at this point.

Summary
In this chapter, we looked in some detail at the MPI standard, along with a number of its
implementations, specifically Open MPI, and we looked at how to set up a cluster. We also
saw how to use OpenMP to easily add multithreading to existing codes.

At this point, the reader should be capable of setting up a basic Beowulf or similar cluster,
configuring it for MPI, and running basic MPI applications on it. How to communicate
between MPI processes and how to define custom data types should be known. In addition,
the reader will be aware of the potential pitfalls when programming for MPI.

In the next chapter, we will take all our knowledge of the preceding chapters and see how
we can combine it in the final chapter, as we look at general-purpose computing on
videocards (GPGPU).

10
Multithreading with GPGPU

A fairly recent development has been to use video cards (GPUs) for general purpose
computing (GPGPU). Using frameworks such as CUDA and OpenCL, it is possible to speed
up, for example, the processing of large datasets in parallel in medical, military, and
scientific applications. In this chapter, we will look at how this is done with C++ and
OpenCL, and how to integrate such a feature into a multithreaded application in C++.

Topics in this chapter include:

Integrating OpenCL into a C++ based application
The challenges of using OpenCL in a multithreaded fashion
The impact of latency and scheduling on multithreaded performance

The GPGPU processing model
In Chapter 9, Multithreading with Distributed Computing, we looked at running the same task
across a number of compute nodes in a cluster system. The main goal of such a setup is to
process data in a highly parallel fashion, theoretically speeding up said processing relative
to a single system with fewer CPU cores.

GPGPU (General Purpose Computing on Graphics Processing Units) is in some ways
similar to this, but with one major difference: while a compute cluster with only regular
CPUs is good at scalar tasks--meaning performing one task on one single set of data (SISD)--
GPUs are vector processors that excel at SIMD (Single Input, Multiple Data) tasks.

Multithreading with GPGPU

[202]

Essentially, this means that one can send a large dataset to a GPU, along with a single task
description, and the GPU will proceed to execute that same task on parts of that data in
parallel on its hundreds or thousands of cores. One can thus regard a GPU as a very
specialized kind of cluster:

Implementations
When the concept of GPGPU was first coined (around 2001), the most common way to write
GPGPU programs was using GLSL (OpenGL Shading Language) and similar shader
languages. Since these shader languages were already aimed at the processing of SIMD
tasks (image and scene data), adapting them for more generic tasks was fairly
straightforward.

Since that time, a number of more specialized implementations have appeared:

Name Since Owner Notes

CUDA 2006 NVidia This is proprietary and only runs on NVidia
GPUs

Close to Metal 2006 ATi/AMD This was abandoned in favor of OpenCL

DirectCompute 2008 Microsoft This is released with DX11, runs on DX10 GPUs,
and is limited to Windows platforms

Multithreading with GPGPU

[203]

OpenCL 2009 Khronos Group This is open standard and available across
AMD, Intel, and NVidia GPUs on all
mainstream platforms, as well as mobile
platforms

OpenCL
Of the various current GPGPU implementations, OpenCL is by far the most interesting
GPGPU API due to the absence of limitations. It is available for virtually all mainstream
GPUs and platforms, even enjoying support on select mobile platforms.

Another distinguishing feature of OpenCL is that it's not limited to just GPGPU either. As
part of its name (Open Computing Language), it abstracts a system into the so-called
compute devices, each with their own capabilities. GPGPU is the most common application,
but this feature makes it fairly easy to test implementations on a CPU first, for easy
debugging.

One possible disadvantage of OpenCL is that it employs a high level of abstraction for
memory and hardware details, which can negatively affect performance, even as it increases
the portability of the code.

In the rest of this chapter, we will focus on OpenCL.

Common OpenCL applications
Many programs incorporate OpenCL-based code in order to speed up operations. These
include programs aimed at graphics processing, as well as 3D modelling and CAD, audio
and video processing. Some examples are:

Adobe Photoshop
GIMP
ImageMagick
Autodesk Maya
Blender
Handbrake
Vegas Pro

Multithreading with GPGPU

[204]

OpenCV
Libav
Final Cut Pro
FFmpeg

Further acceleration of certain operations is found in office applications including
LibreOffice Calc and Microsoft Excel.

Perhaps more importantly, OpenCL is also commonly used for scientific computing and
cryptography, including BOINC and GROMACS as well as many other libraries and
programs.

OpenCL versions
Since the release of the OpenCL specification on December 8, 2008, there have so far been
five updates, bringing it up to version 2.2. Important changes with these releases are
mentioned next.

OpenCL 1.0
The first public release was released by Apple as part of the macOS X Snow Leopard release
on August 28, 2009.

Together with this release, AMD announced that it would support OpenCL and retire its
own Close to Metal (CtM) framework. NVidia, RapidMind, and IBM also added support for
OpenCL to their own frameworks.

