
Laravel
 Up & Running
A Framework for
Building Modern PHP Apps

Matt Stauffer

Second

Edition

Matt Stauffer

Laravel: Up & Running
A Framework for Building Modern PHP Apps

SECOND EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-04121-4

[LSI]

Laravel: Up & Running
by Matt Stauffer

Copyright © 2019 Matt Stauffer. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Alicia Young
Production Editor: Christopher Faucher
Copyeditor: Rachel Head
Proofreader: Amanda Kersey

Indexer: WordCo Indexing Services, Inc.
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

December 2016: First Edition
April 2019: Second Edition

Revision History for the Second Edition
2019-04-01: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492041214 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Laravel: Up & Running, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492041214

This book is dedicated to my family.
Mia, my little princess and bundle of joy and energy.

Malachi, my little prince and adventurer and empath.
Tereva, my inspiration, encourager, upgrader, pusher, rib.

Table of Contents

Preface. xvii

1. Why Laravel?. 1
Why Use a Framework? 1

“I’ll Just Build It Myself ” 2
Consistency and Flexibility 2

A Short History of Web and PHP Frameworks 2
Ruby on Rails 2
The Influx of PHP Frameworks 3
The Good and the Bad of CodeIgniter 3
Laravel 1, 2, and 3 3
Laravel 4 4
Laravel 5 4

What’s So Special About Laravel? 4
The Philosophy of Laravel 5
How Laravel Achieves Developer Happiness 5
The Laravel Community 6

How It Works 7
Why Laravel? 9

2. Setting Up a Laravel Development Environment. 11
System Requirements 11
Composer 12
Local Development Environments 12

Laravel Valet 12
Laravel Homestead 13

Creating a New Laravel Project 13
Installing Laravel with the Laravel Installer Tool 14

v

Installing Laravel with Composer’s create-project Feature 14
Lambo: Super-Powered “Laravel New” 14

Laravel’s Directory Structure 15
The Folders 16
The Loose Files 17

Configuration 18
The .env File 19

Up and Running 21
Testing 21
TL;DR 22

3. Routing and Controllers. 23
A Quick Introduction to MVC, the HTTP Verbs, and REST 23

What Is MVC? 23
The HTTP Verbs 24
What Is REST? 25

Route Definitions 26
Route Verbs 28
Route Handling 28
Route Parameters 29
Route Names 31

Route Groups 33
Middleware 34
Path Prefixes 36
Fallback Routes 36
Subdomain Routing 37
Namespace Prefixes 37
Name Prefixes 38

Signed Routes 38
Signing a Route 39
Modifying Routes to Allow Signed Links 40

Views 40
Returning Simple Routes Directly with Route::view() 41
Using View Composers to Share Variables with Every View 42

Controllers 42
Getting User Input 45
Injecting Dependencies into Controllers 46
Resource Controllers 47
API Resource Controllers 49
Single Action Controllers 49

Route Model Binding 50
Implicit Route Model Binding 50

vi | Table of Contents

Custom Route Model Binding 51
Route Caching 52
Form Method Spoofing 52

HTTP Verbs in Laravel 52
HTTP Method Spoofing in HTML Forms 53

CSRF Protection 53
Redirects 55

redirect()->to() 56
redirect()->route() 56
redirect()->back() 57
Other Redirect Methods 57
redirect()->with() 57

Aborting the Request 59
Custom Responses 60

response()->make() 60
response()->json() and ->jsonp() 60
response()->download(), ->streamDownload(), and ->file() 60

Testing 61
TL;DR 62

4. Blade Templating. 63
Echoing Data 64
Control Structures 65

Conditionals 65
Loops 65

Template Inheritance 68
Defining Sections with @section/@show and @yield 68
Including View Partials 70
Using Stacks 72
Using Components and Slots 73

View Composers and Service Injection 75
Binding Data to Views Using View Composers 76
Blade Service Injection 79

Custom Blade Directives 80
Parameters in Custom Blade Directives 81
Example: Using Custom Blade Directives for a Multitenant App 82
Easier Custom Directives for “if ” Statements 83

Testing 83
TL;DR 84

5. Databases and Eloquent. 87
Configuration 87

Table of Contents | vii

Database Connections 88
Other Database Configuration Options 89
Defining Migrations 90
Running Migrations 97

Seeding 98
Creating a Seeder 98
Model Factories 99

Query Builder 105
Basic Usage of the DB Facade 105
Raw SQL 106
Chaining with the Query Builder 107
Transactions 116

Introduction to Eloquent 117
Creating and Defining Eloquent Models 119
Retrieving Data with Eloquent 120
Inserts and Updates with Eloquent 122
Deleting with Eloquent 126
Scopes 128
Customizing Field Interactions with Accessors, Mutators, and Attribute

Casting 131
Eloquent Collections 135
Eloquent Serialization 137
Eloquent Relationships 139
Child Records Updating Parent Record Timestamps 152

Eloquent Events 154
Testing 155
TL;DR 157

6. Frontend Components. 159
Laravel Mix 159

Mix Folder Structure 161
Running Mix 161
What Does Mix Provide? 162

Frontend Presets and Auth Scaffolding 169
Frontend Presets 169
Auth Scaffolding 170

Pagination 170
Paginating Database Results 170
Manually Creating Paginators 171

Message Bags 172
Named Error Bags 174

String Helpers, Pluralization, and Localization 174

viii | Table of Contents

The String Helpers and Pluralization 174
Localization 175

Testing 179
Testing Message and Error Bags 179
Translation and Localization 179

TL;DR 180

7. Collecting and Handling User Data. 181
Injecting a Request Object 181

$request->all() 182
$request->except() and $request->only() 182
$request->has() 183
$request->input() 183
$request->method() and ->isMethod() 184
Array Input 184
JSON Input (and $request->json()) 185

Route Data 186
From Request 186
From Route Parameters 186

Uploaded Files 187
Validation 189

validate() on the Request Object 189
Manual Validation 192
Custom Rule Objects 192
Displaying Validation Error Messages 193

Form Requests 194
Creating a Form Request 194
Using a Form Request 195

Eloquent Model Mass Assignment 196
{{ Versus {!! 197
Testing 197
TL;DR 199

8. Artisan and Tinker. 201
An Introduction to Artisan 201
Basic Artisan Commands 202

Options 203
The Grouped Commands 203

Writing Custom Artisan Commands 206
A Sample Command 208
Arguments and Options 209
Using Input 211

Table of Contents | ix

Prompts 213
Output 214
Writing Closure-Based Commands 215

Calling Artisan Commands in Normal Code 216
Tinker 217
Laravel Dump Server 218
Testing 219
TL;DR 219

9. User Authentication and Authorization. 221
The User Model and Migration 222
Using the auth() Global Helper and the Auth Facade 225
The Auth Controllers 226

RegisterController 226
LoginController 227
ResetPasswordController 229
ForgotPasswordController 229
VerificationController 229

Auth::routes() 229
The Auth Scaffold 231
“Remember Me” 232
Manually Authenticating Users 233
Manually Logging Out a User 233

Invalidating Sessions on Other Devices 233
Auth Middleware 234
Email Verification 235
Blade Authentication Directives 236
Guards 236

Changing the Default Guard 237
Using Other Guards Without Changing the Default 237
Adding a New Guard 237
Closure Request Guards 238
Creating a Custom User Provider 238
Custom User Providers for Nonrelational Databases 239

Auth Events 239
Authorization (ACL) and Roles 240

Defining Authorization Rules 240
The Gate Facade (and Injecting Gate) 241
Resource Gates 242
The Authorize Middleware 243
Controller Authorization 243
Checking on the User Instance 245

x | Table of Contents

Blade Checks 246
Intercepting Checks 246
Policies 247

Testing 249
TL;DR 252

10. Requests, Responses, and Middleware. 253
Laravel’s Request Lifecycle 253

Bootstrapping the Application 254
Service Providers 255

The Request Object 257
Getting a Request Object in Laravel 257
Getting Basic Information About a Request 258

The Response Object 262
Using and Creating Response Objects in Controllers 263
Specialized Response Types 264

Laravel and Middleware 269
An Introduction to Middleware 269
Creating Custom Middleware 270
Binding Middleware 272
Passing Parameters to Middleware 275

Trusted Proxies 276
Testing 277
TL;DR 278

11. The Container. 279
A Quick Introduction to Dependency Injection 279
Dependency Injection and Laravel 281
The app() Global Helper 281
How the Container Is Wired 282
Binding Classes to the Container 283

Binding to a Closure 283
Binding to Singletons, Aliases, and Instances 284
Binding a Concrete Instance to an Interface 285
Contextual Binding 286

Constructor Injection in Laravel Framework Files 287
Method Injection 287
Facades and the Container 289

How Facades Work 289
Real-Time Facades 291

Service Providers 291
Testing 292

Table of Contents | xi

TL;DR 293

12. Testing. 295
Testing Basics 296
Naming Tests 300
The Testing Environment 301
The Testing Traits 301

RefreshDatabase 302
WithoutMiddleware 302
DatabaseMigrations 302
DatabaseTransactions 302

Simple Unit Tests 303
Application Testing: How It Works 304

TestCase 304
HTTP Tests 305

Testing Basic Pages with $this->get() and Other HTTP Calls 305
Testing JSON APIs with $this->getJson() and Other JSON HTTP Calls 306
Assertions Against $response 306
Authenticating Responses 309
A Few Other Customizations to Your HTTP Tests 310
Handling Exceptions in Application Tests 310

Database Tests 311
Using Model Factories in Tests 312
Seeding in Tests 312

Testing Other Laravel Systems 312
Event Fakes 312
Bus and Queue Fakes 314
Mail Fakes 315
Notification Fakes 316
Storage Fakes 317

Mocking 318
A Quick Introduction to Mocking 318
A Quick Introduction to Mockery 318
Faking Other Facades 321

Testing Artisan Commands 322
Asserting Against Artisan Command Syntax 322

Browser Tests 323
Choosing a Tool 324
Testing with Dusk 324

TL;DR 335

xii | Table of Contents

13. Writing APIs. 337
The Basics of REST-Like JSON APIs 337
Controller Organization and JSON Returns 339
Reading and Sending Headers 342

Sending Response Headers in Laravel 343
Reading Request Headers in Laravel 343

Eloquent Pagination 344
Sorting and Filtering 345

Sorting Your API Results 346
Filtering Your API Results 347

Transforming Results 348
Writing Your Own Transformer 349
Nesting and Relationships with Custom Transformers 350

API Resources 352
Creating a Resource Class 352
Resource Collections 354
Nesting Relationships 355
Using Pagination with API Resources 356
Conditionally Applying Attributes 357
More Customizations for API Resources 357

API Authentication with Laravel Passport 357
A Brief Introduction to OAuth 2.0 358
Installing Passport 358
Passport’s API 360
Passport’s Available Grant Types 360
Managing Clients and Tokens with the Passport API and Vue Components 368
Passport Scopes 371
Deploying Passport 373

API Token Authentication 373
Customizing 404 Responses 374

Triggering the Fallback Route 374
Testing 374

Testing Passport 375
TL;DR 375

14. Storage and Retrieval. 377
Local and Cloud File Managers 377

Configuring File Access 377
Using the Storage Facade 378
Adding Additional Flysystem Providers 380

Basic File Uploads and Manipulation 380
Simple File Downloads 382

Table of Contents | xiii

Sessions 382
Accessing the Session 383
Methods Available on Session Instances 383
Flash Session Storage 385

Cache 386
Accessing the Cache 386
Methods Available on Cache Instances 387

Cookies 388
Cookies in Laravel 388
Accessing the Cookie Tools 389

Logging 391
When and Why to Use Logs 392
Writing to the Logs 392
Log Channels 393

Full-Text Search with Laravel Scout 396
Installing Scout 396
Marking Your Model for Indexing 397
Searching Your Index 397
Queues and Scout 397
Performing Operations Without Indexing 398
Conditionally Indexing Models 398
Manually Triggering Indexing via Code 398
Manually Triggering Indexing via the CLI 398

Testing 399
File Storage 399
Session 400
Cache 401
Cookies 402
Log 403
Scout 403

TL;DR 404

15. Mail and Notifications. 405
Mail 405

“Classic” Mail 406
Basic “Mailable” Mail Usage 406
Mail Templates 409
Methods Available in build() 410
Attachments and Inline Images 410
Markdown Mailables 411
Rendering Mailables to the Browser 413
Queues 414

xiv | Table of Contents

Local Development 415
Notifications 416

Defining the via() Method for Your Notifiables 419
Sending Notifications 419
Queueing Notifications 420
Out-of-the-Box Notification Types 421

Testing 424
Mail 425
Notifications 425

TL;DR 426

16. Queues, Jobs, Events, Broadcasting, and the Scheduler. 427
Queues 427

Why Queues? 428
Basic Queue Configuration 428
Queued Jobs 428
Controlling the Queue 435
Queues Supporting Other Functions 436

Laravel Horizon 436
Events 437

Firing an Event 437
Listening for an Event 439

Broadcasting Events over WebSockets, and Laravel Echo 442
Configuration and Setup 443
Broadcasting an Event 443
Receiving the Message 446
Advanced Broadcasting Tools 448
Laravel Echo (the JavaScript Side) 452

Scheduler 457
Available Task Types 457
Available Time Frames 458
Defining Time Zones for Scheduled Commands 459
Blocking and Overlap 460
Handling Task Output 460
Task Hooks 461

Testing 461
TL;DR 463

17. Helpers and Collections. 465
Helpers 465

Arrays 465
Strings 467

Table of Contents | xv

Application Paths 469
URLs 470
Miscellaneous 472

Collections 475
The Basics 475
A Few Methods 477

TL;DR 481

18. The Laravel Ecosystem. 483
Tools Covered in This Book 483

Valet 483
Homestead 484
The Laravel Installer 484
Mix 484
Dusk 484
Passport 484
Horizon 484
Echo 485

Tools Not Covered in This Book 485
Forge 485
Envoyer 485
Cashier 486
Socialite 486
Nova 486
Spark 487
Lumen 487
Envoy 487
Telescope 488

Other Resources 488

Glossary. 489

Index. 497

xvi | Table of Contents

Preface

The story of how I got started with Laravel is a common one: I had written PHP for
years, but I was on my way out the door, pursuing the power of Rails and other
modern web frameworks. Rails in particular had a lively community, a perfect combi‐
nation of opinionated defaults and flexibility, and the power of Ruby Gems to lever‐
age prepackaged common code.

Something kept me from jumping ship, and I was glad for that when I found Laravel.
It offered everything I was drawn to in Rails, but it wasn’t just a Rails clone; this was
an innovative framework with incredible documentation, a welcoming community,
and clear influences from many languages and frameworks.

Since that day I’ve been able to share my journey of learning Laravel through blog‐
ging, podcasting, and speaking at conferences; I’ve written dozens of apps in Laravel
for work and side projects; and I’ve met thousands of Laravel developers online and
in person. I have plenty of tools in my development toolkit, but I am honestly happi‐
est when I sit down in front of a command line and type laravel new projectName.

What This Book Is About
This is not the first book about Laravel, and it won’t be the last. I don’t intend for this
to be a book that covers every line of code or every implementation pattern. I don’t
want this to be the sort of book that goes out of date when a new version of Laravel is
released. Instead, its primary purpose is to provide developers with a high-level over‐
view and concrete examples to learn what they need to work in any Laravel codebase
with any and every Laravel feature and subsystem. Rather than mirroring the docs, I
want to help you understand the foundational concepts behind Laravel.

Laravel is a powerful and flexible PHP framework. It has a thriving community and a
wide ecosystem of tools, and as a result it’s growing in appeal and reach. This book is
for developers who already know how to make websites and applications and want to
learn how to do so well in Laravel.

xvii

Laravel’s documentation is thorough and excellent. If you find that I don’t cover any
particular topic deeply enough for your liking, I encourage you to visit the online
documentation and dig deeper into that particular topic.

I think you will find the book a comfortable balance between high-level introduction
and concrete application, and by the end you should feel comfortable writing an
entire application in Laravel, from scratch. And, if I did my job well, you’ll be excited
to try.

Who This Book Is For
This book assumes knowledge of basic object-oriented programming practices, PHP
(or at least the general syntax of C-family languages), and the basic concepts of the
Model–View–Controller (MVC) pattern and templating. If you’ve never made a
website before, you may find yourself in over your head. But as long as you have
some programming experience, you don’t have to know anything about Laravel
before you read this book—we’ll cover everything you need to know, from the sim‐
plest “Hello, world!”

Laravel can run on any operating system, but there will be some bash (shell) com‐
mands in the book that are easiest to run on Linux/macOS. Windows users may have
a harder time with these commands and with modern PHP development, but if you
follow the instructions to get Homestead (a Linux virtual machine) running, you’ll be
able to run all of the commands from there.

How This Book Is Structured
This book is structured in what I imagine to be a chronological order: if you’re build‐
ing your first web app with Laravel, the early chapters cover the foundational compo‐
nents you’ll need to get started, and the later chapters cover less foundational or more
esoteric features.

Each section of the book can be read on its own, but for someone new to the frame‐
work, I’ve tried to structure the chapters so that it’s actually very reasonable to start
from the beginning and read until the end.

Where applicable, each chapter will end with two sections: “Testing” and “TL;DR.” If
you’re not familiar, “TL;DR” means “too long; didn’t read.” These final sections will
show you how to write tests for the features covered in each chapter and will give a
high-level overview of what was covered.

The book is written for Laravel 5.8, but will cover features and syntax changes back to
Laravel 5.1.

xviii | Preface

https://laravel.com/docs
https://laravel.com/docs

About the Second Edition
The first edition of Laravel: Up & Running came out in November 2016 and covered
Laravel versions 5.1 to 5.3. This second edition adds coverage for 5.4 to 5.8 and Lara‐
vel Dusk and Horizon, and adds an 18th chapter about community resources and
other non-core Laravel packages that weren’t covered in the first 17 chapters.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows code text that should be replaced with user-supplied values or by values
determined by context.

{Italic in braces}
Shows file names or file pathways that should be replaced with user-supplied val‐
ues or by values determined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Preface | xix

Because this book covers Laravel from versions 5.1 to 5.8, you’ll find markers
throughout the book indicating version-specific comments. Generally speaking, the
indicator is showing the version of Laravel a feature was introduced in (so you’ll see a
5.3 next to a feature that’s only accessible in Laravel 5.3 and higher).

O’Reilly Online Learning
For almost 40 years, O’Reilly Media has provided technology
and business training, knowledge, and insight to help compa‐
nies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O’Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/laravel-up-and-running-2e.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xx | Preface

http://oreilly.com
http://oreilly.com
http://bit.ly/laravel-up-and-running-2e
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Acknowledgments for the First Edition
This book would not have happened without the gracious support of my amazing
wife, Tereva, or the understanding (“Daddy’s writing, buddy!”) of my son Malachi.
And while she wasn’t explicitly aware of it, my daughter Mia was around for almost
the entire creation of the book, so this book is dedicated to the whole family. There
were many, many long evening hours and weekend Starbucks trips that took me away
from them, and I couldn’t be more grateful for their support and also their presence
just making my life awesome.

Additionally, the entire Tighten family has supported and encouraged me through the
writing of the book, several colleagues even editing code samples (Keith Damiani,
editor extraordinaire) and helping me with challenging ones (Adam Wathan, King of
the Collection Pipeline). Dan Sheetz, my partner in Tighten crime, has been gracious
enough to watch me while away many a work hour cranking on this book and was
nothing but supportive and encouraging; and Dave Hicking, our operations manager,
helped me arrange my schedule and work responsibilities around writing time.

Taylor Otwell deserves thanks and honor for creating Laravel—and therefore creating
so many jobs and helping so many developers love our lives that much more. He
deserves appreciation for how he’s focused on developer happiness and how hard he’s
worked to have empathy for developers and to build a positive and encouraging com‐
munity. But I also want to thank him for being a kind, encouraging, and challenging
friend. Taylor, you’re a boss.

Thanks to Jeffrey Way, who is one of the best teachers on the internet. He originally
introduced me to Laravel and introduces more people every day. He’s also, unsurpris‐
ingly, a fantastic human being whom I’m glad to call a friend.

Thank you to Jess D’Amico, Shawn McCool, Ian Landsman, and Taylor for seeing
value in me as a conference speaker early on and giving me a platform to teach from.
Thanks to Dayle Rees for making it so easy for so many to learn Laravel in the early
days.

Thanks to every person who put their time and effort into writing blog posts about
Laravel, especially early on: Eric Barnes, Chris Fidao, Matt Machuga, Jason Lewis,
Ryan Tablada, Dries Vints, Maks Surguy, and so many more.

And thanks to the entire community of friends on Twitter, IRC, and Slack who’ve
interacted with me over the years. I wish I could name every name, but I would miss
some and then feel awful about missing them. You all are brilliant, and I’m honored
to get to interact with you on a regular basis.

Thanks to my O’Reilly editor, Ally MacDonald, and all of my technical editors: Keith
Damiani, Michael Dyrynda, Adam Fairholm, and Myles Hyson.

Preface | xxi

And, of course, thanks to the rest of my family and friends, who supported me
directly or indirectly through this process—my parents and siblings, the Gainesville
community, other business owners and authors, other conference speakers, and the
inimitable DCB. I need to stop writing because by the time I run out of space here I’ll
be thanking my Starbucks baristas.

Acknowledgments for the Second Edition
The second edition is very similar to the first, so all of the previous acknowledgments
are still valid. But I’ve gotten help from a few new people this time around. My tech‐
nical proofreaders have been Tate Peñaranda, Andy Swick, Mohamed Said, and
Samantha Geitz, and my new O’Reilly editor has been Alicia Young, who’s kept me on
task through a lot of changes in my life and the Laravel community over the last year.
Matt Hacker on the Atlas team answered all my stupid AsciiDoc formatting ques‐
tions, including about the surprisingly difficult formatting for the __() method.

And I couldn’t have made it through the process of writing a second edition without
the help of my research assistant, Wilbur Powery. Wilbur was willing to sift through
the last several years’ worth of changelogs and pull requests and announcements and
match each feature up with the current structure of the book, and he even tested
every single code example in the book in Laravel 5.7 (and then, later, 5.8) so that I
could focus my limited time and energy on writing the new and updated segments.

Also, my daughter, Mia, is out of her mama’s belly now. So, let’s just add her joy and
energy and love and cuteness and adventurous spirit to my list of sources of inspira‐
tion.

xxii | Preface

CHAPTER 1

Why Laravel?

In the early days of the dynamic web, writing a web application looked a lot different
than it does today. Developers then were responsible for writing the code for not just
the unique business logic of our applications, but also each of the components that
are so common across sites—user authentication, input validation, database access,
templating, and more.

Today, programmers have dozens of application development frameworks and thou‐
sands of components and libraries easily accessible. It’s a common refrain among pro‐
grammers that, by the time you learn one framework, three newer (and purportedly
better) frameworks have popped up intending to replace it.

“Just because it’s there” might be a valid justification for climbing a mountain, but
there are better reasons to choose to use a specific framework—or to use a framework
at all. It’s worth asking the question, why frameworks? More specifically, why Laravel?

Why Use a Framework?
It’s easy to see why it’s beneficial to use the individual components, or packages, that
are available to PHP developers. With packages, someone else is responsible for
developing and maintaining an isolated piece of code that has a well-defined job, and
in theory that person has a deeper understanding of this single component than you
have time to have.

Frameworks like Laravel—and Symfony, Lumen, and Slim—prepackage a collection
of third-party components together with custom framework “glue” like configuration
files, service providers, prescribed directory structures, and application bootstraps.
So, the benefit of using a framework in general is that someone has made decisions
not just about individual components for you, but also about how those components
should fit together.

1

“I’ll Just Build It Myself”
Let’s say you start a new web app without the benefit of a framework. Where do you
begin? Well, it should probably route HTTP requests, so you now need to evaluate all
of the HTTP request and response libraries available and pick one. Then you’ll have
to pick a router. Oh, and you’ll probably need to set up some form of routes configu‐
ration file. What syntax should it use? Where should it go? What about controllers?
Where do they live, and how are they loaded? Well, you probably need a dependency
injection container to resolve the controllers and their dependencies. But which one?

Furthermore, if you do take the time to answer all those questions and successfully
create your application, what’s the impact on the next developer? What about when
you have four such custom framework–based applications, or a dozen, and you have
to remember where the controllers live in each, or what the routing syntax is?

Consistency and Flexibility
Frameworks address this issue by providing a carefully considered answer to the
question “Which component should we use here?” and ensuring that the particular
components chosen work well together. Additionally, frameworks provide conven‐
tions that reduce the amount of code a developer new to the project has to under‐
stand—if you understand how routing works in one Laravel project, for example, you
understand how it works in all Laravel projects.

When someone prescribes rolling your own framework for each new project, what
they’re really advocating is the ability to control what does and doesn’t go into your
application’s foundation. That means the best frameworks will not only provide you
with a solid foundation, but also give you the freedom to customize to your heart’s
content. And this, as I’ll show you in the rest of this book, is part of what makes Lara‐
vel so special.

A Short History of Web and PHP Frameworks
An important part of being able to answer the question “Why Laravel?” is under‐
standing Laravel’s history—and understanding what came before it. Prior to Laravel’s
rise in popularity, there were a variety of frameworks and other movements in PHP
and other web development spaces.

Ruby on Rails
David Heinemeier Hansson released the first version of Ruby on Rails in 2004, and
it’s been hard to find a web application framework since then that hasn’t been influ‐
enced by Rails in some way.

2 | Chapter 1: Why Laravel?

Rails popularized MVC, RESTful JSON APIs, convention over configuration, Active‐
Record, and many more tools and conventions that had a profound influence on the
way web developers approached their applications—especially with regard to rapid
application development.

The Influx of PHP Frameworks
It was clear to most developers that Rails and similar web application frameworks
were the wave of the future, and PHP frameworks, including those admittedly imitat‐
ing Rails, started popping up quickly.

CakePHP was the first in 2005, and it was soon followed by Symfony, CodeIgniter,
Zend Framework, and Kohana (a CodeIgniter fork). Yii arrived in 2008, and Aura
and Slim in 2010. 2011 brought FuelPHP and Laravel, both of which were not quite
CodeIgniter offshoots, but instead proposed as alternatives.

Some of these frameworks were more Rails-y, focusing on database object-relational
mappers (ORMs), MVC structures, and other tools targeting rapid development.
Others, like Symfony and Zend, focused more on enterprise design patterns and
ecommerce.

The Good and the Bad of CodeIgniter
CakePHP and CodeIgniter were the two early PHP frameworks that were most
open about how much their inspiration was drawn from Rails. CodeIgniter quickly
rose to fame and by 2010 was arguably the most popular of the independent PHP
frameworks.

CodeIgniter was simple, easy to use, and boasted amazing documentation and a
strong community. But its use of modern technology and patterns advanced slowly;
and as the framework world grew and PHP’s tooling advanced, CodeIgniter started
falling behind in terms of both technological advances and out-of-the-box features.
Unlike many other frameworks, CodeIgniter was managed by a company, and it was
slow to catch up with PHP 5.3’s newer features like namespaces and the moves to Git‐
Hub and later Composer. It was in 2010 that Taylor Otwell, Laravel’s creator, became
dissatisfied enough with CodeIgniter that he set off to write his own framework.

Laravel 1, 2, and 3
The first beta of Laravel 1 was released in June 2011, and it was written completely
from scratch. It featured a custom ORM (Eloquent); closure-based routing (inspired
by Ruby Sinatra); a module system for extension; and helpers for forms, validation,
authentication, and more.

A Short History of Web and PHP Frameworks | 3

Early Laravel development moved quickly, and Laravel 2 and 3 were released in
November 2011 and February 2012, respectively. They introduced controllers, unit
testing, a command-line tool, an inversion of control (IoC) container, Eloquent rela‐
tionships, and migrations.

Laravel 4
With Laravel 4, Taylor rewrote the entire framework from the ground up. By this
point Composer, PHP’s now-ubiquitous package manager, was showing signs of
becoming an industry standard, and Taylor saw the value of rewriting the framework
as a collection of components, distributed and bundled together by Composer.

Taylor developed a set of components under the code name Illuminate and, in May
2013, released Laravel 4 with an entirely new structure. Instead of bundling the
majority of its code as a download, Laravel now pulled in the majority of its compo‐
nents from Symfony (another framework that released its components for use by oth‐
ers) and the Illuminate components through Composer.

Laravel 4 also introduced queues, a mail component, facades, and database seeding.
And because Laravel was now relying on Symfony components, it was announced
that Laravel would be mirroring (not exactly, but soon after) the six-monthly release
schedule Symfony follows.

Laravel 5
Laravel 4.3 was scheduled to release in November 2014, but as development pro‐
gressed it became clear that the significance of its changes merited a major release,
and Laravel 5 was released in February 2015.

Laravel 5 featured a revamped directory structure, removal of the form and HTML
helpers, the introduction of the contract interfaces, a spate of new views, Socialite for
social media authentication, Elixir for asset compilation, Scheduler to simplify cron,
dotenv for simplified environment management, form requests, and a brand new
REPL (read–evaluate–print loop). Since then it’s grown in features and maturity, but
there have been no major changes like in previous versions.

What’s So Special About Laravel?
So what is it that sets Laravel apart? Why is it worth having more than one PHP
framework at any time? They all use components from Symfony anyway, right? Let’s
talk a bit about what makes Laravel “tick.”

4 | Chapter 1: Why Laravel?

The Philosophy of Laravel
You only need to read through the Laravel marketing materials and READMEs to
start seeing its values. Taylor uses light-related words like “Illuminate” and “Spark.”
And then there are these: “Artisans.” “Elegant.” Also, these: “Breath of fresh air.”
“Fresh start.” And finally: “Rapid.” “Warp speed.”

The two most strongly communicated values of the framework are to increase devel‐
oper speed and developer happiness. Taylor has described the “Artisan” language as
intentionally contrasting against more utilitarian values. You can see the genesis of
this sort of thinking in his 2011 question on StackExchange in which he stated,
“Sometimes I spend ridiculous amounts of time (hours) agonizing over making code
‘look pretty’”—just for the sake of a better experience of looking at the code itself.
And he’s often talked about the value of making it easier and quicker for developers
to take their ideas to fruition, getting rid of unnecessary barriers to creating great
products.

Laravel is, at its core, about equipping and enabling developers. Its goal is to provide
clear, simple, and beautiful code and features that help developers quickly learn, start,
and develop, and write code that’s simple, clear, and lasting.

The concept of targeting developers is clear across Laravel materials. “Happy devel‐
opers make the best code” is written in the documentation. “Developer happiness
from download to deploy” was the unofficial slogan for a while. Of course, any tool or
framework will say it wants developers to be happy. But having developer happiness
as a primary concern, rather than secondary, has had a huge impact on Laravel’s style
and decision-making progress. Where other frameworks may target architectural
purity as their primary goal, or compatibility with the goals and values of enterprise
development teams, Laravel’s primary focus is on serving the individual developer.
That doesn’t mean you can’t write architecturally pure or enterprise-ready applica‐
tions in Laravel, but it won’t have to be at the expense of the readability and compre‐
hensibility of your codebase.

How Laravel Achieves Developer Happiness
Just saying you want to make developers happy is one thing. Doing it is another, and
it requires you to question what in a framework is most likely to make developers
unhappy and what is most likely to make them happy. There are a few ways Laravel
tries to make developers’ lives easier.

First, Laravel is a rapid application development framework. That means it focuses on
a shallow (easy) learning curve and on minimizing the steps between starting a new
app and publishing it. All of the most common tasks in building web applications,
from database interactions to authentication to queues to email to caching, are made
simpler by the components Laravel provides. But Laravel’s components aren’t just

What’s So Special About Laravel? | 5

http://bit.ly/2dT5kmS

great on their own; they provide a consistent API and predictable structures across
the entire framework. That means that, when you’re trying something new in Laravel,
you’re more than likely going to end up saying, “… and it just works.”

This doesn’t end with the framework itself, either. Laravel provides an entire ecosys‐
tem of tools for building and launching applications. You have Homestead and Valet
for local development, Forge for server management, and Envoyer for advanced
deployment. And there’s a suite of add-on packages: Cashier for payments and sub‐
scriptions, Echo for WebSockets, Scout for search, Passport for API authentication,
Dusk for frontend testing, Socialite for social login, Horizon for monitoring queues,
Nova for building admin panels, and Spark to bootstrap your SaaS. Laravel is trying
to take the repetitive work out of developers’ jobs so they can do something unique.

Next, Laravel focuses on “convention over configuration”—meaning that if you’re
willing to use Laravel’s defaults, you’ll have to do much less work than with other
frameworks that require you to declare all of your settings even if you’re using the
recommended configuration. Projects built on Laravel take less time than those built
on most other PHP frameworks.

Laravel also focuses deeply on simplicity. It’s possible to use dependency injection and
mocking and the Data Mapper pattern and repositories and Command Query
Responsibility Segregation and all sorts of other more complex architectural patterns
with Laravel, if you want. But while other frameworks might suggest using those tools
and structures on every project, Laravel and its documentation and community lean
toward starting with the simplest possible implementation—a global function here, a
facade there, ActiveRecord over there. This allows developers to create the simplest
possible application to solve for their needs, without limiting its usefulness in com‐
plex environments.

An interesting source of how Laravel is different from other PHP frameworks is that
its creator and its community are more connected to and inspired by Ruby and Rails
and functional programming languages than by Java. There’s a strong current in
modern PHP to lean toward verbosity and complexity, embracing the more Java-
esque aspects of PHP. But Laravel tends to be on the other side, embracing expressive,
dynamic, and simple coding practices and language features.

The Laravel Community
If this book is your first exposure to the Laravel community, you have something spe‐
cial to look forward to. One of the distinguishing elements of Laravel, which has con‐
tributed to its growth and success, is the welcoming, teaching community that
surrounds it. From Jeffrey Way’s Laracasts video tutorials to Laravel News to Slack
and IRC and Discord channels, from Twitter friends to bloggers to podcasts to the
Laracon conferences, Laravel has a rich and vibrant community full of folks who’ve

6 | Chapter 1: Why Laravel?

https://laracasts.com/
https://laravel-news.com/

been around since day one and folks who are just starting their own “day one.” And
this isn’t an accident:

From the very beginning of Laravel, I’ve had this idea that all people want to feel like
they are part of something. It’s a natural human instinct to want to belong and be
accepted into a group of other like-minded people. So, by injecting personality into a
web framework and being really active with the community, that type of feeling can
grow in the community.

—Taylor Otwell, Product and Support interview

Taylor understood from the early days of Laravel that a successful open source project
needed two things: good documentation and a welcoming community. And those
two things are now hallmarks of Laravel.

How It Works
Up until now, everything I’ve shared here has been entirely abstract. What about the
code, you ask? Let’s dig into a simple application (Example 1-1) so you can see what
working with Laravel day to day is actually like.

Example 1-1. “Hello, World” in routes/web.php

<?php

Route::get('/', function () {
 return 'Hello, World!';
});

The simplest possible action you can take in a Laravel application is to define a route
and return a result any time someone visits that route. If you initialize a brand new
Laravel application on your machine, define the route in Example 1-1, and then serve
the site from the public directory, you’ll have a fully functioning “Hello, World” exam‐
ple (see Figure 1-1).

Figure 1-1. Returning “Hello, World!” with Laravel

It looks very similar with controllers, as you can see in Example 1-2.

How It Works | 7

Example 1-2. “Hello, World” with controllers

// File: routes/web.php
<?php

Route::get('/', 'WelcomeController@index');

// File: app/Http/Controllers/WelcomeController.php
<?php

namespace App\Http\Controllers;

class WelcomeController extends Controller
{
 public function index()
 {
 return 'Hello, World!';
 }
}

And if you’re storing your greetings in a database, it’ll also look pretty similar (see
Example 1-3).

Example 1-3. Multigreeting “Hello, World” with database access

// File: routes/web.php
<?php

use App\Greeting;

Route::get('create-greeting', function () {
 $greeting = new Greeting;
 $greeting->body = 'Hello, World!';
 $greeting->save();
});

Route::get('first-greeting', function () {
 return Greeting::first()->body;
});

// File: app/Greeting.php
<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Greeting extends Model
{
 //
}

8 | Chapter 1: Why Laravel?

// File: database/migrations/2015_07_19_010000_create_greetings_table.php
<?php

use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;

class CreateGreetingsTable extends Migration
{
 public function up()
 {
 Schema::create('greetings', function (Blueprint $table) {
 $table->bigIncrements('id');
 $table->string('body');
 $table->timestamps();
 });
 }

 public function down()
 {
 Schema::dropIfExists('greetings');
 }
}

Example 1-3 might be a bit overwhelming, and if so, just skip over it. You’ll learn
about everything that’s happening here in later chapters, but you can already see that
with just a few lines of code, you can set up database migrations and models and pull
records out. It’s just that simple.

Why Laravel?
So—why Laravel?

Because Laravel helps you bring your ideas to reality with no wasted code, using
modern coding standards, surrounded by a vibrant community, with an empowering
ecosystem of tools.

And because you, dear developer, deserve to be happy.

Why Laravel? | 9

CHAPTER 2

Setting Up a Laravel
Development Environment

Part of PHP’s success has been because it’s hard to find a web server that can’t serve
PHP. However, modern PHP tools have stricter requirements than those of the past.
The best way to develop for Laravel is to ensure a consistent local and remote server
environment for your code, and thankfully, the Laravel ecosystem has a few tools
for this.

System Requirements
Everything we’ll cover in this chapter is possible with Windows machines, but you’ll
need dozens of pages of custom instructions and caveats. I’ll leave those instructions
and caveats to actual Windows users, so the examples here and in the rest of the book
will focus on Unix/Linux/macOS developers.

Whether you choose to serve your website by installing PHP and other tools on your
local machine, serve your development environment from a virtual machine via
Vagrant or Docker, or rely on a tool like MAMP/WAMP/XAMPP, your development
environment will need to have all of the following installed in order to serve Laravel
sites:

• PHP >= 7.1.3 for Laravel versions 5.6 to 5.8, PHP >= 7.0.0 for version 5.5, PHP
>= 5.6.4 for version 5.4, PHP between 5.6.4 and 7.1.* for version 5.3, or PHP >=
5.5.9 for versions 5.2 and 5.1

• OpenSSL PHP extension
• PDO PHP extension
• Mbstring PHP extension

11

• Tokenizer PHP extension
• XML PHP extension (Laravel 5.3 and higher)
• Ctype PHP extension (Laravel 5.6 and higher)
• JSON PHP extension (Laravel 5.6 and higher)
• BCMath PHP extension (Laravel 5.7 and higher)

Composer
Whatever machine you’re developing on will need to have Composer installed glob‐
ally. If you’re not familiar with Composer, it’s a tool that’s at the foundation of most
modern PHP development. Composer is a dependency manager for PHP, much like
NPM for Node or RubyGems for Ruby. But like NPM, Composer is also the founda‐
tion of much of our testing, local script loading, installation scripts, and much more.
You’ll need Composer to install Laravel, update Laravel, and bring in external depen‐
dencies.

Local Development Environments
For many projects, hosting your development environment using a simpler toolset
will be enough. If you already have MAMP or WAMP or XAMPP installed on your
system, that will likely be fine to run Laravel. You can also just run Laravel with PHP’s
built-in web server, assuming your system PHP is the right version.

All you really need to get started is the ability to run PHP. Everything past that is up
to you.

However, Laravel offers two tools for local development, Valet and Homestead, and
we’ll cover both briefly. If you’re unsure of which to use, I’d recommend using Valet
and just becoming briefly familiar with Homestead; however, both tools are valuable
and worth understanding.

Laravel Valet
If you want to use PHP’s built-in web server, your simplest option is to serve every
site from a localhost URL. If you run php -S localhost:8000 -t public from your
Laravel site’s root folder, PHP’s built-in web server will serve your site at http://local‐
host:8000/. You can also run php artisan serve once you have your application set
up to easily spin up an equivalent server.

But if you’re interested in tying each of your sites to a specific development domain,
you’ll need to get comfortable with your operating system’s hosts file and use a tool
like dnsmasq. Let’s instead try something simpler.

12 | Chapter 2: Setting Up a Laravel Development Environment

https://getcomposer.org/
http://bit.ly/2eNPJ5T

If you’re a Mac user (there are also unofficial forks for Windows and Linux), Laravel
Valet takes away the need to connect your domains to your application folders. Valet
installs dnsmasq and a series of PHP scripts that make it possible to type laravel
new myapp && open myapp.test and for it to just work. You’ll need to install a few
tools using Homebrew, which the documentation will walk you through, but the steps
from initial installation to serving your apps are few and simple.

Install Valet—see the docs for the latest installation instructions—and point it at one
or more directories where your sites will live. I ran valet park from my ~/Sites direc‐
tory, which is where I put all of my under-development apps. Now, you can just
add .test to the end of the directory name and visit it in your browser.

Valet makes it easy to serve all folders in a given folder as {foldername}.test using
valet park, to serve just a single folder using valet link, to open the Valet-served
domain for a folder using valet open, to serve the Valet site with HTTPS using
valet secure, and to open an ngrok tunnel so you can share your site with others
with valet share.

Laravel Homestead
Homestead is another tool you might want to use to set up your local development
environment. It’s a configuration tool that sits on top of Vagrant (which is a tool for
managing virtual machines) and provides a preconfigured virtual machine image that
is perfectly set up for Laravel development and mirrors the most common production
environment that many Laravel sites run on. Homestead is also likely the best local
development environment for developers running Windows machines.

The Homestead docs are robust and kept constantly up to date, so I’ll just refer you to
them if you want to learn how it works and how to get it set up.

Vessel

It’s not an official Laravel project, but Chris Fidao of Servers for
Hackers and Shipping Docker has created a simple tool for creating
Docker environments for Laravel development called Vessel. Take a
look at the Vessel documentation to learn more.

Creating a New Laravel Project
There are two ways to create a new Laravel project, but both are run from the com‐
mand line. The first option is to globally install the Laravel installer tool (using Com‐
poser); the second is to use Composer’s create-project feature.

You can learn about both options in greater detail on the Installation documentation
page, but I’d recommend the Laravel installer tool.

Creating a New Laravel Project | 13

http://bit.ly/2U7uy7b
http://bit.ly/2FwQ7EZ
https://serversforhackers.com/
https://serversforhackers.com/
https://shippingdocker.com/
https://vessel.shippingdocker.com/
http://bit.ly/2HFzBFY
http://bit.ly/2HFzBFY

Installing Laravel with the Laravel Installer Tool
If you have Composer installed globally, installing the Laravel installer tool is as sim‐
ple as running the following command:

composer global require "laravel/installer"

Once you have the Laravel installer tool installed, spinning up a new Laravel project
is simple. Just run this command from your command line:

laravel new projectName

This will create a new subdirectory of your current directory named {projectName}
and install a bare Laravel project in it.

Installing Laravel with Composer’s create-project Feature
Composer also offers a feature called create-project for creating new projects with
a particular skeleton. To use this tool to create a new Laravel project, issue the follow‐
ing command:

composer create-project laravel/laravel projectName

Just like the installer tool, this will create a subdirectory of your current directory
named {projectName} that contains a skeleton Laravel install, ready for you to
develop.

Lambo: Super-Powered “Laravel New”
Because I often take the same series of steps after creating a new Laravel project, I
made a simple script called Lambo that automates those steps every time I create a
new project.

Lambo runs laravel new and then commits your code to Git, sets up your .env cre‐
dentials with reasonable defaults, opens the project in a browser, and (optionally)
opens it in your editor and takes a few other helpful build steps.

14 | Chapter 2: Setting Up a Laravel Development Environment

http://bit.ly/2TCcQo8

You can install Lambo using Composer’s global require:

composer global require tightenco/lambo

And you can use it just like laravel new:

cd Sites
lambo my-new-project

Laravel’s Directory Structure
When you open up a directory that contains a skeleton Laravel application, you’ll see
the following files and directories:

app/
bootstrap/
config/
public/
resources/
routes/
storage/
tests/
vendor/
.editorconfig
.env
.env.example
.gitattributes
.gitignore
artisan
composer.json
composer.lock
package.json
phpunit.xml
readme.md
server.php
webpack.mix.js

Different Build Tools in Laravel Prior to 5.4

In projects created prior to Laravel 5.4, you’ll likely see a gulpfile.js
instead of webpack.mix.js; this shows the project is running Laravel
Elixir instead of Laravel Mix.

Let’s walk through them one by one to get familiar.

Laravel’s Directory Structure | 15

http://bit.ly/2JCToYp
http://bit.ly/2JCToYp
http://bit.ly/2U4X09P

The Folders
The root directory contains the following folders by default:

app
Where the bulk of your actual application will go. .Models, controllers, com‐
mands, and your PHP domain code all go in here.

bootstrap
Contains the files that the Laravel framework uses to boot every time it runs.

config
Where all the configuration files live.

database
Where database migrations, seeds, and factories live.

public
The directory the server points to when it’s serving the website. This contains
index.php, which is the front controller that kicks off the bootstrapping process
and routes all requests appropriately. It’s also where any public-facing files like
images, stylesheets, scripts, or downloads go.

resources
Where files that are needed for other scripts live. Views, language files, and
(optionally) Sass/Less/source CSS and source JavaScript files live here.

routes
Where all of the route definitions live, both for HTTP routes and “console
routes,” or Artisan commands.

storage
Where caches, logs, and compiled system files live.

tests
Where unit and integration tests live.

vendor
Where Composer installs its dependencies. It’s Git-ignored (marked to be exclu‐
ded from your version control system), as Composer is expected to run as a part
of your deploy process on any remote servers.

16 | Chapter 2: Setting Up a Laravel Development Environment

The Loose Files
The root directory also contains the following files:

.editorconfig
Gives your IDE/text editor instructions about Laravel’s coding standars (e.g., the
size of indents, the charset, and whether to trim trailing whitespace). You’ll see
this in any Laravel apps running 5.5 and later.

.env and .env.example
Dictate the environment variables (variables that are expected to be different in
each environment and are therefore not committed to version con‐
trol). .env.example is a template that each environment should duplicate to create
its own .env file, which is Git-ignored.

.gitignore and .gitattributes
Git configuration files.

artisan
Allows you to run Artisan commands (see Chapter 8) from the command line.

composer.json and composer.lock
Configuration files for Composer; composer.json is user-editable and com‐
poser.lock is not. These files share some basic information about the project and
also define its PHP dependencies.

package.json
Like composer.json but for frontend assets and dependencies of the build system;
it instructs NPM on which JavaScript-based dependencies to pull in.

phpunit.xml
A configuration file for PHPUnit, the tool Laravel uses for testing out of the box.

readme.md
A Markdown file giving a basic introduction to Laravel. You won’t see this file if
you use the Laravel installer.

server.php
A backup server that tries to allow less-capable servers to still preview the Laravel
application.

webpack.mix.js
The (optional) configuration file for Mix. If you’re using Elixir, you’ll instead see
gulpfile.js. These files are for giving your build system directions on how to com‐
pile and process your frontend assets.

Laravel’s Directory Structure | 17

Configuration
The core settings of your Laravel application—database connection settings, queue
and mail settings, etc.—live in files in the config folder. Each of these files returns a
PHP array, and each value in the array is accessible by a config key that is comprised
of the filename and all descendant keys, separated by dots (.).

So, if you create a file at config/services.php that looks like this:

// config/services.php
<?php
return [
 'sparkpost' => [
 'secret' => 'abcdefg',
],
];

you can access that config variable using config('services.sparkpost.secret').

Any configuration variables that should be distinct for each environment (and there‐
fore not committed to source control) will instead live in your .env files. Let’s say you
want to use a different Bugsnag API key for each environment. You’d set the config
file to pull it from .env:

// config/services.php
<?php
return [
 'bugsnag' => [
 'api_key' => env('BUGSNAG_API_KEY'),
],
];

This env() helper function pulls a value from your .env file with that same key. So
now, add that key to your .env (settings for this environment) and .env.example (tem‐
plate for all environments) files:

In .env
BUGSNAG_API_KEY=oinfp9813410942

In .env.example
BUGSNAG_API_KEY=

Your .env file will already contain quite a few environment-specific variables needed
by the framework, like which mail driver you’ll be using and what your basic database
settings are.

18 | Chapter 2: Setting Up a Laravel Development Environment

Using env() Outside of Config Files

Certain features in Laravel, including some caching and optimiza‐
tion features, aren’t available if you use env() calls anywhere out‐
side of config files.
The best way to pull in environment variables is to set up config
items for anything you want to be environment-specific. Have
those config items read the environment variables, and then refer‐
ence the config variables anywhere within your app:

// config/services.php
return [
 'bugsnag' => [
 'key' => env('BUGSNAG_API_KEY'),
],
];

// In controller, or whatever
$bugsnag = new Bugsnag(config('services.bugsnag.key'));

The .env File
Let’s take a quick look at the default contents of the .env file. The exact keys will vary
depending on which version of Laravel you’re using, but take a look at Example 2-1 to
see what they look like in 5.8.

Example 2-1. The default environment variables in Laravel 5.8

APP_NAME=Laravel
APP_ENV=local
APP_KEY=
APP_DEBUG=true
APP_URL=http://localhost

LOG_CHANNEL=stack

DB_CONNECTION=mysql
DB_HOST=127.0.0.1
DB_PORT=3306
DB_DATABASE=homestead
DB_USERNAME=homestead
DB_PASSWORD=secret

BROADCAST_DRIVER=log
CACHE_DRIVER=file
QUEUE_CONNECTION=sync
SESSION_DRIVER=file
SESSION_LIFETIME=120

REDIS_HOST=127.0.0.1

Configuration | 19

REDIS_PASSWORD=null
REDIS_PORT=6379

MAIL_DRIVER=smtp
MAIL_HOST=smtp.mailtrap.io
MAIL_PORT=2525
MAIL_USERNAME=null
MAIL_PASSWORD=null
MAIL_ENCRYPTION=null

AWS_ACCESS_KEY_ID=
AWS_SECRET_ACCESS_KEY=

PUSHER_APP_ID=
PUSHER_APP_KEY=
PUSHER_APP_SECRET=
PUSHER_APP_CLUSTER=mt1

MIX_PUSHER_APP_KEY="${PUSHER_APP_KEY}"
MIX_PUSHER_APP_CLUSTER="${PUSHER_APP_CLUSTER}"

I won’t go into all of them, because quite a few are just groups of authentication infor‐
mation for various services (Pusher, Redis, DB, Mail). Here are two important envi‐
ronment variables you should know about, though:

APP_KEY

A randomly generated string that’s used to encrypt data. If this is ever empty, you
may run into the error “No application encryption key has been specified.” In
that case, just run php artisan key:generate and Laravel will generate one for
you.

APP_DEBUG

A Boolean determining whether the users of this instance of your application
should see debug errors—great for local and staging environments, terrible for
production.

The rest of the non-authentication settings (BROADCAST_DRIVER, QUEUE_CONNECTION,
etc.) are given default values that work with as little reliance on external services as
possible, which is perfect for when you’re getting started.

When you start your first Laravel app, the only change you’ll likely want to make for
most projects is to the database configuration settings. I use Laravel Valet, so I change
DB_DATABASE to the name of my project, DB_USERNAME to root, and DB_PASSWORD to
an empty string:

DB_DATABASE=myProject
DB_USERNAME=root
DB_PASSWORD=

20 | Chapter 2: Setting Up a Laravel Development Environment

Then, I create a database with the same name as my project in my favorite MySQL
client, and I’m ready to go.

Up and Running
You’re now up and running with a bare Laravel install. Run git init, commit the
bare files with git add . and git commit, and you’re ready to start coding. That’s it!
And if you’re using Valet, you can run the following commands and instantly see
your site live in your browser:

laravel new myProject && cd myProject && valet open

Every time I start a new project, these are the steps I take:

laravel new myProject
cd myProject
git init
git add .
git commit -m "Initial commit"

I keep all of my sites in a ~/Sites folder, which I have set up as my primary Valet direc‐
tory, so in this case I’d instantly have myProject.test accessible in my browser with no
added work. I can edit .env and point it to a particular database, add that database in
my MySQL app, and I’m ready to start coding. And remember, if you use Lambo, all
of these steps are already taken for you.

Testing
In every chapter after this, the “Testing” section at the end of the chapter will show
you how to write tests for the feature or features that were covered. Since this chapter
doesn’t cover a testable feature, let’s talk tests quickly. (To learn more about writing
and running tests in Laravel, head over to Chapter 12.)

Out of the box, Laravel brings in PHPUnit as a dependency and is configured to run
the tests in any file in the tests directory whose name ends with Test.php (for example,
tests/UserTest.php).

So, the simplest way to write tests is to create a file in the tests directory with a name
that ends with Test.php. And the easiest way to run them is to run ./vendor/bin/
phpunit from the command line (in the project root).

If any tests require database access, be sure to run your tests from the machine where
your database is hosted—so if you’re hosting your database in Vagrant, make sure to
ssh into your Vagrant box to run your tests from there. Again, you can learn about
this and much more in Chapter 12.

Up and Running | 21

Also, some of the testing sections will use testing syntax and features that you will not
be familiar with yet if you’re reading the book for the first time. If code in any of the
testing sections is confusing, just skip it and come back to it after you’ve had a chance
to read the testing chapter.

TL;DR
Since Laravel is a PHP framework, it’s very simple to serve it locally. Laravel also pro‐
vides two tools for managing your local development: a simpler tool called Valet that
uses your local machine to provide your dependencies, and a preconfigured Vagrant
setup named Homestead. Laravel relies on and can be installed by Composer and
comes out of the box with a series of folders and files that reflect both its conventions
and its relationship with other open source tools.

22 | Chapter 2: Setting Up a Laravel Development Environment

CHAPTER 3

Routing and Controllers

The essential function of any web application framework is to take requests from a
user and deliver responses, usually via HTTP(S). This means defining an application’s
routes is the first and most important project to tackle when learning a web frame‐
work; without routes, you have little to no ability to interact with the end user.

In this chapter we will examine routes in Laravel; you’ll see how to define them, how
to point them to the code they should execute, and how to use Laravel’s routing tools
to handle a diverse array of routing needs.

A Quick Introduction to MVC, the HTTP Verbs, and REST
Most of what we’ll talk about in this chapter references how Model–View–Controller
(MVC) applications are structured, and many of the examples we’ll be looking at use
REST-ish route names and verbs, so let’s take a quick look at both.

What Is MVC?
In MVC, you have three primary concepts:

model
Represents an individual database table (or a record from that table)—think
“Company” or “Dog.”

view
Represents the template that outputs your data to the end user—think “the login
page template with this given set of HTML and CSS and JavaScript.”

23

controller
Like a traffic cop, takes HTTP requests from the browser, gets the right data out
of the database and other storage mechanisms, validates user input, and eventu‐
ally sends a response back to the user.

In Figure 3-1, you can see that the end user will first interact with the controller by
sending an HTTP request using their browser. The controller, in response to that
request, may write data to and/or pull data from the model (database). The controller
will then likely send data to a view, and then the view will be returned to the end user
to display in their browser.

Figure 3-1. A basic illustration of MVC

We’ll cover some use cases for Laravel that don’t fit this relatively simplistic way of
looking at application architecture, so don’t get hung up on MVC, but this will at least
get you ready to approach the rest of this chapter as we talk about views and control‐
lers.

The HTTP Verbs
The most common HTTP verbs are GET and POST, followed by PUT and DELETE. There
are also HEAD, OPTIONS, and PATCH, and two others that are pretty much never used in
normal web development, TRACE and CONNECT.

Here’s a quick rundown:

GET

Request a resource (or a list of resources).

HEAD

Ask for a headers-only version of the GET response.

POST

Create a resource.

24 | Chapter 3: Routing and Controllers

PUT

Overwrite a resource.

PATCH

Modify a resource.

DELETE

Delete a resource.

OPTIONS

Ask the server which verbs are allowed at this URL.

Table 3-1 shows the actions available on a resource controller (more on these in
“Resource Controllers” on page 47). Each action expects you to call a specific URL
pattern using a specific verb, so you can get a sense of what each verb is used for.

Table 3-1. The methods of Laravel’s resource controllers

Verb URL Controller method Name Description

GET tasks index() tasks.index Show all tasks

GET tasks/create create() tasks.create Show the create task form

POST tasks store() tasks.store Accept form submission from the create
task form

GET tasks/{task} show() tasks.show Show one task

GET tasks/
{task}/edit

edit() tasks.edit Edit one task

PUT/PATCH tasks/{task} update() tasks.update Accept form submission from the edit task
form

DELETE tasks/{task} destroy() tasks.destroy Delete one task

What Is REST?
We’ll cover REST in greater detail in “The Basics of REST-Like JSON APIs” on page
337, but as a brief introduction, it’s an architectural style for building APIs. When we
talk about REST in this book, we’ll mainly be referencing a few characteristics, such
as:

• Being structured around one primary resource at a time (e.g., tasks)
• Consisting of interactions with predictable URL structures using HTTP verbs (as

seen in Table 3-1)
• Returning JSON and often being requested with JSON

A Quick Introduction to MVC, the HTTP Verbs, and REST | 25

There’s more to it, but usually “RESTful” as it’ll be used in this book will mean “pat‐
terned after these URL-based structures so we can make predictable calls like
GET /tasks/14/edit for the edit page.” This is relevant (even when not building
APIs) because Laravel’s routing structures are based around a REST-like structure, as
you can see in Table 3-1.

REST-based APIs follow mainly this same structure, except they don’t have a create
route or an edit route, since APIs just represent actions, not pages that prep for the
actions.

Route Definitions
In a Laravel application, you will define your web routes in routes/web.php and your
API routes in routes/api.php. Web routes are those that will be visited by your end
users; API routes are those for your API, if you have one. For now, we’ll primarily
focus on the routes in routes/web.php.

Routes File Location in Laravel Prior to 5.3

In projects running versions of Laravel prior to 5.3, there will be
only one routes file, located at app/Http/routes.php.

The simplest way to define a route is to match a path (e.g., /) with a closure, as seen
in Example 3-1.

Example 3-1. Basic route definition

// routes/web.php
Route::get('/', function () {
 return 'Hello, World!';
});

What’s a Closure?
Closures are PHP’s version of anonymous functions. A closure is a function that you
can pass around as an object, assign to a variable, pass as a parameter to other func‐
tions and methods, or even serialize.

You’ve now defined that if anyone visits / (the root of your domain), Laravel’s router
should run the closure defined there and return the result. Note that we return our
content and don’t echo or print it.

26 | Chapter 3: Routing and Controllers

A Quick Introduction to Middleware

You might be wondering, “Why am I returning ‘Hello, World!’
instead of echoing it?”
There are quite a few answers, but the simplest is that there are a
lot of wrappers around Laravel’s request and response cycle,
including something called middleware. When your route closure
or controller method is done, it’s not time to send the output to the
browser yet; returning the content allows it to continue flowing
through the response stack and the middleware before it is
returned back to the user.

Many simple websites could be defined entirely within the web routes file. With a few
simple GET routes combined with some templates, as illustrated in Example 3-2, you
can serve a classic website easily.

Example 3-2. Sample website

Route::get('/', function () {
 return view('welcome');
});

Route::get('about', function () {
 return view('about');
});

Route::get('products', function () {
 return view('products');
});

Route::get('services', function () {
 return view('services');
});

Static Calls

If you have much experience developing with PHP, you might be
surprised to see static calls on the Route class. This is not actually a
static method per se, but rather service location using Laravel’s
facades, which we’ll cover in Chapter 11.
If you prefer to avoid facades, you can accomplish these same defi‐
nitions like this:

$router->get('/', function () {
 return 'Hello, World!';
});

Route Definitions | 27

Route Verbs
You might’ve noticed that we’ve been using Route::get() in our route definitions.
This means we’re telling Laravel to only match for these routes when the HTTP
request uses the GET action. But what if it’s a form POST, or maybe some JavaScript
sending PUT or DELETE requests? There are a few other options for methods to call on
a route definition, as illustrated in Example 3-3.

Example 3-3. Route verbs

Route::get('/', function () {
 return 'Hello, World!';
});

Route::post('/', function () {
 // Handle someone sending a POST request to this route
});

Route::put('/', function () {
 // Handle someone sending a PUT request to this route
});

Route::delete('/', function () {
 // Handle someone sending a DELETE request to this route
});

Route::any('/', function () {
 // Handle any verb request to this route
});

Route::match(['get', 'post'], '/', function () {
 // Handle GET or POST requests to this route
});

Route Handling
As you’ve probably guessed, passing a closure to the route definition is not the only
way to teach it how to resolve a route. Closures are quick and simple, but the larger
your application gets, the clumsier it becomes to put all of your routing logic in one
file. Additionally, applications using route closures can’t take advantage of Laravel’s
route caching (more on that later), which can shave up to hundreds of milliseconds
off of each request.

The other common option is to pass a controller name and method as a string in
place of the closure, as in Example 3-4.

28 | Chapter 3: Routing and Controllers

Example 3-4. Routes calling controller methods

Route::get('/', 'WelcomeController@index');

This is telling Laravel to pass requests to that path to the index() method of the
App\Http\Controllers\WelcomeController controller. This method will be passed
the same parameters and treated the same way as a closure you might’ve alternatively
put in its place.

Laravel’s Controller/Method Reference Syntax
Laravel has a convention for how to refer to a particular method in a given controller:
ControllerName@methodName. Sometimes this is just a casual communication con‐
vention, but it’s also used in real bindings, like in Example 3-4. Laravel parses what’s
before and after the @ and uses those segments to identify the controller and method.
Laravel 5.7 also introduced the “tuple” syntax (Route::get('/', [WelcomeControl
ler::class, 'index'])) but it’s still common to use ControllerName@methodName
to describe a method in written communication.

Route Parameters
If the route you’re defining has parameters—segments in the URL structure that are
variable—it’s simple to define them in your route and pass them to your closure (see
Example 3-5).

Example 3-5. Route parameters

Route::get('users/{id}/friends', function ($id) {
 //
});

You can also make your route parameters optional by including a question mark (?)
after the parameter name, as illustrated in Example 3-6. In this case, you should also
provide a default value for the route’s corresponding variable.

Example 3-6. Optional route parameters

Route::get('users/{id?}', function ($id = 'fallbackId') {
 //
});

Route Definitions | 29

And you can use regular expressions (regexes) to define that a route should only
match if a parameter meets particular requirements, as in Example 3-7.

Example 3-7. Regular expression route constraints

Route::get('users/{id}', function ($id) {
 //
})->where('id', '[0-9]+');

Route::get('users/{username}', function ($username) {
 //
})->where('username', '[A-Za-z]+');

Route::get('posts/{id}/{slug}', function ($id, $slug) {
 //
})->where(['id' => '[0-9]+', 'slug' => '[A-Za-z]+']);

As you’ve probably guessed, if you visit a path that matches a route string but the
regex doesn’t match the parameter, it won’t be matched. Since routes are matched top
to bottom, users/abc would skip the first closure in Example 3-7, but it would be
matched by the second closure, so it would get routed there. On the other hand,
posts/abc/123 wouldn’t match any of the closures, so it would return a 404 (Not
Found) error.

The Naming Relationship Between Route Parameters
and Closure/Controller Method Parameters

As you can see in Example 3-5, it’s most common to use the same names for your
route parameters ({id}) and the method parameters they inject into your route defi‐
nition (function ($id)). But is this necessary?

Unless you’re using route model binding, discussed later in this chapter, no. The only
thing that defines which route parameter matches with which method parameter is
their order (left to right), as you can see here:

Route::get('users/{userId}/comments/{commentId}', function (
 $thisIsActuallyTheUserId,
 $thisIsReallyTheCommentId
) {
 //
});

That having been said, just because you can make them different doesn’t mean you
should. I recommend keeping them the same for the sake of future developers, who
could get tripped up by inconsistent naming.

30 | Chapter 3: Routing and Controllers

Route Names
The simplest way to refer to these routes elsewhere in your application is just by their
path. There’s a url() global helper to simplify that linking in your views, if you need
it; see Example 3-8 for an example. The helper will prefix your route with the full
domain of your site.

Example 3-8. The url() helper

<a href="<?php echo url('/'); ?>">
// Outputs

However, Laravel also allows you to name each route, which enables you to refer to it
without explicitly referencing the URL. This is helpful because it means you can give
simple nicknames to complex routes, and also because linking them by name means
you don’t have to rewrite your frontend links if the paths change (see Example 3-9).

Example 3-9. Defining route names

// Defining a route with name() in routes/web.php:
Route::get('members/{id}', 'MembersController@show')->name('members.show');

// Linking the route in a view using the route() helper:
<a href="<?php echo route('members.show', ['id' => 14]); ?>">

This example illustrates a few new concepts. First, we’re using fluent route definition
to add the name, by chaining the name() method after the get() method. This
method allows us to name the route, giving it a short alias to make it easier to refer‐
ence elsewhere.

Defining Custom Routes in Laravel 5.1

Fluent route definitions don’t exist in Laravel 5.1. You’ll need to
instead pass an array to the second parameter of your route defini‐
tion; check the Laravel docs to see more about how this works.
Here’s Example 3-9 in Laravel 5.1:

Route::get('members/{id}', [
 'as' => 'members.show',
 'uses' => 'MembersController@show',
]);

In our example, we’ve named this route members.show; resourcePlural.action is a
common convention within Laravel for route and view names.

Route Definitions | 31

http://bit.ly/2UZm1Aw

Route Naming Conventions
You can name your route anything you’d like, but the common convention is to use
the plural of the resource name, then a period, then the action. So, here are the routes
most common for a resource named photo:

photos.index
photos.create
photos.store
photos.show
photos.edit
photos.update
photos.destroy

To learn more about these conventions, see “Resource Controllers” on page 47.

This example also introduced the route() helper. Just like url(), it’s intended to be
used in views to simplify linking to a named route. If the route has no parameters,
you can simply pass the route name (route('members.index')) and receive a route
string (http://myapp.com/members). If it has parameters, pass them in as an array as
the second parameter like we did in Example 3-9.

In general, I recommend using route names instead of paths to refer to your routes,
and therefore using the route() helper instead of the url() helper. Sometimes it can
get a bit clumsy—for example, if you’re working with multiple subdomains—but it
provides an incredible level of flexibility to later change the application’s routing
structure without major penalty.

Passing Route Parameters to the route() Helper
When your route has parameters (e.g., users/id), you need to define those parame‐
ters when you’re using the route() helper to generate a link to the route.

There are a few different ways to pass these parameters. Let’s imagine a route defined
as users/userId/comments/commentId. If the user ID is 1 and the comment ID is 2,
let’s look at a few options we have available to us:

Option 1:

route('users.comments.show', [1, 2])
// http://myapp.com/users/1/comments/2

Option 2:

route('users.comments.show', ['userId' => 1, 'commentId' => 2])
// http://myapp.com/users/1/comments/2

32 | Chapter 3: Routing and Controllers

Option 3:

route('users.comments.show', ['commentId' => 2, 'userId' => 1])
// http://myapp.com/users/1/comments/2

Option 4:

route('users.comments.show', ['userId' => 1, 'commentId' => 2, 'opt' => 'a'])
// http://myapp.com/users/1/comments/2?opt=a

As you can see, nonkeyed array values are assigned in order; keyed array values are
matched with the route parameters matching their keys, and anything left over is
added as a query parameter.

Route Groups
Often a group of routes share a particular characteristic—a certain authentication
requirement, a path prefix, or perhaps a controller namespace. Defining these shared
characteristics again and again on each route not only seems tedious but also can
muddy up the shape of your routes file and obscure some of the structures of
your application.

Route groups allow you to group several routes together and apply any shared config‐
uration settings once to the entire group, to reduce this duplication. Additionally,
route groups are visual cues to future developers (and to your own brain) that these
routes are grouped together.

To group two or more routes together, you “surround” the route definitions with a
route group, as shown in Example 3-10. In reality, you’re actually passing a closure to
the group definition, and defining the grouped routes within that closure.

Example 3-10. Defining a route group

Route::group(function () {
 Route::get('hello', function () {
 return 'Hello';
 });
 Route::get('world', function () {
 return 'World';
 });
});

By default, a route group doesn’t actually do anything. There’s no difference between
using the group in Example 3-10 and separating a segment of your routes with code
comments.

Route Groups | 33

Middleware
Probably the most common use for route groups is to apply middleware to a group of
routes. You’ll learn more about middleware in Chapter 10, but, among other things,
they’re what Laravel uses for authenticating users and restricting guest users from
using certain parts of a site.

In Example 3-11, we’re creating a route group around the dashboard and account
views and applying the auth middleware to both. In this example, this means users
have to be logged in to the application to view the dashboard or the account page.

Example 3-11. Restricting a group of routes to logged-in users only

Route::middleware('auth')->group(function() {
 Route::get('dashboard', function () {
 return view('dashboard');
 });
 Route::get('account', function () {
 return view('account');
 });
});

Modifying Route Groups Prior to Laravel 5.4

Just like fluent route definition didn’t exist in Laravel prior to 5.2,
fluently applying modifiers like middleware, prefixes, domains, and
more to route groups wasn’t possible prior to 5.4.
Here’s Example 3-11 in Laravel 5.3 and prior:

Route::group(['middleware' => 'auth'], function () {
 Route::get('dashboard', function () {
 return view('dashboard');
 });
 Route::get('account', function () {
 return view('account');
 });
});

Applying middleware in controllers
Often it’s clearer and more direct to attach middleware to your routes in the control‐
ler instead of at the route definition. You can do this by calling the middleware()
method in the constructor of your controller. The string you pass to the middle
ware() method is the name of the middleware, and you can optionally chain modifier
methods (only() and except()) to define which methods will receive that middle‐
ware:

34 | Chapter 3: Routing and Controllers

class DashboardController extends Controller
{
 public function __construct()
 {
 $this->middleware('auth');

 $this->middleware('admin-auth')
 ->only('editUsers');

 $this->middleware('team-member')
 ->except('editUsers');
 }
}

Note that if you’re doing a lot of “only” and “except” customizations, that’s often a
sign that you should break out a new controller for the exceptional routes.

Rate limiting
If you need to limit users to only accessing any give route(s) a certain number of
times in a given time frame (called rate limiting, and most common with APIs),
there’s an out-of-the-box middleware for that in version 5.2 and above. Apply the
throttle middleware, which takes two parameters: the first is the number of tries a
user is permitted and the second is the number of minutes to wait before resetting the
attempt count. Example 3-12 demonstrates its use.

Example 3-12. Applying the rate limiting middleware to a route

Route::middleware('auth:api', 'throttle:60,1')->group(function () {
 Route::get('/profile', function () {
 //
 });
});

Dynamic rate limiting. If you’d like to differentiate one user’s rate limit from another’s,
you can instruct the throttle middleware to pull the tries count (its first parameter)
from the user’s Eloquent model. Instead of passing a tries count as the first parameter
of throttle, instead pass the name of an attribute on the Eloquent model, and that
attribute will be used to calculate whether the user has passed their rate limit.

So, if your user model has a plan_rate_limit attribute on it, you could use the mid‐
dleware with throttle:plan_rate_limit,1.

Route Groups | 35

A Brief Introduction to Eloquent
We’ll be covering Eloquent, database access, and Laravel’s query builder in depth in
Chapter 5, but there will be a few references between now and then that will make a
basic understanding useful.

Eloquent is Laravel’s ActiveRecord database object-relational mapper (ORM), which
makes it easy to relate a Post class (model) to the posts database table and get all
records with a call like Post::all().

The query builder is the tool that makes it possible to make calls like
Post::where('active', true)->get() or even DB::table('users')->all().
You’re building a query by chaining methods one after another.

Path Prefixes
If you have a group of routes that share a segment of their path—for example, if your
site’s dashboard is prefixed with /dashboard—you can use route groups to simplify
this structure (see Example 3-13).

Example 3-13. Prefixing a group of routes

Route::prefix('dashboard')->group(function () {
 Route::get('/', function () {
 // Handles the path /dashboard
 });
 Route::get('users', function () {
 // Handles the path /dashboard/users
 });
});

Note that each prefixed group also has a / route that represents the root of the prefix
—in Example 3-13 that’s /dashboard.

Fallback Routes
In Laravel prior to 5.6, you could define a “fallback route” (which you need to define
at the end of your routes file) to catch all unmatched paths:

Route::any('{anything}', 'CatchAllController')->where('anything', '*');

36 | Chapter 3: Routing and Controllers

In Laravel 5.6+, you can use the Route::fallback() method instead:

Route::fallback(function () {
 //
});

Subdomain Routing
Subdomain routing is the same as route prefixing, but it’s scoped by subdomain
instead of route prefix. There are two primary uses for this. First, you may want to
present different sections of the application (or entirely different applications) to dif‐
ferent subdomains. Example 3-14 shows how you can achieve this.

Example 3-14. Subdomain routing

Route::domain('api.myapp.com')->group(function () {
 Route::get('/', function () {
 //
 });
});

Second, you might want to set part of the subdomain as a parameter, as illustrated in
Example 3-15. This is most often done in cases of multitenancy (think Slack or Har‐
vest, where each company gets its own subdomain, like tighten.slack.co).

Example 3-15. Parameterized subdomain routing

Route::domain('{account}.myapp.com')->group(function () {
 Route::get('/', function ($account) {
 //
 });
 Route::get('users/{id}', function ($account, $id) {
 //
 });
});

Note that any parameters for the group get passed into the grouped routes’ methods
as the first parameter(s).

Namespace Prefixes
When you’re grouping routes by subdomain or route prefix, it’s likely their control‐
lers have a similar PHP namespace. In the dashboard example, all of the dashboard
routes’ controllers might be under a Dashboard namespace. By using the route group
namespace prefix, as shown in Example 3-16, you can avoid long controller refer‐
ences in groups like "Dashboard/UsersController@index" and "Dashboard/Purcha
sesController@index".

Route Groups | 37

Example 3-16. Route group namespace prefixes

// App\Http\Controllers\UsersController
Route::get('/', 'UsersController@index');

Route::namespace('Dashboard')->group(function () {
 // App\Http\Controllers\Dashboard\PurchasesController
 Route::get('dashboard/purchases', 'PurchasesController@index');
});

Name Prefixes
The prefixes don’t stop there. It’s common that route names will reflect the inheri‐
tance chain of path elements, so users/comments/5 will be served by a route named
users.comments.show. In this case, it’s common to use a route group around all of
the routes that are beneath the users.comments resource.

Just like we can prefix URL segments and controller namespaces, we can also prefix
strings to the route name. With route group name prefixes, we can define that every
route within this group should have a given string prefixed to its name. In this con‐
text, we’re prefixing "users." to each route name, then "comments." (see
Example 3-17).

Example 3-17. Route group name prefixes

Route::name('users.')->prefix('users')->group(function () {
 Route::name('comments.')->prefix('comments')->group(function () {
 Route::get('{id}', function () {

 })->name('show');
 });
});

Signed Routes
Many applications regularly send notifications about one-off actions (resetting a pass‐
word, accepting an invitation, etc.) and provide simple links to take those actions.
Let’s imagine sending an email confirming the recipient was willing to be added to a
mailing list.

There are three ways to send that link:

1. Make that URL public and hope no one else discovers the approval URL or
modifies their own approval URL to approve someone else.

38 | Chapter 3: Routing and Controllers

2. Put the action behind authentication, link to the action, and require the user to
log in if they’re not logged in yet (which, in this case, may be impossible, as many
mailing list recipients likely won’t be users).

3. “Sign” the link so that it uniquely proves that the user received the link from your
email, without them having to log in; something like http://myapp.com/invita‐
tions/5816/yes?signature=030ab0ef6a8237bd86a8b8.

One simple way to accomplish the last option is to use a feature introduced in Laravel
5.6.12 called signed URLs, which makes it easy to build a signature authentication sys‐
tem for sending out authenticated links. These links are composed of the normal
route link with a “signature” appended that proves that the URL has not been
changed since it was sent (and therefore that no one has modified the URL to access
someone else’s information).

Signing a Route
In order to build a signed URL to access a given route, the route must have a name:

Route::get('invitations/{invitation}/{answer}', 'InvitationController')
 ->name('invitations');

To generate a normal link to this route you would use the route() helper, as we’ve
already covered, but you could also use the URL facade to do the same thing:
URL::route('invitations', ['invitation' => 12345, 'answer' => 'yes']). To
generate a signed link to this route, simply use the signedRoute() method instead.
And if you want to generate a signed route with an expiration, use temporarySigned
Route():

// Generate a normal link
URL::route('invitations', ['invitation' => 12345, 'answer' => 'yes']);

// Generate a signed link
URL::signedRoute('invitations', ['invitation' => 12345, 'answer' => 'yes']);

// Generate an expiring (temporary) signed link
URL::temporarySignedRoute(
 'invitations',
 now()->addHours(4),
 ['invitation' => 12345, 'answer' => 'yes']
);

Signed Routes | 39

Using the now() Helper

Since version 5.5 Laravel has offered a now() helper that’s the
equivalent of Carbon::now(); it returns a Carbon object repre‐

sentative of today, right at this second. If you’re working with Lara‐
vel prior to 5.5, you can replace any instance of now() in this book
with Carbon::now().
Carbon, if you’re not familiar with it, is a datetime library that’s
included with Laravel.

Modifying Routes to Allow Signed Links
Now that you’ve generated a link to your signed route, you need to protect against
any unsigned access. The easiest option is to apply the signed middleware (which, if
it’s not in your $routeMiddleware array in app/Http/Kernel.php, should be, backed by
Illuminate\Routing\Middleware\ValidateSignature):

Route::get('invitations/{invitation}/{answer}', 'InvitationController')
 ->name('invitations')
 ->middleware('signed');

If you’d prefer, you can manually validate using the hasValidSignature() method on
the Request object instead of using the signed middleware:

class InvitationController
{
 public function __invoke(Invitation $invitation, $answer, Request $request)
 {
 if (! $request->hasValidSignature()) {
 abort(403);
 }

 //
 }
}

Views
In a few of the route closures we’ve looked at so far, we’ve seen something along the
lines of return view('account'). What’s going on here?

In the MVC pattern (Figure 3-1), views (or templates) are files that describe what
some particular output should look like. You might have views for JSON or XML or
emails, but the most common views in a web framework output HTML.

In Laravel, there are two formats of view you can use out of the box: plain PHP, or
Blade templates (see Chapter 4). The difference is in the filename: about.php will

40 | Chapter 3: Routing and Controllers

be rendered with the PHP engine, and about.blade.php will be rendered with the
Blade engine.

Three Ways to Load a View

There are three different ways to return a view. For now, just con‐
cern yourself with view(), but if you ever see View::make(), it’s the
same thing, or you could inject the Illuminate\View\ViewFactory
if you prefer.

Once you’ve “loaded” a view with the view() helper, you have the option to simply
return it (as in Example 3-18), which will work fine if the view doesn’t rely on any
variables from the controller.

Example 3-18. Simple view() usage

Route::get('/', function () {
 return view('home');
});

This code looks for a view in resources/views/home.blade.php or resources/views/
home.php, and loads its contents and parses any inline PHP or control structures until
you have just the view’s output. Once you return it, it’s passed on to the rest of the
response stack and eventually returned to the user.

But what if you need to pass in variables? Take a look at Example 3-19.

Example 3-19. Passing variables to views

Route::get('tasks', function () {
 return view('tasks.index')
 ->with('tasks', Task::all());
});

This closure loads the resources/views/tasks/index.blade.php or resources/views/tasks/
index.php view and passes it a single variable named tasks, which contains the result
of the Task::all() method. Task::all() is an Eloquent database query you’ll learn
about in Chapter 5.

Returning Simple Routes Directly with Route::view()
Because it’s so common for a route to just return a view with no custom data, Laravel
5.5+ allows you to define a route as a “view” route without even passing the route
definition a closure or a controller/method reference, as you can see in Example 3-20.

Views | 41

Example 3-20. Route::view()

// Returns resources/views/welcome.blade.php
Route::view('/', 'welcome');

// Passing simple data to Route::view()
Route::view('/', 'welcome', ['User' => 'Michael']);

Using View Composers to Share Variables with Every View
Sometimes it can become a hassle to pass the same variables over and over. There
may be a variable that you want accessible to every view in the site, or to a certain
class of views or a certain included subview—for example, all views related to tasks,
or the header partial.

It’s possible to share certain variables with every template or just certain templates,
like in the following code:

view()->share('variableName', 'variableValue');

To learn more, check out “View Composers and Service Injection” on page 75.

Controllers
I’ve mentioned controllers a few times, but until now most of the examples have
shown route closures. In the MVC pattern, controllers are essentially classes that
organize the logic of one or more routes together in one place. Controllers tend to
group similar routes together, especially if your application is structured in a tradi‐
tionally CRUD-like format; in this case, a controller might handle all the actions that
can be performed on a particular resource.

What is CRUD?

CRUD stands for create, read, update, delete, which are the four pri‐
mary operations that web applications most commonly provide on
a resource. For example, you can create a new blog post, you can
read that post, you can update it, or you can delete it.

It may be tempting to cram all of the application’s logic into the controllers, but it’s
better to think of controllers as the traffic cops that route HTTP requests around
your application. Since there are other ways requests can come into your application
—cron jobs, Artisan command-line calls, queue jobs, etc.—it’s wise to not rely on
controllers for much behavior. This means a controller’s primary job is to capture the
intent of an HTTP request and pass it on to the rest of the application.

42 | Chapter 3: Routing and Controllers

So, let’s create a controller. One easy way to do this is with an Artisan command, so
from the command line run the following:

php artisan make:controller TasksController

Artisan and Artisan Generators

Laravel comes bundled with a command-line tool called Artisan.
Artisan can be used to run migrations, create users and other
database records manually, and perform many other manual, one-
time tasks.
Under the make namespace, Artisan provides tools for generating
skeleton files for a variety of system files. That’s what allows us to
run php artisan make:controller.
To learn more about this and other Artisan features, see Chapter 8.

This will create a new file named TasksController.php in app/Http/Controllers, with the
contents shown in Example 3-21.

Example 3-21. Default generated controller

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

class TasksController extends Controller
{
 //
}

Modify this file as shown in Example 3-22, creating a new public method called
index(). We’ll just return some text there.

Example 3-22. Simple controller example

<?php

namespace App\Http\Controllers;

class TasksController extends Controller
{
 public function index()
 {
 return 'Hello, World!';

Controllers | 43

 }
}

Then, like we learned before, we’ll hook up a route to it, as shown in Example 3-23.

Example 3-23. Route for the simple controller

// routes/web.php
<?php

Route::get('/', 'TasksController@index');

That’s it. Visit the / route and you’ll see the words “Hello, World!”

Controller Namespacing
In Example 3-23 we referenced a controller that has the fully qualified class name of
App\Http\Controllers\TasksController, but we only used the class name. This
isn’t because we can simply reference controllers by their class name. Rather, we can
ignore the App\Http\Controllers\ when we reference controllers; by default, Laravel
is configured to look for controllers within that namespace.

This means that if you have a controller with the fully qualified class name of
App\Http\Controllers\API\ExercisesController, you’d reference it in a route def‐
inition as API\ExercisesController.

The most common use of a controller method, then, will be something like
Example 3-24, which provides the same functionality as our route closure in
Example 3-19.

Example 3-24. Common controller method example

// TasksController.php
...
public function index()
{
 return view('tasks.index')
 ->with('tasks', Task::all());
}

This controller method loads the resources/views/tasks/index.blade.php or resources/
views/tasks/index.php view and passes it a single variable named tasks, which con‐
tains the result of the Task::all() Eloquent method.

44 | Chapter 3: Routing and Controllers

Generating Resource Controllers

If you ever used php artisan make:controller in Laravel
prior to 5.3, you might be expecting it to autogenerate methods

for all of the basic resource routes like create() and update(). You
can bring this behavior back in Laravel 5.3+ by passing the
--resource flag when you create the controller:

php artisan make:controller TasksController --resource

Getting User Input
The second most common action to perform in a controller method is to take input
from the user and act on it. That introduces a few new concepts, so let’s take a look at
a bit of sample code and walk through the new pieces.

First, let’s bind our route; see Example 3-25.

Example 3-25. Binding basic form actions

// routes/web.php
Route::get('tasks/create', 'TasksController@create');
Route::post('tasks', 'TasksController@store');

Notice that we’re binding the GET action of tasks/create (which shows a form for
creating a new task) and the POST action of tasks/ (which is where our form will
POST to when we’re creating a new task). We can assume the create() method in our
controller just shows a form, so let’s look at the store() method in Example 3-26.

Example 3-26. Common form input controller method

// TasksController.php
...
public function store()
{
 Task::create(request()->only(['title', 'description']));

 return redirect('tasks');
}

This example makes use of Eloquent models and the redirect() functionality, and
we’ll talk about them more later, but for now let’s talk quickly about how we’re getting
our data here.

We’re using the request() helper to represent the HTTP request (more on that later)
and using its only() method to pull just the title and description fields the user
submitted.

Controllers | 45

We’re then passing that data into the create() method of our Task model, which cre‐
ates a new instance of the Task with title set to the passed-in title and description
set to the passed-in description. Finally, we redirect back to the page that shows all
tasks.

There are a few layers of abstraction at work here, which we’ll cover in a second, but
know that the data coming from the only() method comes from the same pool of
data all common methods used on the Request object draw from, including all()
and get(). The set of data each of these methods is pulling from represents all user-
provided data, whether from query parameters or POST values. So, our user filled out
two fields on the “add task” page: “title” and “description.”

To break down the abstraction a bit, request()->only() takes an associative array of
input names and returns them:

request()->only(['title', 'description']);
// returns:
[
 'title' => 'Whatever title the user typed on the previous page',
 'description' => 'Whatever description the user typed on the previous page',
]

And Task::create() takes an associative array and creates a new task from it:

Task::create([
 'title' => 'Buy milk',
 'description' => 'Remember to check the expiration date this time, Norbert!',
]);

Combining them together creates a task with just the user-provided “title” and
“description” fields.

Injecting Dependencies into Controllers
Laravel’s facades and global helpers present a simple interface to the most useful
classes in Laravel’s codebase. You can get information about the current request and
user input, the session, caches, and much more.

But if you prefer to inject your dependencies, or if you want to use a service that
doesn’t have a facade or a helper, you’ll need to find some way to bring instances of
these classes into your controller.

This is our first exposure to Laravel’s service container. For now, if this is unfamiliar,
you can think about it as a little bit of Laravel magic; or, if you want to know more
about how it’s actually functioning, you can skip ahead to Chapter 11.

All controller methods (including the constructors) are resolved out of Laravel’s con‐
tainer, which means anything you typehint that the container knows how to resolve
will be automatically injected.

46 | Chapter 3: Routing and Controllers

Typehints in PHP

“Typehinting” in PHP means putting the name of a class or inter‐
face in front of a variable in a method signature:

public function __construct(Logger $logger) {}

This typehint is telling PHP that whatever is passed into the
method must be of type Logger, which could be either an interface
or a class.

As a nice example, what if you’d prefer having an instance of the Request object
instead of using the global helper? Just typehint Illuminate\Http\Request in your
method parameters, like in Example 3-27.

Example 3-27. Controller method injection via typehinting

// TasksController.php
...
public function store(\Illuminate\Http\Request $request)
{
 Task::create($request->only(['title', 'description']));

 return redirect('tasks');
}

So, you’ve defined a parameter that must be passed into the store() method. And
since you typehinted it, and since Laravel knows how to resolve that class name,
you’re going to have the Request object ready for you to use in your method with no
work on your part. No explicit binding, no anything else—it’s just there as the
$request variable.

And, as you can tell from comparing Example 3-26 and Example 3-27, the request()
helper and the Request object behave exactly the same.

Resource Controllers
Sometimes naming the methods in your controllers can be the hardest part of writing
a controller. Thankfully, Laravel has some conventions for all of the routes of a tradi‐
tional REST/CRUD controller (called a “resource controller” in Laravel); additionally,
it comes with a generator out of the box and a convenience route definition that
allows you to bind an entire resource controller at once.

To see the methods that Laravel expects for a resource controller, let’s generate a new
controller from the command line:

php artisan make:controller MySampleResourceController --resource

Controllers | 47

Now open app/Http/Controllers/MySampleResourceController.php. You’ll see it comes
prefilled with quite a few methods. Let’s walk over what each represents. We’ll use a
Task as an example.

The methods of Laravel’s resource controllers
Remember the table from earlier? Table 3-1 shows the HTTP verb, the URL, the con‐
troller method name, and the name for each of these default methods that are gener‐
ated in Laravel’s resource controllers.

Binding a resource controller
So, we’ve seen that these are the conventional route names to use in Laravel, and also
that it’s easy to generate a resource controller with methods for each of these default
routes. Thankfully, you don’t have to generate routes for each of these controller
methods by hand, if you don’t want to. There’s a trick for that, called resource control‐
ler binding. Take a look at Example 3-28.

Example 3-28. Resource controller binding

// routes/web.php
Route::resource('tasks', 'TasksController');

This will automatically bind all of the routes listed in Table 3-1 for this resource to the
appropriate method names on the specified controller. It’ll also name these routes
appropriately; for example, the index() method on the tasks resource controller will
be named tasks.index().

artisan route:list

If you ever find yourself in a situation where you’re wondering
what routes your current application has available, there’s a tool for
that: from the command line, run php artisan route:list and
you’ll get a listing of all of the available routes (see Figure 3-2).

Figure 3-2. artisan route:list

48 | Chapter 3: Routing and Controllers

API Resource Controllers
When you’re working with RESTful APIs, the list of potential actions on a resource is
not the same as it is with an HTML resource controller. For example, you can send a
POST request to an API to create a resource, but you can’t really “show a create form”
in an API.

Laravel 5.6 introduced a new way to generate an API resource controller, which has the
same structure as a resource controller except it excludes the create and edit actions.
We can generate API resource controllers by passing the --api flag when creating a
controller:

php artisan make:controller MySampleResourceController --api

Binding an API resource controller

To bind an API resource controller, use the apiResource() method instead of the
resource() method, as shown in Example 3-29.

Example 3-29. API resource controller binding

// routes/web.php
Route::apiResource('tasks', 'TasksController');

Single Action Controllers
There will be times in your applications when a controller should only service a single
route. You may find yourself wondering how to name the controller method for that
route. Thankfully, you can point a single route at a single controller without concern‐
ing yourself with naming the one method.

As you may already know, the __invoke() method is a PHP magic method that
allows you to “invoke” an instance of a class, treating it like a function and calling it.
This is the tool Laravel’s single action controllers use to allow you to point a route to a
single controller, as you can see in Example 3-30.

Example 3-30. Using the __invoke() method

// \App\Http\Controllers\UpdateUserAvatar.php
public function __invoke(User $user)
{
 // Update the user's avatar image
}

// routes/web.php
Route::post('users/{user}/update-avatar', 'UpdateUserAvatar');

Controllers | 49

Route Model Binding
One of the most common routing patterns is that the first line of any controller
method tries to find the resource with the given ID, like in Example 3-31.

Example 3-31. Getting a resource for each route

Route::get('conferences/{id}', function ($id) {
 $conference = Conference::findOrFail($id);
});

Laravel provides a feature that simplifies this pattern called route model binding. This
allows you to define that a particular parameter name (e.g., {conference}) will indi‐
cate to the route resolver that it should look up an Eloquent database record with that
ID and then pass it in as the parameter instead of just passing the ID.

There are two kinds of route model binding: implicit and custom (or explicit).

Implicit Route Model Binding
The simplest way to use route model binding is to name your route parameter some‐
thing unique to that model (e.g., name it $conference instead of $id), then typehint
that parameter in the closure/controller method and use the same variable name
there. It’s easier to show than to describe, so take a look at Example 3-32.

Example 3-32. Using an implicit route model binding

Route::get('conferences/{conference}', function (Conference $conference) {
 return view('conferences.show')->with('conference', $conference);
});

Because the route parameter ({conference}) is the same as the method parameter
($conference), and the method parameter is typehinted with a Conference model
(Conference $conference), Laravel sees this as a route model binding. Every time
this route is visited, the application will assume that whatever is passed into the URL
in place of {conference} is an ID that should be used to look up a Conference,
and then that resulting model instance will be passed in to your closure or controller
method.

50 | Chapter 3: Routing and Controllers

Customizing the Route Key for an Eloquent Model

Any time an Eloquent model is looked up via a URL segment (usu‐
ally because of route model binding), the default column Eloquent
will look it up by is its primary key (ID).
To change the column your Eloquent model uses for URL lookups,
add a method to your model named getRouteKeyName():

public function getRouteKeyName()
{
 return 'slug';
}

Now, a URL like conferences/{conference} will expect to get an
entry from the slug column instead of the ID, and will perform its
lookups accordingly.

Implicit route model binding was added in Laravel 5.2, so you won’t have access to it
in 5.1.

Custom Route Model Binding
To manually configure route model bindings, add a line like the one in Example 3-33
to the boot() method in App\Providers\RouteServiceProvider.

Example 3-33. Adding a route model binding

 public function boot()
 {
 // Just allows the parent's boot() method to still run
 parent::boot();

 // Perform the binding
 Route::model('event', Conference::class);
 }

You’ve now specified that whenever a route has a parameter in its definition named
{event}, as demonstrated in Example 3-34, the route resolver will return an instance
of the Conference class with the ID of that URL parameter.

Example 3-34. Using an explicit route model binding

Route::get('events/{event}', function (Conference $event) {
 return view('events.show')->with('event', $event);
});

Route Model Binding | 51

Route Caching
If you’re looking to squeeze every millisecond out of your load time, you may want to
take a look at route caching. One of the pieces of Laravel’s bootstrap that can take
anywhere from a few dozen to a few hundred milliseconds is parsing the routes/* files,
and route caching speeds up this process dramatically.

To cache your routes file, you need to be using all controller, redirect, view, and
resource routes (no route closures). If your app isn’t using any route closures, you can
run php artisan route:cache and Laravel will serialize the results of your routes/*
files. If you want to delete the cache, run php artisan route:clear.

Here’s the drawback: Laravel will now match routes against that cached file instead of
your actual routes/* files. You can make endless changes to your routes files, and they
won’t take effect until you run route:cache again. This means you’ll have to recache
every time you make a change, which introduces a lot of potential for confusion.

Here’s what I would recommend instead: since Git ignores the route cache file by
default anyway, consider only using route caching on your production server, and run
the php artisan route:cache command every time you deploy new code (whether
via a Git post-deploy hook, a Forge deploy command, or as a part of whatever other
deploy system you use). This way you won’t have confusing local development issues,
but your remote environment will still benefit from route caching.

Form Method Spoofing
Sometimes you need to manually define which HTTP verb a form should send as.
HTML forms only allow for GET or POST, so if you want any other sort of verb, you’ll
need to specify that yourself.

HTTP Verbs in Laravel
As we’ve seen already, you can define which verbs a route will match in the route defi‐
nition using Route::get(), Route::post(), Route::any(), or Route::match(). You
can also match with Route::patch(), Route::put(), and Route::delete().

But how does one send a request other than GET with a web browser? First, the
method attribute in an HTML form determines its HTTP verb: if your form has a
method of "GET", it will submit via query parameters and a GET method; if the form
has a method of "POST", it will submit via the post body and a POST method.

JavaScript frameworks make it easy to send other requests, like DELETE and PATCH.
But if you find yourself needing to submit HTML forms in Laravel with verbs other
than GET or POST, you’ll need to use form method spoofing, which means spoofing the
HTTP method in an HTML form.

52 | Chapter 3: Routing and Controllers

HTTP Method Spoofing in HTML Forms
To inform Laravel that the form you’re currently submitting should be treated as
something other than a POST, add a hidden variable named _method with the value of
either "PUT", "PATCH", or "DELETE", and Laravel will match and route that form sub‐
mission as if it were actually a request with that verb.

The form in Example 3-35, since it’s passing Laravel the method of "DELETE", will
match routes defined with Route::delete() but not those with Route::post().

Example 3-35. Form method spoofing

<form action="/tasks/5" method="POST">
 <input type="hidden" name="_method" value="DELETE">
 <!-- or: -->
 @method('DELETE')
</form>

CSRF Protection
If you’ve tried to submit a form in a Laravel application already, including the one in
Example 3-35, you’ve likely run into the dreaded TokenMismatchException.

By default, all routes in Laravel except “read-only” routes (those using GET, HEAD, or
OPTIONS) are protected against cross-site request forgery (CSRF) attacks by requiring
a token, in the form of an input named _token, to be passed along with each request.
This token is generated at the start of every session, and every non–read-only route
compares the submitted _token against the session token.

What is CSRF?

A cross-site request forgery is when one website pretends to be
another. The goal is for someone to hijack your users’ access to
your website, by submitting forms from their website to your web‐
site via the logged-in user’s browser.
The best way around CSRF attacks is to protect all inbound routes
—POST, DELETE, etc.—with a token, which Laravel does out of
the box.

You have two options for getting around this CSRF error. The first, and preferred,
method is to add the _token input to each of your submissions. In HTML forms,
that’s simple; look at Example 3-36.

CSRF Protection | 53

Example 3-36. CSRF tokens

<form action="/tasks/5" method="POST">
 <?php echo csrf_field(); ?>
 <!-- or: -->
 <input type="hidden" name="_token" value="<?php echo csrf_token(); ?>">
 <!-- or: -->
 @csrf
</form>

CSRF Helpers in Laravel Prior to 5.6

The @csrf Blade directive is not available in projects running ver‐
sions of Laravel prior to 5.6. Instead, you’ll need to use the
csrf_field() helper function.

In JavaScript applications, it takes a bit more work, but not much. The most common
solution for sites using JavaScript frameworks is to store the token on every page in a
<meta> tag like this one:

<meta name="csrf-token" content="<?php echo csrf_token(); ?>" id="token">

Storing the token in a <meta> tag makes it easy to bind it to the correct HTTP header,
which you can do once globally for all requests from your JavaScript framework, like
in Example 3-37.

Example 3-37. Globally binding a header for CSRF

// In jQuery:
$.ajaxSetup({
 headers: {
 'X-CSRF-TOKEN': $('meta[name="csrf-token"]').attr('content')
 }
});

// With Axios:
window.axios.defaults.headers.common['X-CSRF-TOKEN'] =
 document.head.querySelector('meta[name="csrf-token"]');

Laravel will check the X-CSRF-TOKEN on every request, and valid tokens passed there
will mark the CSRF protection as satisfied.

Note that the Vue syntax for CSRF in this example is not necessary if you’re working
with the default Vue bootstrap in a Laravel installation; it already does this work for
you.

