

Creating Cross-
Platform C#
Applications with
Uno Platform

Build apps with C# and XAML that run on Windows,
macOS, iOS, Android, and WebAssembly

Matt Lacey

Marcel Alexander Wagner

BIRMINGHAM—MUMBAI

Creating Cross-Platform C# Applications
with Uno Platform
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without warranty,
either express or implied. Neither the authors, nor Packt Publishing or its dealers and distributors,
will be held liable for any damages caused or alleged to have been caused directly or indirectly
by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Associate Group Product Manager: Pavan Ramchandani
Publishing Product Manager: Rohit Rajkumar
Senior Editor: Sofi Rogers
Content Development Editor: Feza Shaikh
Technical Editor: Saurabh Kadave
Copy Editor: Safis Editing
Project Coordinator: Manthan Patel
Proofreader: Safis Editing
Indexer: Subalakshmi Govindhan
Production Designer: Vijay Kamble

First published: September 2021
Production reference: 1250821

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

978-1-80107-849-8

www.packt.com

http://www.packt.com

 Contributors

About the authors
Matt Lacey has been building desktop and mobile software since the '90s. He currently
works as an independent development consultant and focuses on helping developers
to create better software. Having worked in companies of all sizes and in a wide variety
of industries, he brings this breadth of experience to present a viewpoint that considers
technology, business, and design.

Matt is a Microsoft MVP in Windows Development, regularly speaks at user groups and
conferences in multiple countries, and is a prolific contributor to a plethora of open source
projects. He lives in the UK with his wife and two children.

Marcel Alexander Wagner is a full-stack software developer and open source contributor.
He is a Microsoft MVP in Windows Development and a top contributor to the WinUI
library and the XAML Controls Gallery, while also contributing to other projects and
libraries, including the Windows Community Toolkit and Uno Platform.

Marcel graduated with a Bachelor of Science in computer science and has since been
developing applications and services with a wide variety of technologies, including React,
Java, C#, C++, UWP, and Uno Platform. He currently resides in Germany.

About the reviewers
David Oliver is an open source framework developer with a .NET background. He is
a recovering physicist and lapsed Australian. He is currently a senior developer on the
Uno Platform core team.

Martin Zikmund is a freelance software developer and Microsoft Developer Technologies
MVP. He specializes in building cross-platform mobile and cloud solutions on the
Microsoft technology stack. His passion is contributing to open source, especially to Uno
Platform. You can also encounter him on Stack Overflow, where he frequently helps other
developers. To document his developer journey, Martin regularly writes articles on his
blog and tweets about interesting things he comes across. In his spare time, he likes to play
squash, game on Xbox, read, and search for geocaches.

Nick Randolph currently runs Built to Roam, which focuses on building rich mobile
applications. He has been identified as a Microsoft MVP in recognition of his work and
expertise with Microsoft application platforms.

Nick is an active contributor in the device application development space via his blog.
He has been invited to present at a variety of events, including TechEd and Ignite Australia
and NZ, DDD, NDC, and local user groups. He has also authored multiple books on
Visual Studio and Windows development.

Shimmy Weitzhandler is a skilled full-stack developer and consultant
working independently.

He has been coding for nearly two decades, and has used technologies ranging from ASP.
NET, HTML, and JavaScript with VB.NET to WPF, Silverlight, WinUI, and, for the past
few years, Uno Platform.

Among his projects are an emergency response system, a club card management and
points accumulation portal, video conversion software, a school and college system,
e-commerce websites, and QuickBooks components.

Shimmy is an active member and contributor on key tech hubs such as GitHub and
Stack Overflow.

He is well known for his distinct programming style, his architectural thinking, and his
dedication to creativity and transparency, utilizing the latest technologies.

Table of Contents

Preface

Section 1:
Getting to Know Uno Platform

1
Introducing Uno Platform

Technical requirements 4
Understanding what
Uno Platform is 4
A brief history of Uno Platform 5
How Uno Platform works 6
Is it a panacea? 8

Using Uno Platform 9
Uno Platform allows you to use
what you already know 9
Uno Platform supports many platforms 10
Can Uno Platform do everything that

your app requires? 11
How does Uno Platform compare
to the alternatives? 12

Setting up your
development environment 14
Developing with Visual Studio 14
Using other editors and IDEs 17
Checking your setup 19
Debugging your setup 19

Summary 21
Further reading 21

2
Writing Your First Uno Platform App

Technical requirements 24
Creating your first app 24
Creating your project with the
Uno Platform solution templates 25
Creating your project with the .NET CLI 27

Project structure and the heads 28

Building and running
your first Uno Platform app 31
Running and debugging your app
with Visual Studio on Windows 31

vi Table of Contents

Running and debugging your apps
with Visual Studio for Mac 34
Debugging the WASM head of your app 35
XAML Hot Reload and C# Edit
and Continue 38

Platform-specific XAML and C# 41
Platform-specific C# 41

Platform-specific XAML 42

Going beyond the default
cross-platform app structure 46
The multi-platform library project type 46
Other project types 50

Summary 51

Section 2:
Writing and Developing Uno Platform Apps

3
Working with Forms and Data

Technical requirements 56
Introducing the app 56
Creating the app 56

Entering and validating data 62
Using Windows Community
Toolkit controls 69

Displaying data using DataGrid 73

Displaying data with
the DataGrid control 75

Exporting issues in PDF format 78
Exporting on desktop 81
Exporting on the web
with a download link 84

Summary 88

4
Mobilizing Your App

Technical requirements 89
Introducing the app 90
Creating the app 91
Creating the main page 91
Showing upcoming arrival details 95

Retrieving remote data 107
Connecting to a remote data source 107
Using Polly to handle exceptions
and retry requests 110

Making your app look like it
belongs on each platform 111
Applying Material styles to
the Android version of the app 112
Applying Cupertino styles to
the iOS version of the app 115

Accessing device capabilities 119
Summary 126

Table of Contents vii

5
Making Your App Ready for the Real World

Technical requirements 128
Introducing the app 128
Creating the app 128
Creating the main navigation
and booking process 129

Persisting data locally
using the ApplicationData API
and SQLite 138
Storing data using the ApplicationData

API 138
Using SQLite to store data 141
Loading data from SQLite 144

Making your app ready
for customers 146
Localizing your app 147
Customizing your app's appearance 151
Ensuring everyone can use your app 155

Summary 160

6
Displaying Data in Charts and with Custom 2D Graphics

Technical requirements 162
Introducing the app 162
Creating the app 162
Creating the individual pages 163
Creating the main page 163

Displaying charts with
controls from SyncFusion 166
Updating references to include the
SyncFusion controls 167
Drawing a line chart 167

Displaying charts with
controls from Infragistics 169
Updating references 170

Drawing a column chart 171

Drawing custom graphics
with SkiaSharp 174
Updating project references 176
Drawing the network map 176

Responding to changes
in the UI 180
Changing the page layout 180
Stretching and scaling content
to fit the available space 183

Summary 183

viii Table of Contents

Section 3:
Test, Deploy, and Contribute

7
Testing Your Apps

Technical requirements 188
Getting started with
Uno.UITest 188
Writing and running
your first test 194
How Uno.UITest works 194
Authoring your first test 196
Running your tests on Android,
iOS, and WASM 198

Writing more complex tests 200

Test tools beside
Uno.UITest 205
Testing the UWP head of
your app with WinAppDriver 205
Writing unit tests for your
Uno Platform app 210

Performing manual testing
and why it is important 215
Summary 218

8
Deploying Your Apps and Going Further

Technical requirements 220
Bringing Xamarin.Forms
apps to WebAssembly 220
Deploying a Wasm Uno
Platform app to the web 223
Automating build, tests,
and distribution 227

Deploying your app to a store 228
Engaging with the
Uno Platform community 229
Sources of information 229
Sources of help 230
Contributing 231

Summary 232
Other Books You May Enjoy
Index

Preface
Developers are increasingly being asked to build native applications that run on multiple
operating systems and in the browser. In the past, this would have meant learning new
technologies and making multiple copies of an application. But Uno Platform allows
you to use tools, languages, and APIs you already know from building Windows apps
to develop apps that can also run on other platforms. This book will help you to create
customer-facing as well as line-of-business apps that can be used on the device, browser,
or operating system of your choice.

This practical guide enables developers to put their C# and XAML knowledge to work
by writing cross-platform apps using Uno Platform. Packed with tips and practical
examples, this book will help you to build applications for common scenarios. You'll
begin by learning about Uno Platform through step-by-step explanations of essential
concepts, before moving on to creating cross-platform apps for different lines of business.
Throughout this book, you'll work with examples that will teach you how to combine
your existing knowledge to manage common development environments and implement
frequently needed functionality.

By the end of this Uno Platform development book, you will have learned how to write
your own cross-platform apps with Uno Platform and use additional tools and libraries
to speed up your app development process.

Who this book is for
This book is for developers who are familiar with app development for Windows and
want to use their existing skills to build cross-platform apps. Basic knowledge of
C# and XAML is required to get started with this book. Anyone with basic experience
of app development using WPF, UWP, or WinUI will be able to learn how to create
cross-platform applications with Uno Platform.

x Preface

What this book covers
Chapter 1, Introducing Uno Platform, introduces the Uno Platform, explaining what
it is designed for and when to use it. After this, the chapter will cover how to set up the
development machine and install the necessary tools.

Chapter 2, Writing Your First Uno Platform App, walks through creating your first Uno
Platform app and covers the app's structure. By the end of this chapter, you will have
written a small Uno Platform app that can be run on different platforms and display
content based on the OS the app is running on.

Chapter 3, Working with Forms and Data, walks you through developing a data-focused
line-of-business app for the fictional company UnoBookRail. The chapter covers
displaying data, providing input validation on forms, and exporting data to PDF.

Chapter 4, Mobilizing Your App, introduces you to developing mobile apps using Uno
Platform. In addition to that, the chapter covers working with remote data on devices
with unstable internet connections, styling the app based on the platform it is running on,
and using device capabilities such as the camera.

Chapter 5, Making Your App Ready for the Real World, covers writing a mobile app that is
aimed at external customers. As part of this, it covers persisting data locally on the device,
localizing your app, and writing an accessible app with Uno Platform.

Chapter 6, Displaying Data in Charts and with Custom 2D Graphics, explores displaying
graphs and charts in an Uno Platform app. The chapter covers using libraries such as
SyncFusion and creating custom graphics using SkiaSharp. Lastly, the chapter covers
writing a UI that responds to changes in screen size.

Chapter 7, Testing Your Apps, introduces you to UI testing with Uno.UITest. In addition,
this chapter covers writing automated UI tests with WinAppDriver, writing unit tests for
the Windows 10 version of the app, and testing the app for accessibility.

Chapter 8, Deploying Your Apps and Going Further, walks you through bringing your
Xamarin.Forms app to the web with Uno Platform and deploying WASM Uno Platform
apps to Azure. After this, the chapter covers deploying an Uno Platform app and joining
the Uno Platform community.

Preface xi

To get the most out of this book
In this book, we will be using Visual Studio 2019 on Windows 10 and the .NET CLI to
develop Uno Platform apps. We will cover installing the necessary extensions and CLI
tools; however, installing Visual Studio and the .NET CLI will not be covered. To install
the required software, you will need a functional internet connection.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-
Applications-with-Uno-Platform. If there's an update to the code, it will be
updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Code in Action
The Code in Action videos for this book can be viewed at https://bit.ly/3yHTfYL

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801078498_ColorImages.pdf.

https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform
https://github.com/PacktPublishing/
https://bit.ly/3yHTfYL
https://static.packt-cdn.com/downloads/9781801078498_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801078498_ColorImages.pdf

xii Preface

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "Inside the UnoAutomatedTestsApp folder, create a folder named
UnoAutomatedTestsApp.UITests."

A block of code is set as follows:

private void ChangeTextButton_Click(object sender,

 RoutedEventArgs e)

{

 helloTextBlock.Text = "Hello from code behind!";

}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

<skia:SKXamlCanvas

xmlns:skia="using:SkiaSharp.Views.UWP"

PaintSurface="OnPaintSurface" />

Any command-line input or output is written as follows:

dotnet new unoapp -o MyApp

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "Open the
Test Explorer by clicking View in the menu bar and clicking on Test Explorer."

Tips or important notes
Appear like this.

Preface xiii

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata and fill in
the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share Your Thoughts
Once you’ve read Creating Cross-Platform C# Applications with Uno Platform, we’d love
to hear your thoughts! Please click here to go straight to the Amazon review page for
this book and share your feedback.

Your review is important to us and the tech community and will help us make sure
we’re delivering excellent quality content.

https://customercare@packtpub.com
https://www.packtpub.com/support/errata
https://copyright@packt.com
https://authors.packtpub.com
https://authors.packtpub.com
https://packt.link/r/1801078491

Section 1:
Getting to Know

Uno Platform

This part of the book will provide you with all the information you need to know about
Uno Platform and how to determine which of your projects it is appropriate for. It will
then detail how to set up your development environment(s) for building apps with Uno
Platform and walk you through creating your first app. It will then explore the basics of
working with an app built with Uno Platform and show how you can use the tools and
skills you're already familiar with. Additionally, it will show you how to do some of the
most common tasks that developers need to do in most apps.

In this section, we include the following chapters:

• Chapter 1, Introducing Uno Platform

• Chapter 2, Writing Your First Uno Platform App

https://epic.packtpub.com/index.php?module=oss_Chapters&action=DetailView&record=dee171fb-fe6a-ca84-f455-604f3ef47d51

1
Introducing Uno

Platform
Uno Platform is a cross-platform, single-codebase solution for developing applications
that run on various devices and operating systems. It does this while building on the rich
heritage of Windows development APIs and tooling. This allows you to take the Windows
app development skills you already have and use them to build apps for Android, iOS,
macOS, WebAssembly, Linux, and others.

This book will be your guide to Uno Platform. It will show you how to use Uno Platform's
functionality to build a variety of different applications that address real-world scenarios.

In this chapter, we'll cover the following topics:

• Understanding what Uno Platform is

• Using Uno Platform

• Setting up your development environment

By the end of this chapter, you'll understand why you'll want to use Uno Platform to
develop apps, and the types of applications it's best suited to help you build. You'll also be
able to set up your environment so that you're ready to start building apps when reading
subsequent chapters in this book.

4 Introducing Uno Platform

Technical requirements
In this chapter, you will be guided through the process of setting up your development
machine. To work through all the examples in the book, you will need a machine running
any of the following:

• Windows 10 (1809) or higher

• macOS 10.15 (Catalina) or higher

If you only have access to one, you'll still be able to follow along with most of the book.
The book will primarily assume you are working with a Windows machine. We will only
show examples that use Mac when absolutely necessary.

There is no source code for this chapter. However, the code for the other chapters can
be found at the following URL: https://github.com/PacktPublishing/
Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform.

Understanding what Uno Platform is
According to the website (https://platform.uno/), Uno Platform is "the first and
only UI Platform for single-codebase applications for Windows, WebAssembly, iOS, macOS,
Android and Linux."

That's a complex sentence so let's break down the key elements:

• As a UI platform, it's a way of building applications with a User Interface (UI). This
is in contrast to those platforms that are text-based and run from the command line
(or equivalent), are embedded in hardware, or are interacted with in other ways,
such as by voice.

• Using a single code base means you only need to write code once to have it run
on multiple devices and operating systems. Specifically, this means the same code
can be compiled for each platform the app will run on. This is in contrast with
tools that convert or transpile code into a different programming language before
being compiled for another platform. It's also the only code base that's singular,
not the output. Some comparable tools create a unique package that runs inside
a host application on each OS, or create everything in HTML and JavaScript, and
run inside an embedded browser. Uno Platform does neither of these. Instead,
it produces native application packages for each platform.

https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform
https://platform.uno/

Understanding what Uno Platform is 5

• Windows apps are based on the Universal Windows Platform (UWP) for Windows
10. Work is currently being done at Microsoft to make WinUI 3 the successor to
UWP. Uno Platform has partnered with Microsoft to ensure that Uno Platform can
easily transition from UWP once WinUI 3 is at a comparable operative level.

• Windows support also includes the Windows Presentation Foundation (WPF),
powered by SkiaSharp, for apps that need to run on older versions of Windows
(7.1 or 8.1).

• Applications that run in WebAssembly have all their code compiled to run inside
a web browser. This means they can be accessed from any device with a compatible
browser, without running code on the server.

• By supporting iOS, the apps that are created can run on iPhones and iPads.

• With support for macOS, the apps can run on a MacBook, iMac, or Mac Mini.

• Support for Android applies to phones and tablets running the Android
operating system.

• Linux support applies to specific Linux PC equivalent distributions and is powered
by SkiaSharp.

Uno Platform does all of the preceding by reusing the tooling, APIs, and XAML that
Microsoft created for building UWP apps.

Another way to answer the "what is Uno Platform?" question is that it's a way to write code
once and have it run everywhere. The exact definition of "everywhere" is imprecise, as
it doesn't include every embedded system or microcontroller capable of running code.
Still, many developers and businesses have long had the desire to write code once and run
it easily on multiple platforms. Uno Platform makes this possible.

One of the early criticisms of Microsoft's UWP was that it was only universal on Windows.
With Uno Platform, developers can now make their UWP apps genuinely universal.

A brief history of Uno Platform
With the varied number of cross-platform tools available today, it's easy to forget how
limited the options were back in 2013. At that time, there were no general-purpose tools
for easily building native apps that ran on multiple operating systems.

6 Introducing Uno Platform

It was at that time that nventive (https://nventive.com/), a Canadian software
design and development company, faced a challenge. They had lots of knowledge and
experience in building applications for Windows and Microsoft tools, but their customers
were also asking them to create applications for Android and iOS devices. Rather than
retrain staff or duplicate effort by building multiple versions of the same software for the
different platforms, they invented a way to compile the code they wrote for Windows
Phone (and later UWP) apps and transfer it to other platforms.

By 2018, it was obvious this approach had been successful for them. They then did the
two following things:

1. They turned the tool they had created into an open source project, calling
it Uno Platform.

2. They added support for WebAssembly.

As an open source project, this allowed other developers tackling the same problem to
work together. Uno Platform has since seen thousands of contributions from over 200
external contributors, and involvement has been expanded to support more platforms and
add additional functionality for the initially supported platforms.

As an open source project, it is free to use. Additionally, it is supported by a company with
a business model that was made popular by Red Hat, and has been adopted widely. Usage
is free and there is some free public support. However, professional support, training, and
custom development are available only through payment.

How Uno Platform works
Uno Platform works in different ways and uses multiple underlying technologies,
depending on the platform you're building for. These are summarized in Figure 1.1:

• If you're building an app for Windows 10, Uno Platform does nothing and lets
all the UWP tooling compile and execute your app.

• If you're building an app for iOS, macOS, or Android, Uno Platform maps your UI
to the native platform equivalents and uses native Xamarin libraries to call into the
OS it is running on. It produces the appropriate native packages for each OS.