OpenCL 1.1
The OpenCL 1.1 specification was ratified by the Khronos Group on June 14, 2010. It adds
additional functionality for parallel programming and performance, including the
following:

New data types including 3-component vectors and additional image formats
Handling commands from multiple host threads and processing buffers across
multiple devices

Multithreading with GPGPU

[205]

Operations on regions of a buffer including reading, writing, and copying of the
1D, 2D, or 3D rectangular regions
Enhanced use of events to drive and control command execution
Additional OpenCL built-in C functions, such as integer clamp, shuffle, and
asynchronous-strided (not contiguous, but with gaps between the data) copies
Improved OpenGL interoperability through efficient sharing of images and
buffers by linking OpenCL and OpenGL events

OpenCL 1.2
The OpenCL 1.2 version was released on November 15, 2011. Its most significant features
include the following:

Device partitioning: This enables applications to partition a device into sub-
devices to directly control work assignment to particular compute units, reserve a
part of the device for use for high priority/latency-sensitive tasks, or effectively
use shared hardware resources such as a cache.
Separate compilation and linking of objects: This provides the capabilities and
flexibility of traditional compilers enabling the creation of libraries of OpenCL
programs for other programs to link to.
Enhanced image support: This includes added support for 1D images and 1D &
2D image arrays. Also, the OpenGL sharing extension now enables an OpenCL
image to be created from OpenGL 1D textures and 1D & 2D texture arrays.

Built-in kernels: This represents the capabilities of specialized or non-
programmable hardware and associated firmware, such as video
encoder/decoders and digital signal processors, enabling these custom devices to
be driven from and integrated closely with the OpenCL framework.
DX9 Media Surface Sharing: This enables efficient sharing between OpenCL and
DirectX 9 or DXVA media surfaces.
DX11 Surface Sharing: For seamless sharing between OpenCL and DirectX 11
surfaces.

Multithreading with GPGPU

[206]

OpenCL 2.0
The OpenCL2.0 version was released on November 18, 2013. This release has the following
significant changes or additions:

Shared Virtual Memory: Host and device kernels can directly share complex,
pointer-containing data structures such as trees and linked lists, providing
significant programming flexibility and eliminating costly data transfers between
host and devices.
Dynamic Parallelism: Device kernels can enqueue kernels to the same device
with no host interaction, enabling flexible work scheduling paradigms and
avoiding the need to transfer execution control and data between the device and
host, often significantly offloading host processor bottlenecks.
Generic Address Space: Functions can be written without specifying a named
address space for arguments, especially useful for those arguments that are
declared to be a pointer to a type, eliminating the need for multiple functions to
be written for each named address space used in an application.
Images: Improved image support including sRGB images and 3D image writes,
the ability for kernels to read from and write to the same image, and the creation
of OpenCL images from a mip-mapped or a multi-sampled OpenGL texture for
improved OpenGL interop.
C11 Atomics: A subset of C11 atomics and synchronization operations to enable
assignments in one work-item to be visible to other work-items in a work-group,
across work-groups executing on a device or for sharing data between the
OpenCL device and host.
Pipes: Pipes are memory objects that store data organized as a FIFO and OpenCL
2.0 provides built-in functions for kernels to read from or write to a pipe,
providing straightforward programming of pipe data structures that can be
highly optimized by OpenCL implementers.
Android Installable Client Driver Extension: Enables OpenCL implementations
to be discovered and loaded as a shared object on Android systems.

OpenCL 2.1
The OpenCL 2.1 revision to the 2.0 standard was released on November 16, 2015. The most
notable thing about this release was the introduction of the OpenCL C++ kernel language,
such as how the OpenCL language originally was based on C with extensions, the C++
version is based on a subset of C++14, with backwards compatibility for the C kernel
language.

Multithreading with GPGPU

[207]

Updates to the OpenCL API include the following:

Subgroups: These enable finer grain control of hardware threading, are now in
core, together with additional subgroup query operations for increased flexibility
Copying of kernel objects and states: clCloneKernel enables copying of kernel
objects and state for safe implementation of copy constructors in wrapper classes
Low-latency device timer queries: These allow for alignment of profiling data
between device and host code
Intermediate SPIR-V code for the runtime:

A bi-directional translator between LLVM to SPIR-V to enable
flexible use of both intermediate languages in tool chains.
An OpenCL C to LLVM compiler that generates SPIR-V through
the above translator.
A SPIR-V assembler and disassembler.

Standard Portable Intermediate Representation (SPIR) and its successor, SPIR-V, are a way
to provide device-independent binaries for use across OpenCL devices.