54 | Chapter 3: Routing and Controllers

Binding CSRF Tokens with Vue Resource

In projects running Laravel 5.3 and earlier and Vue, you may be
relying on a library called Vue Resource to make Ajax calls. Boot‐
strapping the CSRF token into Vue Resource looks a bit different
than it does for Laravel; see the Vue Resource docs for examples.

Redirects
So far the only things we’ve explicitly talked about returning from a controller
method or route definition have been views. But there are a few other structures we
can return to give the browser instructions on how to behave.

First, let’s cover the redirect. You’ve already seen a few of these in other examples.
There are two common ways to generate a redirect; we’ll use the redirect() global
helper here, but you may prefer the facade. Both create an instance of Illuminate
\Http\RedirectResponse, perform some convenience methods on it, and then
return it. You can also do this manually, but you’ll have to do a little more work your‐
self. Take a look at Example 3-38 to see a few ways you can return a redirect.

Example 3-38. Different ways to return a redirect

// Using the global helper to generate a redirect response
Route::get('redirect-with-helper', function () {
 return redirect()->to('login');
});

// Using the global helper shortcut
Route::get('redirect-with-helper-shortcut', function () {
 return redirect('login');
});

// Using the facade to generate a redirect response
Route::get('redirect-with-facade', function () {
 return Redirect::to('login');
});

// Using the Route::redirect shortcut in Laravel 5.5+
Route::redirect('redirect-by-route', 'login');

Note that the redirect() helper exposes the same methods as the Redirect facade,
but it also has a shortcut; if you pass parameters directly to the helper instead of
chaining methods after it, it’s a shortcut to the to() redirect method.

Also note that the (optional) third parameter for the Route::redirect() route
helper can be the status code (e.g., 302) for your redirect.

Redirects | 55

http://bit.ly/2UbVkLz

redirect()->to()
The method signature for the to() method for redirects looks like this:

function to($to = null, $status = 302, $headers = [], $secure = null)

$to is a valid internal path, $status is the HTTP status (defaulting to 302), $headers
allows you to define which HTTP headers to send along with your redirect, and
$secure allows you to override the default choice of http versus https (which is nor‐
mally set based on your current request URL). Example 3-39 shows an example of its
use.

Example 3-39. redirect()->to()

Route::get('redirect', function () {
 return redirect()->to('home');

 // Or same, using the shortcut:

 return redirect('home');
});

redirect()->route()
The route() method is the same as the to() method, but rather than pointing to a
particular path, it points to a particular route name (see Example 3-40).

Example 3-40. redirect()->route()

Route::get('redirect', function () {
 return redirect()->route('conferences.index');
});

Note that, since some route names require parameters, its parameter order is a little
different. route() has an optional second parameter for the route parameters:

function route($to = null, $parameters = [], $status = 302, $headers = [])

So, using it might look a little like Example 3-41.

Example 3-41. redirect()->route() with parameters

Route::get('redirect', function () {
 return redirect()->route('conferences.show', ['conference' => 99]);
});

56 | Chapter 3: Routing and Controllers

redirect()->back()
Because of some of the built-in conveniences of Laravel’s session implementation,
your application will always have knowledge of what the user’s previously visited page
was. That opens up the opportunity for a redirect()->back() redirect, which simply
redirects the user to whatever page they came from. There’s also a global shortcut for
this: back().

Other Redirect Methods
The redirect service provides other methods that are less commonly used, but still
available:

home()

Redirects to a route named home. refresh()::Redirects to the same page the user
is currently on. away()::Allows for redirecting to an external URL without the
default URL validation.

secure()

Like to() with the secure parameter set to "true".

action()

Allows you to link to a controller and method in one of two ways: as a string
(redirect()->action('MyController@myMethod')) or as a tuple (redirect()-
>action([MyController::class, 'myMethod'])).

guest()

Used internally by the authentification system (discussed in Chapter 9); when a
user visits a route they’re not authenticated for, this captures the “intended” route
and then redirects the user (usually to a login page).

intended()

Also used internally by the auth system; after a successful authentication, this
grabs the “intended” URL stored by the guest() method and redirects the user
there.

redirect()->with()
While it is structured similarly to the other methods you can call on redirect(),
with() is different in that it doesn’t define where you’re redirecting to, but what data
you’re passing along with the redirect. When you’re redirecting users to different
pages, you often want to pass certain data along with them. You could manually flash
the data to the session, but Laravel has some convenience methods to help you with
that.

Redirects | 57

Most commonly, you can pass along either an array of keys and values or a single key
and value using with(), like in Example 3-42. This saves your with() data to the ses‐
sion just for the next page load.

Example 3-42. Redirect with data

Route::get('redirect-with-key-value', function () {
 return redirect('dashboard')
 ->with('error', true);
});

Route::get('redirect-with-array', function () {
 return redirect('dashboard')
 ->with(['error' => true, 'message' => 'Whoops!']);
});

Chaining Methods on Redirects

As with many other facades, most calls to the Redirect facade can
accept fluent method chains, like the with() calls in Example 3-42.
You’ll learn more about fluency in “What Is a Fluent Interface?” on
page 105.

You can also use withInput(), as in Example 3-43, to redirect with the user’s form
input flashed; this is most common in the case of a validation error, where you want
to send the user back to the form they just came from.

Example 3-43. Redirect with form input

Route::get('form', function () {
 return view('form');
});

Route::post('form', function () {
 return redirect('form')
 ->withInput()
 ->with(['error' => true, 'message' => 'Whoops!']);
});

The easiest way to get the flashed input that was passed with withInput() is using the
old() helper, which can be used to get all old input (old()) or just the value for a
particular key as shown in the following example, with the second parameter as the
default if there is no old value). You’ll commonly see this in views, which allows this
HTML to be used both on the “create” and the “edit” view for this form:

58 | Chapter 3: Routing and Controllers

<input name="username" value="<?=
 old('username', 'Default username instructions here');
?>">

Speaking of validation, there is also a useful method for passing errors along with a
redirect response: withErrors(). You can pass it any “provider” of errors, which may
be an error string, an array of errors, or, most commonly, an instance of the Illumi‐
nate Validator, which we’ll cover in Chapter 10. Example 3-44 shows an example of
its use.

Example 3-44. Redirect with errors

Route::post('form', function (Illuminate\Http\Request $request) {
 $validator = Validator::make($request->all(), $this->validationRules);

 if ($validator->fails()) {
 return back()
 ->withErrors($validator)
 ->withInput();
 }
});

withErrors() automatically shares an $errors variable with the views of the page it’s
redirecting to, for you to handle however you’d like.

The validate() Method on Requests

Don’t like how Example 3-44 looks? There’s a simple and powerful
tool that will make it easy for you to clean up that code. Read more
in “validate() on the Request Object” on page 189.

Aborting the Request
Aside from returning views and redirects, the most common way to exit a route is to
abort. There are a few globally available methods (abort(), abort_if(), and
abort_unless()), which optionally take HTTP status codes, a message, and a headers
array as parameters.

As Example 3-45 shows, abort_if() and abort_unless() take a first parameter that
is evaluated for its truthiness and perform the abort depending on the result.

Example 3-45. 403 Forbidden aborts

Route::post('something-you-cant-do', function (Illuminate\Http\Request $request) {
 abort(403, 'You cannot do that!');
 abort_unless($request->has('magicToken'), 403);

Aborting the Request | 59

 abort_if($request->user()->isBanned, 403);
});

Custom Responses
There are a few other options available for us to return, so let’s go over the most com‐
mon responses after views, redirects, and aborts. Just like with redirects, you can run
these methods on either the response() helper or the Response facade.

response()->make()
If you want to create an HTTP response manually, just pass your data into the first
parameter of response()->make(): for example, return response()->make(Hello,
World!). Once again, the second parameter is the HTTP status code and the third is
your headers.

response()->json() and ->jsonp()
To create a JSON-encoded HTTP response manually, pass your JSON-able content
(arrays, collections, or whatever else) to the json() method: for example return
response()->json(User::all()). It’s just like make(), except it +json_encode+s
your content and sets the appropriate headers.

response()->download(), ->streamDownload(), and ->file()
To send a file for the end user to download, pass either an SplFileInfo instance or a
string filename to download(), with an optional second parameter of the download
filename: for example, return response()->download('file501751.pdf',

'myFile.pdf'), which would send a file that’s at file501751.pdf and rename it, as it’s
sent, myFile.pdf.

To display the same file in the browser (if it’s a PDF or an image or something else
the browser can handle), use response()->file() instead, which takes the same
parameters as response->download().

If you want to make some content from an external service available as a download
without having to write it directly to your server’s disk, you can stream the download
using response()->streamDownload(). This method expects as parameters a closure
that echoes a string, a filename, and optionally an array of headers; see Example 3-46.

Example 3-46. Streaming downloads from external servers

return response()->streamDownload(function () {
 echo DocumentService::file('myFile')->getContent();
}, 'myFile.pdf');

60 | Chapter 3: Routing and Controllers

Testing
In some other communities the idea of unit-testing controller methods is common,
but within Laravel (and most of the PHP community) it’s typical to rely on applica‐
tion testing to test the functionality of routes.

For example, to verify that a POST route works correctly, we can write a test like
Example 3-47.

Example 3-47. Writing a simple POST route test

// tests/Feature/AssignmentTest.php
public function test_post_creates_new_assignment()
{
 $this->post('/assignments', [
 'title' => 'My great assignment',
]);

 $this->assertDatabaseHas('assignments', [
 'title' => 'My great assignment',
]);
}

Did we directly call the controller methods? No. But we ensured that the goal of this
route—to receive a POST and save its important information to the database—
was met.

You can also use similar syntax to visit a route and verify that certain text shows up
on the page, or that clicking certain buttons does certain things (see Example 3-48).

Example 3-48. Writing a simple GET route test

// AssignmentTest.php
public function test_list_page_shows_all_assignments()
{
 $assignment = Assignment::create([
 'title' => 'My great assignment',
]);

 $this->get('/assignments')
 ->assertSee('My great assignment');
}

Testing | 61

Different Names for Testing Methods Prior to Laravel 5.4

In projects running versions of Laravel prior to 5.4
assertDatabaseHas() should be replaced by seeInDatabase(),
and get() and assertSee() should be replaced by visit() and
see().

TL;DR
Laravel’s routes are defined in routes/web.php and routes/api.php. You can define the
expected path for each route, which segments are static and which are parameters,
which HTTP verbs can access the route, and how to resolve it. You can also attach
middleware to routes, group them, and give them names.

What is returned from the route closure or controller method dictates how Laravel
responds to the user. If it’s a string or a view, it’s presented to the user; if it’s other sorts
of data, it’s converted to JSON and presented to the user; and if it’s a redirect, it forces
a redirect.

Laravel provides a series of tools and conveniences to simplify common routing-
related tasks and structures. These include resource controllers, route model binding,
and form method spoofing.

62 | Chapter 3: Routing and Controllers

CHAPTER 4

Blade Templating

Compared to most other backend languages, PHP actually functions relatively well as
a templating language. But it has its shortcomings, and it’s also just ugly to be using
<?php inline all over the place, so you can expect most modern frameworks to offer a
templating language.

Laravel offers a custom templating engine called Blade, which is inspired by .NET’s
Razor engine. It boasts a concise syntax, a shallow learning curve, a powerful and
intuitive inheritance model, and easy extensibility.

For a quick look at what writing Blade looks like, check out Example 4-1.

Example 4-1. Blade samples

<h1>{{ $group->title }}</h1>
{!! $group->heroImageHtml() !!}

@forelse ($users as $user)
 • {{ $user->first_name }} {{ $user->last_name }}

@empty
 No users in this group.
@endforelse

As you can see, Blade uses curly braces for its “echo” and introduces a convention in
which its custom tags, called “directives,” are prefixed with an @. You’ll use directives
for all of your control structures and also for inheritance and any custom functional‐
ity you want to add.

Blade’s syntax is clean and concise, so at its core it’s just more pleasant and tidy to
work with than the alternatives. But the moment you need anything of any complex‐
ity in your templates—nested inheritance, complex conditionals, or recursion—Blade

63

starts to really shine. Just like the best Laravel components, it takes complex applica‐
tion requirements and makes them easy and accessible.

Additionally, since all Blade syntax is compiled into normal PHP code and then
cached, it’s fast and it allows you to use native PHP in your Blade files if you want.
However, I’d recommend avoiding usage of PHP if at all possible—usually if you need
to do anything that you can’t do with Blade or a custom Blade directive, it doesn’t
belong in the template.

Using Twig with Laravel

Unlike many other Symfony-based frameworks, Laravel doesn’t use
Twig by default. But if you’re just in love with Twig, there’s a Twig
Bridge package that makes it easy to use Twig instead of Blade.

Echoing Data
As you can see in Example 4-1, {{ and }} are used to wrap sections of PHP that you’d
like to echo. {{ $variable }} is similar to <?= $variable ?> in plain PHP.

It’s different in one way, however, and you might’ve guessed this already: Blade
escapes all echoes by default using PHP’s htmlentities() to protect your users from
malicious script insertion. That means {{ $variable }} is functionally equivalent to
<?= htmlentities($variable) ?>. If you want to echo without the escaping, use {!!
and !!} instead.

{{ and }} When Using a Frontend Templating Framework
You might’ve noticed that the echo syntax for Blade ({{ }}) is similar to the echo syn‐
tax for many frontend frameworks. So how does Laravel know when you’re writing
Blade versus Handlebars?

Blade will ignore any {{ that’s prefaced with an @. So, it will parse the first of the fol‐
lowing examples, but the second will be echoed out directly:

// Parsed as Blade; the value of $bladeVariable is echoed to the view
{{ $bladeVariable }}

// @ is removed and "{{ handlebarsVariable }}" echoed to the view directly
@{{ handlebarsVariable }}

You can also wrap any large sections of script content with the @verbatim directive.

64 | Chapter 4: Blade Templating

http://bit.ly/2U8dFt0
http://bit.ly/2U8dFt0
http://bit.ly/2OnrPRP

Control Structures
Most of the control structures in Blade will be very familiar. Many directly echo the
name and structure of the same tag in PHP.

There are a few convenience helpers, but in general, the control structures just look
cleaner than they would in PHP.

Conditionals
First, let’s take a look at the control structures that allow for logic.

@if

Blade’s @if ($condition) compiles to <?php if ($condition): ?>. @else, @elseif,
and @endif also compile to the exact same style of syntax in PHP. Take a look at
Example 4-2 for some examples.

Example 4-2. @if, @else, @elseif, and @endif

@if (count($talks) === 1)
 There is one talk at this time period.
@elseif (count($talks) === 0)
 There are no talks at this time period.
@else
 There are {{ count($talks) }} talks at this time period.
@endif

Just like with the native PHP conditionals, you can mix and match these how you
want. They don’t have any special logic; there’s literally a parser looking for something
with the shape of @if ($condition) and replacing it with the appropriate PHP code.

@unless and @endunless

@unless, on the other hand, is a new syntax that doesn’t have a direct equivalent in
PHP. It’s the direct inverse of @if. @unless ($condition) is the same as <?php if (!
$condition). You can see it in use in Example 4-3.

Example 4-3. @unless and @endunless

@unless ($user->hasPaid())
 You can complete your payment by switching to the payment tab.
@endunless

Loops
Next, let’s take a look at the loops.

Control Structures | 65

@for, @foreach, and @while

@for, @foreach, and @while work the same in Blade as they do in PHP; see Examples
4-4, 4-5, and 4-6.

Example 4-4. @for and @endfor

@for ($i = 0; $i < $talk->slotsCount(); $i++)
 The number is {{ $i }}

@endfor

Example 4-5. @foreach and @endforeach

@foreach ($talks as $talk)
 • {{ $talk->title }} ({{ $talk->length }} minutes)

@endforeach

Example 4-6. @while and @endwhile

@while ($item = array_pop($items))
 {{ $item->orSomething() }}

@endwhile

@forelse and @endforelse

@forelse is a @foreach that also allows you to program in a fallback if the object
you’re iterating over is empty. We saw it in action at the start of this chapter;
Example 4-7 shows another example.

Example 4-7. @forelse

@forelse ($talks as $talk)
 • {{ $talk->title }} ({{ $talk->length }} minutes)

@empty
 No talks this day.
@endforelse

66 | Chapter 4: Blade Templating

$loop Within @foreach and @forelse
The @foreach and @forelse directives (introduced in Laravel 5.3) add one feature
that’s not available in PHP foreach loops: the $loop variable. When used within a

@foreach or @forelse loop, this variable will return a stdClass object with these
properties:

index

The 0-based index of the current item in the loop; 0 would mean “first item”

iteration

The 1-based index of the current item in the loop; 1 would mean “first item”

remaining

How many items remain in the loop

count

The count of items in the loop

first

A Boolean indicating whether this is the first item in the loop

last

A Boolean indicating whether this is the last item in the loop

depth

How many “levels” deep this loop is: 1 for a loop, 2 for a loop within a loop, etc.

parent

A reference to the $loop variable for the parent loop item if this loop is within
another @foreach loop; otherwise, null

Here’s an example of how to use it:

@foreach ($pages as $page)
 {{ $loop->iteration }}: {{ $page->title }}
 @if ($page->hasChildren())

 @foreach ($page->children() as $child)
 {{ $loop->parent->iteration }}
 .{{ $loop->iteration }}:
 {{ $child->title }}
 @endforeach

 @endif

@endforeach

Control Structures | 67

Template Inheritance
Blade provides a structure for template inheritance that allows views to extend, mod‐
ify, and include other views.

Let’s take a look at how inheritance is structured with Blade.

Defining Sections with @section/@show and @yield
Let’s start with a top-level Blade layout, like in Example 4-8. This is the definition of a
generic page wrapper that we’ll later place page-specific content into.

Example 4-8. Blade layout

<!-- resources/views/layouts/master.blade.php -->
<html>
 <head>
 <title>My Site | @yield('title', 'Home Page')</title>
 </head>
 <body>
 <div class="container">
 @yield('content')
 </div>
 @section('footerScripts')
 <script src="app.js"></script>
 @show
 </body>
</html>

This looks a bit like a normal HTML page, but you can see we’ve yielded in two places
(title and content) and we’ve defined a section in a third (footerScripts). We have
three Blade directives here: @yield('content') alone, @yield('title', 'Home

Page') with a defined default, and @section/@show with actual content in it.

While they each look a little different, all three function essentially the same. All three
are defining that there’s a section with a given name (the first parameter) that can be
extended later, and all three are defining what to do if the section isn’t extended. They
do this either by providing a string fallback ('Home Page'), no fallback (which will
just not show anything if it’s not extended), or an entire block fallback (in this case,
<script src="app.js"></script>).

What’s different? Well, clearly, @yield('content') has no default content. But addi‐
tionally, the default content in @yield('title') will only be shown if it’s never exten‐
ded. If it is extended, its child sections will not have programmatic access to the
default value. @section/@show, on the other hand, is both defining a default
and doing so in such a way that its default contents will be available to its children,
through @parent.

68 | Chapter 4: Blade Templating

Once you have a parent layout like this, you can extend it in a new template file like in
Example 4-9.

Example 4-9. Extending a Blade layout

<!-- resources/views/dashboard.blade.php -->
@extends('layouts.master')

@section('title', 'Dashboard')

@section('content')
 Welcome to your application dashboard!
@endsection

@section('footerScripts')
 @parent
 <script src="dashboard.js"></script>
@endsection

@show Versus @endsection

You may have noticed that Example 4-8 uses @section/@show, but
Example 4-9 uses @section/@endsection. What’s the difference?
Use @show when you’re defining the place for a section, in the par‐
ent template. Use @endsection when you’re defining the content
for a template in a child template.

This child view allows us to cover a few new concepts in Blade inheritance.

@extends

In Example 4-9, with @extends('layouts.master'), we define that this view should
not be rendered on its own but that it instead extends another view. That means its
role is to define the content of various sections, but not to stand alone. It’s almost
more like a series of buckets of content, rather than an HTML page. This line also
defines that the view it’s extending lives at resources/views/layouts/master.blade.php.

Each file should only extend one other file, and the @extends call should be the first
line of the file.

@section and @endsection

With @section('title', 'Dashboard'), we provide our content for the
first section, title. Since the content is so short, instead of using @section and @end
section, we’re just using a shortcut. This allows us to pass the content in as the sec‐

Template Inheritance | 69

ond parameter of @section and then move on. If it’s a bit disconcerting to see
@section without @endsection, you could just use the normal syntax.

With @section('content') and on, we use the normal syntax to define the contents
of the content section. We’ll just throw a little greeting in for now. Note, however,
that when you’re using @section in a child view, you end it with @endsection (or its
alias @stop), instead of @show, which is reserved for defining sections in parent views.

@parent

Finally, with @section('footerScripts') and on, we use the normal syntax to
define the contents of the footerScripts section.

But remember, we actually defined that content (or, at least, its “default”) already in
the master layout. So this time, we have two options: we can either overwrite the con‐
tent from the parent view, or we can add to it.

You can see that we have the option to include the content from the parent by using
the @parent directive within the section. If we didn’t, the content of this section
would entirely overwrite anything defined in the parent for this section.

Including View Partials
Now that we’ve established the basics of inheritance, there are a few more tricks we
can perform.

@include
What if we’re in a view and want to pull in another view? Maybe we have a call-to-
action “Sign up” button that we want to reuse around the site. And maybe we want to
customize the button text every time we use it. Take a look at Example 4-10.

Example 4-10. Including view partials with @include

<!-- resources/views/home.blade.php -->
<div class="content" data-page-name="{{ $pageName }}">
 <p>Here's why you should sign up for our app: It's Great.</p>

 @include('sign-up-button', ['text' => 'See just how great it is'])
</div>

<!-- resources/views/sign-up-button.blade.php -->

 <i class="exclamation-icon"></i> {{ $text }}

70 | Chapter 4: Blade Templating

@include pulls in the partial and, optionally, passes data into it. Note that not only
can you explicitly pass data to an include via the second parameter of @include, but
you can also reference any variables within the included file that are available to the
including view ($pageName, in this example). Once again, you can do whatever you
want, but I would recommend you consider always explicitly passing every variable
that you intend to use, just for clarity.

You also use the @includeIf, @includeWhen, and @includeFirst directives, as shown
in Example 4-11.

Example 4-11. Conditionally including views

{{-- Include a view if it exists --}}
@includeIf('sidebars.admin', ['some' => 'data'])

{{-- Include a view if a passed variable is truth-y --}}
@includeWhen($user->isAdmin(), 'sidebars.admin', ['some' => 'data'])

{{-- Include the first view that exists from a given array of views --}}
@includeFirst(['customs.header', 'header'], ['some' => 'data'])

@each
You can probably imagine some circumstances in which you’d need to loop over
an array or collection and @include a partial for each item. There’s a directive for
that: @each.

Let’s say we have a sidebar composed of modules, and we want to include multiple
modules, each with a different title. Take a look at Example 4-12.

Example 4-12. Using view partials in a loop with @each

<!-- resources/views/sidebar.blade.php -->
<div class="sidebar">
 @each('partials.module', $modules, 'module', 'partials.empty-module')
</div>

<!-- resources/views/partials/module.blade.php -->
<div class="sidebar-module">
 <h1>{{ $module->title }}</h1>
</div>

<!-- resources/views/partials/empty-module.blade.php -->
<div class="sidebar-module">
 No modules :(
</div>

Template Inheritance | 71

Consider that @each syntax. The first parameter is the name of the view partial. The
second is the array or collection to iterate over. The third is the variable name that
each item (in this case, each element in the $modules array) will be passed to the view
as. And the optional fourth parameter is the view to show if the array or collection is
empty (or, optionally, you can pass a string in here that will be used as your template).

Using Stacks
One common pattern that can be difficult to manage using basic Blade includes is
when each view in a Blade include hierarchy needs to add something to a certain sec‐
tion—almost like adding an entry to an array.

The most common situation for this is when certain pages (and sometimes, more
broadly, certain sections of a website) have specific unique CSS and JavaScript files
they need to load. Imagine you have a site-wide “global” CSS file, a “jobs section” CSS
file, and an “apply for a job” page CSS file.

Blade’s stacks are built for exactly this situation. In your parent template, define a
stack, which is just a placeholder. Then, in each child template you can “push” entries
onto that stack with @push/@endpush, which adds them to the bottom of the stack in
the final render. You can also use @prepend/@endprepend to add them to the top of
the stack. Example 4-13 illustrates.

Example 4-13. Using Blade stacks

<!-- resources/views/layouts/app.blade.php -->
<html>
<head><!-- the head --></head>
<body>
 <!-- the rest of the page -->
 <script src="/css/global.css"></script>
 <!-- the placeholder where stack content will be placed -->
 @stack('scripts')
</body>
</html>

<!-- resources/views/jobs.blade.php -->
@extends('layouts.app')

@push('scripts')
 <!-- push something to the bottom of the stack -->
 <script src="/css/jobs.css"></script>
@endpush

<!-- resources/views/jobs/apply.blade.php -->
@extends('jobs')

@prepend('scripts')

72 | Chapter 4: Blade Templating

 <!-- push something to the top of the stack -->
 <script src="/css/jobs--apply.css"></script>
@endprepend

These generate the following result:

<html>
<head><!-- the head --></head>
<body>
 <!-- the rest of the page -->
 <script src="/css/global.css"></script>
 <!-- the placeholder where stack content will be placed -->
 <script src="/css/jobs--apply.css"></script>
 <script src="/css/jobs.css"></script>
</body>
</html>

Using Components and Slots
Laravel offers another pattern for including content between views, which was intro‐
duced in 5.4: components and slots. Components make the most sense in contexts
when you find yourself using view partials and passing large chunks of content into
them as variables. Take a look at Example 4-14 for an example of a model, or popover,
that might alert the user in response to an error or other action.

Example 4-14. A modal as an awkward view partial

<!-- resources/views/partials/modal.blade.php -->
<div class="modal">
 <div>{{ $content }}</div>
 <div class="close button etc">...</div>
</div>

<!-- in another template -->
@include('partials.modal', [
 'body' => '<p>The password you have provided is not valid. Here are the rules
 for valid passwords: [...]</p><p>...</p>'
])

This is too much for this variable, and it’s the perfect fit for a component.

Components with slots are view partials that are explicitly designed to have big
chunks (“slots”) that are meant to get content from the including template. Take a
look at Example 4-15 to see how to refactor Example 4-14 with components and slots.

Example 4-15. A modal as a more appropriate component with slots

<!-- resources/views/partials/modal.blade.php -->
<div class="modal">

Template Inheritance | 73

 <div>{{ $slot }}</div>
 <div class="close button etc">...</div>
</div>

<!-- in another template -->
@component('partials.modal')
 <p>The password you have provided is not valid.
 Here are the rules for valid passwords: [...]</p>

 <p>...</p>
@endcomponent

As you can see in Example 4-15, the @component directive allows us to pull our
HTML out of a cramped variable string and back into the template space. The $slot
variable in our component template receives whatever content is passed in the @compo
nent directive.

Multiple slots
The method we used in Example 4-15 is called the “default” slot; whatever you pass in
between @component and @endcomponent is passed to the $slot variable. But you can
also have more than just the default slot. Let’s imagine a modal with a title, like in
Example 4-16.

Example 4-16. A modal view partial with two variables

<!-- resources/views/partials/modal.blade.php -->
<div class="modal">
 <div class="modal-header">{{ $title }}</div>
 <div>{{ $slot }}</div>
 <div class="close button etc">...</div>
</div>

You can use the @slot directive in your @component calls to pass content to slots other
than the default, as you can see in Example 4-17.

Example 4-17. Passing more than one slot to a component

@component('partials.modal')
 @slot('title')
 Password validation failure
 @endslot

 <p>The password you have provided is not valid.
 Here are the rules for valid passwords: [...]</p>

 <p>...</p>
@endcomponent

74 | Chapter 4: Blade Templating

And if you have other variables in your view that don’t make sense as a slot, you can
still pass an array of content as the second parameter to @component, just like you can
with @include. Take a look at Example 4-18.

Example 4-18. Passing data to a component without slots

@component('partials.modal', ['class' => 'danger'])
 ...
@endcomponent

Aliasing a component to be a directive
There’s a clever trick you can use to make your components even easier to call: alias‐
ing. Simply call Blade::component() on the Blade facade—the most common loca‐
tion is the boot() method of the AppServiceProvider—and pass it first the location
of the component and second the name of your desired directive, as shown in
Example 4-19.

Example 4-19. Aliasing a component to be a directive

// AppServiceProvider@boot
Blade::component('partials.modal', 'modal');

<!-- in a template -->
@modal
 Modal content here
@endmodal

Importing Facades

This is our first time working with a facade in a namespaced class.
We’ll cover them in more depth later, but just know that if you use
facades in namespaced classes, which is most classes in recent ver‐
sions of Laravel, you might find errors showing that the facade can‐
not be found. This is because facades are just normal classes with
normal namespaces, but Laravel does a bit of trickery to make
them available from the root namespace.
So, in Example 4-19, we’d need to import the Illuminate\Support
\Facades\Blade facade at the top of the file.

View Composers and Service Injection
As we covered in Chapter 3, it’s simple to pass data to our views from the route defi‐
nition (see Example 4-20).

View Composers and Service Injection | 75

Example 4-20. Reminder of how to pass data to views

Route::get('passing-data-to-views', function () {
 return view('dashboard')
 ->with('key', 'value');
});

There may be times, however, when you find yourself passing the same data over and
over to multiple views. Or you might find yourself using a header partial or some‐
thing similar that requires some data; will you have to pass that data in from every
route definition that might ever load that header partial?

Binding Data to Views Using View Composers
Thankfully, there’s a simpler way. The solution is called a view composer, and it allows
you to define that any time a particular view loads, it should have certain data passed
to it—without the route definition having to pass that data in explicitly.

Let’s say you have a sidebar on every page, which is defined in a partial named
partials.sidebar (resources/views/partials/sidebar.blade.php) and then included on
every page. This sidebar shows a list of the last seven posts that were published on
your site. If it’s on every page, every route definition would normally have to grab
that list and pass it in, like in Example 4-21.

Example 4-21. Passing sidebar data in from every route

Route::get('home', function () {
 return view('home')
 ->with('posts', Post::recent());
});

Route::get('about', function () {
 return view('about')
 ->with('posts', Post::recent());
});

That could get annoying quickly. Instead, we’re going to use view composers to
“share” that variable with a prescribed set of views. We can do this a few ways, so let’s
start simple and move up.

Sharing a variable globally
First, the simplest option: just globally “share” a variable with every view in your
application like in Example 4-22.

76 | Chapter 4: Blade Templating

Example 4-22. Sharing a variable globally

// Some service provider
public function boot()
{
 ...
 view()->share('recentPosts', Post::recent());
}

If you want to use view()->share(), the best place would be the boot() method of a
service provider so that the binding runs on every page load. You can create a custom
ViewComposerServiceProvider (see Chapter 11 for more about service providers),
but for now just put it in App\Providers\AppServiceProvider in the boot()
method.

Using view()->share() makes the variable accessible to every view in the entire
application, however, so it might be overkill.

View-scoped view composers with closures
The next option is to use a closure-based view composer to share variables with a sin‐
gle view, like in Example 4-23.

Example 4-23. Creating a closure-based view composer

view()->composer('partials.sidebar', function ($view) {
 $view->with('recentPosts', Post::recent());
});

As you can see, we’ve defined the name of the view we want it shared with in the first
parameter (partials.sidebar) and then passed a closure to the second parameter; in
the closure we’ve used $view->with() to share a variable, but only with a specific
view.

View Composers for Multiple Views
Anywhere a view composer is binding to a particular view (like in Example 4-23,
which binds to partials.sidebar), you can pass an array of view names instead to
bind to multiple views.

You can also use an asterisk in the view path, as in partials.* or tasks.*:

view()->composer(
 ['partials.header', 'partials.footer'],
 function () {
 $view->with('recentPosts', Post::recent());
 }
);

View Composers and Service Injection | 77

view()->composer('partials.*', function () {
 $view->with('recentPosts', Post::recent());
});

View-scoped view composers with classes
Finally, the most flexible but also most complex option is to create a dedicated class
for your view composer.

First, let’s create the view composer class. There’s no formally defined place for view
composers to live, but the docs recommend App\Http\ViewComposers. So, let’s create
App\Http\ViewComposers\RecentPostsComposer like in Example 4-24.

Example 4-24. A view composer

<?php

namespace App\Http\ViewComposers;

use App\Post;
use Illuminate\Contracts\View\View;

class RecentPostsComposer
{
 public function compose(View $view)
 {
 $view->with('recentPosts', Post::recent());
 }
}

As you can see, when this composer is called, it runs the compose() method, in which
we bind the posts variable to the result of running the Post model’s recent()
method.

Like the other methods of sharing variables, this view composer needs to have a bind‐
ing somewhere. Again, you’d likely create a custom ViewComposerServiceProvider,
but for now, as seen in Example 4-25, we’ll just put it in the boot() method of App
\Providers\AppServiceProvider.

Example 4-25. Registering a view composer in AppServiceProvider

public function boot()
{
 view()->composer(
 'partials.sidebar',
 \App\Http\ViewComposers\RecentPostsComposer::class

78 | Chapter 4: Blade Templating

);
}

Note that this binding is the same as a closure-based view composer, but instead of
passing a closure, we’re passing the class name of our view composer. Now, every time
Blade renders the partials.sidebar view, it’ll automatically run our provider and
pass the view a recentPosts variable set to the results of the recent() method on
our Post model.

Blade Service Injection
There are three primary types of data we’re most likely to inject into a view: collec‐
tions of data to iterate over, single objects that we’re displaying on the page, and serv‐
ices that generate data or views.

With a service, the pattern will most likely look like Example 4-26, where we inject an
instance of our analytics service into the route definition by typehinting it in the
route’s method signature, and then pass it into the view.

Example 4-26. Injecting services into a view via the route definition constructor

Route::get('backend/sales', function (AnalyticsService $analytics) {
 return view('backend.sales-graphs')
 ->with('analytics', $analytics);
});

Just as with view composers, Blade’s service injection offers a convenient shortcut to
reduce duplication in your route definitions. Normally, the content of a view using
our analytics service might look like Example 4-27.

Example 4-27. Using an injected navigation service in a view

<div class="finances-display">
 {{ $analytics->getBalance() }} / {{ $analytics->getBudget() }}
</div>

Blade service injection makes it easy to inject an instance of a class from the container
directly from the view, like in Example 4-28.

Example 4-28. Injecting a service directly into a view

@inject('analytics', 'App\Services\Analytics')

<div class="finances-display">
 {{ $analytics->getBalance() }} / {{ $analytics->getBudget() }}
</div>

View Composers and Service Injection | 79

As you can see, this @inject directive has actually made an $analytics variable
available, which we’re using later in our view.

The first parameter of @inject is the name of the variable you’re injecting, and
the second parameter is the class or interface that you want to inject an instance of.
This is resolved just like when you typehint a dependency in a constructor elsewhere
in Laravel; if you’re unfamiliar with how that works, check out Chapter 11 to learn
more.

Just like view composers, Blade service injection makes it easy to make certain data or
functionality available to every instance of a view, without having to inject it via the
route definition every time.

Custom Blade Directives
All of the built-in syntax of Blade that we’ve covered so far—@if, @unless, and so
on—are called directives. Each Blade directive is a mapping between a pattern (e.g.,
@if ($condition)) and a PHP output (e.g., <?php if ($condition): ?>).

Directives aren’t just for the core; you can actually create your own. You might think
directives are good for making little shortcuts to bigger pieces of code—for example,
using @button('buttonName') and having it expand to a larger set of button HTML.
This isn’t a terrible idea, but for simple code expansion like this you might be better
off including a view partial.

Custom directives tend to be the most useful when they simplify some form of
repeated logic. Say we’re tired of having to wrap our code with @if

(auth()->guest()) (to check if a user is logged in or not) and we want a custom
@ifGuest directive. As with view composers, it might be worth having a custom ser‐
vice provider to register these, but for now let’s just put it in the boot() method of
App\Providers\AppServiceProvider. Take a look at Example 4-29 to see what this
binding will look like.

Example 4-29. Binding a custom Blade directive in a service provider

public function boot()
{
 Blade::directive('ifGuest', function () {
 return "<?php if (auth()->guest()): ?>";
 });
}

We’ve now registered a custom directive, @ifGuest, which will be replaced with the
PHP code <?php if (auth()->guest()): ?>.

80 | Chapter 4: Blade Templating

This might feel strange. You’re writing a string that will be returned and then executed
as PHP. But what this means is that you can now take the complex, or ugly, or unclear,
or repetitive aspects of your PHP templating code and hide them behind clear, sim‐
ple, and expressive syntax.

Custom Directive Result Caching

You might be tempted to do some logic to make your custom direc‐
tive faster by performing an operation in the binding and then
embedding the result within the returned string:

Blade::directive('ifGuest', function () {
 // Antipattern! Do not copy.
 $ifGuest = auth()->guest();
 return "<?php if ({$ifGuest}): ?>";
});

The problem with this idea is that it assumes this directive will be
recreated on every page load. However, Blade caches aggressively,
so you’re going to find yourself in a bad spot if you try this.

Parameters in Custom Blade Directives
What if you want to accept parameters in your custom logic? Check out
Example 4-30.

Example 4-30. Creating a Blade directive with parameters

// Binding
Blade::directive('newlinesToBr', function ($expression) {
 return "<?php echo nl2br({$expression}); ?>";
});

// In use
<p>@newlinesToBr($message->body)</p>

The $expression parameter received by the closure represents whatever’s within the
parentheses. As you can see, we then generate a valid PHP code snippet and return it.

$expression Parameter Scoping Before Laravel 5.3

Before Laravel 5.3, the $expression parameter also included the
parentheses themselves. So, in Example 4-30, $expression (which is
$message->body in Laravel 5.3 and later) would have instead been
($message->body), and we would’ve had to write <?php echo
nl2br{$expression}; ?>.

Custom Blade Directives | 81

If you find yourself constantly writing the same conditional logic over and over, you
should consider a Blade directive.

Example: Using Custom Blade Directives for a Multitenant App
Let’s imagine we’re building an application that supports multitenancy, which means
users might be visiting the site from www.myapp.com, client1.myapp.com, cli‐
ent2.myapp.com, or elsewhere.

Suppose we have written a class to encapsulate some of our multitenancy logic and
named it Context. This class will capture information and logic about the context of
the current visit, such as who the authenticated user is and whether the user is visiting
the public website or a client subdomain.

We’ll probably frequently resolve that Context class in our views and perform condi‐
tionals on it, like in Example 4-31. app('context') is a shortcut to get an instance of
a class from the container, which we’ll learn more about in Chapter 11.

Example 4-31. Conditionals on context without a custom Blade directive

@if (app('context')->isPublic())
 © Copyright MyApp LLC
@else
 © Copyright {{ app('context')->client->name }}
@endif

What if we could simplify @if (app('context')->isPublic()) to just @ifPublic?
Let’s do it. Check out Example 4-32.

Example 4-32. Conditionals on context with a custom Blade directive

// Binding
Blade::directive('ifPublic', function () {
 return "<?php if (app('context')->isPublic()): ?>";
});

// In use
@ifPublic
 © Copyright MyApp LLC
@else
 © Copyright {{ app('context')->client->name }}
@endif

Since this resolves to a simple if statement, we can still rely on the native @else and
@endif conditionals. But if we wanted, we could also create a custom @elseIfClient
directive, or a separate @ifClient directive, or really whatever else we want.

82 | Chapter 4: Blade Templating

Easier Custom Directives for “if” Statements
While custom Blade directives are powerful, the most common use for them is if
statements. So there’s a simpler way to create custom “if ” directives: Blade::if().
Example 4-33 shows how we could refactor Example 4-32 using the Blade::if()
method:

Example 4-33. Defining a custom “if ” Blade directive

// Binding
Blade::if('ifPublic', function () {
 return (app('context'))->isPublic();
});

You’ll use the directives exactly the same way, but as you can see, defining them is a
bit simpler. Instead of having to manually type out PHP braces, you can just write a
closure that returns a Boolean.

Testing
The most common method of testing views is through application testing, meaning
that you’re actually calling the route that displays the views and ensuring the views
have certain content (see Example 4-34). You can also click buttons or submit forms
and ensure that you are redirected to a certain page, or that you see a certain error.
(You’ll learn more about testing in Chapter 12.)

Example 4-34. Testing that a view displays certain content

// EventsTest.php
public function test_list_page_shows_all_events()
{
 $event1 = factory(Event::class)->create();
 $event2 = factory(Event::class)->create();

 $this->get('events')
 ->assertSee($event1->title)
 ->assertSee($event2->title);
}

You can also test that a certain view has been passed a particular set of data, which, if
it accomplishes your testing goals, is less fragile than checking for certain text on the
page. Example 4-35 demonstrates this approach.

Testing | 83

Example 4-35. Testing that a view was passed certain content

// EventsTest.php
public function test_list_page_shows_all_events()
{
 $event1 = factory(Event::class)->create();
 $event2 = factory(Event::class)->create();

 $response = $this->get('events');

 $response->assertViewHas('events', Event::all());
 $response->assertViewHasAll([
 'events' => Event::all(),
 'title' => 'Events Page',
]);
 $response->assertViewMissing('dogs');
}

Different Names for Testing Methods Prior to Laravel 5.4

In projects running versions of Laravel prior to 5.4, get() and
assertSee() should be replaced by visit() and see().

In 5.3 we gained the ability to pass a closure to assertViewHas(), meaning we can
customize how we want to check more complex data structures. Example 4-36 illus‐
trates how we might use this.

Example 4-36. Passing a closure to assertViewHas()

// EventsTest.php
public function test_list_page_shows_all_events()
{
 $event1 = factory(Event::class)->create();

 $response = $this->get("events/{ $event->id }");

 $response->assertViewHas('event', function ($event) use ($event1) {
 return $event->id === $event1->id;
 });
}

TL;DR
Blade is Laravel’s templating engine. Its primary focus is a clear, concise, and expres‐
sive syntax with powerful inheritance and extensibility. Its “safe echo” brackets are
{{ and }}, its unprotected echo brackets are {!! and !!}, and it has a series of custom
tags called directives that all begin with @ (@if and @unless, for example).

84 | Chapter 4: Blade Templating

You can define a parent template and leave “holes” in it for content using @yield
and @section/@show. You can then teach its child views to extend it using
@extends('parent.view'), and define their sections using @section/@endsection.
You use @parent to reference the content of the block’s parent.

View composers make it easy to define that, every time a particular view or subview
loads, it should have certain information available to it. And service injection allows
the view itself to request data straight from the application container.

TL;DR | 85

CHAPTER 5

Databases and Eloquent

Laravel provides a suite of tools for interacting with your application’s databases,
but the most notable is Eloquent, Laravel’s ActiveRecord ORM (object-relational
mapper).

Eloquent is one of Laravel’s most popular and influential features. It’s a great example
of how Laravel is different from the majority of PHP frameworks; in a world of Data‐
Mapper ORMs that are powerful but complex, Eloquent stands out for its simplicity.
There’s one class per table, which is responsible for retrieving, representing, and per‐
sisting data in that table.

Whether or not you choose to use Eloquent, however, you’ll still get a ton of benefit
from the other database tools Laravel provides. So, before we dig into Eloquent, we’ll
start by covering the basics of Laravel’s database functionality: migrations, seeders,
and the query builder.

Then we’ll cover Eloquent: defining your models; inserting, updating, and deleting;
customizing your responses with accessors, mutators, and attribute casting; and
finally relationships. There’s a lot going on here, and it’s easy to get overwhelmed, but
if we take it one step at a time we’ll make it through.

Configuration
Before we get into how to use Laravel’s database tools, let’s pause for a second and go
over how to configure your database credentials and connections.

The configuration for database access lives in config/database.php and .env. Like
many other configuration areas in Laravel, you can define multiple “connections” and
then decide which the code will use by default.

87

Database Connections
By default, there’s one connection for each of the drivers, as you can see in
Example 5-1.

Example 5-1. The default database connections list

 'connections' => [

 'sqlite' => [
 'driver' => 'sqlite',
 'database' => env('DB_DATABASE', database_path('database.sqlite')),
 'prefix' => '',
],

 'mysql' => [
 'driver' => 'mysql',
 'host' => env('DB_HOST', '127.0.0.1'),
 'port' => env('DB_PORT', '3306'),
 'database' => env('DB_DATABASE', 'forge'),
 'username' => env('DB_USERNAME', 'forge'),
 'password' => env('DB_PASSWORD', ''),
 'unix_socket' => env('DB_SOCKET', ''),
 'charset' => 'utf8',
 'collation' => 'utf8_unicode_ci',
 'prefix' => '',
 'strict' => false,
 'engine' => null,
],

 'pgsql' => [
 'driver' => 'pgsql',
 'host' => env('DB_HOST', '127.0.0.1'),
 'port' => env('DB_PORT', '5432'),
 'database' => env('DB_DATABASE', 'forge'),
 'username' => env('DB_USERNAME', 'forge'),
 'password' => env('DB_PASSWORD', ''),
 'charset' => 'utf8',
 'prefix' => '',
 'schema' => 'public',
 'sslmode' => 'prefer',
],

 'sqlsrv' => [
 'driver' => 'sqlsrv',
 'host' => env('DB_HOST', 'localhost'),
 'port' => env('DB_PORT', '1433'),
 'database' => env('DB_DATABASE', 'forge'),
 'username' => env('DB_USERNAME', 'forge'),
 'password' => env('DB_PASSWORD', ''),
 'charset' => 'utf8',

88 | Chapter 5: Databases and Eloquent

 'prefix' => '',
],

]

Nothing is stopping you from deleting or modifying these named connections or cre‐
ating your own. You can create new named connections, and you’ll be able to set the
drivers (MySQL, Postgres, etc.) in them. So, while there’s one connection per driver
by default, that’s not a constraint; you could have five different connections, all with
the mysql driver, if you wanted.

Each connection allows you to define the properties necessary for connecting to and
customizing each connection type.

There are a few reasons for the idea of multiple drivers. To start with, the “connec‐
tions” section as it comes out of the box is a simple template that makes it easy to start
apps that use any of the supported database connection types. In many apps, you can
pick the database connection you’ll be using, fill out its information, and even delete
the others if you’d like. I usually just keep them all there, in case I might eventually
use them.

But there are also some cases where you might need multiple connections within the
same application. For example, you might use different database connections for two
different types of data, or you might read from one and write to another. Support for
multiple connections makes this possible.

Other Database Configuration Options
The config/database.php configuration section has quite a few other configuration
settings. You can configure Redis access, customize the table name used for migra‐
tions, determine the default connection, and toggle whether non-Eloquent calls
return stdClass or array instances.

With any service in Laravel that allows connections from multiple sources—sessions
can be backed by the database or file storage, the cache can use Redis or Memcached,
databases can use MySQL or PostgreSQL—you can define multiple connections and
also choose that a particular connection will be the “default,” meaning it will be used
any time you don’t explicitly ask for a particular connection. Here’s how you ask for a
specific connection, if you want to:

$users = DB::connection('secondary')->select('select * from users');

[role="less_space pagebreak-before"]' === Migrations

Modern frameworks like Laravel make it easy to define your database structure with
code-driven migrations. Every new table, column, index, and key can be defined in

Configuration | 89

code, and any new environment can be brought from bare database to your app’s per‐
fect schema in seconds.

Defining Migrations
A migration is a single file that defines two things: the modifications desired when
running this migration up and, optionally, the modifications desired when running
this migration down.

“Up” and “Down” in Migrations
Migrations are always run in order by date. Every migration file is named something
like this: 2018_10_12_000000_create_users_table.php. When a new system is migra‐
ted, the system grabs each migration, starting at the earliest date, and runs its up()
method—you’re migrating it “up” at this point. But the migration system also allows
you to “roll back” your most recent set of migrations. It’ll grab each of them and run
its down() method, which should undo whatever changes the up migration made.

So, the up() method of a migration should “do” its migration, and the down() method
should “undo” it.

Example 5-2 shows what the default “create users table” migration that comes with
Laravel looks like.

Example 5-2. Laravel’s default “create users table” migration

<?php

use Illuminate\Database\Schema\Blueprint;
use Illuminate\Database\Migrations\Migration;

class CreateUsersTable extends Migration
{
 /**
 * Run the migrations.
 *
 * @return void
 */
 public function up()
 {
 Schema::create('users', function (Blueprint $table) {
 $table->bigIncrements('id');
 $table->string('name');
 $table->string('email')->unique();
 $table->timestamp('email_verified_at')->nullable();
 $table->string('password');
 $table->rememberToken();

90 | Chapter 5: Databases and Eloquent

 $table->timestamps();
 });
 }

 /**
 * Reverse the migrations.
 *
 * @return void
 */
 public function down()
 {
 Schema::dropIfExists('users');
 }
}

Email Verification

The email_verified_at column is only present in apps built in
Laravel 5.7 and later. It stores a timestamp indicating when the

user verified their email address.

As you can see, we have an up() method and a down() method. up() tells the migra‐
tion to create a new table named users with a few fields, and down() tells it to drop
the users table.

Creating a migration
As you will see in Chapter 8, Laravel provides a series of command-line tools you can
use to interact with your app and generate boilerplate files. One of these commands
allows you to create a migration file. You can run it using php artisan make:migra
tion, and it has a single parameter, which is the name of the migration. For example,
to create the table we just covered, you would run php artisan make:migration
create_users_table.

There are two flags you can optionally pass to this command. --create=table_name
prefills the migration with code designed to create a table named table_name, and
--table=table_name just prefills the migration for modifications to an existing table.
Here are a few examples:

php artisan make:migration create_users_table
php artisan make:migration add_votes_to_users_table --table=users
php artisan make:migration create_users_table --create=users

Creating tables

We already saw in the default create_users_table migration that our migrations
depend on the Schema facade and its methods. Everything we can do in these migra‐
tions will rely on the methods of Schema.

Configuration | 91

To create a new table in a migration, use the create() method—the first parameter is
the table name, and the second is a closure that defines its columns:

Schema::create('users', function (Blueprint $table) {
 // Create columns here
});

Creating columns
To create new columns in a table, whether in a create table call or a modify table call,
use the instance of Blueprint that’s passed into your closure:

Schema::create('users', function (Blueprint $table) {
 $table->string('name');
});

Let’s look at the various methods available on Blueprint instances for creating col‐
umns. I’ll describe how they work in MySQL, but if you’re using another database,
Laravel will just use the closest equivalent.

The following are the simple field Blueprint methods:

integer(colName), tinyInteger(colName), smallInteger(colName),
mediumInteger(colName), bigInteger(colName)

Adds an INTEGER type column, or one of its many variations

string(colName, length)

Adds a VARCHAR type column with an optional length

binary(colName)

Adds a BLOB type column

boolean(colName)

Adds a BOOLEAN type column (a TINYINT(1) in MySQL)

char(colName, length)

Adds a CHAR column with an optional length

datetime(colName)

Adds a DATETIME column

decimal(colName, precision, scale)

Adds a DECIMAL column, with precision and scale—for example, deci

mal('amount', 5, 2) specifies a precision of 5 and a scale of 2

double(colName, total digits, digits after decimal)

Adds a DOUBLE column—for example, double('tolerance', 12, 8) specifies 12
digits long, with 8 of those digits to the right of the decimal place, as in
7204.05691739

92 | Chapter 5: Databases and Eloquent

enum(colName, [choiceOne, choiceTwo])

Adds an ENUM column, with provided choices

float(colName, precision, scale)

Adds a FLOAT column (same as double in MySQL)

json(colName) and jsonb(colName)
Adds a JSON or JSONB column (or a TEXT column in Laravel 5.1)

text(colName), mediumText(colName), longText(colName)
Adds a TEXT column (or its various sizes)

time(colName)

Adds a TIME column

timestamp(colName)

Adds a TIMESTAMP column

uuid(colName)

Adds a UUID column (CHAR(36) in MySQL)

And these are the special (joined) Blueprint methods:

increments(colName) and bigIncrements(colName)
Add an unsigned incrementing INTEGER or BIG INTEGER primary key ID

timestamps() and nullableTimestamps()
Adds created_at and updated_at timestamp columns

rememberToken()

Adds a remember_token column (VARCHAR(100)) for user “remember me” tokens

softDeletes()

Adds a deleted_at timestamp for use with soft deletes

morphs(colName)

For a provided colName, adds an integer colName_id and a string colName_type
(e.g., morphs(tag) adds integer tag_id and string tag_type); for use in polymor‐
phic relationships

Building extra properties fluently
Most of the properties of a field definition—its length, for example—are set as the
second parameter of the field creation method, as we saw in the previous section. But
there are a few other properties that we’ll set by chaining more method calls after the
creation of the column. For example, this email field is nullable and will be placed (in
MySQL) right after the last_name field:

Configuration | 93

Schema::table('users', function (Blueprint $table) {
 $table->string('email')->nullable()->after('last_name');
});

The following methods are used to set additional properties of a field:

nullable()

Allows NULL values to be inserted into this column

default('default content')

Specifies the default content for this column if no value is provided

unsigned()

Marks integer columns as unsigned (not negative or positive, but just an integer)

first() (MySQL only)
Places the column first in the column order

after(colName) (MySQL only)
Places the column after another column in the column order

unique()

Adds a UNIQUE index

primary()

Adds a primary key index

index()

Adds a basic index

Note that unique(), primary(), and index() can also be used outside of the fluent
column building context, which we’ll cover later.

Dropping tables

If you want to drop a table, there’s a dropIfExists() method on Schema that takes
one parameter, the table name:

Schema::dropIfExists('contacts');

Modifying columns
To modify a column, just write the code you would write to create the column as if it
were new, and then append a call to the change() method after it.

Required Dependency Before Modifying Columns

Before you modify any columns (or drop any columns in SQLite),
you’ll need to run composer require doctrine/dbal.

94 | Chapter 5: Databases and Eloquent

So, if we have a string column named name that has a length of 255 and we want to
change its length to 100, this is how we would write it:

Schema::table('users', function (Blueprint $table) {
 $table->string('name', 100)->change();
});

The same is true if we want to adjust any of its properties that aren’t defined in the
method name. To make a field nullable, we do this:

Schema::table('contacts', function (Blueprint $table) {
 $table->string('deleted_at')->nullable()->change();
});

Here’s how we rename a column:

Schema::table('contacts', function (Blueprint $table)
{
 $table->renameColumn('promoted', 'is_promoted');
});

And this is how we drop a column:

Schema::table('contacts', function (Blueprint $table)
{
 $table->dropColumn('votes');
});

Modifying Multiple Columns at Once in SQLite

If you try to drop or modify multiple columns within a single
migration closure and you are using SQLite, you’ll run into errors.
In Chapter 12 I recommend that you use SQLite for your testing
database, so even if you’re using a more traditional database, you
may want to consider this a limitation for testing purposes.
However, you don’t have to create a new migration for each.
Instead, just create multiple calls to Schema::table() within the
up() method of your migration:

public function up()
{
 Schema::table('contacts', function (Blueprint $table)
 {
 $table->dropColumn('is_promoted');
 });

 Schema::table('contacts', function (Blueprint $table)
 {
 $table->dropColumn('alternate_email');
 });
}

Configuration | 95

Indexes and foreign keys
We’ve covered how to create, modify, and delete columns. Let’s move on to indexing
and relating them.

If you’re not familiar with indexes, your databases can survive if you just never use
them, but they’re pretty important for performance optimization and for some data
integrity controls with regard to related tables. I’d recommend reading up on them,
but if you absolutely must, you can skip this section for now.

Adding indexes. Check out Example 5-3 for examples of how to add indexes to your
column.

Example 5-3. Adding column indexes in migrations

// After columns are created...
$table->primary('primary_id'); // Primary key; unnecessary if used increments()
$table->primary(['first_name', 'last_name']); // Composite keys
$table->unique('email'); // Unique index
$table->unique('email', 'optional_custom_index_name'); // Unique index
$table->index('amount'); // Basic index
$table->index('amount', 'optional_custom_index_name'); // Basic index

Note that the first example, primary(), is not necessary if you’re using the
increments() or bigIncrements() methods to create your index; this will automati‐
cally add a primary key index for you.

Removing indexes. We can remove indexes as shown in Example 5-4.

Example 5-4. Removing column indexes in migrations

$table->dropPrimary('contacts_id_primary');
$table->dropUnique('contacts_email_unique');
$table->dropIndex('optional_custom_index_name');

// If you pass an array of column names to dropIndex, it will
// guess the index names for you based on the generation rules
$table->dropIndex(['email', 'amount']);

Adding and removing foreign keys. To add a foreign key that defines that a particular
column references a column on another table, Laravel’s syntax is simple and clear:

$table->foreign('user_id')->references('id')->on('users');

Here we’re adding a foreign index on the user_id column, showing that it references
the id column on the users table. Couldn’t get much simpler.

96 | Chapter 5: Databases and Eloquent

If we want to specify foreign key constraints, we can do that too, with onDelete()
and onUpdate(). For example:

$table->foreign('user_id')
 ->references('id')
 ->on('users')
 ->onDelete('cascade');

To drop a foreign key, we can either delete it by referencing its index name (which is
automatically generated by combining the names of the columns and tables being ref‐
erenced):

$table->dropForeign('contacts_user_id_foreign');

or by passing it an array of the fields that it’s referencing in the local table:

$table->dropForeign(['user_id']);

Running Migrations
Once you have your migrations defined, how do you run them? There’s an Artisan
command for that:

php artisan migrate

This command runs all “outstanding” migrations (by running the up() method on
each). Laravel keeps track of which migrations you have run and which you haven’t.
Every time you run this command, it checks whether you’ve run all available migra‐
tions, and if you haven’t, it’ll run any that remain.

There are a few options in this namespace that you can work with. First, you can run
your migrations and your seeds (which we’ll cover next):

php artisan migrate --seed

You can also run any of the following commands:

migrate:install

Creates the database table that keeps track of which migrations you have and
haven’t run; this is run automatically when you run your migrations, so you can
basically ignore it.

migrate:reset

Rolls back every database migration you’ve run on this instance.

migrate:refresh

Rolls back every database migration you’ve run on this instance, and then runs
every migration available. It’s the same as running migrate:reset and then
migrate, one after the other.

Configuration | 97

migrate:fresh

Drops all of your tables and runs every migration again. It’s the same as refresh
but doesn’t bother with the “down” migrations—it just deletes the tables and then
runs the “up” migrations again.

migrate:rollback

Rolls back just the migrations that ran the last time you ran migrate, or, with the
added option --step=n, rolls back the number of migrations you specify.

migrate:status

Shows a table listing every migration, with a Y or N next to each showing whether
or not it has run yet in this environment.

Migrating with Homestead/Vagrant

If you’re running migrations on your local machine and your .env
file points to a database in a Vagrant box, your migrations will fail.
You’ll need to ssh into your Vagrant box and then run the migra‐
tions from there. The same is true for seeds and any other Artisan
commands that affect or read from the database.

Seeding
Seeding with Laravel is so simple, it has gained widespread adoption as a part of nor‐
mal development workflows in a way it hasn’t in previous PHP frameworks. There’s a
database/seeds folder that comes with a DatabaseSeeder class, which has a run()
method that is called when you call the seeder.

There are two primary ways to run the seeders: along with a migration, or separately.

To run a seeder along with a migration, just add --seed to any migration call:

php artisan migrate --seed
php artisan migrate:refresh --seed

And to run it independently:

php artisan db:seed
php artisan db:seed --class=VotesTableSeeder

This will call the run() method of the DatabaseSeeder by default, or the seeder class
specified by --class.

Creating a Seeder
To create a seeder, use the make:seeder Artisan command:

php artisan make:seeder ContactsTableSeeder

98 | Chapter 5: Databases and Eloquent

You’ll now see a ContactsTableSeeder class show up in the database/seeds directory.
Before we edit it, let’s add it to the DatabaseSeeder class, as shown in Example 5-5, so
it will run when we run our seeders.

Example 5-5. Calling a custom seeder from DatabaseSeeder.php

// database/seeds/DatabaseSeeder.php
...
 public function run()
 {
 $this->call(ContactsTableSeeder::class);
 }

Now let’s edit the seeder itself. The simplest thing we can do there is manually insert a
record using the DB facade, as illustrated in Example 5-6.

Example 5-6. Inserting database records in a custom seeder

<?php

use Illuminate\Database\Seeder;
use Illuminate\Database\Eloquent\Model;

class ContactsTableSeeder extends Seeder
{
 public function run()
 {
 DB::table('contacts')->insert([
 'name' => 'Lupita Smith',
 'email' => 'lupita@gmail.com',
]);
 }
}

This will get us a single record, which is a good start. But for truly functional seeds,
you’ll likely want to loop over some sort of random generator and run this insert()
many times, right? Laravel has a feature for that.

Model Factories
Model factories define one (or more) patterns for creating fake entries for your data‐
base tables. By default each factory is named after an Eloquent class, but you can also
just name them after the table if you’re not going to work with Eloquent. Example 5-7
shows the same factory set up both ways.

Seeding | 99

Example 5-7. Defining model factories with Eloquent class and table name keys

$factory->define(User::class, function (Faker\Generator $faker) {
 return [
 'name' => $faker->name,
];
});

$factory->define('users', function (Faker\Generator $faker) {
 return [
 'name' => $faker->name,
];
});

Theoretically you can name these factories anything you like, but naming the factory
after your Eloquent class is the most idiomatic approach.

Creating a model factory
Model factories are located in database/factories. In Laravel 5.5 and later each factory
is usually defined in its own class, with a key (name) and a closure defining how to
create a new instance of the defined class. The $factory->define() method takes the
factory name as the first parameter and a closure that’s run for each generation as the
second parameter.

The Model Factory File in Laravel 5.4 and Earlier

In Laravel prior to 5.5, all factories should be defined in database/
factories/ModelFactory.php. There are no separate classes for each
factory until 5.5.

To generate a new factory class, use the Artisan make:factory command; just like
with naming the factory keys, it’s also most common to name factory classes after the
Eloquent models they’re meant to generate instances of:

php artisan make:factory ContactFactory

This will generate a new file within the database/factories directory called ContactFac‐
tory.php. The simplest factory we could define for a contact might look something
like Example 5-8:

Example 5-8. The simplest possible factory definition

$factory->define(Contact::class, function (Faker\Generator $faker) {
 return [
 'name' => 'Lupita Smith',
 'email' => 'lupita@gmail.com',

100 | Chapter 5: Databases and Eloquent

];
});

Now we can use the factory() global helper to create an instance of Contact in our
seeding and testing:

// Create one
$contact = factory(Contact::class)->create();

// Create many
factory(Contact::class, 20)->create();

However, if we used that factory to create 20 contacts, all 20 would have the same
information. That’s less useful.

We will get even more benefit from model factories when we take advantage of the
instance of Faker that’s passed into the closure; Faker makes it easy to randomize the
creation of structured fake data. The previous example now turns into Example 5-9.

Example 5-9. A simple factory, modified to use Faker

$factory->define(Contact::class, function (Faker\Generator $faker) {
 return [
 'name' => $faker->name,
 'email' => $faker->email,
];
});

Now, every time we create a fake contact using this model factory, all of our proper‐
ties will be randomly generated.

Guaranteeing the Uniqueness of Randomly Generated Data

If you want to guarantee that the randomly generated values of any
given entry are unique compared to the other randomly generated
values during that PHP process, you can use Faker’s unique()
method:

return ['email' => $faker->unique()->email];

Using a model factory
There are two primary contexts in which we’ll use model factories: testing, which
we’ll cover in Chapter 12, and seeding, which we’ll cover here. Let’s write a seeder
using a model factory; take a look at Example 5-10.

Seeding | 101

http://bit.ly/2FtyJRr

Example 5-10. Using model factories

factory(Post::class)->create([
 'title' => 'My greatest post ever',
]);

// Pro-level factory; but don't get overwhelmed!
factory(User::class, 20)->create()->each(function ($u) use ($post) {
 $post->comments()->save(factory(Comment::class)->make([
 'user_id' => $u->id,
]));
});

To create an object, we use the factory() global helper and pass it the name of the
factory—which, as we just saw, is the name of the Eloquent class we’re generating an
instance of. That returns the factory, and then we can run one of two methods on it:
make() or create().

Both methods generate an instance of this specified model, using the definition in the
factory file. The difference is that make() creates the instance but doesn’t (yet) save it
to the database, whereas create() saves it to the database instantly. You can see both
in use in the two examples in Example 5-10.

The second example will make more sense once we cover relationships in Eloquent
later in this chapter.

Overriding properties when calling a model factory. If you pass an array to either make()
or create(), you can override specific keys from the factory, like we did in
Example 5-10 to set the user_id on the comment and to manually set the title of our
post.

Generating more than one instance with a model factory. If you pass a number as the sec‐
ond parameter to the factory() helper, you can specify that you’re creating more
than one instance. Instead of returning a single instance, it’ll return a collection of
instances. This means you can treat the result like an array, you can associate each of
its instances with another entity, or you can use other entity methods on each
instance—like we used each() in Example 5-10 to add a comment from each newly
created user.

Pro-level model factories
Now that we’ve covered the most common uses for and arrangements of model facto‐
ries, let’s dive into some of the more complicated ways we can use them.

102 | Chapter 5: Databases and Eloquent

Attaching relationships when defining model factories. Sometimes you need to create a
related item along with the item you’re creating. You can use a closure on that prop‐
erty to create a related item and pull its ID, as shown in Example 5-11.

Example 5-11. Creating a related term item in a seeder

$factory->define(Contact::class, function (Faker\Generator $faker) {
 return [
 'name' => 'Lupita Smith',
 'email' => 'lupita@gmail.com',
 'company_id' => function () {
 return factory(App\Company::class)->create()->id;
 },
];
});

Each closure is passed a single parameter, which contains the array form of the gener‐
ated item up until that point. This can be used in other ways, as demonstrated in
Example 5-12.

Example 5-12. Using values from other parameters in a seeder

$factory->define(Contact::class, function (Faker\Generator $faker) {
 return [
 'name' => 'Lupita Smith',
 'email' => 'lupita@gmail.com',
 'company_id' => function () {
 return factory(App\Company::class)->create()->id;
 },
 'company_size' => function ($contact) {
 // Uses the "company_id" property generated above
 return App\Company::find($contact['company_id'])->size;
 },
];
});

Defining and accessing multiple model factory states. Let’s go back to ContactFactory.php
(from Example 5-8 and Example 5-9) for a second. We have a base Contact factory
defined:

$factory->define(Contact::class, function (Faker\Generator $faker) {
 return [
 'name' => $faker->name,
 'email' => $faker->email,
];
});

Seeding | 103

But sometimes you need more than one factory for a class of object. What if we need
to be able to add some contacts who are very important people (VIPs)? We can use
the state() method to define a second factory state for this, as seen in Example 5-13.
The first parameter to state() is still the name of the entity you’re generating, the
second is the name of your state, and the third is an array of any attributes you want
to specifically set for this state.

Example 5-13. Defining multiple factory states for the same model

$factory->define(Contact::class, function (Faker\Generator $faker) {
 return [
 'name' => $faker->name,
 'email' => $faker->email,
];
});

$factory->state(Contact::class, 'vip', [
 'vip' => true,
]);

If the modified attributes require more than a simple static value, you can pass a clo‐
sure instead of an array as the second parameter and then return an array of the
attributes you want to modify, like in Example 5-14.

Example 5-14. Specifying a factory state with a closure

$factory->state(Contact::class, 'vip', function (Faker\Generator $faker) {
 return [
 'vip' => true,
 'company' => $faker->company,
];
});

Now, let’s make an instance of a specific state:

$vip = factory(Contact::class, 'vip')->create();

$vips = factory(Contact::class, 'vip', 3)->create();

Factory States Prior to Laravel 5.3

In projects running versions of Laravel prior to 5.3, factory states
were called factory types, and you’ll want to use $factory-
>defineAs() instead of $factory->state(). You can learn more
about this in the 5.2 docs.

104 | Chapter 5: Databases and Eloquent

http://bit.ly/2Fmnaew

Whew. That was a lot. Don’t worry if that was tough to follow—the last bit was defi‐
nitely higher-level stuff. Let’s get back down to the basics and talk about the core of
Laravel’s database tooling: the query builder.

Query Builder
Now that you’re connected and you’ve migrated and seeded your tables, let’s get
started with how to use the database tools. At the core of every piece of Laravel’s
database functionality is the query builder, a fluent interface for interacting with sev‐
eral different types of databases with a single clear API.

What Is a Fluent Interface?
A fluent interface is one that primarily uses method chaining to provide a simpler
API to the end user. Rather than expecting all of the relevant data to be passed into
either a constructor or a method call, fluent call chains can be built gradually, with
consecutive calls. Consider this comparison:

// Non-fluent:
$users = DB::select(['table' => 'users', 'where' => ['type' => 'donor']]);

// Fluent:
$users = DB::table('users')->where('type', 'donor')->get();

Laravel’s database architecture can connect to MySQL, Postgres, SQLite, and SQL
Server through a single interface, with just the change of a few configuration settings.

If you’ve ever used a PHP framework, you’ve likely used a tool that allows you to run
“raw” SQL queries with basic escaping for security. The query builder is that, with a
lot of convenience layers and helpers on top. So, let’s start with some simple calls.

Basic Usage of the DB Facade
Before we get into building complex queries with fluent method chaining, let’s take a
look at a few sample query builder commands. The DB facade is used both for query
builder chaining and for simpler raw queries, as illustrated in Example 5-15.

Example 5-15. Sample raw SQL and query builder usage

// Basic statement
DB::statement('drop table users');

// Raw select, and parameter binding
DB::select('select * from contacts where validated = ?', [true]);

Query Builder | 105

// Select using the fluent builder
$users = DB::table('users')->get();

// Joins and other complex calls
DB::table('users')
 ->join('contacts', function ($join) {
 $join->on('users.id', '=', 'contacts.user_id')
 ->where('contacts.type', 'donor');
 })
 ->get();

Raw SQL
As you saw in Example 5-15, it’s possible to make any raw call to the database using
the DB facade and the statement() method: DB::statement('SQL statement

here').

But there are also specific methods for various common actions: select(), insert(),
update(), and delete(). These are still raw calls, but there are differences. First,
using update() and delete() will return the number of rows affected, whereas
statement() won’t; second, with these methods it’s clearer to future developers
exactly what sort of statement you’re making.

Raw selects

The simplest of the specific DB methods is select(). You can run it without any addi‐
tional parameters:

$users = DB::select('select * from users');

This will return a collection of stdClass objects.

Illuminate Collections
Prior to Laravel 5.3, the DB facade returned a stdClass object for methods that
return only one row (like first()) and an array for any that return multiple rows

(like all()). In Laravel 5.3+, the DB facade, like Eloquent, returns a collection for any
method that returns (or can return) multiple rows. The DB facade returns an instance
of Illuminate\Support\Collection and Eloquent returns an instance of Illuminate
\Database\Eloquent\Collection, which extends Illuminate\Support\Collection
with a few Eloquent-specific methods.

Collection is like a PHP array with superpowers, allowing you to run map(),
filter(), reduce(), each(), and much more on your data. You can learn more about
collections in Chapter 17.

106 | Chapter 5: Databases and Eloquent

Parameter bindings and named bindings
Laravel’s database architecture allows for the use of PDO parameter binding, which
protects your queries from potential SQL attacks. Passing a parameter to a statement
is as simple as replacing the value in your statement with a ?, then adding the value to
the second parameter of your call:

$usersOfType = DB::select(
 'select * from users where type = ?',
 [$type]
);

You can also name those parameters for clarity:

$usersOfType = DB::select(
 'select * from users where type = :type',
 ['type' => $userType]
);

Raw inserts
From here, the raw commands all look pretty much the same. Raw inserts look like
this:

DB::insert(
 'insert into contacts (name, email) values (?, ?)',
 ['sally', 'sally@me.com']
);

Raw updates
Updates look like this:

$countUpdated = DB::update(
 'update contacts set status = ? where id = ?',
 ['donor', $id]
);

Raw deletes
And deletes look like this:

$countDeleted = DB::delete(
 'delete from contacts where archived = ?',
 [true]
);

Chaining with the Query Builder
Up until now, we haven’t actually used the query builder, per se. We’ve just used sim‐
ple method calls on the DB facade. Let’s actually build some queries.

Query Builder | 107

The query builder makes it possible to chain methods together to, you guessed it,
build a query. At the end of your chain you’ll use some method—likely get()—to
trigger the actual execution of the query you’ve just built.

Let’s take a look at a quick example:

$usersOfType = DB::table('users')
 ->where('type', $type)
 ->get();

Here, we built our query—users table, $type type—and then we executed the query
and got our result.

Let’s take a look at what methods the query builder allows you to chain. The methods
can be split up into what I’ll call constraining methods, modifying methods, condi‐
tional methods, and ending/returning methods.

Constraining methods
These methods take the query as it is and constrain it to return a smaller subset of
possible data:

select()

Allows you to choose which columns you’re selecting:

$emails = DB::table('contacts')
 ->select('email', 'email2 as second_email')
 ->get();
// Or
$emails = DB::table('contacts')
 ->select('email')
 ->addSelect('email2 as second_email')
 ->get();

where()

Allows you to limit the scope of what’s being returned using WHERE. By default,
the signature of the where() method is that it takes three parameters—the col‐
umn, the comparison operator, and the value:

$newContacts = DB::table('contact')
 ->where('created_at', '>', now()->subDay())
 ->get();

However, if your comparison is =, which is the most common comparison, you
can drop the second operator:

$vipContacts = DB::table('contacts')->where('vip',true)->get();

If you want to combine where() statements, you can either chain them after each
other, or pass an array of arrays:

108 | Chapter 5: Databases and Eloquent

$newVips = DB::table('contacts')
 ->where('vip', true)
 ->where('created_at', '>', now()->subDay());
// Or
$newVips = DB::table('contacts')->where([
 ['vip', true],
 ['created_at', '>', now()->subDay()],
]);

orWhere()

Creates simple OR WHERE statements:

$priorityContacts = DB::table('contacts')
 ->where('vip', true)
 ->orWhere('created_at', '>', now()->subDay())
 ->get();

To create a more complex OR WHERE statement with multiple conditions, pass
orWhere() a closure:

$contacts = DB::table('contacts')
 ->where('vip', true)
 ->orWhere(function ($query) {
 $query->where('created_at', '>', now()->subDay())
 ->where('trial', false);
 })
 ->get();

Query Builder | 109

Potential Confusion with Multiple where() and orWhere() Calls

If you are using orWhere() calls in conjunction with multiple
where() calls, you need to be very careful to ensure the query is
doing what you think it is. This isn’t because of any fault with Lara‐
vel, but because a query like the following might not do what
you expect:

$canEdit = DB::table('users')
 ->where('admin', true)
 ->orWhere('plan', 'premium')
 ->where('is_plan_owner', true)
 ->get();

SELECT * FROM users
 WHERE admin = 1
 OR plan = 'premium'
 AND is_plan_owner = 1;

If you want to write SQL that says “if this OR (this and this),” which
is clearly the intention in the previous example, you’ll want to pass
a closure into the orWhere() call:

$canEdit = DB::table('users')
 ->where('admin', true)
 ->orWhere(function ($query) {
 $query->where('plan', 'premium')
 ->where('is_plan_owner', true);
 })
 ->get();

SELECT * FROM users
 WHERE admin = 1
 OR (plan = 'premium' AND is_plan_owner = 1);

whereBetween(colName, [low, high])

Allows you to scope a query to return only rows where a column is between two
values (inclusive of the two values):

$mediumDrinks = DB::table('drinks')
 ->whereBetween('size', [6, 12])
 ->get();

The same works for whereNotBetween(), but it will select the inverse.

whereIn(colName, [1, 2, 3])

Allows you to scope a query to return only rows where a column value is in an
explicitly provided list of options:

$closeBy = DB::table('contacts')
 ->whereIn('state', ['FL', 'GA', 'AL'])
 ->get();

The same works for whereNotIn(), but it will select the inverse.

110 | Chapter 5: Databases and Eloquent

whereNull(colName) and whereNotNull(colName)
Allow you to select only rows where a given column is NULL or is NOT NULL,
respectively.

whereRaw()

Allows you to pass in a raw, unescaped string to be added after the WHERE state‐
ment:

$goofs = DB::table('contacts')->whereRaw('id = 12345')->get()

Beware of SQL Injection!

Any SQL queries passed to whereRaw() will not be escaped. Use
this method carefully and infrequently; this is a prime opportunity
for SQL injection attacks in your app.

whereExists()

Allows you to select only rows that, when passed into a provided subquery,
return at least one row. Imagine you only want to get those users who have left at
least one comment:

$commenters = DB::table('users')
 ->whereExists(function ($query) {
 $query->select('id')
 ->from('comments')
 ->whereRaw('comments.user_id = users.id');
 })
 ->get();

distinct()

Selects only rows where the selected data is unique when compared to the other
rows in the returned data. Usually this is paired with select(), because if you
use a primary key, there will be no duplicated rows:

$lastNames = DB::table('contacts')->select('city')->distinct()->get();

Modifying methods
These methods change the way the query’s results will be output, rather than just lim‐
iting its results:

orderBy(colName, direction)

Orders the results. The second parameter may be either asc (the default, ascend‐
ing order) or desc (descending order):

$contacts = DB::table('contacts')
 ->orderBy('last_name', 'asc')
 ->get();

Query Builder | 111

groupBy() and having() or havingRaw()
Groups your results by a column. Optionally, having() and havingRaw() allow
you to filter your results based on properties of the groups. For example, you
could look for only cities with at least 30 people in them:

$populousCities = DB::table('contacts')
 ->groupBy('city')
 ->havingRaw('count(contact_id) > 30')
 ->get();

skip() and take()
Most often used for pagination, these allow you to define how many rows to
return and how many to skip before starting the return—like a page number and
a page size in a pagination system:

// returns rows 31-40
$page4 = DB::table('contacts')->skip(30)->take(10)->get();

latest(colName) and oldest(colName)
Sort by the passed column (or created_at if no column name is passed) in
descending (latest()) or ascending (oldest()) order.

inRandomOrder()

Sorts the result randomly.

Conditional methods
There are two methods, available in Laravel 5.2 and later, that allow you to condition‐
ally apply their “contents” (a closure you pass to them) based on the Boolean state of a
value you pass in:

when()

Given a truthy first parameter, applies the query modification contained in the
closure; given a falsy first parameter, it does nothing. Note that the first parame‐
ter could be a Boolean (e.g., $ignoreDrafts, set to true or false), an optional
value ($status, pulled from user input and defaulting to null), or a closure that
returns either; what matters is that it evaluates to truthy or falsy. For example:

$status = request('status'); // Defaults to null if not set

$posts = DB::table('posts')
 ->when($status, function ($query) use ($status) {
 return $query->where('status', $status);
 })
 ->get();

// Or
$posts = DB::table('posts')

112 | Chapter 5: Databases and Eloquent

 ->when($ignoreDrafts, function ($query) {
 return $query->where('draft', false);
 })
 ->get();

You can also pass a third parameter, another closure, which will only be applied if
the first parameter is falsy.

unless()

The exact inverse of when(). If the first parameter is falsy, it will run the second
closure.

Ending/returning methods
These methods stop the query chain and trigger the execution of the SQL query.
Without one of these at the end of the query chain, your return will always just be an
instance of the query builder; chain one of these onto a query builder and you’ll
actually get a result:

get()

Gets all results for the built query:

$contacts = DB::table('contacts')->get();
$vipContacts = DB::table('contacts')->where('vip', true)->get();

first() and firstOrFail()
Get only the first result—like get(), but with a LIMIT 1 added:

$newestContact = DB::table('contacts')
 ->orderBy('created_at', 'desc')
 ->first();

first() fails silently if there are no results, whereas firstOrFail() will throw an
exception.

If you pass an array of column names to either method, it will return the data for
just those columns instead of all columns.

find(id) and findOrFail(id)
Like first(), but you pass in an ID value that corresponds to the primary key to
look up. find() fails silently if a row with that ID doesn’t exist, while
findOrFail() will throw an exception:

$contactFive = DB::table('contacts')->find(5);

value()

Plucks just the value from a single field from the first row. Like first(), but if
you only want a single column:

Query Builder | 113

$newestContactEmail = DB::table('contacts')
 ->orderBy('created_at', 'desc')
 ->value('email');

count()

Returns an integer count of all of the matching results:

$countVips = DB::table('contacts')
 ->where('vip', true)
 ->count();

min() and max()
Return the minimum or maximum value of a particular column:

$highestCost = DB::table('orders')->max('amount');

sum() and avg()
Return the sum or average of all of the values in a particular column:

$averageCost = DB::table('orders')
 ->where('status', 'completed')
 ->avg('amount');

Writing raw queries inside query builder methods with DB::raw
You’ve already seen a few custom methods for raw statements—for example,
select() has a selectRaw() counterpart that allows you to pass in a string for the
query builder to place after the WHERE statement.

You can also, however, pass in the result of a DB::raw() call to almost any method in
the query builder to achieve the same result:

$contacts = DB::table('contacts')
 ->select(DB::raw('*, (score * 100) AS integer_score'))
 ->get();

Joins
Joins can sometimes be a pain to define, and there’s only so much a framework can do
to make them simpler, but the query builder does its best. Let’s look at a sample:

$users = DB::table('users')
 ->join('contacts', 'users.id', '=', 'contacts.user_id')
 ->select('users.*', 'contacts.name', 'contacts.status')
 ->get();

The join() method creates an inner join. You can also chain together multiple joins
one after another, or use leftJoin() to get a left join.

Finally, you can create more complex joins by passing a closure into the join()
method:

114 | Chapter 5: Databases and Eloquent

DB::table('users')
 ->join('contacts', function ($join) {
 $join
 ->on('users.id', '=', 'contacts.user_id')
 ->orOn('users.id', '=', 'contacts.proxy_user_id');
 })
 ->get();

Unions
You can union two queries (join their results together into one result set) by creating
them first and then using the union() or unionAll() method:

$first = DB::table('contacts')
 ->whereNull('first_name');

$contacts = DB::table('contacts')
 ->whereNull('last_name')
 ->union($first)
 ->get();

Inserts

The insert() method is pretty simple. Pass it an array to insert a single row or an
array of arrays to insert multiple rows, and use insertGetId() instead of insert() to
get the autoincrementing primary key ID back as a return:

$id = DB::table('contacts')->insertGetId([
 'name' => 'Abe Thomas',
 'email' => 'athomas1987@gmail.com',
]);

DB::table('contacts')->insert([
 ['name' => 'Tamika Johnson', 'email' => 'tamikaj@gmail.com'],
 ['name' => 'Jim Patterson', 'email' => 'james.patterson@hotmail.com'],
]);

Updates

Updates are also simple. Create your update query and, instead of get() or first(),
just use update() and pass it an array of parameters:

DB::table('contacts')
 ->where('points', '>', 100)
 ->update(['status' => 'vip']);

You can also quickly increment and decrement columns using the increment() and
decrement() methods. The first parameter of each is the column name, and the sec‐
ond (optional) is the number to increment/decrement by:

DB::table('contacts')->increment('tokens', 5);
DB::table('contacts')->decrement('tokens');

Query Builder | 115

Deletes

Deletes are even simpler. Build your query and then end it with delete():

DB::table('users')
 ->where('last_login', '<', now()->subYear())
 ->delete();

You can also truncate the table, which deletes every row and also resets the autoincre‐
menting ID:

DB::table('contacts')->truncate();

JSON operations
If you have JSON columns, you can update or select rows based on aspects of the
JSON structure by using the arrow syntax to traverse children:

// Select all records where the "isAdmin" property of the "options"
// JSON column is set to true
DB::table('users')->where('options->isAdmin', true)->get();

// Update all records, setting the "verified" property
// of the "options" JSON column to true
DB::table('users')->update(['options->isVerified', true]);

This is a new feature since Laravel 5.3.

Transactions
If you’re not familiar with database transactions, they’re a tool that allows you to wrap
up a series of database queries to be performed in a batch, which you can choose to
roll back, undoing the entire series of queries. Transactions are often used to ensure
that all or none, but not some, of a series of related queries are performed—if one
fails, the ORM will roll back the entire series of queries.

With the Laravel query builder’s transaction feature, if any exceptions are thrown at
any point within the transaction closure, all the queries in the transaction will be rol‐
led back. If the transaction closure finishes successfully, all the queries will be com‐
mitted and not rolled back.

Let’s take a look at the sample transaction in Example 5-16.

Example 5-16. A simple database transaction

DB::transaction(function () use ($userId, $numVotes) {
 // Possibly failing DB query
 DB::table('users')
 ->where('id', $userId)
 ->update(['votes' => $numVotes]);

116 | Chapter 5: Databases and Eloquent

 // Caching query that we don't want to run if the above query fails
 DB::table('votes')
 ->where('user_id', $userId)
 ->delete();
});

In this example, we can assume we had some previous process that summarized the
number of votes from the votes table for a given user. We want to cache that number
in the users table and then wipe those votes from the votes table. But, of course, we
don’t want to wipe the votes until the update to the users table has run successfully.
And we don’t want to keep the updated number of votes in the users table if the
votes table deletion fails.

If anything goes wrong with either query, the other won’t be applied. That’s the magic
of database transactions.

Note that you can also manually begin and end transactions—and this applies
both for query builder queries and for Eloquent queries. Start with
DB::beginTransaction(), end with DB::commit(), and abort with DB::rollBack():

DB::beginTransaction();

// Take database actions

if ($badThingsHappened {
 DB::rollBack();
}

// Take other database actions

DB::commit();

Introduction to Eloquent
Now that we’ve covered the query builder, let’s talk about Eloquent, Laravel’s flagship
database tool that’s built on the query builder.

Eloquent is an ActiveRecord ORM, which means it’s a database abstraction layer that
provides a single interface to interact with multiple database types. “ActiveRecord”
means that a single Eloquent class is responsible for not only providing the ability to
interact with the table as a whole (e.g., User::all() gets all users), but also represent‐
ing an individual table row (e.g., $sharon = new User). Additionally, each instance is
capable of managing its own persistence; you can call $sharon->save() or
$sharon->delete().

Eloquent has a primary focus on simplicity, and like the rest of the framework, it
relies on “convention over configuration” to allow you to build powerful models with
minimal code.

Introduction to Eloquent | 117

For example, you can perform all of the operations in Example 5-18 with the model
defined in Example 5-17.

Example 5-17. The simplest Eloquent model

<?php

use Illuminate\Database\Eloquent\Model;

class Contact extends Model {}

Example 5-18. Operations achievable with the simplest Eloquent model

// In a controller
public function save(Request $request)
{
 // Create and save a new contact from user input
 $contact = new Contact();
 $contact->first_name = $request->input('first_name');
 $contact->last_name = $request->input('last_name');
 $conatct->email = $request->input('email');
 $contact->save();

 return redirect('contacts');
}

public function show($contactId)
{
 // Return a JSON representation of a contact based on a URL segment;
 // if the contact doesn't exist, throw an exception
 return Contact::findOrFail($contactId);
}

public function vips()
{
 // Unnecessarily complex example, but still possible with basic Eloquent
 // class; adds a "formalName" property to every VIP entry
 return Contact::where('vip', true)->get()->map(function ($contact) {
 $contact->formalName = "The exalted {$contact->first_name} of the
 {$contact->last_name}s";

 return $contact;
 });
}

How? Convention. Eloquent assumes the table name (Contact becomes contacts),
and with that you have a fully functional Eloquent model.

Let’s cover how we work with Eloquent models.

118 | Chapter 5: Databases and Eloquent

Creating and Defining Eloquent Models
First, let’s create a model. There’s an Artisan command for that:

php artisan make:model Contact

This is what we’ll get, in app/Contact.php:

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

class Contact extends Model
{
 //
}

Creating a Migration Along with Your Model

If you want to automatically create a migration when you create
your model, pass the -m or --migration flag:

php artisan make:model Contact --migration

Table name
The default behavior for table names is that Laravel “snake cases” and pluralizes your
class name, so SecondaryContact would access a table named secondary_contacts.
If you’d like to customize the name, set the $table property explicitly on the model:

 protected $table = 'contacts_secondary';

Primary key
Laravel assumes, by default, that each table will have an autoincrementing integer pri‐
mary key, and it will be named id.

If you want to change the name of your primary key, change the $primaryKey prop‐
erty:

 protected $primaryKey = 'contact_id';

And if you want to set it to be nonincrementing, use:

 public $incrementing = false;

Introduction to Eloquent | 119

Timestamps

Eloquent expects every table to have created_at and updated_at timestamp col‐
umns. If your table won’t have them, disable the $timestamps functionality:

 public $timestamps = false;

You can customize the format Eloquent uses to store your timestamps to the database
by setting the $dateFormat class property to a custom string. The string will be
parsed using PHP’s date() syntax, so the following example will store the date as sec‐
onds since the Unix epoch:

 protected $dateFormat = 'U';

Retrieving Data with Eloquent
Most of the time you pull data from your database with Eloquent, you’ll use static
calls on your Eloquent model.

Let’s start by getting everything:

$allContacts = Contact::all();

That was easy. Let’s filter it a bit:

$vipContacts = Contact::where('vip', true)->get();

We can see that the Eloquent facade gives us the ability to chain constraints, and
from there the constraints get very familiar:

$newestContacts = Contact::orderBy('created_at', 'desc')
 ->take(10)
 ->get();

It turns out that once you move past the initial facade name, you’re just working
with Laravel’s query builder. You can do a lot more—we’ll cover that soon—but
everything you can do with the query builder on the DB facade you can do on your
Eloquent objects.

Get one

Like we covered earlier in the chapter, you can use first() to return only the first
record from a query, or find() to pull just the record with the provided ID. For
either, if you append “OrFail” to the method name, it will throw an exception if there
are no matching results. This makes findOrFail() a common tool for looking up an
entity by a URL segment (or throwing an exception if a matching entity doesn’t exist),
like you can see in Example 5-19.

120 | Chapter 5: Databases and Eloquent

Example 5-19. Using an Eloquent OrFail() method in a controller method

// ContactController
public function show($contactId)
{
 return view('contacts.show')
 ->with('contact', Contact::findOrFail($contactId));
}

Any method intended to return a single record (first(), firstOrFail(), find(), or
findOrFail()) will return an instance of the Eloquent class. So, Contact::first()
will return an instance of the class Contact with the data from the first row in the
table filling it out.

Exceptions

As you can see in Example 5-19, we don’t need to catch Eloquent’s
model not found exception (Illuminate\Database\Eloquent
\ModelNotFoundException) in our controllers; Laravel’s routing
system will catch it and throw a 404 for us.
You could, of course, catch that particular exception and handle it,
if you’d like.

Get many

get() works with Eloquent just like it does in normal query builder calls—build a
query and call get() at the end to get the results:

$vipContacts = Contact::where('vip', true)->get();

However, there is an Eloquent-only method, all(), which you’ll often see people use
when they want to get an unfiltered list of all data in the table:

$contacts = Contact::all();

Using get() Instead of all()

Any time you can use all(), you could use get(). Contact::get()
has the same response as Contact::all(). However, the moment
you start modifying your query—adding a where() filter, for exam‐
ple—all() will no longer work, but get() will continue working.
So, even though all() is very common, I’d recommend using
get() for everything, and ignoring the fact that all() even exists.

The other thing that’s different about Eloquent’s get() method (versus all()) is that,
prior to Laravel 5.3, it returned an array of models instead of a collection. In 5.3 and
later, they both return collections.

Introduction to Eloquent | 121

Chunking responses with chunk()
If you’ve ever needed to process a large amount (thousands or more) of records at a
time, you may have run into memory or locking issues. Laravel makes it possible to
break your requests into smaller pieces (chunks) and process them in batches, keep‐
ing the memory load of your large request smaller. Example 5-20 illustrates the use of
chunk() to split a query into “chunks” of 100 records each.

Example 5-20. Chunking an Eloquent query to limit memory usage

Contact::chunk(100, function ($contacts) {
 foreach ($contacts as $contact) {
 // Do something with $contact
 }
});

Aggregates
The aggregates that are available on the query builder are available on Eloquent quer‐
ies as well. For example:

$countVips = Contact::where('vip', true)->count();
$sumVotes = Contact::sum('votes');
$averageSkill = User::avg('skill_level');

Inserts and Updates with Eloquent
Inserting and updating values is one of the places where Eloquent starts to diverge
from normal query builder syntax.

Inserts
There are two primary ways to insert a new record using Eloquent.

First, you can create a new instance of your Eloquent class, set your properties man‐
ually, and call save() on that instance, like in Example 5-21.

Example 5-21. Inserting an Eloquent record by creating a new instance

$contact = new Contact;
$contact->name = 'Ken Hirata';
$contact->email = 'ken@hirata.com';
$contact->save();

// or

$contact = new Contact([
 'name' => 'Ken Hirata',
 'email' => 'ken@hirata.com',

122 | Chapter 5: Databases and Eloquent

]);
$contact->save();

// or

$contact = Contact::make([
 'name' => 'Ken Hirata',
 'email' => 'ken@hirata.com',
]);
$contact->save();

Until you save(), this instance of Contact represents the contact fully—except it has
never been saved to the database. That means it doesn’t have an id, if the application
quits it won’t persist, and it doesn’t have its created_at and updated_at values set.

You can also pass an array to Model::create(), as shown in Example 5-22. Unlike
make(), create() saves the instance to the database as soon as it’s called.

Example 5-22. Inserting an Eloquent record by passing an array to create()

$contact = Contact::create([
 'name' => 'Keahi Hale',
 'email' => 'halek481@yahoo.com',
]);

Also be aware that in any context where you are passing an array (to new Model(),
Model::make(), Model::create(), or Model::update()), every property you set via
Model::create() has to be approved for “mass assignment,” which we’ll cover
shortly. This is not necessary with the first example in Example 5-21, where you
assign each property individually.

Note that if you’re using Model::create(), you don’t need to save() the instance—
that’s handled as a part of the model’s create() method.

Updates
Updating records looks very similar to inserting. You can get a specific instance,
change its properties, and then save, or you can make a single call and pass an array
of updated properties. Example 5-23 illustrates the first approach.

Example 5-23. Updating an Eloquent record by updating an instance and saving

$contact = Contact::find(1);
$contact->email = 'natalie@parkfamily.com';
$contact->save();

Introduction to Eloquent | 123

Since this record already exists, it will already have a created_at timestamp and an
id, which will stay the same, but the updated_at field will be changed to the current
date and time. Example 5-24 illustrates the second approach.

Example 5-24. Updating one or more Eloquent records by passing an array to the
update() method

Contact::where('created_at', '<', now()->subYear())
 ->update(['longevity' => 'ancient']);

// or

$contact = Contact::find(1);
$contact->update(['longevity' => 'ancient']);

This method expects an array where each key is the column name and each value is
the column value.

Mass assignment
We’ve looked at a few examples of how to pass arrays of values into Eloquent class
methods. However, none of these will actually work until you define which fields are
“fillable” on the model.

The goal of this is to protect you from (possibly malicious) user input accidentally
setting new values on fields you don’t want changed. Consider the common scenario
in Example 5-25.

Example 5-25. Updating an Eloquent model using the entirety of a request’s input

// ContactController
public function update(Contact $contact, Request $request)
{
 $contact->update($request->all());
}

If you’re not familiar with the Illuminate Request object, Example 5-25 will take
every piece of user input and pass it to the update() method. That all() method
includes things like URL parameters and form inputs, so a malicious user could easily
add some things in there, like id and owner_id, that you likely don’t want updated.

Thankfully, that won’t actually work until you define your model’s fillable fields. You
can either whitelist the fillable fields, or blacklist the “guarded” fields to determine
which fields can or cannot be edited via “mass assignment”—that is, by passing an
array of values into either create() or update(). Note that nonfillable properties can

124 | Chapter 5: Databases and Eloquent

still be changed by direct assignment (e.g., $contact->password = 'abc';).
Example 5-26 shows both approaches.

Example 5-26. Using Eloquent’s fillable or guarded properties to define mass-assignable
fields

class Contact
{
 protected $fillable = ['name', 'email'];

 // or

 protected $guarded = ['id', 'created_at', 'updated_at', 'owner_id'];
}

Using Request::only() with Eloquent Mass Assignment

In Example 5-25, we needed Eloquent’s mass assignment guard
because we were using the all() method on the Request object to
pass in the entirety of the user input.
Eloquent’s mass assignment protection is a great tool here, but
there’s also a helpful trick to keep you from accepting any old input
from the user.
The Request class has an only() method that allows you to pluck
only a few keys from the user input. So now you can do this:

Contact::create($request->only('name', 'email'));

firstOrCreate() and firstOrNew()
Sometimes you want to tell your application, “Get me an instance with these proper‐
ties, or if it doesn’t exist, create it.” This is where the firstOr*() methods come in.

The firstOrCreate() and firstOrNew() methods take an array of keys and values as
their first parameter:

$contact = Contact::firstOrCreate(['email' => 'luis.ramos@myacme.com']);

They’ll both look for and retrieve the first record matching those parameters, and if
there are no matching records, they’ll create an instance with those properties;
firstOrCreate() will persist that instance to the database and then return it, while
firstOrNew() will return it without saving it.

If you pass an array of values as the second parameter, those values will be added to
the created entry (if it’s created) but won’t be used to look up whether the entry exists.

Introduction to Eloquent | 125

Deleting with Eloquent
Deleting with Eloquent is very similar to updating with Eloquent, but with (optional)
soft deletes, you can archive your deleted items for later inspection or even recovery.

Normal deletes

The simplest way to delete a model record is to call the delete() method on the
instance itself:

$contact = Contact::find(5);
$contact->delete();

However, if you only have the ID, there’s no reason to look up an instance just to
delete it; you can pass an ID or an array of IDs to the model’s destroy() method to
delete them directly:

Contact::destroy(1);
// or
Contact::destroy([1, 5, 7]);

Finally, you can delete all of the results of a query:

Contact::where('updated_at', '<', now()->subYear())->delete();

Soft deletes
Soft deletes mark database rows as deleted without actually deleting them from the
database. This gives you the ability to inspect them later, to have records that show
more than “no information, deleted” when displaying historic information, and to
allow your users (or admins) to restore some or all data.

The hard part about handcoding an application with soft deletes is that every query
you ever write will need to exclude the soft-deleted data. Thankfully, if you use Elo‐
quent’s soft deletes, every query you ever make will be scoped to ignore soft deletes by
default, unless you explicitly ask to bring them back.