• If you're building a WebAssembly app, Uno Platform compiles your code against the
mono.wasm runtime and maps the UI to HTML and CSS. This is then packaged
into a .NET library that is launched with the Uno Platform web bootstrapper as
static web content.

https://nventive.com/

Understanding what Uno Platform is 7

• To create Linux apps, Uno Platform converts your code to the .NET equivalent and
uses Skia to create a version of the UI. It then outputs a .NET5 app that uses GTK3
to present the UI.

• Apps for Windows 7 and 8 are created by Uno Platform by wrapping the compiled
code in a simple WPF (NETCore 3.1) app that uses SkiaSharp to render the UI.

Refer to the following diagram:

Figure 1.1 – The high-level architecture of Uno Platform

Whichever operating system or platform you're building for, Uno Platform uses the
native controls for the platform. This enables your apps to achieve the experience and
performance of a fully native app. The exception to this is where it uses SkiaSharp.
By using SkiaSharp, Uno Platform draws all UI content on a canvas rather than using
platform-native controls. Uno Platform does not add an extra layer of abstraction to the
running app (as you might find with cross-platform solutions that use a container, such
as an embedded WebView within a shell app).

Uno Platform enables you to do a lot with a single code base. But can it do everything?

8 Introducing Uno Platform

Is it a panacea?
The principle of writing code once and running that code everywhere is both powerful
and appealing. However, it's necessary to be aware of the following two key points:

• Not all applications should be created for all platforms.

• It's not an excuse for not knowing the platforms the apps will run on.

Additionally, not everything warrants an app. Suppose you just want to share some
information that won't be frequently updated. In such a scenario, a website with static
web pages would likely be more appropriate.

The lesson just because you can do something doesn't mean you should applies to
applications too. When you see how easy it is to create applications that run on multiple
platforms, you may be tempted to deploy your applications everywhere you can. Before
you do this, there are some important questions you need to ask:

• Is the app wanted or needed on all the platforms? Do people want and need to use
it on all the platforms you make it available? If not, you may be wasting effort by
putting it there.

• Does the application make sense on all the platforms? Suppose the application has key
functionality that involves capturing images while outside. Does it make sense to
make it available on a PC or Mac? In contrast, if the application requires the entry of
lots of information, is this something people will want to do on the small screen of
a mobile phone? Your decision about where to make an application available should
be determined by its functionality and the people who will use it. Don't let your
decision be based solely on what's possible.

• Can you support it on all platforms? Does the value you gain by making an
application available on a platform justify the time and effort in releasing,
maintaining, and supporting the application on that platform? If you only have
a small number of people use the app on a particular type of device, but they
generate many support requests, it's OK to reevaluate your support for such devices.

No technology will render a perfect solution for all scenarios, but hopefully, you can
already see the opportunity that Uno Platform provides. Let's now look a bit closer at why
and when you might want to use it.

Using Uno Platform 9

Using Uno Platform
Now you know what Uno Platform is, we'll look at what you need to consider when
choosing whether to use it. There are four factors to consider:

• What you already know.

• What platforms do you wish to target?

• The functionality required in the app.

• How it compares to alternatives.

Let's explore each of these factors in relation to Uno Platform.

Uno Platform allows you to use what
you already know
Uno Platform was initially created for developers using C# and XAML within Visual
Studio. If this is familiar to you, this will make it easy to start using Uno Platform,
as you'll be working with the software you already know.

If you're already familiar with UWP development, the differences will be minimal.
If you're familiar with WPF development, there are minor differences in XAML syntax
and available functionality. As we go through the book, you'll learn everything you need
to build with Uno Platform. As long as you don't expect everything to work as it does in
WPF, you'll be fine. Also, as the WinUI and Uno Platform teams are working to remove
the minor differences that exist, you may never notice a difference.

If you don't know C# or XAML, Uno Platform may still be suitable for you, but as this
book assumes familiarity with these languages, you may find it helpful to first read C# 9
and .NET 5 – Modern Cross-Platform Development – Fifth Edition, Mark J. Price, Packt
Publishing, and Learn WinUI 3.0, Alvin Ashcraft, Packt Publishing.

10 Introducing Uno Platform

Uno Platform supports many platforms
One of the great things about Uno Platform is the number of platforms it allows you to
build for. Uno Platform has support for the most common platforms, but if you need
to build applications that run on a niche platform or specialist device, then it may not
be suitable for you. Additionally, if you need to support an old version of a platform
or operating system, you may have to find workarounds or alternative solutions. The
following table shows the versions of the supported platforms you can build for with
Uno Platform:

Figure 1.2 – The lowest supported platform versions supported by Uno Platform

Using Uno Platform 11

Support for multiple platforms can also be advantageous, even when you want very
different application behaviors or functionalities across different platforms. It's possible
to support multiple platforms by creating multiple solutions, rather than by combining
everything into a single solution.

Uno Platform boasts up to 99% reuse of code and UI. This is great when you need the
same thing on all devices. However, if you require different behavior or a UI that's highly
customized for different platforms (something that we'll look into in future chapters),
it can be easier to build the different applications in different solutions, as opposed to
putting lots of conditional logic in the code. There is no hard and fast rule for how much
conditional code is too much, and it varies based on project and personal preference. Just
remember it remains an option if you ever find your code is becoming full of conditional
comments that make it hard to manage.

Accordingly, it's also possible to use Uno Platform to build for a single platform. You may
not want to create an app that runs everywhere. You may only be interested in a single
platform. If that's the case, you can use Uno Platform for that too. It also makes it easy to
add additional platforms in the future if your needs change.

Can Uno Platform do everything that your app
requires?
Core to Uno Platform's ability to reuse the UWP APIs to build for other platforms is
that it has code to map the UWP API to its equivalent on the other platforms. Due to
time, practicality, and priority limitations, not all APIs are available on all platforms.
By way of general guidance, the most common APIs are available on the broadest number
of platforms. Suppose you need to use more specialist functionality or are targeting
something other than Android, iOS, Mac, or WebAssembly? In that case, it's advisable
to check that the features you need are available.

Tip
We recommended confirming that the functionality you need for your app is
available before you start writing code. This will allow you to avoid any nasty
surprises late in the development process.

12 Introducing Uno Platform

Due to the permanence of printed books and the frequency with which new functionality
is added and more APIs are supported, it's not appropriate to list what is supported
here. Instead, you can see a high-level list of supported features at the following URL:
https://platform.uno/docs/articles/supported-features.html.
There's also a list of supported UI elements at the following URL: https://platform.
uno/docs/articles/implemented-views.html. Of course, the definitive way
to confirm what is and isn't available is to check the source code at the following URL:
https://github.com/unoplatform/uno.

If you try and use an API that is not supported, you'll see a hint inside Visual Studio, as is
shown in Figure 1.3. If you try and use this at runtime, you'll either get nothing (a NOOP)
or a NotSupported exception:

Figure 1.3 – An example of an unsupported API being indicated in Visual Studio

If necessary, you can check for supported features at runtime by using the Windows.
Foundation.Metadata.ApiInformation class.

As an open source project, there is also the option to add any currently unsupported
features yourself. Contributing such an addition back into the project is always greatly
appreciated and new contributors are always welcomed by the team.

How does Uno Platform compare to the alternatives?
As mentioned earlier, many tools are available for developing applications that run on
more than one platform. It is not our intention to discuss all the options available, as they
can be evaluated and compared with the previous three points. However, as this book is
intended for developers already familiar with C#, XAML, and Microsoft technologies,
it is appropriate to mention Xamarin.Forms.

Xamarin.Forms was created at around the same time as Uno Platform and has several
similarities. The two key ones are using C# and XAML to create apps that run on multiple
operating systems. Both do this by providing an abstraction over the Xamarin.iOS
and Xamarin.Android libraries that contain the C# bindings to the underlying
operating systems.

https://platform.uno/docs/articles/supported-features.html
https://platform.uno/docs/articles/implemented-views.html
https://platform.uno/docs/articles/implemented-views.html
https://github.com/unoplatform/uno

Using Uno Platform 13

The two biggest differences between Uno Platform and Xamarin.Forms are as follows:

• Uno Platform supports building for a greater number of platforms.

• Uno Platform reuses the UWP APIs and XAML syntax, rather than building
a custom one.

The second point is important for developers already familiar with UWP development.
The names of many Xamarin.Forms elements and properties are similar-sounding,
so remembering the variations can be challenging.

Version 5 of Xamarin.Forms was released toward the end of 2020 and is intended to be
the last version of Xamarin.Forms. It will be replaced with .NET Multi-platform App
UI (MAUI) as part of .NET 6. .NET MAUI will support building apps for iOS, Android,
Windows, and Mac from a single code base. However, it will not include the ability to also
build for WebAssembly. Microsoft already has Blazor for building for WebAssembly, and
so is not looking to add this capability to .NET MAUI.

.NET 6 will bring with it many new capabilities. Some of these capabilities are being added
specifically for .NET MAUI. Once part of .NET 6, these capabilities will not be limited
only to .NET MAUI. They will be available to Uno Platform apps too. The most obvious
of these new capabilities is in having a single project that can produce different outputs
for different platforms. This will enable a significant simplification of the required
solution structure.

Important note
As we write this book, Microsoft is preparing to release WinUI 3 as the next-
generation Windows development platform. This will build upon UWP and
is part of the Project Reunion effort to make all Windows functionality and
APIs available to developers, regardless of the UI framework or application
packaging technology they use.

As WinUI 3 is the successor of UWP development, the Uno Platform team
has publicly stated that plans and preparations are underway for Uno Platform
to transition to using WinUI 3 as the base upon which it builds. This is being
done in partnership with Microsoft, allowing the Uno Platform team to take
the WinUI code and modify it to work elsewhere. You can be confident that
anything you make now will have a path to transition to and take advantage
of the benefits and functionality that WinUI will bring.

Another similar cross-platform solution that uses XAML to define the UI of an app is
Avalonia (https://avaloniaui.net/). This, however, is different in that it focuses
only on applications for desktop environments.

https://avaloniaui.net/

14 Introducing Uno Platform

As you now have a solid understanding of what Uno Platform is and why you'll want to
use it, you'll need to set up your machine so you can write code and create apps.

Setting up your development environment
Now that you are familiar with Uno Platform, you're undoubtedly eager to begin writing
code. We'll start that in the next chapter, but you'll need to set up your development
environment before we can begin.

Visual Studio is the most popular Integrated Development Environment (IDE) for
developing Uno Platform apps. A large part of this is because it has the broadest set
of capabilities and the best support for building UWP apps.

Developing with Visual Studio
To build apps with Uno Platform using Visual Studio, you will need to do the following
three things:

• Ensure you have Visual Studio 2019 version 16.3 or higher, although using the
latest version is recommended.

• Install the necessary workloads.

• Install the project and item templates.

Installing the required workloads
The many tools, libraries, templates, SDK, and other utilities that can be installed as part
of Visual Studio are collectively called components. With over 100 components available,
related components are grouped into workloads to make it easier to choose what
you need. You select workloads in the Visual Studio Installer, and these are shown
in Figure 1.4:

Setting up your development environment 15

Figure 1.4 – The Visual Studio Installer showing various workload options

To build apps with Uno Platform, you'll need the following workloads installed:

• Universal Windows Platform Development

• Mobile development with .NET

• ASP.NET and web development

• .NET Core cross-platform development

Installing the required templates from the marketplace
To make it easier to build your Uno Platform applications, multiple project and item
templates are available. These are installed as part of the Uno Platform Solution
Templates extension. You can install this from within Visual Studio, or directly from
the marketplace.

16 Introducing Uno Platform

Installing templates from within Visual Studio
To install the extension containing the templates, perform the following actions within
Visual Studio:

1. Go to Extensions>Manage Extensions.
2. Search for Uno. It should be the first result.
3. Click the Download button.
4. Click Close, let the extension installer complete, and then restart Visual Studio:

Figure 1.5 – Uno Platform Solution Templates shown in the Manage Extensions dialog

Installing templates from the marketplace
Follow these steps to install the extension from the marketplace:

1. Go to https://marketplace.visualstudio.com and search for Uno.
It should be the first result returned.

Alternatively, go directly to the following URL: https://marketplace.
visualstudio.com/items?itemName=nventivecorp.uno-platform-
addin.

https://marketplace.visualstudio.com
https://marketplace.visualstudio.com/items?itemName=nventivecorp.uno-platform-addin
https://marketplace.visualstudio.com/items?itemName=nventivecorp.uno-platform-addin
https://marketplace.visualstudio.com/items?itemName=nventivecorp.uno-platform-addin

Setting up your development environment 17

2. Click on the Download button.
3. Double-click on the downloaded .vsix file to start the install wizard.
4. Follow the steps in the wizard.

With the workloads and templates installed, you're now ready to start building apps.
However, if you want to develop for iOS or Mac, you'll also need a Mac device set up
so that you can connect to it from Visual Studio on Windows.

Using other editors and IDEs
It's not compulsory to use Visual Studio 2019 on a Windows PC, and the Uno Platform
team has worked hard to make building Uno Platform apps as flexible as possible.
Therefore, you can use it within your existing working patterns and preferences.

Installing the required templates with the command line
In addition to working with the templates inside Visual Studio, it's also possible to install
them for use from the command line. To install them this way, run the following at the
command line or terminal:

dotnet new -i Uno.ProjectTemplates.Dotnet

After this command has finished, it will list all the available templates. You should see
multiple entries with a short name, beginning with uno.

Building Uno Platform apps with Visual Studio for Mac
To build Uno Platform apps using Visual Studio for Mac, you will require the following:

• Visual Studio for Mac version 8.8 or higher (using the latest version
is recommended).

• Xcode 12.0 or higher (using the latest version is recommended).

• An Apple ID.

• .NET Core 3.1 and 5.0 SDKs.

• GTK+3 (for running the Skia/GTK projects).

• The templates installed (see previous section).

• Enable the templates to be visible in Visual Studio for Mac by opening the
Preferences menu option and then selecting Other>Preview Features and checking
Show all .NET Core templates in the New Project Dialog.

18 Introducing Uno Platform

Links to all these are available at the following URL: https://platform.uno/docs/
articles/get-started-vsmac.html.

Building Uno Platform apps with Visual Studio Code
You can use Visual Studio Code to build WebAssembly apps on Windows, Linux, or Mac.
Using it to build apps for other platforms is not yet supported.

To build Uno Platform apps using Visual Studio Code, you will need the following:

• Visual Studio Code (using the latest version is recommended)

• Mono

• .NET Core 3.1 and 5.0 SDKs

• The templates installed (see previous section)

• C# extension for Visual Studio Code

• JavaScript Debugger (Nightly) extension for Visual Studio Code

Links to all these are available at the following URL: https://platform.uno/docs/
articles/get-started-vscode.html.

Building Uno Platform apps with JetBrains Rider
It is possible to use JetBrains Rider on Windows, Mac, and Linux, but not all platforms
can be built for with all versions.

To build Uno Platform apps with JetBrains Rider, you will need the following:

• Rider version 2020.2 or higher, although using the latest version is recommended

• Rider Xamarin Android Support Plugin

• .NET Core 3.1 and 5.0 SDKs

• The templates installed (see previous section)

There are some additional points to be aware of when using JetBrains Rider, as follows:

• WebAssembly apps cannot yet be debugged from within the IDE. As a workaround,
it's possible to use the Chromium in-browser debugger instead.

• If building the Skia/GTK projects on a Mac, you'll also need to install GTK+3.

• If you wish to build iOS or Mac apps using a Windows PC, you will need an
attached Mac (as you would if using Visual Studio).

https://platform.uno/docs/articles/get-started-vsmac.html
https://platform.uno/docs/articles/get-started-vsmac.html
https://platform.uno/docs/articles/get-started-vscode.html
https://platform.uno/docs/articles/get-started-vscode.html

Setting up your development environment 19

Links to all these and more details are available at the following URL: https://
platform.uno/docs/articles/get-started-rider.html.

Important note
It is also possible to use Blend for Visual Studio (on Windows) to work with
code as you can for regular UWP apps. However, Blend does not support all the
project types that an Uno Platform solution contains. You may find it beneficial
to have a separate version of the solution that doesn't include those projects,
and access that version in Blend.

Checking your setup
Uno Platform has a dotnet global tool to check if your machine is set up correctly and
walk you through addressing any issues it finds. It's called uno-check and it's very simple
to use, as follows:

1. Open a developer Command Prompt, Terminal, or PowerShell window.
2. Install the tool by entering the following:

dotnet tool install --global Uno.Check

3. Run the tool by entering the following:

uno-check

4. Follow any prompts it gives you and enjoy looking at the following message:
Congratulations, everything looks great!

Debugging your setup
Whichever IDE or code editor you use, there will be many parts, and the use of multiple
tools, SDKs, and even machines can make it hard to know where to begin when things
aren't working. The following are general tips to help work out what isn't working.
Some of these may seem obvious, but I'd rather look a fool for reminding you to check
something obvious than have you waste time on an unchecked assumption:

• Try restarting your machine. Yes, I know, it would be funny if it didn't work
so often.

• Read and then re-read any error messages carefully. They can sometimes be helpful.

• Check you have installed everything correctly.

https://platform.uno/docs/articles/get-started-rider.html
https://platform.uno/docs/articles/get-started-rider.html

20 Introducing Uno Platform

• Has anything changed? Even if you didn't do it directly, something might have been
changed automatically or without your knowledge (including, but not limited to, OS
updates, security patches, IDE updates, other apps being installed or uninstalled,
and network security permission changes).

• If one thing has been updated, have all dependencies and referenced components
been updated too? It's common that when things are connected, share references,
or communicate, they must be updated together.

• Have any keys or licenses expired?

• If there is a problem with a previously created app, can you create a new app
and compile and run that?

• Can you create a new app and confirm that it compiles and runs on each platform?

• If on Windows, can you create a new blank UWP app and then compile and
debug it?

Trying equivalent actions or creating equivalent apps with other tools can often produce
different error messages. In addition, you may also find paths to solutions that fix
problems in your Uno Platform project setup:

• If using a WebAssembly app, can you create a new, blank ASP.NET web app
or Blazor project and compile and debug that?

• If a WebAssembly app doesn't work in one browser, are error messages shown in the
browser log or debug window? Does it work in another browser?

• For Android, iOS, or macOS issues, can you create, compile, and debug Xamarin.
Forms apps?

• If there is an Android-specific issue, can you create and debug an app with
Android Studio?

• If using a Mac, can you create and debug a blank app with Xcode?

Additional tips for resolving common setup and configuration issues can be found at the
following two URLs:

• https://platform.uno/docs/articles/get-started-wizard.
html#common-issues

• https://platform.uno/docs/articles/uno-builds-
troubleshooting.html

https://platform.uno/docs/articles/get-started-wizard.html#common-issues
https://platform.uno/docs/articles/get-started-wizard.html#common-issues
https://platform.uno/docs/articles/uno-builds-troubleshooting.html
https://platform.uno/docs/articles/uno-builds-troubleshooting.html

Summary 21

If the issue comes from connecting to a Mac from a PC, the Xamarin documentation may
be helpful. It is available at the following URL: https://docs.microsoft.com/
en-us/xamarin/ios/get-started/installation/windows/connecting-
to-mac/. This can also help identify and address the issue in Uno Platform projects
as well.