OpenCL 2.2
On May 16, 2017, what is now the current release of OpenCL was released. According to the
Khronos Group, it includes the following changes:

OpenCL 2.2 brings the OpenCL C++ kernel language into the core specification
for significantly enhanced parallel programming productivity
The OpenCL C++ kernel language is a static subset of the C++14 standard and
includes classes, templates, Lambda expressions, function overloads, and many
other constructs for generic and meta-programming
Leverages the new Khronos SPIR-V 1.1 intermediate language that fully supports
the OpenCL C++ kernel language
OpenCL library functions can now take advantage of the C++ language to
provide increased safety and reduced undefined behavior while accessing
features such as atomics, iterators, images, samplers, pipes, and device queue
built-in types and address spaces
Pipe storage is a new device-side type in OpenCL 2.2 that is useful for FPGA
implementations by making the connectivity size and type known at compile
time and enabling efficient device-scope communication between kernels

Multithreading with GPGPU

[208]

OpenCL 2.2 also includes features for enhanced optimization of generated code:
Applications can provide the value of specialization constant at SPIR-V
compilation time, a new query can detect non-trivial constructors and destructors
of program-scope global objects, and user callbacks can be set at program release
time
Runs on any OpenCL 2.0-capable hardware (only driver update required)

Setting up a development environment
Regardless of which platform and GPU you have, the most important part of doing
OpenCL development is to obtain the OpenCL runtime for one's GPU from its
manufacturer. Here, AMD, Intel, and NVidia all provide an SDK for all mainstream
platforms. For NVidia, OpenCL support is included in the CUDA SDK.

Along with the GPU vendor's SDK, one can also find details on their website on which
GPUs are supported by this SDK.

Linux
After installing the vendor's GPGPU SDK using the provided instructions, we still need to
download the OpenCL headers. Unlike the shared library and runtime file provided by the
vendor, these headers are generic and will work with any OpenCL implementation.

For Debian-based distributions, simply execute the following command line:

 $ sudo apt-get install opencl-headers

For other distributions, the package may be called the same, or something different. Consult
the manual for one's distribution on how to find out the package name.

After installing the SDK and OpenCL headers, we are ready to compile our first OpenCL
applications.

Windows
On Windows, we can choose between developing with Visual Studio (Visual C++) or with
the Windows port of GCC (MinGW). To stay consistent with the Linux version, we will be
using MinGW along with MSYS2. This means that we'll have the same compiler toolchain
and same Bash shell and utilities, along with the Pacman package manager.

Multithreading with GPGPU

[209]

After installing the vendor's GPGPU SDK, as described previously, simply execute the
following command line in an MSYS2 shell in order to install the OpenCL headers:

 $ pacman -S mingw64/mingw-w64-x86_64-opencl-headers

Or, execute the following command line when using the 32-bit version of MinGW:

 mingw32/mingw-w64-i686-opencl-headers

With this, the OpenCL headers are in place. We now just have to make sure that the
MinGW linker can find OpenCL library. With the NVidia CUDA SDK, you can use the
CUDA_PATH environment variable for this, or browse the install location of the SDK and
copy the appropriate OpenCL LIB file from there to the MinGW lib folder, making sure not
to mix the 32-bit and 64-bit files.

With the shared library now also in place, we can compile the OpenCL applications.

OS X/MacOS
Starting with OS X 10.7, an OpenCL runtime is provided with the OS. After installing
XCode for the development headers and libraries, one can immediately start with OpenCL
development.

A basic OpenCL application
A common example of a GPGPU application is one which calculates the Fast Fourier
Transform (FFT). This algorithm is commonly used for audio processing and similar,
allowing you to transform, for example, from the time domain to the frequency domain for
analysis purposes.

What it does is apply a divide and conquer approach to a dataset, in order to calculate the
DFT (Discrete Fourier Transform). It does this by splitting the input sequence into a fixed,
small number of smaller subsequences, computing their DFT, and assembling these outputs
in order to compose the final sequence.

Multithreading with GPGPU

[210]

This is fairly advanced mathematics, but suffice it to say that what makes it so ideal for
GPGPU is that it's a highly-parallel algorithm, employing the subdivision of data in order to
speed up the calculating of the DFT, as visualized in this graphic:

Each OpenCL application consists of at least two parts: the C++ code that sets up and
configures the OpenCL instance, and the actual OpenCL code, also known as a kernel, such
as this one based on the FFT demonstration example from Wikipedia:

// This kernel computes FFT of length 1024.
// The 1024 length FFT is decomposed into calls to a radix 16 function,
// another radix 16 function and then a radix 4 function
 __kernel void fft1D_1024 (__global float2 *in,
 __global float2 *out,
 __local float *sMemx,
 __local float *sMemy) {
 int tid = get_local_id(0);
 int blockIdx = get_group_id(0) * 1024 + tid;
 float2 data[16];

 // starting index of data to/from global memory
 in = in + blockIdx; out = out + blockIdx;

 globalLoads(data, in, 64); // coalesced global reads
 fftRadix16Pass(data); // in-place radix-16 pass
 twiddleFactorMul(data, tid, 1024, 0);

Multithreading with GPGPU

[211]

 // local shuffle using local memory
 localShuffle(data, sMemx, sMemy, tid, (((tid & 15) * 65) + (tid
>> 4)));
 fftRadix16Pass(data); // in-place radix-16 pass
 twiddleFactorMul(data, tid, 64, 4); // twiddle factor
multiplication

 localShuffle(data, sMemx, sMemy, tid, (((tid >> 4) * 64) + (tid &
15)));