Eloquent’s soft delete functionality requires a deleted_at column to be added to the
table. Once you enable soft deletes on that Eloquent model, every query you ever
write (unless you explicitly include soft-deleted records) will be scoped to ignore soft-
deleted rows.

When Should I Use Soft Deletes?
Just because a feature exists, it doesn’t mean you should always use it. Many folks in
the Laravel community default to using soft deletes on every project just because the
feature is there. There are real costs to soft deletes, though. It’s pretty likely that, if you
view your database directly in a tool like Sequel Pro, you’ll forget to check the

126 | Chapter 5: Databases and Eloquent

deleted_at column at least once. And if you don’t clean up old soft-deleted records,
your databases will get larger and larger.

Here’s my recommendation: don’t use soft deletes by default. Instead, use them when
you need them, and when you do, clean out old soft deletes as aggressively as you can
using a tool like Quicksand. The soft delete feature is a powerful tool, but not worth
using unless you need it.

Enabling soft deletes. You enable soft deletes by doing three things: adding the
deleted_at column in a migration, importing the SoftDeletes trait in the model,
and adding the deleted_at column to your $dates property. There’s a
softDeletes() method available on the schema builder to add the deleted_at col‐
umn to a table, as you can see in Example 5-27. And Example 5-28 shows an Elo‐
quent model with soft deletes enabled.

Example 5-27. Migration to add the soft delete column to a table

Schema::table('contacts', function (Blueprint $table) {
 $table->softDeletes();
});

Example 5-28. An Eloquent model with soft deletes enabled

<?php

use Illuminate\Database\Eloquent\Model;
use Illuminate\Database\Eloquent\SoftDeletes;

class Contact extends Model
{
 use SoftDeletes; // use the trait

 protected $dates = ['deleted_at']; // mark this column as a date
}

Once you make these changes, every delete() and destroy() call will now set the
deleted_at column on your row to be the current date and time instead of deleting
that row. And all future queries will exclude that row as a result.

Querying with soft deletes. So, how do we get soft-deleted items?

First, you can add soft-deleted items to a query:

$allHistoricContacts = Contact::withTrashed()->get();

Introduction to Eloquent | 127

https://github.com/tightenco/quicksand

Next, you can use the trashed() method to see if a particular instance has been soft-
deleted:

if ($contact->trashed()) {
 // do something
}

Finally, you can get only soft-deleted items:

$deletedContacts = Contact::onlyTrashed()->get();

Restoring soft-deleted entities. If you want to restore a soft-deleted item, you can run
restore() on an instance or a query:

$contact->restore();

// or

Contact::onlyTrashed()->where('vip', true)->restore();

Force-deleting soft-deleted entities. You can delete a soft-deleted entity by calling
forceDelete() on an entity or query:

$contact->forceDelete();

// or

Contact::onlyTrashed()->forceDelete();

Scopes
We’ve covered “filtered” queries, meaning any query where we’re not just returning
every result for a table. But every time we’ve written them so far in this chapter, it’s
been a manual process using the query builder.

Local and global scopes in Eloquent allow you to define prebuilt “scopes” (filters) that
you can use either every time a model is queried (“global”) or every time you query it
with a particular method chain (“local”).

Local scopes
Local scopes are the simplest to understand. Let’s take this example:

$activeVips = Contact::where('vip', true)->where('trial', false)->get();

First of all, if we write this combination of query methods over and over, it will get
tedious. But additionally, the knowledge of how to define someone being an “active
VIP” is now spread around our application. We want to centralize that knowledge.
What if we could just write this?

$activeVips = Contact::activeVips()->get();

128 | Chapter 5: Databases and Eloquent

We can—it’s called a local scope. And it’s easy to define on the Contact class, as you
can see in Example 5-29.

Example 5-29. Defining a local scope on a model

class Contact
{
 public function scopeActiveVips($query)
 {
 return $query->where('vip', true)->where('trial', false);
 }

To define a local scope, we add a method to the Eloquent class that begins with
“scope” and then contains the title-cased version of the scope name. This method is
passed a query builder and needs to return a query builder, but of course you can
modify the query before returning—that’s the whole point.

You can also define scopes that accept parameters, as shown in Example 5-30.

Example 5-30. Passing parameters to scopes

class Contact
{
 public function scopeStatus($query, $status)
 {
 return $query->where('status', $status);
 }

And you use them in the same way, just passing the parameter to the scope:

$friends = Contact::status('friend')->get();

Global scopes
Remember how we talked about soft deletes only working if you scope every query on
the model to ignore the soft-deleted items? That’s a global scope. And we can define
our own global scopes, which will be applied on every query made from a given
model.

There are two ways to define a global scope: using a closure or using an entire class.
In each, you’ll register the defined scope in the model’s boot() method. Let’s start
with the closure method, illustrated in Example 5-31.

Example 5-31. Adding a global scope using a closure

...
class Contact extends Model
{

Introduction to Eloquent | 129

 protected static function boot()
 {
 parent::boot();

 static::addGlobalScope('active', function (Builder $builder) {
 $builder->where('active', true);
 });
 }

That’s it. We just added a global scope named active, and now every query on this
model will be scoped to only rows with active set to true.

Next, let’s try the longer way, as shown in Example 5-32. Create a class that imple‐
ments Illuminate\Database\Eloquent\Scope, which means it will have an apply()
method that takes an instance of a query builder and an instance of the model.

Example 5-32. Creating a global scope class

<?php

namespace App\Scopes;

use Illuminate\Database\Eloquent\Scope;
use Illuminate\Database\Eloquent\Model;
use Illuminate\Database\Eloquent\Builder;

class ActiveScope implements Scope
{
 public function apply(Builder $builder, Model $model)
 {
 return $builder->where('active', true);
 }
}

To apply this scope to a model, once again override the parent’s boot() method and
call addGlobalScope() on the class using static, as shown in Example 5-33.

Example 5-33. Applying a class-based global scope

<?php

use App\Scopes\ActiveScope;
use Illuminate\Database\Eloquent\Model;

class Contact extends Model
{
 protected static function boot()
 {
 parent::boot();

130 | Chapter 5: Databases and Eloquent

 static::addGlobalScope(new ActiveScope);
 }
}

Contact with No Namespace

You may have noticed that several of these examples have used the
class Contact, with no namespace. This is abnormal, and I’ve only
done this to save space in the book. Normally even your top-level
models would live at something like App\Contact.

Removing global scopes. There are three ways to remove a global scope, and all three
use the withoutGlobalScope() or withoutGlobalScopes() methods. If you’re
removing a closure-based scope, the first parameter of that scope’s addGlobalScope()
registration will be the key you used to enable it:

$allContacts = Contact::withoutGlobalScope('active')->get();

If you’re removing a single class-based global scope, you can pass the class name to
withoutGlobalScope() or withoutGlobalScopes():

Contact::withoutGlobalScope(ActiveScope::class)->get();

Contact::withoutGlobalScopes([ActiveScope::class, VipScope::class])->get();

Or, you can just disable all global scopes for a query:

Contact::withoutGlobalScopes()->get();

Customizing Field Interactions with Accessors, Mutators, and
Attribute Casting
Now that we’ve covered how to get records into and out of the database with Elo‐
quent, let’s talk about decorating and manipulating the individual attributes on your
Eloquent models.

Accessors, mutators, and attribute casting all allow you to customize the way individ‐
ual attributes of Eloquent instances are input or output. Without using any of these,
each attribute of your Eloquent instance is treated like a string, and you can’t have any
attributes on your models that don’t exist on the database. But we can change that.

Accessors
Accessors allow you to define custom attributes on your Eloquent models for when
you are reading data from the model instance. This may be because you want to
change how a particular column is output, or because you want to create a custom
attribute that doesn’t exist in the database table at all.

Introduction to Eloquent | 131

You define an accessor by writing a method on your model with the following struc‐
ture: get{PascalCasedPropertyName}Attribute. So, if your property name is
first_name, the accessor method would be named getFirstNameAttribute.

Let’s try it out. First, we’ll decorate a preexisting column (Example 5-34).

Example 5-34. Decorating a preexisting column using Eloquent accessors

// Model definition:
class Contact extends Model
{
 public function getNameAttribute($value)
 {
 return $value ?: '(No name provided)';
 }
}

// Accessor usage:
$name = $contact->name;

But we can also use accessors to define attributes that never existed in the database, as
seen in Example 5-35.

Example 5-35. Defining an attribute with no backing column using Eloquent accessors

// Model definition:
class Contact extends Model
{
 public function getFullNameAttribute()
 {
 return $this->first_name . ' ' . $this->last_name;
 }
}

// Accessor usage:
$fullName = $contact->full_name;

Mutators
Mutators work the same way as accessors, except they’re for determining how to pro‐
cess setting the data instead of getting it. Just like with accessors, you can use them to
modify the process of writing data to existing columns, or to allow for setting col‐
umns that don’t exist in the database.

You define a mutator by writing a method on your model with the following struc‐
ture: set{PascalCasedPropertyName}Attribute. So, if your property name is
first_name, the mutator method would be named setFirstNameAttribute.

132 | Chapter 5: Databases and Eloquent

Let’s try it out. First, we’ll add a constraint to updating a preexisting column
(Example 5-36).

Example 5-36. Decorating setting the value of an attribute using Eloquent mutators

// Defining the mutator
class Order extends Model
{
 public function setAmountAttribute($value)
 {
 $this->attributes['amount'] = $value > 0 ? $value : 0;
 }
}

// Using the mutator
$order->amount = '15';

This reveals that the way mutators are expected to “set” data on the model is by set‐
ting it in $this->attributes with the column name as the key.

Now let’s add a proxy column for setting, as shown in Example 5-37.

Example 5-37. Allowing for setting the value of a nonexistent attribute using Eloquent
mutators

// Defining the mutator
class Order extends Model
{
 public function setWorkgroupNameAttribute($workgroupName)
 {
 $this->attributes['email'] = "{$workgroupName}@ourcompany.com";
 }
}

// Using the mutator
$order->workgroup_name = 'jstott';

As you can probably guess, it’s relatively uncommon to create a mutator for a non-
existent column, because it can be confusing to set one property and have it change a
different column—but it is possible.

Attribute casting
You can probably imagine writing accessors to cast all of your integer-type fields as
integers, encode and decode JSON to store in a TEXT column, or convert TINYINT 0
and 1 to and from Boolean values.

Thankfully, there’s a system for that in Eloquent already. It’s called attribute casting,
and it allows you to define that any of your columns should always be treated, both

Introduction to Eloquent | 133

on read and on write, as if they are of a particular data type. The options are listed in
Table 5-1.

Table 5-1. Possible attribute casting column types

Type Description

int|integer Casts with PHP (int)

real|float|double Casts with PHP (float)

string Casts with PHP (string)

bool|boolean Casts with PHP (bool)

object Parses to/from JSON, as a stdClass object

array Parses to/from JSON, as an array

collection Parses to/from JSON, as a collection

date|datetime Parses from database DATETIME to Carbon, and back

timestamp Parses from database TIMESTAMP to Carbon, and back

Example 5-38 shows how you use attribute casting in your model.

Example 5-38. Using attribute casting on an Eloquent model

class Contact
{
 protected $casts = [
 'vip' => 'boolean',
 'children_names' => 'array',
 'birthday' => 'date',
];
}

Date mutators

You can choose for particular columns to be mutated as timestamp columns by
adding them to the dates array, as seen in Example 5-39.

Example 5-39. Defining columns to be mutated as timestamps

class Contact
{
 protected $dates = [
 'met_at',
];
}

By default, this array contains created_at and updated_at, so adding entries to
dates just adds them to the list.

134 | Chapter 5: Databases and Eloquent

However, there’s no difference between adding columns to this list and adding them
to $this->casts as timestamp, so this is becoming a bit of an unnecessary feature
now that attribute casting can cast timestamps (new since Laravel 5.2).

Eloquent Collections
When you make any query call in Eloquent that has the potential to return multiple
rows, instead of an array they’ll come packaged in an Eloquent collection, which is a
specialized type of collection. Let’s take a look at collections and Eloquent collections,
and what makes them better than plain arrays.

Introducing the base collection

Laravel’s Collection objects (Illuminate\Support\Collection) are a little bit like
arrays on steroids. The methods they expose on array-like objects are so helpful that,
once you’ve been using them for a while, you’ll likely want to pull them into non-
Laravel projects—which you can, with the Tightenco/Collect package.

The simplest way to create a collection is to use the collect() helper. Either pass an
array in, or use it without arguments to create an empty collection and then push
items into it later. Let’s try it:

$collection = collect([1, 2, 3]);

Now let’s say we want to filter out any even numbers:

$odds = $collection->reject(function ($item) {
 return $item % 2 === 0;
});

Or what if we want to get a version of the collection where each item is multiplied by
10? We can do that as follows:

$multiplied = $collection->map(function ($item) {
 return $item * 10;
});

We can even get only the even numbers, multiply them all by 10, and reduce them to
a single number by sum():

$sum = $collection
 ->filter(function ($item) {
 return $item % 2 == 0;
 })->map(function ($item) {
 return $item * 10;
 })->sum();

As you can see, collections provide a series of methods, which can optionally be
chained, to perform functional operations on your arrays. They provide the same
functionality as native PHP methods like array_map() and array_reduce(), but you

Introduction to Eloquent | 135

https://github.com/tightenco/collect

don’t have to memorize PHP’s unpredictable parameter order, and the method chain‐
ing syntax is infinitely more readable.

There are more than 60 methods available on the Collection class, including meth‐
ods like max(), whereIn(), flatten(), and flip(), and there’s not enough space to
cover them all here. We’ll talk about more in Chapter 17, or you can check out the
Laravel collections docs to see all of the methods.

Collections in the Place of Arrays

Collections can also be used in any context (except typehinting)
where you can use arrays; they allow for iteration, so you can pass
them to foreach, and they allow for array access, so if they’re keyed
you can try $a = $collection['a'].

What Eloquent collections add
Each Eloquent collection is a normal collection, but extended for the particular needs
of a collection of Eloquent results.

Once again, there’s not enough room here to cover all of the additions, but they’re
centered around the unique aspects of interacting with a collection not just of generic
objects, but objects meant to represent database rows.

For example, every Eloquent collection has a method called modelKeys() that returns
an array of the primary keys of every instance in the collection. find($id) looks for
an instance that has the primary key of $id.

One additional feature available here is the ability to define that any given model
should return its results wrapped in a specific class of collection. So, if you want to
add specific methods to any collection of objects of your Order model—possibly
related to summarizing the financial details of your orders—you could create a cus‐
tom OrderCollection that extends Illuminate\Database\Eloquent\Collection,
and then register it in your model, as shown in Example 5-40.

Example 5-40. Custom Collection classes for Eloquent models

...
class OrderCollection extends Collection
{
 public function sumBillableAmount()
 {
 return $this->reduce(function ($carry, $order) {
 return $carry + ($order->billable ? $order->amount : 0);
 }, 0);
 }
}

136 | Chapter 5: Databases and Eloquent

https://laravel.com/docs/master/collections

...
class Order extends Model
{
 public function newCollection(array $models = [])
 {
 return new OrderCollection($models);
 }

Now, any time you get back a collection of Orders (e.g., from Order::all()), it’ll
actually be an instance of the OrderCollection class:

$orders = Order::all();
$billableAmount = $orders->sumBillableAmount();

Eloquent Serialization
Serialization is what happens when you take something complex—an array, or an
object—and convert it to a string. In a web-based context, that string is often JSON,
but it could take other forms as well.

Serializing complex database records can be, well, complex, and this is one of the
places many ORMs fall short. Thankfully, you get two powerful methods for free with
Eloquent: toArray() and toJson(). Collections also have toArray() and toJson(),
so all of these are valid:

$contactArray = Contact::first()->toArray();
$contactJson = Contact::first()->toJson();
$contactsArray = Contact::all()->toArray();
$contactsJson = Contact::all()->toJson();

You can also cast an Eloquent instance or collection to a string ($string = (string)
$contact;), but both models and collections will just run toJson() and return
the result.

Returning models directly from route methods
Laravel’s router eventually converts everything routes return to a string, so there’s a
clever trick you can use. If you return the result of an Eloquent call in a controller, it
will be automatically cast to a string, and therefore returned as JSON. That means a
JSON-returning route can be as simple as either of the ones in Example 5-41.

Example 5-41. Returning JSON from routes directly

// routes/web.php
Route::get('api/contacts', function () {
 return Contact::all();
});

Introduction to Eloquent | 137

Route::get('api/contacts/{id}', function ($id) {
 return Contact::findOrFail($id);
});

Hiding attributes from JSON
It’s very common to use JSON returns in APIs, and it’s very common to want to hide
certain attributes in these contexts, so Eloquent makes it easy to hide any attributes
every time you cast to JSON.

You can either blacklist attributes, hiding the ones you list:

class Contact extends Model
{
 public $hidden = ['password', 'remember_token'];

or whitelist attributes, showing only the ones you list:

class Contact extends Model
{
 public $visible = ['name', 'email', 'status'];

This also works for relationships:

class User extends Model
{
 public $hidden = ['contacts'];

 public function contacts()
 {
 return $this->hasMany(Contact::class);
 }

Loading the Contents of a Relationship

By default, the contents of a relationship are not loaded when
you get a database record, so it doesn’t matter whether you hide
them or not. But, as you’ll learn shortly, it’s possible to get a record
with its related items, and in this context, those items will not be
included in a serialized copy of that record if you choose to hide
that relationship.
In case you’re curious now, you can get a User with all contacts—
assuming you’ve set up the relationship correctly—with the follow‐
ing call:

$user = User::with('contacts')->first();

There might be times when you want to make an attribute visible just for a single call.
That’s possible, with the Eloquent method makeVisible():

$array = $user->makeVisible('remember_token')->toArray();

138 | Chapter 5: Databases and Eloquent

Adding a Generated Column to Array and JSON Output

If you have created an accessor for a column that doesn’t exist—for
example, our full_name column from Example 5-35—add it to
the $appends array on the model to add it to the array and JSON
output:

class Contact extends Model
{
 protected $appends = ['full_name'];

 public function getFullNameAttribute()
 {
 return "{$this->first_name} {$this->last_name}";
 }
}

Eloquent Relationships
In a relational database model, it’s expected that you will have tables that are related to
each other—hence the name. Eloquent provides simple and powerful tools to make
the process of relating your database tables easier than ever before.

Many of our examples in this chapter have been centered around a user who has
many contacts, a relatively common situation.

In an ORM like Eloquent, you would call this a one-to-many relationship: the one
user has many contacts.

If it was a CRM where a contact could be assigned to many users, then this would be
a many-to-many relationship: many users can be related to one contact, and each user
can be related to many contacts. A user has and belongs to many contacts.

If each contact can have many phone numbers, and a user wanted a database of every
phone number for their CRM, you would say the user has many phone numbers
through contacts—that is, a user has many contacts, and the contact has many phone
numbers, so the contact is sort of an intermediary.

And what if each contact has an address, but you’re only interested in tracking one
address? You could have all the address fields on the Contact, but you might also cre‐
ate an Address model—meaning the contact has one address.

Finally, what if you want to be able to star (favorite) contacts, but also events? This
would be a polymorphic relationship, where a user has many stars, but some may be
contacts and some may be events.

So, let’s dig into how to define and access these relationships.

Introduction to Eloquent | 139

One to one

Let’s start simple: a Contact has one PhoneNumber. This relationship is defined in
Example 5-42.

Example 5-42. Defining a one-to-one relationship

class Contact extends Model
{
 public function phoneNumber()
 {
 return $this->hasOne(PhoneNumber::class);
 }

As you can tell, the methods defining relationships are on the Eloquent model itself
($this->hasOne()) and take, at least in this instance, the fully qualified class name of
the class that you’re relating them to.

How should this be defined in your database? Since we’ve defined that the Contact
has one PhoneNumber, Eloquent expects that the table supporting the PhoneNumber
class (likely phone_numbers) has a contact_id column on it. If you named it some‐
thing different (for instance, owner_id), you’ll need to change your definition:

return $this->hasOne(PhoneNumber::class, 'owner_id');

Here’s how we access the PhoneNumber of a Contact:

$contact = Contact::first();
$contactPhone = $contact->phoneNumber;

Notice that we define the method in Example 5-42 with phoneNumber(), but
we access it with ->phoneNumber. That’s the magic. You could also access it with
->phone_number. This will return a full Eloquent instance of the related PhoneNumber
record.

But what if we want to access the Contact from the PhoneNumber? There’s a method
for that, too (see Example 5-43).

Example 5-43. Defining a one-to-one relationship’s inverse

class PhoneNumber extends Model
{
 public function contact()
 {
 return $this->belongsTo(Contact::class);
 }

Then we access it the same way:

$contact = $phoneNumber->contact;

140 | Chapter 5: Databases and Eloquent

Inserting Related Items

Each relationship type has its own quirks for how to relate models,
but here’s the core of how it works: pass an instance to save(), or
an array of instances to saveMany(). You can also pass properties to
create() or createMany() and they’ll make new instances for you:

$contact = Contact::first();

$phoneNumber = new PhoneNumber;
$phoneNumber->number = 8008675309;
$contact->phoneNumbers()->save($phoneNumber);

// or

$contact->phoneNumbers()->saveMany([
 PhoneNumber::find(1),
 PhoneNumber::find(2),
]);

// or

$contact->phoneNumbers()->create([
 'number' => '+13138675309',
]);

// or

$contact->phoneNumbers()->createMany([
 ['number' => '+13138675309'],
 ['number' => '+15556060842'],
]);

The createMany() method is only available in Laravel 5.4 and
later.

One to many
The one-to-many relationship is by far the most common. Let’s take a look at how to
define that our User has many Contacts (Example 5-44).

Example 5-44. Defining a one-to-many relationship

class User extends Model
{
 public function contacts()
 {
 return $this->hasMany(Contact::class);
 }

Introduction to Eloquent | 141

Once again, this expects that the Contact model’s backing table (likely contacts) has
a user_id column on it. If it doesn’t, override it by passing the correct column name
as the second parameter of hasMany().

We can get a User’s Contacts as follows:

$user = User::first();
$usersContacts = $user->contacts;

Just like with one to one, we use the name of the relationship method and call it as if
it were a property instead of a method. However, this method returns a collection
instead of a model instance. And this is a normal Eloquent collection, so we can have
all sorts of fun with it:

$donors = $user->contacts->filter(function ($contact) {
 return $contact->status == 'donor';
});

$lifetimeValue = $contact->orders->reduce(function ($carry, $order) {
 return $carry + $order->amount;
}, 0);

Just like with one to one, we can also define the inverse (Example 5-45).

Example 5-45. Defining a one-to-many relationship’s inverse

class Contact extends Model
{
 public function user()
 {
 return $this->belongsTo(User::class);
 }

And just like with one to one, we can access the User from the Contact:

$userName = $contact->user->name;

142 | Chapter 5: Databases and Eloquent

Attaching and Detaching Related Items from the Attached Item

Most of the time we attach an item by running save() on the par‐
ent and passing in the related item, as in
$user->contacts()->save($contact). But if you want to perform
these behaviors on the attached (“child”) item, you can use
associate() and dissociate() on the method that returns the
belongsTo relationship:

$contact = Contact::first();

$contact->user()->associate(User::first());
$contact->save();

// and later

$contact->user()->dissociate();
$contact->save();

Using relationships as query builders. Until now, we’ve taken the method name (e.g.,
contacts()) and called it as if were a property (e.g., $user->contacts). What hap‐
pens if we call it as a method? Instead of processing the relationship, it will return a
pre-scoped query builder.

So if you have User 1, and you call its contacts() method, you will now have a
query builder prescoped to “all contacts that have a field user_id with the value of 1.”
You can then build out a functional query from there:

$donors = $user->contacts()->where('status', 'donor')->get();

Selecting only records that have a related item. You can choose to select only records
that meet particular criteria with regard to their related items using has():

$postsWithComments = Post::has('comments')->get();

You can also adjust the criteria further:

$postsWithManyComments = Post::has('comments', '>=', 5)->get();

You can nest the criteria:

$usersWithPhoneBooks = User::has('contacts.phoneNumbers')->get();

And finally, you can write custom queries on the related items:

// Gets all contacts with a phone number containing the string "867-5309"
$jennyIGotYourNumber = Contact::whereHas('phoneNumbers', function ($query) {
 $query->where('number', 'like', '%867-5309%');
});

Introduction to Eloquent | 143

Has many through

hasManyThrough() is really a convenience method for pulling in relationships of a
relationship. Think of the example I gave earlier, where a User has many Contacts
and each Contact has many PhoneNumbers. What if you want to get a user’s list of
contact phone numbers? That’s has-many-through relation.

This structure assumes that your contacts table has a user_id to relate the contacts
to the users and the phone_numbers table has a contact_id to relate it to the contacts.
Then, we define the relationship on the User as in Example 5-46.

Example 5-46. Defining a has-many-through relationship

class User extends Model
{
 public function phoneNumbers()
 {
 return $this->hasManyThrough(PhoneNumber::class, Contact::class);
 }

You’d access this relationship using $user->phone_numbers, and as always you can
customize the relationship key on the intermediate model (with the third parameter
of hasManyThrough()) and the relationship key on the distant model (with the fourth
parameter).

Has one through

hasOneThrough() is just like hasManyThrough(), but instead of accessing many
related items through intermediate items, you’re only accessing a single related item
through a single intermediate item.

What if each user belonged to a company, and that company had a single phone num‐
ber, and you wanted to be able to get a user’s phone number by pulling their compa‐
ny’s phone number? That’s hasOneThrough().

Example 5-47. Defining a has-one-through relationship

class User extends Model
{
 public function phoneNumber()
 {
 return $this->hasOneThrough(PhoneNumber::class, Company::class);
 }

144 | Chapter 5: Databases and Eloquent

Many to many
This is where things start to get complex. Let’s take our example of a CRM that allows
a User to have many Contacts, and each Contact to be related to multiple Users.

First, we define the relationship on the User as in Example 5-48.

Example 5-48. Defining a many-to-many relationship

class User extends Model
{
 public function contacts()
 {
 return $this->belongsToMany(Contact::class);
 }
}

And since this is many to many, the inverse looks exactly the same (Example 5-49).

Example 5-49. Defining a many-to-many relationship’s inverse

class Contact extends Model
{
 public function users()
 {
 return $this->belongsToMany(User::class);
 }
}

Since a single Contact can’t have a user_id column and a single User can’t have a
contact_id column, many-to-many relationships rely on a pivot table that connects
the two. The conventional naming of this table is done by placing the two singular
table names together, ordered alphabetically, and separating them by an underscore.

So, since we’re linking users and contacts, our pivot table should be named
contacts_users (if you’d like to customize the table name, pass it as the second
parameter to the belongsToMany() method). It needs two columns: contact_id and
user_id.

Just like with hasMany(), we get access to a collection of the related items, but this
time it’s from both sides (Example 5-50).

Example 5-50. Accessing the related items from both sides of a many-to-many
relationship

$user = User::first();

$user->contacts->each(function ($contact) {

Introduction to Eloquent | 145

 // do something
});

$contact = Contact::first();

$contact->users->each(function ($user) {
 // do something
});

$donors = $user->contacts()->where('status', 'donor')->get();

Getting data from the pivot table. One thing that’s unique about many to many is that
it’s our first relationship that has a pivot table. The less data you have in a pivot table,
the better, but there are some cases where it’s valuable to store information in your
pivot table—for example, you might want to store a created_at field to see when this
relationship was created.

In order to store these fields, you have to add them to the relationship definition, like
in Example 5-51. You can define specific fields using withPivot() or add created_at
and updated_at timestamps using withTimestamps().

Example 5-51. Adding fields to a pivot record

public function contacts()
{
 return $this->belongsToMany(Contact::class)
 ->withTimestamps()
 ->withPivot('status', 'preferred_greeting');
}

When you get a model instance through a relationship, it will have a pivot property
on it, which will represent its place in the pivot table you just pulled it from. So, you
can do something like Example 5-52.

Example 5-52. Getting data from a related item’s pivot entry

$user = User::first();

$user->contacts->each(function ($contact) {
 echo sprintf(
 'Contact associated with this user at: %s',
 $contact->pivot->created_at
);
});

If you’d like, you can customize the pivot key to have a different name using the as()
method, as shown in Example 5-53.

146 | Chapter 5: Databases and Eloquent

Example 5-53. Customizing the pivot attribute name

// User model
public function groups()
{
 return $this->belongsToMany(Group::class)
 ->withTimestamps()
 ->as('membership');
}

// Using this relationship:
User::first()->groups->each(function ($group) {
 echo sprintf(
 'User joined this group at: %s',
 $group->membership->created_at
);
});

Unique Aspects of Attaching and Detaching
Many-to-Many Related Items

Since your pivot table can have its own properties, you need to be able to set those
properties when you’re attaching a many-to-many related item. You can do that by
passing an array as the second parameter to save():

$user = User::first();
$contact = Contact::first();
$user->contacts()->save($contact, ['status' => 'donor']);

Additionally, you can use attach() and detach() and, instead of passing in an
instance of a related item, you can just pass an ID. They work just the same as save()
but can also accept an array of IDs without you needing to rename the method to
something like attachMany():

$user = User::first();
$user->contacts()->attach(1);
$user->contacts()->attach(2, ['status' => 'donor']);
$user->contacts()->attach([1, 2, 3]);
$user->contacts()->attach([
 1 => ['status' => 'donor'],
 2,
 3,
]);

$user->contacts()->detach(1);
$user->contacts()->detach([1, 2]);
$user->contacts()->detach(); // Detaches all contacts

If your goal is not to attach or detach, but instead just to invert whatever the current
attachment state is, you want the toggle() method. When you use toggle(), if the

Introduction to Eloquent | 147

given ID is currently attached, it will be detached; and if it is currently detached, it
will be attached:

$user->contacts()->toggle([1, 2, 3]);

You can also use updateExistingPivot() to make changes just to the pivot record:

$user->contacts()->updateExistingPivot($contactId, [
 'status' => 'inactive',
]);

And if you’d like to replace the current relationships, effectively detaching all previous
relationships and attaching new ones, you can pass an array to sync():

$user->contacts()->sync([1, 2, 3]);
$user->contacts()->sync([
 1 => ['status' => 'donor'],
 2,
 3,
]);

Polymorphic
Remember, our polymorphic relationship is where we have multiple Eloquent classes
corresponding to the same relationship. We’re going to use Stars (like favorites) right
now. A user can star both Contacts and Events, and that’s where the name polymor‐
phic comes from: there’s a single interface to objects of multiple types.

So, we’ll need three tables, and three models: Star, Contact, and Event (four of each,
technically, because we’ll need users and User, but we’ll get there in a second). The
contacts and events tables will just be as they normally are, and the stars table will
contain id, starrable_id, and starrable_type fields. For each Star, we’ll be defin‐
ing which “type” (e.g., Contact or Event) and which ID of that type (e.g., 1) it is.

Let’s create our models, as seen in Example 5-54.

Example 5-54. Creating the models for a polymorphic starring system

class Star extends Model
{
 public function starrable()
 {
 return $this->morphTo();
 }
}

class Contact extends Model
{
 public function stars()
 {

148 | Chapter 5: Databases and Eloquent

 return $this->morphMany(Star::class, 'starrable');
 }
}

class Event extends Model
{
 public function stars()
 {
 return $this->morphMany(Star::class, 'starrable');
 }
}

So, how do we create a Star?

$contact = Contact::first();
$contact->stars()->create();

It’s that easy. The Contact is now starred.

In order to find all of the Stars on a given Contact, we call the stars() method like
in Example 5-55.

Example 5-55. Retrieving the instances of a polymorphic relationship

$contact = Contact::first();

$contact->stars->each(function ($star) {
 // Do stuff
});

If we have an instance of Star, we can get its target by calling the method we used to
define its morphTo relationship, which in this context is starrable(). Take a look at
Example 5-56.

Example 5-56. Retrieving the target of a polymorphic instance

$stars = Star::all();

$stars->each(function ($star) {
 var_dump($star->starrable); // An instance of Contact or Event
});

Finally, you might be wondering, “What if I want to know who starred this contact?”
That’s a great question. It’s as simple as adding user_id to your stars table, and then
setting up that a User has many Stars and a Star belongs to one User—a one-to-
many relationship (Example 5-57). The stars table becomes almost a pivot table
between your User and your Contacts and Events.

Introduction to Eloquent | 149

Example 5-57. Extending a polymorphic system to differentiate by user

class Star extends Model
{
 public function starrable()
 {
 return $this->morphsTo;
 }

 public function user()
 {
 return $this->belongsTo(User::class);
 }
}

class User extends Model
{
 public function stars()
 {
 return $this->hasMany(Star::class);
 }
}

That’s it! You can now run $star->user or $user->stars to find a list of a User’s
Stars or to find the starring User from a Star. Also, when you create a new Star,
you’ll now want to pass the User:

$user = User::first();
$event = Event::first();
$event->stars()->create(['user_id' => $user->id]);

Many to many polymorphic
The most complex and least common of the relationship types, many-to-many poly‐
morphic relationships are like polymorphic relationships, except instead of being one
to many, they’re many to many.

The most common example for this relationship type is the tag, so I’ll keep it safe and
use that as our example. Let’s imagine you want to be able to tag Contacts and
Events. The uniqueness of many-to-many polymorphism is that it’s many to many:
each tag may be applied to multiple items, and each tagged item might have multiple
tags. And to add to that, it’s polymorphic: tags can be related to items of several dif‐
ferent types. For the database, we’ll start with the normal structure of the polymor‐
phic relationship but also add a pivot table.

This means we’ll need a contacts table, an events table, and a tags table, all shaped
like normal with an ID and whatever properties you want, and a new taggables
table, which will have tag_id, taggable_id, and taggable_type fields. Each entry
into the taggables table will relate a tag with one of the taggable content types.

150 | Chapter 5: Databases and Eloquent

Now let’s define this relationship on our models, as seen in Example 5-58.

Example 5-58. Defining a polymorphic many-to-many relationship

class Contact extends Model
{
 public function tags()
 {
 return $this->morphToMany(Tag::class, 'taggable');
 }
}

class Event extends Model
{
 public function tags()
 {
 return $this->morphToMany(Tag::class, 'taggable');
 }
}

class Tag extends Model
{
 public function contacts()
 {
 return $this->morphedByMany(Contact::class, 'taggable');
 }

 public function events()
 {
 return $this->morphedByMany(Event::class, 'taggable');
 }
}

Here’s how to create your first tag:

$tag = Tag::firstOrCreate(['name' => 'likes-cheese']);
$contact = Contact::first();
$contact->tags()->attach($tag->id);

We get the results of this relationship like normal, as seen in Example 5-59.

Example 5-59. Accessing the related items from both sides of a many-to-many
polymorphic relationship

$contact = Contact::first();

$contact->tags->each(function ($tag) {
 // Do stuff
});

$tag = Tag::first();

Introduction to Eloquent | 151

$tag->contacts->each(function ($contact) {
 // Do stuff
});

Child Records Updating Parent Record Timestamps
Remember, any Eloquent models by default will have created_at and updated_at
timestamps. Eloquent will set the updated_at timestamp automatically any time you
make any changes to a record.

When a related item has a belongsTo or belongsToMany relationship with another
item, it might be valuable to mark the other item as updated any time the related item
is updated. For example, if a PhoneNumber is updated, maybe the Contact it’s connec‐
ted to should be marked as having been updated as well.

We can accomplish this by adding the method name for that relationship to a
$touches array property on the child class, as in Example 5-60.

Example 5-60. Updating a parent record any time the child record is updated

class PhoneNumber extends Model
{
 protected $touches = ['contact'];

 public function contact()
 {
 return $this->belongsTo(Contact::class);
 }
}

Eager loading
By default, Eloquent loads relationships using “lazy loading.” This means when you
first load a model instance, its related models will not be loaded along with it. Rather,
they’ll only be loaded once you access them on the model; they’re “lazy” and don’t do
any work until called upon.

This can become a problem if you’re iterating over a list of model instances and each
has a related item (or items) that you’re working on. The problem with lazy loading is
that it can introduce significant database load (often the N+1 problem, if you’re famil‐
iar with the term; if not, just ignore this parenthetical remark). For instance, every
time the loop in Example 5-61 runs, it executes a new database query to look up the
phone numbers for that Contact.

152 | Chapter 5: Databases and Eloquent

Example 5-61. Retrieving one related item for each item in a list (N+1)

$contacts = Contact::all();

foreach ($contacts as $contact) {
 foreach ($contact->phone_numbers as $phone_number) {
 echo $phone_number->number;
 }
}

If you are loading a model instance, and you know you’ll be working with its relation‐
ships, you can instead choose to “eager-load” one or many of its sets of related items:

$contacts = Contact::with('phoneNumbers')->get();

Using the with() method with a retrieval gets all of the items related to the pulled
item(s); as you can see in this example, you pass it the name of the method the rela‐
tionship is defined by.

When we use eager loading, instead of pulling the related items one at a time when
they’re requested (e.g., selecting one contact’s phone numbers each time a foreach
loop runs), we have a single query to pull the initial items (selecting all contacts) and
a second query to pull all their related items (selecting all phone numbers owned by
the contacts we just pulled).

You can eager-load multiple relationships by passing multiple parameters to the
with() call:

$contacts = Contact::with('phoneNumbers', 'addresses')->get();

And you can nest eager loading to eager-load the relationships of relationships:

$authors = Author::with('posts.comments')->get();

Constraining eager loads. If you want to eager-load a relationship, but not all of
the items, you can pass a closure to with() to define exactly which related items to
eager-load:

$contacts = Contact::with(['addresses' => function ($query) {
 $query->where('mailable', true);
}])->get();

Lazy eager loading. I know it sounds crazy, because we just defined eager loading as
sort of the opposite of lazy loading, but sometimes you don’t know you want to per‐
form an eager-load query until after the initial instances have been pulled. In this
context, you’re still able to make a single query to look up all of the related items,
avoiding N+1 cost. We call this “lazy eager loading”:

$contacts = Contact::all();

Introduction to Eloquent | 153

if ($showPhoneNumbers) {
 $contacts->load('phoneNumbers');
}

To load a relationship only when it has not already been loaded, use the
loadMissing() method (available only since Laravel 5.5):

$contacts = Contact::all();

if ($showPhoneNumbers) {
 $contacts->loadMissing('phoneNumbers');
}

Eager loading only the count
If you want to eager-load relationships but only so you can have access to the count of
items in each relationship, you can try withCount():

$authors = Author::withCount('posts')->get();

// Adds a "posts_count" integer to each Author with a count of that
// author's related posts

Eloquent Events
Eloquent models fire events out into the void of your application every time certain
actions happen, regardless of whether you’re listening. If you’re familiar with pub/
sub, it’s this same model (you’ll learn more about Laravel’s entire event system in
Chapter 16).

Here’s a quick rundown of binding a listener to when a new Contact is created. We’re
going to bind it in the boot() method of AppServiceProvider, and let’s imagine
we’re notifying a third-party service every time we create a new Contact.

Example 5-62. Binding a listener to an Eloquent event

class AppServiceProvider extends ServiceProvider
{
 public function boot()
 {
 $thirdPartyService = new SomeThirdPartyService;

 Contact::creating(function ($contact) use ($thirdPartyService) {
 try {
 $thirdPartyService->addContact($contact);
 } catch (Exception $e) {
 Log::error('Failed adding contact to ThirdPartyService; canceled.');

 return false; // Cancels Eloquent create()
 }

154 | Chapter 5: Databases and Eloquent

 });
 }

We can see a few things in Example 5-62. First, we use Modelname::eventName() as
the method, and pass it a closure. The closure gets access to the model instance that is
being operated on. Second, we’re going to need to define this listener in a service pro‐
vider somewhere. And third, if we return false, the operation will cancel and the
save() or update() will be canceled.

Here are the events that every Eloquent model fires:

• creating

• created

• updating

• updated

• saving

• saved

• deleting

• deleted

• restoring

• restored

• retrieved

Most of these should be pretty clear, except possibly restoring and restored, which
fire when you’re restoring a soft-deleted row. Also, saving is fired for both creating
and updating and saved is fired for both created and updated.

retrieved (available in Laravel 5.5 and later) is fired when an existing model is
retrieved from the database.

Testing
Laravel’s entire application testing framework makes it easy to test your database—
not by writing unit tests against Eloquent, but by just being willing to test your entire
application.

Take this scenario. You want to test to ensure that a particular page shows one contact
but not another. Some of that logic has to do with the interplay between the URL and
the controller and the database, so the best way to test it is an application test. You
might be thinking about mocking Eloquent calls and trying to avoid the system hit‐
ting the database. Don’t do it. Try Example 5-63 instead.

Testing | 155

Example 5-63. Testing database interactions with simple application tests

public function test_active_page_shows_active_and_not_inactive_contacts()
{
 $activeContact = factory(Contact::class)->create();
 $inactiveContact = factory(Contact::class)->states('inactive')->create();

 $this->get('active-contacts')
 ->assertSee($activeContact->name)
 ->assertDontSee($inactiveContact->name);
}

As you can see, model factories and Laravel’s application testing features are great for
testing database calls.

Alternatively, you can look for that record directly in the database, as in
Example 5-64.

Example 5-64. Using assertDatabaseHas() to check for certain records in the database

public function test_contact_creation_works()
{
 $this->post('contacts', [
 'email' => 'jim@bo.com'
]);

 $this->assertDatabaseHas('contacts', [
 'email' => 'jim@bo.com'
]);
}

Eloquent and Laravel’s database framework are tested extensively. You don’t need to
test them. You don’t need to mock them. If you really want to avoid hitting the data‐
base, you can use a repository and then return unsaved instances of your Eloquent
models. But the most important message is, test the way your application uses your
database logic.

If you have custom accessors, mutators, scopes, or whatever else, you can also test
them directly, as in Example 5-65.

Example 5-65. Testing accessors, mutators, and scopes

public function test_full_name_accessor_works()
{
 $contact = factory(Contact::class)->make([
 'first_name' => 'Alphonse',
 'last_name' => 'Cumberbund'
]);

156 | Chapter 5: Databases and Eloquent

 $this->assertEquals('Alphonse Cumberbund', $contact->fullName);
}

public function test_vip_scope_filters_out_non_vips()
{
 $vip = factory(Contact::class)->states('vip')->create();
 $nonVip = factory(Contact::class)->create();

 $vips = Contact::vips()->get();

 $this->assertTrue($vips->contains('id', $vip->id));
 $this->assertFalse($vips->contains('id', $nonVip->id));
}

Just avoid writing tests that leave you creating complex “Demeter chains” to assert
that a particular fluent stack was called on some database mock. If your testing starts
to get overwhelming and complex around the database layer, it’s because you’re allow‐
ing preconceived notions to force you into unnecessarily complex systems. Keep
it simple.

Different Names for Testing Methods Prior to Laravel 5.4

In projects running versions of Laravel prior to 5.4,
assertDatabaseHas() should be replaced by seeInDatabase(),
get() should be replaced by visit(), assertSee() should be
replaced by see(), and assertDontSee() should be replaced by
dontSee().

TL;DR
Laravel comes with a suite of powerful database tools, including migrations, seeding,
an elegant query builder, and Eloquent, a powerful ActiveRecord ORM. Laravel’s
database tools don’t require you to use Eloquent at all—you can access and manipu‐
late the database with a thin layer of convenience without having to write SQL
directly. But adding an ORM, whether it’s Eloquent or Doctrine or whatever else, is
easy and can work neatly with Laravel’s core database tools.

Eloquent follows the Active Record pattern, which makes it simple to define a class of
database-backed objects, including which table they’re stored in and the shape of
their columns, accessors, and mutators. Eloquent can handle every sort of normal
SQL action and also complex relationships, up to and including polymorphic many-
to-many relationships.

Laravel also has a robust system for testing databases, including model factories.

TL;DR | 157

CHAPTER 6

Frontend Components

Laravel is primarily a PHP framework, but it also has a series of components focused
on generating frontend code. Some of these, like pagination and message bags, are
PHP helpers that target the frontend, but Laravel also provides a Webpack-based
build system called Mix and some conventions around non-PHP assets.

Laravel’s Build Tools Before and After Laravel 5.4

Prior to Laravel 5.4, Laravel’s frontend build tool was named
Elixer, and it was based on Gulp. In 5.4 and later, the new build

tool is named Mix, and it’s based on Webpack.

Since Mix is at the core of the non-PHP frontend components, let’s start there.

Laravel Mix
Mix is a build tool that provides a simple user interface and a series of conventions on
top of Webpack. Mix’s core value proposition is simplifying the most common build
and compilation Webpack tasks by means of a cleaner API and a series of naming and
application structure conventions.

A Quick Introduction to Webpack
Webpack is a JavaScript tool designed for compiling static assets; the Webpack team
describes its purpose as bundling “modules with dependencies” together and produc‐
ing “static assets.”

Webpack is similar to Gulp or Grunt in that, like Webpack, those tools are often used
for processing and bundling dependencies for websites. This will commonly include

159

https://webpack.js.org/

running a CSS preprocessor like Sass or Less or PostCSS, copying files, and concate‐
nating and minifying JavaScript.

Unlike the others, Webpack is specifically focused on bundling together modules with
dependencies and producing static assets as a result. Gulp and Grunt are task run‐
ners, which, like Make and Rake before them, can be used to automate any activities
that are programmable and repeatable. They all can be used to bundle assets, but
that’s not their core focus, and as a result they can be limited in some of the more
complex needs for asset bundling—for example, identifying which of the generated
assets won’t be used and discarding them from the final output.

At its core, Mix is just a tool in your Webpack toolbox. The “Mix file” you’ll use to set
your configurations is simply a Webpack configuration file which lives at the root of
your project, named webpack.mix.js. However, the configuration you have to set there
is a lot simpler than most Webpack configuration is out of the box, and you’ll have to
do a lot less work to get most common asset compilation tasks working.

Let’s look at a common example: running Sass to preprocess your CSS styles. In a
normal Webpack environment, that might look a little bit like Example 6-1.

Example 6-1. Compiling a Sass file in Webpack, before Mix

var path = require('path');
var MiniCssExtractPlugin = require("mini-css-extract-plugin");

module.exports = {
 entry: './src/sass/app.scss',
 module: {
 rules: [
 {
 test: /\.s[ac]ss$/,
 use: [
 MiniCssExtractPlugin.loader,
 "css-loader",
 "sass-loader"
]
 }
]
 },
 plugins: [
 new MiniCssExtractPlugin({
 path: path.resolve(__dirname, './dist'),
 filename: 'app.css'
 })
]
}

160 | Chapter 6: Frontend Components

Now, I’ve seen worse. There aren’t an unimaginable number of configuration proper‐
ties, and it’s relatively clear what’s going on. But this is the sort of code that you copy
from project to project, not code you feel comfortable writing yourself or even modi‐
fying to any significant degree. Working like this can get confusing and repetitive.

Let’s try that same task in Mix (Example 6-2).

Example 6-2. Compiling a Sass file in Mix

let mix = require('laravel-mix');

mix.sass('resources/sass/app.scss', 'public/css');

That’s it. And not only is it infinitely simpler, it also covers file watching, browser
syncing, notifications, prescribed folder structures, autoprefixing, URL processing,
and much more.

Mix Folder Structure
Much of Mix’s simplicity comes from the assumed directory structure. Why decide
for every new application where the source and compiled assets will live? Just stick
with Mix’s conventions, and you won’t have to think about it ever again.

Every new Laravel app comes with a resources folder, which is where Mix will expect
your frontend assets to live. Your Sass will live in resources/sass, or your Less in
resources/less, or your source CSS in resources/css, and your JavaScript will live in
resources/js. These will export to public/css and public/js.

The Assets Subdirectory Prior to Laravel 5.7

In versions of Laravel prior to 5.7, the sass, less, and js directories
were nested under the resources/assets directory instead of directly
underneath the resources directory.

Running Mix
Since Mix runs on Webpack, you’ll need to set up a few tools before using it:

1. First, you’ll need Node.js installed. Visit the Node website to learn how to get it
running.
Once Node (and NPM with it) is installed once, you will not have to do this again
for each project. Now you’re ready to install this project’s dependencies.

Laravel Mix | 161

http://nodejs.org/

2. Open the project root in your terminal, and run npm install to install
the required packages (Laravel ships with a Mix-ready package.json file to direct
NPM).

You’re now set up! You can run npm run dev to run Webpack/Mix once, npm run
watch to listen for relevant file changes and run in response, or npm run prod to run
Mix once with production settings (such as minifying the output). You can also run
npm run watch-poll if npm run watch doesn’t work in your environment, or npm
run hot for Hot Module Replacement (HMR; discussed in the next section).

What Does Mix Provide?
I’ve already mentioned that Mix can preprocess your CSS using Sass, Less, and/or
PostCSS. It can also concatenate any sort of files, minify them, rename them, and
copy them, and it can copy entire directories or individual files.

Additionally, Mix can process all flavors of modern JavaScript and provide autopre‐
fixing, concatenation, and minification specifically as a part of the JavaScript build
stack. It makes it easy to set up Browsersync, HMR, and versioning, and there are
plug-ins available for many other common build scenarios.

The Mix documentation covers all of these options and more, but we’ll discuss a few
specific use cases in the following sections.

Source maps
If you’re not familiar with source maps, they work with any sort of preprocessor
to teach your browser’s web inspector which files generated the compiled source
you’re inspecting.

By default, Mix will not generate source maps for your files. But you can enable them
by chaining the sourceMaps() method after your Mix calls, as you can see in
Example 6-3.

Example 6-3. Enabling source maps in Mix

let mix = require('laravel-mix');

mix.js('resources/js/app.js', 'public/js')
 .sourceMaps();

Once you configure Mix this way, you’ll see the source maps appear as a .{file‐
name}.map file next to each generated file.

Without source maps, if you use your browser’s development tools to inspect a partic‐
ular CSS rule or JavaScript action, you’ll just see a big mess of compiled code. With

162 | Chapter 6: Frontend Components

http://bit.ly/2OqiyIL

source maps, your browser can pinpoint the exact line of the source file, whether it be
Sass or JavaScript or whatever else, that generated the rule you’re inspecting.

Pre- and post-processors
We’ve already covered Sass and Less, but Mix can also handle Stylus (Example 6-4),
and you can chain PostCSS onto any other style calls (Example 6-5).

Example 6-4. Preprocessing CSS with Stylus

mix.stylus('resources/stylus/app.styl', 'public/css');

Example 6-5. Post-processing CSS with PostCSS

mix.sass('resources/sass/app.scss', 'public/css')
 .options({
 postCss: [
 require('postcss-css-variables')()
]
 });

Preprocessorless CSS
If you don’t want to deal with a preprocessor, there’s a command for that—it will grab
all of your CSS files, concatenate them, and output them to the public/css directory,
just as if they had been run through a preprocessor. There are a few options, which
you can see in Example 6-6.

Example 6-6. Combining stylesheets with Mix

// Combines all files from resources/css
mix.styles('resources/css', 'public/css/all.css');

// Combines files from resources/css
mix.styles([
 'resources/css/normalize.css',
 'resources/css/app.css'
], 'public/css/all.css');

Concatenating JavaScript
The options available for working with normal JavaScript files are very similar to
those available for normal CSS files. Take a look at Example 6-7.

Example 6-7. Combining JavaScript files with Mix

let mix = require('laravel-mix');

Laravel Mix | 163

// Combines all files from resources/js
mix.scripts('resources/js', 'public/js/all.js');

// Combines files from resources/js
mix.scripts([
 'resources/js/normalize.js',
 'resources/js/app.js'
], 'public/js/all.js');

Processing JavaScript
If you want to process your JavaScript—for example, to compile your ES6 code into
plain JavaScript—Mix makes it easy to use Webpack for this purpose (see
Example 6-8).

Example 6-8. Processing JavaScript files in Mix with Webpack

let mix = require('laravel-mix');

mix.js('resources/js/app.js', 'public/js');

These scripts look for the provided filename in resources/js and output to public/js/
app.js.

You can use more complicated aspects of Webpack’s feature set by creating a
webpack.config.js file in your project root.

Copying files or directories

To move either a single file or an entire directory, use the copy() method or the copy
Directory() method:

mix.copy('node_modules/pkgname/dist/style.css', 'public/css/pkgname.css');
mix.copyDirectory('source/images', 'public/images');

Versioning
Most of the tips from Steve Souders’s Even Faster Web Sites (O’Reilly) have made their
way into our everyday development practices. We move scripts to the footer, reduce
the number of HTTP requests, and more, often without even realizing where those
ideas originated.

One of Steve’s tips is still very rarely implemented, though, and that is setting a very
long cache life on assets (scripts, styles, and images). Doing this means there will be
fewer requests to your server to get the latest version of your assets. But it also means
that users are extremely likely to have a cached version of your assets, which will
make things get outdated, and therefore break, quickly.

164 | Chapter 6: Frontend Components

http://shop.oreilly.com/product/9780596522315.do

The solution to this is versioning. Append a unique hash to each asset’s filename every
time you run your build script, and then that unique file will be cached indefinitely—
or at least until the next build.

What’s the problem? Well, first you need to get the unique hashes generated and
appended to your filenames. But you also will need to update your views on every
build to reference the new filenames.

As you can probably guess, Mix handles that for you, and it’s incredibly simple. There
are two components: the versioning task in Mix, and the mix() PHP helper. First, you
can version your assets by running mix.version() like in Example 6-9.

Example 6-9. mix.version

let mix = require('laravel-mix');

mix.sass('resources/sass/app.scss', 'public/css')
 .version();

The version of the file that’s generated is no different—it’s just named app.css and lives
in public/css.

Versioning Assets Using Query Parameters

The way versioning is handled in Laravel is a little different from
traditional versioning, in that the versioning is appended with a
query parameter instead of by modifying filenames. It still func‐
tions the same way, because browsers read it as a “new” file, but it
handles a few edge cases with caches and load balancers.

Next, use the PHP mix() helper in your views to refer to that file like in
Example 6-10.

Example 6-10. Using the mix() helper in views

<link rel="stylesheet" href="{{ mix("css/app.css") }}">

// Will output something like:

<link rel="stylesheet" href="/css/app.css?id=5ee7141a759a5fb7377a">

Laravel Mix | 165

How Does Mix Versioning Work Behind the Scenes?
Mix generates a file named public/mix-manifest.json. This stores the information the
mix() helper needs to find the generated file. Here’s what a sample mix-manifest.json
looks like:

{
 "/css/app.css": "/css/app.css?id=4151cf6261b95f07227e"
}

Vue and React
Mix can handle building both Vue (with single-file components) and React compo‐
nents. Mix’s default js() call handles Vue, and you can replace it with a react() call
if you want to build React components:

mix.react('resources/js/app.js', 'public/js');

If you take a look at the default Laravel sample app.js and the components it imports
(Example 6-11), you’ll see that you don’t have to do anything special to work with Vue
components. A simple mix.js() call makes this possible in your app.js.

Example 6-11. App.js configured to work with Vue

window.Vue = require('vue');

Vue.component('example-component', require('./components/ExampleComponent.vue'));

const app = new Vue({
 el: '#app'
});

And if you switch to react(), this is all you need to run in your file for your first
component:

require('./components/Example');

Both presets also bring in Axios, Lodash, and Popper.js, so you don’t have to spend
any time getting your Vue or React ecosystems set up.

Hot Module Replacement
When you’re writing single components with Vue or React, you’re likely used to
either refreshing the page every time your build tool recompiles your components or,
if you’re using something like Mix, relying on Browsersync to reload it for you.

166 | Chapter 6: Frontend Components

That’s great, but if you’re working with single-page apps (SPAs), that means you’re
booted back to the beginning of the app; that refresh wipes any state you had built up
as you navigated through the app.

Hot Module Replacement (HMR, sometimes called hot reloading) solves this prob‐
lem. It’s not always easy to set up, but Mix comes with it enabled out of the box. HMR
works essentially as if you’d taught Browsersync to not reload the entire file that was
recompiled, but instead to just reload the bits of code you changed. That means you
can get the updated code injected into your browser, but still retain the state you had
built up as you got your SPA into just the right spot for testing.

To use HMR, you’ll want to run npm run hot instead of npm run watch. In order for
it to work correctly, all of your <script> references have to be pulling the right ver‐
sions of your JavaScript files. Essentially, Mix is booting up a small Node server at
localhost:8080, so if your <script> tag points to a different version of the script,
HMR won’t work.

The easiest way to achieve this is to just use the mix() helper to reference your scripts.
This helper will handle prepending either localhost:8080 if in HMR mode or your
domain if you’re in a normal development mode. Here’s what it looks like inline:

<body>
 <div id="app"></div>

 <script src="{{ mix('js/app.js') }}"></script>
</body>

If you develop your applications on an HTTPS connection—for example, if you run
valet secure—all your assets must also be served via an HTTPS connection. This is
a little bit trickier, so it’s best to consult the HMR docs.

Vendor extraction
The most common frontend bundling pattern, which Mix also encourages, ends up
generating a single CSS file and a single JavaScript file that encompasses both the app-
specific code for your project and the code for all its dependencies.

However, this means that vendor file updates require the entire file to be rebuilt and
recached, which might introduce an undesirable load time.

Mix makes it easy to extract all of the JavaScript from your app’s dependencies into a
separate vendor.js file. Simply supply a list of the vendor’s library names to the
extract() method, chained after your js() call. Take a look at Example 6-12 to see
how it looks.

Laravel Mix | 167

http://bit.ly/2U2xvGb

Example 6-12. Extracting a vendor library into a separate file

mix.js('resources/js/app.js', 'public/js')
 .extract(['vue'])

This outputs your existing app.js and then two new files: manifest.js, which gives
instructions to your browser about how to load the dependencies and app code, and
vendor.js, which contains the vendor-specific code.

It’s important to load these files in the correct order in your frontend code—first
manifest.js, then vendor.js, and finally app.js:

Extracting All Dependencies Using extract() in Mix 4.0+

If your project is using Laravel Mix 4.0 or greater, you can call the
extract() method with no arguments. This will extract the entire
dependency list for your application.

<script src="{{ mix('js/manifest.js') }}"></script>
<script src="{{ mix('js/vendor.js') }}"></script>
<script src="{{ mix('js/app.js') }}"></script>

Environment variables in Mix
As Example 6-13 shows, if you prefix an environment variable (in your .env file) with
MIX_, it will become available in your Mix-compiled files with the naming convention
process.env.ENV_VAR_NAME.

Example 6-13. Using .env variables in Mix-compiled JavaScript

In your .env file
MIX_BUGSNAG_KEY=lj12389g08bq1234
MIX_APP_NAME="Your Best App Now"

// In Mix-compiled files
process.env.MIX_BUGSNAG_KEY

// For example, this code:
console.log("Welcome to " + process.env.MIX_APP_NAME);

// Will compile down to this:
console.log("Welcome to " + "Your Best App Now");

You can also access those variables in your Webpack configuration files using Node’s
dotenv package, as shown in Example 6-14.

168 | Chapter 6: Frontend Components

Example 6-14. Using .env variables in Webpack configuration files

// webpack.mix.js
let mix = require('laravel-mix');
require('dotenv').config();

let isProduction = process.env.MIX_ENV === "production";

Frontend Presets and Auth Scaffolding
As a full-stack framework, Laravel has more connections to and opinions about
frontend tooling than your average backend framework. Out of the box it provides an
entire build system, which we’ve already covered, but it also builds and has compo‐
nents for Vue and includes Bootstrap, Axios, and Lodash.

Frontend Presets
You can get a sense of the frontend tools that come along with each new Laravel
install by taking a look at package.json, webpack.mix.js (or gulpfile.js in older versions
of Laravel), and the views, JavaScript files, and CSS files in the resources directory.
This default set of components and files is called the Vue preset, and every new Lara‐
vel project comes stocked with it.

But what if you’d rather work in React? What if you want Bootstrap but not all that
JavaScript? And what if you want to just rip it all out? Enter frontend presets, intro‐
duced in Laravel 5.5: these are pre-baked scripts that modify or remove part or all of
the Vue- and Bootstrap-loaded default presets. You can use the presets that are pro‐
vided out of the box, or you can pull in third-party presets from GitHub.

To use a built-in preset, simply run php artisan present preset_name:

php artisan preset react
php artisan preset bootstrap
php artisan preset none

There’s also a vue preset, which is what each new application has applied on a fresh
install.

Third-party frontend presets
If you’re interested in creating your own preset, or using one created by another com‐
munity member, that’s also possible with the frontend preset system. There’s a GitHub
organization designed to make it easy to find great third-party frontend presets, and
they’re easy to install. For most, the steps are as follows:

1. Install the package (e.g., composer require laravel-frontend-presets/tail
windcss).

Frontend Presets and Auth Scaffolding | 169

http://bit.ly/2OraXt6
http://bit.ly/2OraXt6

2. Install the preset (e.g., php artisan preset tailwindcss).
3. Just like with the built-in presets, run npm install and npm run dev.

If you want to create a preset of your own, the same organization has a skeleton
repository you can fork to make it easier.

Auth Scaffolding
Although they’re technically not a part of the frontend presets, Laravel has a series of
routes and views called the auth scaffold that are, essentially, frontend presets. If you
run php artisan make:auth, you’ll get a login page, a signup page, a new master
template for the “app” view of your app, routes to serve these pages, and more. Take a
look at Chapter 9 to learn more.

Pagination
For something that is so common across web applications, pagination still can be
wildly complicated to implement. Thankfully, Laravel has a built-in concept of pagi‐
nation, and it’s also hooked into Eloquent results and the router by default.

Paginating Database Results
The most common place you’ll see pagination is when you are displaying the results
of a database query and there are too many results for a single page. Eloquent and the
query builder both read the page query parameter from the current page request and
use it to provide a paginate() method on any result sets; the single parameter you
should pass paginate() is how many results you want per page. Take a look at
Example 6-15 to see how this works.

Example 6-15. Paginating a query builder response

// PostsController
public function index()
{
 return view('posts.index', ['posts' => DB::table('posts')->paginate(20)]);
}

Example 6-15 specifies that this route should return 20 posts per page, and will define
which “page” of results the current user is on based on the URL’s page query parame‐
ter, if it has one. Eloquent models all have the same paginate() method.

When you display the results in your view, your collection will now have a links()
method on it (or render() for Laravel 5.1) that will output the pagination controls,

170 | Chapter 6: Frontend Components

http://bit.ly/2U4ZLrH
http://bit.ly/2U4ZLrH

with class names from the Bootstrap component library assigned to them by default
(see Example 6-16).

Example 6-16. Rendering pagination links in a template

// posts/index.blade.php
<table>
@foreach ($posts as $post)
 <tr><td>{{ $post->title }}</td></tr>
@endforeach
</table>

{{ $posts->links() }}

// By default, $posts->links() will output something like this:
<ul class="pagination">
 <li class="page-item disabled">«
 <li class="page-item active">1
 <li class="page-item">
 2

 <li class="page-item">
 3

 <li class="page-item">

 »

Customizing the Number of Pagination Links in Laravel 5.7 and Later

If you’d like to control how many links show on either side of the
current page, projects running Laravel 5.7 and later can customize
this number easily with the onEachSide() method:

DB::table('posts')->paginate(10)->onEachSide(3);

// Outputs:
// 5 6 7 [8] 9 10 11

Manually Creating Paginators
If you’re not working with Eloquent or the query builder, or if you’re working with a
complex query (e.g., one using groupBy), you might find yourself needing to create a
paginator manually. Thankfully, you can do that with the Illuminate\Pagination
\Paginator or Illuminate\Pagination\LengthAwarePaginator classes.

Pagination | 171

The difference between the two classes is that Paginator will only provide previous
and next buttons, but no links to each page; LengthAwarePaginator needs to know
the length of the full result so that it can generate links for each individual page. You
may find yourself wanting to use Paginator on large result sets, so your paginator
doesn’t have to be aware of a massive count of results that might be costly to run.

Both Paginator and LengthAwarePaginator require you to manually extract the sub‐
set of content that you want to pass to the view. Take a look at Example 6-17 for an
example.

Example 6-17. Manually creating a paginator

use Illuminate\Http\Request;
use Illuminate\Pagination\Paginator;

Route::get('people', function (Request $request) {
 $people = [...]; // huge list of people

 $perPage = 15;
 $offsetPages = $request->input('page', 1) - 1;

 // The Paginator will not slice your array for you
 $people = array_slice(
 $people,
 $offsetPages * $perPage,
 $perPage
);

 return new Paginator(
 $people,
 $perPage
);
});

The Paginator syntax has changed over the last few versions of Laravel, so if you’re
using 5.1, take a look at the docs to find the correct syntax.

Message Bags
Another common but painful feature in web applications is passing messages
between various components of the app, when the end goal is to share them with
the user. Your controller, for example, might want to send a validation message: “The
email field must be a valid email address.” However, that particular message doesn’t
just need to make it to the view layer; it actually needs to survive a redirect and
then end up in the view layer of a different page. How do you structure this messag‐
ing logic?

172 | Chapter 6: Frontend Components

http://bit.ly/2U6M37I

Illuminate\Support\MessageBag is a class tasked with storing, categorizing, and
returning messages that are intended for the end user. It groups all messages by key,
where the keys are likely to be something like errors and messages, and it provides
convenience methods for getting all its stored messages or only those for a particular
key and outputting these messages in various formats.

You can spin up a new instance of MessageBag manually like in Example 6-18. To be
honest though, you likely won’t ever do this manually—this is just a thought exercise
to show how it works.

Example 6-18. Manually creating and using a message bag

$messages = [
 'errors' => [
 'Something went wrong with edit 1!',
],
 'messages' => [
 'Edit 2 was successful.',
],
];
$messagebag = new \Illuminate\Support\MessageBag($messages);

// Check for errors; if there are any, decorate and echo
if ($messagebag->has('errors')) {
 echo '<ul id="errors">';
 foreach ($messagebag->get('errors', ':message') as $error) {
 echo $error;
 }
 echo '';
}

Message bags are also closely connected to Laravel’s validators (you’ll learn more
about these in “Validation” on page 189): when validators return errors, they actually
return an instance of MessageBag, which you can then pass to your view or attach to a
redirect using redirect('route')->withErrors($messagebag).

Laravel passes an empty instance of MessageBag to every view, assigned to the vari‐
able $errors; if you’ve flashed a message bag using withErrors() on a redirect, it will
get assigned to that $errors variable instead. That means every view can always
assume it has an $errors MessageBag it can check wherever it handles validation,
which leads to Example 6-19 as a common snippet developers place on every page.

Example 6-19. Error bag snippet

// partials/errors.blade.php
@if ($errors->any())
 <div class="alert alert-danger">

Message Bags | 173

 @foreach ($errors as $error)
 {{ $error }}
 @endforeach

 </div>
@endif

Missing $errors Variable

If you have any routes that aren’t under the web middleware group,
they won’t have the session middleware, which means they won’t
have this $errors variable available.

Named Error Bags
Sometimes you need to differentiate message bags not just by key (notices versus
errors) but also by component. Maybe you have a login form and a signup form on
the same page; how do you differentiate them?

When you send errors along with a redirect using withErrors(), the second parame‐
ter is the name of the bag: redirect('dashboard')->withErrors($validator,
'login'). Then, on the dashboard, you can use $errors->login to call all of the
methods you saw before: any(), count(), and more.

String Helpers, Pluralization, and Localization
As developers, we tend to look at blocks of text as big placeholder divs, waiting for
the client to put real content into them. Seldom are we involved in any logic inside
these blocks.

But there are a few circumstances where you’ll be grateful for the tools Laravel pro‐
vides for string manipulation.

The String Helpers and Pluralization
Laravel has a series of helpers for manipulating strings. They’re available as methods
on the Str class (e.g., Str::plural()), but most also have a global helper function
(e.g., str_plural()).

The Laravel documentation covers all of them in detail, but here are a few of the most
commonly used string helpers:

e()

A shortcut for html_entities(); encodes all HTML entities for safety.

174 | Chapter 6: Frontend Components

http://bit.ly/2HQKaFC

starts_with(), ends_with(), str_contains()
Check a string (first parameter) to see if it starts with, ends with, or contains
another string (second parameter).

str_is()

Checks whether a string (second parameter) matches a particular pattern (first
parameter)—for example, foo* will match foobar and foobaz.

str_slug()

Converts a string to a URL-type slug with hyphens.

str_plural(word, count), str_singular()
Pluralizes a word or singularizes it; English-only (e.g., str_plural('dog')
returns dogs; str_plural('dog', 1')) returns dog).

camel_case(), kebab_case(), snake_case(), studly_case(), title_case()
Convert a provided string to a different capitalization “case”.

str_after(), str_before(), str_limit()
Trim a string and provide a substring. str_after() returns everything after a
given string and str_before() everything before the given string (both accept
the full string as the first parameter and the string you’re using to cut as the sec‐
ond). str_limit() truncates a string (first parameter) to a given number of char‐
acters (second parameter).

Localization
Localization allows you to define multiple languages and mark any strings as targets
for translation. You can set a fallback language, and even handle pluralization varia‐
tions.

In Laravel, you’ll need to set an “application locale” at some point during the page
load so the localization helpers know which bucket of translations to pull from. Each
“locale” is usually connected to a translation, and will often look like “en” (for
English). You’ll do this with App::setLocale($localeName), and you’ll likely put it
in a service provider. For now you can just put it in the boot() method of
AppServiceProvider, but you may want to create a LocaleServiceProvider if you
end up with more than just this one locale-related binding.

Setting the Locale for Each Request
It can be confusing at first to work out how Laravel “knows” the user’s locale, or
provides translations. Most of that work is down to you as the developer. Let’s look at
a likely scenario.

String Helpers, Pluralization, and Localization | 175

You’ll probably have some functionality allowing the user to choose a locale, or possi‐
bly attempting to automatically detect it. Either way, your application will determine
the locale, and then you’ll store that in a URL parameter or a session cookie. Then
your service provider—something like a LocaleServiceProvider, maybe—will grab
that key and set it as a part of Laravel’s bootstrap.

So maybe your user is at http://myapp.com/es/contacts. Your LocaleServiceProvider
will grab that es string and then run App::setLocale('es'). Going forward, every
time you ask for a translation of a string, Laravel will look for the Spanish (es means
Español) version of that string, which you will need to have defined somewhere.

You can define your fallback locale in config/app.php, where you should find a
fallback_locale key. This allows you to define a default language for your applica‐
tion, which Laravel will use if it can’t find a translation for the requested locale.

Basic localization

So, how do we call for a translated string? There’s a helper function, __($key), that
will pull the string for the current locale for the passed key or, if it doesn’t exist, grab it
from the default locale. In Blade you can also use the @lang() directive. Example 6-20
demonstrates how a basic translation works. We’ll use the example of a “back to the
dashboard” link at the top of a detail page.

Example 6-20. Basic use of __()

// Normal PHP
<?php echo __('navigation.back'); ?>

// Blade
{{ __('navigation.back') }}

// Blade directive
@lang('navigation.back')

Let’s assume we are using the es locale right now. Laravel will look for a file in resour‐
ces/lang/es/navigation.php, which it will expect to return an array. It’ll look for a back
key on that array, and if it exists, it’ll return its value. Take a look at Example 6-21 for
a sample.

Example 6-21. Using a translation

// resources/lang/es/navigation.php
return [
 'back' => 'Volver al panel',
];

176 | Chapter 6: Frontend Components

// routes/web.php
Route::get('/es/contacts/show/{id}', function () {
 // Setting it manually, for this example, instead of in a service provider
 App::setLocale('es');
 return view('contacts.show');
});

// resources/views/contacts/show.blade.php
{{ __('navigation.back') }}

The Translation Helper Prior to Laravel 5.4

In projects running versions of Laravel prior to 5.4, the __() helper
isn’t available. You will instead have to use the trans() helper,
which accesses an older translation system that works similarly to
what we’re describing here, but can’t access the JSON translation
system.

Parameters in localization
The preceding example was relatively simple. Let’s dig into some that are more com‐
plex. What if we want to define which dashboard we’re returning to? Take a look at
Example 6-22.

Example 6-22. Parameters in translations

// resources/lang/en/navigation.php
return [
 'back' => 'Back to :section dashboard',
];

// resources/views/contacts/show.blade.php
{{ __('navigation.back', ['section' => 'contacts']) }}

As you can see, prepending a word with a colon (:section) marks it as a placeholder
that can be replaced. The second, optional, parameter of __() is an array of values to
replace the placeholders with.

Pluralization in localization
We already covered pluralization, so now just imagine you’re defining your own plu‐
ralization rules. There are two ways to do it; we’ll start with the simplest, as shown in
Example 6-23.

Example 6-23. Defining a simple translation with an option for pluralization

// resources/lang/en/messages.php
return [

String Helpers, Pluralization, and Localization | 177

 'task-deletion' => 'You have deleted a task|You have successfully deleted tasks',
];

// resources/views/dashboard.blade.php
@if ($numTasksDeleted > 0)
 {{ trans_choice('messages.task-deletion', $numTasksDeleted) }}
@endif

As you can see, we have a trans_choice() method, which takes the count of items
affected as its second parameter; from this it will determine which string to use.

You can also use any translation definitions that are compatible with Symfony’s much
more complex Translation component; see Example 6-24 for an example.

Example 6-24. Using the Symfony’s Translation component

// resources/lang/es/messages.php
return [
 'task-deletion' => "{0} You didn't manage to delete any tasks.|" .
 "[1,4] You deleted a few tasks.|" .
 "[5,Inf] You deleted a whole ton of tasks.",
];

Storing the default string as the key with JSON
One common difficulty with localization is that it’s hard to ensure there’s a good sys‐
tem for defining key namespacing—for example, remembering a key nested three or
four levels deep or being unsure which key a phrase used twice in the site should use.

An alternative to the slug key/string value pair system is to store your translations
using your primary language string as the key, instead of a made-up slug. You can
indicate to Laravel that you’re working this way by storing your translation files as
JSON in the resources/lang directory, with the filename reflecting the locale
(Example 6-25).

Example 6-25. Using JSON translations and the __() helper

// In Blade
{{ __('View friends list') }}

// resources/lang/es.json
{
 'View friends list': 'Ver lista de amigos'
}

This is taking advantage of the fact that the __() translation helper, if it can’t find a
matching key for the current language, will just display the key. If your key is the

178 | Chapter 6: Frontend Components

string in your app’s default language, that’s a much more reasonable fallback than, for
example, widgets.friends.title.

JSON Translations Unavailable Prior to Laravel 5.4

The JSON string translation format is only available in Laravel 5.4
and later.

Testing
In this chapter we focused primarily on Laravel’s frontend components. These are less
likely the objects of unit tests, but they may at times be used in your integration tests.

Testing Message and Error Bags
There are two primary ways of testing messages passed along with message and error
bags. First, you can perform a behavior in your application tests that sets a message
that will eventually be displayed somewhere, then redirect to that page and assert that
the appropriate message is shown.

Second, for errors (which is the most common use case), you can assert the session
has errors with $this->assertSessionHasErrors($bindings = []). Take a look at
Example 6-26 to see what this might look like.

Example 6-26. Asserting the session has errors

public function test_missing_email_field_errors()
{
 $this->post('person/create', ['name' => 'Japheth']);
 $this->assertSessionHasErrors(['email']);
}

In order for Example 6-26 to pass, you’ll need to add input validation to that route.
We’ll cover this in Chapter 7.

Translation and Localization
The simplest way to test localization is with application tests. Set the appropriate con‐
text (whether by URL or session), “visit” the page with get(), and assert that you see
the appropriate content.

Testing | 179

TL;DR
As a full-stack framework, Laravel provides tools and components for the frontend as
well as the backend.

Mix is a layer in front of Webpack that makes common tasks and configurations
much simpler. Mix makes it easy to use popular CSS pre- and post-processors, com‐
mon JavaScript processing steps, and much more.

Laravel also offers other internal tools that target the frontend, including tools for
implementing pagination, message and error bags, and localization.

180 | Chapter 6: Frontend Components

CHAPTER 7

Collecting and Handling User Data

Websites that benefit from a framework like Laravel often don’t just serve static con‐
tent. Many deal with complex and mixed data sources, and one of the most common
(and most complex) of these sources is user input in its myriad forms: URL paths,
query parameters, POST data, and file uploads.

Laravel provides a collection of tools for gathering, validating, normalizing, and fil‐
tering user-provided data. We’ll look at those here.

Injecting a Request Object
The most common tool for accessing user data in Laravel is injecting an instance of
the Illuminate\Http\Request object. It offers easy access to all of the ways users
can provide input to your site: POSTed form data or JSON, GET requests (query
parameters), and URL segments.

Other Options for Accessing Request Data

There’s also a request() global helper and a Request facade, both
of which expose the same methods. Each of these options exposes
the entire Illuminate Request object, but for now we’re only going
to cover the methods that specifically relate to user data.

Since we’re planning on injecting a Request object, let’s take a quick look at how to
get the $request object we’ll be calling all these methods on:

Route::post('form', function (Illuminate\Http\Request $request) {
 // $request->etc()
});

181

$request->all()
Just like the name suggests, $request->all() gives you an array containing all of the
input the user has provided, from every source. Let’s say, for some reason, you deci‐
ded to have a form POST to a URL with a query parameter—for example, sending a
POST to http://myapp.com/signup?utm=12345. Take a look at Example 7-1 to see what
you’d get from $request->all(). (Note that $request->all() also contains informa‐
tion about any files that were uploaded, but we’ll cover that later in the chapter.)

Example 7-1. $request->all()

<!-- GET route form view at /get-route -->
<form method="post" action="/signup?utm=12345">
 @csrf
 <input type="text" name="first_name">
 <input type="submit">
</form>

// routes/web.php
Route::post('signup', function (Request $request) {
 var_dump($request->all());
});

// Outputs:
/**
 * [
 * '_token' => 'CSRF token here',
 * 'first_name' => 'value',
 * 'utm' => 12345,
 *]
 */

$request->except() and $request->only()
$request->except() provides the same output as $request->all(), but you can
choose one or more fields to exclude—for example, _token. You can pass it either a
string or an array of strings.

Example 7-2 shows what it looks like when we use $request->except() on the same
form as in Example 7-1.

Example 7-2. $request->except()

Route::post('post-route', function (Request $request) {
 var_dump($request->except('_token'));
});

// Outputs:
/**

182 | Chapter 7: Collecting and Handling User Data

 * [
 * 'firstName' => 'value',
 * 'utm' => 12345
 *]
 */

$request->only() is the inverse of $request->except(), as you can see in
Example 7-3.

Example 7-3. $request->only()

Route::post('post-route', function (Request $request) {
 var_dump($request->only(['firstName', 'utm']));
});

// Outputs:
/**
 * [
 * 'firstName' => 'value',
 * 'utm' => 12345
 *]
 */

$request->has()
With $request->has() you can detect whether a particular piece of user input is
available to you. Check out Example 7-4 for an analytics example with our utm query
string parameter from the previous examples.

Example 7-4. $request->has()

// POST route at /post-route
if ($request->has('utm')) {
 // Do some analytics work
}

$request->input()
Whereas $request->all(), $request->except(), and $request->only() operate on
the full array of input provided by the user, $request->input() allows you to get the
value of just a single field. Example 7-5 provides an example. Note that the second
parameter is the default value, so if the user hasn’t passed in a value, you can have a
sensible (and nonbreaking) fallback.

Injecting a Request Object | 183

Example 7-5. $request->input()

Route::post('post-route', function (Request $request) {
 $userName = $request->input('name', 'Matt');
});

$request->method() and ->isMethod()
$request->method() returns the HTTP verb for the request, and $request-
>isMethod() checks whether it matches the specified verb. Example 7-6 illustrates
their use.

Example 7-6. $request->method() and $request->isMethod()

$method = $request->method();

if ($request->isMethod('patch')) {
 // Do something if request method is PATCH
}

Array Input
Laravel also provides convenience helpers for accessing data from array input. Just
use the “dot” notation to indicate the steps of digging into the array structure, like in
Example 7-7.

Example 7-7. Dot notation to access array values in user data

<!-- GET route form view at /employees/create -->
<form method="post" action="/employees/">
 @csrf
 <input type="text" name="employees[0][firstName]">
 <input type="text" name="employees[0][lastName]">
 <input type="text" name="employees[1][firstName]">
 <input type="text" name="employees[1][lastName]">
 <input type="submit">
</form>

// POST route at /employees
Route::post('employees', function (Request $request) {
 $employeeZeroFirstName = $request->input('employees.0.firstName');
 $allLastNames = $request->input('employees.*.lastName');
 $employeeOne = $request->input('employees.1');
 var_dump($employeeZeroFirstname, $allLastNames, $employeeOne);
});

// If forms filled out as "Jim" "Smith" "Bob" "Jones":
// $employeeZeroFirstName = 'Jim';

184 | Chapter 7: Collecting and Handling User Data

// $allLastNames = ['Smith', 'Jones'];
// $employeeOne = ['firstName' => 'Bob', 'lastName' => 'Jones'];

JSON Input (and $request->json())
So far we’ve covered input from query strings (GET) and form submissions (POST). But
there’s another form of user input that’s becoming more common with the advent of
JavaScript SPAs: the JSON request. It’s essentially just a POST request with the body set
to JSON instead of a traditional form POST.

Let’s take a look at what it might look like to submit some JSON to a Laravel route,
and how to use $request->input() to pull out that data (Example 7-8).

Example 7-8. Getting data from JSON with $request->input()

POST /post-route HTTP/1.1
Content-Type: application/json

{
 "firstName": "Joe",
 "lastName": "Schmoe",
 "spouse": {
 "firstName": "Jill",
 "lastName":"Schmoe"
 }
}

// Post-route
Route::post('post-route', function (Request $request) {
 $firstName = $request->input('firstName');
 $spouseFirstname = $request->input('spouse.firstName');
});

Since $request->input() is smart enough to pull user data from GET, POST, or JSON,
you may wonder why Laravel even offers $request->json(). There are two reasons
you might prefer $request->json(). First, you might want to just be more explicit to
other programmers working on your project about where you’re expecting the data to
come from. And second, if the POST doesn’t have the correct application/json head‐
ers, $request->input() won’t pick it up as JSON, but $request->json() will.

Facade Namespaces, the request() Global Helper,
and Injecting $request

Any time you’re using facades inside of namespaced classes (e.g., controllers), you’ll
have to add the full facade path to the import block at the top of your file (e.g., use
Illuminate\Support\Facades\Request).

Injecting a Request Object | 185

Because of this, several of the facades also have a companion global helper function. If
these helper functions are run with no parameters, they expose the same syntax as the
facade (e.g., request()->has() is the same as Request::has()). They also have a
default behavior for when you pass them a parameter (e.g., request('firstName') is
a shortcut to request()->input('firstName')).

With Request, we’ve been covering injecting an instance of the Request object, but
you could also use the Request facade or the request() global helper. Take a look at
Chapter 10 to learn more.

Route Data
It might not be the first thing you think of when you imagine “user data,” but the URL
is just as much user data as anything else in this chapter.

There are two primary ways you’ll get data from the URL: via Request objects and via
route parameters.

From Request
Injected Request objects (and the Request facade and the request() helper) have
several methods available to represent the state of the current page’s URL, but right
now let’s focus on at getting information about the URL segments.

If you’re not familiar with the idea, each group of characters after the domain in a
URL is called a segment. So, http://www.myapp.com/users/15/ has two segments: users
and 15.

As you can probably guess, we have two methods available to us:
$request->segments() returns an array of all segments, and $request->

segment($segmentId) allows us to get the value of a single segment. Note that
segments are returned on a 1-based index, so in the preceding example, $request->
segment(1) would return users.

Request objects, the Request facade, and the request() global helper provide quite a
few more methods to help us get data out of the URL. To learn more, check out
Chapter 10.

From Route Parameters
The other primary way we get data about the URL is from route parameters, which
are injected into the controller method or closure that is serving a current route, as
shown in Example 7-9.

186 | Chapter 7: Collecting and Handling User Data

Example 7-9. Getting URL details from route parameters

// routes/web.php
Route::get('users/{id}', function ($id) {
 // If the user visits myapp.com/users/15/, $id will equal 15
});

To learn more about routes and route binding, check out Chapter 3.

Uploaded Files
We’ve talked about different ways to interact with users’ text input, but there’s also the
matter of file uploads to consider. Request objects provide access to any uploaded files
using the $request->file() method, which takes the file’s input name as a parame‐
ter and returns an instance of Symfony\Component\HttpFoundation\File\Uploaded
File. Let’s walk through an example. First, our form, in Example 7-10.

Example 7-10. A form to upload files

<form method="post" enctype="multipart/form-data">
 @csrf
 <input type="text" name="name">
 <input type="file" name="profile_picture">
 <input type="submit">
</form>

Now let’s take a look at what we get from running $request->all(), as shown in
Example 7-11. Note that $request->input('profile_picture') will return null; we
need to use $request->file('profile_picture') instead.

Example 7-11. The output from submitting the form in Example 7-10

Route::post('form', function (Request $request) {
 var_dump($request->all());
});

// Output:
// [
// "_token" => "token here",
// "name" => "asdf",
// "profile_picture" => UploadedFile {},
//]

Route::post('form', function (Request $request) {
 if ($request->hasFile('profile_picture')) {
 var_dump($request->file('profile_picture'));
 }
});

Uploaded Files | 187

// Output:
// UploadedFile (details)

Validating a File Upload
As you can see in Example 7-11, we have access to $request->hasFile() to see
whether the user uploaded a file. We can also check whether the file upload was suc‐
cessful by using isValid() on the file itself:

if ($request->file('profile_picture')->isValid()) {
 //
}

Because isValid() is called on the file itself, it will error if the user didn’t upload a
file. So, to check for both, you’d need to check for the file’s existence first:

if ($request->hasFile('profile_picture') &&
 $request->file('profile_picture')->isValid()) {
 //
}

Symfony’s UploadedFile class extends PHP’s native SplFileInfo with methods
allowing you to easily inspect and manipulate the file. This list isn’t exhaustive, but it
gives you a taste of what you can do:

• guessExtension()

• getMimeType()

• store($path, $storageDisk = default disk)

• storeAs($path, $newName, $storageDisk = default disk)

• storePublicly($path, $storageDisk = default disk)

• storePubliclyAs($path, $newName, $storageDisk = default disk)

• move($directory, $newName = null)

• getClientOriginalName()

• getClientOriginalExtension()

• getClientMimeType()

• guessClientExtension()

• getClientSize()

• getError()

• isValid()

188 | Chapter 7: Collecting and Handling User Data

As you can see, most of the methods have to do with getting information about the
uploaded file, but there’s one that you’ll likely use more than all the others: store()
(available since Laravel 5.3), which takes the file that was uploaded with the request
and stores it in a specified directory on your server. Its first parameter is the destina‐
tion directory, and the optional second parameter will be the storage disk (s3, local,
etc.) to use to store the file. You can see a common workflow in Example 7-12.

Example 7-12. Common file upload workflow

if ($request->hasFile('profile_picture')) {
 $path = $request->profile_picture->store('profiles', 's3');
 auth()->user()->profile_picture = $path;
 auth()->user()->save();
}

If you need to specify the filename, you can use storeAs() instead of store(). The
first parameter is still the path; the second is the filename, and the optional third
parameter is the storage disk to use.

Proper Form Encoding for File Uploads

If you get null when you try to get the contents of a file from your
request, you might’ve forgotten to set the encoding type on your
form. Make sure to add the attribute enctype="multipart/form-
data" on your form:

<form method="post" enctype="multipart/form-data">

Validation
Laravel has quite a few ways you can validate incoming data. We’ll cover form
requests in the next section, so that leaves us with two primary options: validating
manually or using the validate() method on the Request object. Let’s start with the
simpler, and more common, validate().

validate() on the Request Object
The Request object has a validate() method that provides a convenient shortcut for
the most common validation workflow. Take a look at Example 7-13.

Example 7-13. Basic usage of request validation

// routes/web.php
Route::get('recipes/create', 'RecipesController@create');
Route::post('recipes', 'RecipesController@store');

Validation | 189

// app/Http/Controllers/RecipesController.php
class RecipesController extends Controller
{
 public function create()
 {
 return view('recipes.create');
 }

 public function store(Request $request)
 {
 $request->validate([
 'title' => 'required|unique:recipes|max:125',
 'body' => 'required'
]);

 // Recipe is valid; proceed to save it
 }
}

We only have four lines of code running our validation here, but they’re doing a lot.

First, we explicitly define the fields we expect and apply rules (here separated by the
pipe character, |) to each individually.

Next, the validate() method checks the incoming data from the $request and
determines whether or not it is valid.

If the data is valid, the validate() method ends and we can move on with the con‐
troller method, saving the data or whatever else.

But if the data isn’t valid, it throws a ValidationException. This contains instruc‐
tions to the router about how to handle this exception. If the request is from Java‐
Script (or if it’s requesting JSON as a response), the exception will create a JSON
response containing the validation errors. If not, the exception will return a redirect
to the previous page, together with all of the user input and the validation errors—
perfect for repopulating a failed form and showing some errors.

Calling the validate() Method on the Controller Prior to Laravel 5.5

In projects running versions of Laravel prior to 5.5, this validation
shortcut is called on the controller (running $this->validate())
instead of on the request.

190 | Chapter 7: Collecting and Handling User Data

More on Laravel’s Validation Rules
In our examples here (like in the docs) we’re using the “pipe” syntax: 'fieldname':
'rule|otherRule|anotherRule'. But you can also use the array syntax to do the
same thing: 'fieldname': ['rule', 'otherRule', 'anotherRule'].

Additionally, you can validate nested properties. This matters if you use HTML’s array
syntax, which allows you to, for example, have multiple “users” on an HTML form,
each with an associated name. Here’s how you validate that:

$request->validate([
 'user.name' => 'required',
 'user.email' => 'required|email',
]);

We don’t have enough space to cover every possible validation rule here, but here are
a few of the most common rules and their functions:

Require the field
required; required_if:anotherField,equalToThisValue;
required_unless:anotherField,equalToThisValue

Field must contain certain types of character
alpha; alpha_dash; alpha_num; numeric; integer

Field must contain certain patterns
email; active_url; ip

Dates
after:date; before:date (date can be any valid string that strtotime() can
handle)

Numbers
between:min,max; min:num; max:num; size:num (size tests against length for
strings, value for integers, count for arrays, or size in KB for files)

Image dimensions
dimensions:min_width=XXX; can also use and/or combine with max_width,
min_height, max_height, width, height, and ratio

Databases
exists:tableName; unique:tableName (expects to look in the same table col‐
umn as the field name; see the docs for how to customize)

Validation | 191

http://bit.ly/2eMLZDl

Manual Validation
If you are not working in a controller, or if for some other reason the previously
described flow is not a good fit, you can manually create a Validator instance using
the Validator facade and check for success or failure like in Example 7-14.

Example 7-14. Manual validation

Route::get('recipes/create', function () {
 return view('recipes.create');
});

Route::post('recipes', function (Illuminate\Http\Request $request) {
 $validator = Validator::make($request->all(), [
 'title' => 'required|unique:recipes|max:125',
 'body' => 'required'
]);

 if ($validator->fails()) {
 return redirect('recipes/create')
 ->withErrors($validator)
 ->withInput();
 }

 // Recipe is valid; proceed to save it
});

As you can see, we create an instance of a validator by passing it our input as the first
parameter and the validation rules as the second parameter. The validator exposes a
fails() method that we can check against and can be passed into the withErrors()
method of the redirect.

Custom Rule Objects
If the validation rule you need doesn’t exist in Laravel, you can create your own. To
create a custom rule, run php artisan make:rule RuleName and then edit that file in
app/Rules/{RuleName}.php.

You’ll get two methods in your rule out of the box: passes() and message().
passes() should accept an attribute name as the first parameter and the user-
provided value as the second, and then return a Boolean indicating whether or not
this input passes this validation rule. message() should return the validation error
message; you can use :attribute as a placeholder in your message for the attribute
name.

Take a look at Example 7-15 as an example.

192 | Chapter 7: Collecting and Handling User Data

Example 7-15. A sample custom rule

class WhitelistedEmailDomain implements Rule
{
 public function passes($attribute, $value)
 {
 return in_array(str_after($value, '@'), ['tighten.co']);
 }

 public function message()
 {
 return 'The :attribute field is not from a whitelisted email provider.';
 }
}

To use this rule, just pass an instance of the rule object to your validator:

$request->validate([
 'email' => new WhitelistedEmailDomain,
]);

In projects running versions of Laravel prior to 5.5, custom val‐
idation rules have to be written using Validator::extend().

You can learn more about this in the docs.

Displaying Validation Error Messages
We’ve already covered much of this in Chapter 6, but here’s a quick refresher on how
to display errors from validation.

The validate() method on requests (and the withErrors() method on redirects
that it relies on) flashes any errors to the session. These errors are made available to
the view you’re being redirected to in the $errors variable. And remember that as a
part of Laravel’s magic, that $errors variable will be available every time you load the
view, even if it’s just empty, so you don’t have to check if it exists with isset().

That means you can do something like Example 7-16 on every page.

Example 7-16. Echo validation errors

@if ($errors->any())
 <ul id="errors">
 @foreach ($errors->all() as $error)
 {{ $error }}
 @endforeach

@endif

Validation | 193

http://bit.ly/2Wl87J1

Form Requests
As you build out your applications, you might start noticing some patterns in your
controller methods. There are certain patterns that are repeated—for example, input
validation, user authentication and authorization, and possible redirects. If you find
yourself wanting a structure to normalize and extract these common behaviors out of
your controller methods, you may be interested in Laravel’s form requests.

A form request is a custom request class that is intended to map to the submission of
a form, and the request takes the responsibility for validating the request, authorizing
the user, and optionally redirecting the user upon a failed validation. Each form
request will usually, but not always, explicitly map to a single HTTP request—for
example, “Create Comment.”

Creating a Form Request
You can create a new form request from the command line:

php artisan make:request CreateCommentRequest

You now have a form request object available at app/Http/Requests/
CreateCommentRequest.php.

Every form request class provides either one or two public methods. The first is
rules(), which needs to return an array of validation rules for this request. The sec‐
ond (optional) method is authorize(); if this returns true, the user is authorized to
perform this request, and if false, the user is rejected. Take a look at Example 7-17 to
see a sample form request.

Example 7-17. Sample form request

<?php

namespace App\Http\Requests;

use App\BlogPost;
use Illuminate\Foundation\Http\FormRequest;

class CreateCommentRequest extends FormRequest
{
 public function authorize()
 {
 $blogPostId = $this->route('blogPost');

 return auth()->check() && BlogPost::where('id', $blogPostId)
 ->where('user_id', auth()->id())->exists();
 }

194 | Chapter 7: Collecting and Handling User Data

 public function rules()
 {
 return [
 'body' => 'required|max:1000',
];
 }
}

The rules() section of Example 7-17 is pretty self-explanatory, but let’s look at
authorize() briefly.

We’re grabbing the segment from the route named blogPost. That’s implying the
route definition for this route probably looks a bit like this: Route::post('blog
Posts/blogPost', function () // Do stuff). As you can see, we named the route
parameter blogPost, which makes it accessible in our Request using $this-
>route('blogPost').

We then look at whether the user is logged in and, if so, whether any blog posts exist
with that identifier that are owned by the currently logged-in user. You’ve already
learned some easier ways to check ownership in Chapter 5, but we’ll keep it more
explicit here to keep it clean. We’ll cover what implications this has shortly, but the
important thing to know is that returning true means the user is authorized to per‐
form the specified action (in this case, creating a comment), and false means the
user is not authorized.

Requests Extend Userland Request Prior to Laravel 5.3

In projects running versions of Laravel prior to 5.3, form requests
extended App\Http\Requests\Request instead of Illuminate

\Foundation\Http\FormRequest.

Using a Form Request
Now that we’ve created a form request object, how do we use it? It’s a little bit of Lara‐
vel magic. Any route (closure or controller method) that typehints a form request as
one of its parameters will benefit from the definition of that form request.

Let’s try it out, in Example 7-18.

Example 7-18. Using a form request

Route::post('comments', function (App\Http\Requests\CreateCommentRequest $request) {
 // Store comment
});

Form Requests | 195

You might be wondering where we call the form request, but Laravel does it for us. It
validates the user input and authorizes the request. If the input is invalid, it’ll act just
like the Request object’s validate() method, redirecting the user to the previous
page with their input preserved and with the appropriate error messages passed
along. And if the user is not authorized, Laravel will return a 403 Forbidden error and
not execute the route code.

Eloquent Model Mass Assignment
Until now, we’ve been looking at validating at the controller level, which is absolutely
the best place to start. But you can also filter the incoming data at the model level.

It’s a common (but not recommended) pattern to pass the entirety of a form’s input
directly to a database model. In Laravel, that might look like Example 7-19.

Example 7-19. Passing the entirety of a form to an Eloquent model

Route::post('posts', function (Request $request) {
 $newPost = Post::create($request->all());
});

We’re assuming here that the end user is kind and not malicious, and has kept only
the fields we want them to edit—maybe the post title or body.

But what if our end user can guess, or discern, that we have an author_id field on
that posts table? What if they used their browser tools to add an author_id field and
set the ID to be someone else’s ID, and impersonated the other person by creating
fake blog posts attributed to them?

Eloquent has a concept called “mass assignment” that allows you to either whitelist
fields that should be fillable (using the model’s $fillable property) or blacklist fields
that shouldn’t be fillable (using the model’s $guarded property) by passing them in an
array to create() or update(). See “Mass assignment” on page 124 for more infor‐
mation.

In our example, we might want to fill out the model like in Example 7-20 to keep our
app safe.

Example 7-20. Guarding an Eloquent model from mischievous mass assignment

<?php

namespace App;

use Illuminate\Database\Eloquent\Model;

196 | Chapter 7: Collecting and Handling User Data

class Post extends Model
{
 // Disable mass assignment on the author_id field
 protected $guarded = ['author_id'];
}

By setting author_id to guarded, we ensure that malicious users will no longer be
able to override the value of this field by manually adding it to the contents of a form
that they’re sending to our app.

Double Protection Using $request->only()

While it’s important to do a good job of protecting our models
from mass assignment, it’s also worth being careful on the assign‐
ing end. Rather than using $request->all(), consider using
$request->only() so you can specify which fields you’d like to
pass into your model:

Route::post('posts', function (Request $request) {
 $newPost = Post::create($request->only([
 'title',
 'body',
]));
});

{{ Versus {!!
Any time you display content on a web page that was created by a user, you need to
guard against malicious input, such as script injection.