Details on where to go for answers to specific Uno Platform-related questions can be
found in Chapter 8, Deploying Your Apps and Going Further.

Summary
In this chapter, we learned what Uno Platform is, the problem it was designed to
solve, and the types of projects we can use it for. We then looked at how to set up your
development environment, making it ready in order to build your first application with
Uno Platform.

In the next chapter, we will build our first Uno Platform app. We will explore the structure
of the generated solution, look at how to debug on different environments, and customize
the app when it runs on those different environments. We will look at how you can create
reusable libraries for use within your future Uno Platform projects. Finally, we will look at
some of the other options available for creating Uno Platform apps.

Further reading
The following titles were mentioned earlier in this chapter and may provide useful
background on working with C# and XAML if you are unfamiliar with them:

• C# 9 and .NET 5 – Modern Cross-Platform Development – Fifth Edition, Price, Packt
Publishing (2020)

• Learn WinUI 3.0, Ashcraft, Packt Publishing (2021)

https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/
https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/
https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/

 2
 Writing Your First
Uno Platform App

In this chapter, you will learn how to create a new Uno Platform app and see how
a typical Uno Platform app is structured. First, we will go over the default Uno Platform
app template, including the different projects included, and get you running on Windows
10 with your first Uno Platform app. After that, we will dive deeper into running and
debugging your app on different platforms by showing how to use emulators and
debugging the WebAssembly (Wasm) version of the app.

Since Uno Platform supports a plethora of platforms and more and more platforms are
being added to the list of supported platforms, in this book, we will only develop for
a subset of supported platforms. The following platforms are the most prominent and
widely used platforms, and as such, we will target them: Windows 10, Android, Web/
Wasm, macOS, and iOS.

24 Writing Your First Uno Platform App

While we mention the other platforms in this chapter for completeness, the other chapters
will only include the platforms mentioned earlier. This means that we will not show
you how to run or test your app on Linux, Tizen, or Windows 7/8.

In this chapter, we will cover the following topics:

• Creating an Uno Platform app and understanding its structure

• Running and debugging your app, including using XAML Hot Reload and C# Edit
and Continue

• Platform-specific code using C# compiler symbols and XAML prefixes

• Other project types besides the Uno Platform app

By the end of this chapter, you will have written your first Uno Platform app and created
customizations based on the running platform. In addition to that, you will be able to
make use of the different Uno Platform project types.

Technical requirements
This chapter assumes that you already have your development environment set up,
including installing the project templates, as was covered in Chapter 1, Introducing Uno
Platform. You can find the source code for this chapter here: https://github.com/
PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-
with-Uno-Platform/tree/main/Chapter02.

Check out the following video to see the code in action: https://bit.ly/37Dt0Hg

Note
If you are using the digital version of this book, we advise you to type the code
yourself or access the code from the book's GitHub repository Doing so will
help you avoid any potential errors related to the copying and pasting of code.

Creating your first app
There are different ways of creating your project, so we will start with the most common
one, using Visual Studio.

https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter02
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter02
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter02
https://bit.ly/37Dt0Hg

Creating your first app 25

Creating your project with the Uno Platform
solution templates
The process of creating an Uno Platform app project is the same as for other project types
in Visual Studio. Depending on the extensions and project templates installed, you will be
greeted by the list of options in Figure 2.1 when filtering for Uno Platform. Note that for
Figure 2.1, only the Uno Platform Solution Templates extension was installed:

Figure 2.1 – List of Uno Platform project templates in the new project dialog

The easiest way to get started with Uno Platform is using the Multi-Platform App (Uno
Platform) project template as this contains all the necessary projects to build and run Uno
Platform apps for every platform.

26 Writing Your First Uno Platform App

Let's start creating your app by selecting the Multi-Platform App (Uno Platform) project
type and click Next. Be careful that you are not selecting the Multi-Platform Library
(Uno Platform) option as that will create a different project type, which we cover in the
Going beyond the default cross-platform app structure section. Now you need to choose the
name of your project, the location, and the solution name as seen in Figure 2.2:

Figure 2.2 – Configuring Multi-Platform App (Uno Platform)

In our case, we will call our project HelloWorld and save it under D:\Projects
meaning that the project will be stored in D:\Projects\HelloWorld with the
HelloWorld.sln solution being the top-level element. Of course, you can create
the project in any folder you want; D:\Projects is just an example here. Note though
that you should create your project as close as possible to the root of your drive to avoid
issues with paths that are too long. After clicking Create, Visual Studio will create
your project and open the solution for you. You will see all the generated projects in
Solution Explorer.

Creating your first app 27

If you are creating your project in Visual Studio for Mac, the generated solution will
include project heads for Windows Presentation Foundation (WPF) and Universal
Windows Platform (UWP) apps. A project or platform head is the corresponding project
that will be compiled when you compile your app for a specific platform. So, in the case
of Windows 10, the UWP head will be compiled. You will need to use a Windows PC
to build these apps. If you don't want to build for these platforms, you can remove the
projects from the solution. If you will build these on a Windows machine separately,
unload them from the solution when working on a Mac.

Since your app might not target every platform supported by Uno Platform, you might
want to remove those heads for your app. To do that, remove those projects from the
solution by right-clicking the project in the project view and clicking Remove as shown
in Figure 2.3:

Figure 2.3 – Removing the Skia.Tizen head from the solution

After removing the project from the solution, the project is still on disk. To remove
it entirely, you will have to delete the project by opening the project folder and deleting
the corresponding folders. Since we will only target Windows 10, Android, Web, macOS,
and iOS, you can remove the Skia.GTK, the Skia.Tizen, Skia.Wpf, and Skia.
WpfHost projects from your solution.

Creating your project with the .NET CLI
Of course, you don't have to use Visual Studio to create your Uno Platform app. You can
also use the dotnet new templates for Uno Platform. You can create a new project by
opening a terminal and typing the following:

dotnet new unoapp -o MyApp

28 Writing Your First Uno Platform App

This will create a new project called MyApp. You can find an overview of all the dotnet
new templates in Uno Platform's template documentation (https://platform.uno/
docs/articles/get-started-dotnet-new.html).

Of course, not everyone wants to target every platform with their app nor is it appropriate
for every app to run on every platform. You can opt out of creating the target projects for
specific platforms (more on those in the next section) by including specific flags in your
commands. For example, with the following command, you will create a new project that
will not run on Linux and other Skia-based platforms as we exclude the Skia heads:

dotnet new unoapp -o MyApp -skia-wpf=false -skia-gtk=false
-st=false

To get a list of all the available options for the unoapp template, you can run dotnet
new unoapp -h.

Project structure and the heads
When creating the project in Visual Studio on Windows, with the Uno Platform
Solution templates, there are two different top-level elements in Solution Explorer: the
Platforms folder and the HelloWorld.Shared shared C# project. Note that in the
solution view, those are the two top-level elements, however, the Platforms folder does
not exist on disk. Instead, all projects including the shared project have their own folder
as shown in Figure 2.4:

Figure 2.4 – HelloWorld project in File Explorer

https://platform.uno/docs/articles/get-started-dotnet-new.html
https://platform.uno/docs/articles/get-started-dotnet-new.html

Creating your first app 29

In the root of the generated solution is a file called .vsconfig. This file contains a list
of all the Visual Studio components required to work with the generated project. If you
set your environment up as in Chapter 1, Introducing Uno Platform, then you'll have
everything you need. But, if you see the prompt in Figure 2.5, click on the Install link
and add the missing workloads:

Figure 2.5 – Missing components warning in Visual Studio

Under the Platforms solution folder, you will find a C# project for every one of the
supported platforms:

• HelloWorld.Droid.csproj for Android

• HelloWorld.iOS.csproj for iOS

• HelloWorld.macOS.csproj for macOS

• HelloWorld.Skia.Gtk.csproj for Linux with GTK

• HelloWorld.Skia.Tizen.csproj for Tizen

• HelloWorld.Skia.Wpf.csproj: Base project for Windows 7 and Windows 8

• HelloWorld.Skia.Wpf.WpfHost.csproj: Host for the HelloWorld.
Skia.Wpf project on Windows 7 and Windows 8

• HelloWorld.UWP.csproj for Windows 10

• HelloWorld.Wasm.csproj for WebAssembly (WASM)

Those projects are also called heads for the respective platforms since they contain the
platform-specific configuration files that are unique to the platform and are the projects
that will be built for the specific platforms. Those projects don't contain a lot of code
since any code in there is only for that specific platform. Most of your app's logic and
XAML will, typically, not be put in the head projects but rather in the shared project.
The heads are already configured for you and allow you to run your C# and XAML on
those platforms. This includes creating a main activity for the Android head, starting
a UIApplication for iOS, creating and displaying an NSApplication on macOS,
or starting the application on WASM.

30 Writing Your First Uno Platform App

Some specific settings and configurations, such as permissions required by your app,
will differ based on the platform. Some platforms allow you to use APIs without any
restrictions. In contrast, other platforms are more prohibitive and require your app to
specify those APIs beforehand or ask the user for permission, which is something you
have to configure in the head project. As those configurations need to be done in the
individual heads, the experience will differ based on the different platforms. We will
only cover parts of those differences when configuring the platform heads in Chapter 3,
Working with Forms and Data, (Mac, WASM, and UWP) and Chapter 4, Mobilizing
Your App, (Android and iOS) as part of developing apps for those platforms.

In contrast to the head projects, the shared project is where almost all of your app's
code will be, including your pages and views, the core logic of the app, and any assets
such as resources or images that will be used on every platform. The shared project is
referenced by all of the platform heads, so any code placed in there will be used on all of
the platforms. If you are not familiar with C# shared projects, shared projects are nothing
more than a list of files that will be included when compiling a project that references the
shared project.

A newly created cross-platform app like our Hello World app already comes with a few
files in the shared project:

• App.xaml.cs: This is the app's entry point; it will load the UI and navigate to
MainPage. In here, you can also configure the logging of events by uncommenting
the respective lines in the InitializeLogging function.

• App.xaml: This contains the list of common XAML resources such as resource
dictionaries and theme resources.

• MainPage.xaml.cs: This file contains the C# code of your MainPage.

• MainPage.xaml: This is where you can put the UI of your MainPage.

• Assets/SharedAssets.md: This is a demo asset file that is included to show
how assets work inside an Uno Platform app.

• Strings/en/Resources.resw: This is also a demo asset file that you can use
to get started with localization inside your Uno Platform app.

Now that you are familiar with the project structure of your first Uno Platform app,
let's dive into building and running your app.

Building and running your first Uno Platform app 31

Building and running your first Uno
Platform app
Since you are familiar with the structure of an Uno Platform app, we can get to building
and running your first Uno Platform app! In this section, we will go over the different
ways of building and running your app.

Running and debugging your app with Visual Studio
on Windows
Running your Uno Platform app from within Visual Studio is exactly the same as running
a regular UWP, Xamarin.Forms, or WASM app. To build and run the app on a specific
device or emulator, you can select the corresponding head from the startup project
dropdown. Note that depending on the selected configuration, target platform, and
architecture, not every project will be compiled to the expected output and might even
not get compiled at all. For example, the UWP project always targets explicit architectures
and as such, will compile to x86 when selecting the Any CPU architecture. That means
not all combinations of target architecture and project will compile into what is specified
but rather will fall back to a default architecture such as x86 in the case of UWP.

To run the UWP app, select the HelloWorld.UWP project as the startup project if it isn't
already selected, by choosing HelloWorld.UWP from the startup project dropdown as
shown in Figure 2.6:

Figure 2.6 – Configuration, architecture, startup project, and target machine options in Visual Studio

32 Writing Your First Uno Platform App

After that, select the correct architecture for your machine and the run configuration,
debug, or release you want to run. Since we are going to debug the app in the next section,
choose Debug for now. After that, you can choose the target device to deploy to, that is,
the local machine, a connected device, or an emulator. To do that, use the dropdown to
the right of the project list shown in Figure 2.7:

Figure 2.7 – List of Android emulators in Visual Studio

You can then start the project by clicking on the green arrow or hitting F5. The app will
build, and you should be greeted by something like Figure 2.8:

Figure 2.8 – Screenshot of the HelloWorld app running on Windows 10

Building and running your first Uno Platform app 33

Congratulations, you have just run your first Uno Platform app! Of course, running your
app on Windows is not the only part of developing your cross-platform app. Running
and debugging your app on Android, iOS, and other platforms is vital when writing
cross-platform apps to ensure your apps work on all platforms supported.

For Android development, there are multiple different ways to try out and run your apps.
One possibility is using an Android emulator, which comes with Visual Studio. For that,
simply select the Android emulator from the target list dropdown as shown in Figure 2.7.

Note
If you haven't already added an Android emulator device image, you
will only see Android Emulator as an option. To learn how to add and
configure devices, the Visual Studio documentation (https://docs.
microsoft.com/en-us/xamarin/android/get-started/
installation/android-emulator/device-manager) covers
creating new devices and configuring them for your needs.

If you have connected an Android phone to your computer, it will show up in the list of
available target devices. An example of this can be seen with the Samsung device shown
in Figure 2.7.

Note
For optimal development experience with Visual Studio, when editing C#
or XAML files, ensure Visual Studio will use the UWP head for IntelliSense
since, otherwise, IntelliSense might not work correctly. For this, when you have
opened a C# or XAML file, select the UWP head from the dropdown below the
tab name of the opened file.

Pairing Visual Studio for Windows with a Mac
For testing and debugging the iOS head, you can either directly develop on a Mac, which
we will cover in the next section, or you can pair your Visual Studio for Windows with
a Mac to remotely debug the iOS head.

The Mobile development with .NET workload in Visual Studio includes the software
needed to connect to a Mac. However, there are three steps required to fully configure it:

1. Install Xcode and Visual Studio for Mac on the Mac and open these apps to ensure
all dependencies are installed.

2. Enable Remote login on the Mac.
3. Connect to the Mac from Visual Studio.

https://docs.microsoft.com/en-us/xamarin/android/get-started/installation/android-emulator/device-manager
https://docs.microsoft.com/en-us/xamarin/android/get-started/installation/android-emulator/device-manager
https://docs.microsoft.com/en-us/xamarin/android/get-started/installation/android-emulator/device-manager

34 Writing Your First Uno Platform App

Enabling remote login on the Mac requires the following:

1. Open the Sharing pane in System Preferences.
2. Check Remote Login and specify the users to Allow access for:.
3. Change any firewall settings as prompted.

To connect from Visual Studio, do the following:

• Go to Tools >iOS>Pair to Mac.

• If you're doing this for the first time, select Add Mac… and enter the Mac name
or IP address, and then the username and password when prompted.

• If the Mac is already listed, select it and click Connect.

The tool will check everything needed is installed and available on the Mac, and then
it will open the connection.

If there's a problem, it will tell you what to do to address it.

Note.
More detailed instructions on pairing Visual Studio to a Mac and advice on
addressing any problems you may encounter are available at https://
docs.microsoft.com/xamarin/ios/get-started/
installation/windows/connecting-to-mac/.

With Visual Studio now successfully paired to your Mac, you're able to debug the app
from your Windows machine and see it running on the remoted iOS simulator.

Running and debugging your apps with Visual Studio
for Mac
If you are primarily working on a Mac, using Visual Studio for Mac is the easiest way
of developing your Uno Platform app.

Running your Uno Platform app using Visual Studio for Mac is the same as running
other apps. You will need to select the correct head project in the startup project list
(for example, HelloWorld.macOS or HelloWorld.iOS), select the correct target
architecture to run the app for, and the device or emulator to run the app on.

https://docs.microsoft.com/xamarin/ios/get-started/installation/windows/connecting-to-mac/
https://docs.microsoft.com/xamarin/ios/get-started/installation/windows/connecting-to-mac/
https://docs.microsoft.com/xamarin/ios/get-started/installation/windows/connecting-to-mac/

Building and running your first Uno Platform app 35

Of course, in addition to running the app on your local machine, you can also run the
Android or iOS app on an emulator. Any suitable devices that you can run the Android
or iOS build of your app on will show up as targets in Visual Studio for Windows,
including any emulators or simulators.

Since debugging the WASM build of your Uno Platform apps will happen outside of
Visual Studio and Visual Studio for Mac, we will cover this in the next section.

Debugging the WASM head of your app
At the time of writing, debugging WASM from inside Visual Studio or Visual Studio for
Mac is not well supported, however, there are alternative options. Because of this, the
debugging experience for WASM will instead take place inside your browser when using
Visual Studio for Windows or Visual Studio for Mac. For the best debugging experience,
we recommend using the latest Canary build of Google Chrome. This is available from
https://www.google.com/chrome/canary/. Since debugging WASM is still
experimental, and as such will likely change, we highly recommend visiting the official
documentation (https://platform.uno/docs/articles/debugging-wasm.
html) to get the latest information. You can learn more about debugging the WASM
head with Visual Studio here: https://platform.uno/blog/debugging-uno-
platform-webassembly-apps-in-visual-studio-2019/.

Alternatively, you can use Visual Studio Code to debug the WASM version of your app.
For an optimal experience, you should create your Uno Platform app with the dotnet
new CLI. You must include the –vscodeWasm flag, as shown here, since it will add build
configurations that you can use in Visual Studio Code:

dotnet new unoapp -o HelloWorld -ios=false -android=false
 -macos=false -uwp=false --vscodeWasm

Note that with the preceding dotnet new command, we opted out of the other
heads since, at the time of writing, only the WASM version can be debugged with Visual
Studio Code.

If you already have created your app, please follow the steps shown in the documentation
at https://platform.uno/docs/articles/get-started-vscode.
html#updating-an-existing-application-to-work-with-vs-code. This
also works when heads for other platforms are already present in your project.

https://www.google.com/chrome/canary/
https://platform.uno/docs/articles/debugging-wasm.html
https://platform.uno/docs/articles/debugging-wasm.html
https://platform.uno/blog/debugging-uno-platform-webassembly-apps-in-visual-studio-2019/
https://platform.uno/blog/debugging-uno-platform-webassembly-apps-in-visual-studio-2019/
https://platform.uno/docs/articles/get-started-vscode.html#updating-an-existing-application-to-work-with-vs-code
https://platform.uno/docs/articles/get-started-vscode.html#updating-an-existing-application-to-work-with-vs-code

36 Writing Your First Uno Platform App

To start your app and debug it with Visual Studio, first restore NuGet packages using
dotnet restore. After that, you will need to start the development server. To do this,
open the RUN AND DEBUG panel shown in Figure 2.9 by clicking on the triangle-bug
icon on the left of Visual Studio Code:

Figure 2.9 – RUN AND DEBUG view of Visual Studio Code

Click on the arrow, which will run the .NET Core Launch configuration, which builds the
app and starts a development server. The development server will host your app. Check
the terminal output to see on which URL you can visit the WASM app on your local
machine, as shown in Figure 2.10:

Figure 2.10 – Terminal output of the development server

Building and running your first Uno Platform app 37

If you just want to start the app and continue without debugging capabilities, you are
done here. However, if you want to take advantage of the debugging and breakpoint
support, you will also have to select the .NET Core Debug Uno Platform WebAssembly
in Chrome configuration. After selecting the launch configuration in the Run and Debug
panel, start it, which will start the debugging server. The debugging server then opens
a browser window with your Uno Platform WASM app opened.