 // four radix-4 function calls
 fftRadix4Pass(data); // radix-4 function number 1
 fftRadix4Pass(data + 4); // radix-4 function number 2
 fftRadix4Pass(data + 8); // radix-4 function number 3
 fftRadix4Pass(data + 12); // radix-4 function number 4

 // coalesced global writes
 globalStores(data, out, 64);
 }

This OpenCL kernel shows that, like the GLSL shader language, OpenCL's kernel language
is essentially C with a number of extensions. Although one could use the OpenCL C++
kernel language, this one is only available since OpenCL 2.1 (2015), and as a result, support
and examples for it are less common than the C kernel language.

Next is the C++ application, using which, we run the preceding OpenCL kernel:

#include <cstdio>
 #include <ctime>
 #include "CL\opencl.h"

 #define NUM_ENTRIES 1024

 int main() { // (int argc, const char * argv[]) {
 const char* KernelSource = "fft1D_1024_kernel_src.cl";

As we can see here, there's only one header we have to include in order to gain access to the
OpenCL functions. We also specify the name of the file that contains the source for our
OpenCL kernel. Since each OpenCL device is likely a different architecture, the kernel is
compiled for the target device when we load it:

 const cl_uint num = 1;
 clGetDeviceIDs(0, CL_DEVICE_TYPE_GPU, 0, 0, (cl_uint*) num);

 cl_device_id devices[1];
 clGetDeviceIDs(0, CL_DEVICE_TYPE_GPU, num, devices, 0);

Multithreading with GPGPU

[212]

Next, we have to obtain a list of OpenCL devices we can use, filtering it by GPUs:

 cl_context context = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU,
 0, 0, 0);

We then create an OpenCL context using the GPU devices we found. The context manages
the resources on a range of devices:

 clGetDeviceIDs(0, CL_DEVICE_TYPE_DEFAULT, 1, devices, 0);
 cl_command_queue queue = clCreateCommandQueue(context, devices[0], 0,
0);

Finally, we will create the command queue that will contain the commands to be executed
on the OpenCL devices:

 cl_mem memobjs[] = { clCreateBuffer(context, CL_MEM_READ_ONLY |
CL_MEM_COPY_HOST_PTR, sizeof(float) * 2 * NUM_ENTRIES, 0, 0),
 clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(float) * 2 *
NUM_ENTRIES, 0, 0) };

In order to communicate with devices, we need to allocate buffer objects that will contain
the data we will copy to their memory. Here, we will allocate two buffers, one to read and
one to write:

 cl_program program = clCreateProgramWithSource(context, 1, (const char
**)& KernelSource, 0, 0);

We have now got the data on the device, but still need to load the kernel on it. For this, we
will create a kernel using the OpenCL kernel source we looked at earlier, using the filename
we defined earlier:

 clBuildProgram(program, 0, 0, 0, 0, 0);

Next, we will compile the source as follows:

 cl_kernel kernel = clCreateKernel(program, "fft1D_1024", 0);

Finally, we will create the actual kernel from the binary we created:

 size_t local_work_size[1] = { 256 };

 clSetKernelArg(kernel, 0, sizeof(cl_mem), (void *) &memobjs[0]);
 clSetKernelArg(kernel, 1, sizeof(cl_mem), (void *) &memobjs[1]);
 clSetKernelArg(kernel, 2, sizeof(float) * (local_work_size[0] + 1) *
16, 0);
 clSetKernelArg(kernel, 3, sizeof(float) * (local_work_size[0] + 1) *
16, 0);

Multithreading with GPGPU

[213]

In order to pass arguments to our kernel, we have to set them here. Here, we will add
pointers to our buffers and dimensions of the work size as follows:

 size_t global_work_size[1] = { 256 };
 global_work_size[0] = NUM_ENTRIES;
 local_work_size[0] = 64; // Nvidia: 192 or 256
 clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_work_size,
local_work_size, 0, 0, 0);

Now we can set the work item dimensions and execute the kernel. Here, we will use a
kernel execution method that allows us to define the size of the work group:

 cl_mem C = clCreateBuffer(context, CL_MEM_WRITE_ONLY, (size), 0,
&ret);
 cl_int ret = clEnqueueReadBuffer(queue, memobjs[1],
CL_TRUE, 0, sizeof(float) * 2 * NUM_ENTRIES, C, 0, 0, 0);

After executing the kernel, we wish to read back the resulting information. For this, we tell
OpenCL to copy the assigned write buffer we passed as a kernel argument into a newly
assigned buffer. We are now free to use the data in this buffer as we see fit.

However, in this example, we will not use the data:

 clReleaseMemObject(memobjs[0]);
 clReleaseMemObject(memobjs[1]);
 clReleaseCommandQueue(queue);
 clReleaseKernel(kernel);
 clReleaseProgram(program);
 clReleaseContext(context);
 free(C);
 }

Finally, we free the resources we allocated and exit.