Let’s say you allow your users to write blog posts on your site. You probably don’t
want them to be able to inject malicious JavaScript that will run in your unsuspecting
visitors’ browsers, right? So, you’ll want to escape any user input that you show on the
page to avoid this.

Thankfully, this is almost entirely covered for you. If you use Laravel’s Blade templat‐
ing engine, the default “echo” syntax ({{ $stuffToEcho }}) runs the output through
htmlentities() (PHP’s best way of making user content safe to echo) automatically.
You actually have to do extra work to avoid escaping the output, by using the {!!
$stuffToEcho !!} syntax.

Testing
If you’re interested in testing your interactions with user input, you’re probably most
interested in simulating valid and invalid user input and ensuring that if the input is
invalid the user is redirected, and if the input is valid it ends up in the proper place
(e.g., the database).

{{ Versus {!! | 197

Laravel’s end-to-end application testing makes this simple.

Requiring BrowserKit After Laravel 5.4

If you want to work with test specific user interactions on the page
and with your forms, and you’re working in a project running Lar‐
avel 5.4 or later, you’ll want to pull in Laravel’s BrowserKit testing
package. Simply require the package:

composer require laravel/browser-kit-testing --dev

and modify your application’s base TestCase class to extend
Laravel\BrowserKitTesting\TestCase instead of Illuminate

\Foundation\Testing\TestCase.

Let’s start with an invalid route that we expect to be rejected, as in Example 7-21.

Example 7-21. Testing that invalid input is rejected

public function test_input_missing_a_title_is_rejected()
{
 $response = $this->post('posts', ['body' => 'This is the body of my post']);
 $response->assertRedirect();
 $response->assertSessionHasErrors();
}

Here we assert that after invalid input the user is redirected, with errors attached. You
can see we’re using a few custom PHPUnit assertions that Laravel adds here.

Different Names for Testing Methods Prior to Laravel 5.4

Prior to Laravel 5.4, the assertRedirect() assertion was named
assertRedirectedTo().

So, how do we test our route’s success? Check out Example 7-22.

Example 7-22. Testing that valid input is processed

public function test_valid_input_should_create_a_post_in_the_database()
{
 $this->post('posts', ['title' => 'Post Title', 'body' => 'This is the body']);
 $this->assertDatabaseHas('posts', ['title' => 'Post Title']);
}

Note that if you’re testing something using the database, you’ll need to learn more
about database migrations and transactions. More on that in Chapter 12.

198 | Chapter 7: Collecting and Handling User Data

Different Names for Testing Methods Prior to Laravel 5.4

In projects that are running versions of Laravel prior to 5.4,
assertDatabaseHas() should be replaced by seeInDatabase().

TL;DR
There are a lot of ways to get the same data: using the Request facade, using the
request() global helper, and injecting an instance of Illuminate\Http\Request.
Each exposes the ability to get all input, some input, or specific pieces of data, and
there can be some special considerations for files and JSON input.

URI path segments are also a possible source of user input, and they’re also accessible
via the request tools.

Validation can be performed manually with Validator::make(), or automatically
using the validate() request method or form requests. Each automatic tool, upon
failed validation, redirects the user to the previous page with all old input stored and
errors passed along.

Views and Eloquent models also need to be protected from nefarious user input. Pro‐
tect Blade views using the double curly brace syntax ({{ }}), which escapes user
input, and protect models by only passing specific fields into bulk methods using
$request->only() and by defining the mass assignment rules on the model itself.

TL;DR | 199

CHAPTER 8

Artisan and Tinker

From installation onward, modern PHP frameworks expect many interactions to take
place on the command line. Laravel provides three primary tools for command-line
interaction: Artisan, a suite of built-in command-line actions with the ability to add
more; Tinker, a REPL or interactive shell for your application; and the installer, which
we’ve already covered in Chapter 2.

An Introduction to Artisan
If you’ve been reading through this book chapter by chapter, you’ve already learned
how to use Artisan commands. They look something like this:

php artisan make:controller PostsController

If you look in the root folder of your application, you’ll see that artisan is actually just
a PHP file. That’s why you’re starting your call with php artisan; you’re passing that
file into PHP to be parsed. Everything after that is just passed into Artisan as argu‐
ments.

Symfony Console Syntax

Artisan is actually a layer on top of the Symfony Console compo‐
nent; so, if you’re familiar with writing Symfony Console com‐
mands, you should feel right at home.

Since the list of Artisan commands for an application can be changed by a package or
by the specific code of the application, it’s worth checking every new application you
encounter to see what commands are available.

201

http://bit.ly/2fVqOT8
http://bit.ly/2fVqOT8

To get a list of all available Artisan commands, you can run php artisan list from
the project root (although if you just run php artisan with no parameters, it will do
the same thing).

Basic Artisan Commands
There’s not enough space here to cover all of the Artisan commands, but we’ll cover
many of them. Let’s get started with the basic commands:

clear-compiled

Removes Laravel’s compiled class file, which is like an internal Laravel cache; run
this as a first resort when things are going wrong and you don’t know why

down, up
Puts your application in “maintenance mode” in order for you to fix an error, run
migrations, or whatever else and restore an application from maintenance mode,
respectively

dump-server (5.7+)
Starts the dump server (see “Laravel Dump Server” on page 218) to collect and
output dumped variables

env

Displays which environment Laravel is running in at the moment; it’s the equiva‐
lent of echoing app()->environment() in-app

help

Provides help for a command; for example, php artisan help commandName

migrate

Runs all database migrations

optimize

Clears and refreshes the configuration and route files

preset

Changes out the frontend scaffolding for another

serve

Pins up a PHP server at localhost:8000 (you can customize the host and/or
port with --host and --port)

tinker

Brings up the Tinker REPL, which we’ll cover later in this chapter

202 | Chapter 8: Artisan and Tinker

Changes to the Artisan Commands List Over time

The list of Artisan commands and their names have changed in
small ways over the lifetime of Laravel. I’ll try to note any time
they’ve changed, but everything here is current for Laravel 5.8. If
you’re not working in 5.8, the best way to see what’s available to you
is to run php artisan from your application.

Options
Before we cover the rest of the commands, let’s look at a few notable options you can
pass any time you run an Artisan command:

-q

Suppresses all output

-v, -vv, and -vvv
Specify the level of output verbosity (normal, verbose, and debug)

--no-interaction

Suppresses interactive questions, so the command won’t interrupt automated
processes running it

--env

Allows you to define which environment the Artisan command should operate in
(local, production, etc.).

--version

Shows you which version of Laravel your application is running on.

You’ve probably guessed from looking at these options that Artisan commands are
intended to be used much like basic shell commands: you might run them manually,
but they can also function as a part of some automated process at some point.

For example, there are many automated deploy processes that might benefit from cer‐
tain Artisan commands. You might want to run php artisan config:cache every
time you deploy an application. Flags like -q and --no-interaction ensure that your
deploy scripts, not attended by a human being, can keep running smoothly.

The Grouped Commands
The rest of the commands available out of the box are grouped by context. We won’t
cover them all here, but we’ll cover each context broadly:

Basic Artisan Commands | 203

app

This just contains app:name, which allows you to replace every instance of the
default top-level App\ namespace with a namespace of your choosing; for exam‐
ple, php artisan app:name MyApplication. I recommend avoiding this feature
and keeping your app’s root namespace as App.

auth

All we have here is auth:clear-resets, which flushes all of the expired pass‐
word reset tokens from the database.

cache

cache:clear clears the cache, cache:forget removes an individual item from
the cache, and cache:table creates a database migration if you plan to use the
database cache driver.

config

config:cache caches your configuration settings for faster lookup; to clear the
cache, use config:clear.

db

db:seed seeds your database, if you have configured database seeders.

event

event:generate builds missing event and event listener files based on the defini‐
tions in EventServiceProvider. You’ll learn more about events in Chapter 16.

key

key:generate creates a random application encryption key in your .env file.

Rerunning artisan key:generate Means Losing Some
Encrypted Data

If you run php artisan key:generate more than once on
your application, every currently logged-in user will be logged
out. Additionally, any data you have manually encrypted will
no longer be decryptable. To learn more, check out the article
“APP_KEY and You” by fellow Tightenite Jake Bathman.

make

make:auth scaffolds out the views and corresponding routes for a landing page, a
user dashboard, and login and register pages.

All the rest of the make: actions create a single item, and have parameters that
vary accordingly. To learn more about any individual command’s parameters, use
help to read its documentation.

204 | Chapter 8: Artisan and Tinker

http://bit.ly/2U972qd

For example, you could run php artisan help make:migration and learn that
you can pass --create=tableNameHere to create a migration that already has
the create table syntax in the file, as shown here: php artisan make:migration
create_posts_table --create=posts.

migrate

The migrate command used to run all migrations was mentioned earlier, but
there are several other migration-related commands. You can create the migra
tions table (to keep track of the migrations that are executed) with
migrate:install, reset your migrations and start from scratch with
migrate:reset, reset your migrations and run them all again with
migrate:refresh, roll back just one migration with migrate:rollback, drop all
tables and rerun all the migrations with migrate:fresh, or check the status of
your migrations with migrate:status.

notifications

notifications:table generates a migration that creates the table for database
notifications.

package

In versions of Laravel prior to 5.5, including a new Laravel-specific package in
your app requires registering it manually in config/app.php. However, in 5.5 it’s
possible for Laravel to “autodiscover” those packages so you don’t have to man‐
ually register them. package:discover rebuilds Laravel’s “discovered” manifest of
the service providers from your external packages.

queue

We’ll cover Laravel’s queues in Chapter 16, but the basic idea is that you can push
jobs up into remote queues to be executed one after another by a worker. This
command group provides all the tools you need to interact with your queues, like
queue:listen to start listening to a queue, queue:table to create a migration for
database-backed queues, and queue:flush to flush all failed queue jobs. There
are quite a few more, which you’ll learn about in Chapter 16.

route

If you run route:list, you’ll see the definitions of every route defined in the
application, including each route’s verb(s), path, name, controller/closure action,
and middleware. You can cache the route definitions for faster lookups with
route:cache and clear your cache with route:clear.

schedule

We’ll cover Laravel’s cron-like scheduler in Chapter 16, but in order for it to
work, you need to set the system cron to run schedule:run once a minute:

Basic Artisan Commands | 205

* * * * * php /home/myapp.com/artisan schedule:run >> /dev/null 2>&1

As you can see, this Artisan command is intended to be run regularly in order to
power a core Laravel service.

session

session:table creates a migration for applications using database-backed ses‐
sions.

storage

storage:link creates a symbolic link from public/storage to storage/app/public.
This is a common convention in Laravel apps, to make it easy to put user uploads
(or other files that commonly end up in storage/app) somewhere where they’ll be
accessible at a public URL.

vendor

Some Laravel-specific packages need to “publish” some of their assets, either so
that they can be served from your public directory or so that you can modify
them. Either way, these packages register these “publishable assets” with Laravel,
and when you run vendor:publish, it publishes them to their specified locations.

view

Laravel’s view rendering engine automatically caches your views. It usually does a
good job of handling its own cache invalidation, but if you ever notice it’s gotten
stuck, run view:clear to clear the cache.

Writing Custom Artisan Commands
Now that we’ve covered the Artisan commands that come with Laravel out of the box,
let’s talk about writing your own.

First, you should know: there’s an Artisan command for that! Running php artisan
make:command YourCommandName generates a new Artisan command in app/Console/
Commands/{YourCommandName}.php.

php artisan make:command

The command signature for make:command has changed a few
times. It was originally command:make, but for a while in 5.2 it

was console:make and then make:console.
Finally, in 5.3, it was settled: all of the generators are under the
make: namespace, and the command to generate new Artisan com‐
mands is now make:command.

206 | Chapter 8: Artisan and Tinker

Your first argument should be the class name of the command, and you can option‐
ally pass a --command parameter to define what the terminal command will be (e.g.,
appname:action). So, let’s do it:

php artisan make:command WelcomeNewUsers --command=email:newusers

Take a look at Example 8-1 to see what you’ll get.

Example 8-1. The default skeleton of an Artisan command

<?php

namespace App\Console\Commands;

use Illuminate\Console\Command;

class WelcomeNewUsers extends Command
{
 /**
 * The name and signature of the console command
 *
 * @var string
 */
 protected $signature = 'email:newusers';

 /**
 * The console command description
 *
 * @var string
 */
 protected $description = 'Command description';

 /**
 * Create a new command instance
 *
 * @return void
 */
 public function __construct()
 {
 parent::__construct();
 }

 /**
 * Execute the console command
 *
 * @return mixed
 */
 public function handle()
 {
 //

Writing Custom Artisan Commands | 207

 }
}

As you can see, it’s very easy to define the command signature, the help text it shows
in command lists, and the command’s behavior on instantiation (__construct())
and on execution (handle()).

Manually Binding Commands Prior to Laravel 5.5

In projects running versions of Laravel prior to 5.5, commands had
to be manually bound into app\Console\Kernel.php. If your app is
running an older version of Laravel, just add the fully qualified
class name for your command to the $commands array in that file
and it’ll be registered:

protected $commands = [
 \App\Console\Commands\WelcomeNewUsers::class,
];

A Sample Command
We haven’t covered mail or Eloquent yet in this chapter (see Chapter 15 for mail and
Chapter 5 for Eloquent), but the sample handle() method in Example 8-2 should
read pretty clearly.

Example 8-2. A sample Artisan command handle() method

...
class WelcomeNewUsers extends Command
{
 public function handle()
 {
 User::signedUpThisWeek()->each(function ($user) {
 Mail::to($user)->send(new WelcomeEmail);
 });
 }

Now every time you run php artisan email:newusers, this command will grab
every user that signed up this week and send them the welcome email.

If you would prefer injecting your mail and user dependencies instead of using
facades, you can typehint them in the command constructor, and Laravel’s container
will inject them for you when the command is instantiated.

Take a look at Example 8-3 to see what Example 8-2 might look like using depend‐
ency injection and extracting its behavior out to a service class.

208 | Chapter 8: Artisan and Tinker

Example 8-3. The same command, refactored

...
class WelcomeNewUsers extends Command
{
 public function __construct(UserMailer $userMailer)
 {
 parent::__construct();

 $this->userMailer = $userMailer
 }

 public function handle()
 {
 $this->userMailer->welcomeNewUsers();
 }

Keep It Simple
It is possible to call Artisan commands from the rest of your code, so you can use
them to encapsulate chunks of application logic.

However, the Laravel docs recommend instead packaging the application logic into a
service class and injecting that service into your command. Console commands are
seen as being similar to controllers: they’re not domain classes; they’re traffic cops
that just route incoming requests to the correct behavior.

Arguments and Options
The $signature property of the new command looks like it might just contain the
command name. But this property is also where you’ll define any arguments and
options for the command. There’s a specific, simple syntax you can use to add argu‐
ments and options to your Artisan commands.

Before we dig into that syntax, take a look at an example for some context:

protected $signature = 'password:reset {userId} {--sendEmail}';

Writing Custom Artisan Commands | 209

Arguments—required, optional, and/or with defaults
To define a required argument, surround it with braces:

password:reset {userId}

To make the argument optional, add a question mark:

password:reset {userId?}

To make it optional and provide a default, use:

password:reset {userId=1}

Options—required values, value defaults, and shortcuts

Options are similar to arguments, but they’re prefixed with -- and can be used with
no value. To add a basic option, surround it with braces:

password:reset {userId} {--sendEmail}

If your option requires a value, add an = to its signature:

password:reset {userId} {--password=}

And if you want to pass a default value, add it after the =:

password:reset {userId} {--queue=default}

Array arguments and array options
Both for arguments and for options, if you want to accept an array as input, use the
* character:

password:reset {userIds*}

password:reset {--ids=*}

Using array arguments and parameters looks a bit like Example 8-4.

Example 8-4. Using array syntax with Artisan commands

// Argument
php artisan password:reset 1 2 3

// Option
php artisan password:reset --ids=1 --ids=2 --ids=3

Array Arguments Must Be the Last Argument

Since an array argument captures every parameter after its defini‐
tion and adds them as array items, an array argument has to be the
last argument within an Artisan command’s signature.

210 | Chapter 8: Artisan and Tinker

Input descriptions
Remember how the built-in Artisan commands can give us more information about
their parameters if we use artisan help? We can provide that same information
about our custom commands. Just add a colon and the description text within the
curly braces, like in Example 8-5.

Example 8-5. Defining description text for Artisan arguments and options

protected $signature = 'password:reset
 {userId : The ID of the user}
 {--sendEmail : Whether to send user an email}';

Using Input
Now that we’ve prompted for this input, how do we use it in our command’s
handle() method? We have two sets of methods for retrieving the values of argu‐
ments and options.

argument() and arguments()

$this->arguments() returns an array of all arguments (the first array item will be the
command name). $this->argument() called with no parameters returns the same
response; the plural method, which I prefer, is just available for better readability, and
is only available after Laravel 5.3.

To get just the value of a single argument, pass the argument name as a parameter to
$this->argument(), as shown in Example 8-6.

Example 8-6. Using $this->arguments() in an Artisan command

// With definition "password:reset {userId}"
php artisan password:reset 5

// $this->arguments() returns this array
[
 "command": "password:reset",
 "userId": "5",
]

// $this->argument('userId') returns this string
"5"

option() and options()

$this->options() returns an array of all options, including some that will by default
be false or null. $this->option() called with no parameters returns the same

Writing Custom Artisan Commands | 211

response; again, the plural method, which I prefer, is just available for better readabil‐
ity and is only available after Laravel 5.3.

To get just the value of a single option, pass the argument name as a parameter to
$this->option(), as shown in Example 8-7.

Example 8-7. Using $this->options() in an Artisan command

// With definition "password:reset {--userId=}"
php artisan password:reset --userId=5

// $this->options() returns this array
[
 "userId" => "5",
 "help" => false,
 "quiet" => false,
 "verbose" => false,
 "version" => false,
 "ansi" => false,
 "no-ansi" => false,
 "no-interaction" => false,
 "env" => null,
]

// $this->option('userId') returns this string
"5"

Example 8-8 shows an Artisan command using argument() and option() in its
handle() method.

Example 8-8. Getting input from an Artisan command

public function handle()
{
 // All arguments, including the command name
 $arguments = $this->arguments();

 // Just the 'userId' argument
 $userid = $this->argument('userId');

 // All options, including some defaults like 'no-interaction' and 'env'
 $options = $this->options();

 // Just the 'sendEmail' option
 $sendEmail = $this->option('sendEmail');
}

212 | Chapter 8: Artisan and Tinker

Prompts
There are a few more ways to get user input from within your handle() code,
and they all involve prompting the user to enter information during the execution of
your command:

ask()

Prompts the user to enter freeform text:

$email = $this->ask('What is your email address?');

secret()

Prompts the user to enter freeform text, but hides the typing with asterisks:

$password = $this->secret('What is the DB password?');

confirm()

Prompts the user for a yes/no answer, and returns a Boolean:

if ($this->confirm('Do you want to truncate the tables?')) {
 //
}

All answers except y or Y will be treated as a “no.”

anticipate()

Prompts the user to enter freeform text, and provides autocomplete suggestions.
Still allows the user to type whatever they want:

$album = $this->anticipate('What is the best album ever?', [
 "The Joshua Tree", "Pet Sounds", "What's Going On"
]);

choice()

Prompts the user to choose one of the provided options. The last parameter is the
default if the user doesn’t choose:

$winner = $this->choice(
 'Who is the best football team?',
 ['Gators', 'Wolverines'],
 0
);

Note that the final parameter, the default, should be the array key. Since we
passed a nonassociative array, the key for Gators is 0. You could also key your
array, if you’d prefer:

$winner = $this->choice(
 'Who is the best football team?',
 ['gators' => 'Gators', 'wolverines' => 'Wolverines'],

Writing Custom Artisan Commands | 213

 'gators'
);

Output
During the execution of your command, you might want to write messages to
the user. The most basic way to do this is to use $this->info() to output basic green
text:

$this->info('Your command has run successfully.');

You also have available the comment() (orange), question() (highlighted teal),
error() (highlighted red), and line() (uncolored) methods to echo to the command
line.

Please note that the exact colors may vary from machine to machine, but they try to
be in line with the local machine’s standards for communicating to the end user.

Table output

The table() method makes it simple to create ASCII tables full of your data. Take a
look at Example 8-9.

Example 8-9. Outputting tables with Artisan commands

$headers = ['Name', 'Email'];

$data = [
 ['Dhriti', 'dhriti@amrit.com'],
 ['Moses', 'moses@gutierez.com'],
];

// Or, you could get similar data from the database:
$data = App\User::all(['name', 'email'])->toArray();

$this->table($headers, $data);

Note that Example 8-9 has two sets of data: the headers, and the data itself. Both con‐
tain two “cells” per “row”; the first cell in each row is the name, and the second is the
email. That way the data from the Eloquent call (which is constrained to pull only
name and email) matches up with the headers.

Take a look at Example 8-10 to see what the table output looks like.

214 | Chapter 8: Artisan and Tinker

Example 8-10. Sample output of an Artisan table

+---------+--------------------+
| Name | Email |
+---------+--------------------+
| Dhriti | dhriti@amrit.com |
| Moses | moses@gutierez.com |
+---------+--------------------+

Progress bars

If you’ve ever run npm install, you’ve seen a command-line progress bar before.
Let’s build one in Example 8-11.

Example 8-11. Sample Artisan progress bar

$totalUnits = 10;
$this->output->progressStart($totalUnits);

for ($i = 0; $i < $totalUnits; $i++) {
 sleep(1);

 $this->output->progressAdvance();
}

$this->output->progressFinish();

What did we do here? First, we informed the system how many “units” we needed
to work through. Maybe a unit is a user, and you have 350 users. The bar will then
divide the entire width it has available on your screen by 350, and increment it
by 1/350th every time you run progressAdvance(). Once you’re done, run
progressFinish() so that it knows it’s done displaying the progress bar.

Writing Closure-Based Commands
If you’d prefer to keep your command definition process simpler, you can write com‐
mands as closures instead of classes by defining them in routes/console.php. Every‐
thing we discuss in this chapter will apply the same way, but you will define and
register the commands in a single step in that file, as shown in Example 8-12.

Example 8-12. Defining an Artisan command using a closure

// routes/console.php
Artisan::command(
 'password:reset {userId} {--sendEmail}',
 function ($userId, $sendEmail) {
 $userId = $this->argument('userId');
 // Do something...

Writing Custom Artisan Commands | 215

 }
);

Calling Artisan Commands in Normal Code
While Artisan commands are designed to be run from the command line, you can
also call them from other code.

The easiest way is to use the Artisan facade. You can either call a command using
Artisan::call() (which will return the command’s exit code) or queue a command
using Artisan::queue().

Both take two parameters: first, the terminal command (password:reset); and sec‐
ond, an array of parameters to pass it. Take a look at Example 8-13 to see how it
works with arguments and options.

Example 8-13. Calling Artisan commands from other code

Route::get('test-artisan', function () {
 $exitCode = Artisan::call('password:reset', [
 'userId' => 15,
 '--sendEmail' => true,
]);
});

As you can see, arguments are passed by keying to the argument name, and options
with no value can be passed true or false.

In Laravel 5.8+, you can call Artisan commands much more
naturally from your code. Just pass the same string you’d call

from the command line into Artisan::call():
Artisan::call('password:reset 15 --sendEmail')

You can also call Artisan commands from other commands using $this->call(),
(which is the same as Artisan::call()) or $this->callSilent(), which is the same
but suppresses all output. See Example 8-14 for an example.

Example 8-14. Calling Artisan commands from other Artisan commands

public function handle()
{
 $this->callSilent('password:reset', [
 'userId' => 15,
]);
}

216 | Chapter 8: Artisan and Tinker

Finally, you can inject an instance of the Illuminate\Contracts\Console\Kernel
contract, and use its call() method.

Tinker
Tinker is a REPL, or read–eval–print loop. If you’ve ever used IRB in Ruby, you’ll be
familiar with how a REPL works.

REPLs give you a prompt, similar to the command-line prompt, that mimics a “wait‐
ing” state of your application. You type your commands into the REPL, hit Return,
and then expect what you typed to be evaluated and the response printed out.

Example 8-15 provides a quick sample to give you a sense of how it works and how it
might be useful. We start the REPL with php artisan tinker and are then presented
with a blank prompt (>>>); every response to our commands is printed on a line pref‐
aced with =>.

Example 8-15. Using Tinker

$ php artisan tinker

>>> $user = new App\User;
=> App\User: {}
>>> $user->email = 'matt@mattstauffer.com';
=> "matt@mattstauffer.com"
>>> $user->password = bcrypt('superSecret');
=> "$2y$10$TWPGBC7e8d1bvJ1q5kv.VDUGfYDnE9gANl4mleuB3htIY2dxcQfQ5"
>>> $user->save();
=> true

As you can see, we created a new user, set some data (hashing the password with
bcrypt() for security), and saved it to the database. And this is real. If this were a
production application, we would’ve just created a brand new user in our system.

This makes Tinker a great tool for simple database interactions, for trying out new
ideas, and for running snippets of code when it’d be a pain to find a place to put them
in the application source files.

Tinker is powered by Psy Shell, so check that out to see what else you can do with
Tinker.

Tinker | 217

http://psysh.org/

Laravel Dump Server
One common method of debugging the state of your data during development is to
use Laravel’s dump() helper, which runs a decorated var_dump() on anything you pass
to it. This is fine, but it can often run into view issues.

In projects running Laravel 5.7 and later, you can now enable the Laravel dump
server, which catches those dump() statements and displays them in your console
instead of rendering them to the page.

To run the dump server in your local console, navigate to your project’s root directory
and run php artisan dump-server:

$ php artisan dump-server

Laravel Var Dump Server
=======================

 [OK] Server listening on tcp://127.0.0.1:9912

 // Quit the server with CONTROL-C.

Now, try using the dump() helper function in your code somewhere. To test it out, try
this code in your routes/web.php file:

Route::get('/', function () {
 dump('Dumped Value');

 return 'Hello World';
});

Without the dump server, you’d see both the dump and your “Hello World.” But with
the dump server running, you’ll only see “Hello World” in the browser. In your con‐
sole, you’ll see that the dump server caught that dump(), and you can inspect it there:

GET http://myapp.test/

 ------------ ---------------------------------
 date Tue, 18 Sep 2018 22:43:10 +0000
 controller "Closure"
 source web.php on line 20
 file routes/web.php
 ------------ ---------------------------------

"Dumped Value"

218 | Chapter 8: Artisan and Tinker

Testing
Since you know how to call Artisan commands from code, it’s easy to do that in a test
and ensure that whatever behavior you expected to be performed has been performed
correctly, as in Example 8-16. In our tests, we use $this->artisan() instead of Arti
san::call() because it has the same syntax but adds a few testing-related assertions.

Example 8-16. Calling Artisan commands from a test

public function test_empty_log_command_empties_logs_table()
{
 DB::table('logs')->insert(['message' => 'Did something']);
 $this->assertCount(1, DB::table('logs')->get());

 $this->artisan('logs:empty'); // Same as Artisan::call('logs:empty');
 $this->assertCount(0, DB::table('logs')->get());
}

In projects running Laravel 5.7 and later, you can chain on a few new assertions to
your $this->artisan() calls that make it even easier to test Artisan commands—not
just the impact they have on the rest of your app, but also how they actually operate.
Take a look at Example 8-17 to see an example of this syntax.

Example 8-17. Making assertions against the input and output of Artisan commands

public function testItCreatesANewUser()
{
 $this->artisan('myapp:create-user')
 ->expectsQuestion("What's the name of the new user?", "Wilbur Powery")
 ->expectsQuestion("What's the email of the new user?", "wilbur@thisbook.co")
 ->expectsQuestion("What's the password of the new user?", "secret")
 ->expectsOutput("User Wilbur Powery created!");

 $this->assertDatabaseHas('users', [
 'email' => 'wilbur@thisbook.co'
]);
}

TL;DR
Artisan commands are Laravel’s command-line tools. Laravel comes with quite a few
out of the box, but it’s also easy to create your own Artisan commands and call them
from the command line or your own code.

Tinker is a REPL that makes it simple to get into your application environment and
interact with real code and real data, and the dump server lets you debug your code
without stopping the code’s execution.

Testing | 219

CHAPTER 9

User Authentication and Authorization

Setting up a basic user authentication system—including registration, login, sessions,
password resets, and access permissions—can often be one of the more time-
consuming pieces of creating the foundation of an application. It’s a prime candidate
for extracting functionality out to a library, and there are quite a few such libraries.

But because of how much authentication needs vary across projects, most authentica‐
tion systems grow bulky and unusable quickly. Thankfully, Laravel has found a way to
make an authentication system that’s easy to use and understand, but flexible enough
to fit in a variety of settings.

Every new install of Laravel has a create_users_table migration and a User model
built in out of the box. Laravel offers an Artisan make:auth command that seeds a
collection of authentication-related views and routes. And every install comes with
a RegisterController, a LoginController, a ForgotPasswordController, and a
ResetPasswordController. The APIs are clean and clear, and the conventions
all work together to provide a simple—and seamless—authentication and authoriza‐
tion system.

Differences in Auth Structure in Laravel Before 5.3

Note that in Laravel 5.1 and 5.2, most of this functionality lived
in the AuthController; in 5.3 and higher, this functionality has

been split out into multiple controllers. Many of the specifics we’ll
cover here about how to customize redirect routes, auth guards,
and such are different in 5.1 and 5.2 (though all the core function‐
ality is the same). So, if you’re on 5.1 or 5.2 and want to change
some of the default authentication behaviors, you’ll likely need to
dig a bit into your AuthController to see how exactly you should
customize it.

221

The User Model and Migration
When you create a new Laravel application, the first migration and model you’ll see
are the create_users_table migration and the App\User model. Example 9-1 shows,
straight from the migration, the fields you’ll get in your users table.

Example 9-1. Laravel’s default user migration

Schema::create('users', function (Blueprint $table) {
 $table->bigIncrements('id');
 $table->string('name');
 $table->string('email')->unique();
 $table->string('password');
 $table->rememberToken();
 $table->timestamps();
});

We have an autoincrementing primary key ID, a name, a unique email, a password, a
“remember me” token, and created and modified timestamps. This covers everything
you need to handle basic user authentication in most apps.

The Difference Between Authentication and Authorization

Authentication means verifying who someone is, and allowing
them to act as that person in your system. This includes the login
and logout processes, and any tools that allow the users to identify
themselves during their time using the application.
Authorization means determining whether the authenticated user is
allowed (authorized) to perform a specific behavior. For example,
an authorization system allows you to forbid any non-
administrators from viewing the site’s earnings.

The User model is a bit more complex, as you can see in Example 9-2. The App\User
class itself is simple, but it extends the Illuminate\Foundation\Auth\User class,
which pulls in several traits.

Example 9-2. Laravel’s default User model

<?php
// App\User

namespace App;

use Illuminate\Notifications\Notifiable;
use Illuminate\Contracts\Auth\MustVerifyEmail;
use Illuminate\Foundation\Auth\User as Authenticatable;

222 | Chapter 9: User Authentication and Authorization

class User extends Authenticatable
{
 use Notifiable;

 /**
 * The attributes that are mass assignable.
 *
 * @var array
 */
 protected $fillable = [
 'name', 'email', 'password',
];

 /**
 * The attributes that should be hidden for arrays.
 *
 * @var array
 */
 protected $hidden = [
 'password', 'remember_token',
];

 /**
 * The attributes that should be cast to native types.
 *
 * @var array
 */
 protected $casts = [
 'email_verified_at' => 'datetime',
];
}

<?php
// Illuminate\Foundation\Auth\User

namespace Illuminate\Foundation\Auth;

use Illuminate\Auth\Authenticatable;
use Illuminate\Auth\MustVerifyEmail;
use Illuminate\Database\Eloquent\Model;
use Illuminate\Auth\Passwords\CanResetPassword;
use Illuminate\Foundation\Auth\Access\Authorizable;
use Illuminate\Contracts\Auth\Authenticatable as AuthenticatableContract;
use Illuminate\Contracts\Auth\Access\Authorizable as AuthorizableContract;
use Illuminate\Contracts\Auth\CanResetPassword as CanResetPasswordContract;

class User extends Model implements
 AuthenticatableContract,
 AuthorizableContract,
 CanResetPasswordContract
{

The User Model and Migration | 223

 use Authenticatable, Authorizable, CanResetPassword, MustVerifyEmail;
}

Eloquent Model Refresher

If this is entirely unfamiliar, consider reading Chapter 5 before
continuing to learn how Eloquent models work.

So, what can we learn from this model? First, users live in the users table; Laravel will
infer this from the class name. We are able to fill out the name, email, and password
properties when creating a new user, and the password and remember_token proper‐
ties are excluded when outputting the user as JSON. Looking good so far.

We also can see from the contracts and the traits in the Illuminate\Foundation
\Auth version of User that there are some features in the framework (the ability to
authenticate, to authorize, and to reset passwords) that theoretically could be applied
to other models, not just the User model, and that could be applied individually
or together.

Contracts and Interfaces
You may have noticed that sometimes I write the word “contract” and sometimes
“interface,” and that almost all of the interfaces in Laravel are under the Contracts
namespace.

A PHP interface is essentially an agreement between two classes that one of the
classes will “behave” a certain way. It’s a bit like a contract between them, and thinking
about it as a contract gives a little more inherent meaning to the name than calling it
an interface does.

In the end, though, they’re the same thing: an agreement that a class will provide cer‐
tain methods with a certain signature.

On a related note, the Illuminate\Contracts namespace contains a group of inter‐
faces that Laravel components implement and typehint. This makes it easy to develop
similar components that implement the same interfaces and swap them into your
application in place of the stock Illuminate components. When the Laravel core and
components typehint a mailer, for example, they don’t typehint the Mailer class.
Instead, they typehint the Mailer contract (interface), making it easy to provide your
own mailer. To learn more about how to do this, take a look at Chapter 11.

The Authenticatable contract requires methods (e.g., getAuthIdentifier()) that
allow the framework to authenticate instances of this model to the auth system; the

224 | Chapter 9: User Authentication and Authorization

Authenticatable trait includes the methods necessary to satisfy that contract with an
average Eloquent model.

The Authorizable contract requires a method (can()) that allows the framework to
authorize instances of this model for their access permissions in different contexts.
Unsurprisingly, the Authorizable trait provides methods that will satisfy the
Authorizable contract for an average Eloquent model.

Finally, the CanResetPassword contract requires methods (getEmail
ForPasswordReset(), sendPasswordResetNotification()) that allow the frame‐
work to—you guessed it—reset the password of any entity that satisfies this contract.
The CanResetPassword trait provides methods to satisfy that contract for an average
Eloquent model.

At this point, we have the ability to easily represent an individual user in the database
(with the migration), and to pull them out with a model instance that can be authen‐
ticated (logged in and out), authorized (checked for access permissions to a particular
resource), and sent a password reset email.

Using the auth() Global Helper and the Auth Facade
The auth() global helper is the easiest way to interact with the status of the authenti‐
cated user throughout your app. You can also inject an instance of Illuminate\Auth
\AuthManager and get the same functionality, or use the Auth facade.

The most common usages are to check whether a user is logged in (auth()->check()
returns true if the current user is logged in; auth()->guest() returns true if the user
is not logged in) and to get the currently logged-in user (use auth()->user(), or
auth()->id() for just the ID; both return null if no user is logged in).

Take a look at Example 9-3 for a sample usage of the global helper in a controller.

Example 9-3. Sample usage of the auth() global helper in a controller

public function dashboard()
{
 if (auth()->guest()) {
 return redirect('sign-up');
 }

 return view('dashboard')
 ->with('user', auth()->user());
}

Using the auth() Global Helper and the Auth Facade | 225

The next section explores how the auth system works behind the scenes. It’s useful
information but not vital, so if you want to skip it for now, check out the following
section, “The Auth Scaffold” on page 231.

The Auth Controllers
So, how do we actually log users in? And how do we trigger those password resets?

It all happens in the Auth-namespaced controllers: RegisterController, Login
Controller, ResetPasswordController, and ForgotPasswordController.

RegisterController
The RegisterController, in combination with the RegistersUsers trait, contains
sensible defaults for how to show new users a registration form, how to validate their
input, how to create new users once their input is validated, and where to redirect
them afterward.

The controller itself just contains a few hooks that the traits will call at given points.
That makes it easy to customize a few common behaviors without having to dig
deeply into the code that makes it all work.

The $redirectTo property defines where users will be redirected after registration.
The validator() method defines how to validate registrations. And the create()
method defines how to create a new user based on an incoming registration. Take a
look at Example 9-4 to see the default RegisterController.

Example 9-4. Laravel’s default RegisterController

...
class RegisterController extends Controller
{
 use RegistersUsers;

 protected $redirectTo = '/home';

 ...

 protected function validator(array $data)
 {
 return Validator::make($data, [
 'name' => 'required|string|max:255',
 'email' => 'required|string|email|max:255|unique:users',
 'password' => 'required|string|min:6|confirmed',
]);
 }

 protected function create(array $data)

226 | Chapter 9: User Authentication and Authorization

 {
 return User::create([
 'name' => $data['name'],
 'email' => $data['email'],
 'password' => Hash::make($data['password']),
]);
 }
}

RegistersUsers trait

The RegistersUsers trait, which the RegisterController imports, handles a few
primary functions for the registration process. First, it shows users the registration
form view, with the showRegistrationForm() method. If you want new users to reg‐
ister with a view other than auth.register you can override the showRegistration
Form() method in your RegisterController.

Next, it handles the POST of the registration form with the register() method. This
method passes the user’s registration input to the validator from the validator()
method of your RegisterController, and then on to the create() method.

And finally, the redirectPath() method (pulled in via the RedirectsUsers trait)
defines where users should be redirected after a successful registration. You can
define this URI with the $redirectTo property on your controller, or you can over‐
ride the redirectPath() method and return whatever you want.

If you want this trait to use a different auth guard than the default (you’ll learn more
about guards in “Guards” on page 236), you can override the guard() method and
have it return whichever guard you’d like.

LoginController
The LoginController, unsurprisingly, allows the user to log in. It brings in the
AuthenticatesUsers trait, which brings in the RedirectsUsers and
ThrottlesLogins traits.

Like the RegistrationController, the LoginController has a $redirectTo prop‐
erty that allows you to customize the path the user will be redirected to after a suc‐
cessful login. Everything else lives behind the AuthenticatesUsers trait.

AuthenticatesUsers trait

The AuthenticatesUsers trait is responsible for showing users the login form, vali‐
dating their logins, throttling failed logins, handling logouts, and redirecting users
after a successful login.

The Auth Controllers | 227

The showLoginForm() method defaults to showing the user the auth.login view, but
you can override it if you’d like it to use a different view.

The login() method accepts the POST from the login form. It validates the request
using the validateLogin() method, which you can override if you’d like to custom‐
ize the validation. It then hooks into the functionality of the ThrottlesLogins trait,
which we’ll cover shortly, to reject users with too many failed logins. And finally, it
redirects the user to either their intended path (if the user was redirected to the login
page when attempting to visit a page within the app) or the path defined by the redi
rectPath() method, which returns your $redirectTo property.

The trait calls the empty authenticated() method after a successful login, so if you’d
like to perform any sort of behavior in response to a successful login, just override
this method in your LoginController.

There’s a username() method that defines which of your users columns is the “user‐
name”; this defaults to email, but you can change that by overwriting the username()
method in your controller to return the name of your username column.

And, like in the RegistersUsers trait, you can override the guard() method to
define which auth guard (more on that in “Guards” on page 236) this controller
should use.

ThrottlesLogins trait

The ThrottlesLogins trait is an interface to Laravel’s Illuminate\Cache

\RateLimiter class, which is a utility to rate-limit any event using the cache. This
trait applies rate limiting to user logins, limiting users from using the login form if
they’ve had too many failed logins within a certain amount of time. This functionality
does not exist in Laravel 5.1.

If you import the ThrottlesLogins trait, all of its methods are protected, which
means they can’t actually be accessed as routes. Instead, the AuthenticatesUsers
trait looks to see whether you’ve imported the ThrottlesLogins trait, and if so, it’ll
attach its functionality to your logins without any work on your part. Since the
default LoginController imports both, you’ll get this functionality for free if you use
the auth scaffold (discussed in “The Auth Scaffold” on page 231).

ThrottlesLogins limits any given combination of username and IP address to 5
attempts per 60 seconds. Using the cache, it increments the “failed login” count of a
given username/IP address combination, and if any user reaches 5 failed login
attempts within 60 seconds, it redirects that user back to the login page with an
appropriate error until the 60 seconds is over.

228 | Chapter 9: User Authentication and Authorization

ResetPasswordController
The ResetPasswordController simply pulls in the ResetsPasswords trait. This trait
provides validation and access to basic password reset views, and then uses an
instance of Laravel’s PasswordBroker class (or anything else implementing the
PasswordBroker interface, if you choose to write your own) to handle sending pass‐
word reset emails and actually resetting the passwords.

Just like the other traits we’ve covered, it handles showing the reset password view
(showResetForm() shows the auth.passwords.reset view) and the POST request that
is sent from that view (reset() validates and sends the appropriate response). The
resetPassword() method actually resets the password, and you can customize the
broker with broker() and the auth guard with guard().

If you’re interested in customizing any of this behavior, just override the specific
method you want to customize in your controller.

ForgotPasswordController
The ForgotPasswordController simply pulls in the SendsPasswordResetEmails
trait. It shows the auth.passwords.email form with the showLinkRequestForm()
method and handles the POST of that form with the sendResetLinkEmail() method.
You can customize the broker with the broker() method.

VerificationController
The VerificationController pulls in the VerifiesEmails trait, which handles veri‐
fying the email addresses of newly signed-up users. You can customize the path to
send users to after validation.

Auth::routes()
Now that we have the auth controllers providing some methods for a series of pre-
defined routes, we’ll want our users to actually be able to hit those routes. We could
add all the routes manually to routes/web.php, but there’s already a convenience tool
for that, called Auth::routes():

// routes/web.php
Auth::routes();

As you can probably guess, Auth::routes() brings a bundle of predefined routes
into your routes file. In Example 9-5 you can see the routes that are actually being
defined there.

Auth::routes() | 229

Example 9-5. The routes provided by Auth::routes()

// Authentication routes
$this->get('login', 'Auth\LoginController@showLoginForm')->name('login');
$this->post('login', 'Auth\LoginController@login');
$this->post('logout', 'Auth\LoginController@logout')->name('logout');

// Registration routes
$this->get('register', 'Auth\RegisterController@showRegistrationForm')
 ->name('register');
$this->post('register', 'Auth\RegisterController@register');

// Password reset routes
$this->get('password/reset', 'Auth\ForgotPasswordController@showLinkRequestForm')
 ->name('password.request');
$this->post('password/email', 'Auth\ForgotPasswordController@sendResetLinkEmail')
 ->name('password.email');
$this->get('password/reset/{token}', 'Auth\ResetPasswordController@showResetForm')
 ->name('password.reset');
$this->post('password/reset', 'Auth\ResetPasswordController@reset');

// If email verification is enabled
$this->get('email/verify', 'Auth\VerificationController@show')
 ->name('verification.notice');
$this->get('email/verify/{id}', 'Auth\VerificationController@verify')
 ->name('verification.verify');
$this->get('email/resend', 'Auth\VerificationController@resend')
 ->name('verification.resend');

Basically, Auth::routes() includes the routes for authentication, registration, and
password resets. As you can see, there are also optional routes for email verification, a
feature introduced in Laravel 5.7.

To enable Laravel’s email verification service, which requires new users to verify they
have access to the email address they signed up with, update your Auth::routes()
call to enable it, as shown here:

Auth::routes(['verify' => true]);

We’ll discuss this further in “Email Verification” on page 235.

In applications running Laravel 5.7+, you can use Auth::routes()
but disable the registration and/or password reset links by adding
“register” and “reset” keys to the array you’re passing to
Auth::routes():

Auth::routes(['register' => false, 'reset' => false]);

230 | Chapter 9: User Authentication and Authorization

The Auth Scaffold
At this point you have a migration, a model, controllers, and routes for your authenti‐
cation system. But what about your views?

Laravel handles these by providing an auth scaffold (available since 5.2) that’s
intended to be run on a new application and provide you with even more skeleton
code to get your auth system running quickly.

The auth scaffold takes care of adding Auth::routes() to your routes file, adds a
view for each route, and creates a HomeController to serve as the landing page
for logged-in users; it also routes to the index() method of HomeController at
the /home URI.

Just run php artisan make:auth, and the following files will be made available
to you:

app/Http/Controllers/HomeController.php
resources/views/auth/login.blade.php
resources/views/auth/register.blade.php
resources/views/auth/verify.blade.php
resources/views/auth/passwords/email.blade.php
resources/views/auth/passwords/reset.blade.php
resources/views/layouts/app.blade.php
resources/views/home.blade.php

At this point, you have / returning the welcome view, /home returning the home view,
and a series of auth routes for login, logout, registration, and password reset pointing
to the auth controllers. Each of the seeded views has Bootstrap-based layouts and
form fields for all necessary fields for login, registration, and password reset, and they
already point to the correct routes.

You now have all of the pieces in place for every step of the normal user registration
and authentication flow. You can tweak all you want, but you’re entirely ready to reg‐
ister and authenticate users.

Let’s review quickly the steps from new site to full authentication system:

laravel new MyApp
cd MyApp

Edit your .env file to specify the correct database connection details

php artisan make:auth
php artisan migrate

That’s it. Run those commands, and you will have a landing page and a Bootstrap-
based user registration, login, logout, and password reset system, with a basic landing
page for all authenticated users.

The Auth Scaffold | 231

“Remember Me”
The auth scaffold has this implemented out of the box, but it’s still worth learning
how it works and how to use it on your own. If you want to implement a “remember
me”–style long-lived access token, make sure you have a remember_token column on
your users table (which you will if you used the default migration).

When you’re normally logging in a user (and this is how the LoginController does
it, with the AuthenticatesUsers trait), you’ll “attempt” an authentication with the
user-provided information, like in Example 9-6.

Example 9-6. Attempting a user authentication

if (auth()->attempt([
 'email' => request()->input('email'),
 'password' => request()->input('password'),
])) {
 // Handle the successful login
}

This provides you with a user login that lasts as long as the user’s session. If you want
Laravel to extend the login indefinitely using cookies (as long as the user is on the
same computer and doesn’t log out), you can pass a Boolean true as the second
parameter of the auth()->attempt() method. Take a look at Example 9-7 to see what
that request looks like.

Example 9-7. Attempting a user authentication with a “remember me” checkbox check

if (auth()->attempt([
 'email' => request()->input('email'),
 'password' => request()->input('password'),
]), request()->filled('remember')) {
 // Handle the successful login
}

You can see that we checked whether the input has a nonempty (“filled”) remember
property, which will return a Boolean. This allows our users to decide if they want to
be remembered with a checkbox in the login form.

And later, if you need to manually check whether the current user was authenticated
by a remember token, there’s a method for that: auth()->viaRemember() returns a
Boolean indicating whether or not the current user authenticated via a remember
token. This will allow you to prevent certain higher-sensitivity features from being
accessible by remember token; instead, you can require users to reenter their pass‐
words.

232 | Chapter 9: User Authentication and Authorization

Manually Authenticating Users
The most common case for user authentication is that you’ll allow the user to provide
their credentials, and then use auth()->attempt() to see whether the provided cre‐
dentials match any real users. If so, you log them in.

But sometimes there are contexts where it’s valuable for you to be able to choose
to log a user in on your own. For example, you may want to allow admin users to
switch users.

There are four methods that make this possible. First, you can just pass a user ID:

auth()->loginUsingId(5);

Second, you can pass a User object (or any other object that implements the
Illuminate\Contracts\Auth\Authenticatable contract):

auth()->login($user);

And third and fourth, you can choose to authenticate the given user for only the cur‐
rent request, which won’t impact your session or cookies at all, using once() or
onceUsingId():

auth()->once(['username' => 'mattstauffer']);
// or
auth()->onceUsingId(5);

Note that the array you pass to the once() method can contain any key/value pairs to
uniquely identify the user you’d like to authenticate as. You can even pass multiple
keys and values, if it’s what is appropriate for your project. For example:

auth()->once([
 'last_name' => 'Stauffer',
 'zip_code' => 90210,
])

Manually Logging Out a User
If you ever need to log out a user manually, just call logout():

auth()->logout();

Invalidating Sessions on Other Devices
If you’d like to log out not just a user’s current session, but also those on any other
devices, you’ll need to prompt the user for their password and pass it to the
logoutOtherDevices() method (available in Laravel 5.6 and later). In order to do
this, you’ll have to add the (commented-out-by-default) AuthenticateSession mid‐
dleware to your web group in app\Http\Kernel.php:

Manually Authenticating Users | 233

'web' => [
 // ...
 \Illuminate\Session\Middleware\AuthenticateSession::class,
],

Then you can use it inline anywhere you need:

auth()->logoutOtherDevices($password);

Auth Middleware
In Example 9-3, you saw how to check whether visitors are logged in and redirect
them if not. You could perform these sorts of checks on every route in your applica‐
tion, but it would very quickly get tedious. It turns out that route middleware (see
Chapter 10 to learn more about how they work) are a perfect fit for restricting certain
routes to guests or to authenticated users.

Once again, Laravel comes with the middleware we need out of the box. You can see
which route middleware you have defined in App\Http\Kernel:

protected $routeMiddleware = [
 'auth' => \Illuminate\Auth\Middleware\Authenticate::class,
 'auth.basic' => \Illuminate\Auth\Middleware\AuthenticateWithBasicAuth::class,
 'bindings' => \Illuminate\Routing\Middleware\SubstituteBindings::class,
 'cache.headers' => \Illuminate\Http\Middleware\SetCacheHeaders::class,
 'can' => \Illuminate\Auth\Middleware\Authorize::class,
 'guest' => \App\Http\Middleware\RedirectIfAuthenticated::class,
 'signed' => \Illuminate\Routing\Middleware\ValidateSignature::class,
 'throttle' => \Illuminate\Routing\Middleware\ThrottleRequests::class,
 'verified' => \Illuminate\Auth\Middleware\EnsureEmailIsVerified::class,
];

Four of the default route middleware are authentication-related:

auth

restricts route access to authenticated users.

auth.basic

restricts access to authenticated users using HTTP Basic Authentication.

guest

restricts access to unauthenticated users.

can

used for authorizing user access to given routes.

It’s most common to use auth for your authenticated-user-only sections and guest
for any routes you don’t want authenticated users to see (like the login form).
auth.basic is a much less commonly used middleware for authenticating via request
headers.

234 | Chapter 9: User Authentication and Authorization

Example 9-8 shows an example of a few routes protected by the auth middleware.

Example 9-8. Sample routes protected by auth middleware

Route::middleware('auth')->group(function () {
 Route::get('account', 'AccountController@dashboard');
});

Route::get('login', 'Auth\LoginController@getLogin')->middleware('guest');

Email Verification
Laravel 5.7 introduced a new feature that makes it possible to require a user to verify
that they have access to the email address they registered with.

In order to enable email verification, update your App\User class and make it imple‐
ment the Illuminate\Contracts\Auth\MustVerifyEmail contract, as shown in
Example 9-9.

Example 9-9. Adding the MustVerifyEmail trait to an Authenticatable model

class User extends Authenticatable implements MustVerifyEmail
{
 use Notifiable;

 // ...
}

The users table must also contain a nullable timestamp column named
email_verified_at, which the new default CreateUsersTable migration will have
already provided for you in apps created in 5.7 or later.

Finally, you’ll need to enable the email verification routes in your controller. The easi‐
est method is to use Auth::routes() in your routes file with the verify parameter
set to true:

Auth::routes(['verify' => true]);

Now, you can protect any routes you’d like from being accessed by any users who
haven’t verified their email address:

Route::get('posts/create', function () {
 // Only verified users may enter...
})->middleware('verified');

You can customize the route where users are redirected after verifying in your Verifi
cationController:

protected $redirectTo = '/profile';

Email Verification | 235

Blade Authentication Directives
If you want to check whether a user is authenticated, not at the route level but in your
views, you can, with @auth and @guest (see Example 9-10).

Example 9-10. Checking a user’s authentification status in templates

@auth
 // The user is authenticated
@endauth

@guest
 // The user is not authenticated
@endguest

You can also specify which guard you’d like to use with both methods by passing the
guard name as a parameter, as shown in Example 9-11.

Example 9-11. Checking a specific auth guard’s authentification in templates

@auth('trainees')
 // The user is authenticated
@endauth

@guest('trainees')
 // The user is not authenticated
@endguest

Guards
Every aspect of Laravel’s authentication system is routed through something called
a guard. Each guard is a combination of two pieces: a driver that defines how it per‐
sists and retrieves the authentication state (for example, session), and a provider that
allows you to get a user by certain criteria (for example, users).

Out of the box, Laravel has two guards: web and api. web is the more traditional
authentication style, using the session driver and the basic user provider. api uses
the same user provider, but it uses the token driver instead of session to authenticate
each request.

You’d change drivers if you wanted to handle the identification and persistence of
a user’s identity differently (for example, changing from a long-running session to a
provided-every-page-load token), and you’d change providers if you wanted to
change the storage type or retrieval methods for your users (for example, moving to
storing your users in Mongo instead of MySQL).

236 | Chapter 9: User Authentication and Authorization

Changing the Default Guard
The guards are defined in config/auth.php, and you can change them, add new
guards, and also define which guard will be the default there. For what it’s worth, this
is a relatively uncommon configuration; most Laravel apps just use one guard.

The “default” guard is the one that will be used any time you use any auth features
without specifying a guard. For example, auth()->user() will pull the currently
authenticated user using the default guard. You can change this guard by changing
the auth.defaults.guard setting in config/auth.php:

'defaults' => [
 'guard' => 'web', // Change the default here
 'passwords' => 'users',
],

If you’re using Laravel 5.1, you’ll notice that the structure of the authentication infor‐
mation is a little different from this. Don’t worry—the features all still work the same;
they’re just structured differently.

Configuration Conventions

You may have noticed that I refer to configuration sections with
references like auth.defaults.guard. What that translates to is: in
config/auth.php, in the array section keyed defaults, there should
be a property keyed guard.

Using Other Guards Without Changing the Default
If you want to use another guard but not change the default, you can start your
auth() calls with guard():

$apiUser = auth()->guard('api')->user();

This will, just for this call, get the current user using the api guard.

Adding a New Guard
You can add a new guard at any time in config/auth.php, in the auth.guards setting:

'guards' => [
 'trainees' => [
 'driver' => 'session',
 'provider' => 'trainees',
],
],

Here, we’ve created a new guard (in addition to web and api) named trainees. Let’s
imagine, for the rest of this section, that we’re building an app where our users are

Guards | 237

physical trainers and they each have their own users—trainees—who can log in to
their subdomains. So, we need a separate guard for them.

The only two options for driver are token and session. Out of the box, the only
option for provider is users, which supports authentication against your default
users table, but you can create your own provider easily.

Closure Request Guards
If you want to define a custom guard, and your guard conditions (how to look up a
given user against the request) can be described simply enough in response to any
given HTTP request, you might just want to throw the user lookup code into a clo‐
sure and not deal with creating a new custom guard class.

The viaRequest() auth method makes it possible to define a guard (named in the
first parameter) using just a closure (defined in the second parameter) that takes the
HTTP request and returns the appropriate user. To register a closure request guard,
call viaRequest() in the boot() method of your AuthServiceProvider, as shown in
Example 9-12.

Example 9-12. Defining a closure request guard

public function boot()
{
 $this->registerPolicies();

 Auth::viaRequest('token-hash', function ($request) {
 return User::where('token-hash', $request->token)->first();
 });
}

Creating a Custom User Provider
Just below where guards are defined in config/auth.php, there’s an auth.providers
section that defines the available providers. Let’s create a new provider named train
ees:

'providers' => [
 'users' => [
 'driver' => 'eloquent',
 'model' => App\User::class,
],

 'trainees' => [
 'driver' => 'eloquent',
 'model' => App\Trainee::class,
],
],

238 | Chapter 9: User Authentication and Authorization

The two options for driver are eloquent and database. If you use eloquent, you’ll
need a model property that contains an Eloquent class name (the model to use for
your User class); and if you use database, you’ll need a table property to define
which table it should authenticate against.

In our example, you can see that this application has a User and a Trainee, and they
need to be authenticated separately. This way, the code can differentiate between
auth()->guard('users') and auth()->guard('trainees').

One last note: the auth route middleware can take a parameter that is the guard
name. So, you can guard certain routes with a specific guard:

Route::middleware('auth:trainees')->group(function () {
 // Trainee-only routes here
});

Custom User Providers for Nonrelational Databases
The user provider creation flow just described still relies on the same UserProvider
class, which means it’s expecting to pull the identifying information out of a relational
database. But if you’re using Mongo or Riak or something similar, you’ll actually need
to create your own class.

To do this, create a new class that implements the Illuminate\Contracts\Auth
\UserProvider interface, and then bind it in AuthServiceProvider@boot:

auth()->provider('riak', function ($app, array $config) {
 // Return an instance of Illuminate\Contracts\Auth\UserProvider...
 return new RiakUserProvider($app['riak.connection']);
});

Auth Events
We’ll talk more about events in Chapter 16, but Laravel’s event system is a basic
pub/sub framework. There are system- and user-generated events that are broadcast,
and the user has the ability to create event listeners that do certain things in response
to certain events.

So, what if you wanted to send a ping to a particular security service every time a user
was locked out after too many failed login attempts? Maybe this service watches out
for a certain number of failed logins from certain geographic regions, or something
else. You could, of course, inject a call in the appropriate controller. But with events,
you can just create an event listener that listens to the “user locked out” event, and
register that.

Take a look at Example 9-13 to see all of the events that the authentication system
emits.

Auth Events | 239

Example 9-13. Authentication events generated by the framework

protected $listen = [
 'Illuminate\Auth\Events\Registered' => [],
 'Illuminate\Auth\Events\Attempting' => [],
 'Illuminate\Auth\Events\Authenticated' => [],
 'Illuminate\Auth\Events\Login' => [],
 'Illuminate\Auth\Events\Failed' => [],
 'Illuminate\Auth\Events\Logout' => [],
 'Illuminate\Auth\Events\Lockout' => [],
 'Illuminate\Auth\Events\PasswordReset' => [],
];

As you can see, there are listeners for “user registered,” “user attempting login,” “user
authenticated,” “successful login,” “failed login,” “logout,” “lockout,” and “password
reset.” To learn more about how to build event listeners for these events, check out
Chapter 16.

Authorization (ACL) and Roles
Finally, let’s cover Laravel’s authorization system. It enables you to determine whether
a user is authorized to do a particular thing, which you’ll check using a few primary
verbs: can, cannot, allows, and denies. The access control list (ACL) system was
introduced in Laravel 5.2.

Most of this authorization control will be performed using the Gate facade, but there
are also convenience helpers available in your controllers, on the User model, as mid‐
dleware, and as Blade directives. Take a look at Example 9-14 to get a taste of what
we’ll be able to do.

Example 9-14. Basic usage of the Gate facade

if (Gate::denies('edit-contact', $contact)) {
 abort(403);
}

if (! Gate::allows('create-contact', Contact::class)) {
 abort(403);
}

Defining Authorization Rules
The default location for defining authorization rules is in the boot() method of the
AuthServiceProvider, where you’ll be calling methods on the Auth facade.

240 | Chapter 9: User Authentication and Authorization

An authorization rule is called an ability and is comprised of two things: a string key
(e.g., update-contact) and a closure that returns a Boolean. Example 9-15 shows an
ability for updating a contact.

Example 9-15. Sample ability for updating a contact

class AuthServiceProvider extends ServiceProvider
{
 public function boot()
 {
 $this->registerPolicies();

 Gate::define('update-contact', function ($user, $contact) {
 return $user->id == $contact->user_id;
 });
 }
}

Let’s walk through the steps for defining an ability.

First, you want to define a key. In naming this key, you should consider what string
makes sense in your code’s flow to refer to the ability you’re providing to the user. You
can see the code sample uses the convention {verb}-{modelName}: create-contact,
update-contact, etc.

Second, you define the closure. The first parameter will be the currently authenticated
user, and all parameters after that will be the object(s) you’re checking for access to—
in this instance, the contact.

So, given those two objects, we can check whether the user is authorized to update
this contact. You can write this logic however you want, but in the app we’re looking
at the moment, authorization depends on being the creator of the contact row. The
closure will return true (authorized) if the current user created the contact, and
false (unauthorized) if not.

Just like with route definitions, you could also use a class and method instead of a
closure to resolve this definition:

$gate->define('update-contact', 'ContactACLChecker@updateContact');

The Gate Facade (and Injecting Gate)
Now that you’ve defined an ability, it’s time to test against it. The simplest way is to
use the Gate facade, as in Example 9-16 (or you can inject an instance of Illuminate
\Contracts\Auth\Access\Gate).

Authorization (ACL) and Roles | 241

Example 9-16. Basic Gate facade usage

if (Gate::allows('update-contact', $contact)) {
 // Update contact
}

// or
if (Gate::denies('update-contact', $contact)) {
 abort(403);
}

You might also define an ability with multiple parameters—maybe a contact can be in
groups, and you want to authorize whether the user has access to add a contact to a
group. Example 9-17 shows how to do this.

Example 9-17. Abilities with multiple parameters

// Definition
Gate::define('add-contact-to-group', function ($user, $contact, $group) {
 return $user->id == $contact->user_id && $user->id == $group->user_id;
});

// Usage
if (Gate::denies('add-contact-to-group', [$contact, $group])) {
 abort(403);
}

And if you need to check authorization for a user other than the currently authentica‐
ted user, try forUser(), like in Example 9-18.

Example 9-18. Specifying the user for Gate

if (Gate::forUser($user)->denies('create-contact')) {
 abort(403);
}

Resource Gates
The most common use for ACLs is to define access to individual “resources” (think
an Eloquent model, or something you’re allowing users to administer from their
admin panel).

The resource() method makes it possible to apply the four most common gates,
view, create, update, and delete, to a single resource at once:

Gate::resource('photos', 'App\Policies\PhotoPolicy');

This is equivalent to defining the following:

242 | Chapter 9: User Authentication and Authorization

Gate::define('photos.view', 'App\Policies\PhotoPolicy@view');
Gate::define('photos.create', 'App\Policies\PhotoPolicy@create');
Gate::define('photos.update', 'App\Policies\PhotoPolicy@update');
Gate::define('photos.delete', 'App\Policies\PhotoPolicy@delete');

The Authorize Middleware
If you want to authorize entire routes, you can use the Authorize middleware (which
has a shortcut of can), like in Example 9-19.

Example 9-19. Using the Authorize middleware

Route::get('people/create', function () {
 // Create a person
})->middleware('can:create-person');

Route::get('people/{person}/edit', function () {
 // Edit person
})->middleware('can:edit,person');

Here, the {person} parameter (whether it’s defined as a string or as a bound route
model) will be passed to the ability method as an additional parameter.

The first check in Example 9-19 is a normal ability, but the second is a policy, which
we’ll talk about in “Policies” on page 247.

If you need to check for an action that doesn’t require a model instance (for example,
create, unlike edit, doesn’t get passed an actual route model–bound instance), you
can just pass the class name:

Route::post('people', function () {
 // Create a person
})->middleware('can:create,App\Person');

Controller Authorization
The parent App\Http\Controllers\Controller class in Laravel imports the
AuthorizesRequests trait, which provides three methods for authorization:
authorize(), authorizeForUser(), and authorizeResource().

authorize() takes an ability key and an object (or array of objects) as parameters,
and if the authorization fails, it’ll quit the application with a 403 (Unauthorized) sta‐
tus code. That means this feature can turn three lines of authorization code into just
one, as you can see in Example 9-20.

Authorization (ACL) and Roles | 243

Example 9-20. Simplifying controller authorization with authorize()

// From this:
public function edit(Contact $contact)
{
 if (Gate::cannot('update-contact', $contact)) {
 abort(403);
 }

 return view('contacts.edit', ['contact' => $contact]);
}

// To this:
public function edit(Contact $contact)
{
 $this->authorize('update-contact', $contact);

 return view('contacts.edit', ['contact' => $contact]);
}

authorizeForUser() is the same, but allows you to pass in a User object instead of
defaulting to the currently authenticated user:

$this->authorizeForUser($user, 'update-contact', $contact);

authorizeResource(), called once in the controller constructor, maps a predefined
set of authorization rules to each of the RESTful controller methods in that controller
—something like Example 9-21.

Example 9-21. The authorization-to-method mappings of authorizeResource()

...
class ContactsController extends Controller
{
 public function __construct()
 {
 // This call does everything you see in the methods below.
 // If you put this here, you can remove all authorize()
 // calls in the individual resource methods here.
 $this->authorizeResource(Contact::class);
 }

 public function index()
 {
 $this->authorize('view', Contact::class);
 }

 public function create()
 {
 $this->authorize('create', Contact::class);
 }

244 | Chapter 9: User Authentication and Authorization

 public function store(Request $request)
 {
 $this->authorize('create', Contact::class);
 }

 public function show(Contact $contact)
 {
 $this->authorize('view', $contact);
 }

 public function edit(Contact $contact)
 {
 $this->authorize('update', $contact);
 }

 public function update(Request $request, Contact $contact)
 {
 $this->authorize('update', $contact);
 }

 public function destroy(Contact $contact)
 {
 $this->authorize('delete', $contact);
 }
}

Checking on the User Instance
If you’re not in a controller, you’re more likely to be checking the capabilities of a spe‐
cific user than the currently authenticated user. That’s already possible with the Gate
facade using the forUser() method, but sometimes the syntax can feel a little off.

Thankfully, the Authorizable trait on the User class provides three methods to
make a more readable authorization feature: $user->can(), $user->cant(), and
$user->cannot(). As you can probably guess, cant() and cannot() do the same
thing, and can() is their exact inverse.

That means you can do something like Example 9-22.

Example 9-22. Checking authorization on a User instance

$user = User::find(1);

if ($user->can('create-contact')) {
 // Do something
}

Authorization (ACL) and Roles | 245

Behind the scenes, these methods are just passing your params to Gate; in the preced‐
ing example, Gate::forUser($user)->check('create-contact').

Blade Checks
Blade also has a little convenience helper: the @can directive. Example 9-23 illustrates
its usage.

Example 9-23. Using Blade’s @can directive

<nav>
 Home
 @can('edit-contact', $contact)
 id]) }}">Edit This Contact
 @endcan
</nav>

You can also use @else in between @can and @endcan, and you can use @cannot and
@endcannot as in Example 9-24.

Example 9-24. Using Blade’s @cannot directive

<h1>{{ $contact->name }}</h1>
@cannot('edit-contact', $contact)
 LOCKED
@endcannot

Intercepting Checks
If you’ve ever built an app with an admin user class, you’ve probably looked at all of
the simple authorization closures so far in this chapter and thought about how you
could add a superuser class that overrides these checks in every case. Thankfully,
there’s already a tool for that.

In AuthServiceProvider, where you’re already defining your abilities, you can also
add a before() check that runs before all the others and can optionally override
them, like in Example 9-25.

Example 9-25. Overriding Gate checks with before()

Gate::before(function ($user, $ability) {
 if ($user->isOwner()) {
 return true;
 }
});

246 | Chapter 9: User Authentication and Authorization

Note that the string name for the ability is also passed in, so you can differentiate
your before() hooks based on your ability naming scheme.

Policies
Up until this point, all of the access controls have required you to manually associate
Eloquent models with the ability names. You could have created an ability named
something like visit-dashboard that’s not related to a specific Eloquent model, but
you’ll probably have noticed that most of our examples have had to do with doing
something to something—and in most of these cases, the something that’s the recipient
of the action is an Eloquent model.

Authorization policies are organizational structures that help you group your author‐
ization logic based on the resource you’re controlling access to. They make it easy to
manage defining authorization rules for behavior toward a particular Eloquent model
(or other PHP class), all together in a single location.

Generating policies
Policies are PHP classes, which can be generated with an Artisan command:

php artisan make:policy ContactPolicy

Once they’re generated, they need to be registered. The AuthServiceProvider has a
$policies property, which is an array. The key of each item is the class name of the
protected resource (almost always an Eloquent class), and the value is the policy class
name. Example 9-26 shows what this will look like.

Example 9-26. Registering policies in AuthServiceProvider

class AuthServiceProvider extends ServiceProvider
{
 protected $policies = [
 Contact::class => ContactPolicy::class,
];

A policy class that’s generated by Artisan doesn’t have any special properties or meth‐
ods. But every method that you add is now mapped as an ability key for this object.

Policy Auto-Discovery

In applications running Laravel 5.8+, Laravel tries to “guess” the
links between your policies and their corresponding models. For
example, it’ll apply the PostPolicy to your Post model automati‐
cally.
If you need to customize the logic Laravel uses to guess this map‐
ping, check out the Policy docs.

Authorization (ACL) and Roles | 247

http://bit.ly/2HJ4itY

Let’s define an update() method to take a look at how it works (Example 9-27).

Example 9-27. A sample update() policy method

<?php

namespace App\Policies;

class ContactPolicy
{
 public function update($user, $contact)
 {
 return $user->id == $contact->user_id;
 }
}

Notice that the contents of this method look exactly like they would in a Gate defini‐
tion.

Policy Methods That Don’t Take an Instance

What if you want to define a policy method that relates to the
class but not a specific instance—for example, “can this user

create contacts at all?” rather than just “can this user view this spe‐
cific contact?” In Laravel 5.3, you can treat this just like a normal
method. In Laravel 5.2, when you create that method, you’ll need to
add “Any” at the end of its name:

...
class ContactPolicy
{
 public function createAny($user)
 {
 return $user->canCreateContacts();
 }

Checking policies

If there’s a policy defined for a resource type, the Gate facade will use the first param‐
eter to figure out which method to check on the policy. If you run
Gate::allows('update', $contact), it will check the ContactPolicy@update

method for authorization.

This also works for the Authorize middleware and for User model checking and
Blade checking, as seen in Example 9-28.

248 | Chapter 9: User Authentication and Authorization

Example 9-28. Checking authorization against a policy

// Gate
if (Gate::denies('update', $contact)) {
 abort(403);
}

// Gate if you don't have an explicit instance
if (! Gate::check('create', Contact::class)) {
 abort(403);
}

// User
if ($user->can('update', $contact)) {
 // Do stuff
}

// Blade
@can('update', $contact)
 // Show stuff
@endcan

Additionally, there’s a policy() helper that allows you to retrieve a policy class and
run its methods:

if (policy($contact)->update($user, $contact)) {
 // Do stuff
}

Overriding policies

Just like with normal ability definitions, policies can define a before() method that
allows you to override any call before it’s even processed (see Example 9-29).

Example 9-29. Overriding policies with the before() method

public function before($user, $ability)
{
 if ($user->isAdmin()) {
 return true;
 }
}

Testing
Application tests often need to perform a particular behavior on behalf of a particular
user. We therefore need to be able to authenticate as a user in application tests, and
we need to test authorization rules and authentication routes.

Testing | 249

Of course, it’s possible to write an application test that manually visits the login page
and then fills out the form and submits it, but that’s not necessary. Instead, the sim‐
plest option is to use the ->be() method to simulate being logged in as a user. Take a
look at Example 9-30.

Example 9-30. Authenticating as a user in application tests

public function test_it_creates_a_new_contact()
{
 $user = factory(User::class)->create();
 $this->be($user);

 $this->post('contacts', [
 'email' => 'my@email.com',
]);

 $this->assertDatabaseHas('contacts', [
 'email' => 'my@email.com',
 'user_id' => $user->id,
]);
}

You can also use, and chain, the actingAs() method instead of be(), if you prefer
how it reads:

public function test_it_creates_a_new_contact()
{
 $user = factory(User::class)->create();

 $this->actingAs($user)->post('contacts', [
 'email' => 'my@email.com',
]);

 $this->assertDatabaseHas('contacts', [
 'email' => 'my@email.com',
 'user_id' => $user->id,
]);
}

We can also test authorization like in Example 9-31.

Example 9-31. Testing authorization rules

public function test_non_admins_cant_create_users()
{
 $user = factory(User::class)->create([
 'admin' => false,
]);
 $this->be($user);

250 | Chapter 9: User Authentication and Authorization

 $this->post('users', ['email' => 'my@email.com']);

 $this->assertDatabaseMissing('users', [
 'email' => 'my@email.com',
]);
}

Or we can test for a 403 response like in Example 9-32.

Example 9-32. Testing authorization rules by checking status code

public function test_non_admins_cant_create_users()
{
 $user = factory(User::class)->create([
 'admin' => false,
]);
 $this->be($user);

 $response = $this->post('users', ['email' => 'my@email.com']);

 $response->assertStatus(403);
}

We need to test that our authentication (signup and sign-in) routes work too, as illus‐
trated in Example 9-33.

Example 9-33. Testing authentication routes

public function test_users_can_register()
{
 $this->post('register', [
 'name' => 'Sal Leibowitz',
 'email' => 'sal@leibs.net',
 'password' => 'abcdefg123',
 'password_confirmation' => 'abcdefg123',
]);

 $this->assertDatabaseHas('users', [
 'name' => 'Sal Leibowitz',
 'email' => 'sal@leibs.net',
]);
}

public function test_users_can_log_in()
{
 $user = factory(User::class)->create([
 'password' => Hash::make('abcdefg123')
]);

 $this->post('login', [

Testing | 251

 'email' => $user->email,
 'password' => 'abcdefg123',
]);

 $this->assertTrue(auth()->check());
 $this->assertTrue($user->is(auth()->user()));
}

We can also use the integration test features to direct the test to “click” our authenti‐
cation fields and “submit” the fields to test the entire flow. We’ll talk about that more
in Chapter 12.

Different Names for Testing Methods Prior to Laravel 5.4

In projects running versions of Laravel prior to 5.4,
assertDatabaseHas() should be replaced by seeInDatabase(),
assertDatabaseMissing() should likewise be replaced by
dontSeeInDatabase(), assertDatabaseHas() should be replaced
by seeInDatabase(), and assertStatus() should be called on
$this instead of $response.

TL;DR
Between the default User model, the create_users_table migration, the auth con‐
trollers, and the auth scaffold, Laravel provides a full user authentication system out
of the box. The RegisterController handles user registration, the LoginController
handles user authentication, and the ResetPasswordController and the
ForgotPasswordController handle password resets. Each has certain properties and
methods that can be used to override some of the default behavior.

The Auth facade and the auth() global helper provide access to the current user
(auth()->user()) and make it easy to check whether a user is logged in
(auth()->check() and auth()->guest()).

Laravel also has an authorization system built in that allows you to define specific
abilities (create-contact, visit-secret-page) or define policies for user interaction
with entire models.

You can check for authorization with the Gate facade, the can() and cannot() meth‐
ods on the User class, the @can and @cannot directives in Blade, the authorize()
methods on the controller, or the can middleware.

252 | Chapter 9: User Authentication and Authorization

CHAPTER 10

Requests, Responses, and Middleware

We’ve already talked a bit about the Illuminate Request object. In Chapter 3, for
example, you saw how you can typehint it in constructors to get an instance or use
the request() helper to retrieve it, and in Chapter 7 we looked at how you can use it
to get information about the user’s input.

In this chapter, you’ll learn more about what the Request object is, how it’s generated
and what it represents, and what part it plays in your application’s lifecycle. We’ll
also talk about the Response object and Laravel’s implementation of the middleware
pattern.

Laravel’s Request Lifecycle
Every request coming into a Laravel application, whether generated by an HTTP
request or a command-line interaction, is immediately converted into an Illuminate
Request object, which then crosses many layers and ends up being parsed by the
application itself. The application then generates an Illuminate Response object,
which is sent back out across those layers and finally returned to the end user.

This request/response lifecycle is illustrated in Figure 10-1. Let’s take a look at what it
takes to make each of these steps happen, from the first line of code to the last.

253

Figure 10-1. Request/response lifecycle

Bootstrapping the Application
Every Laravel application has some form of configuration set up at the web server
level, in an Apache .htaccess file or an Nginx configuration setting or something simi‐
lar, that captures every web request regardless of URL and routes it to public/
index.php in the Laravel application directory (app).

index.php doesn’t actually have that much code in it. It has three primary functions.

First, it loads Composer’s autoload file, which registers all of the Composer-loaded
dependencies.

Composer and Laravel
Laravel’s core functionality is separated into a series of components under the
Illuminate namespace, which are all pulled into each Laravel app using Composer.
Laravel also pulls in quite a few packages from Symfony and several other
community-developed packages. In this way, Laravel is just as much an opinionated
collection of components as it is a framework.

Next, it kicks off Laravel’s bootstrap, creating the application container (you’ll learn
more about the container in Chapter 11) and registering a few core services (includ‐
ing the kernel, which we’ll talk about in just a bit).

Finally, it creates an instance of the kernel, creates a request representing the current
user’s web request, and passes the request to the kernel to handle. The kernel
responds with an Illuminate Response object, which index.php returns to the end
user. Then, the kernel terminates the page request.

Laravel’s kernel
The kernel is the core router of every Laravel application, responsible for taking in a
user request, processing it through middleware, handling exceptions and passing it to
the page router, and then returning the final response. Actually, there are two kernels,

254 | Chapter 10: Requests, Responses, and Middleware

but only one is used for each page request. One of the routers handles web requests
(the HTTP kernel) and the other handles console, cron, and Artisan requests (the
console kernel). Each has a handle() method that’s responsible for taking in an Illu‐
minate Request object and returning an Illuminate Response object.

The kernel runs all of the bootstraps that need to run before every request, including
determining which environment the current request is running in (staging, local, pro‐
duction, etc.) and running all of the service providers. The HTTP kernel additionally
defines the list of middleware that will wrap each request, including the core middle‐
ware responsible for sessions and CSRF protection.

Service Providers
While there’s a bit of procedural code in these bootstraps, almost all of Laravel’s boot‐
strap code is separated into something Laravel calls service providers. A service pro‐
vider is a class that encapsulates logic that various parts of your application need to
run in order to bootstrap their core functionality.

For example, there’s an AuthServiceProvider that bootstraps all of the registrations
necessary for Laravel’s authentication system and a RouteServiceProvider that boot‐
straps the routing system.

The concept of service providers can be a little hard to understand at first, so think
about it this way: many components of your application have bootstrap code that
needs to run when the application initializes. Service providers are a tool for group‐
ing that bootstrap code into related classes. If you have any code that needs to run
in preparation for your application code to work, it’s a strong candidate for a service
provider.

For example, if you ever find that the feature you’re working on requires some classes
registered in the container (you’ll learn more about this in Chapter 11), you would
create a service provider just for that piece of functionality. You might have a
GitHubServiceProvider or a MailerServiceProvider.

boot(), register(), and deferring on service providers

Service providers have two important methods: boot() and register(). There’s also
a DeferrableProvider interface (5.8+) or a $defer property (5.7 and earlier) that
you might choose to use. Here’s how they work.

First, all of the service providers’ register() methods are called. This is where you’ll
want to bind classes and aliases to the container. You don’t want to do anything in
register() that relies on the entire application being bootstrapped.

Laravel’s Request Lifecycle | 255

Second, all of the service providers’ boot() methods are called. You can now do any
other bootstrapping here, like binding event listeners or defining routes—anything
that may rely on the entire Laravel application having been bootstrapped.

If your service provider is only going to register bindings in the container (i.e., teach
the container how to resolve a given class or interface), but not perform any other
bootstrapping, you can “defer” its registrations, which means they won’t run unless
one of their bindings is explicitly requested from the container. This can speed up
your application’s average time to bootstrap.

If you want to defer your service provider’s registrations, in 5.8+, first implement the
Illuminate\Contracts\Support\DeferrableProvider interface; or, in 5.7 and ear‐
lier, first give it a protected $defer property and set it to true; and then, in all ver‐
sions, give the service provider a provides() method that returns a list of bindings
the provider provides, as shown in Example 10-1.

Example 10-1. Deferring the registration of a service provider

...
use Illuminate\Contracts\Support\DeferrableProvider;

class GitHubServiceProvider extends ServiceProvider implements DeferrableProvider
{
 public function provides()
 {
 return [
 GitHubClient::class,
];
 }

More Uses for Service Providers

Service providers also have a suite of methods and configuration
options that can provide advanced functionality to the end user
when the provider is published as part of a Composer package.
Take a look at the service provider definition in the Laravel source
to learn more about how this can work.

Now that we’ve covered the application bootstrap, let’s take a look at the Request
object, the most important output of the bootstrap.

256 | Chapter 10: Requests, Responses, and Middleware

http://bit.ly/2HEEC1t

The Request Object
The Illuminate\Http\Request class is a Laravel-specific extension of Symfony’s
HttpFoundation\Request class.

Symfony HttpFoundation
If you’re not familiar with it, Symfony’s HttpFoundation suite of classes powers
almost every PHP framework in existence at this point; this is the most popular and
powerful set of abstractions available in PHP for representing HTTP requests,
responses, headers, cookies, and more.

The Request object is intended to represent every relevant piece of information you
might care to know about a user’s HTTP request.

In native PHP code, you might find yourself looking to $_SERVER, $_GET, $_POST, and
other combinations of globals and processing logic to get information about the cur‐
rent user’s request. What files has the user uploaded? What’s their IP address? What
fields did they post? All of this is sprinkled around the language—and your code—in
a way that’s hard to understand and harder to mock.

Symfony’s Request object instead collects all of the information necessary to repre‐
sent a single HTTP request into a single object, and then tacks on convenience
methods to make it easy to get useful information from it. The Illuminate Request
object adds even more convenience methods to get information about the request
it’s representing.

Capturing a Request

You’ll very likely never need to do this in a Laravel app, but if you
ever need to capture your own Illuminate Request object directly
from PHP’s globals, you can use the capture() method:

$request = Illuminate\Http\Request::capture();

Getting a Request Object in Laravel
Laravel creates an internal Request object for each request, and there are a few ways
you can get access to it.

First—and again, we’ll cover this more in Chapter 11—you can typehint the class in
any constructor or method that’s resolved by the container. That means you can type‐
hint it in a controller method or a service provider, as seen in Example 10-2.

The Request Object | 257

Example 10-2. Typehinting in a container-resolved method to receive a Request object

...
use Illuminate\Http\Request;

class PeopleController extends Controller
{
 public function index(Request $request)
 {
 $allInput = $request->all();
 }

Alternatively, you can use the request() global helper, which allows you to call meth‐
ods on it (e.g., request()->input()) and also allows you to call it on its own to get
an instance of $request:

$request = request();
$allInput = $request->all();
// or
$allInput = request()->all();

Finally, you can use the app() global method to get an instance of Request. You can
pass either the fully qualified class name or the shortcut request:

$request = app(Illuminate\Http\Request::class);
$request = app('request');

Getting Basic Information About a Request
Now that you know how to get an instance of Request, what can you do with it? The
primary purpose of the Request object is to represent the current HTTP request, so
the primary functionality the Request class offers is to make it easy to get useful
information about the current request.

I’ve categorized the methods described here, but note that there’s certainly overlap
between the categories, and the categories are a bit arbitrary—for example, query
parameters could just as easily be in “User and request state” as they are in “Basic user
input.” Hopefully these categories will make it easy for you to learn what’s available,
and then you can throw away the categories.

Also, be aware that there are many more methods available on the Request object;
these are just the most commonly used methods.

Basic user input
The basic user input methods make it simple to get information that the users them‐
selves explicitly provide—likely through submitting a form or an Ajax component.
When I reference “user-provided input” here, I’m talking about input from query

258 | Chapter 10: Requests, Responses, and Middleware

strings (GET), form submissions (POST), or JSON. The basic user input methods
include the following:

all()

Returns an array of all user-provided input.

input(fieldName)

Returns the value of a single user-provided input field.

only(fieldName|[array,of,field,names])

Returns an array of all user-provided input for the specified field name(s).

except(fieldName|[array,of,field,names])

Returns an array of all user-provided input except for the specified field name(s).

exists(fieldName)

Returns a Boolean indicating whether the field exists in the input. has() is an
alias.

filled(fieldName)

Returns a Boolean indicating whether the field exists in the input and is not
empty (that is, has a value).

json()

Returns a ParameterBag if the page had JSON sent to it.

json(keyName)

Returns the value of the given key from the JSON sent to the page.

ParameterBag
Sometimes in Laravel you’ll run into a ParameterBag object. This class is sort of like
an associative array. You can get a particular key using get():

echo $bag->get('name');

You can also use has() to check for the existence of a key, all() to get an array of all
keys and values, count() to count the number of items, and keys() to get an array of
just the keys.

Example 10-3 gives a few quick examples of how to use the user-provided informa‐
tion methods from a request.

The Request Object | 259

Example 10-3. Getting basic user-provided information from the request

// form
<form method="POST" action="/form">
 @csrf
 <input name="name"> Name

 <input type="submit">
</form>

// Route receiving the form
Route::post('form', function (Request $request) {
 echo 'name is ' . $request->input('name') . '
';
 echo 'all input is ' . print_r($request->all()) . '
';
 echo 'user provided email address: ' . $request->has('email') ? 'true' : 'false';
});

User and request state
The user and request state methods include input that wasn’t explicitly provided by
the user through a form:

method()

Returns the method (GET, POST, PATCH, etc.) used to access this route.

path()

Returns the path (without the domain) used to access this page; for example,
http://www.myapp.com/abc/def would return abc/def.

url()

Returns the URL (with the domain) used to access this page; for example, http://
www.myapp.com/abc would return http://www.myapp.com/abc.

is()

Returns a Boolean indicating whether or not the current page request fuzzy-
matches a provided string (e.g., /a/b/c would be matched by $request-
>is('*b*'), where * stands for any characters); uses a custom regex parser
found in Str::is().

ip()

Returns the user’s IP address.

header()

Returns an array of headers (e.g., ['accept-language' => ['en-

US,en;q=0.8']]), or, if passed a header name as a parameter, returns just that
header.

260 | Chapter 10: Requests, Responses, and Middleware

server()

Returns an array of the variables traditionally stored in $_SERVER (e.g.,
REMOTE_ADDR), or, if passed a $_SERVER variable name, returns just that value.

secure()

Returns a Boolean indicating whether this page was loaded using HTTPS.

pjax()

Returns a Boolean indicating whether this page request was loaded using Pjax.

wantsJson()

Returns a Boolean indicating whether this request has any /json content types in
its Accept headers.

isJson()

Returns a Boolean indicating whether this page request has any /json content
types in its Content-Type header.

accepts()

Returns a Boolean indicating whether this page request accepts a given content
type.

Files
So far, all of the input we’ve covered is either explicit (retrieved by methods like
all(), input(), etc.) or defined by the browser or referring site (retrieved by meth‐
ods like pjax()). File inputs are similar to explicit user input, but they’re handled
much differently:

file()

Returns an array of all uploaded files, or, if a key is passed (the file upload field
name), returns just the one file.

allFiles()

Returns an array of all uploaded files; useful as opposed to file() because of
clearer naming.

hasFile()

Returns a Boolean indicating whether a file was uploaded at the specified key.

Every file that’s uploaded will be an instance of Symfony\Component\HttpFoundation
\File\UploadedFile, which provides a suite of tools for validating, processing, and
storing uploaded files.

Take a look at Chapter 14 for more examples of how to handle uploaded files.

The Request Object | 261

Persistence
The request can also provide functionality for interacting with the session. Most ses‐
sion functionality lives elsewhere, but there are a few methods that are particularly
relevant to the current page request:

flash()

Flashes the current request’s user input to the session to be retrieved later, which
means it’s saved to the session but disappears after the next request.

flashOnly()

Flashes the current request’s user input for any keys in the provided array.

flashExcept()

Flashes the current request’s user input, except for any keys in the provided array.

old()

Returns an array of all previously flashed user input, or, if passed a key, returns
the value for that key if it was previously flashed.

flush()

Wipes all previously flashed user input.

cookie()

Retrieves all cookies from the request, or, if a key is provided, retrieves just that
cookie.

hasCookie()

Returns a Boolean indicating whether the request has a cookie for the given key.

The flash*() and old() methods are used for storing user input and retrieving it
later, often after the input is validated and rejected.

The Response Object
Similar to the Request object, there’s an Illuminate Response object that represents
the response your application is sending to the end user, complete with headers,
cookies, content, and anything else used for sending the end user’s browser instruc‐
tions on rendering a page.

Just like Request, the Illuminate\Http\Response class extends a Symfony class:
Symfony\Component\HttpFoundation\Response. This is a base class with a series of
properties and methods that make it possible to represent and render a response; Illu‐
minate’s Response class decorates it with a few helpful shortcuts.

262 | Chapter 10: Requests, Responses, and Middleware

Using and Creating Response Objects in Controllers
Before we talk about how you can customize your Response objects, let’s step back
and see how we most commonly work with Response objects.

In the end, any Response object returned from a route definition will be converted
into an HTTP response. It may define specific headers or specific content, set cookies,
or whatever else, but eventually it will be converted into a response your users’ brows‐
ers can parse.

Let’s take a look at the simplest possible response, in Example 10-4.

Example 10-4. Simplest possible HTTP response

Route::get('route', function () {
 return new Illuminate\Http\Response('Hello!');
});

// Same, using global function:
Route::get('route', function () {
 return response('Hello!');
});

We create a response, give it some core data, and then return it. We can also custom‐
ize the HTTP status, headers, cookies, and more, like in Example 10-5.

Example 10-5. Simple HTTP response with customized status and headers

Route::get('route', function () {
 return response('Error!', 400)
 ->header('X-Header-Name', 'header-value')
 ->cookie('cookie-name', 'cookie-value');
});

Setting headers

We define a header on a response by using the header() fluent method, like in
Example 10-5. The first parameter is the header name, and the second is the header
value.

Adding cookies

We can also set cookies directly on the Response object if we’d like. We’ll cover Lara‐
vel’s cookie handling a bit more in Chapter 14, but take a look at Example 10-6 for a
simple use case for attaching cookies to a response.

The Response Object | 263

Example 10-6. Attaching a cookie to a response

 return response($content)
 ->cookie('signup_dismissed', true);

Specialized Response Types
There are also a few special response types for views, downloads, files, and JSON.
Each is a predefined macro that makes it easy to reuse particular templates for head‐
ers or content structure.

View responses

In Chapter 4, I used the global view() helper to show how to return a template—for
example, view('view.name.here') or something similar. But if you need to custom‐
ize the headers, HTTP status, or anything else when returning a view, you can use the
view() response type as shown in Example 10-7.

Example 10-7. Using the view() response type

Route::get('/', function (XmlGetterService $xml) {
 $data = $xml->get();
 return response()
 ->view('xml-structure', $data)
 ->header('Content-Type', 'text/xml');
});

Download responses
Sometimes you want your application to force the user’s browser to download a file,
whether you’re creating the file in Laravel or serving it from a database or a protected
location. The download() response type makes this simple.

The required first parameter is the path for the file you want the browser to down‐
load. If it’s a generated file, you’ll need to save it somewhere temporarily.

The optional second parameter is the filename for the downloaded file (e.g.,
export.csv). If you don’t pass a string here, it will be generated automatically. The
optional third parameter allows you to pass an array of headers. Example 10-8 illus‐
trates the use of the download() response type.

Example 10-8. Using the download() response type

public function export()
{
 return response()
 ->download('file.csv', 'export.csv', ['header' => 'value']);
}

264 | Chapter 10: Requests, Responses, and Middleware

public function otherExport()
{
 return response()->download('file.pdf');
}

If you wish to delete the original file from the disk after returning a download
response, you can chain the deleteFileAfterSend() method after the download()
method:

public function export()
{
 return response()
 ->download('file.csv', 'export.csv')
 ->deleteFileAfterSend();
}

File responses
The file response is similar to the download response, except it allows the browser to
display the file instead of forcing a download. This is most common with images
and PDFs.

The required first parameter is the filename, and the optional second parameter can
be an array of headers (see Example 10-9).

Example 10-9. Using the file() response type

public function invoice($id)
{
 return response()->file("./invoices/{$id}.pdf", ['header' => 'value']);
}

JSON responses
JSON responses are so common that, even though they’re not really particularly com‐
plex to program, there’s a custom response for them as well.

JSON responses convert the passed data to JSON (with json_encode()) and set the
Content-Type to application/json. You can also optionally use the setCallback()
method to create a JSONP response instead of JSON, as seen in Example 10-10.

Example 10-10. Using the json() response type

public function contacts()
{
 return response()->json(Contact::all());
}

The Response Object | 265

public function jsonpContacts(Request $request)
{
 return response()
 ->json(Contact::all())
 ->setCallback($request->input('callback'));
}

public function nonEloquentContacts()
{
 return response()->json(['Tom', 'Jerry']);
}

Redirect responses

Redirects aren’t commonly called on the response() helper, so they’re a bit different
from the other custom response types we’ve discussed already, but they’re still just a
different sort of response. Redirects, returned from a Laravel route, send the user a
redirect (often a 301) to another page or back to the previous page.

You technically can call a redirect from response(), as in return

response()->redirectTo('/'). But more commonly, you’ll use the redirect-specific
global helpers.

There is a global redirect() function that can be used to create redirect responses,
and a global back() function that is a shortcut to redirect()->back().

Just like most global helpers, the redirect() global function can either be passed
parameters or be used to get an instance of its class that you then chain method calls
onto. If you don’t chain, but just pass parameters, redirect() performs the same as
redirect()->to(); it takes a string and redirects to that string URL. Example 10-11
shows some examples of its use.

Example 10-11. Examples of using the redirect() global helper

return redirect('account/payment');
return redirect()->to('account/payment');
return redirect()->route('account.payment');
return redirect()->action('AccountController@showPayment');

// If redirecting to an external domain
return redirect()->away('https://tighten.co');

// If named route or controller needs parameters
return redirect()->route('contacts.edit', ['id' => 15]);
return redirect()->action('ContactsController@edit', ['id' => 15]);

You can also redirect “back” to the previous page, which is especially useful when
handling and validating user input. Example 10-12 shows a common pattern in vali‐
dation contexts.

266 | Chapter 10: Requests, Responses, and Middleware

Example 10-12. Redirect back with input

public function store()
{
 // If validation fails...
 return back()->withInput();
}

Finally, you can redirect and flash data to the session at the same time. This is com‐
mon with error and success messages, like in Example 10-13.

Example 10-13. Redirect with flashed data

Route::post('contacts', function () {
 // Store the contact

 return redirect('dashboard')->with('message', 'Contact created!');
});

Route::get('dashboard', function () {
 // Get the flashed data from session--usually handled in Blade template
 echo session('message');
});

Custom response macros
You can also create your own custom response types using macros. This allows you to
define a series of modifications to make to the response and its provided content.

Let’s recreate the json() custom response type, just to see how it works. As always,
you should probably create a custom service provider for these sorts of bindings, but
for now we’ll just put it in AppServiceProvider, as seen in Example 10-14.

Example 10-14. Creating a custom response macro

...
class AppServiceProvider
{
 public function boot()
 {
 Response::macro('myJson', function ($content) {
 return response(json_encode($content))
 ->withHeaders(['Content-Type' => 'application/json']);
 });
 }

Then, we can use it just like we would use the predefined json() macro:

return response()->myJson(['name' => 'Sangeetha']);

The Response Object | 267

This will return a response with the body of that array encoded for JSON, with the
JSON-appropriate Content-Type header.

The Responsable interface
If you’d like to customize how you’re sending responses and a macro doesn’t offer
enough space or enough organization, or if you want any of your objects to be capa‐
ble of being returned as a “response” with their own logic of how to be displayed, the
Responsable interface (introduced in Laravel 5.5) is for you.

The Responsable interface, Illuminate\Contracts\Support\Responsable, dictates
its implementors must have a toResponse() method. This needs to return an Illumi‐
nate Response object. Example 10-15 illustrates how to create a Responsable object.

Example 10-15. Creating a simple Responsable object

...
use Illuminate\Contracts\Support\Responsable;

class MyJson implements Responsable
{
 public function __construct($content)
 {
 $this->content = $content;
 }

 public function toResponse()
 {
 return response(json_encode($this->content))
 ->withHeaders(['Content-Type' => 'application/json']);
 }

Then, we can use it just like our custom macro:

return new MyJson(['name' => 'Sangeetha']);

This probably looks like a lot of work relative to the response macros we covered ear‐
lier. But the Responsable interface really shines when you’re working with more
complicated controller manipulations. One common example is to use it to create
view models (or view objects), like in Example 10-16.

Example 10-16. Using Responsable to create a view object

...
use Illuminate\Contracts\Support\Responsable;

class GroupDonationDashboard implements Responsable
{
 public function __construct($group)

268 | Chapter 10: Requests, Responses, and Middleware

1 Or an ogre.

 {
 $this->group = $group;
 }

 public function budgetThisYear()
 {
 // ...
 }

 public function giftsThisYear()
 {
 // ...
 }

 public function toResponse()
 {
 return view('groups.dashboard')
 ->with('annual_budget', $this->budgetThisYear())
 ->with('annual_gifts_received', $this->giftsThisYear());
 }

It starts to make a little bit more sense in this context—move your complex view
preparation into a dedicated, testable object, and keep your controllers clean. Here’s a
controller that uses that Responsable object:

...
class GroupController
{
 public function index(Group $group)
 {
 return new GroupDonationsDashboard($group);
 }

Laravel and Middleware
Take a look back at Figure 10-1, at the start of this chapter.

We’ve covered the requests and responses, but we haven’t actually looked into what
middleware is. You may already be familiar with middleware; it’s not unique to Lara‐
vel, but rather a widely used architecture pattern.

An Introduction to Middleware
The idea of middleware is that there is a series of layers wrapping around your appli‐
cation, like a multilayer cake or an onion.1 Just as shown in Figure 10-1, every request
passes through every middleware layer on its way into the application, and then the

Laravel and Middleware | 269

https://en.wikipedia.org/wiki/Shrek

resulting response passes back through the middleware layers on its way out to the
end user.

Middleware are most often considered separate from your application logic, and usu‐
ally are constructed in a way that should theoretically be applicable to any applica‐
tion, not just the one you’re working on at the moment.

A middleware can inspect a request and decorate it, or reject it, based on what it
finds. That means middleware is great for something like rate limiting: it can inspect
the IP address, check how many times it’s accessed this resource in the last minute,
and send back a 429 (Too Many Requests) status if a threshold is passed.