Note
By default, the debugging server will start using the latest stable release of
Google Chrome. If you have no stable release of Google Chrome installed, the
server will not start. If you wish to use the latest stable release of Edge instead,
you can update the .vscode/launch.json file and change pwa-
chrome to pwa-msedge.

After the debugging server has started and is ready for requests, it will open the website in
Chrome or Edge depending on your configuration. Any breakpoints you place in Visual
Studio Code will be respected by the browser and pause your WASM app, similar to how
breakpoints would work with Visual Studio on non-WASM projects.

After successfully completing these steps, you can open your app in a browser of your
choice and it will look like Figure 2.11:

Figure 2.11 – HelloWorld app running in the browser

Now that we covered running and debugging your app, let's quickly cover two very helpful
features for developing with Uno Platform: XAML Hot Reload and C# Edit and Continue.

38 Writing Your First Uno Platform App

XAML Hot Reload and C# Edit and Continue
To make development easier and faster, especially UI development, Uno Platform
supports XAML Hot Reload and C# Edit and Continue when developing with Visual
Studio. XAML Hot Reload allows you to modify the XAML code of your views and pages,
and the running app will update in real time, while C# Edit and Continue allows you to
modify C# code without having to restart your app for changes to be picked up.

Since the UWP head of your app is being built using the UWP toolchain, you can use
XAML Hot Reload and C# Edit and Continue. Since at the time of writing, UWP is the
only platform supporting both, we will use UWP to showcase it. Other platforms do not
support C# Edit and Continue, but do, however, support XAML Hot Reload.

XAML Hot Reload
To try out XAML Hot Reload, open your HelloWorld project in Visual Studio, set
the UWP head project as the startup project, and start it. Once it is started, open your
MainPage.xaml file inside the shared project. The page's content will just be a Grid
and a TextBlock:

<Grid Background="{ThemeResource
 ApplicationPageBackgroundThemeBrush}">

 <TextBlock Text="Hello, world!"
 Margin="20" FontSize="30" />

</Grid>

Now let's change our page by replacing the text with Hello from hot reload!, save the
file (Ctrl + S), and voilà, our app now looks like as shown in Figure 2.12 without having
restarted the app!

Building and running your first Uno Platform app 39

Figure 2.12 – Our HelloWorld app with XAML Hot Reload changes

XAML Hot Reload works on UWP, iOS, Android, and WebAssembly. However, not all
types of changes are supported, for example, changing the event handler of controls is not
supported by XAML Hot Reload and requires an app restart. In addition to that, updating
ResourceDictionary files will also not update the app and will require an app restart.

C# Edit and Continue
Sometimes, you also need to make changes to your "code-behind", and that's where C#
Edit and Continue will be your friend. Note that you will need to use the UWP head
of your app since it is the only platform supporting C# Edit and Continue. Before we
continue with trying out C# Edit and Continue, you will need to add a few things since
our HelloWorld app doesn't contain much C# code yet. For that, first, you will need to
close the debugger and the app since the following code changes are not supported by C#
Edit and Continue. Update your page to contain a button with a Click event handler by
changing your MainPage content to this:

<StackPanel Background="{ThemeResource
 ApplicationPageBackgroundThemeBrush}">

 <TextBlock x:Name="helloTextBlock"
 Text="Hello from hot reload!" Margin="20"
 FontSize="30" />

40 Writing Your First Uno Platform App

 <Button Content="Change text"
 Click="ChangeTextButton_Click"/>

</StackPanel>

Now, in your MainPage class, add the following code:

private void ChangeTextButton_Click(object sender,
 RoutedEventArgs e)

{

 helloTextBlock.Text = "Hello from code behind!";

}

When you run the app and click on the button, the text will change to Hello from
code behind!. Now click the Break all button highlighted in Figure 2.13 or press Ctrl +
Alt + Break:

Figure 2.13 – Break all button

Your app is now paused and you can make changes to your C# code, which will be picked
up when you resume your app by clicking on Continue. To see this, change the string
inside the Click event handler to Hello from C# Edit and Continue!:

private void ChangeTextButton_Click(object sender,
 RoutedEventArgs e)

{

 helloTextBlock.Text =
 "Hello from C# Edit and Continue!";

}

Then resume the app. If you now click on the button, the text will now change to Hello
from C# Edit and Continue!.

Platform-specific XAML and C# 41

There are some limitations on the changes you can make with Edit and Continue though;
not all code changes are supported, for example, changing the type of an object. For
a full list of unsupported changes, please visit the official documentation (https://
docs.microsoft.com/en-us/visualstudio/debugger/supported-code-
changes-csharp). Note that at the time of writing, C# Edit and Continue only works
on Windows for the UWP and the Skia heads.

Now that we have covered building and running your app, let's talk about conditional
code, namely platform-specific C# and XAML.

Platform-specific XAML and C#
While Uno Platform allows you to run your app on any platform without having to worry
about the underlying platform-specific API, there are still cases where you might want to
write code that is specific to a platform, for example, accessing native platform APIs.

Platform-specific C#
Writing platform-specific C# code is similar to writing architecture-specific or runtime-
specific C# code. Uno Platform ships with a set of compiler symbols that will be defined
when your code is being compiled for a specific platform. This is achieved using
preprocessor directives. Preprocessor directives will only be respected by the compiler if
the symbol was set for the compilation, otherwise, the compiler will completely ignore the
preprocessor directive.

At the time of writing, Uno Platform comes with the following preprocessor directives:

• NETFX_CORE for UWP

• __ANDROID__ for Android

• __IOS__ for iOS

• HAS_UNO_WASM (or __WASM__) for the web using WebAssembly

• __MACOS__ for macOS

• HAS_UNO_SKIA (or __SKIA__) for Skia-based heads

https://docs.microsoft.com/en-us/visualstudio/debugger/supported-code-changes-csharp
https://docs.microsoft.com/en-us/visualstudio/debugger/supported-code-changes-csharp
https://docs.microsoft.com/en-us/visualstudio/debugger/supported-code-changes-csharp

42 Writing Your First Uno Platform App

Note that WASM and Skia have two different symbols available. Both are equally valid and
have no difference except their name.

You can use those exactly like you would any other symbols, such as DEBUG, and you can
even combine them, for example, if __ANDROID__ || __ MACOS__. Let's try it out
in our example from earlier and have the TextBlock element indicate whether we are on
desktop, the web, or mobile using C# symbols:

private void ChangeTextButton_Click(object sender,
 RoutedEventArgs e)

{

#if __ANDROID__ || __IOS__

 helloTextBlock.Text = "Hello from C# on mobile!";

#elif HAS__UNO__WASM

 helloTextBlock.Text = "Hello from C# on WASM!";

#else

 helloTextBlock.Text = "Hello from C# on desktop!";

#endif

}

If you run the UWP head of your app and click the button, the text will then change to
Hello from C# on desktop! since the UWP head is only compiled with the NETFX_CORE
symbol being set. Now, if you run the app on an Android or iOS emulator (or device) and
click on the button, it will display Hello from C# on mobile! since the Android and iOS
heads are compiled with the __ANDROID__ or the __IOS__ symbols.

Platform-specific XAML
While platform-specific C# code is great, there are also cases where you need to render
a control on a specific platform. This is where platform-specific XAML prefixes come
in. XAML prefixes allow you to render controls only on specific platforms, similar to
conditional namespaces for UWP.

Platform-specific XAML and C# 43

There are, at the time of writing, the following XAML prefixes that you can use:

Figure 2.14 – Table of namespace prefixes, the supported platforms, and their namespace URIs

44 Writing Your First Uno Platform App

To include a specific XAML prefix in your XAML, you have to add xmlns:[prefix-
name]=[namespace URI] at the top of the XAML file with all other namespace
declarations. Prefix-name is the XAML prefix (column 1 in Figure 2.14) while namespace
URI is the URI of the namespace (column 3 in Figure 2.14) the prefix should be used with.

For prefixes that will be excluded from Windows, you need to add the prefixes to the
mc:Ignorable list. Those prefixes are android, ios, wasm, macos, skia, xamarin,
netstdref, not_netstdref, and not_win, so all prefixes that are not in http: //
schemas.microsoft.com/winfx/2006/xaml/presentation.

Now let's try out a few platform XAML prefixes by updating our HelloWorld project to
have a TextBlock element that only renders on WASM. For that, we will first add the
prefix to our MainPage.xaml file (note that we have omitted some definitions):

<Page

 x:Class="HelloWorld.MainPage"

 ...

 xmlns:win="http ://schemas.microsoft.com/winfx/2006/xaml/
 presentation"

 xmlns:android="http ://uno.ui/android"

 xmlns:ios="http ://uno.ui/ios"

 xmlns:wasm="http ://uno.ui/wasm"

 xmlns:macos="http ://uno.ui/macos"

 xmlns:skia="http ://schemas.microsoft.com/winfx/2006/xaml/
 presentation"

 ...

 mc:Ignorable="d android ios wasm macos skia">

 ...

</Page>

Since the Android, iOS, WASM, macOS, and Skia XAML prefixes will be excluded on
Windows, we need to add them to the mc:Ignorable list. This is because they are
not part of the standard XAML specification and would result in errors otherwise. After
adding them, we can add controls that will render only if the app is running on a specific
platform, for example, WASM or iOS. To try that out, we will add a TextBlock element
to welcome users on each platform as follows:

<StackPanel>

 <TextBlock x:Name="helloTextBlock"
 Text="Hello World!" Margin="20"
 FontSize="30" />

Platform-specific XAML and C# 45

 <win:TextBlock Text="Welcome on Windows!"/>

 <android:TextBlock Text="Welcome on Android!"/>

 <ios:TextBlock Text="Welcome on iOS!"/>

 <wasm:TextBlock Text="Welcome on WASM!"/>

 <macos:TextBlock Text="Welcome on Mac OS!"/>

 <skia:TextBlock Text="Welcome on Skia!"/>

 <Button Content="Change test"
 Click="ChangeTextButton_Click"/>

</StackPanel>

Now, if you start the WASM head of your app and open the app in your browser (if it's
not open already), the app will show the Welcome on WASM! TextBlock element, as
shown on the left side of Figure 2.15. If you start the UWP head of your app now, the app
will show Welcome on Windows! instead, as shown on the right side of Figure 2.15:

Figure 2.15 – HelloWorld app running using WASM (left) and using UWP (right)

If you are using the XAML prefixes in cross-targeted libraries such as the Cross
Target Library (Uno Platform) project template, which is covered in the next
section, the XAML prefixes behave slightly differently. Because of the way cross-targeted
libraries work, the wasm and skia prefixes will always evaluate to false. An example of
a cross-targeted library is the Cross-Runtime Library project type, which we'll
cover in the next section. This is because both compile to .NET Standard 2.0 instead of
the WASM or Skia heads. Instead of those prefixes, you can use the netstdref prefix
with the namespace URI http: //uno.ui/netstdref, which will evaluate to true
if running on WASM or Skia. In addition to that, there is also the not_netstdref
prefix with the namespace URI http: //uno.ui/not_netstdref, which is the
exact opposite of netstdref. Note that you will need to add both prefixes to the
mc:Ignorable list. Now that you have learned about platform-specific code using
C# compiler symbols and XAML prefixes, let's look into the other project types.

46 Writing Your First Uno Platform App

Going beyond the default cross-platform
app structure
So far, we have created a cross-platform app that contains the heads for every platform.
But there are also different project types that you can use to write your Uno Platform app,
which we will cover in this section.

Note
The Uno Platform Visual Studio solution templates extension only contains
a subset of the available Uno Platform types. If you haven't already installed
the templates using the dotnet CLI, do this now by opening a terminal and
running dotnet new -i Uno.ProjectTemplates.Dotnet,
since we will use these in the remaining part of the chapter.

The multi-platform library project type
One of the most important project types besides the Multi-Platform App (Uno Platform)
project type is the Cross-Platform Library (Uno Platform) type. The Cross-Platform
Library (Uno Platform) project type allows you to write code that can be consumed by
Uno Platform apps. The easiest way of getting to know the project type is by creating
a new cross-platform library. We will do this by creating a new project inside our existing
HelloWorld solution.

Note
To be able to use all the project templates installed with the dotnet new
CLI, you will need to allow Visual Studio to include the dotnet new
templates in the project type list. You can do this by opening the options under
Tools > Options and opening the Preview Features section located under
Environment by checking Show all .NET Core templates in the New Project
dialog. After this, you will need to restart Visual Studio for the changes to
take effect.

Going beyond the default cross-platform app structure 47

After enabling that option, restart Visual Studio and open the new project dialog by
right-clicking on the solution in the solution view and clicking Add > New Project. The
dialog will look like Figure 2.16:

Figure 2.16 – The Add a new project dialog in Visual Studio

Next, select the Multi-Platform Library (Uno Platform) project (highlighted in Figure
2.16) and click Next. Now you will need to choose the name of your project. In this case,
we will name the project HelloWorld.Helpers. After entering the name, click Create.

This will create a new cross-platform Uno Platform library in your solution. On disk, the
library has its own folder named after itself and your solution view will look like Figure 2.17:

Figure 2.17 – HelloWorld solution view

48 Writing Your First Uno Platform App

Now let's add some code to our cross-platform library. We will rename the
class Class1 to Greetings and introduce a new public static function called
GetStandardGreeting that will return the string "Hello from a cross-
platform library!":

public class Greetings

{

 public static string GetStandardGreeting()

 {

 return "Hello from a cross-platform library!";

 }

}

In addition to creating the library, you must also add a reference to it in each of the head
projects you want to use the project in. The process of adding a reference to the library is
the same for all heads, that's why we will only show you how to add the reference to the
UWP head.

To add the reference to the UWP head, right-click the UWP project in Solution Explorer.
Inside the context menu, you will find the Add category, which contains the Reference…
option, which is also shown in Figure 2.18:

Figure 2.18 – Add | Reference… option for the UWP head

Going beyond the default cross-platform app structure 49

After clicking on Reference…, a new dialog where you can select the reference to add will
open. In our case, you will need to select the project, as shown in Figure 2.19:

Figure 2.19 – Reference Manager for the UWP head

After checking the HelloWorld.Helpers project, click OK to save the changes. Now
we can use our library in the UWP version of the app. Let's update our event handler from
the platform's conditional code section to use the Greetings helper class as follows:

private void ChangeTextButton_Click(object sender,
 RoutedEventArgs e)

{

#if __ANDROID__ || __IOS__

 helloTextBlock.Text = "Hello from C# on mobile!";

#elif __WASM__

 helloTextBlock.Text = "Hello from C# on WASM!";

#else

 helloTextBlock.Text=
 HelloWorld.Helpers.Greetings.GetStandardGreeting();

#endif

}

50 Writing Your First Uno Platform App

If you run the UWP version of the app now and click on the button, the app will display
Hello from a cross-platform library!. However, if you are building the app using the
macOS configuration, you will get a compiler error indicating that it is unable to find
the Helpers namespace in the HelloWorld namespace. This is because we have
not added a reference to the library from the macOS head yet. For any platform where
you plan to use the library, you will need to add a reference in the platform's head. The
procedure also applies to libraries being referenced as a NuGet package; you will need
to add a reference to the NuGet package in every platform head that you want to use the
library in. Unlike the Uno Platform app project, where most of the source code is inside
a shared project, the Cross-Platform Library project type is a multi-targeted project.

Other project types
In addition to the Cross-Platform Library project type, there are other Uno Platform
project templates. We will cover them broadly in this section. To be able to create them
from Visual Studio, enable displaying dotnet new templates in Visual Studio as shown
in the last section.

If you are already familiar with app development using XAML and the MVVM pattern,
you might already know Prism (https://prismlibrary.com/), a framework "for
building XAML applications that are loosely coupled, maintainable, and testable." Among
the Uno Platform templates is also the Cross-Platform App (Prism) (Uno Platform)
template, which will create a Prism Uno Platform app. Creating a Prism Uno Platform
app is the same as creating a "normal" multi-platform Uno app.

In addition to the Uno Platform Prism app template, there is also an Uno Platform
template for building apps for WinUI 3. However, you can create an Uno Platform app
that uses a preview version of WinUI 3 for Windows 10. To create an Uno Platform app
using WinUI 3, in the new project dialog, choose the Cross-Platform App (WinUI)
(Uno Platform) template.

Another project type that will be useful, especially when developing libraries that will be
shipped using NuGet, is the Cross-Runtime Library (Uno Platform) project type, which
will create a Cross-Runtime Library. In contrast to the Cross-Platform Library, where
Skia and WASM versions are not built separately and cannot be distinguished, the
Cross-Runtime Library will compile the project separately for WASM and Skia, allowing
the writing of WASM- and Skia-specific code using XAML prefixes and compiler symbols.

https://prismlibrary.com/

Summary 51

In addition to that, we also have the Cross-Platform UI Tests Library. The
Cross- Platform UI Tests Library allows you to write UI tests that can be run on multiple
platforms using a single code base. Since we will cover testing more thoroughly in Chapter
7, Testing Your Apps, we will cover that project type there.

Last but not least, we have the Uno Platform WebAssembly Head for Xamarin.Forms
project type. The Uno Platform WebAssembly head for Xamarin.Forms allows bringing
existing Xamarin.Forms apps to the web using WebAssembly and Uno Platform, which
will be covered in Chapter 8, Deploying Your Apps and Going Further.

Summary
In this chapter, you learned how to create, build, and run your first Uno Platform app,
and learned about the general solution structure and how platform heads work. We also
covered building, running, and debugging your app on different platforms using Visual
Studio and Visual Studio Code. In addition to that, you also learned about using XAML
Hot Reload and C# Edit and Continue to make development easier.

In the next section, we will write apps for UnoBookRail, the company operating public
transport in UnoBookCity. We will start off Chapter 3, Working with Forms and Data,
by writing a task management app for UnoBookRail that allows entering, filtering, and
editing data on the desktop and the web.

Section 2:
Writing and

Developing Uno
Platform Apps

In the following four chapters, we'll look at four separate apps to show the different
functionality available for the apps you build with Uno Platform. These apps are created
for the same fictional business (UnoBookRail), which is part of the public transit authority
for a fictional city (UnoBookCity).

The business is responsible for all the technology used as part of the light-rail network in
the city. Light-rail networks are electrically powered trains that only carry passengers and
exist in many cities worldwide. They are known by names including Metro, Rapid Transit,
Subway, Tube, Underground, U-Bahn, and many more.