GPU memory management
When using a CPU, one has to deal with a number of memory hierarchies, in the form of the
main memory (slowest), to CPU caches (faster), and CPU registers (fastest). A GPU is much
the same, in that, one has to deal with a memory hierarchy that can significantly impact the
speed of one's applications.

Multithreading with GPGPU

[214]

Fastest on a GPU is also the register (or private) memory, of which we have quite a bit more
than on the average CPU. After this, we get local memory, which is a memory shared by a
number of processing elements. Slowest on the GPU itself is the memory data cache, also
called texture memory. This is a memory on the card that is usually referred to as Video
RAM (VRAM) and uses a high-bandwidth, but a relatively high-latency memory such as
GDDR5.

The absolute slowest is using the host system's memory (system RAM), as this has to travel
across the PCIe bus and through various other subsystems in order to transfer any data.
Relative to on-device memory systems, host-device communication is best called 'glacial'.

For AMD, Nvidia, and similar dedicated GPU devices, the memory architecture can be
visualized like this:

Multithreading with GPGPU

[215]

Because of this memory layout, it is advisable to transfer any data in large blocks, and to use
asynchronous transfers if possible. Ideally, the kernel would run on the GPU core and have
the data streamed to it to avoid any latencies.

GPGPU and multithreading
Combining multithreaded code with GPGPU can be much easier than trying to manage a
parallel application running on an MPI cluster. This is mostly due to the following
workflow:

Prepare data: Readying the data which we want to process, such as a large set of1.
images, or a single large image, by sending it to the GPU’s memory.
Prepare kernel: Loading the OpenCL kernel file and compiling it into an OpenCL2.
kernel.
Execute kernel: Send the kernel to the GPU and instruct it to start processing3.
data.
Read data: Once we know the processing has finished, or a specific intermediate4.
state has been reached, we will read a buffer we passed along as an argument
with the OpenCL kernel in order to obtain our result(s).

As this is an asynchronous process, one can treat this as a fire-and-forget operation, merely
having a single thread dedicated to monitoring the process of the active kernels.

The biggest challenge in terms of multithreading and GPGPU applications lies not with the
host-based application, but with the GPGPU kernel or shader program running on the GPU,
as it has to coordinate memory management and processing between both local and distant
processing units, determine which memory systems to use depending on the type of data
without causing problems elsewhere in the processing.

This is a delicate process involving a lot of trial and error, profiling and optimizations. One
memory copy optimization or use of an asynchronous operation instead of a synchronous
one may cut processing time from many hours to just a couple. A good understanding of
the memory systems is crucial to preventing data starvation and similar issues.

Since GPGPU is generally used to accelerate tasks of significant duration (minutes to hours,
or longer), it is probably best regarded from a multithreading perspective as a common
worker thread, albeit with a few important complications, mostly in the form of latency.

Multithreading with GPGPU

[216]

Latency
As we touched upon in the earlier section on GPU memory management, it is highly
preferable to use the memory closest to the GPU’s processing units first, as they are the
fastest. Fastest here mostly means that they have less latency, meaning the time taken to
request information from the memory and receiving the response.

The exact latency will differ per GPU, but as an example, for Nvidia’s Kepler (Tesla K20)
architecture, one can expect a latency of:

Global memory: 450 cycles.
Constant memory cache: 45 – 125 cycles.
Local (shared) memory: 45 cycles.

These measurements are all on the CPU itself. For the PCIe bus one would have to expect
something on the order of multiple milliseconds per transfer once one starts to transfer
multi-megabyte buffers. To fill for example the GPU’s memory with a gigabyte-sized buffer
could take a considerable amount of time.

For a simple round-trip over the PCIe bus one would measure the latency in microseconds,
which for a GPU core running at 1+ GHz would seem like an eternity. This basically defines
why communication between the host and GPU should be absolutely minimal and highly
optimized.

Potential issues
A common mistake with GPGPU applications is reading the result buffer before the
processing has finished. After transferring the buffer to the device and executing the kernel,
one has to insert synchronization points to signal the host that it has finished processing.
These generally should be implemented using asynchronous methods.

As we just covered in the section on latency, it’s important to keep in mind the potentially
very large delays between a request and response, depending on the memory sub-system or
bus. Failure to do so may cause weird glitches, freezes and crashes, as well as data
corruption and an application which will seemingly wait forever.

It is crucial to profile a GPGPU application to get a good idea of what the GPU utilization is,
and whether the process flow is anywhere near being optimal.

Multithreading with GPGPU

[217]

Debugging GPGPU applications
The biggest challenge with GPGPU applications is that of debugging a kernel. CUDA comes
with a simulator for this reason, which allows one to run and debug a kernel on a CPU.
OpenCL allows one to run a kernel on a CPU without modification, although this may not
get the exact same behavior (and bugs) as when run on a specific GPU device.