Because middleware also gets access to the response on its way out of the application,
it’s great for decorating responses. For example, Laravel uses a middleware to add all
of the queued cookies from a given request/response cycle to the response right
before it is sent to the end user.

But some of the most powerful uses of middleware come from the fact that it can be
nearly the first and the last thing to interact with the request/response cycle. That
makes it perfect for something like enabling sessions—PHP needs you to open the
session very early and close it very late, and middleware is also great for this.

Creating Custom Middleware
Let’s imagine we want to have a middleware that rejects every request that uses the
DELETE HTTP method, and also sends a cookie back for every request.

There’s an Artisan command to create custom middleware. Let’s try it out:

php artisan make:middleware BanDeleteMethod

You can now open up the file at app/Http/Middleware/BanDeleteMethod.php. The
default contents are shown in Example 10-17.

Example 10-17. Default middleware contents

...
class BanDeleteMethod
{
 public function handle($request, Closure $next)
 {
 return $next($request);
 }
}

How this handle() method represents the processing of both the incoming request
and the outgoing response is the most difficult thing to understand about middle‐
ware, so let’s walk through it.

270 | Chapter 10: Requests, Responses, and Middleware

Understanding middleware’s handle() method
First, remember that middleware are layered one on top of another, and then finally
on top of the app. The first middleware that’s registered gets first access to a request
when it comes in, then that request is passed to every other middleware in turn, then
to the app; then the resulting response is passed outward through the middleware,
and finally this first middleware gets last access to the response when it goes out.

Let’s imagine we’ve registered BanDeleteMethod as the first middleware to run. That
means the $request coming into it is the raw request, unadulterated by any other
middleware. Now what?

Passing that request to $next() means handing it off to the rest of the middleware.
The $next() closure just takes that $request and passes it to the handle() method of
the next middleware in the stack. It then gets passed on down the line until there are
no more middleware to hand it to, and it finally ends up at the application.

Next, how does the response come out? This is where it might be hard to follow. The
application returns a response, which is passed back up the chain of middleware—
because each middleware returns its response. So, within that same handle()
method, the middleware can decorate a $request and pass it to the $next() closure,
and can then choose to do something with the output it receives before finally return‐
ing that output to the end user. Let’s look at some pseudocode to make this clearer
(Example 10-18).

Example 10-18. Pseudocode explaining the middleware call process

...
class BanDeleteMethod
{
 public function handle($request, Closure $next)
 {
 // At this point, $request is the raw request from the user.
 // Let's do something with it, just for fun.
 if ($request->ip() === '192.168.1.1') {
 return response('BANNED IP ADDRESS!', 403);
 }

 // Now we've decided to accept it. Let's pass it on to the next
 // middleware in the stack. We pass it to $next(), and what is
 // returned is the response after the $request has been passed
 // down the stack of middleware to the application and the
 // application's response has been passed back up the stack.
 $response = $next($request);

 // At this point, we can once again interact with the response
 // just before it is returned to the user
 $response->cookie('visited-our-site', true);

Laravel and Middleware | 271

 // Finally, we can release this response to the end user
 return $response;
 }
}

Finally, let’s make the middleware do what we actually promised (Example 10-19).

Example 10-19. Sample middleware banning the delete method

...
class BanDeleteMethod
{
 public function handle($request, Closure $next)
 {
 // Test for the DELETE method
 if ($request->method() === 'DELETE') {
 return response(
 "Get out of here with that delete method",
 405
);
 }

 $response = $next($request);

 // Assign cookie
 $response->cookie('visited-our-site', true);

 // Return response
 return $response;
 }
}

Binding Middleware
We’re not quite done yet. We need to register this middleware in one of two ways:
globally or for specific routes.

Global middleware are applied to every route; route middleware are applied on a
route-by-route basis.

Binding global middleware
Both bindings happen in app/Http/Kernel.php. To add a middleware as global, add its
class name to the $middleware property, as in Example 10-20.

272 | Chapter 10: Requests, Responses, and Middleware

Example 10-20. Binding global middleware

// app/Http/Kernel.php
protected $middleware = [
 \Illuminate\Foundation\Http\Middleware\CheckForMaintenanceMode::class,
 \App\Http\Middleware\BanDeleteMethod::class,
];

Binding route middleware
Middleware intended for specific routes can be added as a route middleware or as
part of a middleware group. Let’s start with the former.

Route middleware are added to the $routeMiddleware array in app/Http/Kernel.php.
It’s similar to adding them to $middleware, except we have to give one a key that will
be used when applying this middleware to a particular route, as seen in
Example 10-21.

Example 10-21. Binding route middleware

// app/Http/Kernel.php
protected $routeMiddleware = [
 'auth' => \App\Http\Middleware\Authenticate::class,
 ...
 'ban-delete' => \App\Http\Middleware\BanDeleteMethod::class,
];

We can now use this middleware in our route definitions, like in Example 10-22.

Example 10-22. Applying route middleware in route definitions

// Doesn't make much sense for our current example...
Route::get('contacts', 'ContactsController@index')->middleware('ban-delete');

// Makes more sense for our current example...
Route::prefix('api')->middleware('ban-delete')->group(function () {
 // All routes related to an API
});

Using middleware groups
Laravel 5.2 introduced the concept of middleware groups. They’re essentially pre-
packaged bundles of middleware that make sense to be together in specific contexts.

Laravel and Middleware | 273

Middleware Groups in 5.2 and 5.3

The default routes file in earlier releases of 5.2, routes.php, had
three distinct sections: the root route (/) wasn’t under any mid‐

dleware group, and then there was a web middleware group and an
api middleware group. It was a bit confusing for new users, and it
meant the root route didn’t have access to the session or anything
else that’s kicked off in the middleware.
In later releases of 5.2 everything’s simplified: every route in
routes.php is in the web middleware group. In 5.3 and later, you get
a routes/web.php file for web routes and a routes/api.php file for API
routes. If you want to add routes in other groups, read on.

Out of the box there are two groups: web and api. web has all the middleware that will
be useful on almost every Laravel page request, including middleware for cookies,
sessions, and CSRF protection. api has none of those—it has a throttling middleware
and a route model binding middleware, and that’s it. These are all defined in app/
Http/Kernel.php.

You can apply middleware groups to routes just like you apply route middleware to
routes, with the middleware() fluent method:

Route::get('/', 'HomeController@index')->middleware('web');

You can also create your own middleware groups and add and remove route middle‐
ware to and from preexisting middleware groups. It works just like adding route mid‐
dleware normally, but you’re instead adding them to keyed groups in the
$middlewareGroups array.

You might be wondering how these middleware groups match up with the two
default routes files. Unsurprisingly, the routes/web.php file is wrapped with the web
middleware group, and the routes/api.php file is wrapped with the api middleware
group.

The routes/* files are loaded in the RouteServiceProvider. Take a look at the
map() method there (Example 10-23) and you’ll find a mapWebRoutes() method and a
mapApiRoutes() method, each of which loads its respective files already wrapped in
the appropriate middleware group.

Example 10-23. Default route service provider in Laravel 5.3+

// App\Providers\RouteServiceProvider
public function map()
{
 $this->mapApiRoutes();
 $this->mapWebRoutes();
}

274 | Chapter 10: Requests, Responses, and Middleware

protected function mapApiRoutes()
{
 Route::prefix('api')
 ->middleware('api')
 ->namespace($this->namespace)
 ->group(base_path('routes/api.php'));
}

protected function mapWebRoutes()
{
 Route::middleware('web')
 ->namespace($this->namespace)
 ->group(base_path('routes/web.php'));
}

As you can see in Example 10-23, we’re using the router to load a route group under
the default namespace (App\Http\Controllers) and with the web middleware group,
and another under the api middleware group.

Passing Parameters to Middleware
It’s not common, but there are times when you need to pass parameters to a route
middleware. For example, you might have an authentication middleware that will act
differently depending on whether you’re guarding for the member user type or the
owner user type:

Route::get('company', function () {
 return view('company.admin');
})->middleware('auth:owner');

To make this work, you’ll need to add one or more parameters to the middleware’s
handle() method and update that method’s logic accordingly, as shown in
Example 10-24.

Example 10-24. Defining a route middleware that accepts parameters

public function handle($request, $next, $role)
{
 if (auth()->check() && auth()->user()->hasRole($role)) {
 return $next($request);
 }

 return redirect('login');
}

Note that you can also add more than one parameter to the handle() method, and
pass multiple parameters to the route definition by separating them with commas:

Laravel and Middleware | 275

Route::get('company', function () {
 return view('company.admin');
})->middleware('auth:owner,view');

Form Request Objects
In this chapter we covered how to inject an Illuminate Request object, which is the
base—and most common—request object.

However, you can also extend the Request object and inject that instead. You’ll learn
more about how to bind and inject custom classes in Chapter 11, but there’s one spe‐
cial type, called the form request, that has its own set of behaviors.

See “Form Requests” on page 194 to learn more about creating and using form
requests.

Trusted Proxies
If you use any Laravel tools to generate URLs within the app, you’ll notice that Lara‐
vel detects whether the current request was via HTTP or HTTPS and will generate
any links using the appropriate protocol.

However, this doesn’t always work when you have a proxy (e.g., a load balancer or
other web-based proxy) in front of your app. Many proxies send nonstandard headers
like X_FORWARDED_PORT and X_FORWARDED_PROTO to your app, and expect your app to
“trust” those, interpret them, and use them as a part of the process of interpreting the
HTTP request. In order to make Laravel correctly treat proxied HTTPS calls like
secure calls, and in order for Laravel to process other headers from proxied requests,
you need to define how it should do so.

You likely don’t just want to allow any proxy to send traffic to your app; rather, you
want to lock your app to only trust certain proxies, and even from those proxies you
may only want to trust certain forwarded headers.

Since Laravel 5.6, the package TrustedProxy is included by default with every installa‐
tion of Laravel—but if you’re using an older version, you can still pull it into your
package. TrustedProxy makes it possible for you to whitelist certain sources of traffic
and mark them as “trusted,” and also mark which forwarded headers you want to
trust from those sources and how to map them to normal headers.

To configure which proxies your app will trust, you can edit the App\Http
\Middleware\TrustProxies middleware and add the IP address for your load bal‐
ancer or proxy to the $proxies array, as shown in Example 10-25.

276 | Chapter 10: Requests, Responses, and Middleware

http://bit.ly/2HEi3tR

Example 10-25. Configuring the TrustProxies middleware

 /**
 * The trusted proxies for this application
 *
 * @var array
 */
 protected $proxies = [
 '192.168.1.1',
 '192.168.1.2',
];

 /**
 * The headers that should be used to detect proxies
 *
 * @var string
 */
 protected $headers = Request::HEADER_X_FORWARDED_ALL;

As you can see, the $headers array defaults to trusting all forwarded headers from
the trusted proxies; if you want to customize this list, take a look at the Symfony docs
on trusting proxies.

Testing
Outside of the context of you as a developer using requests, responses, and middle‐
ware in your own testing, Laravel itself actually uses each quite a bit.

When you’re doing application testing with calls like $this->get('/'), you’re
instructing Laravel’s application testing framework to generate request objects that
represent the interactions that you’re describing. Then those request objects are
passed to your application as these were actual visits. That’s why the application tests
are so accurate: your application doesn’t actually “know” that it’s not a real user that’s
interacting with it.

In this context, many of the assertions you’re making—say, assertResponseOk()—
are assertions against the response object generated by the application testing frame‐
work. The assertResponseOk() method just looks at the response object and asserts
that its isOk() method returns true—which is just checking that its status code
is 200. In the end, everything in application testing is acting as if this were a real page
request.

Find yourself in a context where you need a request to work with in your tests? You
can always pull one from the container with $request = request(). Or you could
create your own—the constructor parameters for the Request class, all optional, are
as follows:

Testing | 277

http://bit.ly/2UY7Pri
http://bit.ly/2UY7Pri

$request = new Illuminate\Http\Request(
 $query, // GET array
 $request, // POST array
 $attributes, // "attributes" array; empty is fine
 $cookies, // Cookies array
 $files, // Files array
 $server, // Servers array
 $content // Raw body data
);

If you’re really interested in an example, check out the method Symfony uses to create
a new Request from the globals PHP provides: Symfony\Component\HttpFoundation
\Request@createFromGlobals().

Response objects are even simpler to create manually, if you need to. Here are the
(optional) parameters:

$response = new Illuminate\Http\Response(
 $content, // response content
 $status, // HTTP status, default 200
 $headers // array headers array
);

Finally, if you need to disable your middleware during an application test, import the
WithoutMiddleware trait into that test. You can also use the $this->withoutMiddle
ware() method to disable middleware just for a single test method.

TL;DR
Every request coming into a Laravel application is converted into an Illuminate
Request object, which then passes through all the middleware and is processed by the
application. The application generates a Response object, which is then passed back
through all of the middleware (in reverse order) and returned to the end user.

Request and Response objects are responsible for encapsulating and representing
every relevant piece of information about the incoming user request and the outgoing
server response.

Service providers collect together related behavior for binding and registering classes
for use by the application.

Middleware wrap the application and can reject or decorate any request and
response.

278 | Chapter 10: Requests, Responses, and Middleware

CHAPTER 11

The Container

Laravel’s service container, or dependency injection container, sits at the core of
almost every other feature. The container is a simple tool you can use to bind and
resolve concrete instances of classes and interfaces, and at the same time it’s a power‐
ful and nuanced manager of a network of interrelated dependencies. In this chapter,
you’ll learn more about what it is, how it works, and how you can use it.

Naming and the Container

You’ll notice in this book, in the documentation, and in other edu‐
cational sources that there are quite a few names folks use for the
container. These include:

• Application container
• IoC (inversion of control) container
• Service container
• DI (dependency injection) container

All are useful and valid, but just know they’re all talking about the
same thing. They’re all referring to the service container.

A Quick Introduction to Dependency Injection
Dependency injection means that, rather than being instantiated (“newed up”) within
a class, each class’s dependencies will be injected in from the outside. This most com‐
monly occurs with constructor injection, which means an object’s dependencies are
injected when it’s created. But there’s also setter injection, where the class exposes a
method specifically for injecting a given dependency, and method injection, where one
or more methods expect their dependencies to be injected when they’re called.

279

Take a look at Example 11-1 for a quick example of constructor injection, the most
common type of dependency injection.

Example 11-1. Basic dependency injection

<?php

class UserMailer
{
 protected $mailer;

 public function __construct(Mailer $mailer)
 {
 $this->mailer = $mailer;
 }

 public function welcome($user)
 {
 return $this->mailer->mail($user->email, 'Welcome!');
 }
}

As you can see, this UserMailer class expects an object of type Mailer to be injected
when it’s instantiated, and its methods then refer to that instance.

The primary benefits of dependency injection are that it gives us the freedom to
change what we’re injecting, to mock dependencies for testing, and to instantiate
shared dependencies just once for shared use.

Inversion of Control
You may have heard the phrase “inversion of control” used in conjunction with
“dependency injection,” and sometimes Laravel’s container is called the IoC container.

The two concepts are very similar. Inversion of control references the idea that, in tra‐
ditional programming, the lowest-level code—specific classes, instances, and proce‐
dural code—“controls” which instance of a particular pattern or interface to use. For
example, if you’re instantiating your mailer in each class that needs it, each class gets
to decide whether to use Mailgun or Mandrill or Sendgrid.

The idea of inversion of control refers to flipping that “control” the opposite end of
your application. Now the definition of which mailer to use lives at the highest, most
abstract level of the application, often in configuration. Every instance, every piece of
low-level code, looks up to the high-level configuration to essentially “ask”: “Can you
give me a mailer?” They don’t “know” which mailer they’re getting, just that they’re
getting one.

280 | Chapter 11: The Container

Dependency injection and especially DI containers provide a great opportunity for
inversion of control because, for example, you can define once which concrete
instance of the Mailer interface to provide when injecting mailers into any class that
needs them.

Dependency Injection and Laravel
As you saw in Example 11-1, the most common pattern for dependency injection
is constructor injection, or injecting the dependencies of an object when it’s instanti‐
ated (“constructed”).

Let’s take our UserMailer class from Example 11-1. Example 11-2 shows what it
might look like to create and use an instance of it.

Example 11-2. Simple manual dependency injection

$mailer = new MailgunMailer($mailgunKey, $mailgunSecret, $mailgunOptions);
$userMailer = new UserMailer($mailer);

$userMailer->welcome($user);

Now let’s imagine we want our UserMailer class to be able to log messages, as well as
sending a notification to a Slack channel every time it sends a message. Example 11-3
shows what this would look like. As you can see, it would start to get pretty unwieldy
if we had to do all this work every time we wanted to create a new instance—espe‐
cially when you consider that we’ll have to get all these parameters from somewhere.

Example 11-3. More complex manual dependency injection

$mailer = new MailgunMailer($mailgunKey, $mailgunSecret, $mailgunOptions);
$logger = new Logger($logPath, $minimumLogLevel);
$slack = new Slack($slackKey, $slackSecret, $channelName, $channelIcon);
$userMailer = new UserMailer($mailer, $logger, $slack);

$userMailer->welcome($user);

Imagine having to write that code every time you wanted a UserMailer. Dependency
injection is great, but this is a mess.

The app() Global Helper
Before we go too far into how the container actually works, let’s take a quick look at
the simplest way to get an object out of the container: the app() helper.

Dependency Injection and Laravel | 281

Pass any string to that helper, whether it’s a fully qualified class name (FQCN, like App
\ThingDoer) or a Laravel shortcut (we’ll talk about those more in a second), and it’ll
return an instance of that class:

$logger = app(Logger::class);

This is the absolute simplest way to interact with the container. It creates an instance
of this class and returns it for you, nice and easy. It’s like new Logger but, as you’ll see
shortly, much better.

Different Syntaxes for Making a Concrete Instance
The simplest way to “make” a concrete instance of any class or interface is to use the
global helper and pass the class or interface name directly to the helper, using
app('FQCN').

However, if you have an instance of the container—whether it was injected some‐
where, or if you’re in a service provider and using $this->app, or (a lesser-known
trick) if you get one by just running $container = app()—there are a few ways to
make an instance from there.

The most common way is to run the make() method. $app->make('FQCN') works
well. However, you may also see other developers and the documentation use this
syntax sometimes: $app['FQCN']. Don’t worry. That’s doing the same thing; it’s just a
different way of writing it.

Creating the Logger instance as shown here seems simple enough, but you might’ve
noticed that our $logger class in Example 11-3 has two parameters: $logPath and
$minimumLogLevel. How does the container know what to pass here?

Short answer: it doesn’t. You can use the app() global helper to create an instance of a
class that has no parameters in its constructor, but at that point you could’ve just run
new Logger yourself. The container shines when there’s some complexity in the con‐
structor, and that’s when we need to look at how exactly the container can figure out
how to construct classes with constructor parameters.

How the Container Is Wired
Before we dig further into the Logger class, take a look at Example 11-4.

Example 11-4. Laravel autowiring

class Bar
{
 public function __construct() {}

282 | Chapter 11: The Container

}

class Baz
{
 public function __construct() {}
}

class Foo
{
 public function __construct(Bar $bar, Baz $baz) {}
}

$foo = app(Foo::class);

This looks similar to our mailer example in Example 11-3. What’s different is that
these dependencies (Bar and Baz) are both so simple that the container can resolve
them without any further information. The container reads the typehints in the Foo
constructor, resolves an instance of both Bar and Baz, and then injects them into the
new Foo instance when it’s creating it. This is called autowiring: resolving instances
based on typehints without the developer needing to explicitly bind those classes in
the container.

Autowiring means that, if a class has not been explicitly bound to the container (like
Foo, Bar, or Baz in this context) but the container can figure out how to resolve it
anyway, the container will resolve it. This means any class with no constructor depen‐
dencies (like Bar and Baz) and any class with constructor dependencies that the con‐
tainer can resolve (like Foo) can be resolved out of the container.

That leaves us only needing to bind classes that have unresolvable constructor param‐
eters—for example, our $logger class in Example 11-3, which has parameters related
to our log path and log level.

For those, we’ll need to learn how to explicitly bind something to the container.

Binding Classes to the Container
Binding a class to Laravel’s container is essentially telling the container, “If a devel‐
oper asks for an instance of Logger, here’s the code to run in order to instantiate one
with the correct parameters and dependencies and then return it correctly.”

We’re teaching the container that, when someone asks for this particular string
(which is usually the FQCN of a class), it should resolve it this way.

Binding to a Closure
So, let’s look at how to bind to the container. Note that the appropriate place to bind
to the container is in a service provider’s register() method (see Example 11-5).

Binding Classes to the Container | 283

Example 11-5. Basic container binding

// In any service provider (maybe LoggerServiceProvider)
public function register()
{
 $this->app->bind(Logger::class, function ($app) {
 return new Logger('\log\path\here', 'error');
 });
}

There are a few important things to note in this example. First, we’re running
$this->app->bind(). $this->app is an instance of the container that’s always avail‐
able on every service provider. The container’s bind() method is what we use to bind
to the container.

The first parameter of bind() is the “key” we’re binding to. Here we’ve used the
FQCN of the class. The second parameter differs depending on what you’re doing,
but essentially it should be something that shows the container what to do to resolve
an instance of that bound key.

So, in this example, we’re passing a closure. And now, any time someone runs
app(Logger::class), they’ll get the result of this closure. The closure is passed an
instance of the container itself ($app), so if the class you’re resolving has a depend‐
ency you want resolved out of the container, you can use it in your definition as seen
in Example 11-6.

Example 11-6. Using the passed $app instance in a container binding

// Note that this binding is not doing anything technically useful, since this
// could all be provided by the container's auto-wiring already.
$this->app->bind(UserMailer::class, function ($app) {
 return new UserMailer(
 $app->make(Mailer::class),
 $app->make(Logger::class),
 $app->make(Slack::class)
);
});

Note that every time you ask for a new instance of your class, this closure will be run
again and the new output returned.

Binding to Singletons, Aliases, and Instances
If you want the output of the binding closure to be cached so that this closure isn’t re-
run every time you ask for an instance, that’s the Singleton pattern, and you can run
$this->app->singleton() to do that. Example 11-7 shows what this looks like.

284 | Chapter 11: The Container

Example 11-7. Binding a singleton to the container

public function register()
{
 $this->app->singleton(Logger::class, function () {
 return new Logger('\log\path\here', 'error');
 });
}

You can also get similar behavior if you already have an instance of the object you
want the singleton to return, as seen in Example 11-8.

Example 11-8. Binding an existing class instance to the container

public function register()
{
 $logger = new Logger('\log\path\here', 'error');
 $this->app->instance(Logger::class, $logger);
}

Finally, if you want to alias one class to another, bind a class to a shortcut, or bind a
shortcut to a class, you can just pass two strings, as shown in Example 11-9.

Example 11-9. Aliasing classes and strings

// Asked for Logger, give FirstLogger
$this->app->bind(Logger::class, FirstLogger::class);

// Asked for log, give FirstLogger
$this->app->bind('log', FirstLogger::class);

// Asked for log, give FirstLogger
$this->app->alias(FirstLogger::class, 'log');

Note that these shortcuts are common in Laravel’s core; it provides a system of short‐
cuts to classes that provide core functionality, using easy-to-remember keys like log.

Binding a Concrete Instance to an Interface
Just like we can bind a class to another class, or a class to a shortcut, we can also bind
to an interface. This is extremely powerful, because we can now typehint interfaces
instead of class names, like in Example 11-10.

Example 11-10. Typehinting and binding to an interface

...
use Interfaces\Mailer as MailerInterface;

Binding Classes to the Container | 285

class UserMailer
{
 protected $mailer;

 public function __construct(MailerInterface $mailer)
 {
 $this->mailer = $mailer;
 }
}

// Service provider
public function register()
{
 $this->app->bind(\Interfaces\Mailer::class, function () {
 return new MailgunMailer(...);
 });
}

You can now typehint Mailer or Logger interfaces all across your code, and then
choose once in a service provider which specific mailer or logger you want to use
everywhere. That’s inversion of control.

One of the key benefits you get from using this pattern is that later, if you choose to
use a different mail provider than Mailgun, as long as you have a mailer class for that
new provider that implements the Mailer interface, you can swap it once in your ser‐
vice provider and everything in the rest of your code will just work.

Contextual Binding
Sometimes you need to change how to resolve an interface depending on the context.
You might want to log events from one place to a local syslog and from others out
to an external service. So, let’s tell the container to differentiate—check out
Example 11-11.

Example 11-11. Contextual binding

// In a service provider
public function register()
{
 $this->app->when(FileWrangler::class)
 ->needs(Interfaces\Logger::class)
 ->give(Loggers\Syslog::class);

 $this->app->when(Jobs\SendWelcomeEmail::class)
 ->needs(Interfaces\Logger::class)
 ->give(Loggers\PaperTrail::class);
}

286 | Chapter 11: The Container

Constructor Injection in Laravel Framework Files
We’ve covered the concept of constructor injection, and we’ve looked at how the con‐
tainer makes it easy to resolve instances of a class or interface out of the container.
You saw how easy it is to use the app() helper to make instances, and also how the
container will resolve the constructor dependencies of a class when it’s creating it.

What we haven’t covered yet is how the container is also responsible for resolving
many of the core operating classes of your application. For example, every controller
is instantiated by the container. That means if you want an instance of a logger in
your controller, you can simply typehint the logger class in your controller’s construc‐
tor, and when Laravel creates the controller, it will resolve it out of the container and
that logger instance will be available to your controller. Take a look at Example 11-12.

Example 11-12. Injecting dependencies into a controller

...
class MyController extends Controller
{
 protected $logger;

 public function __construct(Logger $logger)
 {
 $this->logger = $logger;
 }

 public function index()
 {
 // Do something
 $this->logger->error('Something happened');
 }
}

The container is responsible for resolving controllers, middleware, queue jobs, event
listeners, and any other classes that are automatically generated by Laravel in the pro‐
cess of your application’s lifecycle—so any of those classes can typehint dependencies
in their constructors and expect them to be automatically injected.

Method Injection
There are a few places in your application where Laravel doesn’t just read the con‐
structor signature: it also reads the method signature and will inject dependencies for
you there as well.

The most common place to use method injection is in controller methods. If you
have a dependency you only want to use for a single controller method, you can inject
it into just that method like in Example 11-13.

Constructor Injection in Laravel Framework Files | 287

Example 11-13. Injecting dependencies into a controller method

...
class MyController extends Controller
{
 // Method dependencies can come after or before route parameters.
 public function show(Logger $logger, $id)
 {
 // Do something
 $logger->error('Something happened');
 }
}

Passing Unresolvable Constructor Parameters Using makeWith()

All of the primary tools for resolving a concrete instance of a class
—app(), $container->make(), etc.—assume that all of the class’s
dependencies can be resolved without passing anything in. But
what if your class accepts a value in its constructor, instead of a
dependency the container can resolve for you? Use the makeWith()
method:

class Foo
{
 public function __construct($bar)
 {
 // ...
 }
}

$foo = $this->app->makeWith(
 Foo::class,
 ['bar' => 'value']
);

This is a bit of an edge case. Most classes that you’ll be resolving
out of the container should only have dependencies injected into
their constructors.

You can do the same in the boot() method of service providers, and you can also
arbitrarily call a method on any class using the container, which will allow for method
injection there (see Example 11-14).

Example 11-14. Manually calling a class method using the container’s call() method

class Foo
{
 public function bar($parameter1) {}
}

288 | Chapter 11: The Container

// Calls the 'bar' method on 'Foo' with a first parameter of 'value'
app()->call('Foo@bar', ['parameter1' => 'value']);

Facades and the Container
We’ve covered facades quite a bit so far in the book, but we haven’t actually talked
about how they work.

Laravel’s facades are classes that provide simple access to core pieces of Laravel’s func‐
tionality. There are two trademark features of facades: first, they’re all available in the
global namespace (\Log is an alias to \Illuminate\Support\Facades\Log); and sec‐
ond, they use static methods to access nonstatic resources.

Let’s take a look at the Log facade, since we’ve been looking at logging already in this
chapter. In your controller or views, you could use this call:

Log::alert('Something has gone wrong!');

Here’s what it would look like to make that same call without the facade:

$logger = app('log');
$logger->alert('Something has gone wrong!');

As you can see, facades translate static calls (any method call that you make on a class
itself, using ::, instead of on an instance) to normal method calls on instances.

Importing Facade Namespaces

If you’re in a namespaced class, you’ll want to be sure to import the
facade at the top:

...
use Illuminate\Support\Facades\Log;

class Controller extends Controller
{
 public function index()
 {
 // ...
 Log::error('Something went wrong!');
 }

How Facades Work
Let’s take a look at the Cache facade and see how it actually works.

First, open up the class Illuminate\Support\Facades\Cache. You’ll see something
like Example 11-15.

Facades and the Container | 289

Example 11-15. The Cache facade class

<?php

namespace Illuminate\Support\Facades;

class Cache extends Facade
{
 protected static function getFacadeAccessor()
 {
 return 'cache';
 }
}

Every facade has a single method: getFacadeAccessor(). This defines the key that
Laravel should use to look up this facade’s backing instance from the container.

In this instance, we can see that every call to the Cache facade is proxied to be a call to
an instance of the cache shortcut from the container. Of course, that’s not a real class
or interface name, so we know it’s one of those shortcuts I mentioned earlier.

So, here’s what’s really happening:

Cache::get('key');

// Is the same as...

app('cache')->get('key');

There are a few ways to look up exactly what class each facade accessor points to, but
checking the documentation is the easiest. There’s a table on the facades documenta‐
tion page that shows you, for each facade, which container binding (shortcut, like
cache) it’s connected to, and which class that returns. It looks like this:

Facade Class Service container binding

App Illuminate\Foundation\Application app

… … …

Cache Illuminate\Cache\CacheManager cache

… … …

Now that you have this reference, you can do three things.

First, you can figure out what methods are available on a facade. Just find its backing
class and look at the definition of that class, and you’ll know that any of its public
methods are callable on the facade.

Second, you can figure out how to inject a facade’s backing class using dependency
injection. If you ever want the functionality of a facade but prefer to use dependency

290 | Chapter 11: The Container

http://bit.ly/2WpJdIu
http://bit.ly/2WpJdIu

injection, just typehint the facade’s backing class or get an instance of it with app()
and call the same methods you would’ve called on the facade.

Third, you can see how to create your own facades. Create a class for the facade that
extends Illuminate\Support\Facades\Facade, and give it a getFacadeAccessor()
method, which returns a string. Make that string something that can be used to
resolve your backing class out of the container—maybe just the FQCN of the class.
Finally, you have to register the facade by adding it to the aliases array in config/
app.php. Done! You just made your own facade.

Real-Time Facades
Laravel 5.4 introduced a new concept called real-time facades. Rather than creating a
new class to make your class’s instance methods available as static methods, you can
simply prefix your class’s FQCN with Facades\ and use it as if it were a facade.
Example 11-16 illustrates how this works.

Example 11-16. Using real-time facades

namespace App;

class Charts
{
 public function burndown()
 {
 // ...
 }
}

<h2>Burndown Chart</h2>
{{ Facades\App\Charts::burndown() }}

As you can see here, the nonstatic method burndown() becomes accessible as a static
method on the real-time facade, which we create by prepending the class’s full name
with Facades\.

Service Providers
We covered the basics of service providers in the previous chapter (see “Service Pro‐
viders” on page 255). What’s most important with regard to the container is that you
remember to register your bindings in the register() method of some service
provider somewhere.

You can just dump loose bindings into App\Providers\AppServiceProvider, which
is a bit of a catchall, but it’s generally better practice to create a unique service pro‐

Service Providers | 291

vider for each group of functionality you’re developing and bind its classes in its
unique register() method.

Testing
The ability to use inversion of control and dependency injection makes testing in Lar‐
avel extremely versatile. You can bind a different logger, for instance, depending on
whether the app is live or under testing. Or you can change the transactional email
service from Mailgun to a local email logger for easy inspection. Both of these swaps
are actually so common that it’s even easier to make them using Laravel’s .env config‐
uration files, but you can make similar swaps with any interfaces or classes you’d like.

The easiest way to do this is to explicitly rebind classes and interfaces when you need
them rebound, directly in the test. Example 11-17 shows how.

Example 11-17. Overriding a binding in tests

public function test_it_does_something()
{
 app()->bind(Interfaces\Logger, function () {
 return new DevNullLogger;
 });

 // Do stuff
}

If you need certain classes or interfaces rebound globally for your tests (which is not a
particularly common occurrence), you can do this either in the test class’s setUp()
method or in Laravel’s TestCase base test’s setUp() method, as shown in
Example 11-18.

Example 11-18. Overriding a binding for all tests

class TestCase extends \Illuminate\Foundation\Testing\TestCase
{
 public function setUp()
 {
 parent::setUp();

 app()->bind('whatever', 'whatever else');
 }
}

When using something like Mockery, it’s common to create a mock or spy or stub of
a class and then to rebind that to the container in place of its referent.

292 | Chapter 11: The Container

TL;DR
Laravel’s service container has many names, but regardless of what you call it, in the
end its goal is to make it easy to define how to resolve certain string names as con‐
crete instances. These string names are going to be the fully qualified class names of
classes or interfaces, or shortcuts like log.

Each binding teaches the application, given a string key (e.g., app('log')), how to
resolve a concrete instance.

The container is smart enough to do recursive dependency resolution, so if you try to
resolve an instance of something that has constructor dependencies, the container
will try to resolve those dependencies based on their typehints, then pass them into
your class, and finally return an instance.

There are a few ways to bind to the container, but in the end they all define what to
return, given a particular string.

Facades are simple shortcuts that make it easy to use static calls on a root namespace–
aliased class to call nonstatic methods on classes resolved out of the container. Real-
time facades allow you to treat any class like a facade by prepending its fully qualified
class name with Facades\.

TL;DR | 293

CHAPTER 12

Testing

Most developers know that testing your code is A Good Thing. We’re supposed to do
it. We likely have an idea of why it’s good, and we might’ve even read some tutorials
about how it’s supposed to work.

But the gap between knowing why you should test and knowing how to test is wide.
Thankfully, tools like PHPUnit, Mockery, and PHPSpec provide an incredible num‐
ber of options for testing in PHP—but it can still be pretty overwhelming to get
everything set up.

Out of the box, Laravel comes with baked-in integrations to PHPUnit (unit testing),
Mockery (mocking), and Faker (creating fake data for seeding and testing). It also
provides its own simple and powerful suite of application testing tools, which allow
you to “crawl” your site’s URIs, submit forms, check HTTP status codes, and validate
and assert against JSON. It also provides a robust frontend testing framework called
Dusk that can even interact with your JavaScript applications and test against them.
In case this hasn’t made it clear, we’re going to cover a lot of ground in this chapter.

To make it easy for you to get started, Laravel’s testing setup comes with sample appli‐
cation test that can run successfully the moment you create a new app. That means
you don’t have to spend any time configuring your testing environment, and that’s
one less barrier to writing your tests.

295

Testing Basics

Testing Terms
It’s hard to get any group of programmers to agree on one set of terms to define dif‐
ferent types of tests.

In this book, I’ll use four primary terms:

Unit tests
Unit tests target small, relatively isolated units—a class or method, usually.

Feature tests
Feature tests test the way individual units work together and pass messages.

Application tests
Often called acceptance or functional tests, application tests test the entire behav‐
ior of the application, usually at an outer boundary like HTTP calls.

Regression tests
Similar to application tests, regression tests are a little more focused on describ‐
ing exactly what a user should be able to do and ensuring that behavior doesn’t
stop working. The line between application and regression tests is thin, but the
difference is primarily based on the level of fidelity of your tests. For example, an
application test might say “browser can POST to the people endpoint and then
there should be a new entry in the users table” (relatively low fidelity, because
you are mimicking what the browser is doing), but a regression test would more
likely say “after clicking this button with this form data entered the user should
see that result on that page” (higher fidelity, because you’re describing the actual
behavior of your users).

Tests in Laravel live in the tests folder. There are two files in the root: TestCase.php,
which is the base root test which all of your tests will extend, and CreatesApplica‐
tion.php, a trait (imported by TestCase.php) which allows any class to boot a sample
Laravel application for testing.

There are also two subfolders: Features, for tests that cover the interaction between
multiple units, and Unit, for tests that are intended to cover just one unit of your code
(class, module, function, etc.). Each of these folders contains an ExampleTest.php file,
each of which has a single sample test inside it, ready to run.

296 | Chapter 12: Testing

Differences in Testing Prior to Laravel 5.4

In projects running versions of Laravel prior to 5.4, there will be
only two files in the tests directory: ExampleTest.php, your sample
test, and TestCase.php, your base test.
Additionally, if your app is pre-5.4, the syntax in all of the examples
in this chapter will not be quite right. All the ideas are the same,
but the syntax is a bit different across the board. You can learn
more in the Laravel 5.3 testing docs. Here are the four biggest
changes:

1. In 5.3 and before, you’re not creating response objects; instead,
you’re just calling methods on $this, and the test class stores
the responses. So, $response = $this->get('people') in
5.4+ would look like $this->get('people') in 5.3 and earlier.

2. Many of the assertions have been renamed in small ways in
5.4+ to make them look more like PHPUnit’s normal assertion
names; for example, assertSee() instead of see().

3. Some of the “crawling” methods that in 5.4+ have been extrac‐
ted out to browser-kit-testing were built into the core in
previous versions.

4. Dusk didn’t exist prior to 5.4.

Because testing prior to 5.4 was so different, I’ve made the testing
chapter for the first edition of this book available as a free PDF. If
you’re working with 5.3 or earlier, I’d recommend skipping this
chapter in the book and using this PDF of the testing chapter from
the first edition instead.

The ExampleTest in your Unit directory contains one simple assertion:
$this->assertTrue(true). Anything in your unit tests is likely to be relatively sim‐
ple PHPUnit syntax (asserting that values are equal or different, looking for entries in
arrays, checking Booleans, etc.), so there’s not much to learn there.

The Basics of PHPUnit Assertions

If you’re not yet familiar with PHPUnit, most of our assertions will
be run on the $this object with this syntax:

$this->assertWHATEVER($expected, $real);

So, for example, if we’re asserting that two variables should be
equal, we’ll pass it first our expected result, and second the actual
outcome of the object or system we’re testing:

$multiplicationResult = $myCalculator->multiply(5, 3);
$this->assertEqual(15, $multiplicationResult);

Testing Basics | 297

http://bit.ly/2YnwDev
http://bit.ly/2CNFCN1
http://bit.ly/2CNFCN1

As you can see in Example 12-1, the ExampleTest in the Feature directory makes a
simulated HTTP request to the page at the root path of your application and checks
that its HTTP status is 200 (successful). If it is, it’ll pass; if not, it’ll fail. Unlike your
average PHPUnit test, we’re running these assertions on the TestResponse object
that’s returned when we make test HTTP calls.

Example 12-1. tests/Feature/ExampleTest.php

<?php

namespace Tests\Feature;

use Tests\TestCase;
use Illuminate\Foundation\Testing\RefreshDatabase;

class ExampleTest extends TestCase
{
 /**
 * A basic test example
 *
 * @return void
 */
 public function testBasicTest()
 {
 $response = $this->get('/');

 $response->assertStatus(200);
 }
}

To run the tests, run ./vendor/bin/phpunit on the command line from the root
folder of your application. You should see something like the output in Example 12-2.

Example 12-2. Sample ExampleTest output

PHPUnit 7.3.5 by Sebastian Bergmann and contributors.

.. 2 / 2 (100%)

Time: 139 ms, Memory: 12.00MB

OK (2 test, 2 assertions)

You just ran your first Laravel application test! Those two dots indicate that you have
two passing tests. As you can see, you’re set up out of the box not only with a func‐
tioning PHPUnit instance, but also a full-fledged application testing suite that can
make mock HTTP calls and test your application’s responses. Further, you’ll soon
learn that you have easy access to a fully featured DOM crawler (“A Quick Introduc‐

298 | Chapter 12: Testing

tion to BrowserKit Testing” on page 324) and a regression testing tool with full Java‐
Script support (“Testing with Dusk” on page 324).

In case you’re not familiar with PHPUnit, let’s take a look at what it’s like to have a test
fail. Instead of modifying the previous test, we’ll make our own. Run php artisan
make:test FailingTest. This will create the file tests/Feature/FailingTest.php; you
can modify its testExample() method to look like Example 12-3.

Example 12-3. tests/Feature/FailingTest.php, edited to fail

public function testExample()
{
 $response = $this->get('/');

 $response->assertStatus(301);
}

As you can see, it’s the same as the test we ran previously, but we’re now testing
against the wrong status. Let’s run PHPUnit again.

Generating Unit Tests

If you want your test to be generated in the Unit directory instead
of the Feature directory, pass the --unit flag:

php artisan make:test SubscriptionTest --unit

Whoops! This time the output will probably look a bit like Example 12-4.

Example 12-4. Sample failing test output

PHPUnit 7.3.5 by Sebastian Bergmann and contributors.

.F. 3 / 3 (100%)

Time: 237 ms, Memory: 12.00MB

There was 1 failure:

1) Tests\Feature\FailingTest::testExample
Expected status code 301 but received 200.
Failed asserting that false is true.

/path-to-your-app/vendor/.../Foundation/Testing/TestResponse.php:124
/path-to-your-app/tests/Feature/FailingTest.php:20

FAILURES!
Tests: 3, Assertions: 3, Failures: 1.

Testing Basics | 299

Let’s break this down. Last time there were only two dots, representing the two pass‐
ing tests, but this time there’s an F between them indicating that one of the three tests
run here has failed.

Then, for each error, we see the test name (here, FailingTest::testExample), the
error message (Expected status code...), and a full stack trace, so we can see what
was called. Since this was an application test, the stack trace just shows us that it was
called via the TestResponse class, but if this were a unit or feature test, we’d see the
entire call stack of the test.

Now that we’ve run both a passing test and a failing test, it’s time for you to learn
more about Laravel’s testing environment.

Naming Tests
By default, Laravel’s testing system will run any files in the tests directory whose
names end with the word Test. That’s why tests/ExampleTest.php was run by default.

If you’re not familiar with PHPUnit, you might not know that only the methods in
your tests with names that start with the word test will be run—or methods with a
@test documentation block, or docblock. See Example 12-5 for which methods will
and won’t run.

Example 12-5. Naming PHPUnit methods

class NamingTest
{
 public function test_it_names_things_well()
 {
 // Runs as "It names things well"
 }

 public function testItNamesThingsWell()
 {
 // Runs as "It names things well"
 }

 /** @test */
 public function it_names_things_well()
 {
 // Runs as "It names things well"
 }

 public function it_names_things_well()
 {
 // Doesn't run
 }
}

300 | Chapter 12: Testing

The Testing Environment
Any time a Laravel application is running, it has a current “environment” name
that represents the environment it’s running in. This name may be set to local,
staging, production, or anything else you want. You can retrieve this by running
app()->environment(), or you can run if (app()->environment('local')) or
something similar to test whether the current environment matches the passed name.

When you run tests, Laravel automatically sets the environment to testing. This
means you can test for if (app()->environment('testing')) to enable or disable
certain behaviors in the testing environment.

Additionally, Laravel doesn’t load the normal environment variables from .env for
testing. If you want to set any environment variables for your tests, edit phpunit.xml
and, in the <php> section, add a new <env> for each environment variable you want to
pass in—for example, <env name="DB_CONNECTION" value="sqlite"/>.

Using .env.testing to Exclude Testing Environment
Variables from Version Control

If you want to set environment variables for your tests, you can do so in phpunit.xml
as just described. But what if you have environment variables for your tests that you
want to be different for each testing environment? Or what if you want them to be
excluded from source control?

Thankfully, handling these conditions is pretty easy. First, create an .env.testing.exam‐
ple file, just like Laravel’s .env.example file. Next, add the variables you’d like to be
environment-specific to .env.testing.example, just like they’re set in .env.example.
Then, make a copy of .env.testing.example and name it .env.testing. Finally,
add .env.testing to your .gitignore file just below .env and set any values you want
in .env.testing.

In most versions of Laravel, the framework will automatically load this file for you. In
Laravel prior to 5.2, or in some of the earlier minor releases prior to 5.5, you might
not have this at the framework level; I’ve written a blog post showing you how to add
it when the framework doesn’t have it.

The Testing Traits
Before we get into the methods you can use for testing, you need to know about the
four testing traits you can pull into any test class.

The Testing Environment | 301

http://bit.ly/2YwnyQG

RefreshDatabase
Illuminate\Foundation\Testing\RefreshDatabase is imported at the top of every
newly generated test file, and it’s the most commonly used database migration trait.
This trait was introduced in Laravel 5.5 and is only available in projects running on
that version or later.

The point of this, and the other database traits, is to ensure your database tables are
correctly migrated at the start of each test.

RefreshDatabase takes two steps to do this. First, it runs your migrations on your
test database once at the beginning of each test run (when you run phpunit, not for
each individual test method). And second, it wraps each individual test method in a
database transaction and rolls back the transaction at the end of the test.

That means you have your database migrated for your tests and cleared out fresh after
each test runs, without having to run your migrations again before every test—mak‐
ing this the fastest possible option. When in doubt, stick with this.

WithoutMiddleware
If you import Illuminate\Foundation\Testing\WithoutMiddleware into your test
class, it will disable all middleware for any test in that class. This means you won’t
have to worry about the authentication middleware, or CSRF protection, or anything
else that might be useful in the real application but distracting in a test.

If you’d like to disable middleware for just a single method instead of the entire test
class, call $this->withoutMiddleware() at the top of the method for that test.

DatabaseMigrations
If you import the Illuminate\Foundation\Testing\DatabaseMigrations trait
instead of the RefreshDatabase trait, it will run your entire set of database migra‐
tions fresh before each test. Laravel makes this happen by running php artisan
migrate:fresh in the setUp() method before every test runs.

DatabaseTransactions
Illuminate\Foundation\Testing\DatabaseTransactions, on the other hand,
expects your database to be properly migrated before your tests start. It wraps every
test in a database transaction, which it rolls back at the end of each test. This means
that, at the end of each test, your database will be returned to the exact same state it
was in prior to the test.

302 | Chapter 12: Testing

Simple Unit Tests
With simple unit tests, you almost don’t need any of these traits. You may reach for
database access or inject something out of the container, but it’s very likely that unit
tests in your applications won’t rely on the framework very much. Take a look at
Example 12-6 for an example of what a simple test might look like.

Example 12-6. A simple unit test

class GeometryTest extends TestCase
{
 public function test_it_calculates_area()
 {
 $square = new Square;
 $square->sideLength = 4;

 $calculator = new GeometryCalculator;

 $this->assertEquals(16, $calculator->area($square));
 }

Obviously, this is a bit of a contrived example. But you can see here that we’re testing
a single class (GeometryCalculator) and its single method (area()), and we’re doing
so without worrying about the entire Laravel application.

Some unit tests might be testing something that technically is connected to the frame‐
work—for example, Eloquent models—but you can still test them without worrying
about the framework. For example, in Example 12-7, we’ll use Package::make()
instead of Package::create() so the object is created and evaluated in memory
without ever hitting the database.

Example 12-7. A more complicated unit test

class PopularityTest extends TestCase
{
 use RefreshDatabase;

 public function test_votes_matter_more_than_views()
 {
 $package1 = Package::make(['votes' => 1, 'views' => 0]);
 $package2 = Package::make(['votes' => 0, 'views' => 1]);

 $this->assertTrue($package1->popularity > $package2->popularity);
 }

Some people may call this an integration or feature test, since this “unit” will likely
touch the database in actual usage and it’s connected to the entire Eloquent codebase.

Simple Unit Tests | 303

The most important point is that you can have simple tests that test a single class or
method, even when the objects under test are framework-connected.

All of this said, it’s still going to be more likely that your tests—especially as you first
get started—are broader and more at the “application” level. Accordingly, for the rest
of the chapter we’re going to dig deeper into application testing.

Application Testing: How It Works
In “Testing Basics” on page 296 we saw that, with a few lines of code, we can “request”
URIs in our application and actually check the status of the response. But how can
PHPUnit request pages as if it were a browser?

TestCase
Any application tests should extend the TestCase class (tests/TestCase.php) that’s
included with Laravel by default. Your application’s TestCase class will extend the
abstract Illuminate\Foundation\Testing\TestCase class, which brings in quite a
few goodies.

The first thing the two TestCase classes (yours and its abstract parent) do is handle
booting the Illuminate application instance for you, so you have a fully bootstrapped
application available. They also “refresh” the application between each test, which
means they’re not entirely recreating the application between tests, but rather making
sure you don’t have any data lingering.

The parent TestCase also sets up a system of hooks that allow callbacks to be run
before and after the application is created, and imports a series of traits that provide
you with methods for interacting with every aspect of your application. These traits
include InteractsWithContainer, MakesHttpRequests, and InteractsWithConsole,
and they bring in a broad variety of custom assertions and testing methods.

As a result, your application tests have access to a fully bootstrapped application
instance and application-test-minded custom assertions, with a series of simple and
powerful wrappers around each to make them easy to use.

That means you can write $this->get('/')->assertStatus(200) and know that
your application is actually behaving as if it were responding to a normal HTTP
request, and that the response is being fully generated and then checked as a browser
would check it. It’s pretty powerful stuff, considering how little work you had to do to
get it running.

304 | Chapter 12: Testing

HTTP Tests
Let’s take a look at our options for writing HTTP-based tests. You’ve already seen
$this->get('/'), but let’s dive deeper into how you can use that call, how you can
assert against its results, and what other HTTP calls you can make.

Testing Basic Pages with $this->get() and Other HTTP Calls
At the very basic level, Laravel’s HTTP testing allows you to make simple HTTP
requests (GET, POST, etc.) and then make simple assertions about their impact or
response.

There are more tools we’ll cover later (in “A Quick Introduction to BrowserKit Test‐
ing” on page 324 and “Testing with Dusk” on page 324) that allow for more complex
page interactions and assertions, but let’s start at the base level. Here are the calls you
can make:

• $this->get($uri, $headers = [])

• $this->post($uri, $data = [], $headers = [])

• $this->put($uri, $data = [], $headers = [])

• $this->patch($uri, $data = [], $headers = [])

• $this->delete($uri, $data = [], $headers = [])

These methods are the basis of the HTTP testing framework. Each takes at least a
URI (usually relative) and headers, and all but get() also allow for passing data along
with the request.

And, importantly, each returns a $response object that represents the HTTP
response. This response object is almost exactly the same as an Illuminate Response
object, the same thing we return out of our controllers. However, it’s actually an
instance of Illuminate\Foundation\Testing\TestResponse, which wraps a normal
Response with some assertions for testing.

Take a look at Example 12-8 to see a common usage of post() and a common
response assertion.

Example 12-8. A simple use of post() in testing

public function test_it_stores_new_packages()
{
 $response = $this->post(route('packages.store'), [
 'name' => 'The greatest package',
]);

HTTP Tests | 305

 $response->assertOk();
}

In most examples like Example 12-8, you’ll also test that the record exists in the data‐
base and shows up on the index page, and maybe that it doesn’t test successfully
unless you define the package author and are logged in. But don’t worry, we’ll get to
all of that. For now, you can make calls to your application routes with many different
verbs and make assertions against both the response and the state of your application
afterward. Great!

Testing JSON APIs with $this->getJson() and Other JSON HTTP Calls
You can also do all of the same sorts of HTTP tests with your JSON APIs. There are
convenience methods for that, too:

• $this->getJson($uri, $headers = [])

• $this->postJson($uri, $data = [], $headers = [])

• $this->putJson($uri, $data = [], $headers = [])

• $this->patchJson($uri, $data = [], $headers = [])

• $this->deleteJson($uri, $data = [], $headers = [])

These methods work just the same as the normal HTTP call methods, except they
also add JSON-specific Accept, CONTENT_LENGTH, and CONTENT_TYPE headers. Take a
look at Example 12-9 to see an example.

Example 12-9. A simple use of postJSON() in testing

public function test_the_api_route_stores_new_packages()
{
 $response = $this->postJSON(route('api.packages.store'), [
 'name' => 'The greatest package',
], ['X-API-Version' => '17']);

 $response->assertOk();
}

Assertions Against $response
There are 40 assertions available on the $response object in Laravel 5.8, so I’ll refer
you to the testing docs for details on all of them. Let’s look at a few of the most impor‐
tant and most common ones:

$response->assertOk()

Asserts that the response’s status code is 200:

306 | Chapter 12: Testing

http://bit.ly/2HUQJqz

$response = $this->get('terms');
$response->assertOk();

$response->assertStatus($status)

Asserts that the response’s status code is equal to the provided $status:

$response = $this->get('admin');
$response->assertStatus(401); // Unauthorized

$response->assertSee($text) and $response->assertDontSee($text)
Asserts that the response contains (or doesn’t contain) the provided $text:

$package = factory(Package::class)->create();
$response = $this->get(route('packages.index'));
$response->assertSee($package->name);

$response->assertJson(_array $json)

Asserts that the passed array is represented (in JSON format) in the returned
JSON:

$this->postJson(route('packages.store'), ['name' => 'GreatPackage2000']);
$response = $this->getJson(route('packages.index'));
$response->assertJson(['name' => 'GreatPackage2000']);

$response->assertViewHas($key, $value = null)

Asserts that the view on the visited page had a piece of data available at $key, and
optionally checks that the value of that variable was $value:

$package = factory(Package::class)->create();
$response = $this->get(route('packages.show'));
$response->assertViewHas('name', $package->name);

$response->assertSessionHas($key, $value = null)

Asserts that the session has data set at $key, and optionally checks that the value
of that data is $value:

$response = $this->get('beta/enable');
$response->assertSessionHas('beta-enabled', true);

$response->assertSessionHasErrors()

With no parameters, asserts that there’s at least one error set in Laravel’s special
errors session container. Its first parameter can be an array of key/value pairs
that define the errors that should be set and its second parameter can be the
string format that the checked errors should be formatted against, as demon‐
strated here:

// Assuming the "/form" route requires an email field, and we're
// posting an empty submission to it to trigger the error
$response = $this->post('form', []);

HTTP Tests | 307

$response->assertSessionHasErrors();
$response->assertSessionHasErrors([
 'email' => 'The email field is required.',
]);
$response->assertSessionHasErrors(
 ['email' => '<p>The email field is required.</p>'],
 '<p>:message</p>'
);

If you’re working with named error bags, you can pass the error bag name as the
third parameter.

$response->assertCookie($name, $value = null)

Asserts that the response contains a cookie with name $name, and optionally
checks that its value is $value:

$response = $this->post('settings', ['dismiss-warning']);
$response->assertCookie('warning-dismiss', true);

$response->assertCookieExpired($name)

Asserts that the response contains a cookie with name $name and that it is
expired:

$response->assertCookieExpired('warning-dismiss');

$response->assertCookieNotExpired($name)

Asserts that the response contains a cookie with name $name and that it is not
expired:

$response->assertCookieNotExpired('warning-dismiss');

$response->assertRedirect($uri)

Asserts that the requested route returns a redirect to the given URI:

$response = $this->post(route('packages.store'), [
 'email' => 'invalid'
]);

$response->assertRedirect(route('packages.create'));

For each of these assertions, you can assume that there are many related assertions I
haven’t listed here. For example, in addition to assertSessionHasErrors() there are
also assertSessionHasNoErrors() and assertSessionHasErrorsIn() assertions; as
well as assertJson(), there are also assertJsonCount(), assertJsonFragment(),
assertJsonMissing(), assertJsonMissingExact(), assertJsonStructure(), and
assertJsonValidationErrors() assertions. Again, take a look at the docs and make
yourself familiar with the whole list.

308 | Chapter 12: Testing

Authenticating Responses
One piece of your application it’s common to test with application tests is authentica‐
tion and authorization. Most of the time your needs will be met with the actingAs()
chainable method, which takes a user (or other Authenticatable object, depending
on how your system is set up), as you can see in Example 12-10.

Example 12-10. Basic auth in testing

public function test_guests_cant_view_dashboard()
{
 $user = factory(User::class)->states('guest')->create();
 $response = $this->actingAs($user)->get('dashboard');
 $response->assertStatus(401); // Unauthorized
}

public function test_members_can_view_dashboard()
{
 $user = factory(User::class)->states('member')->create();
 $response = $this->actingAs($user)->get('dashboard');
 $response->assertOk();
}

public function test_members_and_guests_cant_view_statistics()
{
 $guest = factory(User::class)->states('guest')->create();
 $response = $this->actingAs($guest)->get('statistics');
 $response->assertStatus(401); // Unauthorized

 $member = factory(User::class)->states('member')->create();
 $response = $this->actingAs($member)->get('statistics');
 $response->assertStatus(401); // Unauthorized
}

public function test_admins_can_view_statistics()
{
 $user = factory(User::class)->states('admin')->create();
 $response = $this->actingAs($user)->get('statistics');
 $response->assertOk();
}

Using Factory States for Authorization

It’s common to use model factories (discussed in “Model Factories”
on page 99) in testing, and model factory states make tasks like cre‐
ating users with different access levels simple.

HTTP Tests | 309

A Few Other Customizations to Your HTTP Tests
If you’d like to set session variables on your requests, you can also chain
withSession():

$response = $this->withSession([
 'alert-dismissed' => true,
])->get('dashboard');

If you’d prefer to set your request headers fluently, you can chain withHeaders():

$response = $this->withHeaders([
 'X-THE-ANSWER' => '42',
])->get('the-restaurant-at-the-end-of-the-universe');

Handling Exceptions in Application Tests
Usually, an exception that’s thrown inside your application when you’re making
HTTP calls will be captured by Laravel’s exception handler and processed as it would
be in normal application. So, the test and route in Example 12-11 would still pass,
since the exception would never bubble up the whole way to our test.

Example 12-11. An exception that will be captured by Laravel’s exception handler and
result in a passing test

// routes/web.php
Route::get('has-exceptions', function () {
 throw new Exception('Stop!');
});

// tests/Feature/ExceptionsTest.php
public function test_exception_in_route()
{
 $this->get('/has-exceptions');

 $this->assertTrue(true);
}

In a lot of cases, this might make sense; maybe you’re expecting a validation exception
and you want it to be caught like it would normally be by the framework.

But if you want to temporarily disable the exception handler, that’s an option; just run
$this->withoutExceptionHandling(), as shown in Example 12-12.

Example 12-12. Temporarily disabling exception handling in a single test

// tests/Feature/ExceptionsTest.php
public function test_exception_in_route()
{
 // Now throws an error

310 | Chapter 12: Testing

 $this->withoutExceptionHandling();

 $this->get('/has-exceptions');

 $this->assertTrue(true);
}

And if for some reason you need to turn it back on (maybe you turned it off in
setUp() but want it back on for just one test), you can run $this->withException
Handling().

Database Tests
Often, the effect we want to test for after our tests have run is in the database. Imag‐
ine you want to test that the “create package” page works correctly. What’s the best
way? Make an HTTP call to the “store package” endpoint and then assert that that
package exists in the database. It’s easier and safer than inspecting the resulting “list
packages” page.

We have two primary assertions for the database: $this->assertDatabaseHas() and
$this->assertDatabaseMissing(). For both, pass the table name as the first param‐
eter, the data you’re looking for as the second, and, optionally, the specific database
connection you want to test as the third.

Take a look at Example 12-13 to see how you might use them.

Example 12-13. Sample database tests

public function test_create_package_page_stores_package()
{
 $this->post(route('packages.store'), [
 'name' => 'Package-a-tron',
]);

 $this->assertDatabaseHas('packages', ['name' => 'Package-a-tron']);
}

As you can see, the second (data) parameter of assertDatabaseHas() is structured
like a SQL WHERE statement—you pass a key and a value (or multiple keys and values),
and then Laravel looks for any records in the specified database table that match your
key(s) and value(s).

As always, assertDatabaseMissing() is the inverse.

Database Tests | 311

Using Model Factories in Tests
Model factories are amazing tools that make it easy to seed randomized, well-
structured database data for testing (or other purposes). You’ve already seen them in
use in several examples in this chapter.

We’ve already covered them in depth, so check out “Model Factories” on page 99 to
learn more.

Seeding in Tests
If you use seeds in your application, you can run the equivalent of php artisan
db:seed by running $this->seed() in your test.

You can also pass a seeder class name to just seed that one class:

$this->seed(); // Seeds all
$this->seed(UserSeeder::class); // Seeds users

Testing Other Laravel Systems
When testing Laravel systems, you’ll often want to pause their true function for the
duration of the testing and instead write tests against what has happened to those sys‐
tems. You can do this by “faking” different facades, such as Event, Mail, and Notifi
cation. We’ll talk more about what fakes are in “Mocking” on page 318, but first, let’s
look at some examples. All of the following features in Laravel have their own set of
assertions you can make after faking them, but you can also just choose to fake them
to restrict their effects.

Event Fakes
Let’s use event fakes as our first example of how Laravel makes it possible to mock its
internal systems. There are likely going to be times when you want to fake events just
for the sake of suppressing their actions. For example, suppose your app pushes noti‐
fications to Slack every time a new user signs up. You have a “user signed up” event
that’s dispatched when this happens, and it has a listener that notifies a Slack channel
that a user has signed up. You don’t want those notifications to go to Slack every time
you run your tests, but you might want to assert that the event was sent, or the lis‐
tener was triggered, or something else. This is one reason for faking certain aspects of
Laravel in our tests: to pause the default behavior and instead make assertions against
the system we’re testing.

Let’s take a look at how to suppress these events by calling the fake() method on
Illuminate\Support\Facades\Event, as shown in Example 12-14.

312 | Chapter 12: Testing

Example 12-14. Suppressing events without adding assertions

public function test_controller_does_some_thing()
{
 Event::fake();

 // Call controller and assert it does whatever you want without
 // worrying about it pinging Slack
}

Once we’ve run the fake() method, we can also call special assertions on the Event
facade: namely, assertDispatched() and assertNotDispatched(). Take a look at
Example 12-15 to see them in use.

Example 12-15. Making assertions against events

public function test_signing_up_users_notifies_slack()
{
 Event::fake();

 // Sign user up

 Event::assertDispatched(UserJoined::class, function ($event) use ($user) {
 return $event->user->id === $user->id;
 });

 // Or sign multiple users up and assert it was dispatched twice

 Event::assertDispatched(UserJoined::class, 2);

 // Or sign up with validation failures and assert it wasn't dispatched

 Event::assertNotDispatched(UserJoined::class);
}

Note that the (optional) closure we’re passing to assertDispatched() makes it so
we’re not just asserting that the event was dispatched, but also that the dispatched
event contains certain data.

Event::fake() Disables Eloquent Model Events

Event::fake() also disables Eloquent model events. So if you have
any important code, for example, in a model’s creating event,
make sure to create your models (through your factories or how‐
ever else) before calling Event::fake().

Testing Other Laravel Systems | 313

Bus and Queue Fakes
The Bus facade, which represents how Laravel dispatches jobs, works just like Event.
You can run fake() on it to disable the impact of your jobs, and after faking it you
can run assertDispatched() or assertNotDispatched().

The Queue facade represents how Laravel dispatches jobs when they’re pushed up to
queues. Its available methods are assertedPushed(), assertPushedOn(), and assert
NotPushed().

Take a look at Example 12-16 to see how to use both.

Example 12-16. Faking jobs and queued jobs

public function test_popularity_is_calculated()
{
 Bus::fake();

 // Synchronize package data...

 // Assert a job was dispatched
 Bus::assertDispatched(
 CalculatePopularity::class,
 function ($job) use ($package) {
 return $job->package->id === $package->id;
 }
);

 // Assert a job was not dispatched
 Bus::assertNotDispatched(DestroyPopularityMaybe::class);
}

public function test_popularity_calculation_is_queued()
{
 Queue::fake();

 // Synchronize package data...

 // Assert a job was pushed to any queue
 Queue::assertPushed(CalculatePopularity::class, function ($job) use ($package) {
 return $job->package->id === $package->id;
 });

 // Assert a job was pushed to a given queue named "popularity"
 Queue::assertPushedOn('popularity', CalculatePopularity::class);

 // Assert a job was pushed twice
 Queue::assertPushed(CalculatePopularity::class, 2);

 // Assert a job was not pushed

314 | Chapter 12: Testing

 Queue::assertNotPushed(DestroyPopularityMaybe::class);
}

Mail Fakes
The Mail facade, when faked, offers four methods: assertSent(), assertNotSent(),
assertQueued(), and assertNotQueued(). Use the Queued methods when your mail
is queued and the Sent methods when it’s not.

Just like with assertDispatched(), the first parameter will be the name of the maila‐
ble and the second parameter can be empty, the number of times the mailable has
been sent, or a closure testing that the mailable has the right data in it. Take a look at
Example 12-17 to see a few of these methods in action.

Example 12-17. Making assertions against mail

public function test_package_authors_receive_launch_emails()
{
 Mail::fake();

 // Make a package public for the first time...

 // Assert a message was sent to a given email address
 Mail::assertSent(PackageLaunched::class, function ($mail) use ($package) {
 return $mail->package->id === $package->id;
 });

 // Assert a message was sent to given email addresses
 Mail::assertSent(PackageLaunched::class, function ($mail) use ($package) {
 return $mail->hasTo($package->author->email) &&
 $mail->hasCc($package->collaborators) &&
 $mail->hasBcc('admin@novapackages.com');
 });

 // Or, launch two packages...

 // Assert a mailable was sent twice
 Mail::assertSent(PackageLaunched::class, 2);

 // Assert a mailable was not sent
 Mail::assertNotSent(PackageLaunchFailed::class);
}

All of the messages checking for recipients (hasTo(), hasCc(), and hasBcc()) can
take either a single email address or an array or collection of addresses.

Testing Other Laravel Systems | 315

Notification Fakes
The Notification facade, when faked, offers two methods: assertSentTo() and
assertNothingSent().

Unlike with the Mail facade, you’re not going to test who the notification was sent to
manually in a closure. Rather, the assertion itself requires the first parameter be either
a single notifiable object or an array or collection of them. Only after you’ve passed in
the desired notification target can you test anything about the notification itself.

The second parameter is the class name for the notification, and the (optional) third
parameter can be a closure defining more expectations about the notification. Take a
look at Example 12-18 to learn more.

Example 12-18. Notification fakes

public function test_users_are_notified_of_new_package_ratings()
{
 Notification::fake();

 // Perform package rating...

 // Assert author was notified
 Notification::assertSentTo(
 $package->author,
 PackageRatingReceived::class,
 function ($notification, $channels) use ($package) {
 return $notification->package->id === $package->id;
 }
);

 // Assert a notification was sent to the given users
 Notification::assertSentTo(
 [$package->collaborators], PackageRatingReceived::class
);

 // Or, perform a duplicate package rating...

 // Assert a notification was not sent
 Notification::assertNotSentTo(
 [$package->author], PackageRatingReceived::class
);
}

You may also find yourself wanting to assert that your channel selection is working—
that notifications are sent via the right channels. You can test that as well, as you can
see in Example 12-19.

316 | Chapter 12: Testing

Example 12-19. Testing notification channels

public function test_users_are_notified_by_their_preferred_channel()
{
 Notification::fake();

 $user = factory(User::class)->create(['slack_preferred' => true]);

 // Perform package rating...

 // Assert author was notified via Slack
 Notification::assertSentTo(
 $user,
 PackageRatingReceived::class,
 function ($notification, $channels) use ($package) {
 return $notification->package->id === $package->id
 && in_array('slack', $channels);
 }
);

Storage Fakes
Testing files can be extraordinarily complex. Many traditional methods require you to
actually move files around in your test directories, and formatting the form input and
output can be very complicated.

Thankfully, if you use Laravel’s Storage facade, it’s infinitely simpler to test file
uploads and other storage-related items. Example 12-20 demonstrates.

Example 12-20. Testing storage and file uploads with storage fakes

public function test_package_screenshot_upload()
{
 Storage::fake('screenshots');

 // Upload a fake image
 $response = $this->postJson('screenshots', [
 'screenshot' => UploadedFile::fake()->image('screenshot.jpg'),
]);

 // Assert the file was stored
 Storage::disk('screenshots')->assertExists('screenshot.jpg');

 // Or, assert a file does not exist
 Storage::disk('screenshots')->assertMissing('missing.jpg');
}

Testing Other Laravel Systems | 317

Mocking
Mocks (and their brethren, spies and stubs and dummies and fakes and any number
of other tools) are common in testing. We saw some examples of fakes in the previous
section. I won’t go into too much detail here, but it’s unlikely you can thoroughly test
an application of any size without mocking at least one thing or another.

So, lets take a quick look at mocking in Laravel and how to use Mockery, the mocking
library.

A Quick Introduction to Mocking
Essentially, mocks and other similar tools make it possible to create an object that in
some way mimics a real class, but for testing purposes isn’t the real class. Sometimes
this is done because the real class is too difficult to instantiate just to inject it into a
test, or maybe because the real class communicates with an external service.

As you can probably tell from the examples that follow, Laravel encourages working
with the real application as much as possible—which means avoiding too great of a
dependence on mocks. But they have their place, which is why Laravel includes
Mockery, a mocking library, out of the box, and is why many of its core services offer
faking utilities.

A Quick Introduction to Mockery
Mockery allows you to quickly and easily create mocks from any PHP class in your
application. Imagine you have a class that depends on a Slack client, but you don’t
want the calls to actually go out to Slack. Mockery makes it simple to create a fake
Slack client to use in your tests, like you can see in Example 12-21.

Example 12-21. Using Mockery in Laravel

// app/SlackClient.php
class SlackClient
{
 // ...

 public function send($message, $channel)
 {
 // Actually sends a message to Slack
 }
}

// app/Notifier.php
class Notifier
{
 private $slack;

318 | Chapter 12: Testing

 public function __construct(SlackClient $slack)
 {
 $this->slack = $slack;
 }

 public function notifyAdmins($message)
 {
 $this->slack->send($message, 'admins');
 }
}

// tests/Unit/NotifierTest.php
public function test_notifier_notifies_admins()
{
 $slackMock = Mockery::mock(SlackClient::class)->shouldIgnoreMissing();

 $notifier = new Notifier($slackMock);
 $notifier->notifyAdmins('Test message');
}

There are a lot of elements at work here, but if you look at them one by one, they
make sense. We have a class named Notifier that we’re testing. It has a dependency
named SlackClient that does something that we don’t want it to do when we’re run‐
ning our tests: it sends actual Slack notifications. So we’re going to mock it.

We use Mockery to get a mock of our SlackClient class. If we don’t care about what
happens to that class—if it should simply exist to keep our tests from throwing errors
—we can just use shouldIgnoreMissing():

$slackMock = Mockery::mock(SlackClient::class)-shouldIgnoreMissing();

No matter what Notifier calls on $slackMock, it’ll just accept it and return null.

But take a look at test_notifier_notifies_admins(). At this point, it doesn’t
actually test anything.

We could just keep shouldIgnoreMissing() and then write some assertions below it.
That’s usually what we do with shouldIgnoreMissing(), which makes this object a
“fake” or a “stub.”

But what if we want to actually assert that a call was made to the send() method of
SlackClient? That’s when we drop shouldIgnoreMissing() and reach for the other
should* methods (Example 12-22).

Example 12-22. Using the shouldReceive() method on a Mockery mock

public function test_notifier_notifies_admins()
{
 $slackMock = Mockery::mock(SlackClient::class);

Mocking | 319

 $slackMock->shouldReceive('send')->once();

 $notifier = new Notifier($slackMock);
 $notifier->notifyAdmins('Test message');
}

shouldReceive('send')->once() is the same as saying “assert that $slackMock
will have its send() method called once and only once.” So, we’re now asserting that
Notifier, when we call notifyAdmins(), makes a single call to the send() method
on SlackClient.

We could also use something like shouldReceive('send')->times(3) or
shouldReceive('send')->never(). We can define what parameter we expect to be
passed along with that send() call using with(), and we can define what to return
with andReturn():

$slackMock->shouldReceive('send')->with('Hello, world!')->andReturn(true);

What if we wanted to use the IoC container to resolve our instance of the Notifier?
This might be useful if Notifier had several other dependencies that we didn’t need
to mock.

We can do that! We just use the instance() method on the container, as in
Example 12-23, to tell Laravel to provide an instance of our mock to any classes that
request it (which, in this example, will be Notifier).

Example 12-23. Binding a Mockery instance to the container

public function test_notifier_notifies_admins()
{
 $slackMock = Mockery::mock(SlackClient::class);
 $slackMock->shouldReceive('send')->once();

 app()->instance(SlackClient::class, $slackMock);

 $notifier = app(Notifier::class);
 $notifier->notifyAdmins('Test message');
}

In Laravel 5.8+, there’s also a convenient shortcut to creating and binding a Mockery
instance to the container:

Example 12-24. Binding Mockery instances to the container more easily in Laravel 5.8+

$this->mock(SlackClient::class, function ($mock) {
 $mock->shouldReceive('send')->once();
});

320 | Chapter 12: Testing

There’s a lot more you can do with Mockery: you can use spies, and partial spies, and
much more. Going deeper into how to use Mockery is out of the scope of this book,
but I encourage you to learn more about the library and how it works by reading the
Mockery docs.

Faking Other Facades
There’s one other clever thing you can do with Mockery: you can use Mockery meth‐
ods (e.g., shouldReceive()) on any facades in your app.

Imagine we have a controller method that uses a facade that’s not one of the fakeable
systems we’ve already covered; we want to test that controller method and assert that
a certain facade call was made.

Thankfully, it’s simple: we can run our Mockery-style methods on the facade, as you
can see in Example 12-25.

Example 12-25. Mocking a facade

// PeopleController
public function index()
{
 return Cache::remember('people', function () {
 return Person::all();
 });
}

// PeopleTest
public function test_all_people_route_should_be_cached()
{
 $person = factory(Person::class)->create();

 Cache::shouldReceive('remember')
 ->once()
 ->andReturn(collect([$person]));

 $this->get('people')->assertJsonFragment(['name' => $person->name]);
}

As you can see, you can use methods like shouldReceive() on the facades, just like
you do on a Mockery object.

You can also use your facades as spies, which means you can set your assertions at the
end and use shouldHaveReceived() instead of shouldReceive(). Example 12-26
illustrates this.

Mocking | 321

http://bit.ly/2Op4yyN

Example 12-26. Facade spies

public function test_package_should_be_cached_after_visit()
{
 Cache::spy();

 $package = factory(Package::class)->create();

 $this->get(route('packages.show', [$package->id]));

 Cache::shouldHaveReceived('put')
 ->once()
 ->with('packages.' . $package->id, $package->toArray());
}

Testing Artisan Commands
We’ve covered a lot in this chapter, but we’re almost done! We have just two more
pieces of Laravel’s testing arsenal to cover: Artisan and the browser.

If you’re working in Laravel prior to 5.7, the best way to test Artisan commands is to
call them with $this->artisan($commandName, $parameters) and then test their
impact, like in Example 12-27.

Example 12-27. Simple Artisan tests

public function test_promote_console_command_promotes_user()
{
 $user = factory(User::class)->create();

 $this->artisan('user:promote', ['userId' => $user->id]);

 $this->assertTrue($user->isPromoted());
}

You can also make assertions against the response code you get from Artisan, as you
can see in Example 12-28.

Example 12-28. Manually asserting Artisan exit codes

$code = $this->artisan('do:thing', ['--flagOfSomeSort' => true]);
$this->assertEquals(0, $code); // 0 means "no errors were returned"

Asserting Against Artisan Command Syntax
If you’re working with Laravel 5.7 and later, you can also chain three new methods
onto your $this->artisan() call: expectsQuestion(), expectsOutput(), and
assertExitCode(). The expects* methods will work on any of the interactive

322 | Chapter 12: Testing

prompts, including confirm(), and anticipate(), and the assertExitCode()
method is a shortcut to what we saw in Example 12-28.

Take a look at Example 12-29 to see how it works.

Example 12-29. Basic Artisan “expects” tests

// routes/console.php
Artisan::command('make:post {--expanded}', function () {
 $title = $this->ask('What is the post title?');
 $this->comment('Creating at ' . str_slug($title) . '.md');

 $category = $this->choice('What category?', ['technology', 'construction'], 0);

 // Create post here

 $this->comment('Post created');
});

// Test file
public function test_make_post_console_commands_performs_as_expected()
{
 $this->artisan('make:post', ['--expanded' => true])
 ->expectsQuestion('What is the post title?', 'My Best Post Now')
 ->expectsOutput('Creating at my-best-post-now.md')
 ->expectsQuestion('What category?', 'construction')
 ->expectsOutput('Post created')
 ->assertExitCode(0);
}

As you can see, the first parameter of expectsQuestion() is the text we’re expecting
to see from the question, and the second parameter is the text we’re answering with.
expectsOutput() just tests that the passed string is returned.

Browser Tests
We’ve made it to browser tests! These allow you to actually interact with the DOM of
your pages: in browser tests you can click buttons, fill out and submit forms, and,
with Dusk, even interact with JavaScript.

Laravel actually has two separate browser testing tools: BrowserKit Testing and Dusk.
Only Dusk is actively maintained; BrowserKit Testing seems to have become a bit of a
second-class citizen, but it’s still available on GitHub and still works at the time of this
writing.

Browser Tests | 323

Choosing a Tool
For browser testing, I suggest you use the core application testing tools whenever
possible (those we’ve covered up to this point). If your app is not JavaScript-based
and you need to test actual DOM manipulation or form UI elements, use BrowserKit.
If you’re developing a JavaScript-heavy app, you’ll likely want to use Dusk, which we’ll
cover next.

However, there will also be many instances where you’ll want to use a JavaScript-
based test stack (which is out of scope for this book) based on something like Jest and
vue-test-utils. This toolset can be very useful for Vue component testing, and Jest’s
snapshot functionality simplifies the process of keeping API and frontend test data in
sync. To learn more, check out Caleb Porzio’s “Getting Started” blog post and Saman‐
tha Geitz’s 2018 Laracon talk.

If you’re working with a JavaScript framework other than Vue, there are no currently
preferred frontend testing solutions in the Laravel world. However, the broad React
world seems to have settled on Jest and Enzyme.

A Quick Introduction to BrowserKit Testing
The BrowserKit Testing package is the code from Laravel pre-5.4 application testing
pulled out into a separate package. BrowserKit is a component that parses the DOM
and allows you to “select” DOM elements and interact with them. This is great for
simple page interactions like clicking links and filling out forms, but it doesn’t work
for JavaScript.

BrowserKit Testing hasn’t been abandoned, but it’s also not ever mentioned in the
docs, and it definitely has the feel of deprecated legacy code. For this reason, and
because of the robustness of the built-in application testing suite, I’m going to skip
covering it here. However, the first edition of this book covered it extensively, so if
you are interested in working with Browserkit Testing, check out the free PDF of the
first edition’s testing chapter.

Testing with Dusk
Dusk is a Laravel tool (installable as a Composer package) that makes it easy to write
Selenium-style directions for a ChromeDriver-based browser to interact with your
app. Unlike most other Selenium-based tools, Dusk’s API is simple and it’s easy to
write code to interact with it by hand. Take a look:

$this->browse(function ($browser) {
 $browser->visit('/register')
 ->type('email', 'test@example.com')
 ->type('password', 'secret')

324 | Chapter 12: Testing

http://bit.ly/2OucHSI
http://bit.ly/2UY8nNS
http://bit.ly/2UY8nNS
http://bit.ly/2CNFCN1

 ->press('Sign Up')
 ->assertPathIs('/dashboard');
});

With Dusk, there’s an actual browser spinning up your entire application and inter‐
acting with it. That means you can have complex interactions with your JavaScript
and get screenshots of failure states—but it also means everything’s a bit slower and
it’s more prone to failure than Laravel’s base application testing suite.

Personally, I’ve found that Dusk is most useful as a regression testing suite, and it
works better than something like Selenium. Rather than using it for any sort of test-
driven development, I use it to assert that the user experience hasn’t broken
(“regressed”) as the app continues to develop. Think of this more like writing tests
about your user interface after the interface is built.

The Dusk docs are robust, so I’m not going to go into great depth here, but I want to
show you the basics of working with Dusk.

Installing Dusk
To install Dusk, run these two commands:

composer require --dev laravel/dusk
php artisan dusk:install

Then edit your .env file to set your APP_URL variable to the same URL you use to view
your site in your local browser; something like http://mysite.test.

To run your Dusk tests, just run php artisan dusk. You can pass in all the same
parameters you’re used to from PHPUnit (for example, php artisan dusk --

filter=my_best_test).

Writing Dusk tests
To generate a new Dusk test, use a command like the following:

php artisan dusk:make RatingTest

This test will be placed in tests/Browser/RatingTest.php.

Customizing Dusk Environment Variables

You can customize the environment variables for Dusk by creating
a new file named .env.dusk.local (and you can replace .local if you’re
working in a different environment, like “staging”).

To write your Dusk tests, imagine that you’re directing one or more web browsers to
visit your application and take certain actions. That’s what the syntax will look like, as
you can see in Example 12-30.

Browser Tests | 325

http://bit.ly/2JF0POY

Example 12-30. A simple Dusk test

public function testBasicExample()
{
 $user = factory(User::class)->create();

 $this->browse(function ($browser) use ($user) {
 $browser->visit('login')
 ->type('email', $user->email)
 ->type('password', 'secret')
 ->press('Login')
 ->assertPathIs('/home');
 });
}

$this->browse() creates a browser, which you pass into a closure; then, within the
closure you instruct the browser which actions to take.

It’s important to note that—unlike Laravel’s other application testing tools, which
mimic the behavior of your forms—Dusk is actually spinning up a browser, sending
events to the browser to type those words, and then sending an event to the browser
to press that button. This is a real browser and Dusk is fully driving it.

You can also “ask” for more than one browser by adding parameters to the closure,
which allows you to test how multiple users might interact with the website (for
example, with a chat system). Take a look at Example 12-31, from the docs.

Example 12-31. Multiple Dusk browsers

$this->browse(function ($first, $second) {
 $first->loginAs(User::find(1))
 ->visit('home')
 ->waitForText('Message');

 $second->loginAs(User::find(2))
 ->visit('home')
 ->waitForText('Message')
 ->type('message', 'Hey Taylor')
 ->press('Send');

 $first->waitForText('Hey Taylor')
 ->assertSee('Jeffrey Way');
});

There’s a huge suite of actions and assertions available that we won’t cover here
(check the docs), but let’s look at a few of the other tools Dusk provides.

326 | Chapter 12: Testing

Authentication and databases
As you can see in Example 12-31, the syntax for authentication is a little different
from the rest of the Laravel application testing: $browser->loginAs($user).

Avoid the RefreshDatabase Trait with Dusk

Don’t use the RefreshDatabase trait with Dusk! Use the Database
Migrations trait instead; transactions, which RefreshDatabase
uses, don’t last across requests.

Interactions with the page
If you’ve ever written jQuery, interacting with the page using Dusk will come natu‐
rally. Take a look at Example 12-32 to see the common patterns for selecting items
with Dusk.

Example 12-32. Selecting items with Dusk

<-- Template -->
<div class="search"><input><button id="search-button"></button></div>
<button dusk="expand-nav"></button>

// Dusk tests
// Option 1: jQuery-style syntax
$browser->click('.search button');
$browser->click('#search-button');

// Option 2: dusk="selector-here" syntax; recommended
$browser->click('@expand-nav');

As you can see, adding the dusk attribute to your page elements allows you to refer‐
ence them directly in a way that won’t change when the display or layout of the page
changes later; when any method asks for a selector, pass in the @ sign and then the
content of your dusk attribute.

Let’s take a look at a few of the methods you can call on $browser.

To work with text and attribute values, use these methods:

value($selector, $value = null)

Returns the value of any text input if only one parameter is passed; sets the value
of an input if a second parameter is passed.

text($selector)

Gets the text content of a nonfillable item like a <div> or a .

attribute($selector, $attributeName)

Returns the value of a particular attribute on the element matching $selector.

Browser Tests | 327

Methods for working with forms and files include the following:

type($selector, $valueToType)

Similar to value(), but actually types the characters rather than directly setting
the value.

Dusk’s Selector Matching Order

With methods like type() that target inputs, Dusk will start by try‐
ing to match a Dusk or CSS selector, and then will look for an input
with the provided name, and finally will try to find a <textarea>
with the provided name.

select($selector, $optionValue)

Selects the option with the value of $optionValue in a drop-down selectable by
$selector.

check($selector) and uncheck($selector)
Checks or unchecks a checkbox selectable by $selector.

radio($selector, $optionValue)

Selects the option with the value of $optionValue in a radio group selectable by
$selector.

attach($selector, $filePath)

Attaches a file at $filePath to the file input selectable by $selector.

The methods for keyboard and mouse input are:

clickLink($selector)

Follows a text link to its target.

click($selector) and mouseover($selector)
Triggers a mouse click or a mouseover event on $selector.

drag($selectorToDrag, $selectorToDragTo)

Drags an item to another item.

dragLeft(), dragRight(), dragUp(), dragDown()
Given a first parameter of a selector and a second parameter of a number of pix‐
els, drags the selected item that many pixels in the given direction.

keys($selector, $instructions)

Sends keypress events within the context of $selector according to the instruc‐
tions in $instructions. You can even combine modifiers with your typing:

$browser->keys('selector', 'this is ', ['{shift}', 'great']);

328 | Chapter 12: Testing

This would type “this is GREAT”. As you can see, adding an array to the list of
items to type allows you to combine modifiers (wrapped with {}) with typing.
You can see a full list of the possible modifiers in the Facebook WebDriver
source.

If you’d like to just send your key sequence to the page (for example, to trigger a
keyboard shortcut), you can target the top level of your app or page as your selec‐
tor. For example, if it’s a Vue app and the top level is a <div> with an ID of app:

$browser->keys('#app', ['{command}', '/']);

Waiting
Because Dusk interacts with JavaScript and is directing an actual browser, the concept
of time and timeouts and “waiting” needs to be addressed. Dusk offers a few methods
you can use to ensure your tests handle timing issues correctly. Some of these meth‐
ods are useful for interacting with intentionally slow or delayed elements of the page,
but some of them are also just useful for getting around initialization times on your
components. The available methods include the following:

pause($milliseconds)

Pauses the execution of Dusk tests for the given number of milliseconds. This is
the simplest “wait” option; it makes any future commands you send to the
browser wait that amount of time before operating.

You can use this and other waiting methods in the midst of an assertion chain, as
shown here:

$browser->click('chat')
 ->pause(500)
 ->assertSee('How can we help?');

waitFor($selector, $maxSeconds = null) and waitForMissing($selector,
$maxSeconds = null)

Waits until the given element exists on the page (waitFor()) or disappears from
the page (waitForMissing()) or times out after the optional second parameter’s
second count:

$browser->waitFor('@chat', 5);
$browser->waitUntilMissing('@loading', 5);

whenAvailable($selector, $callback)

Similar to waitFor(), but accepts a closure as the second parameter which will
define what action to take when the specified element becomes available:

$browser->whenAvailable('@chat', function ($chat) {
 $chat->assertSee('How can we help you?');
});

Browser Tests | 329

http://bit.ly/2uB5APj
http://bit.ly/2uB5APj

waitForText($text, $maxSeconds = null)

Waits for text to show up on the page, or times out after the optional second
parameter’s second count:

$browser->waitForText('Your purchase has been completed.', 5);

waitForLink($linkText, $maxSeconds = null)

Waits for a link to exist with the given link text, or times out after the optional
second parameter’s second count:

$browser->waitForLink('Clear these results', 2);

waitForLocation($path)

Waits until the page URL matches the provided path:

$browser->waitForLocation('auth/login');

waitForRoute($routeName)

Waits until the page URL matches the URL for the provided route:

$browser->waitForRoute('packages.show', [$package->id]);

waitForReload()

Waits until the page reloads.

waitUntil($expression)

Waits until the provided JavaScript expression evaluates as true:

$browser->waitUntil('App.packages.length > 0', 7);

Other assertions
As I’ve mentioned, there’s a huge list of assertions you can make against your app
with Dusk. Here are a few that I use most commonly—you can see the full list in the
Dusk docs:

• assertTitleContains($text)

• assertQueryStringHas($keyName)

• assertHasCookie($cookieName)

• assertSourceHas($htmlSourceCode)

• assertChecked($selector)

• assertSelectHasOption($selectorForSelect, $optionValue)

• assertVisible($selector)

• assertFocused()

• assertVue($dataLocation, $dataValue, $selector)

330 | Chapter 12: Testing

https://laravel.com/docs/dusk

Other organizational structures
So far, everything we’ve covered makes it possible to test individual elements on our
pages. But we’ll often use Dusk to test more complex applications and single-page
apps, which means we’re going to need organizational structures around our asser‐
tions.

The first organizational structures we have encountered have been the dusk attribute
(e.g., <div dusk="abc">, creating a selector named @abc we can refer to later) and the
closures we can use to wrap certain portions of our code (e.g., with
whenAvailable()).

Dusk offers two more organizational tools: pages and components. Let’s start with
pages.

Pages. A page is a class that you’ll generate which contains two pieces of functional‐
ity: first, a URL and assertions to define which page in your app should be attached to
this Dusk page; and second, shorthand like we used inline (the @abc selector gener‐
ated by the dusk="abc" attribute in our HTML) but just for this page, and without
needing to edit our HTML.

Let’s imagine our app has a “create package” page. We can generate a Dusk page for it
as follows:

php artisan dusk:page CreatePackage

Take a look at Example 12-33 to see what our generated class will look like.

Example 12-33. The generated Dusk page

<?php

namespace Tests\Browser\Pages;

use Laravel\Dusk\Browser;

class CreatePackage extends Page
{
 /**
 * Get the URL for the page
 *
 * @return string
 */
 public function url()
 {
 return '/';
 }

 /**

Browser Tests | 331

 * Assert that the browser is on the page
 *
 * @param Browser $browser
 * @return void
 */
 public function assert(Browser $browser)
 {
 $browser->assertPathIs($this->url());
 }

 /**
 * Get the element shortcuts for the page
 *
 * @return array
 */
 public function elements()
 {
 return [
 '@element' => '#selector',
];
 }
}

The url() method defines the location where Dusk should expect this page to be;
assert() lets you run additional assertions to verify you’re on the right page, and
elements() provides shortcuts for @dusk-style selectors.

Let’s make a few quick modifications to our “create package” page, to make it look like
Example 12-34.

Example 12-34. A simple “create package” Dusk page

class CreatePackage extends Page
{
 public function url()
 {
 return '/packages/create';
 }

 public function assert(Browser $browser)
 {
 $browser->assertTitleContains('Create Package');
 $browser->assertPathIs($this->url());
 }

 public function elements()
 {
 return [
 '@title' => 'input[name=title]',
 '@instructions' => 'textarea[name=instructions]',
];

332 | Chapter 12: Testing

 }
}

Now that we have a functional page, we can navigate to it and access its defined
elements:

// In a test
$browser->visit(new Tests\Browser\Pages\CreatePackage)
 ->type('@title', 'My package title');

One common use for pages is to define a common action you want to take in your
tests; consider these almost like macros for Dusk. You can define a method on your
page and then call it from your code, as you can see in Example 12-35.

Example 12-35. Defining and using a custom page method

class CreatePackage extends Page
{
 // ... url(), assert(), elements()

 public function fillBasicFields(Browser $browser, $packageTitle = 'Best package')
 {
 $browser->type('@title', $packageTitle)
 ->type('@instructions', 'Do this stuff and then that stuff');
 }
}

$browser->visit(new CreatePackage)
 ->fillBasicFields('Greatest Package Ever')
 ->press('Create Package')
 ->assertSee('Greatest Package Ever');

Components. If you want the same functionality as Dusk pages offer, but without it
being constrained to a specific URL, you’ll likely want to reach for Dusk components.
These classes are shaped very similarly to pages, but instead of being bound to a URL,
they’re each bound to a selector.

In NovaPackages.com, we have a little Vue component for rating packages and dis‐
playing ratings. Let’s make a Dusk component for it:

php artisan dusk:component RatingWidget

Take a look at Example 12-36 to see what that will generate.

Example 12-36. The default source of a generated Dusk component

<?php

namespace Tests\Browser\Components;

Browser Tests | 333

use Laravel\Dusk\Browser;
use Laravel\Dusk\Component as BaseComponent;

class RatingWidget extends BaseComponent
{
 /**
 * Get the root selector for the component
 *
 * @return string
 */
 public function selector()
 {
 return '#selector';
 }

 /**
 * Assert that the browser page contains the component
 *
 * @param Browser $browser
 * @return void
 */
 public function assert(Browser $browser)
 {
 $browser->assertVisible($this->selector());
 }

 /**
 * Get the element shortcuts for the component
 *
 * @return array
 */
 public function elements()
 {
 return [
 '@element' => '#selector',
];
 }
}

As you can see, this is basically the same as a Dusk page, but we’re encapsulating our
work to an HTML element instead of a URL. Everything else is basically the same.
Take a look at Example 12-37 to see our rating widget example in Dusk component
form.

Example 12-37. A Dusk component for the rating widget

class RatingWidget extends BaseComponent
{
 public function selector()
 {
 return '.rating-widget';

334 | Chapter 12: Testing

 }

 public function assert(Browser $browser)
 {
 $browser->assertVisible($this->selector());
 }

 public function elements()
 {
 return [
 '@5-star' => '.five-star-rating',
 '@4-star' => '.four-star-rating',
 '@3-star' => '.three-star-rating',
 '@2-star' => '.two-star-rating',
 '@1-star' => '.one-star-rating',
 '@average' => '.average-rating',
 '@mine' => '.current-user-rating',
];
 }

 public function ratePackage(Browser $browser, $rating)
 {
 $browser->click("@{$rating}-star")
 ->assertSeeIn('@mine', $rating);
 }
}

Using components works just like using pages, as you can see in Example 12-38.

Example 12-38. Using Dusk components

$browser->visit('/packages/tightenco/nova-stock-picker')
 ->within(new RatingWidget, function ($browser) {
 $browser->ratePackage(2);
 $browser->assertSeeIn('@average', 2);
 });

That’s a good, brief overview of what Dusk can do. There’s a lot more—more asser‐
tions, more edge cases, more gotchas, more examples—in the Dusk docs, so I’d rec‐
ommend a read through there if you plan to work with Dusk.

TL;DR
Laravel can work with any modern PHP testing framework, but it’s optimized for
PHPUnit (especially if your tests extend Laravel’s TestCase). Laravel’s application
testing framework makes it simple to send fake HTTP and console requests through
your application and inspect the results.

TL;DR | 335

http://bit.ly/2JF0POY

Tests in Laravel can easily and powerfully interact with and assert against the data‐
base, cache, session, filesystem, mail, and many other systems. Quite a few of these
systems have fakes built in to make them even easier to test. You can test DOM and
browser-like interactions with BrowserKit Testing or Dusk.

Laravel brings in Mockery in case you need mocks, stubs, spies, dummies, or any‐
thing else, but the testing philosophy of Laravel is to use real collaborators as much as
possible. Don’t fake it unless you have to.

336 | Chapter 12: Testing

CHAPTER 13

Writing APIs

One of the most common tasks Laravel developers are given is to create an API, usu‐
ally JSON and REST or REST-like, that allows third parties to interact with the Lara‐
vel application’s data.

Laravel makes it incredibly easy to work with JSON, and its resource controllers are
already structured around REST verbs and patterns. In this chapter you’ll learn about
some basic API-writing concepts, the tools Laravel provides for writing APIs, and
some external tools and organizational systems you’ll want to consider when writing
your first Laravel API.

The Basics of REST-Like JSON APIs
Representational State Transfer (REST) is an architectural style for building APIs.
Technically, REST is either a broad definition that could apply to almost the entirety
of the internet or something so specific that no one actually uses it, so don’t let your‐
self get overwhelmed by the definition or caught in an argument with a pedant.
When we talk about RESTful or REST-like APIs in the Laravel world, we’re generally
talking about APIs with a few common characteristics:

• They’re structured around “resources” that can be uniquely represented by URIs,
like /cats for all cats, /cats/15 for a single cat with the ID of 15, etc.

• Interactions with resources primarily take place using HTTP verbs
(GET /cats/15 versus DELETE /cats/15).

• They’re stateless, meaning there’s no persistent session authentication between
requests; each request must uniquely authenticate itself.

337

• They’re cacheable and consistent, meaning each request (except for a few authen‐
ticated user–specific requests) should return the same result regardless of who
the requester is.

• They return JSON.

The most common API pattern is to have a unique URL structure for each of your
Eloquent models that’s exposed as an API resource, and allow for users to interact
with that resource with specific verbs and get JSON back. Example 13-1 shows a few
possible examples.

Example 13-1. Common REST API endpoint structures

GET /api/cats
[
 {
 id: 1,
 name: 'Fluffy'
 },
 {
 id: 2,
 name: 'Killer'
 }
]

GET /api/cats/2
{
 id: 2,
 name: 'Killer'
}

DELETE /api/cats/2
(deletes cat)

POST /api/cats with body:
{
 name: 'Mr Bigglesworth'
}
(creates new cat)

PATCH /api/cats/3 with body:
{
 name: 'Mr. Bigglesworth'
}
(updates cat)

This gives you the idea of the basic set of interactions we are likely to have with our
APIs. Let’s dig into how to make them happen with Laravel.

338 | Chapter 13: Writing APIs

Controller Organization and JSON Returns
Laravel’s API resource controllers are like normal resource controllers (see “Resource
Controllers” on page 47) but modified to align with RESTful API routes. For example,
they exclude the create() and edit() methods, both of which are irrelevant in an
API. Let’s get started there. First we’ll create a new controller for our resource, which
we’ll route at /api/dogs:

php artisan make:controller Api\DogsController --api

Escaping Slashes in Artisan Commands Prior to Laravel 5.3

In versions of Laravel prior to 5.3, you need to escape the \ in
namespace separators with a forward slash in Artisan commands,
like this:

php artisan make:controller Api/\DogsController --api

Note that in projects running versions of Laravel prior to 5.5, the concepts of API
resource controllers and API resource routes don’t exist. You can still just use regular
resource controllers and resource routes instead; they’re almost exactly the same but
have a few view-related routes that aren’t used in APIs. Example 13-2 shows what our
API resource controller will look like.