Don't worry, you don't need to know anything about these trains or how they work. The
following figure shows a map of the network to give you an idea of what we're talking
about. You'll see the main line heads west from the airport along the river. When it reaches
the center of the city, it branches north and south along the coast.

A map of the UnoBookRail network of stations

The four apps will show how Uno Platform can be used to create applications for different
scenarios and show different functionality being used in appropriate scenarios.

In this section, we include the following chapters:

• Chapter 3, Working with Forms and Data

• Chapter 4, Mobilizing Your App

• Chapter 5, Making Your App Ready for the Real World

• Chapter 6, Displaying Data in Charts and with Custom 2D Graphics

UnoBookRail
Network

Metropolitan Bridge

Interchange

Airport(Main Terminal)

Airport Parking

Lakeside

University

Freedom Road

Union Square

Finney Park

Lacey Boulevard

Wagner Street

South Point Pier

Ferry Port

Hawker Avenue

Mundy Square

Mendelevich Way

Waterfront

Main Street

Central Station

Founder Place

Market Street

Memorial Park
Conference Center

Stadium Green Field

3
Working with

Forms and Data
In this chapter, we will write our first app for the fictional company UnoBookRail, which
will be targeting desktops and the web. We will write a typical line of business (LOB) app
that allows us to view, enter, and edit data. In addition to that, we will also cover how to
export data in PDF format since this is a common requirement for LOB apps.

In this chapter, we'll cover the following topics:

• Writing a desktop-focused Uno Platform app

• Writing forms and validating user input

• Using the Windows Community Toolkit in your Uno Platform app

• Generating PDF files programmatically

By the end of this chapter, you'll have created a desktop-focused app that can also run
on the web that displays data, allows you to edit the data, and also export the data
in PDF format.

56 Working with Forms and Data

Technical requirements
This chapter assumes that you already have your development environment set up,
as well as the project templates installed, as we covered in Chapter 1, Introducing Uno
Platform. The source code for this chapter can be found at https://github.com/
PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-
with-Uno-Platform/tree/main/Chapter03.

The code in this chapter makes use of the following library: https://github.com/
PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-
with-Uno-Platform/tree/main/SharedLibrary.

Check out the following video to see the code in action: https://bit.ly/3fWYRai

Introducing the app
In this chapter, we will build the UnoBookRail ResourcePlanner app, which will be used
internally, inside UnoBookRail. UnoBookRail employees will be able to use this app to
manage any resources within UnoBookRail, such as trains and stations. In this chapter,
we will develop the issue-managing part of the app. While a real version of this app would
have a lot more features, in this chapter, we will only develop the following features:

• Creating a new issue

• Displaying a list of issues

• Exporting issues in PDF format

Since this application is a typical line of business app, the app will be targeting UWP,
macOS, and WASM. Let's continue by creating the app.

Creating the app
Let's start by creating the solution for the app:

1. In Visual Studio, create a new project using the Multi-Platform App
(Uno Platform) template.

2. Name the project ResourcePlanner. You can use a different name if you want,
but in this chapter, we will assume the project is named ResourcePlanner.

3. Remove all the project heads except those for UWP, macOS, and WASM.

https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter03
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter03
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter03
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/SharedLibrary
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/SharedLibrary
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/SharedLibrary
https://bit.ly/3fWYRai

Introducing the app 57

4. To avoid having to write more code than we need, download the shared library
project from https://github.com/PacktPublishing/Creating-
Cross-Platform-C-Sharp-Applications-with-Uno-Platform/
tree/main/SharedLibrary and add a reference to it. To do this, right-click
on the solution node in the Solution Explorer window, select Add > Existing
Project..., navigate to the UnoBookRail.Common.csproj file, and click Open.

5. Now that we've added the project to the solution, we need to add a reference to
the library in the platform-specific projects. For this, right-click the UWP project
node in Solution Explorer, select Add > Reference... > Projects, check the
UnoBookRail.Common entry, and click OK. Repeat this process for the macOS and
WASM projects.

6. Lastly, add the following code before the closing linker tag in the LinkerConfig.
xml file, inside the ResourcePlanner.Wasm project:

<assembly fullname="UnoBookRail.Common" />

This code is needed to bind objects from the UnoBookRail.Common library
so that they work properly on WASM. The LinkerConfig.xml file tells the
WebAssembly Linker to include the types in the compiled source code, even though
the classes are not currently being used. If we don't specify these entries, the types
that are defined in the assembly will not be included as the linker removes the code.
This is because it doesn't find a direct reference to it. When using other packages
or libraries, you may also need to specify entries for those libraries. For this chapter,
though, the preceding entry is enough.

For our app, we will use the Model-View-ViewModel (MVVM) pattern. This means that
our app will mostly be split into three areas:

• Model: The Model contains the data of your app and the business logic. For
example, this would handle loading data from a database or running specific
business logic.

• ViewModel: The ViewModel acts as the layer between the View and Model.
It presents the app's data in a suitable way for the View, provides ways for the View
to interact with the Model, and notifies the View of changes to the Model.

• View: The View represents data to the user and is responsible for what is being
represented on the screen.

https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/SharedLibrary
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/SharedLibrary
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/SharedLibrary

58 Working with Forms and Data

To make development easier, we will use the Microsoft.Toolkit.MVVM package, which
we will add now. This package helps us write our ViewModels and takes care of the
boilerplate code that is needed to support bindings with XAML:

1. First, right-click the solution node in the Solution view and select Manage NuGet
Packages for solution….

2. Now, search for Microsoft.Toolkit.MVVM and select the package from the list.
3. Select the macOS, UWP, and WASM projects from the project list and click Install.
4. Since we will use them later, also create three folders called Models, ViewModels,

and Views. For this, right-click the ResourcePlanner.Shared shared project, select
Add > New Folder, and name it Models. Repeat this process for ViewModels
and Views.

Now that we've set up the project, let's start by adding the first pieces of code to our app.
As is typical with line of business apps, we will be using the MenuBar control as the main
way of switching views inside our app:

1. Start by creating a new class inside the ViewModels folder called
NavigationViewModel.

2. Now, replace the code inside the NavigationViewModel.cs file with
the following:

using Microsoft.Toolkit.Mvvm.ComponentModel;

using Microsoft.Toolkit.Mvvm.Input;

using System.Windows.Input;

using Windows.UI.Xaml;

namespace ResourcePlanner.ViewModels

{

 public class NavigationViewModel :
 ObservableObject

 {

 private FrameworkElement content;

 public FrameworkElement Content

 {

 Get

 {

 return content;

 }

 Set

Introducing the app 59

 {

 SetProperty(ref content, value);

 }

 }

 public ICommand Issues_OpenNewIssueViewCommand
 { get; }

 public ICommand Issues_ExportIssueViewCommand
 { get; }

 public ICommand Issues_OpenAllIssuesCommand {
 get; }

 public ICommand Issues_OpenTrainIssuesCommand
 { get; }

 public ICommand
 Issues_OpenStationIssuesCommand { get; }

 public ICommand Issues_Open OtherIssuesCommand
 { get; }

 public NavigationViewModel()

 {

 Issues_OpenNewIssueViewCommand =
 new RelayCommand(() => { });

 Issues_ExportIssueViewCommand =
 new RelayCommand(() => { });

 Issues_OpenAllIssuesCommand =
 new RelayCommand(() => { });

 Issues_OpenAllTrainIssuesCommand =
 new RelayCommand(() => { });

 Issues_OpenAllStationIssuesCommand =
 new RelayCommand(() =>{ });

 Issues_OpenAllOtherIssuesCommand =
 new RelayCommand(() =>{ });

 }

 }

}

This is the class that will handle navigating to different controls. As we implement
more views later in this chapter, we will update the Command objects so that
they point to the correct views.

60 Working with Forms and Data

3. Now, add the following code to the MainPage class:

using ResourcePlanner.ViewModels;

...

private NavigationViewModel navigationVM = new
NavigationViewModel();

This will add a NavigationViewModel object to the MainPage class that
we can bind to in our XAML.

4. Finally, replace the content of your MainPage.xaml file with the following:

 ...

 xmlns:muxc="using:Microsoft.UI.Xaml.Controls">

 <Grid Background="{ThemeResource
 ApplicationPageBackgroundThemeBrush}">

 <Grid.RowDefinitions>

 <RowDefinition Height="Auto"/>

 <RowDefinition Height="*"/>

 </Grid.RowDefinitions>

 <muxc:MenuBar>

 <muxc:MenuBar.Items>

 <muxc:MenuBarItem Title="Issues">

 <MenuFlyoutItem Text="New"
 Command="{x:Bind
 navigationVM.Issues_
 OpenNewIssueViewCommand}"/>

 <MenuFlyoutItem Text="Export to
 PDF" Command="{x:Bind
 navigationVM.Issues_
 ExportIssueViewCommand}"/>

 <MenuFlyoutSeparator/>

 <MenuFlyoutItem Text="All"
 Command="{x:Bind
 navigationVM.Issues_
 OpenAllIssuesCommand}"/>

 <MenuFlyoutItem Text="Train
 issues" Command="{x:Bind
 navigationVM.Issues_
 OpenTrainIssuesCommand}"/>

Introducing the app 61

 <MenuFlyoutItem Text="Station
 issues" Command="{x:Bind
 navigationVM.Issues_
 OpenStationIssuesCommand}"/>

 <MenuFlyoutItem Text="Other
 issues" Command="{x:Bind
 navigationVM.Issues_
 OpenOtherIssuesCommand}"/>

 </muxc:MenuBarItem>

 <muxc:MenuBarItem Title="Trains"
 IsEnabled="False"/>

 <muxc:MenuBarItem Title="Staff"
 IsEnabled="False"/>

 <muxc:MenuBarItem Title="Depots"
 IsEnabled="False"/>

 <muxc:MenuBarItem Title="Stations"
 IsEnabled="False"/>

 </muxc:MenuBar.Items>

 </muxc:MenuBar>

 <ContentPresenter Grid.Row="1"
 Content="{x:Bind navigationVM.Content,
 Mode=OneWay}"/>

 </Grid>

This code adds MenuBar, which users can use to navigate to different views.
ContentPresenter, at the bottom, is used to display the content that was
navigated to.

62 Working with Forms and Data

Now, if you start the app, you will see something similar to the following:

Figure 3.1 – Running the ResourcePlanner app with MenuBar navigation

In the next section, we will add our first view to the app, which will allow users to create
new issues.

Entering and validating data
A typical requirement for line of business apps is to enter data and also provide input
validation for said data. Uno Platform provides a variety of different controls to allow
users to enter data, in addition to dozens of libraries that support Uno Platform.

Note
While at the time of writing, there is no built-in support for input validation,
input validation is planned to be supported by Uno Platform. This is because
neither UWP nor WinUI 3 fully support input validation right now. To learn
more about the upcoming input validation support, take a look at the following
issue in the WinUI repository: https://github.com/microsoft/
microsoft-ui-xaml/issues/179. The progress that's being made on
this as part of Uno Platform is being tracked through this issue: https://
github.com/unoplatform/uno/issues/4839.

https://github.com/microsoft/microsoft-ui-xaml/issues/179
https://github.com/microsoft/microsoft-ui-xaml/issues/179
https://github.com/unoplatform/uno/issues/4839
https://github.com/unoplatform/uno/issues/4839

Entering and validating data 63

To make our development process easier, first, let's add a reference to the Windows
Community Toolkit controls:

1. First, right-click the solution node in the Solution view and select Manage NuGet
Packages for solution….

2. Search for Microsoft.Toolkit.UI.Controls and select the package.
3. In the project list, select the UWP head and click Install.
4. Repeat steps 2 and 3 for the Microsoft.Toolkit.UI.Controls.DataGrid package.
5. Now, search for Uno.Microsoft.Toolkit.UI.Controls and select the package.

Note
While the Windows Community Toolkit only supports UWP, thanks to the
effort of the Uno Platform team, we can also use the Windows Community
Toolkit inside our Uno Platform app on all the supported platforms. The Uno
Platform team maintains Uno Platform-compatible versions of the Windows
Community Toolkit packages based on the original packages and updates
them accordingly.

6. From the project list, select the macOS and WASM heads and click Install.
7. Finally, repeat steps 5 and 6 with the Uno.Microsoft.Toolkit.UI.Controls.

DataGrid package.

This allows us to use the Windows Community Toolkit controls inside our app. Since
we also want to use these controls on macOS and WASM, we also installed the Uno
Platform versions of those two packages. Since we added the Windows Community
Toolkit control packages, we can start creating the Create Issue view:

1. First of all, create the IssueRepository.cs class inside the Models folder and
add the following code to it:

using System.Collections.Generic;

using UnoBookRail.Common.Issues;

namespace ResourcePlanner.Models

{

 public class IssuesRepository

 {

 private static List<Issue> issues = new
 List<Issue>();

 public static List<Issue> GetAllIssues()

64 Working with Forms and Data

 {

 return issues;

 }

 public static void AddIssue(Issue issue)

 {

 issues.Add(issue);

 }

 }

}

This is the model that will collect issues. In a real-world app, this code would
communicate with a database or API to persist issues, but for simplicity, we will
only save them in a list.

2. Next, create the CreateIssueViewModel.cs class inside the ViewModels
folder and use the following code from GitHub: https://github.
com/PacktPublishing/Creating-Cross-Platform-C-Sharp-
Applications-with-Uno-Platform/blob/main/Chapter03/
ResourcePlanner.Shared/ViewModels/CreateIssueViewModel.cs

Now that we've created the necessary Model and ViewModel, we will continue by adding
the user interface to create a new issue.

For the user interface, we will implement input validation as this is typical for data entry
forms in a line of business app. For this, we will implement the following behavior: if the
user clicks on the Create Issue button, we will validate the data using a function in code
behind. If we determine that the data is valid, we will create a new issue; otherwise,
we will show an error message below every field that failed our custom validation using
code behind. In addition to that, we will validate an input field every time the entered
input changes.

Let's continue by creating the user interface:

1. Create a new UserControl inside the Views folder named
CreateIssueView.xaml and replace the XAML with the following:

<UserControl

 x:Class="ResourcePlanner.Views.CreateIssueView"

 xmlns="http://schemas.microsoft.com/winfx/2006
 /xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/
 winfx/2006/xaml"

https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter03/ResourcePlanner.Shared/ViewModels/CreateIssueViewModel.cs
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter03/ResourcePlanner.Shared/ViewModels/CreateIssueViewModel.cs
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter03/ResourcePlanner.Shared/ViewModels/CreateIssueViewModel.cs
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter03/ResourcePlanner.Shared/ViewModels/CreateIssueViewModel.cs

Entering and validating data 65

 xmlns:local="using:ResourcePlanner.Views"

 xmlns:d="http://schemas.microsoft.com/
 expression/blend/2008"

 xmlns:mc="http://schemas.openxmlformats.org/
 markup-compatibility/2006"

 xmlns:wctcontrols="using:Microsoft.Toolkit.
 Uwp.UI.Controls"

 xmlns:wctui="using:Microsoft.Toolkit.Uwp.UI"

 xmlns:ubrcissues="using:UnoBookRail.Common.Issues"

 mc:Ignorable="d"

 d:DesignHeight="300"

 d:DesignWidth="400">

 <StackPanel Orientation="Vertical" Padding="20">

 <TextBlock Text="Create new issue"
 FontSize="24"/>

 <Grid ColumnSpacing="10">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="200"/>

 <ColumnDefinition Width="200"/>

 </Grid.ColumnDefinitions>

 <Grid.RowDefinitions>

 <RowDefinition />

 <RowDefinition />

 </Grid.RowDefinitions>

 <TextBox x:Name="TitleTextBox"

 Header="Title"

 Text="{x:Bind createIssueVM.Title,
 Mode=TwoWay}"

 HorizontalAlignment="Stretch"

 TextChanged="FormInput_TextChanged"/>

 <TextBlock x:Name="titleErrorNotification"
 Grid.Row="1"Foreground="{ThemeResource
 SystemErrorTextColor}"/>

 <ComboBox Header="Type" Grid.Column="1"
 ItemsSource="{wctui:EnumValues
 Type=ubrcissues:IssueType}"

66 Working with Forms and Data

 HorizontalAlignment="Stretch"

 SelectedItem="{x:Bind
 createIssueVM.IssueType,
 Mode=TwoWay}"/>

 </Grid>

 <TextBox Header="Description"

 Text="{x:Bind createIssueVM.Description,
 Mode=TwoWay}"

 MinWidth="410" MaxWidth="800"

 HorizontalAlignment="Left"/>

 <Button Content="Create new issue"

 Margin="0,20,0,0" Width="410"

 HorizontalAlignment="Left"

 Click="CreateIssueButton_Click"/>

 </StackPanel>

</UserControl>

This is a basic UI that allows users to enter a title and description and lets the user
choose the issue's type. Note that we have a TextBlock control below the text
inputs so that we can show error messages to the user if the provided input is not
valid. In addition to that, we have also added a TextChanged listener to Title to
be able to update the error message when the text changes.

2. Now, replace the content of the CreateIssueView.xaml.cs file with the
following code:

using ResourcePlanner.ViewModels;

using Windows.UI.Xaml;

using Windows.UI.Xaml.Controls;

namespace ResourcePlanner.Views

{

 public sealed partial class CreateIssueView :
 UserControl

 {

 private CreateIssueViewModel createIssueVM;

 public CreateIssueView(CreateIssueViewModel
 viewModel)

 {

Entering and validating data 67

 this.createIssueVM = viewModel;

 this.InitializeComponent();

 }

 private void FormInput_TextChanged(object
 sender, TextChangedEventArgs args)

 {

 EvaluateFieldsValid(sender);

 }

 private bool EvaluateFieldsValid(object
 sender)

 {

 bool allValid = true;

 if(sender == TitleTextBox || sender ==
 null)

 {

 if (TitleTextBox.Text.Length == 0)

 {

 allValid = false;

 titleErrorNotification.Text =
 "Title must not be empty.";

 }

 Else

 {

 titleErrorNotification.Text = "";

 }

 }

 return allValid;

 }

 private void CreateIssueButton_Click(object
 sender, RoutedEventArgs args)

 {

 if (EvaluateFieldsValid(null))

 {

 createIssueVM.CreateIssueCommand.
 Execute(null);

68 Working with Forms and Data

 }

 }

 }

}

With this code, we now have input validation that's run when the text of an input
field changes or when the user clicks on the Create Issue button. Only if all the
input fields (right now, this is only the Title input field) are valid will we create an
issue and execute CreateIssueCommand on our ViewModel.

3. Finally, inside the NavigationViewModel.cs file, replace the creation of the
Issues_OpenNewIssueViewCommand object with the following code and
add the necessary using statement. That way, when the command is invoked,
CreateIssueView will be displayed:

Issues_OpenNewIssueViewCommand = new RelayCommand(() =>

{

 Content = new CreateIssueView(new
 CreateIssueViewModel(this));

});

Now, if you start the app and click on the New Issue option from the Issue dropdown,
you will see something similar to the following Figure 3.2:

Figure 3.2 – Create new issue interface

Entering and validating data 69

If you try to click on the Create new issue button, you will see a short message below the
title input field that states "Title must not be empty". Upon entering text into the Title
field, the message will disappear. While we have added simple inputs, we will now add
more input options using the Windows Community Toolkit.