A slightly more advanced method involves the use of a dedicated debugger such as
Nvidia’s Nsight, which comes in versions both for Visual Studio (h t t p s ://d e v e l o p e r . n v i d

i a . c o m /n v i d i a - n s i g h t - v i s u a l - s t u d i o - e d i t i o n) and Eclipse (h t t p s ://d e v e l o p e r . n v i d i

a . c o m /n s i g h t - e c l i p s e - e d i t i o n).

According to the marketing blurb on the Nsight website:

NVIDIA Nsight Visual Studio Edition brings GPU computing into Microsoft Visual
Studio (including multiple instances of VS2017). This application development
environment for GPUs allows you to build, debug, profile and trace heterogeneous
compute, graphics, and virtual reality applications built with CUDA C/C++, OpenCL,
DirectCompute, Direct3D, Vulkan API, OpenGL, OpenVR, and the Oculus SDK.

The following screenshot shows an active CUDA debug session:

https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nvidia-nsight-visual-studio-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition
https://developer.nvidia.com/nsight-eclipse-edition

Multithreading with GPGPU

[218]

A big advantage of such a debugger tool is that it allows one to monitor, profile and
optimize one's GPGPU application by identifying bottlenecks and potential problems.

Summary
In this chapter, we looked at how to integrate GPGPU processing into a C++ application in
the form of OpenCL. We also looked at the GPU memory hierarchy and how this impacts
performance, especially in terms of host-device communication.

You should now be familiar with GPGPU implementations and concepts, along with how to
create an OpenCL application, and how to compile and run it. How to avoid common
mistakes should also be known.

As this is the final chapter of this book, it is hoped that all major questions have been
answered, and that the preceding chapters, along with this one, have been informative and
helpful in some fashion.

Moving on from this book, the reader may be interested in pursuing any of the topics
covered in more detail, for which many resources are available both online and offline. The
topic of multithreading and related areas is very large and touches upon many applications,
from business to scientific, artistic and personal applications

The reader may want to set up a Beowulf cluster of tehir own, or focus on GPGPU, or
combine the two. Maybe there is a complex application they have wanted to write for a
while, or perhaps just have fun with programming.

Index

A
API 36
Argonne National Laboratory (ANL) 179
asymmetric multiprocessing (AMP)
 about 26
 versus symmetric multiprocessing (SMP) 26
atomic flag 172
atomic operations
 about 154
 atomic flag 172
 C++11 atomics 165
 compilers 165
 example 168, 170
 GCC 161
 memory order 172
 non-class functions 169
 Visual C++ 155
atomics 106

B
Boost 52
Boost.Thread API 80
BSDs
 Open MPI, installing 186

C
C++ standard 80
C++ threads 59
C++11 atomics
 about 165
 atomic functions 167
 generic functions 167
C++11 thread
 about 101
 async 105
 launch policy 106

 packaged_task 104
 promise 102
 shared future 103
C++14 81
C++17 81
cluster hardware 182
cluster scheduler
 using 190
compare-and-swap (CAS) 148
compilers 165
Completely Fair Scheduler (CFS) 29
condition variable
 about 97, 99, 100
 condition_variable_any class 100
 thread exit, notifying 100
Current Program State Register (CPSR) 21

D
data race 142
data
 r/w-locks, using 78
 shared pointers, using 78
 sharing 77
deadlock 138
debugging
 start 107
definitely lost type 124
Dekker's algorithm 33
demo application
 tracing 30, 31
development environment
 Linux 208
 setting up 208
 Windows 208
dispatcher 69, 71, 72
distributed computing
 about 176

[220]

 cluster hardware 182
 in nutshell 176
 MPI 178
 MPI applications, compiling 181
dynamic analysis tools
 about 114
 alternatives 115
 basic use 132
 C++11 threads support 135
 data races 132
 DRD 132
 features 134
 Helgrind 125
 limitations 115
 lock order, issues 131
 memcheck 116
 pthreads API, misuse 130

E
error types, memcheck
 destination, overlapping 123
 fishy argument values 124
 illegal frees 123
 illegal read / illegal write errors 119
 memory leak detection 124
 mismatched deallocation 123
 source, overlapping 123
 unaddressable system call values 121
 uninitialized system call values 121
 uninitialized values, using 119
Exception Level 0 (EL0) 21
Executable and Linkable Format (ELF) 16
Extended Base Pointer (EBP) 23

F
Fiber Local Storage (FLS) 50
Flynn's taxonomy
 about 25
 Multiple Instruction, Multiple Data (MIMD) 25
 Multiple Instruction, Single Data (MISD) 25
 Single Instruction, Multiple Data (SIMD) 25
 Single Instruction, Single Data (SISD) 25
future
 versus threads 150

G
GCC
 about 161
 memory order 164
GPGPU (General Purpose Computing on Graphics

Processing Units) 26, 201, 215
GPGPU processing model
 about 201
 implementations 202
 OpenCL 203
 OpenCL versions 204
GPU memory management
 about 214
graphics processors (GPUs) 25
GUI-based application 13