Example 13-2. A generated API resource controller

<?php

namespace App\Http\Controllers\Api;

use Illuminate\Http\Request;
use App\Http\Controllers\Controller;

class DogsController extends Controller
{
 /**
 * Display a listing of the resource
 *
 * @return \Illuminate\Http\Response
 */
 public function index()
 {
 //
 }

 /**
 * Store a newly created resource in storage
 *
 * @param \Illuminate\Http\Request $request

Controller Organization and JSON Returns | 339

 * @return \Illuminate\Http\Response
 */
 public function store(Request $request)
 {
 //
 }

 /**
 * Display the specified resource
 *
 * @param int $id
 * @return \Illuminate\Http\Response
 */
 public function show($id)
 {
 //
 }

 /**
 * Update the specified resource in storage
 *
 * @param \Illuminate\Http\Request $request
 * @param int $id
 * @return \Illuminate\Http\Response
 */
 public function update(Request $request, $id)
 {
 //
 }

 /**
 * Remove the specified resource from storage
 *
 * @param int $id
 * @return \Illuminate\Http\Response
 */
 public function destroy($id)
 {
 //
 }
}

The docblocks pretty much tell the story. index() lists all of the dogs, show() lists a
single dog, store() stores a new dog, update() updates a dog, and destroy()
removes a dog.

Let’s quickly make a model and a migration so we can work with it:

php artisan make:model Dog --migration
php artisan migrate

Great! Now we can fill out our controller methods.

340 | Chapter 13: Writing APIs

Database Requirements for These Code Samples to Work

If you want the code we’re writing here to actually work, you’ll
want to add a string() column to the migration named name and
another named breed, and either add those columns to the Elo‐
quent model’s fillable property or just set the guarded property
of that model equal to an empty array ([]).

We can take advantage of a great feature of Eloquent here: if you echo an Eloquent
results collection, it’ll automatically convert itself to JSON (using the __toString()
magic method, if you’re curious). That means if you return a collection of results
from a route, you’ll in effect be returning JSON. So, as Example 13-3 demonstrates,
this will be some of the simplest code you’ll ever write.

Example 13-3. A sample API resource controller for the Dog entity

...
class DogsController extends Controller
{
 public function index()
 {
 return Dog::all();
 }

 public function store(Request $request)
 {
 return Dog::create($request->only(['name', 'breed']));
 }

 public function show($id)
 {
 return Dog::findOrFail($id);
 }

 public function update(Request $request, $id)
 {
 $dog = Dog::findOrFail($id);
 $dog->update($request->only(['name', 'breed']));
 return $dog;
 }

 public function destroy($id)
 {
 Dog::findOrFail($id)->delete();
 }
}

Controller Organization and JSON Returns | 341

Example 13-4 shows how we can link this up in our routes file. As you can see, we
can use Route::apiResource() to automatically map all of these default methods to
their appropriate routes and HTTP verbs.

Example 13-4. Binding the routes for a resource controller

// routes/api.php
Route::namespace('Api')->group(function () {
 Route::apiResource('dogs', 'DogsController');
});

There you have it! Your first RESTful API in Laravel. Of course, you’ll need much
more nuance: pagination, sorting, authentication, more defined response headers.
But this is the foundation of everything else.

Reading and Sending Headers
REST APIs often read, and send, non-content information using headers. For exam‐
ple, any request to GitHub’s API will return headers detailing the current user’s rate
limiting status:

X-RateLimit-Limit: 5000
X-RateLimit-Remaining: 4987
X-RateLimit-Reset: 1350085394

X-* Headers
You might be wondering why the GitHub rate limiting headers are prefixed with X-,
especially if you see them in the context of other headers returned with the same
request:

HTTP/1.1 200 OK
Server: nginx
Date: Fri, 12 Oct 2012 23:33:14 GMT
Content-Type: application/json; charset=utf-8
Connection: keep-alive
Status: 200 OK
ETag: "a00049ba79152d03380c34652f2cb612"
X-GitHub-Media-Type: github.v3
X-RateLimit-Limit: 5000
X-RateLimit-Remaining: 4987
X-RateLimit-Reset: 1350085394
Content-Length: 5
Cache-Control: max-age=0, private, must-revalidate
X-Content-Type-Options: nosniff

342 | Chapter 13: Writing APIs

Any header whose name starts with X- is a header that’s not in the HTTP spec. It
might be entirely made up (e.g., X-How-Much-Matt-Loves-This-Page), or part of a
common convention that hasn’t made it into the spec yet (e.g., X-Requested-With).

Similarly, many APIs allow developers to customize their requests using request
headers. For example, GitHub’s API makes it easy to define which version of the API
you’d like to use with the Accept header:

Accept: application/vnd.github.v3+json

If you were to change v3 to v2, GitHub would pass your request to version 2 of its
API instead.

Let’s learn quickly how to do both in Laravel.

Sending Response Headers in Laravel
We already covered this topic quite a bit in Chapter 10, but here’s a quick refresher.
Once you have a response object, you can add a header using header($headerName,
$headerValue), as seen in Example 13-5.

Example 13-5. Adding a response header in Laravel

Route::get('dogs', function () {
 return response(Dog::all())
 ->header('X-Greatness-Index', 12);
});

Nice and easy.

Reading Request Headers in Laravel
If you have an incoming request, it’s also simple to read any given header.
Example 13-6 illustrates this.

Example 13-6. Reading a request header in Laravel

Route::get('dogs', function (Request $request) {
 var_dump($request->header('Accept'));
});

Now that you can read incoming request headers and set headers on your API
responses, let’s take a look at how you might want to customize your API.

Reading and Sending Headers | 343

Eloquent Pagination
Pagination is one of the first places where most APIs need to consider special instruc‐
tions. Eloquent comes out of the box with a pagination system that hooks directly
into the query parameters of any page request. We already covered the paginator
component a bit in Chapter 6, but here’s a quick refresher.

Any Eloquent call provides a paginate() method, to which you can pass the number
of items you’d like to return per page. Eloquent then checks the URL for a page query
parameter and, if it’s set, treats that as an indicator of how many pages the user is into
a paginated list.

To make your API route ready for automated Laravel pagination, use paginate()
instead of all() or get() to call your Eloquent queries in your route; something like
Example 13-7.

Example 13-7. A paginated API route

Route::get('dogs', function () {
 return Dog::paginate(20);
});

We’ve defined that Eloquent should get 20 results from the database. Depending on
what the page query parameter is set to, Laravel will know exactly which 20 results to
pull for us:

GET /dogs - Return results 1-20
GET /dogs?page=1 - Return results 1-20
GET /dogs?page=2 - Return results 21-40

Note that the paginate() method is also available on query builder calls, as seen in
Example 13-8.

Example 13-8. Using the paginate() method on a query builder call

Route::get('dogs', function () {
 return DB::table('dogs')->paginate(20);
});

Here’s something interesting, though: this isn’t just going to return 20 results when
you convert it to JSON. Instead, it’s going to build a response object that automati‐
cally passes some useful pagination-related details to the end user, along with the
paginated data. Example 13-9 shows a possible response from our call, truncated to
only three records to save space.

344 | Chapter 13: Writing APIs

Example 13-9. Sample output from a paginated database call

{
 "current_page": 1,
 "data": [
 {
 'name': 'Fido'
 },
 {
 'name': 'Pickles'
 },
 {
 'name': 'Spot'
 }
]
 "first_page_url": "http://myapp.com/api/dogs?page=1",
 "from": 1,
 "last_page": 2,
 "last_page_url": "http://myapp.com/api/dogs?page=2",
 "next_page_url": "http://myapp.com/api/dogs?page=2",
 "path": "http://myapp.com/api/dogs",
 "per_page": 2,
 "prev_page_url": null,
 "to": 2,
 "total": 4
}

Sorting and Filtering
While there is a convention and some built-in tooling for pagination in Laravel, there
isn’t any for sorting, so you have to figure that out on your own. I’ll give a quick code
sample here, and I’ll style the query parameters similarly to the JSON API spec
(described in the following sidebar).

The JSON API Spec
The JSON API is a standard for how to handle many of the most common tasks in
building JSON-based APIs: filtering, sorting, pagination, authentication, embedding,
links, metadata, and more.

Laravel’s default pagination doesn’t work exactly according to the JSON API spec, but
it gets you started in the right direction. The majority of the rest of the JSON API spec
is something you’ll just have to choose (or not) to implement manually.

For example, here’s a piece of the JSON API spec that helpfully handles how to struc‐
ture data versus error returns:

Sorting and Filtering | 345

http://jsonapi.org/

A document MUST contain at least one of the following top-level members:

• data: the document’s “primary data”

• errors: an array of error objects

• meta: a meta object that contains non-standard meta-information.

The members data and errors MUST NOT coexist in the same document.

Be warned, however: it’s wonderful to have the JSON API as a spec, but it also takes
quite a bit of groundwork to get running with it. We won’t use it entirely in these
examples, but I’ll use its general ideas as inspiration.

Sorting Your API Results
First, let’s set up the ability to sort our results. We start in Example 13-10 with the
ability to sort by only a single column, and in only a single direction.

Example 13-10. Simplest API sorting

// Handles /dogs?sort=name
Route::get('dogs', function (Request $request) {
 // Get the sort query parameter (or fall back to default sort "name")
 $sortColumn = $request->input('sort', 'name');
 return Dog::orderBy($sortColumn)->paginate(20);
});

We add the ability to invert it (e.g., ?sort=-weight) in Example 13-11.

Example 13-11. Single-column API sorting, with direction control

// Handles /dogs?sort=name and /dogs?sort=-name
Route::get('dogs', function (Request $request) {
 // Get the sort query parameter (or fall back to default sort "name")
 $sortColumn = $request->input('sort', 'name');

 // Set the sort direction based on whether the key starts with -
 // using Laravel's starts_with() helper function
 $sortDirection = starts_with($sortColumn, '-') ? 'desc' : 'asc';
 $sortColumn = ltrim($sortColumn, '-');

 return Dog::orderBy($sortColumn, $sortDirection)
 ->paginate(20);
});

Finally, we do the same for multiple columns (e.g., ?sort=name,-weight) in
Example 13-12.

346 | Chapter 13: Writing APIs

Example 13-12. JSON API–style sorting

// Handles ?sort=name,-weight
Route::get('dogs', function (Request $request) {
 // Grab the query parameter and turn it into an array exploded by ,
 $sorts = explode(',', $request->input('sort', ''));

 // Create a query
 $query = Dog::query();

 // Add the sorts one by one
 foreach ($sorts as $sortColumn) {
 $sortDirection = starts_with($sortColumn, '-') ? 'desc' : 'asc';
 $sortColumn = ltrim($sortColumn, '-');

 $query->orderBy($sortColumn, $sortDirection);
 }

 // Return
 return $query->paginate(20);
});

As you can see, it’s not the simplest process ever, and you’ll likely want to build some
helper tooling around the repetitive processes, but we’re building up the customiza‐
bility of our API piece by piece using logical and simple features.

Filtering Your API Results
Another common task in building APIs is filtering out all but a certain subset of data.
For example, the client might ask for a list of the dogs that are chihuahuas.

The JSON API doesn’t give us any great ideas for syntax here, other than that we
should use the filter query parameter. Let’s think along the lines of the sort syntax,
where we’re putting everything into a single key—maybe ?filter=breed:chihuahua.
You can see how to do this in Example 13-13.

Example 13-13. Single filter on API results

Route::get('dogs', function () {
 $query = Dog::query();

 $query->when(request()->filled('filter'), function ($query) {
 [$criteria, $value] = explode(':', request('filter'));
 return $query->where($criteria, $value);
 });

 return $query->paginate(20);
});

Sorting and Filtering | 347

Note that in Example 13-13 we’re using the request() helper instead of injecting an
instance of $request. Both work the same, but sometimes the request() helper can
be easier when you’re working inside of a closure so you don’t have to pass variables
in manually.

Conditional Query Modifications Prior to Laravel 5.2

In projects running versions of Laravel prior to 5.2, you’ll have to
replace use of $query->when() with a regular PHP if statement.

And, just for kicks, in Example 13-14 we allow for multiple filters,
like ?filter=breed:chihuahua,color:brown.

Example 13-14. Multiple filters on API results

Route::get('dogs', function (Request $request) {
 $query = Dog::query();

 $query->when(request()->filled('filter'), function ($query) {
 $filters = explode(',', request('filter'));

 foreach ($filters as $filter) {
 [$criteria, $value] = explode(':', $filter);
 $query->where($criteria, $value);
 }

 return $query;
 });

 return $query->paginate(20);
});

Transforming Results
We’ve covered how to sort and filter our result sets. But right now, we’re relying on
Eloquent’s JSON serialization, which means we return every field on every model.

Eloquent provides a few convenience tools for defining which fields to show when
you’re serializing an array. You can read more in Chapter 5, but the gist is that if you
set a $hidden array property on your Eloquent class, any field listed in that array will
not be shown in the serialized model output. You can alternatively set a $visible
array that defines the fields that are allowed to be shown. You could also either
overwrite or mimic the toArray() function on your model, crafting a custom output
format.

348 | Chapter 13: Writing APIs

Another common pattern is to create a transformer for each data type. Transformers
are helpful because they give you more control, isolate API-specific logic away from
the model itself, and allow you to provide a more consistent API even when the mod‐
els and their relationships change down the road.

There’s a fantastic but complicated package for this, Fractal, that sets up a series of
convenience structures and classes for transforming your data.

Laravel 5.5 introduced a concept called API resources that cover the needs of the
majority of APIs for transforming and collecting results, so if you’re working with 5.5
or later, skip the next section and move on to “API Resources” on page 352. If you’re
working with 5.4 or earlier, read on.

Writing Your Own Transformer
The general concept of a transformer is that we are going to run every instance of our
model through another class that transforms its data to a different state. It might add
fields, rename fields, delete fields, manipulate fields, add nested children, or whatever
else. Let’s start with a simple example (Example 13-15).

Example 13-15. A simple transformer

Route::get('users/{id}', function ($userId) {
 return (new UserTransformer(User::findOrFail($userId)));
});

class UserTransformer
{
 protected $user;

 public function __construct($user)
 {
 $this->user = $user;
 }

 public function toArray()
 {
 return [
 'id' => $this->user->id,
 'name' => sprintf(
 "%s %s",
 $this->user->first_name,
 $this->user->last_name
),
 'friendsCount' => $this->user->friends->count(),
];
 }

 public function toJson()

Transforming Results | 349

http://bit.ly/2fEt8Nr

 {
 return json_encode($this->toArray());
 }

 public function __toString()
 {
 return $this->toJson();
 }
}

Classic Transformers

A more classic transformer would probably offer a transform()
method that takes a $user parameter. This would likely spit out an
array or JSON directly.
However, I’ve been using this pattern, which we sometimes call
“API objects,” for a few years and really love how much more power
and flexibility it provides.

As you can see in Example 13-15, transformers accept the model they’re transforming
as a parameter and then manipulate that model—and its relationships—to create the
final output that you want to send to the API.

Nesting and Relationships with Custom Transformers
Whether, and how, to nest relationships in APIs is an issue of much debate. Thank‐
fully, people more experienced than me have written on this at length; I’d recommend
reading Phil Sturgeon’s Build APIs You Won’t Hate (Leanpub) to learn more about this
and about REST APIs in general.

There are a few primary ways to approach nesting relationships. These examples will
assume your primary resource is a user and your related resource is a friend:

• Include related resources directly in the primary resource (e.g., the users/5
resource has its friends nested in it).

• Include just the foreign keys in the primary resource (e.g., the users/5 resource
has an array of friend IDs nested in it).

• Allow the user to query the related resource filtered by the originating resource
(e.g., /friends?user=5, or “give me all friends who are related to user #5”).

• Create a subresource (e.g., /users/5/friends).
• Allow optional including (e.g., /users/5 does not include, but /users/5?
include=friends does include; so does /users/5?include=friends,dogs).

350 | Chapter 13: Writing APIs

https://apisyouwonthate.com/

Let’s assume for a minute that we want to (optionally) include related items. How
would we do that? Our transformer example in Example 13-15 gives us a great head
start. Let’s adjust it, as seen in Example 13-16, to add optional subresource including.

Example 13-16. Allowing for optional including of a subresource in a transformer

// e.g. myapp.com/api/users/15?include=friends,bookmarks
Route::get('users/{id}', function ($userId, Request $request) {
 // Get the include query parameter and split by commas
 $includes = explode(',', $request->input('include', ''));
 // Pass both user and includes to the user transformer
 return (new UserTransformer(User::findOrFail($userId), $includes));
});

class UserTransformer
{
 protected $user;
 protected $includes;

 public function __construct($user, $includes = [])
 {
 $this->user = $user;
 $this->includes = $includes;
 }

 public function toArray()
 {
 $append = [];

 if (in_array('friends', $this->includes)) {
 // If you have more than one include, you'll want to generalize this
 $append['friends'] = $this->user->friends->map(function ($friend) {
 return (new FriendTransformer($friend))->toArray();
 });
 }

 return array_merge([
 'id' => $this->user->id,
 'name' => sprintf(
 "%s %s",
 $this->user->first_name,
 $this->user->last_name
)
], $append);
 }
...

You learn more about the map() functionality when we look at collections in Chap‐
ter 17, but everything else in here should be pretty familiar.

Transforming Results | 351

In the route, we’re splitting the include query parameter by commas and passing it
into our transformer. Currently our transformer can just handle the friends include,
but it could be abstracted to handle others. If the user has requested the friends
include, the transformer maps over each friend (using the hasMany friends relation‐
ship on the user model), passes that friend to the FriendTransformer(), and
includes the array of all transformed friends in the user response.

API Resources
If you’re working with Laravel prior to 5.5, you can skip this section and move on to
“API Authentication with Laravel Passport” on page 357.

In the past, one of the first challenges we’d run into when developing APIs in Laravel
was how to transform our data. The simplest APIs can just return Eloquent objects as
JSON, but very quickly the needs of most APIs outgrow that structure. How should
we convert our Eloquent results into the right format? What if we want to embed
other resources, or do so but only optionally, or add a computed field, or hide some
fields from APIs but not other JSON output? An API-specific transformer is the solu‐
tion.

In Laravel 5.5 and later we have access to a feature called Eloquent API resources,
which are structures that define how to transform an Eloquent object (or a collection
of Eloquent objects) of a given class to API results. For example, your Dog Eloquent
model now has a Dog resource whose responsibility it is to translate each instance of
Dog to the appropriate Dog-shaped API response object.

Creating a Resource Class
Let’s walk through this Dog example to see what it looks like to transform our API
output. First, use the Artisan command make:resource to create your first resource:

php artisan make:resource Dog

This will create a new class in app/Http/Resources/Dog.php, which contains one
method: toArray(). You can see what the file looks like in Example 13-17.

Example 13-17. Generated API resource

<?php

namespace App\Http\Resources;

use Illuminate\Http\Resources\Json\JsonResource;

class Dog extends JsonResource
{

352 | Chapter 13: Writing APIs

 /**
 * Transform the resource into an array
 *
 * @param \Illuminate\Http\Request $request
 * @return array
 */
 public function toArray($request)
 {
 return parent::toArray($request);
 }
}

The toArray() method we’re working with here has access to two important pieces of
data. First, it has access to the Illuminate Request object, so we can customize our
response based on query parameters and headers and anything else important. And
second, it has access to the entire Eloquent object being transformed by calling its
properties and methods on $this, as you can see in Example 13-18.

Example 13-18. Simple API resource for the Dog model

class Dog extends JsonResource
{
 public function toArray($request)
 {
 return [
 'id' => $this->id,
 'name' => $this->name,
 'breed' => $this->breed,
];
 }
}

To use this new resource, you’d want to update any API endpoint that returns a single
Dog to wrap the response in your new resource, like in Example 13-19.

Example 13-19. Using the simple Dog resource

use App\Dog;
use App\Http\Resources\Dog as DogResource;

Route::get('dogs/{dogId}', function ($dogId) {
 return new DogResource(Dog::find($dogId));
});

API Resources | 353

Resource Collections
Now, let’s talk about what happens if you have more than one of your entity returning
from a given API endpoint. This is possible using an API resource’s collection()
method, as you can see in Example 13-20.

Example 13-20. Using the default API resource collection method

use App\Dog;
use App\Http\Resources\Dog as DogResource;

Route::get('dogs', function () {
 return DogResource::collection(Dog::all());
});

This method iterates over every entry that’s passed to it, transforms it with the
DogResource API resource, and then returns the collection.

This will likely be enough for many APIs, but if you need to customize any of the
structure or add metadata to your collection responses, you’ll want to instead create a
custom API resource collection.

In order to do so, let’s reach for the make:resource Artisan command again. This
time we’ll name it DogCollection, which signals to Laravel this is an API resource
collection, not just an API resource:

php artisan make:resource DogCollection

This will generate a new file very similar to the API resource file, living at app/Http/
Resources/DogCollection.php, which again contains one method: toArray(). You can
see what the file looks like in Example 13-21.

Example 13-21. Generated API resource collection

<?php

namespace App\Http\Resources;

use Illuminate\Http\Resources\Json\ResourceCollection;

class DogCollection extends ResourceCollection
{
 /**
 * Transform the resource collection into an array
 *
 * @param \Illuminate\Http\Request $request
 * @return array
 */
 public function toArray($request)

354 | Chapter 13: Writing APIs

 {
 return parent::toArray($request);
 }
}

Just like with the API resource, we have access to the request and the underlying data.
But unlike with the API resource, we’re dealing with a collection of items instead of
just one, so we will access that (already transformed) collection as $this-

>collection. Take a look at Example 13-22 for an example.

Example 13-22. A simple API resource collection for the Dog model

class DogCollection extends ResourceCollection
{
 public function toArray($request)
 {
 return [
 'data' => $this->collection,
 'links' => [
 'self' => route('dogs.index'),
],
];
 }
}

Nesting Relationships
One of the more complicated aspects of any API is how relationships are nested. The
simplest way with API resources is to add a key to your returned array that’s set to an
API resource collection, like in Example 13-23.

Example 13-23. A simple included API relationship

public function toArray()
{
 return [
 'name' => $this->name,
 'breed' => $this->breed,
 'friends' => DogResource::collection($this->friends),
];
}

You may also want this to be a conditional property; you can choose to only nest it if
it’s asked for in the request, or only if it’s already been eager-loaded on the Eloquent
object that’s passed in. Take a look at Example 13-24.

API Resources | 355

Example 13-24. Conditionally loading API relationship

public function toArray()
{
 return [
 'name' => $this->name,
 'breed' => $this->breed,
 // Only load this relationship if it's been eager-loaded
 'bones' => BoneResource::collection($this->whenLoaded('bones')),
 // Or only load this relationship if the URL asks for it
 'bones' => $this->when(
 $request->get('include') == 'bones',
 BoneResource::collection($this->bones)
),
];
}

Using Pagination with API Resources
Just like you can pass a collection of Eloquent models to a resource, you can also pass
a paginator instance. Take a look at Example 13-25.

Example 13-25. Passing a paginator instance to an API resource collection

Route::get('dogs', function () {
 return new DogCollection(Dog::paginate(20));
});

If you pass a paginator instance, the transformed result will have additional links con‐
taining pagination information (first page, last page, prev page, and next page)
and meta-information about the entire collection.

You can take a look at Example 13-26 to see what this information looks like. In this
example, I’ve set the items-per-page count to 2 by calling Dog::paginate(2) so you
can more easily see how the links work.

Example 13-26. A sample paginated resource response with pagination links

{
 "data": [
 {
 "name": "Pickles",
 "breed": "Chorkie",
 },
 {
 "name": "Gandalf",
 "breed": "Golden Retriever Mix",
 }
],

356 | Chapter 13: Writing APIs

 "links": {
 "first": "http://gooddogbrant.com/api/dogs?page=1",
 "last": "http://gooddogbrant.com/api/dogs?page=3",
 "prev": null,
 "next": "http://gooddogbrant.com/api/dogs?page=2"
 },
 "meta": {
 "current_page": 1,
 "from": 1,
 "last_page": 3,
 "path": "http://gooddogbrant.com/api/dogs",
 "per_page": 2,
 "to": 2,
 "total": 5
 }
}

Conditionally Applying Attributes
You can also specify that certain attributes in your response should only be applied
when a particular test is satisfied, as illustrated in Example 13-27.

Example 13-27. Conditionally applying attributes

public function toArray($request)
{
 return [
 'name' => $this->name,
 'breed' => $this->breed,
 'rating' => $this->when(Auth::user()->canSeeRatings(), 12),
];
}

More Customizations for API Resources
The default shape of how the data property is wrapped might not be how you like it,
or you may find yourself needing to add or customize metadata for the responses.
Take a look at the docs for details on how to customize every aspect of your API
responses.

API Authentication with Laravel Passport
Most APIs require some form of authentication to access some or all of the data. Lar‐
avel 5.2 introduced a simple “token” authentication scheme, which we’ll cover shortly,
but in Laravel 5.3 and later we got a new tool called Passport (by way of a separate
package, brought in via Composer) that makes it easy to set up a full-featured OAuth
2.0 server in your application, complete with an API and UI components for manag‐
ing clients and tokens.

API Authentication with Laravel Passport | 357

http://bit.ly/2HP8xTU

A Brief Introduction to OAuth 2.0
OAuth is by far the most common auth system used in RESTful APIs. Unfortunately,
it’s far too complex a topic for us to cover here in depth. For further reading, Matt
Frost has written a great book on OAuth and PHP titled Integrating Web Services with
OAuth and PHP (php[architect]).

Here’s the simplest concept behind OAuth: because APIs are stateless, we can’t rely on
the same session-based authentication that we do in normal browser-based viewing
sessions, where the user logs in and their authenticated state is saved to the session for
subsequent views. Instead, the API client needs to make a single call to an authentica‐
tion endpoint and perform some form of handshake to prove itself. It then gets back a
token which it must send along with every future request (via the Authorization
header, usually) to prove its identity.

There are a few different types of OAuth “grant,” which basically means that there are
several different scenarios and types of interaction that can define that authentication
handshake. Different projects and different sorts of end consumer will necessitate dif‐
ferent grants.

If you’re working with Laravel 5.1 or 5.2, there’s a package called OAuth 2.0 Server for
Laravel that makes it relatively easy to add a basic OAuth 2.0 authentication server to
your Laravel application. It’s a Laravel convenience bridge to a PHP package called
PHP OAuth 2.0 Server.

However, if you’re on Laravel 5.3 or higher, Passport gives you everything provided
by that package and much more, with a simpler and more powerful API and inter‐
face.

Installing Passport
Passport is a separate package, so your first step is to install it. I’ll sum up the steps
here, but you can get more in-depth installation instructions in the docs.

First, bring it in with Composer:

composer require laravel/passport

If you’re working with a version of Laravel below 5.5, add Laravel\Passport\Pass
portServiceProvider::class to the providers array of config/app.php.

Passport imports a series of migrations, so run those with php artisan migrate to
create the tables necessary for OAuth clients, scopes, and tokens.

Next, run the installer with php artisan passport:install. This will create encryp‐
tion keys for the OAuth server (storage/oauth-private.key and storage/oauth-
public.key) and insert OAuth clients into the database for our personal and password
grant type tokens (which we’ll cover later).

358 | Chapter 13: Writing APIs

http://bit.ly/2e2lFYi
http://bit.ly/2e2lFYi
http://bit.ly/2f1dUyP
http://bit.ly/2fEBjtk

You’ll need to import the Laravel\Passport\HasApiTokens trait into your User
model; this will add OAuth client- and token-related relationships to each User, as
well as a few token-related helper methods. Next, add a call to Laravel\Passport
\Passport::routes() in the boot() method of the AuthServiceProvider. This will
add the following routes:

• oauth/authorize

• oauth/clients

• oauth/clients/client_id

• oauth/personal-access-tokens

• oauth/personal-access-tokens/token_id

• oauth/scopes

• oauth/token

• oauth/token/refresh

• oauth/tokens

• oauth/tokens/token_id

Finally, look for the api guard in config/auth.php. By default this guard will use the
token driver (which we’ll cover shortly), but we’ll change that to be the passport
driver instead.

You now have a fully functional OAuth 2.0 server! You can create new clients with
php artisan passport:client, and you have an API for managing your clients and
tokens available under the /oauth route prefix.

To protect a route behind your Passport auth system, add the auth:api middleware
to the route or route group, as shown in Example 13-28.

Example 13-28. Protecting an API route with the Passport auth middleware

// routes/api.php
Route::get('/user', function (Request $request) {
 return $request->user();
})->middleware('auth:api');

In order to authenticate to these protected routes, your client apps will need to pass a
token (we’ll cover how to get one shortly) as a Bearer token in the Authorization
header. Example 13-29 shows what this would look like if you were making a request
using the Guzzle HTTP library.

API Authentication with Laravel Passport | 359

Example 13-29. Making a sample API request with a Bearer token

$http = new GuzzleHttp\Client;
$response = $http->request('GET', 'http://tweeter.test/api/user', [
 'headers' => [
 'Accept' => 'application/json',
 'Authorization' => 'Bearer ' . $accessToken,
],
]);

Now, let’s take a closer look at how it all works.

Passport’s API
Passport exposes an API in your application under the /oauth route prefix. The API
provides two primary functions: first, to authorize users with OAuth 2.0 authoriza‐
tion flows (/oauth/authorize and /oauth/token), and second, to allow users to
manage their clients and tokens (the rest of the routes).

This is an important distinction, especially if you’re unfamiliar with OAuth. Every
OAuth server needs to expose the ability for consumers to authenticate with your
server; that’s the entire point of the service. But Passport also exposes an API for
managing the state of your OAuth server’s clients and tokens. This means you can
easily build a frontend to let your users manage their information in your OAuth
application, and Passport actually comes with Vue-based manager components that
you can either use or use for inspiration.

We’ll cover the API routes that allow you to manage clients and tokens, and the Vue
components that Passport ships with to make it easy, but first let’s dig into the various
ways your users can authenticate with your Passport-protected API.

Passport’s Available Grant Types
Passport makes it possible for you to authenticate users in four different ways. Two
are traditional OAuth 2.0 grants (the password grant and authorization code grant)
and two are convenience methods that are unique to Passport (the personal token
and synchronizer token).

Password grant
The password grant, while less common than the authorization code grant, is much
simpler. If you want users to be able to authenticate directly with your API using their
username and password—for example, if you have a mobile app for your company
consuming your own API—you can use the password grant.

360 | Chapter 13: Writing APIs

Creating a Password Grant Client

In order to use the password grant flow, you need a password grant
client in your database. This is because every request to an OAuth
server needs to be made by a client. Usually, the client identifies
which app or site the user is authenticating against—for example, if
you used Facebook to log in to a third-party website, that website
would be the client.
With the password grant flow, however, there is no client coming
along with the request, so you have to make one—and that’s the
password grant client. One will have been added when you ran php
artisan passport:install, but if you ever need to generate a new
password grant client for any reason, you can do so as follows:

$php artisan passport:client --password

 What should we name the password grant client?
 [My Application Password Grant Client]:
 > Client_name

Password grant client created successfully.
Client ID: 3
Client Secret: Pg1EEzt18JAnFoUIM9n38Nqewg1aekB4rvFk2Pma

With the password grant type, there is just one step to getting a token: sending the
user’s credentials to the /oauth/token route, like in Example 13-30.

Example 13-30. Making a request with the password grant type

// Routes/web.php in the *consuming application*
Route::get('tweeter/password-grant-auth', function () {
 $http = new GuzzleHttp\Client;

 // Make call to "Tweeter," our Passport-powered OAuth server
 $response = $http->post('http://tweeter.test/oauth/token', [
 'form_params' => [
 'grant_type' => 'password',
 'client_id' => config('tweeter.id'),
 'client_secret' => config('tweeter.secret'),
 'username' => 'matt@mattstauffer.co',
 'password' => 'my-tweeter-password',
 'scope' => '',
],
]);

 $thisUsersTokens = json_decode((string) $response->getBody(), true);
 // Do stuff with the tokens
});

API Authentication with Laravel Passport | 361

This route will return an access_token and a refresh_token. You can now save
those tokens to use to authenticate with the API (access token) and to request more
tokens later (refresh token).

Note that the ID and secret we’d use for the password grant type would be those in
the oauth_clients database table of our Passport app in the row whose name
matches that of our Passport grant client. You’ll also see entries in this table for the
two clients that are generated by default when you run passport:install: “Laravel
Personal Access Client” and “Laravel Password Grant Client.”

Authorization code grant
The most common OAuth 2.0 auth workflow is also the most complex one Passport
supports. Let’s imagine we’re developing an application that’s like Twitter but for
sound clips; we’ll call it Tweeter. And we’ll imagine another website, a social network
for science fiction fans, called SpaceBook. SpaceBook’s developer wants to let people
embed their Tweeter data into their SpaceBook newsfeeds. We’re going to install Pass‐
port in our Tweeter app so that other apps—SpaceBook, for example—can allow their
users to authenticate with their Tweeter information.

In the authorization code grant type, each consuming website—SpaceBook, in this
example—needs to create a client in our Passport-enabled app. In most scenarios, the
other sites’ admins will have user accounts at Tweeter, and we’ll build tools for them
to create clients there. But for starters, we can just manually create a client for the
SpaceBook admins:

$php artisan passport:client
Which user ID should the client be assigned to?:
 > 1

 What should we name the client?:
 > SpaceBook
 Where should we redirect the request after authorization?
 [http://tweeter.test/auth/callback]:
 > http://spacebook.test/tweeter/callback

 New client created successfully.
 Client ID: 4
 Client secret: 5rzqKpeCjIgz3MXpi3tjQ37HBnLLykrgWgmc18uH

Every client needs to be assigned to a user in your app. Imagine user #1 is writing
SpaceBook; they’ll be the “owner” of this client we’re creating.

Now we have the ID and secret for the SpaceBook client. At this point, SpaceBook
can use this ID and secret to build tooling allowing an individual SpaceBook user
(who is also a Tweeter user) to get an auth token from Tweeter for use when Space‐
Book wants to make API calls to Tweeter on that user’s behalf. Example 13-31 illus‐

362 | Chapter 13: Writing APIs

trates this. (This and the following examples assume SpaceBook is a Laravel app, too;
they also assume the Spacebook’s developer created a file at config/tweeter.php that
returns the ID and secret we just created.)

Example 13-31. A consumer app redirecting a user to our OAuth server

// In SpaceBook's routes/web.php:
Route::get('tweeter/redirect', function () {
 $query = http_build_query([
 'client_id' => config('tweeter.id'),
 'redirect_uri' => url('tweeter/callback'),
 'response_type' => 'code',
 'scope' => '',
]);

 // Builds a string like:
 // client_id={$client_id}&redirect_uri={$redirect_uri}&response_type=code

 return redirect('http://tweeter.test/oauth/authorize?' . $query);
});

When users hit that route in SpaceBook, they’ll now be redirected to the /oauth/
authorize Passport route in our Tweeter app. At this point they’ll see a confirmation
page—you can use the default Passport confirmation page by running this command:

php artisan vendor:publish --tag=passport-views

This will publish the view to resources/views/vendor/passport/authorize.blade.php, and
your users will see the page shown in Figure 13-1.

Figure 13-1. OAuth authorization code approval page

Once a user chooses to accept or reject the authorization, Passport will redirect that
user back to the provided redirect_uri. In Example 13-31 we set a redirect_uri of
url('tweeter/callback'), so the user will be redirected back to http://space‐
book.test/tweeter/callback.

API Authentication with Laravel Passport | 363

An approval request will contain a code that our consumer app’s callback route can
now use to get a token back from our Passport-enabled app, Tweeter. A rejection
request will contain an error. SpaceBook’s callback route might look something like
Example 13-32.

Example 13-32. The authorization callback route in the sample consuming app

// In SpaceBook's routes/web.php:
Route::get('tweeter/callback', function (Request $request) {
 if ($request->has('error')) {
 // Handle error condition
 }

 $http = new GuzzleHttp\Client;

 $response = $http->post('http://tweeter.test/oauth/token', [
 'form_params' => [
 'grant_type' => 'authorization_code',
 'client_id' => config('tweeter.id'),
 'client_secret' => config('tweeter.secret'),
 'redirect_uri' => url('tweeter/callback'),
 'code' => $request->code,
],
]);

 $thisUsersTokens = json_decode((string) $response->getBody(), true);
 // Do stuff with the tokens
});

What the SpaceBook developer has done here is build a Guzzle HTTP request to
the /oauth/token Passport route on Tweeter. They then send a POST request contain‐
ing the authorization code they received when the user approved access, and Tweeter
will return a JSON response containing a few keys:

access_token

the token SpaceBook will want to save for this user. This token is what the user
will use to authenticate in future requests to Tweeter (using the Authorization
header).

refresh_token

a token SpaceBook will need if you decide to set your tokens to expire. By default,
Passport’s access tokens last for one year.

expires_in

the number of seconds until an access_token expires (needs to be refreshed).

364 | Chapter 13: Writing APIs

token_type

the type of token you’re getting back, which will be Bearer; this means you pass a
header with all future requests with the name of Authorization and the value of
Bearer YOURTOKENHERE.

Using Refresh Tokens
If you’d like to force users to reauthenticate more often, you need to set a shorter
refresh time on the tokens, and then you can use the refresh_token to request a new
access_token when needed—most likely whenever you receive a 401 (Unauthorized)
response from an API call.

Example 13-33 illustrates how to set a shorter refresh time.

Example 13-33. Defining token refresh times

// AuthServiceProvider's boot() method
public function boot()
{
 $this->registerPolicies();

 Passport::routes();

 // How long a token lasts before needing refreshing
 Passport::tokensExpireIn(
 now()->addDays(15)
);

 // How long a refresh token will last before re-auth
 Passport::refreshTokensExpireIn(
 now()->addDays(30)
);
}

To request a new token using a refresh token, the consuming application will need to
have first saved the refresh_token from the initial auth response in Example 13-32.
Once it’s time to refresh, it will make a call similar to that example, but modified
slightly as shown in Example 13-34.

Example 13-34. Requesting a new token using a refresh token

// In SpaceBook's routes/web.php:
Route::get('tweeter/request-refresh', function (Request $request) {
 $http = new GuzzleHttp\Client;

 $params = [
 'grant_type' => 'refresh_token',
 'client_id' => config('tweeter.id'),
 'client_secret' => config('tweeter.secret'),
 'redirect_uri' => url('tweeter/callback'),

API Authentication with Laravel Passport | 365

 'refresh_token' => $theTokenYouSavedEarlier,
 'scope' => '',
];

 $response = $http->post(
 'http://tweeter.test/oauth/token',
 ['form_params' => $params]
);

 $thisUsersTokens = json_decode(
 (string) $response->getBody(),
 true
);

 // Do stuff with the tokens
});

In the response, the consuming app will receive a fresh set of tokens to save to its
user.

You now have all the tools you need to perform basic authorization code flows. We’ll
cover how to build an admin panel for your clients and tokens later, but first, let’s take
a quick look at the other grant types.

Personal access tokens
The authorization code grant is great for your users’ apps and the password code
grant is great for your own apps, but what if your users want to create tokens for
themselves to test out your API or to use when they’re developing their apps? That’s
what personal tokens are for.

Creating a Personal Access Client

In order to create personal tokens, you need a personal access cli‐
ent in your database. Running php artisan passport:install
will have added one already, but if you ever need to generate a new
personal access client for any reason, you can run php artisan
passport:client --personal:

$php artisan passport:client --personal

 What should we name the personal access client?
 [My Application Personal Access Client]:
 > My Application Personal Access Client

Personal access client created successfully.

366 | Chapter 13: Writing APIs

Personal access tokens are not quite a “grant” type; there’s no OAuth-prescribed flow
here. Rather, they’re a convenience method that Passport adds to make it easy to have
a single client registered in your system that exists solely to facilitate the creation of
convenience tokens for your users who are developers.

For example, maybe you have a user who’s developing a competitor to SpaceBook
named RaceBook (it’s for marathon runners), and they want to toy around with the
Tweeter API a bit to figure out how it works before starting to code. Does this devel‐
oper have the facility to create tokens using the authorization code flow? Not yet—
they haven’t even written any code yet! That’s what personal access tokens are for.

You can create personal access tokens through the JSON API, which we’ll cover
shortly, but you can also create one for your user directly in code:

// Creating a token without scopes
$token = $user->createToken('Token Name')->accessToken;

// Creating a token with scopes
$token = $user->createToken('My Token', ['place-orders'])->accessToken;

Your users can use these tokens just as if they were tokens created with the authoriza‐
tion code grant flow. We’ll talk more about scopes in “Passport Scopes” on page 371.

Tokens from Laravel session authentication (synchronizer tokens)
There’s one final way for your users to get tokens to access your API, and it’s another
convenience method that Passport adds but normal OAuth servers don’t provide.
This method is for when your users are already authenticated because they’ve logged
in to your Laravel app like normal, and you want your app’s JavaScript to be able to
access the API. It’d be a pain to have to reauthenticate the users with the authorization
code or password grant flow, so Laravel provides a helper for that.

If you add the Laravel\Passport\Http\Middleware\CreateFreshApiToken middle‐
ware to your web middleware group (in app/Http/Kernel.php), every response Laravel
sends to your authenticated users will have a cookie named laravel_token attached
to it. This cookie is a JSON Web Token (JWT) that contains encoded information
about the CSRF token. Now, if you send the normal CSRF token with your JavaScript
requests in the X-CSRF-TOKEN header and also send the X-Requested-With header
with any API requests you make, the API will compare your CSRF token with this
cookie and this will authenticate your users to the API just like any other token.

JSON Web Tokens (JWT)
JWT is a relatively new format for “representing claims securely between two parties”
that has gained prominence over the last few years. A JSON Web Token is a JSON
object containing all of the information necessary to determine a user’s authentication

API Authentication with Laravel Passport | 367

state and access permissions. This JSON object is digitally signed using a keyed-hash
message authentication code (HMAC) or RSA, which is what makes it trustworthy.

The token is usually encoded and then delivered via URL or POST request, or in a
header. Once a user authenticates with the system somehow, every HTTP request
after that will contain the token, describing the user’s identity and authorization.

JSON Web Tokens consist of three Base64-encoded strings separated by dots (.);
something like xxx.yyy.zzz. The first section is a Base64-encoded JSON object con‐
taining information about which hashing algorithm is being used; the second section
is a series of “claims” about the user’s authorization and identity; and the third is the
signature, or the first and second sections encrypted and signed using the algorithm
specified in the first section.

To learn more about JWT, check out JWT.IO or the jwt-auth Laravel package.

The default JavaScript bootstrap setup that Laravel comes bundled with sets up this
header for you, but if you’re using a different framework, you’ll need to set it up man‐
ually. Example 13-35 shows how to do it with jQuery.

Example 13-35. Setting jQuery to pass Laravel’s CSRF tokens and the X-Requested-With
header with all Ajax requests

$.ajaxSetup({
 headers: {
 'X-CSRF-TOKEN': "{{ csrf_token() }}",
 'X-Requested-With': 'XMLHttpRequest'
 }
});

If you add the CreateFreshApiToken middleware to your web middleware group and
pass those headers with every JavaScript request, your JavaScript requests will be able
to hit your Passport-protected API routes without worrying about any of the com‐
plexity of the authorization code or password grants.

Managing Clients and Tokens with the Passport API and
Vue Components
Now that we’ve covered how to manually create clients and tokens and how to
authorize as a consumer, let’s take a look at the aspects of the Passport API that make
it possible to build user interface elements allowing your users to manage their clients
and tokens.

368 | Chapter 13: Writing APIs

https://jwt.io/
http://bit.ly/2U6Uxf4

The routes
The easiest way to dig into the API routes is by looking at how the sample provided
Vue components work and which routes they rely on, so I’ll just give a brief overview:

/oauth/clients (GET, POST)
/oauth/clients/{id} (DELETE, PUT)
/oauth/personal-access-tokens (GET, POST)
/oauth/personal-access-tokens/{id} (DELETE)
/oauth/scopes (GET)
/oauth/tokens (GET)
/oauth/tokens/{id} (DELETE)

As you can see, we have a few entities here (clients, personal access tokens, scopes,
and tokens). We can list all of them; we can create some (you can’t create scopes, since
they’re defined in code, and you can’t create tokens, because they’re created in the
authorization flow); and we can delete and update (PUT) some.

The Vue components
Passport comes with a set of Vue components out of the box that make it easy to
allow your users to administer their clients (those they’ve created), authorized clients
(those they’ve allowed access to their account), and personal access tokens (for their
own testing purposes).

To publish these components into your application, run this command:

php artisan vendor:publish --tag=passport-components

You’ll now have three new Vue components in resources/js/components/passport. To
add them to your Vue bootstrap so they’re accessible in your templates, register them
in your resources/js/app.js file, as shown in Example 13-36.

Example 13-36. Importing Passport’s Vue components into app.js

require('./bootstrap');

Vue.component(
 'passport-clients',
 require('./components/passport/Clients.vue')
);

Vue.component(
 'passport-authorized-clients',
 require('./components/passport/AuthorizedClients.vue')
);

Vue.component(
 'passport-personal-access-tokens',
 require('./components/passport/PersonalAccessTokens.vue')
);

API Authentication with Laravel Passport | 369

const app = new Vue({
 el: '#app'
});

You now get three components that you can use anywhere in your application:

<passport-clients></passport-clients>
<passport-authorized-clients></passport-authorized-clients>
<passport-personal-access-tokens></passport-personal-access-tokens>

<passport-clients> shows your users all of the clients they’ve created. This means
SpaceBook’s creator will see the SpaceBook client listed here when they log in
to Tweeter.

<passport-authorized-clients> shows your users all of the clients they’ve author‐
ized to have access to their accounts. This means any users of both SpaceBook and
Tweeter who have given SpaceBook access to their Tweeter account will see Space‐
Book listed here.

<passport-personal-access-tokens> shows your users any personal access tokens
they’ve created. For example, the creator of RaceBook, SpaceBook’s competitor, will
see the personal access token they’ve been using to test out the Tweeter API.

If you are on a fresh install of Laravel and want to test these out, there are a few steps
to take to get it working:

1. Follow the instructions given earlier in this chapter to get Passport installed.
2. In your terminal, run the following commands:

php artisan vendor:publish --tag=passport-components
npm install
npm run dev
php artisan make:auth

3. Open resources/views/home.blade.php and add the Vue component references
(e.g., <passport-clients></passport-clients>) just below the <div

class="card-body">.

If you’d like, you can just use those components as they are. But you can also use
them as reference points to understand how to use the API and create your own
frontend components in whatever format you’d like.

Compiling Passport’s Frontend Components Using Laravel Elixer

A few of these commands and directions will look different if
you’re using Laravel Elixir. Check the Passport and Elixir docs

to learn more.

370 | Chapter 13: Writing APIs

http://bit.ly/2CFjF2y
http://bit.ly/2upTDf2

Passport Scopes
If you’re familiar with OAuth, you’ve probably noticed we haven’t talked much about
scopes yet. Everything we’ve covered so far can be customized by scope—but before
we get into that, let’s first quickly cover what scopes are.

In OAuth, scopes are defined sets of privileges that are something other than “can do
everything.” If you’ve ever gotten a GitHub API token before, for example, you
might’ve noticed that some apps want access just to your name and email address,
some want access to all of your repos, and some want access to your gists. Each of
these is a “scope,” which allows both the user and the consumer app to define what
access the consumer app needs to perform its job.

As shown in Example 13-37, you can define the scopes for your application in the
boot() method of your AuthServiceProvider.

Example 13-37. Defining Passport scopes

// AuthServiceProvider
use Laravel\Passport\Passport;
...
 public function boot()
 {
 ...

 Passport::tokensCan([
 'list-clips' => 'List sound clips',
 'add-delete-clips' => 'Add new and delete old sound clips',
 'admin-account' => 'Administer account details',
]);
 }

Once you have your scopes defined, the consumer app can define which scopes it’s
asking for access to. Just add a space-separated list of tokens in the scope field in the
initial redirect, as shown in Example 13-38.

Example 13-38. Requesting authorization to access specific scopes

// In SpaceBook's routes/web.php:
Route::get('tweeter/redirect', function () {
 $query = http_build_query([
 'client_id' => config('tweeter.id'),
 'redirect_uri' => url('tweeter/callback'),
 'response_type' => 'code',
 'scope' => 'list-clips add-delete-clips',
]);

API Authentication with Laravel Passport | 371

 return redirect('http://tweeter.test/oauth/authorize?' . $query);
});

When the user tries to authorize with this app, it’ll present the list of requested
scopes. This way, the user will know whether “SpaceBook is requesting to see your
email address” or “SpaceBook is requesting access to post as you and delete your
posts and message your friends.”

You can check for scope using middleware or on the User instance. Example 13-39
shows how to check on the User.

Example 13-39. Checking whether the token a user authenticated with can perform a
given action

Route::get('/events', function () {
 if (auth()->user()->tokenCan('add-delete-clips')) {
 //
 }
});

There are two middleware you can use for this too, scope and scopes. To use these in
your app, add them to $routeMiddleware in your app/Http/Kernel.php file:

'scopes' => \Laravel\Passport\Http\Middleware\CheckScopes::class,
'scope' => \Laravel\Passport\Http\Middleware\CheckForAnyScope::class,

You can now use the middleware as illustrated in Example 13-40. scopes requires all
of the defined scopes to be on the user’s token in order for the user to access the
route, while scope requires at least one of the defined scopes to be on the user’s token.

Example 13-40. Using middleware to restrict access based on token scopes

// routes/api.php
Route::get('clips', function () {
 // Access token has both the "list-clips" and "add-delete-clips" scopes
})->middleware('scopes:list-clips,add-delete-clips');

// or

Route::get('clips', function () {
 // Access token has at least one of the listed scopes
})->middleware('scope:list-clips,add-delete-clips')

If you haven’t defined any scopes, the app will just work as if they don’t exist. The
moment you use scopes, however, your consumer apps will have to explicitly define
which scopes they’re requesting access with. The one exception to this rule is that if
you’re using the password grant type, your consumer app can request the * scope,
which gives the token access to everything.

372 | Chapter 13: Writing APIs

Deploying Passport
The first time you deploy your Passport-powered app, the Passport API won’t func‐
tion until you generate keys for the app. This can be accomplished by running php
artisan passport:keys on your production server, which will generate the encryp‐
tion keys Passport uses to generate tokens.

API Token Authentication
Laravel offers a simple API token authentication mechanism. It’s not much different
from a username and password: there’s a single token assigned to each user that cli‐
ents can pass along with a request to authenticate that request for that user.

This API token mechanism is not nearly as secure as OAuth 2.0, so make sure you
know it’s the right fit for your application before deciding to use it. Because there’s
just a single token, it’s almost like a password—if someone gets that token, they have
access to your whole system. It’s more secure, though, because you can force the
tokens to be less guessable, and you can wipe and reset tokens at the slightest hint of a
breach, which you can’t do with passwords.

So, token API authentication might not be the best fit for your app; but if it is, it
couldn’t be much simpler to implement.

First, add a 60-character unique api_token column to your users table:

$table->string('api_token', 60)->unique();

Next, update whatever method creates your new users and ensure it sets a value for
this field for each new user. Laravel has a helper for generating random strings, so if
you want to use that, just set the field to str_random(60) for each. You’ll also need to
do this for preexisting users if you’re adding this to a live application.

To wrap any routes with this authentication method, use the auth:api route middle‐
ware, as in Example 13-41.

Example 13-41. Applying the API auth middleware to a route group

Route::prefix('api')->middleware('auth:api')->group(function () {
 //
});

Note that, since you’re using an authentication guard other than the standard guard,
you’ll need to specify that guard any time you use any auth() methods:

$user = auth()->guard('api')->user();

API Token Authentication | 373

Customizing 404 Responses
Laravel offers customizable error message pages for normal HTML views, but you
can also customize the default 404 fallback response for calls with a JSON content
type. To do so, add a Route::fallback() call to your API, as shown in
Example 13-42.

Example 13-42. Defining a fallback route

// routes/api.php
Route::fallback(function () {
 return response()->json(['message' => 'Route Not Found'], 404);
})->name('api.fallback.404');

Triggering the Fallback Route
If you want to customize which route is returned when Laravel catches “not found”
exceptions, you can update the exception handler using the respondWithRoute()
method, as illustrated in Example 13-43.

Example 13-43. Calling the fallback route when “not found” exceptions are caught

// App\Exceptions\Handler
public function render($request, Exception $exception)
{
 if ($exception instanceof ModelNotFoundException && $request->isJson()) {
 return Route::respondWithRoute('api.fallback.404');
 }

 return parent::render($request, $exception);
}

Testing
Fortunately, testing APIs is actually simpler than testing almost anything else in
Laravel.

We cover this in more depth in Chapter 12, but there are a series of methods for mak‐
ing assertions against JSON. Combine that capability with the simplicity of full-stack
application tests and you can put together your API tests quickly and easily. Take a
look at the common API testing pattern in Example 13-44.

Example 13-44. A common API testing pattern

...
class DogsApiTest extends TestCase

374 | Chapter 13: Writing APIs

{
 use WithoutMiddleware, RefreshDatabase;

 public function test_it_gets_all_dogs()
 {
 $dog1 = factory(Dog::class)->create();
 $dog2 = factory(Dog::class)->create();

 $response = $this->getJson('api/dogs');

 $response->assertJsonFragment(['name' => $dog1->name]);
 $response->assertJsonFragment(['name' => $dog2->name]);
 }
}

Note that we’re using WithoutMiddleware to avoid worrying about authentication.
You’ll want to test that separately, if at all (for more on authentication, see Chapter 9).

In this test we insert two Dogs into the database, then visit the API route for listing all
Dogs and make sure both are present in the output.

You can cover all of your API routes simply and easily here, including modifying
actions like POST and PATCH.

Testing Passport
You can use the actingAs() method on the Passport facade to test your scopes. Take
a look at Example 13-45 to see a common pattern for testing scopes in Passport.

Example 13-45. Testing scoped access

public function test_it_lists_all_clips_for_those_with_list_clips_scope()
{
 Passport::actingAs(
 factory(User::class)->create(),
 ['list-clips']
);

 $response = $this->getJson('api/clips');
 $response->assertStatus(200);
}

TL;DR
Laravel is geared toward building APIs and makes it simple to work with JSON and
RESTful APIs. There are some conventions, like for pagination, but much of the defi‐
nition of exactly how your API will be sorted, or authenticated, or whatever else is up
to you.

TL;DR | 375

Laravel provides tools for authentication and testing, easy manipulation and reading
of headers, and working with JSON, even automatically encoding all Eloquent results
to JSON if they’re returned directly from a route.

Laravel Passport is a separate package that makes it simple to create and manage an
OAuth server in your Laravel apps.

376 | Chapter 13: Writing APIs

CHAPTER 14

Storage and Retrieval

We looked at how to store data in relational databases in Chapter 5, but there’s a lot
more that can be stored, both locally and remotely. In this chapter we’ll cover filesys‐
tem and in-memory storage, file uploads and manipulation, nonrelational data stores,
sessions, the cache, logging, cookies, and full-text search.

Local and Cloud File Managers
Laravel provides a series of file manipulation tools through the Storage facade, and a
few helper functions.

Laravel’s filesystem access tools can connect to the local filesystem as well as S3, Rack‐
space, and FTP. The S3 and Rackspace file drivers are provided by Flysystem, and it’s
simple to add additional Flysystem providers to your Laravel app—for example,
Dropbox or WebDAV.

Configuring File Access
The definitions for Laravel’s file manager live in config/filesystems.php. Each connec‐
tion is called a “disk,” and Example 14-1 lists the disks that are available out of
the box.

Example 14-1. Default available storage disks

...
'disks' => [
 'local' => [
 'driver' => 'local',
 'root' => storage_path('app'),
],

377

http://bit.ly/2upKDXr

 'public' => [
 'driver' => 'local',
 'root' => storage_path('app/public'),
 'url' => env('APP_URL').'/storage',
 'visibility' => 'public',
],

 's3' => [
 'driver' => 's3',
 'key' => env('AWS_ACCESS_KEY_ID'),
 'secret' => env('AWS_SECRET_ACCESS_KEY'),
 'region' => env('AWS_DEFAULT_REGION'),
 'bucket' => env('AWS_BUCKET'),
 'url' => env('AWS_URL'),
],
],

The storage_path() Helper

The storage_path() helper used in Example 14-1 links to Laravel’s
configured storage directory, storage/. Anything you pass to it
is added to the end of the directory name, so
storage_path('public') will return the string storage/public.

The local disk connects to your local storage system and presumes it will be interact‐
ing with the app directory of the storage path, which is storage/app.

The public disk is also a local disk (although you can change it if you’d like), which is
intended for use with any files you intend to be served by your application. It defaults
to the storage/app/public directory, and if you want to use this directory to serve files
to the public, you’ll need to add a symbolic link (symlink) to somewhere within the
public/ directory. Thankfully, there’s an Artisan command that maps public/storage to
serve the files from storage/app/public:

php artisan storage:link

The s3 disk shows how Laravel connects to cloud-based file storage systems. If you’ve
ever connected to S3 or any other cloud storage provider, this will be familiar; pass it
your key and secret and some information defining the “folder” you’re working with,
which in S3 is the region and the bucket.

Using the Storage Facade
In config/filesystem.php you can set the default disk, which is what will be used any
time you call the Storage facade without specifying a disk. To specify a disk, call
disk('diskname') on the facade:

Storage::disk('s3')->get('file.jpg');

378 | Chapter 14: Storage and Retrieval

The filesystems each provide the following methods:

get('file.jpg')

Retrieves the file at file.jpg

put('file.jpg', $contentsOrStream)

Puts the given file contents to file.jpg

putFile('myDir', $file)

Puts the contents of a provided file (in the form of an instance of either
Illuminate\Http\File or Illuminate\Http\UploadedFile) to the myDir direc‐
tory, but with Laravel managing the entire streaming process and naming the file

exists('file.jpg')

Returns a Boolean indicating whether file.jpg exists

getVisibility('myPath')

Gets the visibility for the given path (“public” or “private”)

setVisibility('myPath')

Sets the visibility for the given path (“public” or “private”)

copy('file.jpg', 'newfile.jpg')

Copies file.jpg to newfile.jpg

move('file.jpg', 'newfile.jpg')

Moves file.jpg to newfile.jpg

prepend('my.log', 'log text')

Adds content at the beginning of my.log

append('my.log', 'log text')

Adds content to the end of my.log

delete('file.jpg')

Deletes file.jpg

size('file.jpg')

Returns the size in bytes of file.jpg

lastModified('file.jpg')

Returns the Unix timestamp when file.jpg was last modified

files('myDir')

Returns an array of filenames in the directory myDir

allFiles('myDir')

Returns an array of filenames in the directory myDir and all subdirectories

Local and Cloud File Managers | 379

directories('myDir')

Returns an array of directory names in the directory myDir

allDirectories('myDir')

Returns an array of directory names in the directory myDir and all subdirectories

makeDirectory('myDir')

Creates a new directory

deleteDirectory('myDir')

Deletes myDir

Injecting an Instance

If you’d prefer injecting an instance instead of using the File
facade, typehint or inject Illuminate\Filesystem\Filesystem
and you’ll have all the same methods available to you.

Adding Additional Flysystem Providers
If you want to add an additional Flysystem provider, you’ll need to “extend” Laravel’s
native storage system. In a service provider somewhere—it could be the boot()
method of AppServiceProvider, but it’d be more appropriate to create a unique ser‐
vice provider for each new binding—use the Storage facade to add new storage sys‐
tems, as seen in Example 14-2.

Example 14-2. Adding additional Flysystem providers

// Some service provider
public function boot()
{
 Storage::extend('dropbox', function ($app, $config) {
 $client = new DropboxClient(
 $config['accessToken'], $config['clientIdentifier']
);

 return new Filesystem(new DropboxAdapter($client));
 });
}

Basic File Uploads and Manipulation
One of the more common usages for the Storage facade is accepting file uploads
from your application’s users. Let’s look at a common workflow for that, in
Example 14-3.

380 | Chapter 14: Storage and Retrieval

Example 14-3. Common user upload workflow

...
class DogsController
{
 public function updatePicture(Request $request, Dog $dog)
 {
 Storage::put(
 "dogs/{$dog->id}",
 file_get_contents($request->file('picture')->getRealPath())
);
 }
}

We put() to a file named dogs/id, and we grab our contents from the uploaded file.
Every uploaded file is a descendant of the SplFileInfo class, which provides a
getRealPath() method that returns the path to the file’s location. So, we get the tem‐
porary upload path for the user’s uploaded file, read it with file_get_contents(),
and pass it into Storage::put().

Since we have this file available to us here, we can do anything we want to the file
before we store it—use an image manipulation package to resize it if it’s an image,
validate it and reject it if it doesn’t meet our criteria, or whatever else we like.

If we wanted to upload this same file to S3 and we had our credentials stored
in config/filesystems.php, we could just adjust Example 14-3 to call
Storage::disk('s3')->put(); we’ll now be uploading to S3. Take a look at
Example 14-4 to see a more complex upload example.

Example 14-4. A more complex example of file uploads, using Intervention

...
class DogsController
{
 public function updatePicture(Request $request, Dog $dog)
 {
 $original = $request->file('picture');

 // Resize image to max width 150
 $image = Image::make($original)->resize(150, null, function ($constraint) {
 $constraint->aspectRatio();
 })->encode('jpg', 75);

 Storage::put(
 "dogs/thumbs/{$dog->id}",
 $image->getEncoded()
);
 }

Basic File Uploads and Manipulation | 381

I used an image library called Intervention in Example 14-4 just as an example; you
can use any library you want. The important point is that you have the freedom to
manipulate the files however you want before you store them.

Using store() and storeAs() on the Uploaded File

Laravel 5.3 introduced the ability to store an uploaded file using
the file itself. Learn more in Example 7-12.

Simple File Downloads
Just like Storage makes it easy to accept uploads from users, it also simplifies the task
of returning files to them. Take a look at Example 14-5 for the simplest example.

Example 14-5. Simple file downloads

public function downloadMyFile()
{
 return Storage::download('my-file.pdf');
}

Sessions
Session storage is the primary tool we use in web applications to store state between
page requests. Laravel’s session manager supports session drivers using files, cookies,
a database, Memcached or Redis, or in-memory arrays (which expire after the page
request and are only good for tests).

You can configure all of your session settings and drivers in config/session.php. You
can choose whether or not to encrypt your session data, select which driver to use
(file is the default), and specify more connection-specific details like the length of
session storage and which files or database tables to use. Take a look at the session
docs to learn about specific dependencies and settings you need to prepare for
whichever driver you choose to use.

The general API of the session tools allows you to save and retrieve data based on
individual keys: session()->put('user_id') and session()->get('user_id'), for
example. Make sure to avoid saving anything to a flash session key, since Laravel
uses that internally for flash (only available for the next page request) session storage.

382 | Chapter 14: Storage and Retrieval

http://image.intervention.io
http://bit.ly/2HFXsW7
http://bit.ly/2HFXsW7

Accessing the Session
The most common way to access the session is using the Session facade:

session()->get('user_id');

But you can also use the session() method on any given Illuminate Request object,
as in Example 14-6.

Example 14-6. Using the session() method on a Request object

Route::get('dashboard', function (Request $request) {
 $request->session()->get('user_id');
});

Or you can inject an instance of Illuminate\Session\Store, as in Example 14-7.

Example 14-7. Injecting the backing class for sessions

Route::get('dashboard', function (Illuminate\Session\Store $session) {
 return $session->get('user_id');
});

Finally, you can use the global session() helper. Use it with no parameters to get a
session instance, with a single string parameter to “get” from the session, or with an
array to “put” to the session, as demonstrated in Example 14-8.

Example 14-8. Using the global session() helper

// Get
$value = session()->get('key');
$value = session('key');
// Put
session()->put('key', 'value');
session(['key', 'value']);

If you’re new to Laravel and not sure which to use, I’d recommend using the global
helper.

Methods Available on Session Instances
The two most common methods are get() and put(), but let’s take a look at each of
the available methods and their parameters:

session()->get($key, $fallbackValue)

get() pulls the value of the provided key out of the session. If there is no value
attached to that key, it will return the fallback value instead (and if you don’t pro‐

Sessions | 383

vide a fallback, it will return null). The fallback value can be a string or a closure,
as you can see in the following examples:

$points = session()->get('points');

$points = session()->get('points', 0);

$points = session()->get('points', function () {
 return (new PointGetterService)->getPoints();
});

session()->put($key, $value)

put() stores the provided value in the session at the provided key:

session()->put('points', 45);

$points = session()->get('points');

session()->push($key, $value)

If any of your session values are arrays, you can use push() to add a value to the
array:

session()->put('friends', ['Saúl', 'Quang', 'Mechteld']);

session()->push('friends', 'Javier');

session()->has($key)

has() checks whether there’s a value set at the provided key:

if (session()->has('points')) {
 // Do something
}

You can also pass an array of keys, and it only returns true if all of the keys exist.

session()->has() and Null Values

If a session value is set but the value is null,
session()->has() will return false.

session()->exists($key)

exists() checks whether there’s a value set at the provided key, like has(), but
unlike has(), it will return true even if the set value is null:

if (session()->exists('points')) {
 // returns true even if 'points' is set to null
}

384 | Chapter 14: Storage and Retrieval

session()->all()

all() returns an array of everything that’s in the session, including those values
set by the framework. You’ll likely see values under keys like _token (CSRF
tokens), _previous (previous page, for back() redirects), and flash (for flash
storage).

session()->forget($key) and session()->flush()
forget() removes a previously set session value. flush() removes every session
value, even those set by the framework:

session()->put('a', 'awesome');
session()->put('b', 'bodacious');

session()->forget('a');
// a is no longer set; b is still set
session()->flush();
// Session is now empty

session()->pull($key, $fallbackValue)

pull() is the same as get(), except that it deletes the value from the session after
pulling it.

session()->regenerate()

It’s not common, but if you need to regenerate your session ID, regenerate() is
there for you.

Flash Session Storage
There are three more methods we haven’t covered yet, and they all have to do with
something called “flash” session storage.

One very common pattern for session storage is to set a value that you only want
available for the next page load. For example, you might want to store a message like
“Updated post successfully.” You could manually get that message and then wipe it on
the next page load, but if you use this pattern a lot it can get wasteful. Enter flash ses‐
sion storage: keys that are expected to only last for a single page request.

Laravel handles the work for you, and all you need to do is use flash() instead of
put(). These are the useful methods here:

session()->flash($key, $value)

flash() sets the session key to the provided value for just the next page request.

session()->reflash() and session()->keep($key)
If you need the previous page’s flash session data to stick around for one more
request, you can use reflash() to restore all of it for the next request or

Sessions | 385

keep($key) to just restore a single flash value for the next request. keep() can
also accept an array of keys to reflash.

Cache
Caches are structured very similarly to sessions. You provide a key and Laravel stores
it for you. The biggest difference is that the data in a cache is cached per application,
and the data in a session is cached per user. That means caches are more commonly
used for storing results from database queries, API calls, or other slow queries that
can stand to get a little bit “stale.”

The cache configuration settings are available at config/cache.php. Just like with a ses‐
sion, you can set the specific configuration details for any of your drivers, and also
choose which will be your default. Laravel uses the file cache driver by default, but
you can also use Memcached or Redis, APC, or a database, or write your own cache
driver. Take a look at the cache docs to learn about specific dependencies and settings
you need to prepare for whichever driver you choose to use.

Example 14-9. Minutes or seconds for cache length

In versions of Laravel prior to 5.8, if you passed an integer to any cache methods to
define the cache duration, it’d represent the number of minutes to cache the item. In
5.8+, as you’ll learn in the following section, it represents seconds.

Accessing the Cache
Just like with sessions, there are a few different ways to access a cache. You can use
the facade:

$users = Cache::get('users');

Or you can get an instance from the container, as in Example 14-10.

Example 14-10. Injecting an instance of the cache

Route::get('users', function (Illuminate\Contracts\Cache\Repository $cache) {
 return $cache->get('users');
});

You can also use the global cache() helper (introduced in Laravel 5.3), as in
Example 14-11.

Example 14-11. Using the global cache() helper

// Get from cache
$users = cache('key', 'default value');

386 | Chapter 14: Storage and Retrieval

http://bit.ly/2Yk60qV

$users = cache()->get('key', 'default value');
// Put for $seconds duration
$users = cache(['key' => 'value'], $seconds);
$users = cache()->put('key', 'value', $seconds);

If you’re new to Laravel and not sure which to use, I’d recommend using the global
helper.

Methods Available on Cache Instances
Let’s take a look at the methods you can call on a Cache instance:

cache()->get($key, $fallbackValue) and
cache()->pull($key, $fallbackValue)

get() makes it easy to retrieve the value for any given key. pull() is the same as
get() except it removes the cached value after retrieving it.

cache()->put($key, $value, $secondsOrExpiration)

put() sets the value of the specified key for a given number of seconds. If you’d
prefer setting an expiration date/time instead of a number of seconds, you can
pass a Carbon object as the third parameter:

cache()->put('key', 'value', now()->addDay());

cache()->add($key, $value)

add() is similar to put(), except if the value already exists, it won’t set it. Also,
the method returns a Boolean indicating whether or not the value was actually
added:

$someDate = now();
cache()->add('someDate', $someDate); // returns true
$someOtherDate = now()->addHour();
cache()->add('someDate', $someOtherDate); // returns false

cache()->forever($key, $value)

forever() saves a value to the cache for a specific key; it’s the same as put(),
except the values will never expire (until they’re removed with forget()).

cache()->has($key)

has() returns a Boolean indicating whether or not there’s a value at the provided
key.

cache()->remember($key, $seconds, $closure) and
cache()->rememberForever($key, $closure)

remember() provides a single method to handle a very common flow: look up
whether a value exists in the cache for a certain key, and if it doesn’t, get that
value somehow, save it to the cache, and return it.

Cache | 387

remember() lets you provide a key to look up, the number of seconds it should be
saved for, and a closure to define how to look it up, in case the key has no value
set. rememberForever() is the same, except it doesn’t need you to set the number
of seconds it should expire after. Take a look at the following example to see a
common user scenario for remember():

// Either returns the value cached at "users" or gets "User::all()",
// caches it at "users", and returns it
$users = cache()->remember('users', 7200, function () {
 return User::all();
});

cache()->increment($key, $amount) and cache()->decrement($key, $amount)
increment() and decrement() allow you to increment and decrement integer
values in the cache. If there is no value at the given key, it’ll be treated as if it were
0, and if you pass a second parameter to increment or decrement, it’ll increment
or decrement by that amount instead of by 1.

cache()->forget($key) and cache()->flush()
forget() works just like Session’s forget() method: pass it a key and it’ll wipe
that key’s value. flush() wipes the entire cache.

Cookies
You might expect cookies to work the same as sessions and the cache. A facade and a
global helper are available for these too, and our mental models of all three are simi‐
lar: you can get or set their values in the same way.

But because cookies are inherently attached to the requests and responses, you’ll
need to interact with cookies differently. Let’s look really briefly at what makes cook‐
ies different.

Cookies in Laravel
Cookies can exist in three places in Laravel. They can come in via the request, which
means the user had the cookie when they visited the page. You can read that with the
Cookie facade, or you can read it off of the request object.

They can also be sent out with a response, which means the response will instruct the
user’s browser to save the cookie for future visits. You can do this by adding the
cookie to your response object before returning it.

And lastly, a cookie can be queued. If you use the Cookie facade to set a cookie, you
have put it into a “CookieJar” queue, and it will be removed and added to the
response object by the AddQueuedCookiesToResponse middleware.

388 | Chapter 14: Storage and Retrieval

Accessing the Cookie Tools
You can get and set cookies in three places: the Cookie facade, the cookie() global
helper, and the request and response objects.

The Cookie facade

The Cookie facade is the most full-featured option, allowing you to not only read and
make cookies, but also to queue them to be added to the response. It provides the
following methods:

Cookie::get($key)

To pull the value of a cookie that came in with the request, you can just run
Cookie::get('cookie-name'). This is the simplest option.

Cookie::has($key)

You can check whether a cookie came in with the request using
Cookie::has('cookie-name'), which returns a Boolean.

Cookie::make(...params)

If you want to make a cookie without queueing it anywhere, you can use
Cookie::make(). The most likely use for this would be to make a cookie and
then manually attach it to the response object, which we’ll cover in a bit.

Here are the parameters for make(), in order:

• $name is the name of the cookie.
• $value is the content of the cookie.
• $minutes specifies how many minutes the cookie should live.
• $path is the path under which your cookie should be valid.
• $domain lists the domains for which your cookie should work.
• $secure indicates whether the cookie should only be transmitted over a

secure (HTTPS) connection.
• $httpOnly indicates whether the cookie will be made accessible only through

the HTTP protocol.
• $raw indicates whether the cookie should be sent without URL encoding.
• $sameSite indicates whether the cookie should be available for cross-site

requests; options are lax, strict, or null.

Cookie::make()

Returns an instance of Symfony\Component\HttpFoundation\Cookie.

Cookies | 389

Default Settings for Cookies

The CookieJar that the Cookie facade instance uses reads its
defaults from the session config. So, if you change any of the
configuration values for the session cookie in config/
session.php, those same defaults will be applied to all of your
cookies that you create using the Cookie facade.

Cookie::queue(Cookie || params)

If you use Cookie::make(), you’ll still need to attach the cookie to your response,
which we’ll cover shortly. Cookie::queue() has the same syntax as
Cookie::make(), but it enqueues the created cookie to be automatically attached
to the response by middleware.

If you’d like, you can also just pass a cookie you’ve created yourself into
Cookie::queue().

Here’s the simplest possible way to add a cookie to the response in Laravel:

Cookie::queue('dismissed-popup', true, 15);

When Your Queued Cookies Won’t Get Set

Cookies can only be returned as part of a response. So, if you
enqueue cookies with the Cookie facade and then your
response isn’t returned correctly—for example, if you use
PHP’s exit() or something halts the execution of your script
—your cookies won’t be set.

The cookie() global helper

The cookie() global helper will return a CookieJar instance if you call it with no
parameters. However, two of the most convenient methods on the Cookie facade—
has() and get()—exist only on the facade, not on the CookieJar. So, in this context,
I think the global helper is actually less useful than the other options.

The one task for which the cookie() global helper is useful is creating a cookie. If you
pass parameters to cookie(), they’ll be passed directly to the equivalent of
Cookie::make(), so this is the fastest way to create a cookie:

$cookie = cookie('dismissed-popup', true, 15);

Injecting an Instance

You can also inject an instance of Illuminate\Cookie\CookieJar
anywhere in the app, but you’ll have the same limitations discussed
here.

390 | Chapter 14: Storage and Retrieval

Cookies on Request and Response objects
Since cookies come in as a part of the request and are set as a part of the response,
those Illuminate objects are the places they actually live. The Cookie facade’s get(),
has(), and queue() methods are just proxies to interact with the Request and
Response objects.

So, the simplest way to interact with cookies is to pull cookies from the request and
set them on the response.

Reading cookies from Request objects. Once you have a copy of your Request object—if
you don’t know how to get one, just try app('request')—you can use the Request
object’s cookie() method to read its cookies, as shown in Example 14-12.

Example 14-12. Reading a cookie from a Request object

Route::get('dashboard', function (Illuminate\Http\Request $request) {
 $userDismissedPopup = $request->cookie('dismissed-popup', false);
});

As you can see in this example, the cookie() method has two parameters: the cook‐
ie’s name and, optionally, the fallback value.

Setting cookies on Response objects. Whenever you have your Response object ready,
you can use the cookie() method (or the withCookie() method in Laravel prior to
5.3) on it to add a cookie to the response, like in Example 14-13.

Example 14-13. Setting a cookie on a Response object

Route::get('dashboard', function () {
 $cookie = cookie('saw-dashboard', true);

 return Response::view('dashboard')
 ->cookie($cookie);
});

If you’re new to Laravel and not sure which option to use, I’d recommend setting
cookies on the Request and Response objects. It’s a bit more work, but will lead to
fewer surprises if future developers don’t understand the CookieJar queue.

Logging
We’ve seen a few really brief examples of logging so far in this book when we were
talking about other concepts like the container and facades, but let’s briefly look at
what options you have with logging beyond just Log::info('Message').

Logging | 391

The purpose of logs is to increase “discoverability,” or your ability to understand
what’s going on at any given moment in your application.

Logs are short messages, sometimes with some data embedded in a human-readable
form, that your code will generate for the sake of understanding what was happening
during the execution of the app. Each log must be captured at a specific level, which
can vary from emergency (something very bad happened) to debug (something of
almost no significance happened).

Without any modifications, your app will write any log statements to a file located at
storage/logs/laravel.log, and each log statement will look a little bit like this:

[2018-09-22 21:34:38] local.ERROR: Something went wrong.

You can see we have the date, time, environment, error level, and message, all on one
line. However, Laravel also (by default) logs any uncaught exceptions, and in that case
you’ll see the entire stack trace inline.

We’ll cover how to log, why to log, and how to log elsewhere (for example, in Slack)
in the following section.

When and Why to Use Logs
The most common use case for logs is to act as a semidisposable record of things that
have happened that you may care about later, but to which you don’t definitively need
programmatic access. The logs are more about learning what’s going on in the app
and less about creating structured data your app can consume.

For example, if you want to have code that consumes a record of every user login and
does something interesting with it, that’s a use case for a logins database table. How‐
ever, if you have a casual interest in those logins but you’re not entirely certain
whether you care or whether you need that information programmatically, you may
just throw a debug- or info-level log on it and forget about it.

Logs are also common when you need to see the value of something at the moment it
goes wrong, or at a certain time of day, or something else that means you want the
data at a time when you’re not around. Throw a log statement in the code, get the
data you need out of the logs, and either keep it in the code for later usage or just
delete it again.

Writing to the Logs
The simplest way to write a log entry in Laravel is to use the Log facade, and use the
method on that facade that matches the severity level you’d like to record. The levels
are the same as those defined in RFC 5424:

Log::emergency($message);
Log::alert($message);

392 | Chapter 14: Storage and Retrieval

http://bit.ly/2YltbAS

Log::critical($message);
Log::error($message);
Log::warning($message);
Log::notice($message);
Log::info($message);
Log::debug($message);

You can also, optionally, pass a second parameter that’s an array of connected data:

Log::error('Failed to upload user image.', ['user' => $user]);

This additional information may be captured differently by different log destinations,
but here’s how this looks in the default local log (although it will be just a single line
in the log):

[2018-09-27 20:53:31] local.ERROR: Failed to upload user image. {
 "user":"[object] (App\\User: {
 \"id\":1,
 \"name\":\"Matt\",
 \"email\":\"matt@tighten.co\",
 \"email_verified_at\":null,
 \"api_token\":\"long-token-here\",
 \"created_at\":\"2018-09-22 21:39:55\",
 \"updated_at\":\"2018-09-22 21:40:08\"
 })"
}

Log Channels
In Laravel 5.6, the way we configure and capture logs was changed pretty significantly
to introduce the idea of multiple channels and drivers. If you’re working in 5.5 or ear‐
lier, you can skip on to “Full-Text Search with Laravel Scout” on page 396.

Like many other aspects of Laravel (file storage, database, mail, etc.), you can config‐
ure your logs to use one or more predefined log types, which you define in the config
file. Using each type involves passing various configuration details to a specific log
driver.

These log types are called channels, and out of the box you’ll have options for stack,
single, daily, slack, stderr, syslog, and errorlog. Each channel is connected to a
single driver; the available drivers are single, daily, slack, syslog, errorlog, mono
log, custom, or stack.

We’ll cover the most common channels, here: stack, single, daily, and slack. To
learn more about the drivers and the full list of channels available, take a look at the
logging docs.

Logging | 393

http://bit.ly/2TVgSwT

The single channel

The single channel writes every log entry to a single file, which you’ll define in the
path key. You can see its default configuration here in Example 14-14:

Example 14-14. Default configuration for the single channel

'single' => [
 'driver' => 'single',
 'path' => storage_path('logs/laravel.log'),
 'level' => 'debug',
],

This means it’ll only log events at the debug level or higher, and it will write them all
to a single file, storage/logs/laravel.log.

The daily channel

The daily channel splits out a new file for each day. You can see its default config
here in Example 14-15.

Example 14-15. Default configuation for the daily channel

'daily' => [
 'driver' => 'daily',
 'path' => storage_path('logs/laravel.log'),
 'level' => 'debug',
 'days' => 7,
],

It’s similar to single, but we now can set how many days of logs to keep before
they’re cleaned up, and the date will be appended to the filename we specify. For
example, the preceding config will generate a file named storage/logs/laravel-{yyyy-
mm-dd}.log.

The slack channel

The slack channel makes it easy to send your logs (or, more likely, only certain logs)
over to Slack.

It also illustrates that you’re not limited to just the handlers that come out of the box
with Laravel. We’ll cover this in a second, but this isn’t a custom Slack implementa‐
tion; it’s just Laravel building a log driver that connects to the Monolog Slack handler,
and if you can use any Monolog handler, you have a lot of options available to you.

The default configuration for this channel is shown in Example 14-16.

394 | Chapter 14: Storage and Retrieval

Example 14-16. Default configuation for the slack channel

'slack' => [
 'driver' => 'slack',
 'url' => env('LOG_SLACK_WEBHOOK_URL'),
 'username' => 'Laravel Log',
 'emoji' => ':boom:',
 'level' => 'critical',
],

The stack channel

The stack channel is the channel that’s enabled by default on your application. Its
default configuation in 5.7+ is shown in Example 14-17.

Example 14-17. Default configuration for the stack channel

'stack' => [
 'driver' => 'stack',
 'channels' => ['daily'],
 'ignore_exceptions' => false,
],

The stack channel allows you to send all your logs to more than one channel (listed
in the channels array). So, while this is the channel that’s configured by default on
your Laravel apps, because its channels array is set to daily by default in 5.8+, in
reality your app is just using the daily log channel.

But what if you wanted everything of the level info and above to go to the daily files,
but you wanted critical and higher log messages to go to Slack? It’s easy with the
stack driver, as Example 14-18 demonstrates.

Example 14-18. Customizing the stack driver

'channels' => [
 'stack' => [
 'driver' => 'stack',
 'channels' => ['daily', 'slack'],
],

 'daily' => [
 'driver' => 'daily',
 'path' => storage_path('logs/laravel.log'),
 'level' => 'info',
 'days' => 14,
],

 'slack' => [
 'driver' => 'slack',

Logging | 395

 'url' => env('LOG_SLACK_WEBHOOK_URL'),
 'username' => 'Laravel Log',
 'emoji' => ':boom:',
 'level' => 'critical',
],

Writing to specific log channels
There may also be times when you want to control exactly which log messages go
where. You can do that, too. Just specify the channel when you call the Log facade:

Log::channel('slack')->info("This message will go to Slack.");

Advanced Log Configuration

If you’d like to customize how each log is sent to each channel, or
implement custom Monolog handlers, check out the logging docs
to learn more.

Full-Text Search with Laravel Scout
Laravel Scout is a separate package that you can bring into your Laravel apps to add
full-text search to your Eloquent models. Scout makes it easy to index and search the
contents of your Eloquent models; it ships with an Algolia driver, but there are also
community packages for other providers. I’ll assume you’re using Algolia.

Installing Scout
First, pull in the package in any Laravel 5.3+ app:

composer require laravel/scout

Manually Registering Service Providers Prior to Laravel 5.5

If you’re using a version of Laravel prior to 5.5, you will need to
manually register the service provider by adding Laravel\Scout
\ScoutServiceProvider::class to the providers section of con‐
fig/app.php.

Next you’ll want to set up your Scout configuration. Run this command:

php artisan vendor:publish --provider="Laravel\Scout\ScoutServiceProvider"

and paste your Algolia credentials in config/scout.php.

Finally, install the Algolia SDK:

composer require algolia/algoliasearch-client-php

396 | Chapter 14: Storage and Retrieval

http://bit.ly/2TVgSwT

Marking Your Model for Indexing
In your model (we’ll use Review, for a book review, for this example), import the
Laravel\Scout\Searchable trait.

You can define which properties are searchable using the toSearchableArray()
method (it defaults to mirroring toArray()), and define the name of the model’s
index using the searchableAs() method (it defaults to the table name).

Scout subscribes to the create/delete/update events on your marked models. When
you create, update, or delete any rows, Scout will sync those changes up to Algolia.
It’ll either make those changes synchronously with your updates or, if you configure
Scout to use a queue, queue the updates.

Searching Your Index
Scout’s syntax is simple. For example, to find any Review with the word Llew in it:

Review::search('Llew')->get();

You can also modify your queries as you would with regular Eloquent calls:

// Get all records from the Review that match the term "Llew",
// limited to 20 per page and reading the page query parameter,
// just like Eloquent pagination
Review::search('Llew')->paginate(20);

// Get all records from the Review that match the term "Llew"
// and have the account_id field set to 2
Review::search('Llew')->where('account_id', 2)->get();

What comes back from these searches? A collection of Eloquent models, rehydrated
from your database. The IDs are stored in Algolia, which returns a list of matched
IDs; Scout then pulls the database records for those and returns them as Eloquent
objects.

You don’t have full access to the complexity of SQL WHERE commands, but it provides
a basic framework for comparison checks like you can see in the code samples here.

Queues and Scout
At this point your app will be making HTTP requests to Algolia on every request that
modifies any database records. This can slow down your application quickly, which is
why Scout makes it easy to push all of its actions onto a queue.

In config/scout.php, set queue to true so that these updates are set to be indexed asyn‐
chronously. Your full-text index is now operating under “eventual consistency”; your
database records will receive the updates immediately, and the updates to your search
indexes will be queued and updated as fast as your queue worker allows.

Full-Text Search with Laravel Scout | 397

Performing Operations Without Indexing
If you need to perform a set of operations and avoid triggering the indexing
in response, wrap the operations in the withoutSyncingToSearch() method on your
model:

Review::withoutSyncingToSearch(function () {
 // Make a bunch of reviews, e.g.
 factory(Review::class, 10)->create();
});

Conditionally Indexing Models
Sometimes you might only want to index records if they meet a certain condition.
You may use the shouldBeSearchable() method on the model class to achieve this:

public function shouldBeSearchable()
{
 return $this->isApproved();
}

Manually Triggering Indexing via Code
If you want to manually trigger indexing your model, you can do it using code in
your app or via the command line.

To manually trigger indexing from your code, add searchable() to the end of any
Eloquent query and it will index all of the records that were found in that query:

Review::all()->searchable();

You can also choose to scope the query to only those records you want to index.
However, Scout is smart enough to insert new records and update old records, so you
may choose to just reindex the entire contents of the model’s database table.

You can also run searchable() on relationship methods:

$user->reviews()->searchable();

If you want to unindex any records with the same sort of query chaining, just use
unsearchable() instead:

Review::where('sucky', true)->unsearchable();

Manually Triggering Indexing via the CLI
You can also trigger indexing with an Artisan command:

php artisan scout:import "App\Review"

This will chunk all of the Review models and index them all.

398 | Chapter 14: Storage and Retrieval

Testing
Testing most of these features is as simple as using them in your tests; no need to
mock or stub. The default configuration will already work—for example, take a look
at phpunit.xml to see that your session driver and cache driver have been set to values
appropriate for tests.

However, there are a few convenience methods and a few gotchas that you should
know about before you attempt to test them all.

File Storage
Testing file uploads can be a bit of a pain, but follow these steps and it will be clear.

Uploading fake files

First, let’s look at how to manually create an Illuminate\Http\UploadedFile object
for use in our application testing (Example 14-19).

Example 14-19. Creating a fake UploadedFile for testing

public function test_file_should_be_stored()
{
 Storage::fake('public');

 $file = UploadedFile::fake()->image('avatar.jpg');

 $response = $this->postJson('/avatar', [
 'avatar' => $file,
]);

 // Assert the file was stored
 Storage::disk('public')->assertExists("avatars/{$file->hashName()}");

 // Assert a file does not exist
 Storage::disk('public')->assertMissing('missing.jpg');
}

We’ve created a new instance of UploadedFile that refers to our testing file, and we
can now use it to test our routes.

Returning fake files
If your route is expecting a real file to exist, sometimes the best way to make it
testable is to make that real file actually exist. Let’s say every user must have a profile
picture.

Testing | 399

First, let’s set up the model factory for the user to use Faker to make a copy of the
picture, as in Example 14-20.

Example 14-20. Returning fake files with Faker

$factory->define(User::class, function (Faker\Generator $faker) {
 return [
 'picture' => $faker->file(
 storage_path('tests'), // Source directory
 storage_path('app'), // Target directory
 false // Return just filename, not full path
),
 'name' => $faker->name,
];
});

Faker’s file() method picks a random file from the source directory and copies it to
the target directory, and then returns the filename. So, we’ve just picked a random file
from the storage/tests directory, copied it to the storage/app directory, and set its file‐
name as the picture property on our User. At this point we can use a User in tests on
routes that expect the User to have a picture, as seen in Example 14-21.

Example 14-21. Asserting that an image’s URL is echoed

public function test_user_profile_picture_echoes_correctly()
{
 $user = factory(User::class)->create();

 $response = $this->get(route('users.show', $user->id));

 $response->assertSee($user->picture);
}

Of course, in many contexts you can just generate a random string there without even
copying a file. But if your routes check for the file’s existence or run any operations on
the file, this is your best option.

Session
If you need to assert something has been set in the session, you can use some conve‐
nience methods Laravel makes available in every test. All of these methods are avail‐
able in your tests on the Illuminate\Foundation\Testing\TestResponse object:

assertSessionHas($key, $value = null)

Asserts that the session has a value for a particular key, and, if the second param‐
eter is passed, that that key is a particular value:

400 | Chapter 14: Storage and Retrieval

public function test_some_thing()
{
 // Do stuff that ends up with a $response object...
 $response->assertSessionHas('key', 'value');
}

assertSessionHasAll(array $bindings)

If passed an array of key/value pairs, asserts that all of the keys are equal to all of
the values. If one or more of the array entries is just a value (with PHP’s default
numeric key), it will just be checked for existence in the session:

$check = [
 'has',
 'hasWithThisValue' => 'thisValue',
];

$response->assertSessionHasAll($check);

assertSessionMissing($key)

Asserts that the session does not have a value for a particular key.

assertSessionHasErrors($bindings = [], $format = null)

Asserts that the session has an errors value. This is the key Laravel uses to send
errors back from validation failures.

If the array contains just keys, it will check that errors are set with those keys:

$response = $this->post('test-route', ['failing' => 'data']);
$response->assertSessionHasErrors(['name', 'email']);

You can also pass values for those keys, and optionally a $format, to check that
the messages for those errors came back the way you expected:

$response = $this->post('test-route', ['failing' => 'data']);
$response->assertSessionHasErrors([
 'email' => 'The email field is required.',
], ':message');

Cache
There’s nothing special about testing your features that use the cache—just do it:

Cache::put('key', 'value', 900);

$this->assertEquals('value', Cache::get('key'));

Laravel uses the array cache driver by default in your testing environment, which just
stores your cache values in memory.

Testing | 401

Cookies
What if you need to set a cookie before testing a route in your application tests? You
can manually pass cookies to one of the parameters of the call() method. To learn
more about call(), check out Chapter 12.

Excluding Your Cookie from Encryption During Testing

Your cookies won’t work in your tests unless you exclude them
from Laravel’s cookie encryption middleware. You can do this by
teaching the EncryptCookies middleware to temporarily disable
itself for those cookies:

use Illuminate\Cookie\Middleware\EncryptCookies;
...

$this->app->resolving(
 EncryptCookies::class,
 function ($object) {
 $object->disableFor('cookie-name');
 }
);

// ...run test

That means you can set and check against a cookie with something like
Example 14-22.

Example 14-22. Running unit tests against cookies

public function test_cookie()
{
 $this->app->resolving(EncryptCookies::class, function ($object) {
 $object->disableFor('my-cookie');
 });

 $response = $this->call(
 'get',
 'route-echoing-my-cookie-value',
 [],
 ['my-cookie' => 'baz']
);
 $response->assertSee('baz');
}

If you want to test that a response has a cookie set, you can use assertCookie() to
test for the cookie:

$response = $this->get('cookie-setting-route');
$response->assertCookie('cookie-name');

402 | Chapter 14: Storage and Retrieval

Or you could use assertPlainCookie() to test for the cookie and to assert that it’s
not encrypted.

Different Names for Testing Methods Prior to Laravel 5.4

In projects running versions of Laravel 5.4 assertCookie() should
be replaced by seeCookie(), and assertPlainCookie() should be
replaced by seePlainCookie().

Log
The simplest way to test that a certain log was written is by making assertions against
the Log facade (learn more in “Faking Other Facades” on page 321). Example 14-23
shows how this works.

Example 14-23. Making assertions against the Log facade

// Test file
public function test_new_accounts_generate_log_entries()
{
 Log::shouldReceive('info')
 ->once()
 ->with('New account created!');

 // Create a new account
 $this->post(route('accounts.store'), ['email' => 'matt@mattstauffer.com']);
}

// AccountsController
public function store()
{
 // Create account

 Log::info('New account created!');
}

There’s also a package called Log Fake that expands on what you can do with the
facade testing shown here and allows you to write more customized assertions against
your logs.

Scout
If you need to test code that uses Scout data, you’re probably not going to want your
tests triggering indexing actions or reading from Scout. Simply add an environment
variable to your phpunit.xml to disable Scout’s connection to Algolia:

<env name="SCOUT_DRIVER" value="null"/>

Testing | 403

http://bit.ly/2JDI4vd

TL;DR
Laravel provides simple interfaces to many common storage operations: filesystem
access, sessions, cookies, the cache, and search. Each of these APIs is the same regard‐
less of which provider you use, which Laravel enables by allowing multiple “drivers”
to serve the same public interface. This makes it simple to switch providers depend‐
ing on the environment, or as the needs of the application change.

404 | Chapter 14: Storage and Retrieval

CHAPTER 15

Mail and Notifications

Sending an application’s users notifications via email, Slack, SMS, or another notifica‐
tion system is a common but surprisingly complex requirement. Laravel’s mail and
notification features provide consistent APIs that abstract away the need to pay too
close attention to any particular provider. Just like in Chapter 14, you’ll write your
code once and choose at the configuration level which provider you’ll use to send
your email or notifications.

Mail
Laravel’s mail functionality is a convenience layer on top of Swift Mailer, and out of
the box Laravel comes with drivers for Mailgun, Mandrill, Sparkpost, SES, SMTP,
PHP Mail, and Sendmail.

For all of the cloud services, you’ll set your authentication information in
config/services.php. However, if you take a look you’ll see there are already keys there
—and in config/mail.php—that allow you to customize your application’s mail func‐
tionality in .env using variables like MAIL_DRIVER and MAILGUN_SECRET.

Cloud-based API Driver Dependencies

If you’re using any of the cloud-based API drivers, you’ll need to
bring Guzzle in with Composer. You can run the following com‐
mand to add it:

composer require guzzlehttp/guzzle

If you use the SES driver, you’ll need to run the following com‐
mand:

composer require aws/aws-sdk-php:~3.0

405

http://swiftmailer.org/

“Classic” Mail
There are two different syntaxes in Laravel for sending mail: classic and mailable. The
mailable syntax is the preferred syntax since 5.3, so we’re going to focus on that in this
book. But for those who are working in 5.2 or earlier, here’s a quick look at how the
classic syntax (Example 15-1) works.

Example 15-1. Basic “classic” mail syntax

Mail::send(
 'emails.assignment-created',
 ['trainer' => $trainer, 'trainee' => $trainee],
 function ($m) use ($trainer, $trainee) {
 $m->from($trainer->email, $trainer->name);
 $m->to($trainee->email, $trainee->name)->subject('A New Assignment!');
 }
);

The first parameter of Mail::send() is the name of the view. Keep in mind that
emails.assignment-created means resources/views/emails/
assignment-created.blade.php or resources/views/emails/assignment-created.php.

The second parameter is an array of data that you want to pass to the view.

The third parameter is a closure, in which you define how and where to send the
email: from, to, CC, BCC, subject, and any other metadata. Make sure to use any
variables you want access to within the closure. And note that the closure is passed
one parameter, which we’ve named $m; this is the message object.

Take a look at the old docs to learn more about the classic mail syntax.

Basic “Mailable” Mail Usage
Laravel 5.3 introduced a new mail syntax called the “mailable.” It works the same as
the classic mail syntax, but instead of defining your mail messages in a closure, you
instead create a specific PHP class to represent each mail.

To make a mailable, use the make:mail Artisan command:

php artisan make:mail AssignmentCreated

Example 15-2 shows what that class looks like.

Example 15-2. An autogenerated mailable PHP class

<?php

namespace App\Mail;

406 | Chapter 15: Mail and Notifications

http://bit.ly/2utCAZA

use Illuminate\Bus\Queueable;
use Illuminate\Mail\Mailable;
use Illuminate\Queue\SerializesModels;
use Illuminate\Contracts\Queue\ShouldQueue;

class AssignmentCreated extends Mailable
{
 use Queueable, SerializesModels;

 /**
 * Create a new message instance
 *
 * @return void
 */
 public function __construct()
 {
 //
 }

 /**
 * Build the message
 *
 * @return $this
 */
 public function build()
 {
 return $this->view('view.name');
 }
}

This class probably looks familiar—it’s shaped almost the same as a Job. It even
imports the Queuable trait for queuing your mail and the SerializesModels trait so
any Eloquent models you pass to the constructor will be serialized correctly.

So, how does this work? The build() method on a mailable is where you’re going to
define which view to use, what the subject is, and anything else you want to tweak
about the mail except who it’s going to. The constructor is the place where you’ll pass
in any data, and any public properties on your mailable class will be available to
the template.

Take a look at Example 15-3 to see how we might update the autogenerated mailable
for our assignment example.

Mail | 407

Example 15-3. A sample mailable

<?php

namespace App\Mail;

use Illuminate\Bus\Queueable;
use Illuminate\Mail\Mailable;
use Illuminate\Queue\SerializesModels;
use Illuminate\Contracts\Queue\ShouldQueue;

class AssignmentCreated extends Mailable
{
 use Queueable, SerializesModels;

 public $trainer;
 public $trainee;

 public function __construct($trainer, $trainee)
 {
 $this->trainer = $trainer;
 $this->trainee = $trainee;
 }

 public function build()
 {
 return $this->subject('New assignment from ' . $this->trainer->name)
 ->view('emails.assignment-created');
 }
}

Example 15-4 shows how to send a mailable.