Using Windows Community Toolkit controls
So far, users can only enter a title and description and choose the issue's type. However,
we also want to allow users to input specific data based on the issue's. For this, we will
use one of the controls the Windows Community Toolkit provides: SwitchPresenter. The
SwitchPresenter control allows us to render a certain part of the UI based on a property
that's been set, similar to how a switch case in C# works.

Of course, SwitchPresenter is not the only control that's available from the Windows
Community Toolkit; there are many more, such as GridSplitter, MarkdownTextBlock,
and DataGrid, which we will use in the Displaying data using DataGrid section. Since
we've already installed the necessary packages earlier in this chapter, we will add the
controls to our user interface. Let's get started:

1. Add the following XAML code below the description TextBox control inside
CreateIssueView.xaml:

<wctcontrols:SwitchPresenter Value="{x:Bind
createIssueVM.IssueType, Mode=OneWay}">

 <wctcontrols:SwitchPresenter.SwitchCases>

 <wctcontrols:Case Value="{x:Bind
 ubrcissues:IssueType.Train}">

 <StackPanel Orientation="Horizontal"
 Spacing="10">

 <StackPanel MinWidth="410"
 MaxWidth="800">

 <TextBox x:Name=
 "TrainNumberTextBox"

 Header="Train number"

 Text="{x:Bind
 createIssueVM.TrainNumber,
 Mode=TwoWay}"

 HorizontalAlignment="Stretch"

 TextChanged=
 "FormInput_TextChanged"/>

70 Working with Forms and Data

 <TextBlock x:Name=
 "trainNumberErrorNotification"

 Foreground="{ThemeResource
 SystemErrorTextColor}"/>

 </StackPanel>

 </StackPanel>

 </wctcontrols:Case>

 <wctcontrols:Case Value="{x:Bind
 ubrcissues:IssueType.Station}">

 <StackPanel MinWidth="410" MaxWidth="800"
 HorizontalAlignment="Left">

 <TextBox x:Name="StationNameTextBox"

 Header="Station name" Text="{x:Bind
 createIssueVM.StationName,
 Mode=TwoWay}"

 HorizontalAlignment="Stretch"

 TextChanged=
 "FormInput_TextChanged"/>

 <TextBlock x:Name=
 "stationNameErrorNotification"
 Foreground="{ThemeResource
 SystemErrorTextColor}"/>

 </StackPanel>

 </wctcontrols:Case>

 <wctcontrols:Case Value="{x:Bind
 ubrcissues:IssueType.Other}">

 <StackPanel MinWidth="410" MaxWidth="800"
 HorizontalAlignment="Left">

 <TextBox x:Name="LocationTextBox"

 Header="Location" Text="{x:Bind
 createIssueVM.Location,
 Mode=TwoWay}"

 HorizontalAlignment="Stretch"
 TextChanged=
 "FormInput_TextChanged"/>

 <TextBlock x:Name=
 "locationErrorNotification"
 Foreground="{ThemeResource
 SystemErrorTextColor}"/>

Entering and validating data 71

 </StackPanel>

 </wctcontrols:Case>

 </wctcontrols:SwitchPresenter.SwitchCases>

</wctcontrols:SwitchPresenter>

This allows us to display specific input fields, depending on the issue type that's
selected by the user. This is because SwitchPresenter renders a specific
Case based on the Value property that's been set. Since we bind it to the
IssueType property of our ViewModel, any time the user changes the issue
type, it will update accordingly. Note that this binding only works if we specify
the mode to be OneWay since the default binding mode of x:Bind is OneTime
and, as such, wouldn't update.

2. Now, add the following code before the return statement of the EvaluateFields
function inside CreateIssueViewModel.xaml.cs:

if (sender == TrainNumberTextBox || sender == null)

{

 if (TrainNumberTextBox.Text.Length == 0)

 {

 if (createIssueVM.IssueType ==
 UnoBookRail.Common.Issues.IssueType.Train)

 {

 allValid = false;

 }

 trainNumberErrorNotification.Text =
 "Train number must not be empty.";

 }

 else

 {

 trainNumberErrorNotification.Text = "";

 }

}

if (sender == StationNameTextBox || sender == null)

{

 if (StationNameTextBox.Text.Length == 0)

 {

 if (createIssueVM.IssueType ==
 UnoBookRail.Common.Issues.IssueType.Station)

72 Working with Forms and Data

 {

 allValid = false;

 }

 stationNameErrorNotification.Text =
 "Station name must not be empty.";

 }

 else

 {

 stationNameErrorNotification.Text = "";

 }

}

if (sender == LocationTextBox || sender == null)

{

 if (LocationTextBox.Text.Length == 0)

 {

 if (createIssueVM.IssueType ==
 UnoBookRail.Common.Issues.IssueType.Other)

 {

 allValid = false;

 }

 locationErrorNotification.Text =
 "Location must not be empty.";

 }

 else

 {

 locationErrorNotification.Text = "";

 }

}

Now, our input validation will also take the newly added input fields into account.
Note that we will only block the creation of an issue if input that does not meet
the validation process is relevant to the issue. For example, if the issue type is
Train, we will ignore whether the location text is passing validation or not and
users can create a new issue, regardless of whether the location input passes the
validation stage.

Displaying data using DataGrid 73

Now, if you start the app and navigate to the Create new issue view, you will see
something similar to the following Figure 3.3:

Figure 3.3 – Updated issue creation view. Left: Issue Train type selected; right: Issue Station type selected

When you change the issue type, you will notice that the form will change and show the
correct input field, depending on the issue type. While we allow users to create a new
issue, we currently have no way of displaying them. In the next section, we will change
this by adding a new view to show the list of issues.

Displaying data using DataGrid
Since UnoBookRail employees will use this app to manage existing issues, it is important
for them to view all the issues to easily get an overview of their current status. While there
is no built-in UWP and Uno Platform control that makes this easy to implement, luckily,
the Windows Community Toolkit contains the right control for this case: DataGrid.

The DataGrid control allows us to render data as a table, specify which columns to
display, and allows users to sort the table based on a column. Before we start using the
DataGrid control, though, we need to create the ViewModel and prepare the views:

1. First, create a new class named IssueListViewModel.cs inside the
ViewModels Solution folder and add the following code to it:

using System.Collections.Generic;

using UnoBookRail.Common.Issues;

namespace ResourcePlanner.ViewModels

{

 public class IssueListViewModel

 {

74 Working with Forms and Data

 public readonly IList<Issue> Issues;

 public IssueListViewModel(IList<Issue> issues)

 {

 this.Issues = issues;

 }

 }

}

Since we only want to show a subset of issues, such as when navigating to the train
issues list, the list of issues to display will be passed as a constructor parameter.

2. Now, create a new UserControl inside the Views folder named
IssueListView.xaml.

3. Finally, inside the NavigationViewModel class constructor, replace
the creation of the Issues_OpenAllIssuesCommand, Issues_
OpenTrainIssuesCommand, Issues_OpenTrainIssuesCommand,
and Issues_OpenTrainIssuesCommand objects with the following code:

Issues_OpenAllIssuesCommand = new RelayCommand(() =>

{

 Content = new IssueListView(new IssueListViewModel
 (IssuesRepository.GetAllIssues()), this);

});

Issues_OpenTrainIssuesCommand = new RelayCommand(() =>

{

 Content = new IssueListView(new IssueListViewModel
 (IssuesRepository.GetAllIssues().Where(issue

 => issue.IssueType ==
 IssueType.Train).ToList()), this);

});

Issues_OpenStationIssuesCommand = new RelayCommand(() =>

{

 Content = new IssueListView(new IssueListViewModel
 (IssuesRepository.GetAllIssues().Where(issue

 => issue.IssueType ==
 IssueType.Station).ToList()), this);

});

Issues_OpenOtherIssuesCommand = new RelayCommand(() =>

{

Displaying data using DataGrid 75

 Content = new IssueListView(new IssueListViewModel
 (IssuesRepository.GetAllIssues().Where(issue

 => issue.IssueType ==
 IssueType.Other).ToList()), this);

});

This allows the user to navigate to the issue list when the user clicks on the
corresponding elements from the navigation, while also ensuring that we only show
the issues in the list that are relevant to the navigation option. Note that we have
chosen to create the commands using inline lambdas. However, you can also declare
functions and use them to create the RelayCommand objects.

Now that we've added the necessary ViewModel and updated NavigationViewModel
to allow us to navigate to the issue list view, we can continue writing the UI of our issue
list view.

Displaying data with the DataGrid control
Before we implement the issue list view, let's quickly cover the basic features of DataGrid
that we will use. There are two ways to get started with DataGrid:

• Let DataGrid auto-generate the columns. This has the disadvantage that the
column headers will use the property names unless you change them inside
AutoGeneratingColumn. While they are good to get started with the DataGrid
control, they are often not the best choice. Also, using this method, you can't choose
which columns to show; instead, it will show all columns.

• Specify which properties to include by manually specifying the columns you want.
This option has the advantage that we can control which properties to include and
also specify the column name. Of course, this also means that we have to ensure
that our bindings are correct, which is a potential cause of bugs.

Specifying the columns of a DataGrid can be done by setting the DataGrid's Columns
property and providing a collection of DataGridColumn objects. For certain data types,
there are already built-in columns you can use, such as DataGridTextColumn for text-
based data. Every column allows you to customize the header being displayed by specifying
the Header property and whether users can sort the column through the CanUserSort
property. For more complex data where there is no built-in DataGridColumn type, you
can also implement your own DataGridColumn object. Alternatively, you can also
use DataGridTemplateColumn, which allows you to render cells based on a specified
template. For this, you can specify a CellTemplate object, which will be used to
render cells, and a CellEditTemplate object, which will be used to let users edit the
current cell's value.

76 Working with Forms and Data

In addition to specifying columns, the DataGrid controls also have more features you can
customize. For example, the DataGrid allows you to select rows and customize the row
and cell backgrounds. Now, let's continue by writing our issue list.

Now that we've covered the basics of DataGrid, let's continue by writing our issue list
display interface:

1. For this, add the following code to the IssueListView.xaml.cs file:

using Microsoft.Toolkit.Uwp.UI.Controls;

using ResourcePlanner.ViewModels;

using UnoBookRail.Common.Issues;

using Windows.UI.Xaml.Controls;

namespace ResourcePlanner.Views

{

 public sealed partial class IssueListView :
 UserControl

 {

 private IssueListViewModel issueListVM;

 private NavigationViewModel navigationVM;

 public IssueListView(IssueListViewModel
 viewModel, NavigationViewModel
 navigationViewModel)

 {

 this.issueListVM = viewModel;

 this.navigationVM = navigationViewModel;

 this.InitializeComponent();

 }

 private void IssueList_SelectionChanged(object
 sender, SelectionChangedEventArgs e)

 {

 navigationVM.SetSelectedIssue((sender as
 DataGrid).SelectedItem as Issue);

 }

 }

}

Displaying data using DataGrid 77

This allows us to create a binding from the DataGrid to the list issues. Note that
we will also add a SelectionChanged handler function so that we can notify
NavigationViewModel whether an issue has been selected. We're doing this
since some options only make sense if an issue is selected. One of these options is
the Export to PDF option, which we will implement in the Exporting issues in PDF
format section.

2. Add the following XAML namespace definition to the IssueListView.xaml file:
xmlns:wct="using:Microsoft.Toolkit.Uwp.UI.Controls"

3. Now, replace Grid inside the IssueListView.xaml file with the
following XAML:

<wct:DataGrid

 SelectionChanged="IssueList_SelectionChanged"

 SelectionMode="Single"

 AutoGenerateColumns="False"

 ItemsSource="{x:Bind
 issueListVM.Issues,Mode=OneWay}">

 <wct:DataGrid.Columns>

 <wct:DataGridTextColumn Header="Title"
 Binding="{Binding Title}"
 IsReadOnly="True" CanUserSort="True"/>

 <wct:DataGridTextColumn Header="Type"
 Binding="{Binding IssueType}"
 IsReadOnly="True" CanUserSort="True"/>

 <wct:DataGridTextColumn Header="Creator"
 Binding="{Binding OpenedBy.FormattedName}"
 IsReadOnly="True" CanUserSort="True"/>

 <wct:DataGridTextColumn Header="Created on"
 Binding="{Binding OpenDate}"
 IsReadOnly="True" CanUserSort="True"/>

 <wct:DataGridCheckBoxColumn Header="Open"
 Binding="{Binding IsOpen}"
 IsReadOnly="True" CanUserSort="True"/>

 <wct:DataGridTextColumn Header="Closed by"
 Binding="{Binding ClosedBy.FormattedName}"
 IsReadOnly="True" CanUserSort="True"/>

 <wct:DataGridTextColumn Header="Closed on"
 Binding="{Binding CloseDateReadable}"
 IsReadOnly="True" CanUserSort="True"/>

78 Working with Forms and Data

 </wct:DataGrid.Columns>

</wct:DataGrid>

Here, we added columns for the most important fields of our issue. Note that
we only allow the title to be changed since the other fields would require more
logic than what can easily be displayed as part of the DataGrid table layout. Since
x:Bind is not supported in this case, we are using Binding to bind the properties
to the columns.

Now, if you start the app and create an issue, you will see something similar to
the following Figure 3.4:

Figure 3.4 – DataGrid showing a demo issue

In this section, we only covered the basics of using the Windows Community Toolkit
DataGrid control. If you wish to learn more about the DataGrid control, the official
documentation contains hands-on examples covering the different APIs that are available
for it. You can find out more here: https://docs.microsoft.com/en-us/
windows/communitytoolkit/controls/datagrid. Now that we can display the
list of existing issues, we will continue by writing a PDF export for issues. As part of this,
we will also learn how to write a custom Uno Platform control that we will only use for
the web.

Exporting issues in PDF format
In addition to being able to view data inside a line of business app, often, it is desired to be
able to be export data, for example, as a PDF, so that you can print it or send it via email.
For this, we will write an interface that allows users to export a given issue to PDF. Since
there are no built-in APIs for this, we will use the iText library for this. Note that if you
want to use the library in your application, you either need to follow the AGPL license
or buy a commercial license for the library. However, before we can write the code to
generate the PDF, we will need to prepare the project:

1. First, we need to install the iText NuGet package. For this, right-click the solution
and search for iText. Select the package. Then, from the project list, select the
macOS, UWP, and WASM heads and click Install.

https://docs.microsoft.com/en-us/windows/communitytoolkit/controls/datagrid
https://docs.microsoft.com/en-us/windows/communitytoolkit/controls/datagrid

Exporting issues in PDF format 79

2. Now, create a class named ExportIssueViewModel.cs inside the
ViewModels folder with the following code:

using iText.Kernel.Pdf;

using iText.Layout;

using iText.Layout.Element;

using Microsoft.Toolkit.Mvvm.Input;

using System;

using System.IO;

using System.Runtime.InteropServices.WindowsRuntime;

using System.Windows.Input;

using UnoBookRail.Common.Issues;

namespace ResourcePlanner.ViewModels

{

 public class ExportIssueViewModel

 {

 public readonly Issue Issue;

 public ICommand SavePDFClickedCommand;

 public ExportIssueViewModel(Issue issue)

 {

 Issue = issue;

 SavePDFClickedCommand =
 new RelayCommand(async () => { });

 }

 }

}

Note that we are adding those using statements now as we will need them later
in this section.

3. Now, create a new UserControl named ExportIssueView.xaml inside the
Views folder.

4. Replace the code inside ExportIssueView.xaml.cs with the following:

using ResourcePlanner.ViewModels;

using Windows.UI.Xaml.Controls;

namespace ResourcePlanner.Views

{

 public sealed partial class ExportIssueView :

80 Working with Forms and Data

 UserControl

 {

 private ExportIssueViewModel exportIssueVM;

 public ExportIssueView(ExportIssueViewModel
 viewModel)

 {

 this.exportIssueVM = viewModel;

 this.InitializeComponent();

 }

 }

}

5. Replace the code inside ExportIssueView.xaml with the code
from GitHub:

https://github.com/PacktPublishing/Creating-Cross-
Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/
Chapter03/ResourcePlanner.Shared/Views/ExportIssueView.
xaml

6. Lastly, replace the creation of Issue_ExportIssueViewCommand in the
NavigationViewModel.cs file with the following code:

Issues_ExportIssueViewCommand = new RelayCommand(() =>

{

 Content = new ExportIssueView(new
 ExportIssueViewModel(this.selectedIssue));

});

Now that we've added the necessary interface, we will continue by writing the code for
exporting an issue as a PDF. Since the behavior on the desktop will be different compared
to that on the web, we will cover the desktop version first.

https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter03/ResourcePlanner.Shared/Views/ExportIssueView.xaml
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter03/ResourcePlanner.Shared/Views/ExportIssueView.xaml
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter03/ResourcePlanner.Shared/Views/ExportIssueView.xaml
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter03/ResourcePlanner.Shared/Views/ExportIssueView.xaml

Exporting issues in PDF format 81

Exporting on desktop
Since we've already written the user interface to allow users to export issues, the only
thing left is to update ExportIssueViewModel to generate the PDF and provide users
with a way to access it. On the desktop, we will write the PDF file to the local filesystem
and open it. Since the app is also a UWP app, we will write the file to the app's local folder.
Now, let's update ExportIssueViewModel:

1. First, create a new function called GeneratePDF inside the
ExportIsseuViewModel class with the following code:

public byte[] GeneratePDF()

{

 byte[] bytes;

 using (var memoryStream = new MemoryStream())

 {

 bytes = memoryStream.ToArray();

 }

 return bytes;

}

2. Now, add the following code before the assignment inside the using block:

var pdfWriter = new PdfWriter(memoryStream);

var pdfDocument = new PdfDocument(pdfWriter);

var document = new Document(pdfDocument);

document.Close();

This creates a new iText PdfWriter and iText PdfDocument that will be written
to the byte array using the MemoryStream object.

3. After adding PDFWriter, PDFDocument, and Document, add the following code
to write the header of the document:

var header = new Paragraph("Issue export: " +
 Issue.Title)

 .SetTextAlignment(
 iText.Layout.Properties.TextAlignment.CENTER)

 .SetFontSize(20);

document.Add(header);

82 Working with Forms and Data

This creates a new paragraph with the text "Issue export:" and the issue's title. It also
sets the text alignment and font size to make it easier to distinguish as the header
of the document.