H
Helgrind, dynamic analysis tools
 basic use 125, 128
high-level view 62
host file
 creating 189
humble debugger 108
 back traces 112
 GDB 109
 multithreaded code, debugging 110
Hyper-Threading (HT) 24

I
indirectly lost type 124
initialization
 static order 150
Instructions Per Second (IPC) 25
inter-process communication (IPC) 16

J
jobs
 cluster scheduler, using 190
 distributing, across nodes 188
 executing 190
 host file, creating 189
 MPI node, setting up 189

[221]

L
Linux 208
 Open MPI, installing 186
locks
 using 149
loosely coupled multiprocessing 27

M
makefile 73
memcheck, dynamic analysis tools
 basic use 116
 error types 119
memory order
 about 172
 relaxed ordering 173
 release-acquire ordering 173
 release-consume ordering 174
 sequentially-consistent ordering 174
 volatile keyword 175
MPI (Message Passing Interface)
 about 178
 applications, compiling 181
 basic concepts 178
 implementations 179
 potential issues 200
 reference link 180
 URL, for downloading 187
 using 180
MPI communication
 about 191
 advances communication 196
 broadcasting 196
 example 195
 gathering 197
 MPI data types 192
 reference link 195
 scattering 197
MPI data types
 about 192
 custom types 193
MPI node
 setting up 189
MPICH 179
MSYS2

 reference link 187
multiprocessing
 combined, with multithreading 27
multithreaded application
 about 7, 8, 10
 makefile 11, 13
multithreaded code
 breakpoints 111
multithreading
 about 6, 137, 215
 defining 23, 25
 Flynn's taxonomy 25
 loosely coupled multiprocessing 27
 multiprocessing, combined 27
 simultaneous multithreading (SMT) 28
 symmetric multiprocessing (SMP), versus

asymmetric multiprocessing (AMP) 26
 temporal multithreading (TMT) 27
 tightly coupled multiprocessing 27
 types 27
mutual exclusion (mutex)
 about 32, 89, 147
 basic use 89
 hardware 33
 implementations 32
 lock guard 93
 non-blocking locking 91
 recursive mutex 95
 recursive timed mutex 96
 scoped lock 95
 software 33
 timed mutex 92
 unique lock 94

N
nodes
 jobs, distributing 188
non-class functions 169

O
Open MPI
 installing 186
 installing, on BSDs 186
 installing, on Linux 186
 installing, on Windows 186

[222]

OpenCL 203
OpenCL 1.0 204
OpenCL 1.1
 about 204
 features 204
OpenCL 1.2
 about 205
 features 205
OpenCL 2.0
 about 206
 features 206
OpenCL 2.1
 about 206
 features 207
OpenCL 2.2
 about 207
 features 207
OpenCL application 209, 213
OpenCL versions
 about 204
 OpenCL 1.0 204
 OpenCL 1.1 204
 OpenCL 1.2 205
 OpenCL 2.0 206
 OpenCL 2.1 206
 OpenCL 2.2 207
operating system (OS) 16
out-of-order (OoO) 35
output 74, 76

P
POCO library
 about 55
 synchronization 58
 thread class 56
 thread local storage (TLS) 57
 thread pool 56
Portable Operating System Interface (POSIX) 36
POSIX threads (Pthreads)
 about 36, 37
 condition variables 43, 45
 mutexes 42
 semaphores 46
 synchronization 45
 thread local storage (TLC) 46

 thread management 40
 Windows support 39
possibly lost type 125
Process State (PSTATE) 22
processes
 defining 16, 17
Program State Register (PSR) 21

Q
Qt multithreading API
 implementing 59
Qt
 about 52
 QtConcurrent 55
 QThread 53
 synchronization 54
 thread local storage 55
 thread pool 54

R
read/write lock (rwlock)
 about 45
 using 78

S
Saved Program State Register (SPSR) 21
scheduler
 about 28, 62
 dispatcher 69, 71
 high-level view 62
 implementation 63, 64
 makefile 73
 output 74, 76
 request class 65
 worker class 67, 69
shared mutex 96
shared pointers
 using 78
shared timed mutex 97
slim reader/writer (SRW) 51
stack 22
Stack Pointer (SP) 21
Standard Template Library (STL) 36, 79
static order
 of initialization 150

STL organization 82
STL threading API
 about 79
 Boost.Thread API 80
symmetric multiprocessing (SMP)
 about 26
 versus asymmetric multiprocessing (AMP) 26

T
Task State Structure (TSS) 18
task
 in x86 (32-bit and 64-bit) 18, 21
temporal multithreading (TMT) 27
test-and-set (TAS) 148
thread class
 about 83
 basic use 84
 detach 88
 parameters, passing 84
 return value 85
 sleeping 87
 swap 88
 thread id 86
 threads, moving 85

 yield 88
thread local storage (TLS) 52
threads
 defining 16, 17
 security 61, 72
 versus future 150
tightly coupled multiprocessing 27