Example 15-4. A few ways to send mailables

// Simple send
Mail::to($user)->send(new AssignmentCreated($trainer, $trainee));

// With CC/BCC/etc.
Mail::to($user1))
 ->cc($user2)
 ->bcc($user3)
 ->send(new AssignmentCreated($trainer, $trainee));

// With collections
Mail::to('me@app.com')
 ->bcc(User::all())
 ->send(new AssignmentCreated($trainer, $trainee))

408 | Chapter 15: Mail and Notifications

Mail Templates
Mail templates are just like any other template. They can extend other templates, use
sections, parse variables, contain conditional or looping directives, and do anything
else you can do in a normal Blade view.

Take a look at Example 15-5 to see a possible emails.assignment-created template
for Example 15-3.

Example 15-5. Sample assignment created email template

<!-- resources/views/emails/assignment-created.blade.php -->
<p>Hey {{ $trainee->name }}!</p>

<p>You have received a new training assignment from {{ $trainer->name }}.
Check out your training
dashboard now!</p>

In Example 15-3, both $trainer and $trainee are public properties on your maila‐
ble, which makes them available to the template.

If you want to explicitly define which variables are passed to the template, you can
chain the with() method onto your build() call as in Example 15-6.

Example 15-6. Customizing the template variables

public function build()
{
 return $this->subject('You have a new assignment!')
 ->view('emails.assignment')
 ->with(['assignment' => $this->event->name]);
}

HTML Versus Plain-text Emails

So far we’ve used the view() method in our build() call stacks.
This expects the template we’re referencing to pass back HTML. If
you’d like to pass a plain-text version, the text() method defines
your plain-text view:

public function build()
{
 return $this->view('emails.reminder')
 ->text('emails.reminder_plain');
}

Mail | 409

Methods Available in build()
Here are a few of the methods available to you to customize your message in the
build() method of your mailable:

from($address, $name = null)

Sets the “from” name and address—represents the author

subject($subject)

Sets the email subject

attach($file, array $options = [])

Attaches a file; valid options are mime for MIME type and as for display name

attachData($data, $name, array $options = [])

Attaches a file from a raw string; same options as attach()

attachFromStorage($path, $name = null, array $options = [])

Attaches a file stored on any of your filesystem disks

priority($level = n)

Set the email’s priority, where 1 is the highest and 5 is the lowest

Finally, if you want to perform any manual modifications on the underlying Swift
message, you can do that using withSwiftMessage(), as shown in Example 15-7.

Example 15-7. Modifying the underlying SwiftMessage object

public function build()
{
 return $this->subject('Howdy!')
 ->withSwiftMessage(function ($swift) {
 $swift->setReplyTo('noreply@email.com');
 })
 ->view('emails.howdy');
}

Attachments and Inline Images
Example 15-8 shows three options for how to attach files or raw data to your email.

Example 15-8. Attaching files or data to mailables

// Attach a file using the local filename
public function build()
{
 return $this->subject('Your whitepaper download')
 ->attach(storage_path('pdfs/whitepaper.pdf'), [

410 | Chapter 15: Mail and Notifications

 'mime' => 'application/pdf', // Optional
 'as' => 'whitepaper-barasa.pdf', // Optional
])
 ->view('emails.whitepaper');
}

// Attach a file passing the raw data
public function build()
{
 return $this->subject('Your whitepaper download')
 ->attachData(
 file_get_contents(storage_path('pdfs/whitepaper.pdf')),
 'whitepaper-barasa.pdf',
 [
 'mime' => 'application/pdf', // Optional
]
)
 ->view('emails.whitepaper');
}

// Attach a file stored on one of your filesystem disks, like S3
public function build()
{
 return $this->subject('Your whitepaper download')
 ->view('emails.whitepaper')
 ->attachFromStorage('/pdfs/whitepaper.pdf');
}

And you can see how to embed images directly into your email in Example 15-9.

Example 15-9. Inlining images

<!-- emails/image.blade.php -->
Here is an image:

embed(storage_path('embed.jpg')) }}">

Or, the same image embedding the data:

embedData(
 file_get_contents(storage_path('embed.jpg')), 'embed.jpg'
) }}">

Markdown Mailables
Markdown mailables allow you to write your email content in Markdown, after
which it will be converted into full HTML (and plain-text) emails with Laravel’s built-
in, responsive HTML templates. You can also tweak these templates to make a cus‐
tomized email template that it’s simple for your developers and nondevelopers to
create content for.

Mail | 411

First, run the make:mail Artisan command with the markdown flag:

php artisan make:mail AssignmentCreated --markdown=emails.assignment-created

You can see an example of what the mail file it’ll generate looks like in Example 15-10.

Example 15-10. Generated Markdown mailable

class AssignmentCreated extends Mailable
{
 // ...

 public function build()
 {
 return $this->markdown('emails.assignment-created');
 }
}

As you can see, this is almost exactly the same as a normal mailable file in Laravel.
The main difference is that you’re calling the markdown() method instead of the
view() method. Also note that the template you’re referencing should represent a
Markdown template, not a normal Blade template.

The difference is that, whereas a normal email template may be expected—with the
use of includes and inheritance like any Blade file—to generate a full HTML email,
Markdown templates simply pass Markdown content to a few predefined compo‐
nents. Framework and package-level components in Laravel are often nested with a
package::component naming style, and as such the main body of your Markdown
email should be passed into a component named mail::message. Take a look at
Example 15-11 to see an example of a simple Markdown mail template.

Example 15-11. Simple assignment Markdown email

{{-- resources/views/emails/assignment-created.blade.php --}}
@component('mail::message')
Hey {{ $trainee->name }}!

You have received a new training assignment from **{{ $trainer->name }}**

@component('mail::button', ['url' => route('training-dashboard')])
View Your Assigment
@endcomponent

Thanks,

{{ config('app.name') }}
@endcomponent

412 | Chapter 15: Mail and Notifications

As you can see in Example 15-11, there’s a parent mail::message component to
which you pass the body of your email, but you’re also provided with other smaller
components you can sprinkle into your emails. We used the mail::button compo‐
nent here, which takes a body (“View Your Assignment”) but also requires parame‐
ters to be passed, as an array to the second parameter of the @component directive.

Markdown components
There are three types of components available:

Button
Generates a centered button link. The button component requires a url attribute
and allows an optional color attribute, to which you can pass primary, success,
or error.

Panel
Renders the provided text with a slightly lighter background than the rest of the
message.

Table
Converts the content passed into it via the Markdown table syntax.

Customizing the Components

These Markdown components are built into the core of the Laravel
framework, but if you need to customize how they work, you can
publish their files and edit them:

php artisan vendor:publish --tag=laravel-mail

You can learn more about customizing these files and their themes in the Laravel
docs.

Rendering Mailables to the Browser
When you’re developing emails in your applications, it’s helpful to be able to preview
how they’ll render. You can rely on a tool like Mailtrap for this, and that is a useful
tool, but it can also be helpful to render the mails directly in your browser and see
your changes made immediately.

Take a look at Example 15-12 to see a sample route you can add to your application to
render a given mailable.

Example 15-12. Rendering a mailable to a route

Route::get('preview-assignment-created-mailable', function () {
 $trainer = Trainer::first();

Mail | 413

http://bit.ly/2UUBUrF
http://bit.ly/2UUBUrF

 $trainee = Trainee::first();

 return new \App\Mail\AssignmentCreated($trainer, $trainee);
});

Queues
Sending email is a time-consuming task that can cause applications to slow down, so
it’s common to move it to a background queue. It’s so common, in fact, that Laravel
has a set of built-in tools to make it easier to queue your messages without writing
queue jobs for each email:

queue()
To queue a mail object instead of sending it immediately, simply pass your maila‐
ble object to Mail::queue() instead of Mail::send():

 Mail::queue(new AssignmentCreated($trainer, $trainee));

later()
Mail::later() works the same as Mail::queue(), but it allows you to add a
delay—either in minutes, or at a specific time by passing an instance of DateTime
or Carbon—specifying when the email will be pulled from the queue and sent:

 $when = now()->addMinutes(30);
 Mail::later($when, new AssignmentCreated($trainer, $trainee));

Configuring Queues

Your queues must be configured correctly for these methods to
work. Take a look at Chapter 16 to learn more about how queues
work and how to get them running in your application.

For both queue() and later(), if you’d like to specify which queue or queue connec‐
tion your mail is added to, use the onConnection() and onQueue() methods on your
mailable object:

$message = (new AssignmentCreated($trainer, $trainee))
 ->onConnection('sqs')
 ->onQueue('emails');

Mail::to($user)->queue($message);

If you’d like to direct that a given mailable should always be queued, you can make
the mailable implement the Illuminate\Contracts\Queue\ShouldQueue interface.

414 | Chapter 15: Mail and Notifications

Local Development
This is all well and good for sending mail in your production environments. But how
do you test it all out? There are three primary tools you’ll want to consider: Laravel’s
log driver, a Software as a Service (SaaS) app named Mailtrap, and the so-called “uni‐
versal to” configuration option.

The log driver

Laravel provides a log driver that logs every email you try to send to your local lara‐
vel.log file (which is, by default, in storage/logs).

If you want to use this, edit .env and set MAIL_DRIVER to log. Now open up or
tail storage/logs/laravel.log and send an email from your app. You’ll see something
like this:

Message-ID: <04ee2e97289c68f0c9191f4b04fc0de1@localhost>
Date: Tue, 17 May 2016 02:52:46 +0000
Subject: Welcome to our app!
From: Matt Stauffer <matt@mattstauffer.com>
To: freja@jensen.no
MIME-Version: 1.0
Content-Type: text/html; charset=utf-8
Content-Transfer-Encoding: quoted-printable

Welcome to our app!

In Laravel 5.7+, you can optionally specify that logged mail gets sent to a different log
channel than the rest of your logs. Either modify config/mail.php or set the
MAIL_LOG_CHANNEL variable in your .env file to the name of any existing log channel.

Mailtrap.io
Mailtrap is a service for capturing and inspecting emails in development environ‐
ments. You send your mail to the Mailtrap servers via SMTP, but instead of sending
those emails off to the intended recipients, Mailtrap captures them all and provides
you with a web-based email client for inspecting them, regardless of which email
address is in the to field.

To set up Mailtrap, sign up for a free account and visit the base dashboard for your
demo. Copy your username and password from the SMTP column.

Then edit your app’s .env file and set the following values in the mail section:

MAIL_DRIVER=smtp
MAIL_HOST=mailtrap.io
MAIL_PORT=2525
MAIL_USERNAME=your_username_from_mailtrap_here
MAIL_PASSWORD=your_password_from_mailtrap_here
MAIL_ENCRYPTION=null

Mail | 415

https://mailtrap.io

Now, any email you send from your app will show up in your Mailtrap inbox.

Universal to

If you’d like to inspect the emails in your preferred client, you can override the to
field on each message with the “universal to” configuration setting. To set this up,
add a to key to your config/mail.php file that looks something like this:

'to' => [
 'address' => 'matt@mattstauffer.com',
 'name' => 'Matt Testing My Application'
],

Note that you’ll need to actually set up a real email driver with something like Mail‐
gun or Sendmail in order to use this.

Notifications
Most of the mail that’s sent from web apps really has the purpose of notifying users
that a particular action has happened or needs to happen. As users’ communication
preferences grow more and more diverse, we gather ever more—and more disparate
—packages to communicate via Slack, SMS, and other means.

Laravel 5.3 introduced a new concept in Laravel called, fittingly, notifications. Just like
a mailable, a notification is a PHP class that represents a single communication that
you might want to send to your users. For now, let’s imagine we’re notifying users of
our physical training app that they have a new workout available.

Each class represents all of the information necessary to send notifications to your
users using one or many notification channels. A single notification could send an
email, send an SMS via Nexmo, send a WebSockets ping, add a record to a database,
send a message to a Slack channel, and much more.

So, let’s create our notification:

php artisan make:notification WorkoutAvailable

Example 15-13 shows what that gives us.

Example 15-13. An autogenerated notification class

<?php

namespace App\Notifications;

use Illuminate\Bus\Queueable;
use Illuminate\Notifications\Notification;
use Illuminate\Contracts\Queue\ShouldQueue;
use Illuminate\Notifications\Messages\MailMessage;

416 | Chapter 15: Mail and Notifications

class WorkoutAvailable extends Notification
{
 use Queueable;

 /**
 * Create a new notification instance
 *
 * @return void
 */
 public function __construct()
 {
 //
 }

 /**
 * Get the notification's delivery channels
 *
 * @param mixed $notifiable
 * @return array
 */
 public function via($notifiable)
 {
 return ['mail'];
 }

 /**
 * Get the mail representation of the notification
 *
 * @param mixed $notifiable
 * @return \Illuminate\Notifications\Messages\MailMessage
 */
 public function toMail($notifiable)
 {
 return (new MailMessage)
 ->line('The introduction to the notification.')
 ->action('Notification Action', url('/'))
 ->line('Thank you for using our application!');
 }

 /**
 * Get the array representation of the notification
 *
 * @param mixed $notifiable
 * @return array
 */
 public function toArray($notifiable)
 {
 return [
 //
];

Notifications | 417

 }
}

We can learn a few things here. First, we’re going to pass relevant data into
the constructor. Second, there’s a via() method that allows us to define, for a given
user, which notification channels to use ($notifiable represents whatever entities
you want to notify in your system; for most apps, it’ll be a user, but that’s not always
the case). And third, there are individual methods for each notification channel that
allow us to specifically define how to send one of these notifications through that
channel.

When Would a $notifiable Not Be a User?

While the most common notification targets will be users, it’s pos‐
sible you may want to notify something else. This may simply be
because your application has multiple user types—so, you might
want to be able to notify both trainers and trainees. But you also
might find yourself wanting to notify a group, a company, or
a server.

So, let’s modify this class for our WorkoutAvailable example. Take a look at
Example 15-14.

Example 15-14. Our WorkoutAvailable notification class

...
class WorkoutAvailable extends Notification
{
 use Queueable;

 public $workout;

 public function __construct($workout)
 {
 $this->workout = $workout;
 }

 public function via($notifiable)
 {
 // This method doesn't exist on the User... we're going to make it up
 return $notifiable->preferredNotificationChannels();
 }

 public function toMail($notifiable)
 {
 return (new MailMessage)
 ->line('You have a new workout available!')
 ->action('Check it out now', route('workout.show', [$this->workout]))

418 | Chapter 15: Mail and Notifications

 ->line('Thank you for training with us!');
 }

 public function toArray($notifiable)
 {
 return [];
 }
}

Defining the via() Method for Your Notifiables
As you can see in Example 15-14, we’re somehow responsible for deciding, for each
notification and each notifiable, which notification channels we’re going to use.

You could just send everything as mail or just send everything as an SMS
(Example 15-15).

Example 15-15. Simplest possible via() method

public function via($notifiable)
{
 return 'nexmo';
}

You could also let each user choose their one preferred method and save that on the
User itself (Example 15-16).

Example 15-16. Customizing the via() method per user

public function via($notifiable)
{
 return $notifiable->preferred_notification_channel;
}

Or, as we imagined in Example 15-14, you could create a method on each notifiable
that allows for some complex notification logic. For example, you could notify the
user over certain channels during work hours and other channels in the evening.
What is important is that via() is a PHP class method, so you can do whatever com‐
plex logic you want there.

Sending Notifications
There are two ways to send a notification: by using the Notification facade, or by
adding the Notifiable trait to an Eloquent class (likely your User class).

Notifications | 419

Sending notifications using the Notifiable trait

Any model that imports the Laravel\Notifications\Notifiable trait (which the
App\User class does by default) has a notify() method that can be passed a notifica‐
tion, which will look like Example 15-17.

Example 15-17. Sending a notification using the Notifiable trait

use App\Notifications\WorkoutAvailable;
...
$user->notify(new WorkoutAvailable($workout));

Sending notifications with the Notification facade

The Notification facade is the clumsier of the two methods, since you have to pass
both the notifiable and the notification. However, it’s helpful because you can choose
to pass more than one notifiable in at the same time, like you can see in
Example 15-18.

Example 15-18. Sending notifications using the Notification facade

use App\Notifications\WorkoutAvailable;
...
Notification::send($users, new WorkoutAvailable($workout));

Queueing Notifications
Most of the notification drivers need to send HTTP requests to send their notifica‐
tions, which could slow down your user experience, so you probably want to queue
your notifications. All notifications import the Queuable trait by default, so all you
need to do is add implements ShouldQueue to your notification and Laravel will
instantly move it to a queue.

As with any other queued features, you’ll need to make sure you have your queue set‐
tings configured correctly and a queue worker running.

If you’d like to delay the delivery of a notification, you can run the delay() method
on the notification:

$delayUntil = now()->addMinutes(15);

$user->notify((new WorkoutAvailable($workout))->delay($delayUntil));

420 | Chapter 15: Mail and Notifications

Out-of-the-Box Notification Types
Out of the box, Laravel comes with notification drivers for email, database, broadcast,
Nexmo SMS, and Slack. I’ll cover each briefly, but I’d recommend referring to the
docs for more thorough introductions to each.

It’s also easy to create your own notification drivers, and dozens of people already
have; you can find them at the Laravel Notification Channels website.

Email notifications
Let’s take a look at how the email from our earlier example, Example 15-14, is built:

public function toMail($notifiable)
{
 return (new MailMessage)
 ->line('You have a new workout available!')
 ->action('Check it out now', route('workouts.show', [$this->workout]))
 ->line('Thank you for training with us!');
}

The result is shown in Figure 15-1. The email notification system puts your applica‐
tion’s name in the header of the email; you can customize that app name in the name
key of config/app.php.

This email is automatically sent to the email property on the notifiable, but you can
customize this behavior by adding a method to your notifiable class named
routeNotificationForMail() that returns the email address you’d like email notifi‐
cations sent to.

The email’s subject is set by parsing the notification class name and converting it to
words. So, our WorkoutAvailable notification would have the default subject of
“Workout Available”. You can also customize this by chaining the subject() method
on the MailMessage in the toMail() method.

Notifications | 421

http://bit.ly/2JC2TqQ
http://bit.ly/2YmpHOF

Figure 15-1. An email sent with the default notification template

If you want to modify the templates, publish them and edit to your heart’s content:

php artisan vendor:publish --tag=laravel-notifications

Markdown mail notifications. If you like working with Markdown emails (see “Mark‐
down Mailables” on page 411), you can also use the same markdown() method in your
notifications, as shown in Example 15-19:

Example 15-19. Using the markdown() method with notifications

public function toMail($notifiable)
{
 return (new MailMessage)
 ->subject('Workout Available')
 ->markdown('emails.workout-available', ['workout' => $this->workout]);
}

You can also change the style of the default template to be an “error” message, which
uses a bit of different language and changes the primary button color to red. Just add
a call to the error() method to your MailMessage call chain in the toMail() method.

422 | Chapter 15: Mail and Notifications

Database notifications

You can send notifications to a database table using the database notification chan‐
nel. First, create your table with php artisan notifications:table. Next, create a
toDatabase() method on your notification and return an array of data there. This
data will be encoded as JSON and stored in the database table’s data column.

The Notifiable trait adds a notifications relationship to any model it’s imported
in, allowing you to easily access records in the notifications table. So if you’re using
database notifications, you could so something like Example 15-20:

Example 15-20. Iterating over a user’s database notifications

User::first()->notifications->each(function ($notification) {
 // Do something
});

The database notification channel also has the concept of whether or not a notifica‐
tion is “read.” You can scope to only the “unread” notifications as shown in
Example 15-21:

Example 15-21. Iterating over a user’s unread database notifications

User::first()->unreadNotifications->each(function ($notification) {
 // Do something
});

And you can mark one or all notifications as read, as Example 15-22 demonstrates:

Example 15-22. Marking database notifications as read

// Individual
User::first()->unreadNotifications->each(function ($notification) {
 if ($condition) {
 $notification->markAsRead();
 }
});

// All
User::first()->unreadNotifications->markAsRead();

Broadcast notifications

The broadcast channel sends notifications out using Laravel’s event broadcasting
features, which are powered by WebSockets (we’ll learn more about these in “Broad‐
casting Events over WebSockets, and Laravel Echo” on page 442).

Notifications | 423

Create a toBroadcast() method on your notification and return array of data, and if
your app is correctly configured for event broadcasting, that data will be broadcast on
a private channel named notifiable.id. The id will be the ID of the notifiable, and
notifiable will be the notifiable’s fully qualified class name, with the slashes replaced
by periods—for example, the private channel for the App\User with the ID of 1 will be
App.User.1.

SMS notifications
SMS notifications are sent via Nexmo, so if you want to send SMS notifications, sign
up for a Nexmo account and follow the instructions in the docs. Like with the other
channels, you’ll be setting up a toNexmo() method and customizing the SMS message
there.

SMS Notification Package Extracted in 5.8+

In Laravel 5.8+, the SMS notification channel is a first-party
package. If you want to use Nexmo SMS notifications, simply

require this package with Composer:
composer require laravel/nexmo-notification-channel

Slack notifications

The slack notification channel allows you to customize the appearance of your noti‐
fications and even attach files to your notifications. Like with the other channels,
you’ll set up a toSlack() method and customize the message there.

Slack notification package extracted in 5.8+

In Laravel 5.8+, the Slack notification channel is a first-party
package. If you want to use Slack notifications, simply require

this package with Composer.
composer require laravel/slack-notification-channel

Other notifications
Looking to send your notifications through other channels than those that come out
of the box? There’s a robust community effort to provide an incredible variety of noti‐
fication channels; check out what’s on offer at the Laravel Notifications Channels
website.

Testing
Let’s take a look at how to test mail and notifications.

424 | Chapter 15: Mail and Notifications

https://www.nexmo.com
http://bit.ly/2JC2TqQ
http://bit.ly/2YmpHOF
http://bit.ly/2YmpHOF

Mail
There are two options for testing mail in Laravel. If you’re using the traditional mail
syntax (which is, by the way, not the preferred method in Laravel 5.3 and later), I’d
recommend using a tool called MailThief, which Adam Wathan wrote for Tighten.
Once you bring MailThief into your application with Composer, you can use
MailThief::hijack() in your tests to make MailThief capture any calls to the Mail
facade or any mailer classes.

MailThief then makes it possible to make assertions against the senders, recipients,
CC and BCC values, and even content and attachments of your mail. Take a look at
the GitHub repo to learn more, or bring it into your app:

composer require tightenco/mailthief --dev

If you’re using mailables, there’s a simple syntax for writing assertions against your
sent mail (Example 15-23).

Example 15-23. Asserting against mailables

public function test_signup_triggers_welcome_email()
{
 Mail::fake();

 Mail::assertSent(WelcomeEmail::class, function ($mail) {
 return $mail->subject == 'Welcome!';
 });

 // You can also use assertSentTo() to explicitly test the recipients, and
 // you can use assertNotSent() to test that a specific mail wasn't sent.
}

Notifications
Laravel provides a built-in set of assertions for testing your notifications.
Example 15-24 demonstrates.

Example 15-24. Asserting notifications were sent

public function test_new_signups_triggers_admin_notification()
{
 Notification::fake();

 Notification::assertSentTo($user, NewUsersSignedup::class,
 function ($notification, $channels) {
 return $notification->user->email == 'user-who-signed-up@gmail.com'
 && $channels == ['mail'];
 });

Testing | 425

http://bit.ly/2CCJ4K6

 // Assert that the email was sent to a given user
 Notification::assertSentTo(
 [$user],
 NewUsersSignedup::class
);

 // You can also use assertNotSentTo()
 Notification::assertNotSentTo(
 [$userDidntSignUp], NewUsersSignedup::class
);
}

TL;DR
Laravel’s mail and notification features provide simple, consistent interfaces to a vari‐
ety of messaging systems. Laravel’s mail system uses “mailables,” PHP classes that rep‐
resent emails, to provide a consistent syntax to different mail drivers. The notification
system makes it easy to build a single notification that can be delivered in many dif‐
ferent media—from emails to SMS messages to physical postcards.

426 | Chapter 15: Mail and Notifications

CHAPTER 16

Queues, Jobs, Events, Broadcasting,
and the Scheduler

So far we’ve covered some of the most common structures that power web applica‐
tions: databases, mail, filesystems, and more. All of these are common across a major‐
ity of applications and frameworks.

Laravel also provides facilities for some less common architecture patterns and appli‐
cation structures. In this chapter we’ll cover Laravel’s tools for implementing queues,
queued jobs, events, and WebSocket event publishing. We’ll also cover Laravel’s
scheduler, which makes manually edited cron schedules a thing of the past.

Queues
To understand what a queue is, just think about the idea of “queueing up” in a line at
the bank. Even if there are multiple lines—queues—only one person is being served
at a time from each queue, and each person will eventually reach the front and be
served. In some banks, it’s a strict first-in-first-out sort of policy, but in other banks,
there’s not an exact guarantee that someone won’t cut ahead of you in line at some
point. Essentially, someone can get added to the queue, be removed from the queue
prematurely, or be successfully “processed” and then removed. Someone might even
hit the front of the queue, not be able to be served correctly, return to the queue for a
time, and then be processed again.

Queues in programming are very similar. Your application adds a “job” to a queue,
which is a chunk of code that tells the application how to perform a particular behav‐
ior. Then some other separate application structure, usually a “queue worker,” takes
the responsibility for pulling jobs off of the queue one at a time and performing the

427

appropriate behavior. Queue workers can delete the jobs, return them to the queue
with a delay, or mark them as successfully processed.

Laravel makes it easy to serve your queues using Redis, beanstalkd, Amazon’s Simple
Queue Service (SQS), or a database table. You can also choose the sync driver to have
the jobs run right in your application without actually being queued, or the null
driver for jobs to just be discarded; these two are usually used in local development or
testing environments.

Why Queues?
Queues make it easy to remove a costly or slow process from any synchronous call.
The most common example is sending mail—doing so can be slow, and you don’t
want your users to have to wait for mail to send in response to their actions. Instead,
you can trigger a “send mail” queued job and let the users get on with their day. And
sometimes you may not be worried about saving your users time, but you might have
a process like a cron job or a webhook that has a lot of work to get through; rather
than letting it all run at once (and potentially time out), you may choose to queue its
individual pieces and let the queue worker process them one at a time.

Additionally, if you have some heavy processing that’s more than your server can
handle, you can spin up more than one queue worker to work through your queue
faster than your normal application server could on its own.

Basic Queue Configuration
Like many other Laravel features that abstract multiple providers, queues have their
own dedicated config file (config/queue.php) that allows you to set up multiple drivers
and define which will be the default. This is also where you’ll store your SQS, Redis,
or beanstalkd authentication information.

Simple Redis Queues on Laravel Forge

Laravel Forge is a hosting management service provided by Taylor
Otwell, the creator of Laravel, that makes serving queues with
Redis a breeze. Every server you create has Redis configured auto‐
matically, so if you visit any site’s Forge console, you can just go to
the Queue tab and hit Start Worker and you’re ready to use Redis
as your queue driver; you can leave all the default settings, and no
other work is necessary.

Queued Jobs
Remember our bank analogy? Each person in the bank’s queue (line) is, in program‐
ming terms, a job. Queued jobs can, depending on the environment, take many

428 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

http://forge.laravel.com/

shapes, like arrays of data or simple strings. In Laravel, they will each be a collection
of information containing the job name, the data payload, the number of attempts
that have been made so far to process this job, and some other simple metadata.

But you don’t need to worry about any of that in your interactions with Laravel. Lara‐
vel provides a structure called a Job, which is intended to encapsulate a single task—a
behavior that your application can be commanded to do—and allow it to be added to
and pulled from a queue. There are also simple helpers to make it easy to queue Arti‐
san commands and mail.

Let’s start with an example where, every time a user changes their plan with your SaaS
app, you want to rerun some calculations about your overall profit.

Creating a job
As always, there’s an Artisan command for that:

php artisan make:job CrunchReports

Take a look at Example 16-1 to see what you’ll get.

Example 16-1. The default template for jobs in Laravel

<?php

namespace App\Jobs;

use Illuminate\Bus\Queueable;
use Illuminate\Queue\SerializesModels;
use Illuminate\Queue\InteractsWithQueue;
use Illuminate\Contracts\Queue\ShouldQueue;
use Illuminate\Foundation\Bus\Dispatchable;

class CrunchReports implements ShouldQueue
{
 use Dispatchable, InteractsWithQueue, Queueable, SerializesModels;

 /**
 * Create a new job instance
 *
 * @return void
 */
 public function __construct()
 {
 //
 }

 /**
 * Execute the job
 *
 * @return void

Queues | 429

 */
 public function handle()
 {
 //
 }
}

As you can see, this template imports the Dispatchable, Queueable, InteractsWith
Queue, and SerializesModels traits, and implements the ShouldQueue interface.
Prior to Laravel 5.3, some of this functionality came in through the parent App\Jobs
class.

We also get two methods from this template: the constructor, which you’ll want to use
to attach data to the job, and the handle() method, which is where the job’s logic
should reside (and is also the method signature you’ll use to inject dependencies).

The traits and interface provide the class with the ability to be added to, and interact
with, the queue. Dispatchable gives it methods to dispatch itself; Queueable allows
you to specify how Laravel should push this job to the queue; InteractsWithQueue
allows each job, while being handled, to control its relationship with the queue,
including deleting or requeueing itself; and SerializesModels gives the job the abil‐
ity to serialize and deserialize Eloquent models.

Serializing Models

The SerializesModels trait gives jobs the ability to serialize (con‐
vert to a flatter format that can be stored in a data store like a data‐
base or queue system) injected models so that your job’s handle()
method will have access to them. However, because it’s too difficult
to reliably serialize an entire Eloquent object, the trait ensures that
just the primary keys of any attached Eloquent objects are serial‐
ized when the job is pushed onto the queue. When the job is dese‐
rialized and handled, the trait pulls those Eloquent models fresh
from the database by their primary key. This means that when your
job runs, it will be pulling a fresh instance of this model, not what‐
ever state it was in when you queued the job.

Let’s fill out the methods for our sample class, as in Example 16-2.

Example 16-2. An example job

...
use App\ReportGenerator;

class CrunchReports implements ShouldQueue
{
 use Dispatchable, InteractsWithQueue, Queueable, SerializesModels;

430 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

 protected $user;

 public function __construct($user)
 {
 $this->user = $user;
 }

 public function handle(ReportGenerator $generator)
 {
 $generator->generateReportsForUser($this->user);

 Log::info('Generated reports.');
 }
}

We’re expecting the User instance to be injected when we create the job, and then
when it’s handled we’re typehinting a ReportGenerator class (which we presumably
wrote) and a Logger (which Laravel provides). Laravel will read both typehints and
inject those dependencies automatically.

Pushing a job onto a queue
There are multiple methods by which you can dispatch a job, including some meth‐
ods available to every controller and a global dispatch() helper. But since Laravel
5.5, we’ve had a simpler and preferred method: calling the dispatch() method on the
job itself. So, if you’re running Laravel 5.5+, just ignore the other options, as we’ll do
for the rest of this chapter.

In order to dispatch your job, you can just create an instance of it and then call its
dispatch() method, passing any necessary data directly into that method. Take a
look at Example 16-3 for an example.

Example 16-3. Dispatching jobs

$user = auth()->user();
$daysToCrunch = 7;
\App\Jobs\CrunchReports::dispatch($user, $daysToCrunch);

There are three settings you can control in order to customize exactly how you dis‐
patch a job: the connection, the queue, and the delay.

Customizing the connection. If you ever have multiple queue connections in place at
once, you can customize the connection by chaining onConnection() after the
dispatch() method:

DoThingJob::dispatch()->onConnection('redis');

Queues | 431

Customizing the queue. Within queue servers, you can specify which named queue
you’re pushing a job onto. For example, you may differentiate your queues based on
their importance, naming one low and one high.

You can customize which queue you’re pushing a job onto with the onQueue()
method:

DoThingJob::dispatch()->onQueue('high');

Customizing the delay. You can customize the amount of time your queue workers
should wait before processing a job with the delay() method, which accepts either an
integer representing the number of seconds to delay a job or a DateTime/Carbon
instance:

// Delays five minutes before releasing the job to queue workers
$delay = now()->addMinutes(5);
DoThingJob::dispatch()->delay($delay);

Note that Amazon SQS doesn’t allow delays longer than 15 minutes.

Running a Queue Worker
So what is a queue worker, and how does it work? In Laravel, it’s an Artisan com‐
mand that stays running forever (until it’s stopped manually) and takes the responsi‐
bility for pulling down jobs from your queue and running them:

php artisan queue:work

This command starts a daemon “listening” to your queue; every time there are jobs
on the queue, it will pull down the first job, handle it, delete it, and move on to the
next. If at any point there are no jobs, it “sleeps” for a configurable amount of time
before checking again to see if there are any more jobs.

You can define how many seconds a job should be able to run before the queue lis‐
tener stops it (--timeout), how many seconds the listener should “sleep” when there
are no jobs left (--sleep), how many tries each job should be allowed before being
deleted (--tries), which connection the worker should listen to (the first parameter
after queue:work), and which queues it should listen to (--queue=):

php artisan queue:work redis --timeout=60 --sleep=15 --tries=3
 --queue=high,medium

You can also process just a single job with php artisan queue:work.

432 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

Handling Errors
So, what happens when something goes wrong with your job when it’s in the middle
of processing?

Exceptions in handling
If an exception is thrown, the queue listener will release that job back onto the queue.
The job will be rereleased to be processed again and again until it is able to finish suc‐
cessfully or until it has been attempted the maximum number of times allowed by
your queue listener.

Limiting the number of tries

The maximum number of tries is defined by the --tries switch passed to the
queue:listen or queue:work Artisan command.

The Danger of Infinite Retries

If you don’t set --tries, or if you set it to 0, the queue listener will
allow infinite retries. That means if there are any circumstances in
which a job can just never be completed—for example, if it relies on
a tweet that has since been deleted—your app will slowly crawl to a
halt as it retries forever.
The documentation and Laravel Forge both show 3 as the recom‐
mended starting point for the maximum number of retries. So, in
case of confusion, start there and adjust:

php artisan queue:work --tries=3

If at any point you’d like to check how many times a job has been attempted already,
use the attempts() method on the job itself, as in Example 16-4.

Example 16-4. Checking how many times a job has already been tried

public function handle()
{
 ...
 if ($this->attempts() > 3) {
 //
 }
}

Queues | 433

http://bit.ly/2TWQHpq

Handling failed jobs
Once a job has exceeded its allowable number of retries, it’s considered a “failed” job.
Before you do anything else—even if all you want to do is limit the number of times a
job can be tried—you’ll need to create the “failed jobs” database table.

There’s an Artisan command to create the migration (and you’ll then want to
migrate):

php artisan queue:failed-table
php artisan migrate

Any job that has surpassed its maximum number of allowed attempts will be dumped
there. But there are quite a few things you can do with your failed jobs.

First, you can define a failed() method on the job itself, which will run when that
job fails (see Example 16-5).

Example 16-5. Defining a method to run when a job fails

...
class CrunchReports implements ShouldQueue
{
 ...

 public function failed()
 {
 // Do whatever you want, like notify an admin
 }
}

Next, you can register a global handler for failed jobs. Somewhere in the application’s
bootstrap—if you don’t know where to put it, just put it in the boot() method of
AppServiceProvider—place the code in Example 16-6 to define a listener.

Example 16-6. Registering a global handler to handle failed jobs

// Some service provider
use Illuminate\Support\Facades\Queue;
use Illuminate\Queue\Events\JobFailed;
...
 public function boot()
 {
 Queue::failing(function (JobFailed $event) {
 // $event->connectionName
 // $event->job
 // $event->exception
 });
 }

434 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

There is also a suite of Artisan tools for interacting with the failed jobs table.

queue:failed shows you a list of your failed jobs:

php artisan queue:failed

The list will look something like this:

+----+------------+---------+----------------------+---------------------+
| ID | Connection | Queue | Class | Failed At |
+----+------------+---------+----------------------+---------------------+
| 9 | database | default | App\Jobs\AlwaysFails | 2018-08-26 03:42:55 |
+----+------------+---------+----------------------+---------------------+

From there, you can grab the ID of any individual failed job and retry it with
queue:retry:

php artisan queue:retry 9

If you’d rather retry all of the jobs, pass all instead of an ID:

php artisan queue:retry all

You can delete an individual failed job with queue:forget:

php artisan queue:forget 5

And you can delete all of your failed jobs with queue:flush:

php artisan queue:flush

Controlling the Queue
Sometimes, from within the handling of a job, you’ll want to add conditions that will
potentially either release the job to be restarted later or delete the job forever.

To release a job back into the queue, use the release() method, as in Example 16-7.

Example 16-7. Releasing a job back onto the queue

public function handle()
{
 ...
 if (condition) {
 $this->release($numberOfSecondsToDelayBeforeRetrying);
 }
}

If you want to delete a job during its handling, you can just return at any point, as
seen in Example 16-8; that’s the signal to the queue that the job was handled appro‐
priately and should not be returned to the queue.

Queues | 435

Example 16-8. Deleting a job

public function handle()
{
 ...
 if ($jobShouldBeDeleted) {
 return;
 }
}

Queues Supporting Other Functions
The primary use for queues is to push jobs onto them, but you can also queue mail
using the Mail::queue functionality. You can learn more about this in “Queues” on
page 414. You can also queue Artisan commands, which we covered in Chapter 8.

Laravel Horizon
Laravel Horizon, like some of the other tools we’ve covered (Scout, Passport, etc.), is a
tool provided by Laravel that doesn’t come bundled with the core.

Horizon provides insight into the status of your Redis queued jobs. You can see which
jobs have failed, how many are queued, and how fast they’re working, and you can
even get notifications when any of your queues are overloaded or failing. The Hori‐
zon dashboard is shown in Figure 16-1.

Figure 16-1. A preview of the Horizon dashboard

436 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

Installing and running Horizon is pretty straightforward and the documentation is
thorough, so if you’re interested, take a look at the Horizon docs to learn how to
install, configure, and deploy it.

Please note that you will need to have Laravel 5.5+ and PHP 7.1+ in order to run
Horizon.

Events
With jobs, the calling code informs the application that it should do something:
CrunchReports, or NotifyAdminOfNewSignup.

With an event, the calling code instead informs the application that something hap‐
pened: UserSubscribed, or UserSignedUp, or ContactWasAdded. Events are notifica‐
tions that something has taken place.

Some of these events may be “fired” by the framework itself. For example, Eloquent
models fire events when they are saved, or created, or deleted. But some events can
also be manually triggered by the application’s code.

An event being fired doesn’t do anything on its own. However, you can bind event
listeners, whose sole purpose is to listen for the broadcasting of specific events and to
act in response. Any event can have anywhere from zero to many event listeners.

Laravel’s events are structured like the observer, or “pub/sub,” pattern. Many events
are fired out into the application; some may never be listened for, and others may
have a dozen listeners. The events don’t know or care.

Firing an Event
There are three ways to fire an event. You can use the Event facade, inject the
Dispatcher, or use the event() global helper, as illustrated in Example 16-9.

Example 16-9. Three ways to fire an event

Event::fire(new UserSubscribed($user, $plan));
// or
$dispatcher = app(Illuminate\Contracts\Events\Dispatcher::class);
$dispatcher->fire(new UserSubscribed($user, $plan));
// or
event(new UserSubscribed($user, $plan));

If in doubt, I’d recommend using the global helper function.

To create an event to fire, use the make:event Artisan command:

php artisan make:event UserSubscribed

Events | 437

https://laravel.com/docs/horizon

That’ll make a file that looks something like Example 16-10.

Example 16-10. The default template for a Laravel event

<?php

namespace App\Events;

use Illuminate\Broadcasting\Channel;
use Illuminate\Queue\SerializesModels;
use Illuminate\Broadcasting\PrivateChannel;
use Illuminate\Broadcasting\PresenceChannel;
use Illuminate\Foundation\Events\Dispatchable;
use Illuminate\Broadcasting\InteractsWithSockets;
use Illuminate\Contracts\Broadcasting\ShouldBroadcast;

class UserSubscribed
{
 use Dispatchable, InteractsWithSockets, SerializesModels;

 /**
 * Create a new event instance
 *
 * @return void
 */
 public function __construct()
 {
 //
 }

 /**
 * Get the channels the event should be broadcast on
 *
 * @return \Illuminate\Broadcasting\Channel|array
 */
 public function broadcastOn()
 {
 return new PrivateChannel('channel-name');
 }
}

Let’s take a look at what we get here. SerializesModels works just like with jobs; it
allows you to accept Eloquent models as parameters. InteractsWithSockets, Should
Broadcast, and the broadcastOn() method provide the backing functionality for
broadcasting events using WebSockets, which we’ll cover in a bit.

It might seem strange that there’s no handle() or fire() method here. But remem‐
ber, this object exists not to determine a particular action, but just to encapsulate
some data. The first piece of data is its name; UserSubscribed tells us that a particu‐

438 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

lar event happened (a user subscribed). The rest of the data is any data we pass into
the constructor and associate with this entity.

Example 16-11 shows what we might want to do with our UserSubscribed event.

Example 16-11. Injecting data into an event

...
class UserSubscribed
{
 use InteractsWithSockets, SerializesModels;

 public $user;
 public $plan;

 public function __construct($user, $plan)
 {
 $this->user = $user;
 $this->plan = $plan;
 }
}

Now we have an object that appropriately represents the event that happened:
$event->user subscribed to the $event->plan plan. Remember, firing this event is as
simple as event(new UserSubscribed($user, $plan)).

Listening for an Event
We have an event, and the ability to fire it. Now let’s look at how to listen for it.

First, we’ll create an event listener. Let’s say we want to email the app’s owner every
time a new user subscribes:

php artisan make:listener EmailOwnerAboutSubscription --event=UserSubscribed

That gives us the file in Example 16-12.

Example 16-12. The default template for a Laravel event listener

<?php

namespace App\Listeners;

use App\Events\UserSubscribed;
use Illuminate\Queue\InteractsWithQueue;
use Illuminate\Contracts\Queue\ShouldQueue;

class EmailOwnerAboutSubscription
{
 /**

Events | 439

 * Create the event listener
 *
 * @return void
 */
 public function __construct()
 {
 //
 }

 /**
 * Handle the event
 *
 * @param UserSubscribed $event
 * @return void
 */
 public function handle(UserSubscribed $event)
 {
 //
 }
}

This is where the action happens—where the handle() method lives. This method
expects to be passed an event of type UserSubscribed and act in response to it.

So, let’s make it send an email (Example 16-13).

Example 16-13. A sample event listener

...
use App\Mail\UserSubscribed as UserSubscribedMessage;

class EmailOwnerAboutSubscription
{
 public function handle(UserSubscribed $event)
 {
 Log::info('Emailed owner about new user: ' . $event->user->email);

 Mail::to(config('app.owner-email'))
 ->send(new UserSubscribedMessage($event->user, $event->plan);
 }
}

Now, one last task: we need to set this listener to listen to the UserSubscribed event.
We’ll do that in the $listen property of the EventServiceProvider class (see
Example 16-14).

Example 16-14. Binding listeners to events in EventServiceProvider

class EventServiceProvider extends ServiceProvider
{

440 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

 protected $listen = [
 \App\Events\UserSubscribed::class => [
 \App\Listeners\EmailOwnerAboutSubscription::class,
],
];

As you can see, the key of each array entry is the class name of the event, and
the value is an array of listener class names. We can add as many class names as we
want under the UserSubscribed key and they will all listen and respond to each User
Subscribed event.

Event subscribers
There’s one more structure you can use to define the relationship between your
events and their listeners. Laravel has a concept called an event subscriber, which is a
class that contains a collection of methods that act as separate listeners to unique
events, and also contains the mapping of which method should handle which event.
In this case it’s easier to show than to tell, so take a look at Example 16-15. Note that
event subscribers are not a particularly commonly used tool.

Example 16-15. A sample event subscriber

<?php

namespace App\Listeners;

class UserEventSubscriber
{
 public function onUserSubscription($event)
 {
 // Handles the UserSubscribed event
 }

 public function onUserCancellation($event)
 {
 // Handles the UserCanceled event
 }

 public function subscribe($events)
 {
 $events->listen(
 \App\Events\UserSubscribed::class,
 'App\Listeners\UserEventSubscriber@onUserSubscription'
);

 $events->listen(
 \App\Events\UserCanceled::class,
 'App\Listeners\UserEventSubscriber@onUserCancellation'
);

Events | 441

 }
}

Subscribers need to define a subscribe() method, which is passed an instance of the
event dispatcher. We’ll use that to pair events with their listeners, but in this case,
those are methods on this class, instead of entire classes.

As a refresher, any time you see an @ inline like this means the class name is to the left
of the @ and the method name is to the right. So, in Example 16-15, we’re defining
that the onUserSubscription() method of this subscriber will listen to any UserSub
scribed events.

There’s one last thing we need to do: in App\Providers\EventServiceProvider, we
need to add our subscriber’s class name to the $subscribe property, as seen in
Example 16-16.

Example 16-16. Registering an event subscriber

...
class EventServiceProvider extends ServiceProvider
{
 ...
 protected $subscribe = [
 \App\Listeners\UserEventSubscriber::class
];
}

Broadcasting Events over WebSockets, and Laravel Echo
WebSocket (often called WebSockets) is a protocol, popularized by Pusher (a hosted
WebSocket SaaS), that makes it simple to provide near-real-time communication
between web devices. Rather than relying on information passing via HTTP requests,
WebSockets libraries open a direct connection between the client and the server.
WebSockets are behind tools like the chat boxes in Gmail and Facebook, where you
don’t have to wait for the page to reload or for Ajax requests to receive or send data;
instead, data is both sent and received in real time.

WebSockets work best with small pieces of data passed in a pub/sub structure—just
like Laravel’s events. Laravel has a built-in set of tools that make it easy to define
that one or more of your events should be broadcast to a WebSocket server; it’s
straightforward, for example, to have a MessageWasReceived event that is published
to the notifications box of a certain user or set of users the instant a message arrives at
your application.

442 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

Laravel Echo
Laravel also has a more powerful tool designed for more complex event broadcasting.
If you need presence notification, or want to keep your rich frontend data model in
sync with your Laravel app, check out Laravel Echo, which we’ll cover in “Advanced
Broadcasting Tools” on page 448. Much of what comprises Echo is built into the Lara‐
vel core, but some of it requires pulling in the external JavaScript Echo library, which
we cover in “Laravel Echo (the JavaScript Side)” on page 452.

Configuration and Setup
Take a look at config/broadcasting.php to find the configuration settings for your
event broadcasting. Laravel supports three drivers for broadcasting: Pusher, a paid
SaaS offering; Redis, for locally running WebSocket servers; and log, for local devel‐
opment and debugging.

Queue Listeners

In order for event broadcasting to move quickly, Laravel pushes the
instruction to broadcast them onto a queue. That means you’ll
need to have a queue worker running (or use the sync queue driver
for local development). See “Running a Queue Worker” on page
432 to learn how to run a queue worker.
Laravel suggests a default delay of three seconds before the queue
worker looks for new jobs. However, with event broadcasting, you
may notice some events take a second or two to broadcast. To
speed this up, update your queue settings to only wait one second
before looking for new jobs.

Broadcasting an Event
To broadcast an event, you need to mark that event as a broadcast event by having it
implement the Illuminate\Contracts\Broadcasting\ShouldBroadcast interface.
This interface requires you to add the broadcastOn() method, which will return an
array of either strings or Channel objects, each representing a WebSocket channel.

Broadcasting Events over WebSockets, and Laravel Echo | 443

The Structure of WebSocket Events
Every event you send with WebSockets can have three primary characteristics: the
name, the channel, and the data.

The name of an event might be something like user-was-subscribed, but Laravel’s
default is to use the fully qualified class name of the event; that is something like App
\Events\UserSubscribed. You can customize this by passing the name to the
optional broadcastAs() method in your event class.

The channel is the way of describing which clients should receive this message. It’s a
very common pattern to have a channel for each user (e.g., users.1, users.2, etc.),
and possibly a channel for all users (e.g., users), and maybe one for just users who
are members of a certain account (accounts.1).

If the channel you’re targeting is a private channel, preface the channel name with
private-, and if it’s a presence channel, preface the channel name with presence-.
So, a private Pusher channel named groups.5 should be, instead, private-groups.5.
If you use Laravel’s PrivateChannel and PresenceChannel objects in your
broadcastOn() method, they’ll take care of adding those prefaces to your channel
names for you.

If you’re not familiar with public, private, and presence channels, see the note in “The
broadcast service provider” on page 449.

The data is a payload, usually JSON, of information relevant to the event—the mes‐
sage, maybe, or information about the user or plan that can be acted upon by the con‐
suming JavaScript.

Example 16-17 shows our UserSubscribed event, modified to broadcast on two
channels: one for the user (to confirm the user’s subscription) and one for admins (to
notify them of a new subscription).

Example 16-17. An event broadcasting on multiple channels

...
use Illuminate\Contracts\Broadcasting\ShouldBroadcast;

class UserSubscribed implements ShouldBroadcast
{
 use Dispatchable, InteractsWithSockets, SerializesModels;

 public $user;
 public $plan;

 public function __construct($user, $plan)
 {

444 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

 $this->user = $user;
 $this->plan = $plan;
 }

 public function broadcastOn()
 {
 // String syntax
 return [
 'users.' . $this->user->id,
 'admins'
];

 // Channel object syntax
 return [
 new Channel('users.' . $this->user->id),
 new Channel('admins'),
 // If it were a private channel: new PrivateChannel('admins'),
 // If it were a presence channel: new PresenceChannel('admins'),
];
 }
}

By default, any public properties of your event will be serialized as JSON and sent
along as the data of your broadcast event. That means the data of one of our broad‐
cast UserSubscribed events might look like Example 16-18.

Example 16-18. Sample broadcast event data

{
 'user': {
 'id': 5,
 'name': 'Fred McFeely',
 ...
 },
 'plan': 'silver'
}

You can override this by returning an array of data from the broadcastWith()
method on your event, as in Example 16-19.

Example 16-19. Customizing the broadcast event data

public function broadcastWith()
{
 return [
 'userId' => $this->user->id,
 'plan' => $this->plan
];
}

Broadcasting Events over WebSockets, and Laravel Echo | 445

You can customize which queue your event is pushed onto by setting the $broadcast
Queue property on the event class:

public $broadcastQueue = 'websockets-for-faster-processing';

You may choose to do this so you can keep other queue items from slowing down
your event broadcast; real-time WebSockets aren’t much fun if a long-running job
that’s higher in the queue keeps the events from going out in time.

You can also force a given event to skip the queue entirely (using the “sync” queue
driver, which is processed by the current PHP thread), by having it implement the
ShouldBroadcastNow contract (Example 16-20).

Example 16-20. Forcing an event to skip the broadcast queue

use Illuminate\Contracts\Broadcasting\ShouldBroadcastNow;

class UserSubscribed implements ShouldBroadcastNow
{
 //
}

And, finally, you can choose to customize whether a given event should be broadcast
at all by giving it a broadcastWhen() method as in Example 16-21:

Example 16-21. Conditionally determining whether an event should be broadcast

public function broadcastWhen()
{
 // Notify me only when users sign up from the White House
 return str_contains($this->user->email, 'whitehouse.gov');
}

Receiving the Message
If you choose to host your own Redis WebSockets server, the Laravel docs have a
great walkthrough on how to set that up using socket.io and ioredis.

As of this book’s publication, the most common solution Laravel developers use is
Pusher. Plans over a certain size cost money, but there’s a generous free plan. Pusher
makes it incredibly easy to set up a simple WebSocket server, and its JavaScript SDK
handles all of the authentication and channel management with almost no work on
your part. SDKs are available for iOS, Android, and many more platforms, languages,
and frameworks.

There’s also a new tool announced just before the publication of this book called Lar‐
avel WebSockets that lets you host your own Laravel-based, Pusher-compatible Web‐

446 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

http://bit.ly/2VApJBb
https://pusher.com/
http://bit.ly/2HS4rur
http://bit.ly/2HS4rur

Sockets server. You can install the package into your current Laravel app (the same
app you’re broadcasting from) or into a separate microservice.

If you choose to work with a Laravel WebSockets server, you’ll follow all of the direc‐
tions in this book as if you were working with Pusher, but your configuration settings
will be a bit different.

Simple WebSockets listening with Pusher
It’s helpful to understand how to listen to Laravel’s broadcast events without Echo
even if you choose to use Echo in the end, but because much of the code here is not
necessary if you use Echo, I’d recommend reading this section, and then reading
“Laravel Echo (the JavaScript Side)” on page 452 before you start implementing any
of it; you can decide which way you prefer and then write your code from there.

To get started, pull in Pusher’s library, get an API key from your Pusher account, and
subscribe to any events on any channels with code like that in Example 16-22.

Example 16-22. Basic usage of Pusher

...
<script src="https://js.pusher.com/4.3/pusher.min.js"></script>
<script>
// Enable Pusher logging - don't include this in production
Pusher.logToConsole = true;

// Globally, perhaps; just a sample of how to get data in
var App = {
 'userId': {{ auth()->id() }},
 'pusherKey': '{{ config('broadcasting.connections.pusher.key') }}'
};

// Locally
var pusher = new Pusher(App.pusherKey, {
 cluster: '{{ config('broadcasting.connections.pusher.options.cluster') }}',
 encrypted: {{ config('broadcasting.connections.pusher.options.encrypted') }}
});

var pusherChannel = pusher.subscribe('users.' + App.userId);

pusherChannel.bind('App\\Events\\UserSubscribed', (data) => {
 console.log(data.user, data.plan);
});
</script>

Broadcasting Events over WebSockets, and Laravel Echo | 447

Escaping Backslashes in JavaScript

Since \ is a control character in JavaScript, you need to write \\ to
represent a backslash in your strings, which is why there are two
backslashes between each namespace segment in Example 16-22.

To publish to Pusher from Laravel, get your Pusher key, secret, cluster, and app ID
from your Pusher account dashboard, and then set them in your .env file under the
keys PUSHER_KEY, PUSHER_SECRET, PUSHER_APP_CLUSTER, and PUSHER_APP_ID.

If you serve your app, visit a page with the JavaScript from Example 16-22 embedded
in it in one window, push a broadcast event in another window or from your termi‐
nal, have a queue listener running or are using the sync driver, and all of your
authentication information is set up correctly, you should see event logs popping up
in your JavaScript window’s console in near real time.

With this power, it’s now easy for you to keep your users up to date with what’s hap‐
pening with their data any time they’re in your app. You can notify users of the
actions of other users, of long-running processes that have just finished, or of your
application’s responses to external actions like incoming emails or webhooks. The
possibilities are endless.

Requirements

If you want to broadcast with Pusher or Redis, you’ll need to bring
in these dependencies:

• Pusher: pusher/pusher-php-server "~3.0"
• Redis: predis/predis

Advanced Broadcasting Tools
Laravel has a few more tools to make it possible to perform more complex interac‐
tions in event broadcasting. These tools, a combination of framework features and a
JavaScript library, are called Laravel Echo.

These framework features work best when you use Laravel Echo in your JavaScript
frontend (which we’ll cover in “Laravel Echo (the JavaScript Side)” on page 452), but
you can still enjoy some of the benefits of Echo without using the JavaScript compo‐
nents. Echo will work with both Pusher and Redis, but I’m going to use Pusher for
any examples.

448 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

Excluding the current user from broadcast events
Every connection to Pusher is assigned a unique “socket ID” identifying that socket
connection. And it’s easy to define that any given socket (user) should be excluded
from receiving a specified broadcast event.

This feature makes it possible to define that certain events should not be broadcast to
the user who fired them. Let’s say every user in a team gets notified when other users
create a task; would you want to be notified of a task you just created? No, and that’s
why we have the toOthers() method.

To implement this, there are two steps to follow. First, you need to set up your Java‐
Script to send a certain POST to /broadcasting/socket when your WebSocket con‐
nection is initialized. This attaches your socket_id to your Laravel session. Echo
does this for you, but you can also do it manually—take a look at the Echo source to
see how it works.

Next, you’ll want to update every request that your JavaScript makes to have an X-
Socket-ID header that contains that socket_id. Example 16-23 shows how to do that
with Axios or in jQuery. Note that your event must use the Illuminate\Broadcast
ing\InteractsWithSockets trait in order to call the toOthers() method.

Example 16-23. Sending the socket ID along with each Ajax request with Axios or in
jQuery

// Run this right after you initialize Echo
// With Axios
window.axios.defaults.headers.common['X-Socket-Id'] = Echo.socketId();

// With jQuery
$.ajaxSetup({
 headers: {
 'X-Socket-Id': Echo.socketId()
 }
});

Once you’ve handled this, you can exclude any event from being broadcast to the user
who triggered it by using the broadcast() global helper instead of the event() global
helper and then chaining toOthers() after it:

broadcast(new UserSubscribed($user, $plan))->toOthers();

The broadcast service provider
All of the other features that Echo provides require your JavaScript to authenticate
with the server. Take a look at App\Providers\BroadcastServiceProvider, where
you’ll define how to authorize users’ access to your private and presence channels.

Broadcasting Events over WebSockets, and Laravel Echo | 449

http://bit.ly/2CAM89w

The two primary actions you can take are to define the middleware that will be used
on your broadcasting auth routes, and to define the authorization settings for
your channels.

If you’re going to use these features, you’ll need to uncomment the App\Providers
\BroadcastServiceProvider::class line in config/app.php.

And if you’ll be using these features without Laravel Echo, you’ll either need to man‐
ually handle sending CSRF tokens along with your authentication requests, or
exclude /broadcasting/auth and /broadcasting/socket from CSRF protection by
adding them to the $except property of the VerifyCsrfToken middleware.

Binding authorization definitions for WebSocket channels. Private and presence Web‐
Socket channels need to be able to ping your application to learn whether the current
user is authorized for that channel. You’ll use the Broadcast::channel() method to
define the rules for this authorization in your routes/channels.php file.

Public, Private, and Presence Channels

There are three types of channels in WebSockets: public, private,
and presence.
Public channels can be subscribed to by any user, authenticated
or not.
Private channels require the end user’s JavaScript to authenticate
against the application to prove that the user is both authenticated
and authorized to join this channel.
Presence channels are a type of private channel, but instead of
allowing for message passing, they simply keep track of which users
join and leave the channel, and make this information available to
the application’s frontend.

Broadcast::channel() takes two parameters: first, a string representing the chan‐
nel(s) you want it to match, and second, a closure that defines how to authorize users
for any channel matching that string. The closure will be passed an Eloquent model
of the current user as its first parameter, and any matched variableNameHere seg‐
ments as additional parameters. For example, a channel authorization definition with
a string of teams.teamId, when matched against the channel teams.5, will pass its
closure $user as the first parameter and 5 as the second parameter.

If you’re defining the rules for a private channel, your Broadcast::channel() closure
will need to return a Boolean: is this user authorized for this channel or not? If you’re
defining the rules for a presence channel, your closure should return an array of data
you want available to the presence channel for any users that you want to show up in
the channel. Example 16-24 illustrates defining rules for both kinds of channel.

450 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

Example 16-24. Defining authorization rules for private and presence WebSocket
channels

...
// routes/channels.php

// Define how to authenticate a private channel
Broadcast::channel('teams.{teamId}', function ($user, $teamId) {
 return (int) $user->team_id === (int) $teamId;
});

// Define how to authenticate a presence channel; return any data
// you want the app to have about the user in the channel
Broadcast::channel('rooms.{roomId}', function ($user, $roomId) {
 if ($user->rooms->contains($roomId)) {
 return [
 'name' => $user->name
];
 }
});

You might be wondering how this information gets from your Laravel application to
your JavaScript frontend. Pusher’s JavaScript library sends a POST to your application;
by default it will hit /pusher/auth, but you can customize that (and Echo customizes
it for you) to hit Laravel’s authentication route, /broadcasting/auth:

var pusher = new Pusher(App.pusherKey, {
 authEndpoint: '/broadcasting/auth'
});

Example 16-25 shows how we can tweak Example 16-22 for private and presence
channels, without Echo’s frontend components.

Example 16-25. Basic use of Pusher for private and presence channels

...
<script src="https://js.pusher.com/4.3/pusher.min.js"></script>
<script>
 // Enable Pusher logging - don't include this in production
 Pusher.logToConsole = true;

 // Globally, perhaps; just a sample of how to get data in
 var App = {
 'userId': {{ auth()->id() }},
 'pusherKey': '{{ config('broadcasting.connections.pusher.key') }}'
 };

 // Locally
 var pusher = new Pusher(App.pusherKey, {
 cluster: '{{ config('broadcasting.connections.pusher.options.cluster') }}',
 encrypted: {{ config('broadcasting.connections.pusher.options.encrypted') }},

Broadcasting Events over WebSockets, and Laravel Echo | 451

 authEndpoint: '/broadcasting/auth'
 });

 // Private channel
 var privateChannel = pusher.subscribe('private-teams.1');

 privateChannel.bind('App\\Events\\UserSubscribed', (data) => {
 console.log(data.user, data.plan);
 });

 // Presence channel
 var presenceChannel = pusher.subscribe('presence-rooms.5');

 console.log(presenceChannel.members);
</script>

We now have the ability to send WebSocket messages to users depending on whether
they pass a given channel’s authorization rules. We can also keep track of which users
are active in a particular group or section of the site, and display relevant information
to each user about other users in the same group.

Laravel Echo (the JavaScript Side)
Laravel Echo is comprised of two pieces: the advanced framework features we just
covered, and a JavaScript package that takes advantage of those features and drasti‐
cally reduces the amount of boilerplate code you need to write powerful WebSocket-
based frontends. The Echo JavaScript package makes it easy to handle authentication,
authorization, and subscribing to private and presence channels. Echo can be used
with the SDKs for either Pusher (for Pusher or a custom Pusher-compatible server)
or socket.io (for Redis).

Bringing Echo into your project

To use Echo in your project’s JavaScript, add it to package.json using npm install
--save (be sure to bring in the appropriate Pusher or socket.io SDK as well):

npm install pusher-js laravel-echo --save

Let’s assume you have a basic Laravel Mix file compiling your app.js file with Web‐
pack, like in Example 16-26.

Example 16-26. Compiling app.js with Laravel Mix

let mix = require('laravel-mix');

mix.js('resources/assets/js/app.js', 'public/js');

452 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

Laravel’s default resources/js/app.js structure has a great example of how best to initial‐
ize your Echo install. Take a look at Example 16-27 to see how that works between
that file and resources/js/bootstrap.js.

Example 16-27. Initializing Echo in app.js and bootstrap.js

// app.js
require('./bootstrap');

// ... lots of Vue stuff ...

// Add your Echo bindings here

// bootstrap.js
import Echo from "laravel-echo";

window.Echo = new Echo({
 broadcaster: 'pusher',
 key: process.env.MIX_PUSHER_APP_KEY,
 cluster: process.env.MIX_PUSHER_APP_CLUSTER
});

For CSRF protection, you’ll also need to add a csrf-token <meta> tag to your
HTML template:

<meta name="csrf-token" content="{{ csrf_token() }}">

And, of course, remember to link to your compiled app.js in your HTML template:

<script src="{{ asset('js/app.js') }}"></script>

Now we’re ready to get started.

Changes to the Configuration When Using the Laravel WebSockets
Server Package

If you’re working with a Laravel WebSockets server (using the
package discussed earlier in “Receiving the Message” on page 446),
the configuration details in Example 16-27 will be a little bit differ‐
ent. See the Laravel WebSockets package docs for more info.

Using Echo for basic event broadcasting
This is nothing different from what we’ve already used Pusher for, but Example 16-28
is a simple code sample to show how to use Echo to listen to public channels for basic
event information.

Broadcasting Events over WebSockets, and Laravel Echo | 453

http://bit.ly/2Txh2Wv

Example 16-28. Listening to a public channel with Echo

var currentTeamId = 5; // Likely set elsewhere

Echo.channel(`teams.${currentTeamId}`)
 .listen('UserSubscribed', (data) => {
 console.log(data);
 });

Echo provides a few methods for subscribing to various types of channels; channel()
will subscribe you to a public channel. Note that when you listen to an event with
Echo, you can ignore the full event namespace and just listen for the unique class
name of this event.

We now have access to the public data that’s passed along with our event, represented
in the data object. We can also chain listen() handlers, as in Example 16-29.

Example 16-29. Chaining event listeners in Echo

Echo.channel(`teams.${currentTeamId}`)
 .listen('UserSubscribed', (data) => {
 console.log(data);
 })
 .listen('UserCanceled', (data) => {
 console.log(data);
 });

Remember to Compile and Include!

Did you try these code samples and not see anything change in
your browser? Make sure to run npm run dev (if you’re running it
once) or npm run watch (to run a listener) to compile your code.
And, if you haven’t yet, be sure to actually include app.js in your
template somewhere.

Private channels and basic authentication

Echo also has a method for subscribing to private channels: private(). It works the
same as channel(), but it requires you to have set up channel authorization defini‐
tions in routes/channel.php, like we covered earlier. Additionally, unlike with the
SDKs, you don’t need to put private- in front of your channel name.

Example 16-30 shows what it looks like to listen to a private channel named private-
teams.5.

454 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

Example 16-30. Listening to a private channel with Echo

var currentTeamId = 5; // Likely set elsewhere

Echo.private(`teams.${currentTeamId}`)
 .listen('UserSubscribed', (data) => {
 console.log(data);
 });

Presence channels
Echo makes it much simpler to join and listen to events in presence channels. This
time you’ll want to use the join() method to bind to the channel, as in
Example 16-31.

Example 16-31. Joining a presence channel

var currentTeamId = 5; // Likely set elsewhere

Echo.join(`teams.${currentTeamId}`)
 .here((members) => {
 console.log(members);
 });

join() subscribes to the presence channel, and here() allows you to define the
behavior when the user joins and also when any other users join or leave the presence
channel.

You can think of a presence channel like a “who’s online” sidebar in a chat room.
When you first join a presence channel, your here() callback will be called and pro‐
vided a list of all the members at that time. And any time any members join or leave,
that callback will be called again with the updated list. There’s no messaging happen‐
ing here, but you can play sounds, update the on-page list of members, or do what‐
ever else you want in response to these actions.

There are also specific methods for individual events, which you can use individually
or chained (see Example 16-32).

Example 16-32. Listening for specific presence events

var currentTeamId = 5; // Likely set elsewhere

Echo.join('teams.' + currentTeamId)
 .here((members) => {
 // Runs when you join
 console.table(members);
 })
 .joining((joiningMember, members) => {

Broadcasting Events over WebSockets, and Laravel Echo | 455

 // Runs when another member joins
 console.table(joiningMember);
 })
 .leaving((leavingMember, members) => {
 // Runs when another member leaves
 console.table(leavingMember);
 });

Excluding the current user
We covered this previously in the chapter, but if you want to exclude the current user,
you can use the broadcast() global helper instead of the event() global helper and
then chain the toOthers() method after your broadcast call. But with Echo, the Java‐
Script side of this is already handled for you. It’ll just work.

As you can see, the Echo JavaScript library doesn’t do anything you couldn’t do on
your own—but it makes a lot of common tasks much simpler, and provides a cleaner,
more expressive syntax for common WebSocket tasks.

Subscribing to notifications with Echo
Laravel’s notifications come with a broadcast driver out of the box that pushes notifi‐
cations out as broadcast events. You can subscribe to these notifications with Echo
using Echo.notification(), as in Example 16-33.

Example 16-33. Subscribing to a notification with Echo

Echo.private(`App.User.${userId}`)
 .notification((notification) => {
 console.log(notification.type);
 });

Client events
If you’d like to send quick, performant messages between your users without the mes‐
sages even hitting your Laravel application—for example, to send “typing…” notifica‐
tions—you can use Echo’s whisper() method, as shown in Example 16-34.

Example 16-34. Bypassing the Laravel server using Echo’s whisper() method

Echo.private('room')
 .whisper('typing', {
 name: this.user.name
 });

And then use listenForWhisper() to listen, as in Example 16-35.:

456 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

Example 16-35. Listening for whisper events with Echo

Echo.private('room')
 .listenForWhisper('typing', (e) => {
 console.log(e.name);
 });

Scheduler
If you’ve ever written a cron job before, you likely already wish for a better tool. Not
only is the syntax onerous and frustratingly difficult to remember, but it’s one signifi‐
cant aspect of your application that can’t be stored in version control.

Laravel’s scheduler makes handling scheduled tasks simple. You’ll write your sched‐
uled tasks in code, and then point one cron job at your app: once per minute, run php
artisan schedule:run. Every time this Artisan command is run, Laravel checks
your schedule definitions to find out if any scheduled tasks should run.

Here’s the cron job to define that command:

* * * * * cd /home/myapp.com && php artisan schedule:run >> /dev/null 2>&1

There are many task types you can schedule and many time frames you can use to
schedule them.

app/Console/Kernel.php has a method named schedule(), which is where you’ll
define any tasks you’d like to schedule.

Available Task Types
First, let’s take a look at the simplest option: a closure, run every minute
(Example 16-36). Every time the cron job hits the schedule:run command, it will call
this closure.

Example 16-36. Scheduling a closure to run once every minute

// app/Console/Kernel.php
public function schedule(Schedule $schedule)
{
 $schedule->call(function () {
 CalculateTotals::dispatch();
 })->everyMinute();
}

There are two other types of tasks you can schedule: Artisan and shell commands.

You can schedule Artisan commands by passing their syntax exactly as you would call
them from the command line:

Scheduler | 457

$schedule->command('scores:tally --reset-cache')->everyMinute();

And you can run any shell commands that you could run with PHP’s exec() method:

$schedule->exec('/home/myapp.com/bin/build.sh')->everyMinute();

Available Time Frames
The beauty of the scheduler isn’t just that you can define your tasks in code; it’s that
you can schedule them in code, too. Laravel keeps track of time passing and evaluates
whether it’s time for any given task to run. That’s easy with everyMinute() because
the answer is always simple: run the task. But Laravel keeps the rest simple for you,
too, even for the most complex of requests.

Let’s take a look at your options by starting with a monstrous definition that’s simple
in Laravel:

$schedule->call(function () {
 // Runs once a week on Sunday at 23:50
})->weekly()->sundays()->at('23:50');

Notice that we can chain times together: we can define frequency and specify the day
of the week and the time, and of course we can do much more.

Table 16-1 shows a list of potential date/time modifiers for use when scheduling a job.

Table 16-1. Date/time modifiers for use with the scheduler

Command Description

->timezone('America/Detroit') Set the time zone for schedules

->cron('* * * * * *') Define the schedule using the traditional cron notation

->everyMinute() Run every minute

->everyFiveMinutes() Run every 5 minutes

->everyTenMinutes() Run every 10 minutes

->everyThirtyMinutes() Run every 30 minutes

->hourly() Run every hour

->daily() Run every day at midnight

->dailyAt('14:00') Run every day at 14:00

->twiceDaily(1, 14) Run every day at 1:00 and 14:00

->weekly() Run every week (midnight on Sunday)

->weeklyOn(5, '10:00') Run every week on Friday at 10:00

->monthly() Run every month (midnight on the 1st)

->monthlyOn(15, '23:00') Run every month on the 15th at 23:00

->quarterly() Run every quarter (midnight on the 1st of January, April,
July, and October)

458 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

Command Description

->yearly() Run every year (midnight on the 1st of January)

->when(closure) Limit the task to when the closure returns true

->skip(closure) Limit the task to when the closure returns false

->between('8:00', '12:00') Limit the task to between the given times

->unlessBetween('8:00', '12:00') Limit the task to any time except between the given times

->weekdays() Limit to weekdays

->sundays() Limit to Sundays

->mondays() Limit to Mondays

->tuesdays() Limit to Tuesdays

->wednesdays() Limit to Wednesdays

->thursdays() Limit to Thursdays

->fridays() Limit to Fridays

->saturdays() Limit to Saturdays

Most of these can be chained one after another, but of course, any combinations that
don’t make sense chained can’t be chained.

Example 16-37 shows a few combinations you could consider.

Example 16-37. Some sample scheduled events

// Both run weekly on Sunday at 23:50
$schedule->command('do:thing')->weeklyOn(0, '23:50');
$schedule->command('do:thing')->weekly()->sundays()->at('23:50');

// Run once per hour, weekdays, 8am-5pm
$schedule->command('do:thing')->weekdays()->hourly()->when(function () {
 return date('H') >= 8 && date('H') <= 17;
});

// Run once per hour, weekdays, 8am-5pm using the "between" method
$schedule->command('do:thing')->weekdays()->hourly()->between('8:00', '17:00');

// Run every 30 minutes except when directed not to by the SkipDetector
$schedule->command('do:thing')->everyThirtyMinutes()->skip(function () {
 return app('SkipDetector')->shouldSkip();
});

Defining Time Zones for Scheduled Commands
You can define the time zone on a specific scheduled command, using the time
zone() method:

$schedule->command('do:it')->weeklyOn(0, '23:50')->timezone('America/Chicago');

Scheduler | 459

And in apps running Laravel 5.8+, you can also set a default time zone (separate from
the application timezone) that all of your scheduled times will be defined in, by defin‐
ing the scheduleTimezone() method in App\Console\Kernel:

protected function scheduleTimezone()
{
 return 'America/Chicago';
}

Blocking and Overlap
If you want to avoid your tasks overlapping each other—for example, if you have a
task running every minute that may sometimes take longer than a minute to run—
end the schedule chain with the withoutOverlapping() method. This method skips a
task if the previous instance of that task is still running:

$schedule->command('do:thing')->everyMinute()->withoutOverlapping();

Handling Task Output
Sometimes the output from your scheduled task is important, whether for logging,
notifications, or just ensuring that the task ran.

If you want to write the returned output of a task to a file, use sendOutputTo():

$schedule->command('do:thing')->daily()->sendOutputTo($filePath);

If you want to append it to a file instead, use appendOutputTo():

$schedule->command('do:thing')->daily()->appendOutputTo($filePath);

And if you want to email the output to a designated recipient, write it to a file first
and then add emailOutputTo():

$schedule->command('do:thing')
 ->daily()
 ->sendOutputTo($filePath)
 ->emailOutputTo('me@myapp.com');

Make sure that your email settings are configured correctly in Laravel’s basic email
configuration.

Closure Scheduled Events Can’t Send Output

The sendOutputTo(), appendOutputTo(), and emailOutputTo()
methods only work for command()- scheduled tasks. You can’t use
them for closures, unfortunately.

You may also want to send some output to a webhook to verify that your tasks ran
correctly. There are a few services that provide this sort of uptime monitoring, most

460 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

significantly Laravel Envoyer, a zero-downtime deployment service that also provides
cron uptime monitoring, and Dead Man’s Snitch, a tool designed purely for monitor‐
ing cron job uptime.

These services don’t expect something to be emailed to them, but rather expect an
HTTP “ping,” so Laravel makes that easy with pingBefore() and thenPing():

$schedule->command('do:thing')
 ->daily()
 ->pingBefore($beforeUrl)
 ->thenPing($afterUrl);

If you want to use the ping features, you’ll need to pull in Guzzle using Composer:

composer require guzzlehttp/guzzle

Task Hooks
Speaking of running something before and after your task, there are hooks for that,
with before() and after():

$schedule->command('do_thing')
 ->daily()
 ->before(function () {
 // Prepare
 })
 ->after(function () {
 // Cleanup
 });

Testing
Testing queued jobs (or anything else in the queue) is easy. In phpunit.xml, which is
the configuration file for your tests, the QUEUE_DRIVER environment variable is set to
sync by default. That means your tests will run your jobs or other queued tasks syn‐
chronously, directly in your code, without relying on a queue system of any sort. You
can test them just like any other code.

However, if you’d just like to check that a job was fired, you can do that with the
expectsJobs() method, as in Example 16-38.

Example 16-38. Asserting that a job of the specified class was dispatched

public function test_changing_number_of_subscriptions_crunches_reports()
{
 $this->expectsJobs(\App\Jobs\CrunchReports::class);

 ...
}

Testing | 461

https://envoyer.io
https://deadmanssnitch.com/

Or, in projects running Laravel 5.3 and above, you can assert against the specific job
itself, as in Example 16-39.

Example 16-39. Using a closure to verify that a dispatched job meets given criteria

use Illuminate\Support\Facades\Bus;
...
public function test_changing_subscriptions_triggers_crunch_job()
{
 ...
 Bus::fake();

 Bus::assertDispatched(CrunchReports::class, function ($job) {
 return $job->subscriptions->contains(5);
 });

 // Also can use assertNotDispatched()
}

To test that an event fired, you have three options. First, you can just test that the
behavior you expected happened, without concerning yourself with the event itself.

Second, in Laravel 5.2 and above, you can explicitly assert that the event fired, as in
Example 16-40.

Example 16-40. Asserting that an event of the specified class was fired

public function test_usersubscribed_event_fires()
{
 $this->expectsEvents(\App\Events\UserSubscribed::class);

 ...
}

Finally, you can run a test against the event that was fired, as in Example 16-41. This
is available in Laravel 5.3 and above.

Example 16-41. Using a closure to verify that a fired event meets given criteria

use Illuminate\Support\Facades\Event;
...
public function test_usersubscribed_event_fires()
{
 Event::fake();

 ...

 Event::assertDispatched(UserSubscribed::class, function ($e) {
 return $e->user->email = 'user-who-subscribed@mail.com';

462 | Chapter 16: Queues, Jobs, Events, Broadcasting, and the Scheduler

 });

 // Also can use assertNotDispatched()
}

Another common scenario is that you’re testing code that incidentally fires events,
and you want to disable the event listeners during that test. You can disable the event
system with the withoutEvents() method, as in Example 16-42.

Example 16-42. Disabling event listeners during a test

public function test_something_subscription_related()
{
 $this->withoutEvents();

 ...
}

TL;DR
Queues allow you to separate chunks of your application’s code from the synchronous
flow of user interactions out to a list of commands to be processed by a “queue
worker.” This allows your users to resume interactions with your application while
slower processes are handled asynchronously in the background.

Jobs are classes that are structured with the intention of encapsulating a chunk of
application behavior so that it can be pushed onto a queue.

Laravel’s event system follows the pub/sub or observer pattern, allowing you to send
out notifications of an event from one part of your application, and elsewhere bind
listeners to those notifications to define what behavior should happen in response to
them. Using WebSockets, events can also be broadcast to frontend clients.

Laravel’s scheduler simplifies scheduling tasks. Point an every-minute cron job to
php artisan schedule:run and then schedule your tasks with even the most com‐
plex of time requirements using the scheduler, and Laravel will handle all the timings
for you.

TL;DR | 463

CHAPTER 17

Helpers and Collections

We’ve already covered many global functions throughout the book: these are little
helpers that make it easier to perform common tasks, like dispatch() for jobs,
event() for events, and app() for dependency resolution. We also talked a bit about
Laravel’s collections, or arrays on steroids, in Chapter 5.

In this chapter we’ll cover some of the more common and powerful helpers and some
of the basics of programming with collections.

Helpers
You can find a full list of the helpers Laravel offers in the docs, but we’re going to
cover a few of the most useful functions here.

Laravel 5.8 deprecated all global helpers that start with array_
or str_. The helpers will be removed in Laravel 5.9 but will be

made available in a package for backward compatibility. Each of
these helpers is backed by a method on the Arr or Str facades, so
you can prepare for this future either by using Facade calls or just
planning to pull in the first-party package when it’s made available.

Arrays
PHP’s native array manipulation functions give us a lot of power, but sometimes there
are standard manipulations we want to make that require unwieldy loops and logic
checks. Laravel’s array helpers make a few common array manipulations much sim‐
pler:

465

http://bit.ly/2HQKaFC

array_first($array, $callback, $default = null)

Returns the first array value that passes a test, defined in a callback closure. You
can optionally set the default value as the third parameter. Here’s an example:

 $people = [
 [
 'email' => 'm@me.com',
 'name' => 'Malcolm Me'
],
 [
 'email' => 'j@jo.com',
 'name' => 'James Jo'
],
];

 $value = array_first($people, function ($person, $key) {
 return $person['email'] == 'j@jo.com';
 });

array_get($array, $key, $default = null)

Makes it easy to get values out of an array, with two added benefits: it won’t
throw an error if you ask for a key that doesn’t exist (and you can provide
defaults with the third parameter), and you can use dot notation to traverse nes‐
ted arrays. For example:

 $array = ['owner' => ['address' => ['line1' => '123 Main St.']]];

 $line1 = array_get($array, 'owner.address.line1', 'No address');
 $line2 = array_get($array, 'owner.address.line2');

array_has($array, $keys)

Makes it easy to check whether an array has a particular value set using dot nota‐
tion for traversing nested arrays. The $keys parameter can be a single entry or an
array of entries, which will check whether every entry in the array exists:

 $array = ['owner' => ['address' => ['line1' => '123 Main St.']]];

 if (array_has($array, 'owner.address.line2')) {
 // Do stuff
 }

array_pluck($array, $value, $key = null)

Returns an array of the values corresponding to the provided key:

 $array = [
 ['owner' => ['id' => 4, 'name' => 'Tricia']],
 ['owner' => ['id' => 7, 'name' => 'Kimberly']],
];

 $array = array_pluck($array, 'owner.name');

466 | Chapter 17: Helpers and Collections

 // Returns ['Tricia', 'Kimberly'];

If you want the returned array to be keyed by another value from the source
array, you can pass that value’s dot-notated reference as the third parameter:

 $array = array_pluck($array, 'owner.name', 'owner.id');

 // Returns [4 => 'Tricia', 7 => 'Kimberly'];

array_random($array, $num = null)

Returns a random item from the provided array. If you provide a $num parameter,
it will pull an array of that many results, randomly selected:

 $array = [
 ['owner' => ['id' => 4, 'name' => 'Tricia']],
 ['owner' => ['id' => 7, 'name' => 'Kimberly']],
];

 $randomOwner = array_random($array);

Strings
Just like with arrays, there are some string manipulations and checks that are possible
with native PHP functions, but can be cumbersome. Laravel’s helpers make a few
common string operations faster and simpler:

e($string)

An alias to htmlentities(); prepares a (often user-provided) string for safe echo‐
ing on an HTML page. For example:

 e('<script>do something nefarious</script>');

 // Returns <script>do something nefarious</script>

starts_with($haystack, $needle), ends_with($haystack, $needle), and
str_contains($haystack, $needle)

Return a Boolean indicating whether the provided $haystack string starts with,
ends with, or contains the provided $needle string:

 if (starts_with($url, 'https')) {
 // Do something
 }

 if (ends_with($abstract, '...')) {
 // Do something
 }

 if (str_contains($description, '1337 h4x0r')) {
 // Run away
 }

Helpers | 467

str_limit($value, $limit = 100, $end = '...')

Limits a string to the provided number of characters. If the string’s length is less
than the limit, just returns the string; if it’s greater, trims to the number of charac‐
ters provided and then appends either ... or the provided $end string. For exam‐
ple:

 $abstract = str_limit($loremIpsum, 30);

 // Returns "Lorem ipsum dolor sit amet, co..."

 $abstract = str_limit($loremIpsum, 30, "…");

 // Returns "Lorem ipsum dolor sit amet, co…"

str_is($pattern, $value)

Returns a Boolean indicating whether or not a given string matches a given pat‐
tern. The pattern can be a regex pattern, or you can use asterisks to indicate wild‐
card positions:

 str_is('*.dev', 'myapp.dev'); // true
 str_is('*.dev', 'myapp.dev.co.uk'); // false
 str_is('*dev*', 'myapp.dev'); // true
 str_is('*myapp*', 'www.myapp.dev'); // true
 str_is('my*app', 'myfantasticapp'); // true
 str_is('my*app', 'myapp'); // true

How to Pass a Regex to str_is()

If you’re curious about what regex patterns are acceptable to pass to
str_is(), check out the function definition here (shortened for
space) to see how it works. Note that it’s an alias of Illuminate
\Support\Str::is():

public function is($pattern, $value)
{
 if ($pattern == $value) return true;

 $pattern = preg_quote($pattern, '#');
 $pattern = str_replace('*', '.*', $pattern);
 if (preg_match('#^'.$pattern.'\z#u', $value) === 1) {
 return true;
 }

 return false;
}

str_random($length = n)

Returns a random string of alphanumeric mixed-case characters of the length
specified:

468 | Chapter 17: Helpers and Collections

 $hash = str_random(64);

 // Sample: J40uNWAvY60wE4BPEWxu7BZFQEmxEHmGiLmQncj0ThMGJK7O5Kfgptyb9ulwspmh

str_slug($title, $separator = '-', $language = 'en')

Returns a URL-friendly slug from a string—often used for creating a URL seg‐
ment for a name or title:

 str_slug('How to Win Friends and Influence People');

 // Returns 'how-to-win-friends-and-influence-people'

str_plural($value, $count = n)

Converts a string to its plural form. This function currently only supports the
English language:

 str_plural('book');

 // Returns books

 str_plural('person');

 // Returns people

 str_plural('person', 1);

 // Returns person

__($key, $replace = [], $locale = null)

Translates the given translation string or translation key using your localization
files:

 echo __('Welcome to your dashboard');

 echo __('messages.welcome');

Application Paths
When you’re dealing with the filesystem, it can often be tedious to make links to cer‐
tain directories for getting and saving files. These helpers give you quick access to
find the fully qualified paths to some of the most important directories in your app.

Note that each of these can be called with no parameters, but if a parameter is passed,
it will be appended to the normal directory string and returned as a whole:

app_path($append = '')

Returns the path for the app directory:

 app_path();

 // Returns /home/forge/myapp.com/app

Helpers | 469

base_path($path = '')

Returns the path for the root directory of your app:

 base_path();

 // Returns /home/forge/myapp.com

config_path($path = '')

Returns the path for configuration files in your app:

 config_path();

 // Returns /home/forge/myapp.com/config

database_path($path = '')

Returns the path for database files in your app:

 database_path();

 // Returns /home/forge/myapp.com/database

storage_path($path = '')

Returns the path for the storage directory in your app:

 storage_path();

 // Returns /home/forge/myapp.com/storage

URLs
Some frontend file paths are consistent but at times annoying to type—for example,
paths to assets—and it’s helpful to have convenient shortcuts to them, which we’ll
cover here. But some can actually vary as route definitions move or new files are ver‐
sioned with Mix, so some of these helpers are vital in making sure all of your links
and assets work correctly:

action($action, $parameters = [], $absolute = true)

Assuming a controller method has a single URL mapped to it, returns the correct
URL given a controller and method name pair (separated by @) or using tuple
notation:

 See all People
 // Or, using tuple notation:
 <a href=
 "{{ action([App\Http\Controllers\PeopleController::class, 'index']) }}">
 See all People

 // Returns See all People

470 | Chapter 17: Helpers and Collections

If the controller method requires parameters, you can pass them in as the second
parameter (as an array, if there’s more than one required parameter). You can
key them if you want for clarity, but what matters is just that they’re in the right
order:

 3] }}">See Person #3
 // or
 See Person #3

 // Returns See Person #3

If you pass false to the third parameter, your links will generate as relative
(/people/3) instead of absolute (http://myapp.com/people/3).

route($name, $parameters = [], $absolute = true)

If a route has a name, returns the URL for that route:

 // routes/web.php
 Route::get('people', 'PeopleController@index')->name('people.index');

 // A view somewhere
 See all People

 // Returns See all People

If the route definition requires parameters, you can pass them in as the second
parameter (as an array if more than one parameter is required). Again, you can
key them if you want for clarity, but what matters is just that they’re in the right
order:

 3]) }}">See Person #3
 // or
 See Person #3

 // Returns See Person #3

If you pass false to the third parameter, your links will generate as relative
instead of absolute.

url($string) and secure_url($string)
Given any path string, converts to a fully qualified URL. (secure_url() is the
same as url() but forces HTTPS):

 url('people/3');

 // Returns http://myapp.com/people/3

If no parameters are passed, this instead gives an instance of Illuminate
\Routing\UrlGenerator, which makes method chaining possible:

Helpers | 471

 url()->current();
 // Returns http://myapp.com/abc

 url()->full();
 // Returns http://myapp.com/abc?order=reverse

 url()->previous();
 // Returns http://myapp.com/login

 // And many more methods available on the UrlGenerator...

mix($path, $manifestDirectory = '')

If assets are versioned with Elixir’s versioning system, given the nonversioned
path name, returns the fully qualified URL for the versioned file:

 <link rel="stylesheet" href="{{ mix('css/app.css') }}">

 // Returns something like /build/css/app-eb555e38.css

Using the elixir() Helper Prior to Laravel 5.4

In projects running versions of Laravel prior to 5.4, you’ll want to
use the elixir() helper instead of the mix() helper. Check the
docs for more info.

Miscellaneous
There are a few other global helpers that I’d recommend getting familiar with. Of
course, you should check out the whole list, but the ones mentioned here are defi‐
nitely worth taking a look at:

abort($code, $message, $headers), abort_unless($boolean, $code, $message,
$headers), and abort_if($boolean, $code, $message, $headers)

Throw HTTP exceptions. abort() throws the exception defined,
abort_unless() throws it if the first parameter is false, and abort_if() throws
it if the first parameter is true:

 public function controllerMethod(Request $request)
 {
 abort(403, 'You shall not pass');
 abort_unless(request()->filled('magicToken'), 403);
 abort_if(request()->user()->isBanned, 403);
 }

auth()

Returns an instance of the Laravel authenticator. Like the Auth facade, you can
use this to get the current user, to check for login state, and more:

 $user = auth()->user();
 $userId = auth()->id();

472 | Chapter 17: Helpers and Collections

http://bit.ly/2ACcHu1
http://bit.ly/2HQKaFC

 if (auth()->check()) {
 // Do something
 }

back()

Generates a “redirect back” response, sending the user to the previous location:

 Route::get('post', function () {
 ...

 if ($condition) {
 return back();
 }
 });

collect($array)

Takes an array and returns the same data, converted to a collection:

 $collection = collect(['Rachel', 'Hototo']);

We’ll cover collections in just a bit.

config($key)

Returns the value for any dot-notated configuration item:

 $defaultDbConnection = config('database.default');

csrf_field() and csrf_token()
Return a full HTML hidden input field (csrf_field()) or just the appropriate
token value (csrf_token()) for adding CSRF verification to your form submis‐
sion:

 <form>
 {{ csrf_field() }}
 </form>

 // or

 <form>
 <input type="hidden" name="_token" value="{{ csrf_token() }}">
 </form>

dd($variable...)

Short for “dump and die,” runs var_dump() on all provided parameters and then
exit() to quit the application (this is used for debugging):

 ...
 dd($var1, $var2, $state); // Why is this not working???

env($key, $default = null)

Returns the environment variable for the given key:

Helpers | 473

 $key = env('API_KEY', '');

Remember not to ever use +env()+ outside of config files.

dispatch($job)

Dispatches a job:

 dispatch(new EmailAdminAboutNewUser($user));

event($event)

Fires an event:

 event(new ContactAdded($contact));

factory($entityClass)

Returns an instance of the factory builder for the given class:

 $contact = factory(App\Contact::class)->make();

old($key = null, $default = null)

Returns the old value (from the last user form submission) for this form key, if
it exists:

 <input name="name" value="{{ old('value', 'Your name here') }}"

redirect($path)

Returns a redirect response to the given path:

 Route::get('post', function () {
 ...

 return redirect('home');
 });

Without parameters, this generates an instance of the Illuminate\Routing
\Redirector class.

response($content, $status = 200, $headers)

If passed with parameters, returns a prebuilt instance of Response. If passed with
no response, it returns an instance of the Response factory:

 return response('OK', 200, ['X-Header-Greatness' => 'Super great']);

 return response()->json(['status' => 'success']);

view($viewPath)

Returns a view instance:

 Route::get('home', function () {
 return view('home'); // Gets /resources/views/home.blade.php
 });

474 | Chapter 17: Helpers and Collections

Collections
Collections are one of the most powerful yet underappreciated tools Laravel provides.
We covered them a bit in “Eloquent Collections” on page 135, but here’s a quick
recap.

Collections are essentially arrays with superpowers. The array-traversing methods
you normally have to pass arrays into (array_walk(), array_map(), array_reduce(),
etc.), all of which have confusingly inconsistent method signatures, are available as
consistent, clean, chainable methods on every collection. You can get a taste of func‐
tional programming and map, reduce, and filter your way to cleaner code.

We’ll cover some of the basics of Laravel’s collections and collection pipeline pro‐
gramming here, but for a much deeper overview, check out Adam Wathan’s book
Refactoring to Collections (Gumroad).

The Basics
Collections are not a new idea within Laravel. Many languages make collection-style
programming available on arrays out of the box, but with PHP we’re not quite
so lucky.

Using PHP’s array*() functions, we can take the monstrosity shown in Example 17-1
and turn it into the slightly less monstrous monstrosity shown in Example 17-2.

Example 17-1. A common, but ugly, foreach loop

$users = [...];

$admins = [];

foreach ($users as $user) {
 if ($user['status'] == 'admin') {
 $user['name'] = $user['first'] . ' ' . $user['last'];
 $admins[] = $user;
 }
}

return $admins;

Example 17-2. Refactoring the foreach loop with native PHP functions

$users = [...];

return array_map(function ($user) {
 $user['name'] = $user['first'] . ' ' . $user['last'];
 return $user;
}, array_filter($users, function ($user) {

Collections | 475

 return $user['status'] == 'admin';
}));

Here, we’ve gotten rid of a temporary variable ($admins) and converted one confus‐
ing foreach loop into two distinct actions: map and filter.

The problem is, PHP’s array manipulation functions are awful and confusing. Just
look at this example; array_map() takes the closure first and the array second, but
array_filter() takes the array first and the closure second. In addition, if we added
any complexity to this, we’d have functions wrapping functions wrapping functions.
It’s a mess.

Laravel’s collections take the power of PHP’s array manipulation methods and give
them a clean, fluent syntax—and they add many methods that don’t even exist in
PHP’s array manipulation toolbox. Using the collect() helper method that turns an
array into a Laravel collection, we can do what’s shown in Example 17-3.

Example 17-3. Refactoring the foreach loop with Laravel’s collections

$users = collect([...]);

return $users->filter(function ($user) {
 return $user['status'] == 'admin';
})->map(function ($user) {
 $user['name'] = $user['first'] . ' ' . $user['last'];
 return $user;
});

This isn’t the most extreme of examples. There are plenty where the reduction in lines
of code and the increased simplicity would make an even stronger case. But this right
here is so common.

Look at the original example and how muddy it is. It’s not entirely clear until you
understand the entire code sample what any given piece is there for.

The biggest benefit collections provide, over anything else, is breaking the actions
you’re taking to manipulate an array into simple, discrete, understandable tasks. You
can now do something like this:

$users = [...]
$countAdmins = collect($users)->filter(function ($user) {
 return $user['status'] == 'admin';
})->count();

or something like this:

$users = [...];
$greenTeamPoints = collect($users)->filter(function ($user) {
 return $user['team'] == 'green';
})->sum('points');

476 | Chapter 17: Helpers and Collections

Many of the examples we’ll look at in the rest of this chapter operate on this mythical
$users collection we’ve started imagining here. Each entry in the $users array will
represent a single human; they’ll likely all be array-accessible. The specific properties
each user will have may vary a bit depending on the example. But any time you see
this $users variable, know that that’s what we’re working with.

A Few Methods
There’s much more you can do than what we’ve covered so far. I recommend you take
a look at the Laravel collections to learn more about all the methods you can use, but
to get you started, here are just a few of the core methods:

all() and toArray()
If you’d like to convert your collection to an array, you can do so with either
all() or toArray(). toArray() flattens to arrays not just the collection, but also
any Eloquent objects underneath it. all() only converts the collection to an
array; any Eloquent objects contained within the collection will be preserved as
Eloquent objects. Here are a few examples:

$users = User::all();

$users->toArray();

/* Returns
 [
 ['id' => '1', 'name' => 'Agouhanna'],
 ...
]
*/

$users->all();

/* Returns
 [
 Eloquent object { id : 1, name: 'Agouhanna' },
 ...
]
*/

filter() and reject()
When you want to get a subset of your original collection by checking each item
against a closure, you’ll use filter() (which keeps an item if the closure returns
true) or reject() (which keeps an item if the closure returns false):

$users = collect([...]);
$admins = $users->filter(function ($user) {
 return $user->isAdmin;
});

Collections | 477

http://bit.ly/2FwS1VN

$paidUsers = $user->reject(function ($user) {
 return $user->isTrial;
});

where()

where() makes it easy to provide a subset of your original collection where a
given key is equal to a given value. Anything you can do with where() you can
also do with filter(), but it’s a shortcut for a common scenario:

$users = collect([...]);
$admins = $users->where('role', 'admin');

first() and last()
If you want just a single item from your collection, you can use first() to pull
from the beginning of the list or last() to pull from the end.

If you call first() or last() with no parameters, they’ll just give you the first or
last item in the collection, respectively. But if you pass either a closure, they’ll
instead give you the first or last item in the collection that returns true when
passed to that closure.