4. Since we also want to export information about the issue, add the following code
before the call to document.Close():

var issueType = new Paragraph("Type: " + Issue.
IssueType);

document.Add(issueType);

switch (Issue.IssueType)

{

 case IssueType.Train:

 var trainNumber = new Paragraph("Train number: "
 + Issue.TrainNumber);

 document.Add(trainNumber);

 break;

 case IssueType.Station:

 var stationName = new Paragraph("Station name: "
 + Issue.StationName);

 document.Add(stationName);

 break;

 case IssueType.Other:

 var location = new Paragraph("Location: " +
 Issue.Location);

 document.Add(issueType);

 break;

}

var description = new Paragraph("Description: " + Issue.
Description);

document.Add(description);

This will add the necessary paragraph to the PDF document based on the issue's
type. In addition to that, we will add the issue's description to the PDF document.

Exporting issues in PDF format 83

Note
Due to a bug in iText, running this code may create
a NullReferenceException when adding the first element to the
document. Unfortunately, at the time of writing this book, there is no known
workaround. This will only occur when the debugger is attached and will not
cause any issues when the app is running in production. When running the app
with the debugger attached, you can click Continue via the toolbar to continue
debugging the app.

5. Lastly, replace the creation of SavePDFClickedCommand with the
following code:

SavePDFClickedCommand = new RelayCommand(async () =>

{

#if !__WASM__

 var bytes = GeneratePDF();

 var tempFileName =
 $"{Path.GetFileNameWithoutExtension
 (Path.GetTempFileName())}.pdf";

 var folder = Windows.Storage.ApplicationData.
 Current.TemporaryFolder;

 await folder.CreateFileAsync(tempFileName,
 Windows.Storage.CreationCollisionOption.
 ReplaceExisting);

 var file = await
 folder.GetFileAsync(tempFileName);

 await Windows.Storage.FileIO.WriteBufferAsync
 (file, bytes.AsBuffer());

 await Windows.System.Launcher.LaunchFileAsync
 (file);

#endif

});

This will create a PDF, save it to the apps temporary folder, and open it with the
default PDF handler.

84 Working with Forms and Data

Note
In this chapter, we are writing the file to a temporary folder and opening
it using the default PDF viewer. Depending on your application and use
case, FileSavePicker and other file pickers can be a very good fit. You
can learn more about FileSavePicker and the other file pickers that
are available here: https://platform.uno/docs/articles/
features/windows-storage-pickers.html.

To try the issue export out, start the app and create a new issue. After that, select the issue
from the issue list and click Export to PDF from the Issues dropdown at the top. Now,
if you click on Create PDF, the PDF will be created. Shortly after that, the PDF will be
opened in your default PDF viewer. The PDF should look something like this:

Figure 3.5 – Demo issue export PDF

Since we cannot write a file to the user's local filesystem when the app is running on the
web using WASM, in the next section, we will update our app to provide a download link
on WASM instead of the Create PDF button by writing a custom HTML-element control.

Exporting on the web with a download link
While the key feature of Uno Platform is to run code that runs on all platforms, it also
allows developers to write custom controls that are platform-specific. You can use this
to take advantage of platform-specific controls. In our case, we will use this to create an
HTML a-tag to provide a download link for the WASM version of our app. We will do
this using the Uno.UI.Runtime.WebAssembly.HtmlElement attribute:

1. First, create a new class called WasmDownloadElement.cs inside the Views
folder with the following code:

using System;

using System.Collections.Generic;

using System.Text;

using Windows.UI.Xaml;

https://platform.uno/docs/articles/features/windows-storage-pickers.html
https://platform.uno/docs/articles/features/windows-storage-pickers.html

Exporting issues in PDF format 85

using Windows.UI.Xaml.Controls;

namespace ResourcePlanner.Views

{

#if __WASM__

 [Uno.UI.Runtime.WebAssembly.HtmlElement("a")]

 public class WasmDownloadElement : ContentControl

 {

 }

#endif

}

This will be our a -tag, which we will use to allow users to download the issue-
export PDF. Since we only want this control on WASM, we have placed it inside the
#if __WASM__ preprocessor directive.

2. To be able to customize the MIME type of the download and the name of the
downloaded file, add the following code to the WasmDownloadElement class:

public static readonly DependencyProperty
MimeTypeProperty = DependencyProperty.Register(

 "MimeType", typeof(string),
 typeof(WasmDownloadElement), new
 PropertyMetadata("application/octet-stream",
 OnChanged));

public string MimeType

{

 get => (string)GetValue(MimeTypeProperty);

 set => SetValue(MimeTypeProperty, value);

}

public static readonly DependencyProperty
FileNameProperty = DependencyProperty.Register(

 "FileName", typeof(string),
 typeof(WasmDownloadElement), new
 PropertyMetadata("filename.bin", OnChanged));

public string FileName

{

 get => (string)GetValue(FileNameProperty);

 set => SetValue(FileNameProperty, value);}

private string _base64Content;

86 Working with Forms and Data

public void SetBase64Content(string content)

{

 _base64Content = content;

 Update();

}

private static void OnChanged(DependencyObject
dependencyobject, DependencyPropertyChangedEventArgs
args)

{

 if (dependencyobject is WasmDownloadElement wd)

 {

 wd.Update();

 }

}

private void Update()

{

 if (_base64Content?.Length == 0)

 {

 this.ClearHtmlAttribute("href");

 }

 else

 {

 var dataUrl =
 $"data:{MimeType};base64,{_base64Content}";

 this.SetHtmlAttribute("href", dataUrl);

 this.SetHtmlAttribute("download", FileName);

 }

}

While this is a lot of code, we are only creating two DependencyProperty fields
on the WasmDownloadElement class, namely MimeType and FileName, and
allowing them to set the content that will be downloaded. The rest of the code
handles setting the correct attributes on the underlying control.

Exporting issues in PDF format 87

3. Lastly, add the following code to the constructor of ExportIssueView, after the
call to this.InitializeComponent():

#if __WASM__

 this.WASMDownloadLink.MimeType =
 "application/pdf";

 var bytes = exportIssueVM.GeneratePDF();

 var b64 = Convert.ToBase64String(bytes);

 this.WASMDownloadLink.SetBase64Content(b64);

#endif

This will set the correct MIME type on the download link and set the correct
content to download. Note that we defined the WASMDownloadLink element
earlier in this chapter, inside the ExportIssueView.xaml file.

To test this, start the WASM head of your app. Once it has loaded, create an issue, then
select it from the issue list and click Export to PDF via the Issues option. Instead of
the Create PDF button, you should now see the Download PDF option, as shown in
Figure 3.6:

Figure 3.6 – Exporting a PDF on WASM

 Once you click the link, the PDF export will be downloaded.

88 Working with Forms and Data

Summary
In this chapter, we built a desktop app that works on Windows, macOS, and on the web
using WASM. We covered how to write a data input form with input validation and how
to use the Windows Community Toolkit. After that, we learned how to display data using
the Windows Community Toolkit DataGrid control. Lastly, we covered how to export
data in PDF format and provided a download link by writing a custom HTML control.

In the next chapter, we'll build a mobile app instead. While it will also be designed to be
used by employees of UnoBookRail, the main focus will be running the app on a mobile
device. Among other things, we'll use this app as an opportunity to look at working with
unreliable connectivity and using device capabilities such as a camera.

4
Mobilizing Your App

This chapter will show you how to develop apps with Uno Platform for mobile devices.
Such apps can be quite different from ones that run on a desktop device or the web and
bring their own challenges that you must take into account.

In this chapter, we'll cover the following topics:

• Building for mobile devices running iOS and Android

• Working with remote data in occasionally connected environments

• Styling the app for the platform it is running on

• Using the capabilities of the device that the app is running on

By the end of this chapter, you'll have created a mobile app that runs on Android and
iOS devices, looks different on each platform, and communicates with a remote server
to retrieve and send data.

Technical requirements
This chapter assumes that you already have your development environment set up, as
well as the necessary project templates installed, as we covered in Chapter 1, Introducing
Uno Platform. The source code for this chapter can be found at https://github.com/
PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-
with-Uno-Platform/tree/main/Chapter04.

https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter04
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter04
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter04

90 Mobilizing Your App

The code in this chapter makes use of the following library: https://github.com/
PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-
with-Uno-Platform/tree/main/SharedLibrary.

This chapter also retrieves data from a remote web server that you can recreate with
the code at https://github.com/PacktPublishing/Creating-Cross-
Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/
WebApi.

Check out the following video to see the code in action: https://bit.ly/3jKGRkI

Introducing the app
The app we'll be building in this chapter is called Network Assist. It's an application that
will be made available to all staff. It is particularly useful to those working at stations
in a public-facing capacity. The real version of this app would have many features, but
we're only going to implement two:

• Showing when the next trains will arrive at each station

• Recording and reporting details of events happening around the network.

As this application will be used by staff members as they perform their jobs across the
network, it will be built to run on Android and iOS devices.

What does "mobile" mean?
It's easy to think of "mobile" as only being about the device an app is on, but
to do so is limiting. "Mobile" can be a helpful shorthand for "Android and iOS
devices." However, it's essential to remember more than phones (or tablets) are
mobile. It's also the person who is using the device who is mobile. Considering
the people who will be using the application is often more important than the
device that it will be running on. The device is just one factor to consider.
A person may use multiple devices as part of a process, thereby requiring the
experience to be mobile as they move between devices – perhaps starting a task
on one device and finishing it on another.

The reason we're building the Network Assist app as a mobile one is primarily
because the people who will use it will be travelling around all day. It's because
the person is mobile that we're building a "mobile" app, that runs on
a "mobile" device.

Rather than spending a lot of time explaining the functionality in advance, let's get on
with building the app. We'll expand on the requirements as we write the code.

https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/SharedLibrary
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/SharedLibrary
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/SharedLibrary
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/WebApi
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/WebApi
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/WebApi
https://bit.ly/3jKGRkI

Introducing the app 91

Creating the app
We'll start by creating the solution for the app:

1. In Visual Studio, create a new project with the Multi-Platform App
(Uno Platform) template.

2. Call the project NetworkAssist. You can use a different name, but you'll need to
adjust all subsequent code snippets accordingly.

3. Remove all the platform head projects except for the Android, iOS, and UWP ones.

Always keep the UWP head in the solution
Even if you're not going to release a UWP version of an app, there are two
reasons to keep the UWP head in the solution. Firstly, this can be helpful when
diagnosing any compilation errors, to check if the code has a fundamental
problem or if the issue is related to the Uno-specific tooling. Secondly, and
more importantly, Visual Studio can provide additional tooling and IntelliSense
when the UWP head is selected. By having the UWP head in the project, your
Uno Platform development experience will be more straightforward.

4. To avoid the need to write more code than necessary, we'll add a reference to the
shared library project. Right-click on the solution node in Solution Explorer, select
Add > Existing Project…, navigate to the UnoBookRail.Common.csproj file,
and click Open.

5. For each of the platform-specific projects, we need to add a reference to the
common library project. Right-click on the Android project node in Solution
Explorer and select Add > Reference… > Projects. Then, check the entry for
UnoBookRail.Common and click OK. Now, repeat this process for the iOS and
UWP projects.

With the basic solution structure now ready, we can add some functionality to the
main page.

Creating the main page
As this will be a simple application, we will put all the functionality on a single page. The
requirement for the design is that the app has tabs or buttons at the bottom of the screen
to enable switching between the different areas of functionality. We'll put the different
pieces of functionality in separate controls and change the control that's shown based
on the button (or tab) the user presses.

92 Mobilizing Your App

This is appropriate because the user does not need to navigate backward through the tabs
they have viewed already.

Allowing for camera notches, cutouts, and safe areas
Before we add any of our own content, you may wish to run the app to check that
everything compiles and can be debugged without issue. Depending on the device
or simulator you run the app on, you may see something like the left-hand side of Figure
4.1, which shows the default app running on an iPhone 12 simulator. In this figure, you
can see that the Hello, World! text overlaps (or crashes into) the time and goes behind the
camera notch.

If you don't have a device that allows you to test this, some emulators are available that
have this notch. Other emulators will have a configurable option to allow testing with and
without the cutout. Look under Settings > System > Developer Options > Simulate
a display with a cutout:

Figure 4.1 – Before and after screenshots showing content allowing for the status bar and camera notch

Our app won't have the Hello, World! text, but we don't want our content to be obscured.
Fortunately, Uno Platform comes with a helper class that will allow space for camera
notches, regardless of the device they are on or the position they are in.

To use this helper class, we need to do the following:

1. Add xmlns:toolkit="using:Uno.UI.Toolkit" to the Page element at the
root of MainPage.xaml.

2. Add toolkit:VisibleBoundsPadding.PaddingMask="All" to the Grid
element inside the Page element. By setting a value of All, the helper will provide
the appropriate space if the device is turned sideways, and the notch will be shown
at the side of the screen.

When you run the app now, you will see something like the right-hand side image in
Figure 4.1, which demonstrates how adequate space has been added to the layout. This
keeps the status bar or camera notch from obscuring our content.

Introducing the app 93

Now that we have taken care of allowing notches on the screen, we can implement the
functionality we need for the app.

Implementing the main page's content
As we only have one page in the app, we'll implement it now:

1. Replace the existing contents of Grid with the following:

<Grid.RowDefinitions>

 <RowDefinition Height="*" />

 <RowDefinition Height="Auto" />

</Grid.RowDefinitions>

<CommandBar VerticalAlignment="Bottom" Grid.Row="1">

 <CommandBar.PrimaryCommands>

 <AppBarButton Icon="Clock" Label="Arrivals"
 Click="ShowArrivals" />

 <AppBarButton Label="Quick Report"
 Click="ShowQuickReport">

 <AppBarButton.Icon>

 <FontIcon Glyph="" />

 </AppBarButton.Icon>

 </AppBarButton>

 </CommandBar.PrimaryCommands>

</CommandBar>

The top row of the grid will contain the controls for the different elements
of functionality. The bottom row will host the buttons for selecting the
different controls.

We're using a CommandBar as this is the UWP control that's best suited for
providing buttons for selecting areas of functionality within the app. This is only
an approximation of how we want things to look on iOS and Android, and
we'll address those shortly.

Note
XAML provides multiple ways of doing things that all produce comparable
results. With the code in this chapter, we've used the simplest approach to
provide a consistent output on all platforms.

94 Mobilizing Your App

2. We now need custom controls for displaying the different pieces of functionality.
Start by right-clicking on the Shared project and selecting Add > New Folder. Name
it Views so that it matches the convention for where to store UI-related controls.

If you wish, you can move the MainPage files into the Views folder, but it doesn't
matter for the functionality of this app.

3. In the new folder, right-click and select Add > New Item…, choose the User
Control (Uno Platform UWP) option, and call it ArrivalsControl. Repeat this
to add a control named QuickReportControl.

4. We'll now add the controls to MainPage.xaml. Declare a new XML namespace
alias at the page level, with the value of xmlns:views="using:Network
Assist.Views". After the opening of the Grid tag and before CommandBar,
add the following to create instances of our new controls:

<views:ArrivalsControl x:Name="Arrivals"
Visibility="Visible" />

<views:QuickReportControl x:Name="QuickReport"
Visibility="Collapsed" />

5. In the code-behind file (MainPage.xaml.cs), we need to add the methods to
handle the Click events referenced in the XAML for the AppBarButtons:

public void ShowArrivals(object sender, RoutedEventArgs
args)

{

 Arrivals.Visibility = Visibility.Visible;

 QuickReport.Visibility = Visibility.Collapsed;

}

public void ShowQuickReport(object sender,
RoutedEventArgs args)

{

 Arrivals.Visibility = Visibility.Collapsed;

 QuickReport.Visibility = Visibility.Visible;

}

Introducing the app 95

We'll use click events and code-behind here as the logic is tightly coupled to the
UI and won't benefit from having coded tests. It's possible and acceptable to use
ICommand implementations and bindings to control when each control is shown,
but it is up to you to implement it that way if you wish.

MVVM and Code-Behind
In this chapter, we will use a combination of code-behind files and the
Model-View-ViewModel (MVVM) pattern. There are three reasons for this.
Firstly, it allows us to keep the code shorter and simpler, so that it is easier for
you to follow along. Secondly, it avoids the need to explain a specific MVVM
framework or implementation, and we can instead focus on the code that's
relevant to the application. Finally, it demonstrates that Uno Platform doesn't
force you to work in a specific way. You can use the coding style, pattern,
or framework you prefer.

With the main page up and running, we can now add the functionality for displaying
details of upcoming arrivals.

Showing upcoming arrival details
The requirements for showing upcoming arrivals are as follows:

• A list of stations is displayed, and when one is selected, the arrival times of the next
three trains in each direction are shown.

• The data can be refreshed to ensure the latest information is always available.

• The time when the last piece of data was retrieved is displayed.

• Prompts are shown if no station is selected or there's a problem retrieving data.

• The app indicates when it is retrieving data.

96 Mobilizing Your App

You can see an example of the final functionality we'll create by the end of this chapter
in the following figure:

Figure 4.2 – Upcoming arrival details shown on an iPhone (left) and on an Android device (right)

This user control for showing the upcoming arrivals is going to be the most complicated
piece of UI in the app. It may seem like a lot of steps, but each one is simple:

1. Start by adding two column definitions, and four row definitions to Grid in
ArrivalsControl.xaml:

<Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="Auto" />

</Grid.ColumnDefinitions>

<Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="*" />

</Grid.RowDefinitions>

Introducing the app 97

2. The top row will contain a ComboBox control for selecting the station and
a Button element to request that the data be refreshed:

<ComboBox x:Name="StationList"

 HorizontalAlignment="Stretch"

 VerticalAlignment="Stretch"

 ItemsSource="{x:Bind VM.ListOfStations}"

 SelectedItem="{x:Bind VM.SelectedStation,
 Mode=TwoWay}"

 SelectionChanged="OnStationListSelectionChanged"

 SelectionChangedTrigger="Always">

 <ComboBox.ItemTemplate>

 <DataTemplate x:DataType="network:Station">

 <TextBlock Text="{x:Bind Name}"
 FontSize="26" />

 </DataTemplate>

 </ComboBox.ItemTemplate>

</ComboBox>

<Button Grid.Column="1"

 Width="60"

 Height="60"

 Command="{x:Bind VM.RefreshCommand}">

 <SymbolIcon Symbol="Refresh" />

</Button>

The data template refers to a data type we are yet to add, but we can add
the namespace alias now as xmlns:network="using:UnoBookRail.
Common.Network".

3. The next two rows will use TextBlocks to show the time when data was last
retrieved and if there was a problem retrieving data:

<TextBlock

 Grid.Row="1"

 Grid.ColumnSpan="2"

 Margin="4"

 HorizontalAlignment="Stretch"

 HorizontalTextAlignment="Right"

 Text="{x:Bind VM.DataTimestamp, Mode=OneWay}" />

98 Mobilizing Your App

<TextBlock

 Grid.Row="2"

 Grid.ColumnSpan="2"

 Margin="4"

 HorizontalAlignment="Stretch"

 HorizontalTextAlignment="Right"

 Foreground="Red"

 TextWrapping="WrapWholeWords"

 Text="Connectivity issues: data may not be up to
 date!"