V
Valgrind
 reference link 115
Visual C++ 155

W
Windows 208
Windows threads
 about 47
 advanced management 50
 condition variables 51
 synchronization 51
 thread local storage (TLS) 52
 thread management 48, 49
Windows
 Open MPI, installing 186

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Revisiting Multithreading
	Getting started
	The multithreaded application
	Makefile

	Other applications
	Summary

	Chapter 2: Multithreading Implementation on the Processor and OS
	Defining processes and threads
	Tasks in x86 (32-bit and 64-bit)
	Process state in ARM

	The stack
	Defining multithreading
	Flynn's taxonomy
	Symmetric versus asymmetric multiprocessing
	Loosely and tightly coupled multiprocessing
	Combining multiprocessing with multithreading
	Multithreading types
	Temporal multithreading
	Simultaneous multithreading (SMT)

	Schedulers
	Tracing the demo application
	Mutual exclusion implementations
	Hardware
	Software

	Summary

	Chapter 3: C++ Multithreading APIs
	API overview
	POSIX threads
	Windows support
	PThreads thread management
	Mutexes
	Condition variables
	Synchronization
	Semaphores
	Thread local storage (TLC)

	Windows threads
	Thread management
	Advanced management
	Synchronization
	Condition variables
	Thread local storage

	Boost
	Qt
	QThread
	Thread pools
	Synchronization
	QtConcurrent
	Thread local storage

	POCO
	Thread class
	Thread pool
	Thread local storage (TLS)
	Synchronization

	C++ threads
	Putting it together
	Summary

	Chapter 4: Thread Synchronization and Communication
	Safety first
	The scheduler
	High-level view
	Implementation
	Request class
	Worker class

	Dispatcher
	Makefile
	Output

	Sharing data
	Using r/w-locks
	Using shared pointers

	Summary

	Chapter 5: Native C++ Threads and Primitives
	The STL threading API
	Boost.Thread API

	The 2011 standard
	C++14
	C++17
	STL organization
	Thread class
	Basic use
	Passing parameters
	Return value
	Moving threads
	Thread ID
	Sleeping
	Yield
	Detach
	Swap

	Mutex
	Basic use
	Non-blocking locking

	Timed mutex
	Lock guard
	Unique lock
	Scoped lock
	Recursive mutex
	Recursive timed mutex

	Shared mutex
	Shared timed mutex

	Condition variable
	Condition_variable_any
	Notify all at thread exit

	Future
	Promise
	Shared future

	Packaged_task
	Async
	Launch policy

	Atomics
	Summary

	Chapter 6: Debugging Multithreaded Code
	When to start debugging
	The humble debugger
	GDB
	Debugging multithreaded code
	Breakpoints
	Back traces

	Dynamic analysis tools
	Limitations
	Alternatives
	Memcheck
	Basic use
	Error types
	Illegal read / illegal write errors
	Use of uninitialized values
	Uninitialized or unaddressable system call values
	Illegal frees
	Mismatched deallocation
	Overlapping source and destination
	Fishy argument values
	Memory leak detection

	Helgrind
	Basic use

	Misuse of the pthreads API
	Lock order problems
	Data races
	DRD
	Basic use
	Features
	C++11 threads support

	Summary

	Chapter 7: Best Practices
	Proper multithreading
	Wrongful expectations - deadlocks
	Being careless - data races
	Mutexes aren't magic
	Locks are fancy mutexes
	Threads versus the future
	Static order of initialization
	Summary

	Chapter 8: Atomic Operations - Working with the Hardware
	Atomic operations
	Visual C++
	GCC
	Memory order

	Other compilers
	C++11 atomics
	Example
	Non-class functions
	Example
	Atomic flag
	Memory order
	Relaxed ordering
	Release-acquire ordering
	Release-consume ordering
	Sequentially-consistent ordering
	Volatile keyword

	Summary

	Chapter 9: Multithreading with Distributed Computing
	Distributed computing, in a nutshell
	MPI
	Implementations
	Using MPI

	Compiling MPI applications
	The cluster hardware

	Installing Open MPI
	Linux and BSDs
	Windows

	Distributing jobs across nodes
	Setting up an MPI node
	Creating the MPI host file
	Running the job
	Using a cluster scheduler

	MPI communication
	MPI data types
	Custom types

	Basic communication
	Advanced communication
	Broadcasting
	Scattering and gathering

	MPI versus threads
	Potential issues
	Summary

	Chapter 10: Multithreading with GPGPU
	The GPGPU processing model
	Implementations
	OpenCL
	Common OpenCL applications
	OpenCL versions
	OpenCL 1.0
	OpenCL 1.1
	OpenCL 1.2
	OpenCL 2.0
	OpenCL 2.1
	OpenCL 2.2

	Setting up a development environment
	Linux
	Windows
	OS X/MacOS

	A basic OpenCL application
	GPU memory management
	GPGPU and multithreading
	Latency

	Potential issues
	Debugging GPGPU applications
	Summary

	Index