Sometimes you’ll do this because you want the actual first or last item. But some‐
times it’s the easiest way to get one item even if you only expect there to be one:

$users = collect([...]);
$owner = $users->first(function ($user) {
 return $user->isOwner;
});

$firstUser = $users->first();
$lastUser = $users->last();

You can also pass a second parameter to each method, which is the default value
and will be provided as a fallback if the closure doesn’t provide any results.

each()

If you’d like to do something with each item of a collection, but it doesn’t include
modifying the items or the collection itself, you can use each():

$users = collect([...]);
$users->each(function ($user) {
 EmailUserAThing::dispatch($user);
});

map()

If you’d like to iterate over all the items in a collection, make changes to them,
and return a new collection with all of your changes, you’ll want to use map():

478 | Chapter 17: Helpers and Collections

$users = collect([...]);
$users = $users->map(function ($user) {
 return [
 'name' => $user['first'] . ' ' . $user['last'],
 'email' => $user['email'],
];
});

reduce()

If you’d like to get a single result from your collection, like a count or a string,
you’ll probably want to use reduce(). This method works by taking an initial
value (called the “carry”) and then allowing each item in the collection to change
that value somehow. You can define an initial value for the carry, and a closure
that accepts the current state of the carry and then each item as parameters:

$users = collect([...]);

$points = $users->reduce(function ($carry, $user) {
 return $carry + $user['points'];
}, 0); // Start with a carry of 0

pluck()

If you want to pull out just the values for a given key under each item in a collec‐
tion, you can use pluck() ((lists(), in Laravel 5.1 and earlier):

$users = collect([...]);

$emails = $users->pluck('email')->toArray();

chunk() and take()
chunk() makes it easy to split your collection into groups of a predefined size,
and take() pulls just the provided number of items:

$users = collect([...]);

$rowsOfUsers = $users->chunk(3); // Separates into groups of 3

$topThree = $users->take(3); // Pulls the first 3

groupBy()

If you want to group all of the items in your collection by the value of one of their
properties, you can use groupBy():

$users = collect([...]);

$usersByRole = $users->groupBy('role');

/* Returns:
 [
 'member' => [...],

Collections | 479

 'admin' => [...],
]
*/

You can also pass a closure, and whatever you return from the closure will be
what’s used to group the records:

$heroes = collect([...]);

$heroesByAbilityType = $heroes->groupBy(function ($hero) {
 if ($hero->canFly() && $hero->isInvulnerable()) {
 return 'Kryptonian';
 }

 if ($hero->bitByARadioactiveSpider()) {
 return 'Spidermanesque';
 }

 if ($hero->color === 'green' && $hero->likesSmashing()) {
 return 'Hulk-like';
 }

 return 'Generic';
});

reverse() and shuffle()
reverse() reverses the order of the items in your collection, and shuffle() ran‐
domizes them:

$numbers = collect([1, 2, 3]);

$numbers->reverse()->toArray(); // [3, 2, 1]
$numbers->shuffle()->toArray(); // [2, 3, 1]

sort(), sortBy(), and sortByDesc()
If your items are simple strings or integers, you can use sort() to sort them:

$sortedNumbers = collect([1, 7, 6])->sort()->toArray(); // [1, 6, 7]

If they’re more complex, you can pass a string (representing the property) or a
closure to sortBy() or sortByDesc() to define your sorting behavior:

$users = collect([...]);

// Sort an array of users by their 'email' property
$users->sort('email');

// Sort an array of users by their 'email' property
$users->sortBy(function ($user, $key) {
 return $user['email'];
});

480 | Chapter 17: Helpers and Collections

count(), isEmpty(), and isNotEmpty()
You can see how many items there are in your collection using count(),
isEmpty(), or isNotEmpty():

$numbers = collect([1, 2, 3]);

$numbers->count(); // 3
$numbers->isEmpty(); // false
$numbers->isNotEmpty() // true

avg() and sum()
If you’re working with a collection of numbers, avg() and sum() do what their
method names say and don’t require any parameters:

collect([1, 2, 3])->sum(); // 6
collect([1, 2, 3])->avg(); // 2

But if you’re working with arrays, you can pass the key of the property you’d like
to pull from each array to operate on:

$users = collect([...]);

$sumPoints = $users->sum('points');
$avgPoints = $users->avg('points');

Using Collections Outside of Laravel

Have you fallen in love with collections, and do you want to use
them on your non-Laravel projects? With Taylor’s blessing, I split
out just the collections functionality from Laravel into a separate
project called Collect, and developers at my company keep it up to
date with Laravel’s releases.
Just use the composer require tightenco/collect command and
you’ll have the Illuminate\Support\Collection class ready to use
in your code—along with the collect() helper.

TL;DR
Laravel provides a suite of global helper functions that make it simpler to do all sorts
of tasks. They make it easier to manipulate and inspect arrays and strings, they facili‐
tate generating paths and URLs, and they provide simple access to some consistent
and vital functionality.

Laravel’s collections are powerful tools that bring the possibility of collection pipe‐
lines to PHP.

TL;DR | 481

http://bit.ly/2f1It7n

CHAPTER 18

The Laravel Ecosystem

As Laravel has grown, Taylor has built a suite of tools to support and simplify the
lives and workflows of Laravel developers. Much of the new work has gone straight
into the core, but there are quite a few packages and SaaS offerings that aren’t part of
the core but are still very much a part of the Laravel experience.

We’ve already covered quite a few of them, and for those I’ll provide pointers to
where to go in the book for more information. For the tools we haven’t covered, I’ll
give each a quick description and a link to the relevant website.

Tools Covered in This Book
We’ve already taken a look at these, but here are some brief reminders of what they
are and links to where you can find the relevant sources in the book.

Valet
Valet is a local development server (for Mac, but with forks for Windows and Linux)
that makes it quick and easy to serve all of your projects to your browser with almost
no effort. You’ll install Valet globally on your local development machine via Com‐
poser.

With a few commands you can have Nginx, MySQL, Redis, and more serving every
Laravel app on your machine at a .test domain.

Valet is covered in “Laravel Valet” on page 12.

483

Homestead
Homestead is a configuration layer on top of Vagrant that makes it simple to serve
multiple Laravel applications from a Laravel-friendly Vagrant setup.

Horizon was introduced briefly in “Laravel Homestead” on page 13.

The Laravel Installer
The Laravel installer is a package installed globally on your local development
machine (via Composer) that makes it easy and quick to set up a new Laravel project.

The installer is covered in “Installing Laravel with the Laravel Installer Tool” on page
14.

Mix
Mix is a Webpack-based frontend build system. It can run Babel, Browsersync, and
your favorite CSS pre- and post-processors, and provides Hot Module Replacement,
code splitting, versioning, and much more. Mix replaced Elixir, a Gulp-based tool
used for the same purposes, in Laravel.

Mix is covered in “Laravel Mix” on page 159.

Dusk
Dusk is a frontend testing framework built for testing your entire application, Java‐
Script and all. It’s a powerful package you can pull into your application via Com‐
poser and that drives actual browsers with ChromeDriver.

Dusk is covered in “Testing with Dusk” on page 324.

Passport
Passport is a powerful, simple-to-set-up OAuth2 server for authenticating clients to
your APIs. You’ll install it in each application as a Composer package, and with very
little work you can have a full OAuth2 flow accessible to your users.

Passport is covered in “API Authentication with Laravel Passport” on page 357.

Horizon
Horizon is a queue monitoring package you can install into each application via
Composer. It exposes a full user interface for monitoring the health, performance,
failures, and history of your Redis queued jobs.

Horizon is introduced briefly in “Laravel Horizon” on page 436.

484 | Chapter 18: The Laravel Ecosystem

Echo
Echo is a JavaScript library (introduced along with a series of improvements to Lara‐
vel’s notification system) that makes it simple to subscribe to events and channels
broadcast from your Laravel app via WebSockets.

Echo is covered in “Laravel Echo (the JavaScript Side)” on page 452.

Tools Not Covered in This Book
These are a few tools that I did not cover because they are beyond the scope of this
book. Some of these are just for use in special circumstances (Cashier for taking pay‐
ments, Socialite for social login, etc.) but some I use every day (Forge, especially).

Here’s a brief introduction, beginning with the ones you’re most likely to encounter in
your work. Note that this list is not exhaustive!

Forge
Forge is a paid SaaS tool for creating and managing virtual servers on hosts like Digi‐
talOcean, Linode, AWS, and more. It provisions Laravel-ready servers (and individual
sites on those servers) with all the tools you need to run them, from queues and
queue workers to Let’s Encrypt SSL certs. It can also set up simple shell scripts to
autodeploy your sites when you push up new code to GitHub or Bitbucket.

Forge is incredibly useful for spinning up sites quickly and easily, but it’s not so mini‐
mal that you can’t also run your apps on it in the longer term or at larger scale. You
can scale up your server sizes, add load balancers, and manage private networking
between your servers, all within Forge.

Envoyer
Envoyer is paid SaaS tool that’s branded as offering “zero downtime PHP deploy‐
ment.” Unlike Forge, Envoyer doesn’t spin up your servers or manage them. Its pri‐
mary job is to listen to triggers—usually when you push new code, but you can also
manually trigger deploys or trigger them with webhooks—and perform your deploy
steps in response.

There are three ways that Envoyer does this much better than Forge’s push-to-deploy
tool and most other push-to-deploy solutions:

1. It has a robust toolset for building out your deploy pipeline as a simple but pow‐
erful multistage process.

2. It deploys your app using Capistrano-style zero-downtime deploys; each new
deploy is built into its own folder, and only once the build process has completed

Tools Not Covered in This Book | 485

https://forge.laravel.com/
https://envoyer.io/

successfully is that deploy folder symlinked to your actual web root. Because of
this, there’s no moment when your server is broken while Composer installs or
NPM builds.

3. Because of this folder-based system, it’s easy and quick to roll back any breaking
changes to a previous release; Envoyer just updates the symlink back to a previ‐
ous deploy folder and it’s immediately serving an older build.

You can also set up regular health checks (pings against your servers that report
errors to you if the pings don’t get back a 200 HTTP response), expectations that your
cron jobs will ping Envoyer on a regular schedule, and chat-based notifications of any
significant events.

Envoyer is more of a niche tool than Forge. I don’t know many Laravel developers
who don’t use Forge, but those who pay for Envoyer are more likely to have websites
that will suffer if they can’t immediately roll back a problematic commit, or who get
enough traffic (or important enough traffic) that 10 seconds of downtime here and
there can be a big issue. If your site is in that category, Envoyer will feel like magic.

Cashier
Cashier is a free package that provides a simple interface in front of Stripe’s and
Braintree’s subscription billing offerings. Cashier handles much of the basic function‐
ality of subscribing users, changing their plans, giving them access to invoices, han‐
dling webhook callbacks from the billing service, managing cancellation grace
periods, and more.

If you want to allow your users to sign up for subscriptions using Stripe or Braintree,
Cashier will make your life a lot easier.

Socialite
Socialite is a free package that makes it incredibly simple to add social login (for
example, via GitHub or Facebook) to your apps.

Nova
Nova is a paid package for building admin panels. If you imagine your average com‐
plex Laravel app, it may have a few parts: the public-facing website or customer view,
the administration section for making changes to the core data or customer list, and
maybe an API.

Nova drastically simplifies the process of building the admin panel part of the site
using Vue and a Laravel API. It makes it easy to generate CRUD (create, read, update,
delete) pages for all of your resources, together with more complex custom views for

486 | Chapter 18: The Laravel Ecosystem

http://bit.ly/2Or9V0r
http://bit.ly/2TVjmvd
https://nova.laravel.com/

your data, custom actions and relationships on each of your resources, and even cus‐
tom tools for adding non-CRUD tooling to the same general admin space.

Spark
Spark is a paid package for generating a SaaS that accepts payments and makes it easy
to manage users, teams, and subscriptions. It provides Stripe integration, invoices,
two-factor authentication, profile photos for your users, team management and bill‐
ing, password resets, announcements, API token authentication, and more.

Spark is both a series of routes and a series of Vue components. You’ll use Spark to
scaffold the basis of a new project, so don’t plan to add it to your existing apps after
the fact.

Lumen
Lumen is a free API-focused microframework built from Laravel parts. Because it’s
for APIs, many of the conveniences Laravel offers that target non-API calls (for
example, Blade templating) have been stripped out.

That makes for a leaner framework with a few less of the niceties, but with the benefit
of speed improvements.

My general approach to Lumen is that, unless you have built APIs in Laravel and
found them too slow, or unless you’re definitely building a microservice-style API that
will absolutely never have need for any views or any of the other niceties Laravel
offers, you should stick with Laravel.

But when you find yourself developing microservice-style APIs in Laravel and you
need to eke out more speed at the millisecond level, that’s the right time to look at
Lumen.

Envoy
Envoy is a local task runner that makes it easy to define common tasks that will run
on your remote servers, commit those tasks’ definitions to version control, and run
them simply and predictably.

Take a look at Example 18-1 to get a sense of what a common Envoy task looks like.

Example 18-1. A common Envoy task

@servers(['web-1' => '192.168.1.1', 'web-2' => '192.168.1.2'])

@task('deploy', ['on' => ['web-1', 'web-2']])
 cd mysite.com
 git pull origin {{ $branch }}

Tools Not Covered in This Book | 487

https://spark.laravel.com/
https://lumen.laravel.com/
http://bit.ly/2CDa9Ns

 php artisan migrate
 php artisan route:cache
@endtask

To run Example 18-1, you’d run the following command from your local terminal:

envoy run deploy --branch=master

Telescope
Telescope is a free debugging tool, installable as a package, for Laravel applications
running version 5.7.7+. It generates a dashboard where you can dig into the current
status of jobs, queue workers, HTTP requests, database queries, and much more.

Other Resources
I’ve mentioned many of these already, but here’s a nonexhaustive list of resources
folks often turn to to learn Laravel:

• Laravel News
• Laracasts
• @TaylorOtwell and @LaravelPHP on Twitter
• Adam Wathan’s courses
• Chris Fidao’s courses
• The Laravel Podcast
• The many Laravel chats; at the time of writing, the Laravel Discord server is the

primary location where Taylor and other contributors are accessible, but there
are also unofficial channels on Slack and IRC (#laravel on Freenode)

There are many blogs (I have one at mattstauffer.com and Tighten has one at
tighten.co, and there are plenty of others that are incredibly useful), many excellent
Twitter-ers, many superb package authors, and far too many Laravel practitioners
who I respect to fit into a list here. This is a rich, diverse, and giving community, full
of developers who love to share everything they’re learning; the hard part is not find‐
ing good content but finding the time to consume it all.

I can’t list every person or resource you should look to in your journey as a Laravel
developer, but if you start with the resources and folks listed here, you will be off to a
great start in getting up and running with Laravel.

488 | Chapter 18: The Laravel Ecosystem

http://bit.ly/2HQPg4B
https://laravel-news.com/
https://laracasts.com/
https://twitter.com/taylorotwell
https://twitter.com/laravelphp
https://adamwathan.me/
https://fideloper.com/
http://www.laravelpodcast.com/
https://laravel.com/discord
https://larachat.co/
https://mattstauffer.com/
https://www.tighten.co

Glossary

Accessor
A method defined on an Eloquent model
that customizes how a given property will
be returned. Accessors make it possible to
define that getting a given property from a
model will return a different (or, more
likely, differently formatted) value than
what is stored in the database for that
property.

ActiveRecord
A common database ORM pattern, and
also the pattern that Laravel’s Eloquent
uses. In ActiveRecord the same model
class defines both how to retrieve and per‐
sist database records and how to represent
them. Additionally, each database record
is represented by a single entity in the
application, and each entity in the applica‐
tion is mapped to a single database record.

API
Technically application programming
interface, but most commonly used to
refer to a series of endpoints (and instruc‐
tions on how to use them) that can be
used to make HTTP-based calls to read
and modify data from outside of a system.
Sometimes, the term API is also used to
describe the set of interfaces, or affordan‐
ces, any given package or library or class
exposes to its consumers.

Application test
Often called acceptance or functional
tests, application tests test the entire

behavior of the application, usually at an
outer boundary, by employing something
like a DOM crawler—which is exactly
what Laravel’s application test suite offers.

Argument (Artisan)
Arguments are parameters that can be
passed to Artisan console commands.
Arguments aren’t prefaced with -- or fol‐
lowed by =, but instead just accept a single
value.

Artisan
The tool that makes it possible to interact
with Laravel applications from the com‐
mand line.

Assertion
In testing, an assertion is the core of the
test: you are asserting that something
should be equal to (or less than or greater
than) something else, or that it should
have a given count, or whatever else you
like. Assertions are the things that can
either pass or fail.

Authentication
Correctly identifying oneself as a mem‐
ber/user of an application is the act of
authentication. Authentication doesn’t
define what you may do, but simply who
you are (or aren’t).

Authorization
Assuming you’ve either succeeded or
failed at authenticating yourself, authori‐

489

zation defines what you’re allowed to do
given your particular identification.
Authorization is about access and control.

Autowiring
When a dependency injection container
will inject an instance of a resolvable class
without a developer having explicitly
taught it how to resolve that class, that’s
called autowiring. With a container that
doesn’t have autowiring, you can’t even
inject a plain PHP object with no depen‐
dencies until you have explicitly bound it
to the container. With autowiring, you
only have to explicitly bind something to
the container if its dependencies are too
complex or vague for the container to fig‐
ure out on its own.

beanstalkd
Beanstalk is a work queue. It’s simple and
excels at running multiple asynchronous
tasks—which makes it a common driver
for Laravel’s queues. beanstalkd is its dae‐
mon.

Blade
Laravel’s templating engine.

BrowserKit
Laravel’s pre-5.4 testing facilities for
DOM-based interactions, available as a
Composer package for 5.4+ apps.

Carbon
A PHP package that makes working with
dates much easier and more expressive.

Cashier
A Laravel package that makes billing with
Stripe or Braintree, especially in subscrip‐
tion contexts, easier and more consistent
and powerful.

Closure
Closures are PHP’s version of anonymous
functions. A closure is a function that you
can pass around as an object, assign to a
variable, pass as a parameter to other
functions and methods, or even serialize.

CodeIgniter
An older PHP framework that Laravel was
inspired by.

Collection
The name of a development pattern and
also Laravel’s tool that implements it. Like
arrays on steroids, collections provide
map, reduce, filter, and many other pow‐
erful operations that PHP’s native arrays
don’t.

Command
The name for a custom Artisan console
task.

Composer
PHP’s dependency manager. Like Ruby
Gems or NPM.

Container
Somewhat of a catchall word, in Laravel
“container” refers to the application con‐
tainer that’s responsible for dependency
injection. Accessible via app() and also
responsible for resolving calls to control‐
lers, events, jobs, and commands, the con‐
tainer is the glue that holds each Laravel
app together.

Contract
Another name for an interface.

Controller
A class that is responsible for routing user
requests through to the application’s serv‐
ices and data, and returning some form of
useful response back to the user.

CSRF (cross-site request forgery)
A malicious attack where an external site
makes requests against your application
by hijacking your users’ browsers (with
JavaScript, likely) while they’re still logged
in to your site. Protected against by
adding a token (and a check for that token
on the POST side) to every form on the
site.

Dependency injection
A development pattern where dependen‐
cies are injected in from the outside—usu‐

Autowiring

490 | Glossary

ally through the constructor—instead of
being instantiated in the class.

Directive
Blade syntax options like @if, @unless,
etc.

Dot notation
Navigating down inheritance trees using .
to reference a jump down to a new level. If
you have an array like ['owner' =>

['address' => ['line1' => '123 Main

St.']]], you have three levels of nesting.
Using dot notation, you would represent
“123 Main St.” as "owner.address.line1".

Dusk
Laravel’s frontend testing package that can
test JavaScript (primarily Vue) and DOM
interactions by spinning up Chrome‐
Driver to run the tests.

Eager loading
Avoiding N+1 problems by adding a sec‐
ond smart query to your first query to get
a set of related items. Usually you have a
first query that gets a collection of thing
A. But each A has many Bs, and so every
time you get the Bs from an A, you need a
new query. Eager loading means doing
two queries: first you get all the As, and
then you get all the Bs related to all those
As, in a single query. Two queries, and
you’re done.

Echo
A Laravel product that makes WebSocket
authentication and syncing of data simple.

Elixir
Laravel’s old build tool, since replaced by
Mix; a wrapper around Gulp.

Eloquent
Laravel’s ActiveRecord ORM. The tool
you’ll use to define and query something
like a User model.

Environment variables
Variables that are defined in an .env file
that is expected to be excluded from ver‐
sion control. This means that they don’t

sync between environments and that
they’re also kept safe.

Envoy
A Laravel package for writing scripts to
run common tasks on remote servers.
Envoy provides a syntax for defining tasks
and servers and a command-line utility
for running the tasks.

Envoyer
A Laravel SaaS product for zero-down-
time deployment, multiserver deploys,
and server and cron health checks.

Event
Laravel’s tool for implementing a pub/sub
or observer pattern. Each event represents
that an event happened: the name of the
event describes what happened (e.g., User
Subscribed) and the payload allows for
attaching relevant information. Designed
to be “fired” and then “listened” for (or
published and subscribed, if you prefer
the pub/sub concept).

Facade
A tool in Laravel for simplifying access to
complex tools. Facades provide static
access to core services in Laravel. Since
every facade is backed by a class in the
container, you could replace any call to
something like Cache::put(); with a
two-line call to something like $cache =
app('cache'); $cache->put();.

Faker
A PHP package that makes it easy to gen‐
erate random data. You can request data
in different categories, like names,
addresses, and timestamps.

Flag
A parameter anywhere that is on or off
(Boolean).

Fluent
Methods that can be chained one after
another are said to be fluent. In order to
provide a fluent syntax, each method must
return the instance, preparing it to be
chained again. This allows for something

Fluent

Glossary | 491

like People::where('age', '>', 14)-

>orderBy('name')->get().

Flysystem
The package that Laravel uses to facilitate
its local and cloud file access.

Forge
A Laravel product that makes it easy to
spin up and manage virtual servers on
major cloud providers like DigitalOcean
and AWS.

FQCN (fully qualified class name)
The full namespaced name of any given
class, trait, or interface. Controller is the
class name; Illuminate\Routing

\Controller is the FQCN.

Gulp
A JavaScript-based build tool.

Helper
A globally accessible PHP function that
makes some other functionality easier—
for example, array_get() simplifies the
logic of looking up results from arrays.

HMR (Hot Module Replacement)
A technology that makes it possible to
reload just pieces of an active website’s
frontend dependencies without reloading
the entire file.

Homestead
A Laravel tool that wraps Vagrant and
makes it easier to spin up Forge-parallel
virtual servers for local Laravel develop‐
ment.

Horizon
A Laravel package that provides tooling
for managing queues with greater nuance
than Laravel’s defaults, and also provides
insight into the current and historic oper‐
ating state of the queue workers and their
jobs.

Illuminate
The top-level namespace of all Laravel
components.

Integration test
Integration tests test the way individual
units work together and pass messages.

IoC (inversion of control)
The concept of giving “control” over how
to make a concrete instance of an inter‐
face to the higher-level code of the pack‐
age instead of the lower-level code.
Without IoC, each individual controller
and class might decide what instance of
Mailer it wanted to create. IoC makes it
so that the low-level code—those control‐
lers and classes—just get to ask for a
Mailer, and some high-level configura‐
tion code defines once per application
which instance should be provided to sat‐
isfy that request.

Job
A class that intends to encapsulate a single
task. Jobs are intended to be able to be
pushed onto a queue and run asynchro‐
nously.

JSON (JavaScript Object Notation)
A syntax for data representation.

JWT (JSON Web Token)
A JSON object containing all of the infor‐
mation necessary to determine a user’s
authentication state and access permis‐
sions. This JSON object is digitally signed,
which is what makes it trustworthy, using
HMAC or RSA. Usually delivered in the
header.

Mailable
An architectural pattern designed to
encompass the functionality of sending
mail into a single “sendable” class.

Markdown
A formatting language designed for for‐
matting plain text and outputting to mul‐
tiple output formats. Commonly used for
formatting text that has a good chance of
being processed by a script or read by
humans in its raw form—for example, Git
READMEs.

Flysystem

492 | Glossary

Mass assignment
The ability to pass many parameters at
once to create or update an Eloquent
model, using a keyed array.

Memcached
An in-memory data store designed to
provide simple but fast data storage.
Memcached only supports basic key/value
storage.

Middleware
A series of wrappers around an applica‐
tion that filter and decorate its inputs and
outputs.

Migration
A manipulation to the state of the data‐
base, stored in and run from code.

Mix
A frontend build tool based on Webpack.
Replaced Elixir in Laravel 5.4 and can be
used to concatenate, minify, and pre-
process your frontend assets, and much
more.

Mockery
A library included with Laravel that
makes it easy to mock PHP classes in your
tests.

Model
A class used to represent a given database
table in your system. In ActiveRecord
ORMs like Laravel’s Eloquent, this class is
used both to represent a single record
from the system, and to interact with the
database table.

Model factory
A tool for defining how the application
can generate an instance of your model if
needed for testing or seeding. Usually
paired with a fake data generator like
Faker.

Multitenancy
A single app serving multiple clients, each
of which has its customers. Multitenancy
often suggests that each client of your
application gets its own theming and

domain name with which to differentiate
its service to its customers vis-à-vis your
other clients’ potential services.

Mutator
A tool in Eloquent that allows you to
manipulate the data being saved to a
model property before it is saved to the
database.

Nginx
A web server similar to Apache.

Notification
A Laravel framework tool allowing a sin‐
gle message to be sent via myriad notifica‐
tion channels (e.g., email, Slack, SMS) to
one or more recipients.

Nova
A paid Laravel package for building
admin panels for your Laravel apps.

NPM (Node Package Manager)
A central web-based repository for Node
packages, at npmjs.org; also a utility used
on your local machine to install a project’s
frontend dependencies into the
node_modules directory based on the
specifications of package.json.

OAuth
The most common authentication frame‐
work for APIs. OAuth has multiple grant
types, each of which describes a different
flow of how consumers retrieve, use, and
refresh the “tokens” that identify them
after the initial authentication handshake.

Option (Artisan)
Like arguments, options are parameters
that can be passed to Artisan commands.
They’re prefaced with -- and can be used
as a flag (--force) or to provide data
(--userId=5).

ORM (object-relational mapper)
A design pattern that is centered around
using objects in a programming language
to represent data, and its relationships, in
a relational database.

ORM (object-relational mapper)

Glossary | 493

Passport
A Laravel package that can be used to
easily add an OAuth authentication server
to your Laravel app.

PHPSpec
A PHP testing framework.

PHPUnit
A PHP testing framework. The most com‐
mon and connected to the most of Lara‐
vel’s custom testing code.

Polymorphic
In database terms, able to interact with
multiple database tables with similar char‐
acteristics. A polymorphic relationship
will allow entities of multiple models to be
attached in the same way.

Preprocessor
A build tool that takes in a special form of
a language (for CSS, one special form is
LESS) and generates code with just the
normal language (CSS). Preprocessors
build in tools and features that are not in
the core language.

Primary key
Most database tables have a single column
that is intended to represent each row.
This is called the primary key and is com‐
monly named id.

Queue
A stack onto which jobs can be added.
Usually associated with a queue worker,
which pulls jobs one at a time from a
queue, works on them, and then discards
them.

React
A JavaScript framework. Created and
maintained by Facebook.

Real-time facades
Similar to facades, but without requiring a
separate class. Real-time facades can be
used to make any class’s methods callable
as static methods by importing that class
with Facades\ in front of its namespace.

Redis
Like Memcached, a data store simpler
than most relational databases but power‐
ful and fast. Redis supports a very limited
set of structures and data types but makes
up for it in speed and scalability.

REST (Representational State Transfer)
The most common format for APIs these
days. Usually suggests that interactions
with an API should each authenticate sep‐
arately and should be “stateless”; also usu‐
ally suggests that the HTTP verbs are used
for basic differentiation of requests.

Route
A definition of a way or ways the user
might visit a web application. A route is a
pattern definition; it can be something
like /users/5, or /users, or /users/id.

S3 (Simple Storage Service)
Amazon’s “object storage” service, which
makes it easy to use AWS’s incredible
computing power to store and serve files.

SaaS (Software as a Service)
Web-based applications that you pay
money to use.

Scope
In Eloquent, a tool for defining how to
consistently and simply narrow down a
query.

Scout
A Laravel package for full-text search on
Eloquent models.

Serialization
The process of converting more complex
data (usually an Eloquent model) to
something simpler (in Laravel, usually an
array or JSON).

Service provider
A structure in Laravel that registers and
boots classes and container bindings.

Socialite
A Laravel package making it simple to add
social authentication (e.g., login via Face‐
book) to Laravel apps.

Passport

494 | Glossary

Soft delete
Marking a database row as “deleted”
without actually deleting it; usually paired
with an ORM that by default hides all
“deleted” rows.

Spark
A Laravel tool that makes it easy to spin
up a new subscription-based SaaS app.

Symfony
A PHP framework that focuses on build‐
ing excellent components and making
them accessible to others. Symfony’s
HTTP Foundation is at the core of Laravel
and every other modern PHP framework.

Telescope
A Laravel package for adding a debugging
assistant to Laravel apps.

Tinker
Laravel’s REPL, or read–evaluate–print
loop. It’s a tool that allows you to perform
complex PHP operations within the full
context of your app from the command
line.

TL;DR
Too long; didn’t read. “Summary.”

Typehinting
Prefacing a variable name in a method
signature with a class or interface name.
Tells PHP (and Laravel, and other devel‐
opers) that the only thing that’s allowed to
be passed in that parameter is an object
with the given class or interface.

Unit test
Unit tests target small, relatively isolated
units—a class or method, usually.

Vagrant
A command-line tool that makes it easy to
build virtual machines on your local com‐
puter using predefined images.

Valet
A Laravel package (for Mac OS users, but
there are forks for macOS and Windows)
that makes it easy to serve your applica‐
tions from your development folder of
choice, without worrying about Vagrant
or virtual machines.

Validation
Ensuring that user input matches
expected patterns.

View
An individual file that takes data from the
backend system or framework and con‐
verts it into HTML.

View composer
A tool that defines that, every time a given
view is loaded, it will be provided a cer‐
tain set of data.

Vue
A JavaScript framework. Preferred by Lar‐
avel. Written by Evan You.

Webpack
Technically a “module bundler,” Webpack
is a tool commonly used to run frontend
build tasks, especially those that involve
processing CSS and JavaScript and other
frontend source files and outputting them
in a more production-ready format.

Webpack

Glossary | 495

Index

Symbols
* (asterisk), following array arguments or

options, 210
- - (hyphen, double), preceding Artisan com‐

mand options, 210
-> ,=> (arrow)

-> chaining methods, 31, 36
-> traversing JSON structure, 116
=> preceding Tinker responses, 217

. (period), dot notation, 491
/ (slash), escaping in Artisan commands, 339
:: (colon, double), in facades, 289
= (equal sign), in Artisan argument definition,

210
? (question mark)

following optional Artisan command argu‐
ments, 209

following optional parameters, 29
query parameters, 107

@ (at sign)
preceding Blade directives, 63
preceding Blade echo syntax, 64

\ (backslash), escaping in Artisan commands,
448

__() helper, 469
{ } (braces)

enclosing Artisan command arguments, 209
enclosing route parameters, 50, 186
{ !! !!}, Blade echo syntax, not escaped, 64,

197
{ { }}, Blade echo syntax, escaped, 64, 197

A
abilities (rules) for authorization, 240

abort() helper, 59, 472
abort_if() helper, 59, 472
abort_unless() helper, 59, 472
acceptance tests (see application tests)
accepts() method, Request, 261
accessors, 131, 139, 156, 489
ACL (access control list), 240, 242

(see also authorization)
actingAs() method, 309, 375
action() helper, 57, 470
ActiveRecord pattern, 117, 489

(see also Eloquent)
add() method, Cache, 387
addGlobalScope() method, 130
after() method, Blueprint, 94
after() method, tasks, 461
Ajax, 55
Algolia SDK, 396
aliases, binding to, 285
aliasing, of component, 75
all() method, collection, 477
all() method, Eloquent, 121
all() method, ParameterBag, 259
all() method, Request, 182, 197, 259
all() method, Session, 385
allDirectories() method, Storage, 380
allFiles() method, Request, 261
allFiles() method, Storage, 379
anonymous functions (see closures)
anticipate() method, 213
api guard, 236
api middleware group, 274
API resource controllers, 49
API routes, 26

497

(see also routes)
api.php file, 26
APIs, 337-376

authentication with API tokens, 373
authentication with Passport, 358-373
customizing 404 responses, 374
defined, 489
Eloquent API resources, 352-357
fallback route, 374
filtering results, 347
JSON for, 338, 341, 345
Lumen for, 487
nesting relationships between resources,

350-352
paginating results, 344
request headers, reading, 342, 343
resource controllers, 339-342
response headers, sending, 342
REST style of, 337-338
sorting results, 345-347
testing, 374
transforming results, 348-352

app commands, Artisan, 204
app folder, 16
app() helper, 258, 281
app.js file, 452
app.php file in config, 396, 450
append() method, Storage, 379
appendOutputTo() method, tasks, 460
application

bootstrapping, 254
exiting, 473
kernel, 254
lifecycle, 253-256

application container (see container)
application tests, 304

defined, 296, 489
exception handling, 310
TestCase class, 304

AppServiceProvider, 291
app_path() helper, 469
argument()/arguments() methods, Artisan, 211,

489
arrays

as Artisan arguments or options, 210
collections as alternative to, 136
collections compared to, 475
converting to collections, 473
helpers for, 465-467

array_filter() method, 476
array_first() helper, 466
array_get() helper, 466
array_has() helper, 466
array_map() method, 476
array_pluck() helper, 466
array_random() function, 467
arrow

-> chaining methods, 31, 36
-> traversing JSON structure, 116
=> preceding Tinker responses, 217

Artisan commands, 201-217
asserting against Artisan command syntax,

322
basic commands, 202
calling from code, 209, 216
custom, 206-215
defined, 490
escaping slashes in, 339
options for, 203
output during execution of, 214-215
progress bars for, 215
prompting for user input, 213
queueing, 205, 436
sample command, 208
scheduling as tasks, 457
testing, 219, 322-323
using input from, 211-213

Artisan facade, 216
artisan file, 17
artisan() method, 219
artisan() method, TestCase, 322
Artisan, defined, 489
as() method, Eloquent, 146
ask() method, 213
assert() method, Dusk, 332
assertCookie() method, TestCase, 308, 402
assertCookieExpired() method, TestCase, 308
assertCookieNotExpired() method, TestCase,

308
assertDatabaseHas() method, TestCase, 311
assertDatabaseMissing() method, TestCase, 311
assertDispatched() method, TestCase, 313
assertDontSee() method, TestCase, 307
assertion, defined, 489
assertJson() method, TestCase, 307
assertNotDispatched() method, TestCase, 313
assertNothingSent() method, TestCase, 316
assertNotSent() method, notification, 425

498 | Index

assertOk() method, TestCase, 306
assertPlainCookie() method, TestCase, 403
assertRedirect() method, TestCase, 308
assertSee() method, TestCase, 307
assertSent() method, notification, 425
assertSentTo() method, TestCase, 316
assertSessionHas() method, TestCase, 307, 400
assertSessionHasAll() method, TestCase, 401
assertSessionHasErrors() method, TestCase,

307, 401
assertSessionMissing() method, TestCase, 401
assertStatus() method, TestCase, 307
assertViewHas() method, TestCase, 84, 307
assets folder, 161
associate() method, Eloquent, 143
asterisk (*), following array arguments or

options, 210
at sign (@)

preceding Blade directives, 63
preceding Blade echo syntax, 64

attach() method, Dusk, 328
attach() method, Eloquent, 147
attach() method, mailable, 410
attachData() method, mailable, 410
attachFromStorage() method, mailable, 410
attempt() method, authentication, 232
attempts() method, jobs, 433
attribute casting, 133
attribute() method, Dusk, 327
auth commands, Artisan, 204
@auth directive, 236
Auth facade, 225
auth middleware, 234
auth scaffold, 231
auth scaffolding, 170
auth() helper, 225, 472
auth.basic middleware, 234
auth.php file, 237, 359
Auth::routes() facade, 229, 230, 235
AuthController, 221
Authenticatable contract, 224
AuthenticateSession middleware, 233
authentication, 221-240

APIs for, 358-373
Blade directives, 236
contracts, 224
defined, 222, 489
Dusk and, 327
events, 239

ForgotPasswordController, 229
guards for, 236-238
invalidating sessions on other devices, 233
LoginController, 227-228
manual authentication, 233
manually logging out a user, 233
MustVerifyEmail trait, 235
RegisterController, 226-227
RegistersUsers trait, 227
remember me access token, 232
ResetPasswordController, 229
route middleware for, 234
routes for, 229
testing, 249-252, 309
VerificationController, 229
views for, 231
WebSocket (see Echo)

Authorizable contract, 225
Authorizable trait, 245
authorization, 240-249

Authorizable contract, 225
AuthorizesRequests trait, 243
Blade checks, 246
checking user capabilities, 245
defined, 222, 489
defining rules for, 240
Gate facade, 241
intercepting checks, 246
policies, 247-249
resource gates, 242
route middleware for, 243
testing, 249-252

authorization code grant, Passport, 362-366
authorize() method, AuthorizesRequests trait,

243
authorize() method, form request, 194
authorizeForUser() method, AuthorizesRe‐

quests trait, 243
authorizeResource() method, AuthorizesRe‐

quests trait, 243
AuthorizesRequests trait, 243
AuthServiceProvider, 240, 246, 255, 371
autowiring, 282, 490
avg() method, collection, 481
avg() method, DB, 114
away() method, redirects, 57

B
back() helper, 57, 266, 473

Index | 499

backslash (\), escaping in Artisan commands,
448

base_path() helper, 470
be() method, TestCase, 250
beanstalkd queues, 428, 490
before() method, tasks, 461
beginTransaction() method, DB, 117
belongsTo() method, Eloquent, 140, 142, 149
belongsToMany() method, Eloquent, 145
bigIncrements() method, Blueprint, 93
bigInteger() method, Blueprint, 92
billing (see Cashier)
binary() method, Blueprint, 92
bind() method, 284, 284
binding

API resource controllers, 49
classes to container, 283-286
data to views, 76-79
PDO parameter binding, 107
route model binding, 50-51

Blade, 63-85
authentication directives, 236
basics, 63
checks using, 246
components and slots, 73-75
conditionals, 65
control structures, 65-67
custom directives, 80-83
defined, 490
directives for, 63
echoing PHP in, 64
included view partials, 70-72
loops, 65-67, 71
multitenancy using, 82
sections, 68-70
service injection, 79-80
stacks, 72
template inheritance, 68-75
templates, 40
view composers, 76-79

Blade::if() method, 83
Blueprint class, 92-94
boolean() method, Blueprint, 92
boot() method, Eloquent model, 130
boot() method, service providers, 51, 238, 240,

255, 371
bootstrap folder, 16
bootstrapping application, 254
braces ({ })

enclosing Artisan command arguments, 209
enclosing route parameters, 50, 186
{ !! !!}, Blade echo syntax, not escaped, 64,

197
{{ }}, Blade echo syntax, escaped, 64, 197

broadcast notifications, 423
broadcast() helper, 449, 456
broadcastAs() method, events, 444
broadcasting events (see WebSockets)
broadcasting.php file, 443
broadcastOn() method, events, 438, 443
BroadcastServiceProvider, 449
broadcastWith() method, events, 445
browse() method, Dusk, 326
browser tests, 323-335

BrowserKit Testing package, 324
Dusk for, 324-335

(see also Dusk)
tool choice, 324

BrowserKit testing package, 198, 324, 490
build() method, mailable, 407, 410
Bus facade

testing, 314

C
cache commands, Artisan, 204
Cache facade, 386
cache() helper, 386
caches

accessing, 204, 386-388
data stores used by, 89
for custom directive results, 81
for routes, 52
testing, 401

call() method, Artisan, 216
call() method, container, 288
call() method, TestCase, 402
camel_case() helper, 175
@can directive, 246
can() method, Authorizable, 245
@cannot directive, 246
cannot() method, Authorizable, 245
CanResetPassword contract, 225
cant() method, Authorizable, 245
capture() method, Request, 257
Carbon package, 387, 490
Carbon::now(), 40
Cashier, 486, 490
chaining methods, 31, 36

500 | Index

channel() method, Broadcast, 450
channel() method, Echo, 454
channels, log, 393-396
char() method, Blueprint, 92
check() method, authorization, 225
check() method, Dusk, 328
choice() method, 213
chunk() method, collection, 479
chunk() method, Eloquent, 122
classes

FQCN for, 492
view composers using, 78

clear-compiled command, Artisan, 202
click() method, Dusk, 328
clickLink() method, Dusk, 328
closure request guard, 238
closures

binding to, 283
defined, 26, 490
defining Artisan commands as, 215
defining routes using, 26
view composers using, 77

Cloud storage (see storage)
cloud-based mail, 405
CodeIgniter, 490
collect() helper, 135, 473, 476
Collection class, 106, 135-137
collection() method, API resource, 354
collections, 475-481

compared to arrays, 475
converting to arrays, 476
defined, 490
returned by Eloquent, 135-137
serialization, 137
using outside Laravel, 481

colon, double (::), in facades, 289
columns, creating, 92-94
commands, Artisan (see Artisan commands)
comment() method, Artisan, 214
commit() method, DB, 117
@component directive, Blade, 74
components, Blade, 73-75
components, Dusk, 333-335
Composer, 12, 254

commands for, 14
creating new projects, 14
defined, 490
service provider features with, 256

composer.json file, 17

composer.lock file, 17
conditionals (Blade), 65
config commands, Artisan, 204
config folder, 16, 18
config() helper, 473
config/app.php file, 396, 450
config/cache.php file, 386
config/scout.php file, 396
config/session.php file, 382
configuration files, 16, 18, 236, 470
config_path() helper, 470
confirm() method, Artisan, 213
Console component, Symfony, 201
constructor injection, 279, 281, 287
container, 46

accessing facade backing class from, 290
accessing objects from, 281
autowiring, 282
binding classes to, 283-286
constructor injection, 287
defined, 490
dependency injection, 279-281
method injection, 287
registering bindings for, 291

contextual binding, 286
contracts, 490

(see also interfaces)
Contracts namespace, 224
controllers, 42-49

API resource controllers, 49
applying middleware using, 34
controller/method reference syntax, 29
creating, 43-45
defined, 490
getting and handling user input, 45-46
handling routes using, 28
in MVC, 24
injecting dependencies into, 46
namespaces for, 44
resource controllers, 47-49, 339-342
single action, 49

Cookie facade, 389
cookie() helper, Cookies, 390
cookie() method, Request, 262, 391
cookie() method, Response, 391
CookieJar class, 390
cookies, 388-391

accessing with Cookie facade, 389
accessing with cookie() helper, 390

Index | 501

accessing with Request and Response, 391
configuring, 390
encryption for, 402
locations of, 388
testing, 402

copy() method, Mix, 164
copy() method, Storage, 379
copyDirectory() method, Mix, 164
count() method, collection, 481
count() method, DB, 114
count() method, ParameterBag, 259
create() method, model factories, 102, 123, 124
create() method, resource controllers, 25
create() method, Schema, 91
create, read, update, delete (see CRUD)
CreateFreshApiToken middleware, 367, 368
create_users_table migration, 90, 222
cron jobs, scheduler as alternative to, 457
CRUD (create, read, update, delete), 42

(see also resource controllers)
CSRF (cross-site request forgery), 53-55, 453,

490
csrf_field() helper, 473
csrf_token() helper, 473
CSS

Blade stacks for, 72
postprocessor for, 163
preprocessor for, 160, 163
preprocessorless, in Mix, 163

custom route model binding, 51

D
daily log channel, 394
database folder, 16
database notifications, 423
database tests, 311, 327
DatabaseMigrations trait, 302
databases, 87-157

(see also Eloquent)
configuring connections to, 87-89
custom guard providers for, 239
migrations, 89-98
paginating results from, 170
query builder, 105-117
seeders, 98-105
testing, 155-157
Tinker interacting with, 217

DatabaseSeeder class, 98
DatabaseTransactions trait, 302

database_path() helper, 470
date mutators, 134
dates and times (see Carbon package) (see

scheduler) (see timestamps)
datetime() method, Blueprint, 92
db commands, Artisan, 204
DB facade, 105
dd() helper, 473
Dead Man’s Snitch, 460
debugging

dump server for, 218
Telescope for, 488

decimal() method, Blueprint, 92
decrement() method, Cache, 388
decrement() method, DB, 115
default() method, Blueprint, 94
$defer property, 255
DeferrableProvider interface, 255
define() method, model factories, 100
delay() method, jobs, 432
delay() method, notification, 420
DELETE method, 25

for resource controllers, 25
routes based on, 28

delete() method, DB, 107, 116
delete() method, Eloquent, 126-128
delete() method, Storage, 379
deleteDirectory() method, Storage, 380
deleted_at column, 127
deleteFileAfterSend() method, Response, 265
dependency injection, 279-281

constructor injection, 279, 281, 287
defined, 490
method injection, 279, 287
setter injection, 279-279
testing using, 292

destroy() method, resource controllers, 25
detach() method, Eloquent, 147
development environments, 12-17
DI (dependency injection) container (see con‐

tainer)
directives (Blade), 63

aliasing components to be, 75
defined, 491

directories() method, Storage, 380
disk() method, Storage, 378, 381
dispatch() helper, 431, 474
Dispatchable trait, 430
dissociate() method, Eloquent, 143

502 | Index

distinct() method, DB, 111
dnsmasq tool, 13
dot notation, 491
double() method, Blueprint, 92
down command, Artisan, 202
down() method, migrations, 90
download responses, 264
download() method, Response, 60, 264
downloads, 382
drag() method, Dusk, 328
dragDown() method, Dusk, 328
dragLeft() method, Dusk, 328
dragRight() method, Dusk, 328
dragUp() method, Dusk, 328
dump server, 218
dump() helper, 218
dump-server command, Artisan, 202, 218
Dusk, 324-335

as part of Laravel ecosystem, 484
assertions, 330
authentication and databases, 327
components, 333-335
customizing environment variables, 325
defined, 491
installing, 325
interactions with page, 327-329
page class, 331-333
selector matching order, 328
waiting methods, 329
writing tests, 325

dynamic rate limiting, 35

E
e() helper, 174, 467
@each directive, Blade, 71
each() method, collection, 478
eager loading, 152, 491
Echo, 443, 447-448

as part of Laravel ecosystem, 485
authorization for channels, 450-452
client events, 456
defined, 491
event broadcasting, 453
excluding user from events, 449, 456
JavaScript package for, 452-456
listening for events, 453
presence channels, 455
private channels, 454
service provider configuration, 449-452

subscribing to channels, 454
subscribing to notifications, 456

ecosystem, Laravel, 483-488
edit() method, resource controllers, 25
elements() method, Dusk, 332
Elixer, 484

(see also Mix build tool)
Elixir

compiling Passport frontend components,
370

defined, 491
elixir() helper, 472
Eloquent, 36, 87, 117-155

accessors, 131
aggregates, 122
API resources, 352-357
attribute casting, 133
child records updating parent record time‐

stamps, 152-154
collections returned by, 135-137
customizing route key for, 51
date mutators, 134
defined, 491
deletes, 126-128
eager loading, 152
events, 154-155
exceptions thrown by, 121
filtering API results, 347
full-text search for, 396-398
inserts, 122
JSON results for APIs, 341
mass assignment, 124, 196
migration, creating with model, 119
model creation, 119
mutators, 132
pagination for, 170-172, 344
primary keys, 119
relationships, 139-151
retrieving data, 120-122
scopes (filters), 128-131
serialization, 137-139
sorting results, 345-347
table names, 119
timestamps, 120, 152-154
transforming results, 348-352
updates, 123-125
user input from, 196

Eloquent API resources
conditionally applying attributes, 357

Index | 503

creating a resource class, 352
nesting relationships, 355
pagination, 356
resource collections, 354

@else directive, Blade, 65, 246
@elseif directive, Blade, 65
email notifications, 419
email verification

migrations and, 91
MustVerifyEmail trait, 235
VerificationController, 229

emailOutputTo() method, tasks, 460
EncryptCookies middleware, 402
encryption

for cookies, 402
generating keys for OAuth server, 358
key:generate and, 204
of session data, 382

@endcan directive, 246
@endcannot directive, 246
@endif directive, Blade, 65
@endsection directive, Blade, 69
ends_with() helper, 175, 467
@endunless directive, Blade, 65
enum() method, Blueprint, 93
env command, Artisan, 202
.env file, 17, 18, 19, 168
env() helper, 18, 473
.env.example file, 17
.env.test file, 301
environment variables

defined, 491
Mix, 168
returning, 473
setting for tests, 301

environment() method, 301
Envoy, 487, 491
Envoyer, 460, 485, 491
equal sign (=), in Artisan argument definition,

210
error bags, 174, 179
error() method, 214
error() method, notification, 422
errors and exceptions

from Eloquent, 121
from HTTP, 472
from jobs in queue, 433-435
from session, testing for, 401
from user input, 193

in message and error bags, 174, 179
$errors variable, 174
ES6, JavaScript, 164
event commands, Artisan, 204
Event facade, 437
event fakes, 312
event() helper, 437, 474
Event::fake() method, Eloquent, 313
events, 437-442

authentication, 239
broadcasting over WebSockets (see Web‐

Sockets)
creating, 437-439
creating listeners for, 439-442
defined, 491
Eloquent, 154-155
firing, 437-439, 474
pub/sub pattern used by, 437
subscribers for, 441
testing, 462

ExampleTest.php file, 296
except() method, Request, 182, 259
exception handling, HTTP tests, 310
exceptions (see errors and exceptions)
exists() method, Request, 259
exists() method, Session, 384
exists() method, Storage, 379
expectsOutput() method, TestCase, 322
expectsQuestion() method, TestCase, 322
$expression parameter, Blade, 81
@extends directive, Blade, 69
extract() method, 167

F
facades, 289-291

accessing backing class of, 290
creating, 291
defined, 491
importing, 75
importing namespaces for, 289
injecting backing class of, 290
namespaces for, 185
static calls using, 27

factory() helper, 101, 474
failed() method, jobs, 434
fake() method, 312
Faker, 295, 400, 491
fallback routes, 36
feature tests, 296

504 | Index

File facade, 380
file responses, 265
file() method, Faker, 400
file() method, Request, 187, 261
file() method, Response, 60, 265
files() method, Storage, 379
filesystem storage (see storage)
filesystems.php file, 377
file_get_contents() function, 381
filled() method, Request, 259
filter() method, collection, 477
filtering API results, 347
filters (see scopes)
find() method, DB, 113
find() method, Eloquent, 120
findOrFail() method, DB, 113
findOrFail() method, Eloquent, 120
first() method, Blueprint, 94
first() method, collection, 478
first() method, DB, 113
first() method, Eloquent, 120
firstOrCreate() method, Eloquent, 125
firstOrFail() method, DB, 113
firstOrFail() method, Eloquent, 120
firstOrNew() method, Eloquent, 125
flag, defined, 491
flash session storage, 385
flash() method, Request, 262
flash() method, Session, 385
flashExcept() method, Request, 262
flashOnly() method, Request, 262
float() method, Blueprint, 93
fluent interface, 105
fluent, defined, 491
flush() method, Cache, 388
flush() method, Request, 262
flush() method, Session, 385
Flysystem package, 377, 380, 492
@for directive, Blade, 66
forceDelete() method, Eloquent, 128
@foreach directive, Blade, 66
@forelse directive, Blade, 66
forever() method, Cache, 387
Forge, 428, 485, 492
forget() method, Cache, 388
forget() method, Session, 385
ForgotPasswordController, 229
form encoding, 189
form method spoofing, 52

form requests, 194-196, 276
forUser() method, Gate, 242
FQCN (fully qualified class name), 492
Fractal package, 349
frameworks, 1-4

(see also Laravel)
from() method, mailable, 410
frontend components, 169

(see also Mix build tool)
full-text search, Scout package for, 396-398
functional tests (see application tests)
functions (see helper functions)

G
Gate facade, 241
GET method, 24

for resource controllers, 25
routes based on, 28

get() method, Cache, 387
get() method, Cookie, 389
get() method, DB, 108, 113
get() method, Eloquent, 121
get() method, ParameterBag, 259
get() method, Route, 31
get() method, Session, 383
get() method, Storage, 379
get() method, TestCase, 305
getFacadeAccessor() method, 290
getJson() method, 306
getRealPath() method, SplFileInfo, 381
getVisibility() method, Storage, 379
.gitignore file, 17
global scopes, 129-131
grant types, Passport, 360-368
groupBy() method, collection, 479
groupBy() method, DB, 112
Grunt, 159
guard() method, 237
guards, 236-238

adding, 237
changing default, 237
closure request guards, 238
custom user providers, 238
driver for, 236, 238
provider for, 236-238

@guest directive, 236
guest middleware, 234
guest() method, 225
guest() method, redirects, 57

Index | 505

Gulp, 159, 492
gulpfile.js file, 15

H
handle() method, events, 440
handle() method, jobs, 430
handle() method, requests, 255, 270-272, 275
has() method, Cache, 387
has() method, Cookie, 389
has() method, Eloquent, 143
has() method, ParameterBag, 259
has() method, Request, 183
has() method, Session, 384
HasApiTokens trait, 359
hasCookie() method, Request, 262
hasFile() method, Request, 188, 261
hasMany() method, Eloquent, 142
hasManyThrough() method, Eloquent, 144
hasOne() method, Eloquent, 140
hasOneThrough() method, Eloquent, 144
having() method, DB, 112
havingRaw() method, DB, 112
HEAD method, 24
header() method, Request, 260, 343
header() method, Response, 343
headers (see request headers) (see response

headers)
$headers array, 277
help command, Artisan, 202
helper functions, 465-474

(see also specific helpers)
defined, 492
for arrays, 465-467
for paths, 469
for strings, 467-469
for URLs, 470-472

here() method, Echo, 455
$hidden property, 348
HMR (Hot Module Replacement; hot reload‐

ing), 167, 492
home() method, redirects, 57
Homestead, 13, 484, 492
Horizon, 436, 484, 492
Hot Module Replacement (HMR), 166, 492
.htaccess file, 254
htmlentities() function, 64, 467
HTTP method spoofing, 53
HTTP methods (verbs), 24, 28, 52
HTTP redirects, 55-59, 473, 474

HTTP requests, 59, 253-262, 276-277
(see also Request object)

HTTP responses, 60, 262-269, 474
(see also Response object)

HTTP tests, 305-311
authenticating responses, 309
basic page, 305
customizations, 310
exception handling, 310
JSON testing, 306
$response object assertions, 306

HttpFoundation classes, 257
HTTPS requests, 276-277
hyphen, double (- -), preceding Artisan com‐

mand options, 210

I
id() method, 225
@if directive, Blade, 65
if statements, 83
illuminate collections, 106
illuminate namespace, 492
implicit route model binding, 50
@include directive, Blade, 70
increment() method, Cache, 388
increment() method, DB, 115
increments() method, Blueprint, 93
index() method, Blueprint, 94
index() method, resource controllers, 25
index.php file, 254
info() method, 214
@inject directive, Blade, 80
input() method, Request, 183, 185, 259
inRandomOrder() method, DB, 112
insert() method, DB, 107, 115
insertGetId() method, DB, 115
installer tool, 14, 21, 484
instance() method, Mockery, 320
instances, binding to, 285
integer() method, Blueprint, 92
integration tests, 303, 492
intended() method, redirects, 57
InteractsWithQueue trait, 430
InteractsWithSockets trait, 449
interfaces (contracts), 224, 285
Intervention library, 381
invoke() method, 49
IoC (inversion of control), 280, 292, 492
IoC container (see container)

506 | Index

ip() method, Request, 260
is() method, Request, 260
isEmpty() method, collection, 481
isJson() method, Request, 261
isMethod() method, Request, 184
isNotEmpty() method, collection, 481
isValid() method, File, 188

J
JavaScript

concatenating, in Mix, 163
Echo JavaScript package, 452-456

(see also Echo)
escaping backslashes in, 448
processing, in Mix, 164
vendor extraction, in Mix, 167

JavaScript ES6, 164
JavaScript files, Blade stacks for, 72
JavaScript Object Notation (see JSON)
jobs, 428-432

(see also queues)
creating, 429-431
defined, 427, 492
deleting, 435
dispatching, 474
failed, 433-435
number of tries for, 433
pushing onto queue, 431
releasing back to queue, 435

join() method, DB, 114
join() method, Echo, 455
js() method, Mix, 166
JSON (JavaScript Object Notation)

API pattern for, 338
API spec for, 345
defined, 492
operations, 116, 137-139
responses, 265
storing default string as key with, 178
testing, 306

JSON Web Token (JWT), 367, 492
json() method, Blueprint, 93
json() method, Request, 185, 259
json() method, Response, 60, 265
jsonb() method, Blueprint, 93
jsonp() method, Response, 60
JWT (JSON Web Token), 367, 492

K
kebab_case() helper, 175
keep() method, Session, 385
kernel, 254
Kernel.php file, 272
key commands, Artisan, 204
key, storing default string as, 178
keys() method, Dusk, 328
keys() method, ParameterBag, 259

L
Lambo package, 14
Laravel

advantages of, 4-6
community for, 6
documentation for, xviii
ecosystem for, 483-488
installer, 14, 21, 484
local development environments for, 12-17
online resources, 488
PHP versions and extensions for, 11
starting, 21
system requirements, xviii, 11
versions of (see versions of Laravel)

Laravel Cashier, 486, 490
Laravel Dusk (see Dusk)
Laravel Echo (see Echo)
Laravel Envoy, 487
Laravel Envoyer (see Envoyer)
Laravel Forge (see Forge)
Laravel Homestead (see Homestead)
Laravel Horizon (see Horizon)
Laravel Lumen, 487
Laravel Mix (see Mix build tool)
laravel new command (Laravel installer), 14, 21
Laravel Nova, 486, 493
Laravel Passport (see Passport package)
Laravel Socialite, 486, 494
Laravel Spark, 487, 495
Laravel Telescope, 488, 495
Laravel Valet (see Valet package)
laravel.log file, 415
last() method, collection, 478
lastModified() method, Storage, 379
later() method, Mail, 414
latest() method, DB, 112
lazy loading, 152, 153
LengthAwarePaginator class, 171
lifecycle of application, 253-256

Index | 507

line() method, 214
links() method, 170
listen() method, Echo, 454
listeners, for events, 439-443
listenForWhisper() method, Echo, 456
loadMissing() method, Eloquent, 154
local development environments, 12-17
local disk, 378
local scopes, 128
localization, 175-179

basic, 176
parameters in, 177
pluralization in, 177
storing default string as key with JSON, 178

Log facade, 289-291
Log Fake package, 403
logging, 289-291, 391-396, 415

channels, 393-396
daily channel, 394
reasons to use, 392
single channel, 394
slack channel, 394
stack channel, 395
testing, 403
writing to logs, 392

logging out, manually, 233
login() method, 228, 233
loginAs() method, Dusk, 327
LoginController, 227-228
loginUsingId() method, 233
logoutOtherDevices() method, 233
longText() method, Blueprint, 93
$loop variable, 67
loops (Blade), 65-67, 71
Lumen, 487

M
mail, 405-426

attachments, 410
capturing, 415
classic mail, 406
configuring, 405
creating, 406-408
customizing, 410
drivers supported, 405
HTML vs. plain-text, 409
inline images, 410
local development, 415
logging, 415

mailable mail, 406-408
manually modifying, 410
Markdown mailables, 411-413
notifications, 416-424
queues for, 414, 436
rendering mailables to the browser, 413
sending, 408
templates, 409
testing, 415, 425
universal to, 416

Mail facade, testing, 315
mail.php file, 405, 416
mailables, 492

(see also Markdown)
MailThief, 425
Mailtrap, 415
make commands, Artisan, 204, 206
make() method, app, 282
make() method, Cookie, 389
make() method, model factories, 102
make() method, Response, 60
make:auth command, Artisan, 231
make:controller command, Artisan, 43, 45, 47
make:event command, Artisan, 437
make:factory command, Artisan, 100
make:job command, Artisan, 429
make:mail command, Artisan, 406, 412
make:middleware command, Artisan, 270
make:migration command, Artisan, 91
make:model command, Artisan, 119, 340
make:policy command, Artisan, 247
make:resource command, Artisan, 352
make:seeder command, Artisan, 98
makeDirectory() method, Storage, 380
makeVisible() method, Eloquent, 138
makeWith() method, app, 288
many to many polymorphic relationships, 150
many-to-many relationships, 139, 145-148
map() method, collection, 478
mapApiRoutes() method, RouteServicePro‐

vider, 274
mapWebRoutes() method, RouteServicePro‐

vider, 274
Markdown

components, 413
defined, 492
mailables, 411-413
notifications, 422

markdown() method, 412, 422

508 | Index

mass assignment, 124, 196, 493
max() method, DB, 114
Mbstring PHP extension, 11
mediumInteger() method, Blueprint, 92
mediumText() method, Blueprint, 93
Memcached data store, 89, 493
message bags, 172-174, 179
message() method, Request, 192
MessageBag class, 172-174
method injection, 279, 287
method() method, Request, 184, 260
methods, 31

(see also specific methods)
chaining, 31, 36
controller/method reference syntax, 29
HTTP methods (verbs), 24, 28

middleware, 27, 269-276
binding, 272-275
custom, 270-272
defined, 493
for authentication, 234
for authorization, 243
groups, 273
passing parameters to, 275
route groups for, 34-36
trusted proxies, 276-277

middleware() method, 34, 274
migrate command, Artisan, 97, 202, 205, 340
migrate:fresh command, Artisan, 302
migrations, 89-98

columns, creating, 92-94
columns, modifying, 94-97
creating with Eloquent model, 119
defined, 493
defining, 90-97
field properties, 93
foreign keys, 96
indexes, adding, 96
indexes, removing, 96
running, 97
tables, creating, 91
tables, dropping, 94

min() method, DB, 114
Mix build tool, 159-168

as part of Laravel ecosystem, 484
copying files or directories, 164
defined, 493
directory structure for, 161
environment variables, 168

HMR, 166
JavaScript, concatenating, 163
JavaScript, processing, 164
pre- and post-processors, 163
preprocessorless CSS, 163
running, 161
source maps, generating, 162
vendor extraction, 167
versioning, 164-166
Vue and React components, 166

mix() helper, 165, 167
mix.version() method, 165
Mockery library, 295, 318-321, 493
mocking, 318-321
model

defined, 493
in MVC, 23

model factories, 99-104, 312, 493
Model-View-Controller (MVC) pattern (see

MVC pattern)
modelKeys() method, collection, 136
morphs() method, Blueprint, 93
move() method, Storage, 379
multitenancy, 82, 493
mutators, 132, 493
MVC (Model-View-Controller) pattern, 23

(see also controllers; views)
primary concepts, 23
views in, 40

N
name prefixes, route groups for, 38
name() method, 31
namespace prefixes, route groups for, 37
namespaces

default App namespace, replacing, 204
escaping backslashes in JavaScript, 448
facades for namespaced classes, 75
for contracts, 224
for controllers, 44
for facades, 185, 289
Illuminate, 254
make namespace, for Artisan, 206

Nexmo, 424
Nginx, 493
Node.js, installing, 161
Notifiable trait, 419
Notification facade, 316, 419
notifications, 416-424

Index | 509

broadcast notifications, 423
channels for, 418
creating, 416-418
database notifications, 423
defined, 493
drivers supported, 421
Markdown, 422
queueing, 420
sending, 419
Slack notifications, 424
SMS notifications, 424
subscribing to, 456
testing, 425

notifications commands, Artisan, 205
notify() method, Notifiable, 420
Nova, 486, 493
now() helper, 40
NPM (Node Package Manager), 493
npm install command, 452
nullable() method, Blueprint, 94
nullableTimestamps() method, Blueprint, 93

O
OAuth 2.0, 358, 493

(see also Passport package)
object-relational mapper (ORM), 36, 493

(see also Eloquent)
old() helper, 58, 474
old() method, Request, 262
oldest() method, DB, 112
once() method, 233
onceUsingId() method, 233
onConnection() method, jobs, 431
onConnection() method, mailable, 414
one-to-many relationships, 139, 141-143
one-to-one relationships, 140-141
online resources

facades documentation, 290
Laravel documentation, xviii
Valet documentation, 13

only() method, Request, 125, 182, 197, 259
onlyTrashed() method, Eloquent, 128
onQueue() method, events, 432
onQueue() method, jobs, 432
onQueue() method, mailable, 414
onUserSubscription() method, events, 442
OpenSSL PHP extension, 11
operating system requirements, xviii, 11
optimize command, Artisan, 202

option()/options() methods, Artisan, 211, 493
OPTIONS method, 25
orderBy() method, DB, 111
orderBy() method, Eloquent, 120
ORM (object-relational mapper), 36, 493

(see also Eloquent)
orWhere() method, DB, 109

P
package commands, Artisan, 205
package.json file, 17
Package::make() method, Eloquent, 303
page class, Dusk, 331-333
page tests, 305
paginate() method, 170, 344
pagination, 170-172, 356
Paginator class, 172
parameter binding, PDO, 107
ParameterBag class, 259
@parent directive, Blade, 70
passes() method, Request, 192
Passport package, 358-373

as part of Laravel ecosystem, 484
defined, 494
deploying, 373
grant types for, 360-368
installing, 358
routes for, 359, 369
scopes, 371-372
Vue components, 369-370

passport:keys command, Artisan, 373
PassportServiceProvider, 358
password grant, Passport, 360
PATCH method, 25
path prefixes, route groups for, 36
path() method, Request, 260
paths

for facades, 185
helpers for, 469

pause() method, Dusk, 329
PDO parameter binding, 107
PDO PHP extension, 11
personal access client, 366
personal access tokens, Passport, 366
PHP

versions and extensions for, 11
views rendered with, 40

PHPSpec, 494
PHPUnit testing framework, 21, 295, 494

510 | Index

assertions syntax, 297
method naming, 300

phpunit.xml file, 17, 301
pingBefore() method, tasks, 461
pivot table, 145-148
pjax() method, Request, 261
pluck() method, collection, 479
pluralization, 174, 177
polymorphic relationships, 139, 148-151, 494
POST method, 24

for resource controllers, 25
getting user input from, 45
routes based on, 28

prepend() method, Storage, 379
preprocessor, 494
preset command, Artisan, 202
primary key, 494
primary() method, Blueprint, 94
priority() method, mailable, 410
private() method, Echo, 454
progress bars, 215
progressAdvance() method, 215
progressFinish() method, 215
projects

configuring, 18
creating, 13
directory structure for, 15-17

provides() method, service providers, 256
$proxies array, 276
proxies, trusted, 276-277
pub/sub pattern, 437, 442
public disk, 378
public folder, 16
pull() method, Cache, 387
pull() method, Session, 385
push() method, Session, 384
Pusher, 442, 446-452
PUT method, 25

for resource controllers, 25
routes based on, 28

put() method, Cache, 387
put() method, Session, 384
put() method, Storage, 379, 381
putFile() method, Storage, 379

Q
query builder, 105-117

(see also Eloquent)
aggregates, 122

chaining methods with, 107-116
conditional methods, 112
constraining queries, 108-111
DB facade for, 105
deletes, 116
inserts, 115
joins, 114
JSON operations, 116
modifying queries, 111
multiple query results, format for, 106
pagination for, 170, 344
parameter binding, 107
raw SQL queries, 106, 114
relationships as, 143
returning results, 113
transactions, 116
unions, 115
updates, 115

query parameters, versioning assets with, 165
question mark (?)

following optional Artisan command argu‐
ments, 209

following optional parameters, 29
query parameters, 107

question() method, 214
queue commands, Artisan, 205
Queue facade, testing, 314
queue() method, Cookie, 390
queue() method, Mail, 414
queue.php file, 428
queue:failed command, Artisan, 435
queue:failed-table command, Artisan, 434
queue:flush command, Artisan, 435
queue:forget command, Artisan, 435
queue:listen command, Artisan, 433
queue:retry all command, Artisan, 435
queue:retry command, Artisan, 435
queue:work command, Artisan, 432, 433
Queueable trait, 430
queues, 427-436

benefits of, 428
configuring, 428
creating jobs in, 429-431
defined, 494
deleting jobs in, 435
dispatching jobs in, 474
error handling, 433-435
for Artisan commands, 205, 436
for jobs, 428-432

Index | 511

for mail, 414, 436
number of tries for jobs, 433
providers and drivers for, 428
pushing jobs onto, 431
releasing jobs back to, 435
testing, 461-463
workers, 432

R
radio() method, Dusk, 328
randomly generated data, 101
rate limiting, 35
raw() method, DB, 114
React, 166, 494
react() method, Mix, 166
read-evaluate-print-loop (REPL) (see Tinker)
readme.md file, 17
real-time facades, 291, 494
redirect() helper, 55-59, 266, 474
redirectPath() method, 227
redirects, 55-59
Redis, 89, 436, 446, 448, 494
reduce() method, collection, 479
reflash() method, Session, 385
refresh tokens, 365
refresh() method, redirects, 57
RefreshDatabase trait, 302
regenerate() method, Session, 385
register() method, RegisterUsers, 227
register() method, service providers, 255, 283,

291
RegisterController, 226-227
RegistersUsers trait, 227
regression tests, 296

(see also Dusk)
regular expressions

passing to str_is(), 468
route constraints using, 30

reject() method, collection, 477
relationships, 139-151

as query builders, 143
eager loading, 152
inserting related items, 141
lazy eager loading, 153
serialization of, 138
when defining model factories, 103

release() method, jobs, 435
remember me access token, 232
remember() method, Cache, 387

rememberForever() method, Cache, 387
rememberToken() method, Blueprint, 93
render() method, pagination, 170
REPL (read-evaluate-print-loop) (see Tinker)
Representational State Transfer (REST),

337-338
Request facade, 181
request headers, 342, 343
Request object, 181-186, 257-262

accessing, 257-262
array input, accessing, 184
capturing directly, 257
file handling methods, 261
form requests, 276
headers for, 342, 343
JSON input, accessing, 185
lifecycle of, 253-255
persistence of, for session interaction, 262
reading cookies from, 391
testing, 277-278
typehinting in constructors, 47
user and request state methods, 260
user input methods, 258
validate() on, 189

request() helper, 181, 185, 258, 348
reset() method, 229
resetPassword() method, 229
ResetPasswordController, 229
resource controller binding, 48
resource controllers, 47-49, 339-342
resource gates, 242
resource() method, 242
resources folder, 16, 161
resources, API, 337, 350-352
resources, online (see online resources)
respondWithRoute() method, API resource,

374
Responsable interface, 268-269
response headers, 343
Response object, 262-269

creating, 263
custom, 60
custom response macros, 267
download responses, 264
file responses, 265
headers for, 343
JSON responses, 265
lifecycle of, 253-255
redirect responses, 266-267

512 | Index

Responsable interface, 268-269
setting cookies on, 391
testing, 277-278
view responses, 264

$response object, 305-308
response() helper, 60, 266, 474
REST (Representational State Transfer), 25,

337-338, 494
restore() method, Eloquent, 128
reverse() method, collection, 480
right angle bracket, triple (> > >), Tinker

prompt, 217
rollBack() method, DB, 117
route commands, Artisan, 205
route groups, 33-38

(see also controllers)
defining, 33
fallback routes, 36
middleware applied to, 34-36
name prefixes, 38
namespace prefixes using, 37
path prefixes using, 36
rate limiting, 35
subdomain routing using, 37

route middleware, 234, 243, 273
route model binding, 50-51
route() helper, 32, 471
route() method, 56
Route::apiResource() method, 342
Route::fallback() method, 374
Route::view(), 41
route:cache command, Artisan, 52
route:list command, Artisan, 48
routes

caching, 52
data from URL, 186
defined, 494
defining, 26-33
exiting, 59
fluent definitions of, 31
handling, 28
modifying to allow signed links, 40
naming, 31
parameters for, 29, 50-51, 186
signed, 38-40
testing, 61
verbs for, 28

routes folder, 16
routes() method, Auth, 229

routes.php file, 26, 274
RouteServiceProvider, 255, 274
rules (abilities) for authorization, 240
rules() method, form request, 194

S
S3 cloud storage, 378, 494
s3 disk, 378
SaaS (Software as a Service), 494
Sass, 160
save() method, Eloquent, 122
schedule commands, Artisan, 205
schedule:run command, Artisan, 457
scheduler, 457-461

Artisan commands as tasks, 457
avoiding tasks overlapping, 460
closures as tasks, 457, 460
defining time zones for scheduled com‐

mands, 460
shell commands as tasks, 457
task output, handling, 460
task types, 457
time frames for, setting, 458

scheduleTimezone() method, tasks, 460
scopes (filters), Eloquent, 128-131, 494
scopes (privileges), OAuth, 371-372
Scout package, 396-398

conditional indexing, 398
defined, 494
drivers supported, 396
installing and configuring, 396
manually triggering, 398
marking model for indexing, 397
performing operations without indexing,

398
queuing actions of, 397
searching index, 397
testing, 403

ScoutServiceProvider, 396
script injection, 197
Searchable trait, 397
searchable() method, 398
searchableAs() method, 397
secret() method, 213
@section directive, Blade, 68-70
sections, Blade, 68-70
secure() method, redirects, 57
secure() method, Request, 261
security

Index | 513

authentication (see authentication)
authorization (see authorization)
CSRF (cross-site request forgery), 53-55,

453
encryption (see encryption)
mass assignment, 124, 196
script injection, 197

seeCookie() method, TestCase, 403
seeders, 98-105

creating, 98
model factories for, 99-104

seeding, 312
seePlainCookie() method, TestCase, 403
segment() method, Request, 186
segments() method, Request, 186
select() method, DB, 106, 108
select() method, Dusk, 328
selectRaw() method, DB, 114
send() method, Mail, 406
sendOutputTo() method, tasks, 460
serialization, 137-139, 494
SerializesModels trait, 430
serve command, Artisan, 202
server() method, Request, 261
server.php file, 17
service container (see container)
service providers, 255-256, 291, 494

(see also specific service providers)
services, injecting into a view, 79-80
services.php file, 405
session commands, Artisan, 206
Session facade, 383
session() helper, 383
session() method, Request, 383
sessions, 382-386

accessing, 383
configuring, 382
drivers supported, 382
flash session storage, 385
testing, 400

setter injection, 279-279
setUp() method, 292
setVisibility() method, Storage, 379
share() method, 77
shell commands, scheduling as tasks, 457
shouldBeSearchable() method, 398
ShouldBroadcast interface, 443
ShouldBroadcastNow contract, 446
shouldHaveReceived() method, Mockery, 321

shouldIgnoreMissing() method, Mockery, 319
shouldReceive() method, Mockery, 320
@show directive, Blade, 68
show() method, resource controllers, 25
showLinkRequestForm() method, 229
showLoginForm() method, 228
showRegistrationForm() method, 227
showResetForm() method, 229
shuffle() method, collection, 480
signed routes, 38-40
signed URLs, 39
signedRoute() method, 39
single action controllers, 49
single log channel, 394
singleton() method, 284
singletons, binding to, 284
size() method, Storage, 379
skip() method, DB, 112
slack log channel, 394
Slack notifications, 424
slash (/), escaping in Artisan commands, 339
@slot directive, Blade, 74
slots, Blade, 73-75
smallInteger() method, Blueprint, 92
SMS notifications, 424
snake_case() helper, 175
Socialite, 486, 494
soft deletes, 126-128, 495
softDeletes() method, Blueprint, 93, 127
sort() method, collection, 480
sortBy() method, collection, 480
sortByDesc() method, collection, 480
sorting API results, 345-347
source maps, Mix, 162
Spark, 487, 495
SplFileInfo class, 381
SQL queries, raw, 106

(see also query builder)
SQLite

dependencies for, 94
modifying multiple columns, 95

stack log channel, 395
stacks, Blade, 72
starts_with() helper, 175, 467
state() method, model factories, 104
stateless APIs, 337
statement() method, DB, 106
static calls, 27
stdClass object

514 | Index

returned by DB facade, 106
returned by loops, 67

storage, 377-404
(see also databases)
adding providers, 380
cache, 386-388
configuring file access, 377
cookies, 388-391
downloads, 382
file managers, 377-380
flash session storage, 385
injecting instance for, 380
logging, 391-396
session storage, 382-386
Storage facade methods for, 378-380
testing, 399-403
uploads and manipulation, 380-382

storage commands, Artisan, 206
Storage facade, 317, 378-380
storage folder, 16
storage:link command, Artisan, 378
storage_path() helper, 378, 470
Store class, 383
store() method, resource controllers, 25
store() method, UploadedFile, 189, 382
storeAs() method, UploadedFile, 189, 382
streamDownload() method, Response, 60
string() method, Blueprint, 92
strings

helpers for, 467-469
localization, 175-179
pluralization, 174, 177
string helpers, 174

str_contains() helper, 175, 467
str_is() helper, 175, 468
str_limit() helper, 468
str_plural() helper, 175, 469
str_random() helper, 468
str_singular() helper, 175
str_slug() helper, 175, 469
studly_case() helper, 175
subdomain routing, 37
subject() method, mailable, 410
subscribe() method, events, 442
sum() method, collection, 481
sum() method, DB, 114
Symfony, 4, 495

Console component, 201
HttpFoundation classes, 257

Translation component, 178
sync() method, Eloquent, 148
synchronizer tokens, Passport, 367-368
system requirements, xviii, 11

T
table() method, 214
take() method, collection, 479
take() method, DB, 112
Task::all() query, 41, 44
tasks, scheduling (see scheduler)
Telescope, 488, 495
templates (see Blade) (see views)
temporarySignedRoute() method, 39
@test docblock, 300
TestCase class, 304
TestCase.php file, 296
testing, 295-336

APIs, 374
Artisan commands, 219, 322-323
authentication and authorization, 249-252
basics, 296-300
browsers, 323-335
bus fakes, 314
cache, 401
cookies, 402
database operations, 155-157
database tests, 311
dependency injection in, 292
environment for, 301
event fakes, 312
failed test results, 299
frontend components, 179
HTTP tests, 305-311
inversion of control in, 292
log, 403
mail, 425
mail fakes, 315
mocking, 318-321
model factories in, 312
names for methods prior to Laravel 5.4, 252
naming tests, 300
notification fakes, 316
notifications, 425
queue fakes, 314
queues, 461-463
requests and responses, 277-278
routes, 61
running tests, 21

Index | 515

Scout, 403
seeding in, 312
sessions, 400
storage, 399-403
Storage fakes, 317
traits for, 301-302
user input, 197
views, 83-84
writing tests, 21

tests folder, 16, 296
text() method, Blueprint, 93
text() method, Dusk, 327
text() method, mailable, 409
thenPing() method, tasks, 461
time() method, Blueprint, 93
times and dates (see Carbon package) (see

scheduler) (see timestamps)
timestamp() method, Blueprint, 93
timestamps, 93, 124

child records updating parent record time‐
stamps, 152-154

data mutators and, 134
timestamps() method, Blueprint, 93
timezone() method, tasks, 459
Tinker, 217, 495
tinker command, Artisan, 202
tinyInteger() method, Blueprint, 92
title_case() helper, 175
TL;DR, xviii, 495
to() method, 56
toArray() method, API resource, 352
toArray() method, collection, 477
toArray() method, Eloquent, 137
toBroadcast() method, notification, 424
toDatabase() method, notification, 423
toJson() method, Eloquent, 137
Tokenizer PHP extension, 11
tokens, CSRF, 53-55
toMail() method, notification, 421
toNexmo() method, notification, 424
toOthers() method, events, 449, 456
toResponse() method, Response, 268
toSearchableArray() method, 397
toSlack() method, notification, 424
trans() helper, 177
transaction() method, DB, 117
transactions, 116
translation (see localization)
Translation component, Symfony, 178

trashed() method, Eloquent, 128
truncate() method, DB, 116
TrustedProxy package, 276-277
Twig Bridge package, 64

(see also Blade)
type() method, Dusk, 328
typehint, 46, 495
typehinting, 285

U
uncheck() method, Dusk, 328
union() method, DB, 115
unionAll() method, DB, 115
unique() method, Blueprint, 94
unique() method, Faker, 101
unit tests

defined, 296, 495
generating in PHPUnit, 299
simple, 303

universal to, for mail, 416
@unless directive, Blade, 65
unless() parameter, DB, 113
unsearchable() method, 398
unsigned() method, Blueprint, 94
up command, Artisan, 202
up() method, migrations, 90
update() method, DB, 107, 115
update() method, Eloquent, 123-125
update() method, resource controllers, 25
updateExistingPivot() method, Eloquent, 148
uploaded files, 187-189, 380-382, 399
UploadedFile class, 188, 261, 399
url() helper, 31, 471
url() method, Dusk, 332
url() method, Request, 260
URLs

helpers for, 470-472
user input from route parameters, 186
user input from URL segments, 186

user authentication (see authentication)
user authorization (see authorization)
user input

Artisan commands, 211-213
custom rule objects, 192
Eloquent model, 196
form requests, 194-196
getting and handling with controllers, 45-46
Request object, 181-186, 258
route parameters, 186

516 | Index

testing, 197
uploaded files, 187-189
URLs, 186
validating, 189-191

User model, 222
user() method, 225, 237
username() method, 228
uuid() method, Blueprint, 93

V
Vagrant, 98

(see also Homestead)
defined, 495
migrations with, 98

Valet package, 12, 483, 495
validate() method, 59
validate() method, controller, 189-193
validateLogin() method, 228
validation of user input, 189-191

custom rule objects, 192
defined, 495
displaying error messages, 193
manual validation, 192
validate() method, controller, 189-193
validation rules, 191

Validator class, 192
validator() method, 227
validators, 173
value() method, DB, 113
value() method, Dusk, 327
vendor commands, Artisan, 206
vendor folder, 16
vendor.js file, 167
VerificationController, 229
VerifiesEmails, 229
versioning, in Mix, 164-166
versions of Laravel, xix
versions of Laravel, after 5.1

ACL (access control list), 240
versions of Laravel, after 5.2

policy methods, 248
versions of Laravel, after 5.3

real-time facades, 291
versions of Laravel, after 5.4

API resources, 349
Browserkit, 198
RefreshDatabase trait, 302
testing method nomenclature, 198

versions of Laravel, after 5.5

invalidating sessions on other devices, 233
TrustedProxy package, 276

versions of Laravel, after 5.6
Artisan command testing, 218
Auth::routes() in, 230
email verification, 230, 235
mail logging, 415

versions of Laravel, after 5.7
assertions against $response, 306
binding Mockery instances to the container,

320
calling Artisan commands, 216
DeferrableProvider interface, 255
defining cache duration, 386
defining time zones for scheduled com‐

mands, 460
helper functions, 465
policy auto-discovery, 247
SMS notifications, 424
stack log channel, 395

versions of Laravel, prior to 5.2
authentication guards, 237
conditional query modifications, 348
.env testing, 301
fluent route definitions, 31
middleware groups, 273
render() method, pagination, 170

versions of Laravel, prior to 5.3
API token authentication, 373
assertViewHas() method, 84
authentication controllers, 221
classic mail, 406
DB facade results, 106
Eloquent results, 121
$expression parameter, 81
factory states, 104
form requests, 195
generating resource controllers, 45
$loop variable, 67
PHP and extensions, 11
policy methods, 248
routes file, 26
withCookie() method, Response, 391

versions of Laravel, prior to 5.4
elixir() helper, 472
route group modifications, 34
testing, 297
testing method names, 84, 157, 252, 403
testing methods, 62

Index | 517

translation helper, 177
versions of Laravel, prior to 5.5

calling validate() method on controller, 190
manual package registration, 205
manually binding commands, 208
model factory file, 100
resource controllers/routes in, 339
service provider registration, 396

versions of Laravel, prior to 5.6
CSREF helpers in, 54
fallback routes, 36

versions of Laravel, prior to 5.7
Artisan tests, 322
assets folder, 161

versions of Laravel, prior to 5.8
changes to Artisan commands, 203

via() method, notification, 418, 419
viaRemember() method, 232
viaRequest() auth method, 238
view commands, Artisan, 206
view composers, 42, 76-79, 495
view partials, 70-72
view responses, 264
view() helper, 77, 264, 474
view() method, Response, 264
views, 40-42

binding data to, 76-79
defined, 495
in MVC, 23, 40
loading, 41
passing variables to, 41, 75
testing, 83-84

$visible property, 348
Vue, 166, 369-370, 495
Vue Resource, 55

W
waitFor() method, Dusk, 329
waitForLink() method, Dusk, 330
waitForLocation() method, Dusk, 330
waitForMissing() method, Dusk, 329
waitForReload() method, Dusk, 330
waitForRoute() method, Dusk, 330
waitForText() method, Dusk, 330
waitUntil() method, Dusk, 330
wantsJson() method, Request, 261
web guard, 236
web middleware group, 274
web routes, 26

(see also routes)
web.php file, 26
Webpack, 159, 164, 495
webpack.mix.js file, 17, 159
website resources (see online resources)
WebSocket authentication (see Echo)
WebSockets, 442-456

authorization for channels, 450-452
broadcasting events, 443-446
channels for, 444, 450-452
configuring, 443
drivers supported, 443
Echo for, 447
event structure for, 444
excluding user from events, 449
pub/sub pattern used by, 442
receiving event messages, 446-456
service provider configuration, 449-452

when() parameter, DB, 112
whenAvailable() method, Dusk, 329
where() method, collection, 478
where() method, DB, 108
where() method, Eloquent, 121
whereBetween() method, DB, 110
whereExists() method, DB, 111
whereIn() method, DB, 110
whereNull() method, DB, 111
whereRaw() method, DB, 111
@while directive, Blade, 66
whisper() method, Echo, 456
with() method, 57-59, 77
with() method, Eloquent, 153
withCookie() method, Response, 391
withcount() method, Eloquent, 154
withErrors() method, 174
withExceptionHandling() method, 311
withHeaders() method, 310
withInput() method, 58
withoutExceptionHandling() method, 310
withoutGlobalScope() method, 131
withoutGlobalScopes() method, 131
WithoutMiddleware trait, 302
withoutOverlapping() method, tasks, 460
withoutSyncingToSearch() method, 398
withPivot() method, Eloquent, 146
withSession() method, 310
withSwiftMessage() method, mailable, 410
withTrashed() method, Eloquent, 127
workers for queues, 432

518 | Index

X
X- preceding header names, 342

Y
@yield directive, Blade, 68

Index | 519

About the Author
Matt Stauffer is a developer and a teacher. He is a partner and technical director at
Tighten, blogs at mattstauffer.com, and hosts the Laravel Podcast and the Five-Minute
Geek Show.

Colophon
The animal on the cover of Laravel: Up & Running is a gemsbok (Oryx gazella). This
large antelope is native to the deserts of South Africa, Botswana, Zimbabwe, and
Namibia, where it is featured on the country’s coat of arms.

Gemsbok measure about 5 feet 7 inches tall at the shoulder and can weigh from 250
to 390 pounds. They are typically pale gray or brown, with black and white facial
markings and long black tails. A black stripe extends from the chin to the lower edge
of the neck. The gemsbok’s impressive straight horns, used in defensive maneuvers,
average 33 inches in length and are regarded as charms in many cultures. In medieval
England, they were often marketed as unicorn horns.

Although these horns make the gemsbok a highly sought trophy animal, the popula‐
tion remains stable throughout Southern Africa. In 1969, gemsbok were introduced
to southern New Mexico, where their current population is around 3,000.

Gemsbok are well suited to such desert environments, with the ability to survive
without drinking water for most of the year. To achieve this, they do not pant or
sweat, allowing their body temperature to rise several degrees above normal on hot
days. Their lifespan is approximately 18 years in the wild.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover illustration is by Karen Montgomery, based on a black and white engraving
from Riverside Natural History. The cover fonts are Gilroy Semibold and Guardian
Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

https://tighten.co/
http://mattstauffer.com
http://animals.oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	What This Book Is About
	Who This Book Is For
	How This Book Is Structured
	About the Second Edition
	Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments for the First Edition
	Acknowledgments for the Second Edition

	Chapter 1. Why Laravel?
	Why Use a Framework?
	“I’ll Just Build It Myself”
	Consistency and Flexibility

	A Short History of Web and PHP Frameworks
	Ruby on Rails
	The Influx of PHP Frameworks
	The Good and the Bad of CodeIgniter
	Laravel 1, 2, and 3
	Laravel 4
	Laravel 5

	What’s So Special About Laravel?
	The Philosophy of Laravel
	How Laravel Achieves Developer Happiness
	The Laravel Community

	How It Works
	Why Laravel?

	Chapter 2. Setting Up a Laravel Development Environment
	System Requirements
	Composer
	Local Development Environments
	Laravel Valet
	Laravel Homestead

	Creating a New Laravel Project
	Installing Laravel with the Laravel Installer Tool
	Installing Laravel with Composer’s create-project Feature
	Lambo: Super-Powered “Laravel New”

	Laravel’s Directory Structure
	The Folders
	The Loose Files

	Configuration
	The .env File

	Up and Running
	Testing
	TL;DR

	Chapter 3. Routing and Controllers
	A Quick Introduction to MVC, the HTTP Verbs, and REST
	What Is MVC?
	The HTTP Verbs
	What Is REST?

	Route Definitions
	Route Verbs
	Route Handling
	Route Parameters
	Route Names

	Route Groups
	Middleware
	Path Prefixes
	Fallback Routes
	Subdomain Routing
	Namespace Prefixes
	Name Prefixes

	Signed Routes
	Signing a Route
	Modifying Routes to Allow Signed Links

	Views
	Returning Simple Routes Directly with Route::view()
	Using View Composers to Share Variables with Every View

	Controllers
	Getting User Input
	Injecting Dependencies into Controllers
	Resource Controllers
	API Resource Controllers
	Single Action Controllers

	Route Model Binding
	Implicit Route Model Binding
	Custom Route Model Binding

	Route Caching
	Form Method Spoofing
	HTTP Verbs in Laravel
	HTTP Method Spoofing in HTML Forms

	CSRF Protection
	Redirects
	redirect()->to()
	redirect()->route()
	redirect()->back()
	Other Redirect Methods
	redirect()->with()

	Aborting the Request
	Custom Responses
	response()->make()
	response()->json() and ->jsonp()
	response()->download(), ->streamDownload(), and ->file()

	Testing
	TL;DR

	Chapter 4. Blade Templating
	Echoing Data
	Control Structures
	Conditionals
	Loops

	Template Inheritance
	Defining Sections with @section/@show and @yield
	Including View Partials
	Using Stacks
	Using Components and Slots

	View Composers and Service Injection
	Binding Data to Views Using View Composers
	Blade Service Injection

	Custom Blade Directives
	Parameters in Custom Blade Directives
	Example: Using Custom Blade Directives for a Multitenant App
	Easier Custom Directives for “if” Statements

	Testing
	TL;DR

	Chapter 5. Databases and Eloquent
	Configuration
	Database Connections
	Other Database Configuration Options
	Defining Migrations
	Running Migrations

	Seeding
	Creating a Seeder
	Model Factories

	Query Builder
	Basic Usage of the DB Facade
	Raw SQL
	Chaining with the Query Builder
	Transactions

	Introduction to Eloquent
	Creating and Defining Eloquent Models
	Retrieving Data with Eloquent
	Inserts and Updates with Eloquent
	Deleting with Eloquent
	Scopes
	Customizing Field Interactions with Accessors, Mutators, and Attribute Casting
	Eloquent Collections
	Eloquent Serialization
	Eloquent Relationships
	Child Records Updating Parent Record Timestamps

	Eloquent Events
	Testing
	TL;DR

	Chapter 6. Frontend Components
	Laravel Mix
	Mix Folder Structure
	Running Mix
	What Does Mix Provide?

	Frontend Presets and Auth Scaffolding
	Frontend Presets
	Auth Scaffolding

	Pagination
	Paginating Database Results
	Manually Creating Paginators

	Message Bags
	Named Error Bags

	String Helpers, Pluralization, and Localization
	The String Helpers and Pluralization
	Localization

	Testing
	Testing Message and Error Bags
	Translation and Localization

	TL;DR

	Chapter 7. Collecting and Handling User Data
	Injecting a Request Object
	$request->all()
	$request->except() and $request->only()
	$request->has()
	$request->input()
	$request->method() and ->isMethod()
	Array Input
	JSON Input (and $request->json())

	Route Data
	From Request
	From Route Parameters

	Uploaded Files
	Validation
	validate() on the Request Object
	Manual Validation
	Custom Rule Objects
	Displaying Validation Error Messages

	Form Requests
	Creating a Form Request
	Using a Form Request

	Eloquent Model Mass Assignment
	{{ Versus {!!
	Testing
	TL;DR

	Chapter 8. Artisan and Tinker
	An Introduction to Artisan
	Basic Artisan Commands
	Options
	The Grouped Commands

	Writing Custom Artisan Commands
	A Sample Command
	Arguments and Options
	Using Input
	Prompts
	Output
	Writing Closure-Based Commands

	Calling Artisan Commands in Normal Code
	Tinker
	Laravel Dump Server
	Testing
	TL;DR

	Chapter 9. User Authentication and Authorization
	The User Model and Migration
	Using the auth() Global Helper and the Auth Facade
	The Auth Controllers
	RegisterController
	LoginController
	ResetPasswordController
	ForgotPasswordController
	VerificationController

	Auth::routes()
	The Auth Scaffold
	“Remember Me”
	Manually Authenticating Users
	Manually Logging Out a User
	Invalidating Sessions on Other Devices

	Auth Middleware
	Email Verification
	Blade Authentication Directives
	Guards
	Changing the Default Guard
	Using Other Guards Without Changing the Default
	Adding a New Guard
	Closure Request Guards
	Creating a Custom User Provider
	Custom User Providers for Nonrelational Databases

	Auth Events
	Authorization (ACL) and Roles
	Defining Authorization Rules
	The Gate Facade (and Injecting Gate)
	Resource Gates
	The Authorize Middleware
	Controller Authorization
	Checking on the User Instance
	Blade Checks
	Intercepting Checks
	Policies

	Testing
	TL;DR

	Chapter 10. Requests, Responses, and Middleware
	Laravel’s Request Lifecycle
	Bootstrapping the Application
	Service Providers

	The Request Object
	Getting a Request Object in Laravel
	Getting Basic Information About a Request

	The Response Object
	Using and Creating Response Objects in Controllers
	Specialized Response Types

	Laravel and Middleware
	An Introduction to Middleware
	Creating Custom Middleware
	Binding Middleware
	Passing Parameters to Middleware

	Trusted Proxies
	Testing
	TL;DR

	Chapter 11. The Container
	A Quick Introduction to Dependency Injection
	Dependency Injection and Laravel
	The app() Global Helper
	How the Container Is Wired
	Binding Classes to the Container
	Binding to a Closure
	Binding to Singletons, Aliases, and Instances
	Binding a Concrete Instance to an Interface
	Contextual Binding

	Constructor Injection in Laravel Framework Files
	Method Injection
	Facades and the Container
	How Facades Work
	Real-Time Facades

	Service Providers
	Testing
	TL;DR

	Chapter 12. Testing
	Testing Basics
	Naming Tests
	The Testing Environment
	The Testing Traits
	RefreshDatabase
	WithoutMiddleware
	DatabaseMigrations
	DatabaseTransactions

	Simple Unit Tests
	Application Testing: How It Works
	TestCase

	HTTP Tests
	Testing Basic Pages with $this->get() and Other HTTP Calls
	Testing JSON APIs with $this->getJson() and Other JSON HTTP Calls
	Assertions Against $response
	Authenticating Responses
	A Few Other Customizations to Your HTTP Tests
	Handling Exceptions in Application Tests

	Database Tests
	Using Model Factories in Tests
	Seeding in Tests

	Testing Other Laravel Systems
	Event Fakes
	Bus and Queue Fakes
	Mail Fakes
	Notification Fakes
	Storage Fakes

	Mocking
	A Quick Introduction to Mocking
	A Quick Introduction to Mockery
	Faking Other Facades

	Testing Artisan Commands
	Asserting Against Artisan Command Syntax

	Browser Tests
	Choosing a Tool
	Testing with Dusk

	TL;DR

	Chapter 13. Writing APIs
	The Basics of REST-Like JSON APIs
	Controller Organization and JSON Returns
	Reading and Sending Headers
	Sending Response Headers in Laravel
	Reading Request Headers in Laravel

	Eloquent Pagination
	Sorting and Filtering
	Sorting Your API Results
	Filtering Your API Results

	Transforming Results
	Writing Your Own Transformer
	Nesting and Relationships with Custom Transformers

	API Resources
	Creating a Resource Class
	Resource Collections
	Nesting Relationships
	Using Pagination with API Resources
	Conditionally Applying Attributes
	More Customizations for API Resources

	API Authentication with Laravel Passport
	A Brief Introduction to OAuth 2.0
	Installing Passport
	Passport’s API
	Passport’s Available Grant Types
	Managing Clients and Tokens with the Passport API and Vue Components
	Passport Scopes
	Deploying Passport

	API Token Authentication
	Customizing 404 Responses
	Triggering the Fallback Route

	Testing
	Testing Passport

	TL;DR

	Chapter 14. Storage and Retrieval
	Local and Cloud File Managers
	Configuring File Access
	Using the Storage Facade
	Adding Additional Flysystem Providers

	Basic File Uploads and Manipulation
	Simple File Downloads
	Sessions
	Accessing the Session
	Methods Available on Session Instances
	Flash Session Storage

	Cache
	Accessing the Cache
	Methods Available on Cache Instances

	Cookies
	Cookies in Laravel
	Accessing the Cookie Tools

	Logging
	When and Why to Use Logs
	Writing to the Logs
	Log Channels

	Full-Text Search with Laravel Scout
	Installing Scout
	Marking Your Model for Indexing
	Searching Your Index
	Queues and Scout
	Performing Operations Without Indexing
	Conditionally Indexing Models
	Manually Triggering Indexing via Code
	Manually Triggering Indexing via the CLI

	Testing
	File Storage
	Session
	Cache
	Cookies
	Log
	Scout

	TL;DR

	Chapter 15. Mail and Notifications
	Mail
	“Classic” Mail
	Basic “Mailable” Mail Usage
	Mail Templates
	Methods Available in build()
	Attachments and Inline Images
	Markdown Mailables
	Rendering Mailables to the Browser
	Queues
	Local Development

	Notifications
	Defining the via() Method for Your Notifiables
	Sending Notifications
	Queueing Notifications
	Out-of-the-Box Notification Types

	Testing
	Mail
	Notifications

	TL;DR

	Chapter 16. Queues, Jobs, Events, Broadcasting, and the Scheduler
	Queues
	Why Queues?
	Basic Queue Configuration
	Queued Jobs
	Running a Queue Worker
	Handling Errors
	Controlling the Queue
	Queues Supporting Other Functions

	Laravel Horizon
	Events
	Firing an Event
	Listening for an Event

	Broadcasting Events over WebSockets, and Laravel Echo
	Configuration and Setup
	Broadcasting an Event
	Receiving the Message
	Advanced Broadcasting Tools
	Laravel Echo (the JavaScript Side)

	Scheduler
	Available Task Types
	Available Time Frames
	Defining Time Zones for Scheduled Commands
	Blocking and Overlap
	Handling Task Output
	Task Hooks

	Testing
	TL;DR

	Chapter 17. Helpers and Collections
	Helpers
	Arrays
	Strings
	Application Paths
	URLs
	Miscellaneous

	Collections
	The Basics
	A Few Methods

	TL;DR

	Chapter 18. The Laravel Ecosystem
	Tools Covered in This Book
	Valet
	Homestead
	The Laravel Installer
	Mix
	Dusk
	Passport
	Horizon
	Echo

	Tools Not Covered in This Book
	Forge
	Envoyer
	Cashier
	Socialite
	Nova
	Spark
	Lumen
	Envoy
	Telescope

	Other Resources

	Glossary
	Index
	About the Author
	Colophon