 Visibility="{x:Bind VM.ShowErrorMsg,
 Mode=OneWay}"/>

4. ListView will use a couple of data templates that we'll define at the control level.
Add the following after the opening UserControl tag:

<UserControl.Resources>

 <DataTemplate x:Key="HeaderTemplate">

 <Grid HorizontalAlignment="Stretch"
 Background="{ThemeResource
 ApplicationPageBackgroundThemeBrush}">

 <TextBlock

 Margin="0"

 FontWeight="Bold"

 Style="{StaticResource
 SubheaderTextBlockStyle}"

 Text="{Binding Platform}" />

 </Grid>

 </DataTemplate>

 <DataTemplate x:Key="ItemTemplate">

 <Grid Margin="0,10">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="100" />

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <TextBlock

 Margin="0,10"

 Style="{StaticResource TitleTextBlockStyle}"

Introducing the app 99

 Text="{Binding DisplayedTime}" />

 <TextBlock

 Grid.Column="1"

 Margin="0,10"

 Style="{StaticResource TitleTextBlockStyle}"

 Text="{Binding Destination}" />

 </Grid>

 </DataTemplate>

</UserControl.Resources>

5. The fourth, and last, row contains a ListView that shows the upcoming
arrival times:

<ListView Grid.Row="3"

 Grid.ColumnSpan="2"

 ItemTemplate="{StaticResource ItemTemplate}"

 ItemsSource="{x:Bind VM.ArrivalsViewSource}"

 SelectionMode="None">

 <ListView.GroupStyle>

 <GroupStyle HeaderTemplate="{StaticResource
 HeaderTemplate}" />

 </ListView.GroupStyle>

</ListView>

6. The fourth row also contains a Grid that hosts other informational controls that are
displayed over or instead of the ListView as appropriate:

<Grid Grid.Row="3" Grid.ColumnSpan="2">

 <TextBlock HorizontalAlignment="Stretch"

 VerticalAlignment="Center"

 HorizontalTextAlignment="Center"

 Style="{StaticResource
 SubheaderTextBlockStyle}"

 Text="Select a station" TextWrapping="NoWrap"

 Visibility="{x:Bind VM.ShowNoStnMsg,
 Mode=OneWay}" />

 <ProgressRing Width="100" Height="100"

 IsActive="True" IsEnabled="True"

 Visibility="{x:Bind VM.IsBusy, Mode=OneWay}"

100 Mobilizing Your App

 />

</Grid>

7. We've added quite a lot of XAML here. The first step to seeing how it looks is to
wire up a ViewModel so that we can access the relevant properties and commands.
Change the contents of ArrivalsControlxaml.cs to the following:

public sealed partial class ArrivalsControl : UserControl
{

 private ArrivalsViewModel VM { get; set; }

 public ArrivalsControl()

 {

 InitializeComponent();

 VM = new ArrivalsViewModel();

 }

 private async void OnStationListSelectionChanged
 (object sender, SelectionChangedEventArgs e)

 {

 if ((sender as ComboBox).SelectedItem is
 Station selectedStn)

 {

 await VM.LoadArrivalsDataAsync
 (selectedStn.Id);

 }

 }

}

Here, we created an instance of the ViewModel (named VM to help keep the code
concise) in the constructor, and it's this class that contains most of the logic.

The code-behind also includes a method to handle the SelectionChanged
event on the ComboBox. This is currently necessary as a workaround for a bug
due to the order that ComboBox events are raised in. The bug is logged at
https://github.com/unoplatform/uno/issues/5792. Once fixed,
it should be possible to bind to a Command on the ViewModel to perform the
equivalent functionality.

https://github.com/unoplatform/uno/issues/5792

Introducing the app 101

8. Add the following using declarations to the top of the file so that the compiler can
find the types we just added:

using NetworkAssist.ViewModels;

using UnoBookRail.Common.Network;

9. We're now ready to create a ViewModel that will contain the remaining logic for
the functionality. We'll start by creating a folder called ViewModels. Within that
folder, create a class called ArrivalsViewModel.

10. To avoid writing common code that's needed when following the MVVM pattern,
add a reference to the Microsoft.Toolkit.Mvvm NuGet package in each of the
platform head projects:

Install-Package Microsoft.Toolkit.Mvvm -Version 7.0.2

11. Update the ArrivalsViewModel class so that it inherits from Microsoft.
Toolkit.Mvvm.ComponentModel.ObservableObject.

12. ArrivalsViewModel will use types from different places, so we need to reference
the following namespaces:

using Microsoft.Toolkit.Mvvm.Input;

using System.Collections.ObjectModel;

using System.Threading.Tasks;

using System.Windows.Input;

using UnoBookRail.Common.Network;

using Windows.UI.Xaml.Data;

13. Start by adding the following fields to the class:

private static DataService _data = DataService.Instance;

private List<Station> _listOfStations;

private ObservableCollection<StationArrivalDetails>
_arrivals =
 new ObservableCollection<StationArrivalDetails>();

private Station _selectedStation = null;

private string _dataTimestamp;

private bool _isBusy;

private bool _showErrorMsg;

102 Mobilizing Your App

14. Our ViewModel requires the following properties as they were referenced in
the bindings of the XAML we defined previously. They will use the backing fields
we just added:

public List<Station> ListOfStations

{

 get => _listOfStations;

 set => SetProperty(ref _listOfStations, value);

}

public bool ShowErrorMsg

{

 get => _showErrorMsg;

 set => SetProperty(ref _showErrorMsg, value);

}

public Station SelectedStation

{

 get => _selectedStation;

 set {

 if (SetProperty(ref _selectedStation, value))

 {

 OnPropertyChanged(nameof(ShowNoStnMsg));

 }

 }

}

public ObservableCollection<StationArrivalDetails>
Arrivals

{

 get => _arrivals;

 set => SetProperty(ref _arrivals, value);

}

public string DataTimestamp

{

 get => _dataTimestamp;

 set => SetProperty(ref _dataTimestamp, value);

}

public bool IsBusy

{

Introducing the app 103

 get => _isBusy;

 set => SetProperty(ref _isBusy, value);

}

public IEnumerable<object> ArrivalsViewSource => new
CollectionViewSource()

{

 Source = Arrivals,

 IsSourceGrouped = true

}.View;

public bool ShowNoStnMsg => SelectedStation == null;

public ICommand RefreshCommand { get; }

public ICommand SelectionChangedCommand { get; }

15. We'll use the constructor to initialize the list of stations and the commands:

public ArrivalsViewModel()

{

 ListOfStations = _data.GetAllStations();

 RefreshCommand = new AsyncRelayCommand(async () =>
 { await LoadArrivalsDataAsync(); });

 SelectionChangedCommand = new AsyncRelayCommand(
 async () => { await LoadArrivalsDataAsync();
 });

}

16. Now, add the method that handles retrieving and displaying the data:

public async Task LoadArrivalsDataAsync(int stationId =
0)

{

 if (stationId < 1)

 {

 // if no value passed use the previously selected

 // Id.

 stationId = SelectedStation?.Id ?? 0;

 }

 else

 {

 // We've changed station so clear current details

104 Mobilizing Your App

 Arrivals.Clear();

 DataTimestamp = string.Empty;

 ShowErrorMsg = false;

 }

 if (stationId > 0)

 {

 IsBusy = true;

 try {

 var arr = await
 _data.GetArrivalsForStationAsync(stationId);

 ShowErrorMsg = false;

 if (arr.ForStationId == stationId)

 {

 DataTimestamp =
 $"Updated at {arr.Timestamp:t}";

 Arrivals.Clear();

 if (!string.IsNullOrEmpty(
 arr.DirectionOneName))

 {

 var d1details = new StationArrivalDetails
 (arr.DirectionOneName);

 d1details.AddRange(arr.DirectionOneDetails);

 Arrivals.Add(d1details);

 }

 if (!string.IsNullOrEmpty(
 arr.DirectionTwoName))

 {

 var d2details = new StationArrivalDetails(
 arr.DirectionTwoName);

 d2details.AddRange(arr.DirectionTwoDetails);

 Arrivals.Add(d2details);

 }

 }

 }

 catch (Exception exc) {

 // Log this or take other appropriate action

 ShowErrorMsg = true;

Introducing the app 105

 }

 finally {

 IsBusy = false;

 }

 }

}

17. You may have noticed that the data was retrieved from a singleton DataService
class. We'll start by creating a simple version of this that we'll expand upon later.
Common convention suggests putting this class in a directory called Services,
though you could put this in the ViewModels folder as well:

using System.Linq;

using System.Threading.Tasks;

using UnoBookRail.Common.Network;

public class DataService

{

 private static readonly Lazy<DataService> ds =
 new Lazy<DataService>(() => new
 DataService());

 private static readonly Lazy<Stations> stations =
 new Lazy<Stations>(() => new Stations());

 public static DataService Instance => ds.Value;

 private DataService() { }

 public List<Station> GetAllStations() =>
 stations.Value.GetAll().OrderBy(s =>
 s.Name).ToList();

 public async Task<Arrivals>
 GetArrivalsForStationAsync(int stationId)

 {

 return await Task.FromResult(
 stations.Value.GetNextArrivals(stationId));

 }

}

This class is currently getting all its data from the shared library, but we'll change
this later. This is also why the GetArrivalsForStationAsync method may
seem overly complex.

106 Mobilizing Your App

18. Now that we have the DataService class, we can retrieve the arrival details,
but we need to do a little bit more work to display them. There is one more class
we need. This is StationArrivalDetails, and it allows us to group the
information by the platform and direction the train is traveling in. Create this in the
ViewModels directory:

using UnoBookRail.Common.Network;

public class StationArrivalDetails :

List<ArrivalDetail>

{

 public StationArrivalDetails(string platform)

 {

 Platform = platform;

 }

 public string Platform { get; set; }

}

CollectionViewSource with grouped data in Uno
Displaying grouped lists with Uno Platform is more complicated than
on UWP. If you've previously used a CollectionViewSource
in a UWP app, you've probably defined it in XAML and not as an
IEnumerable<object>. Unfortunately, it's necessary to define our
CollectionViewSource as an IEnumerable<IEnumerable> for
Uno Platform to correctly render all the groups and headers on Android and
iOS. Without doing this, we'd see the group headings missing on iOS and only
the first group's contents on Android.

We now have a working app, but there are two improvements we'll make in the next two
sections. There, we'll improve the look of the app and use some native controls, but before
that, we'll switch to use "as live" data from a remote source and not data that ships with
the app.

Retrieving remote data 107

Retrieving remote data
Very few apps only work with the data that they ship with. The value the Network Assist
provides is based on giving real-time information. There is a lot more value in knowing
when trains will actually arrive rather than just when they are scheduled
to arrive. To gather this information, the app must connect to a remote source of
real-time data.

Most mobile applications connect to external data sources, and the most common way
to do this is over HTTP(S). If you're only developing an application that runs on desktop,
you might be able to assume that a connection is always available. For mobile apps,
it's necessary to consider the device as being occasionally connected.

As it's impossible to assume that an app will have a connection available or that
it will be fast, it's necessary to account for this when designing an app. These issues
apply to all mobile apps and are not something unique to developing with Uno Platform.
The correct way to handle the occasional connectivity and availability of data will vary by
application. It's too big an issue for us to fully cover here but important to bring up.
At a minimum, accounting for occasional connectivity means needing to consider
retrying failed connection requests and managing data. The code we wrote previously
in the LoadArrivalsDataAsync method already does a crude form of caching, by not
getting rid of the current information when refreshing the data until a successful request
is made and newer data is available to display. While the information shown in the app
can become outdated very quickly, it's considered more appropriate for the app to show
something that it acknowledges is a few minutes out of date than to show nothing.

In another app, it may be more appropriate to save data in a file or database so that it can
be retrieved and shown when remote data is not available. Chapter 5, Making Your App
Ready for the Real World, shows how you may do this using an SQLite database.

We'll look at how the app can handle failures in connecting to the remote data shortly,
but first, we'll look at how to connect to the remote data.

Connecting to a remote data source
The GitHub repository for this book at https://github.com/PacktPublishing/
Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform
includes a WebAPI project that will return train arrival data for the app.

https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform

108 Mobilizing Your App

You can choose to run the code and access it via your local machine, or you can connect
to the version available at https://unobookrail.azurewebsites.net/. If you're
connecting to the hosted version, note that it bases data on the local time for the server,
and this may be different from where you are. If the server continually says there is a long
time until the next train as it's the early hours of the morning where the server is,
you'll see more varied data if you run the project yourself:

1. We'll use System.Net.Http.HttpClient to connect to the server. To be able
to do this, we must add package references to System.Net.Http in the Android
and iOS projects:

Install-Package System.Net.Http -Version 4.3.4

2. As the data that's returned by the API is in JSON format, we'll also add a reference
to the Newtonsoft.Json library in all platform projects so that we can deserialize
the responses:

Install-Package Newtonsoft.Json -Version 12.0.3

3. We're now ready to retrieve remote data. The changes will all be in the
DataService.cs file. Start by adding an instance of an HttpClient. We will
use this for all requests:

using System.Net.Http;

private static readonly HttpClient _http = new
HttpClient();

4. To connect to the server, we need to specify where it is. As we will eventually be
making multiple requests, it's sensible to define the server domain in a single place.
We'll do this by adding a property to return this value:

public static string WebApiDomain {

 get

 {

 #if __ANDROID__

 return "https://10.0.2.2:44302";

 #else

 return "https://localhost:44302";

 #endif

 // Or connect to the hosted version

 //return
 "https://unobookrail.azurewebsites.net";

https://unobookrail.azurewebsites.net/

Retrieving remote data 109

 }

}

Note that we're using the __ANDROID__ constant, which is available to the #if
preprocessor directive. See Chapter 2, Writing Your First Uno Platform App, for
more on this.

If you're connecting to a locally hosted WebAPI instance from an Android emulator,
it's necessary to use the IP address of 10.0.2.2 to connect. This is a special IP
address that the emulator uses to refer to the host machine. You can use conditional
compilation to specify this, as in the preceding snippet. If you're connecting
to an external server, you can set the address directly and don't need any
conditional code.

5. We can now update the GetArrivalsForStationAsync method to get the live
data. Replace the current implementation with the following:

using Newtonsoft.Json;

public async Task<Arrivals> GetArrivalsForStationAsync(int
stationId)

{

 var url = $"{WebApiDomain}/stations/?stationid=
 {stationId}";

 var rawJson = await _http.GetStringAsync(url);

 return JsonConvert.DeserializeObject<Arrivals>
 (rawJson);

}

If you run the app now, the data will come from the remote location. You might notice
that data retrieval is no longer instantaneous and that a busy indicator is shown while
waiting. We added the code for showing the progress indicator in the original version
of the app but haven't seen it displayed until now. This highlights another potential issue
when working with data that takes time to retrieve. It is crucial to keep the user informed
when something is happening. We're using a ProgressRing here to indicate that
something is happening. Without this, the user may be wondering if anything
is happening and become frustrated or press the refresh button repeatedly.

At this point, we've retrieved data from a remote source and kept the user informed
while this is happening, but we need to do more for when things go wrong. So, we'll look
at that next.

110 Mobilizing Your App

Using Polly to handle exceptions and retry requests
The need to handle exceptions and retry failed requests is common across almost all
applications. Fortunately, many solutions exist to handle some of the complexity for us.
Polly (https://github.com/App-vNext/Polly) is a popular, open source library
for handling transient errors that we'll use in our app. Let's take a look:

1. We'll start by adding a reference to the Polly.Extensions.Http package to all
the platform projects:

Install-Package Polly.Extensions.Http -Version 3.0.0

This extends the standard Polly capabilities and simplifies handling
HTTP-related faults.

2. We'll now update the GetArrivalsForStationAsync method again so that
it uses a Polly policy when making the request:

using Polly;

using Polly.Extensions.Http;

public async Task<Arrivals> GetArrivalsForStationAsync(int
stationId)

{

 var url = $"{WebApiDomain}/stations/?stationid=
 {stationId}";

 var policy = HttpPolicyExtensions

 .HandleTransientHttpError()
 .WaitAndRetryAsync(3, attempt =>
 TimeSpan.FromSeconds(Math.Pow(
 attempt, 2)));

 using (var response = await policy.ExecuteAsync(
 async () => await _http.GetAsync(url)))

 {

 if (response.IsSuccessStatusCode)

 {

 var rawJson = await
 response.Content.ReadAsStringAsync();

 return JsonConvert.DeserializeObject<Arrivals>
 (rawJson);

 }

 }

https://github.com/App-vNext/Polly

Making your app look like it belongs on each platform 111

 return default;

}

There are three important parts to the code.

The first is the call to HandleTransientHttpError. This tells Polly to retry
the request if the HTTP response is a server error (HTTP 5xx) or a timeout error
(HTTP 408).

The call to WaitAndRetryAsync tells Polly to retry up to three times. We also
specify a delay between each request using an exponential backoff strategy.
We wait 1 second before the first reattempt, 4 seconds before the second, and 9
seconds before the final attempt. Such a strategy gives the server time to recover any
error and avoids overloading it with multiple repeated requests in quick succession.

The final piece of code that's of interest is the way the policy is used. We call
policy.ExecuteAsync and pass it the action we wish to apply the policy to.

3. If the request fails for a reason not covered by our policy, the code we created earlier
causes a message to be shown at the top of the screen, as shown in the following
screenshot, that indicates the problem. Other applications may need to log or report
such problems differently, but it's rarely appropriate to do nothing:

Figure 4.3 – App showing a message to indicate a connectivity problem

We now have an app that provides useful data from a remote source, and in a reliable way.
The final thing we want to do is improve how it looks on different platforms.

Making your app look like it belongs
on each platform
So far, everything in the app has used the default styling provided by Uno Platform.
Because Uno Platform bases everything on UWP and WinUI, our apps have been styled
based on the Fluent Design system as this is the default on Windows. This is fine if we
want our apps to look this way, but what if we want our apps to use the default styles for
Android or iOS? Fortunately, Uno Platform has a solution for us. It provides libraries in
the Material and Cupertino styles that we can apply to our apps. While these are native
for Android and iOS devices, respectively, they can be used anywhere.

112 Mobilizing Your App

We'll now use the resources these libraries provide to apply the Material Design styling
to the Android version of our app, and the Cupertino styles to the iOS version.

Applying Material styles to the Android version
of the app
Let's get started:

1. We'll start by adding a reference to the Uno.Material package to the Android
project. Note that this is a prerelease package, so enable this if you're searching
via the UI:

Install-Package Uno.Material -Version 1.0.0-dev.790

2. While the Uno.Material library knows how to style controls, it doesn't
contain all the assets and references to use them. For this, add the Xamarin.
AndroidX.Lifecycle.LiveData and Xamarin.AndroidX.AppCompat.
AppCompatResources packages to the Android project:

Install-Package Xamarin.AndroidX.AppCompat.
AppCompatResources -Version 1.2.0.5

Install-Package Xamarin.AndroidX.Lifecycle.LiveData
-Version 2.3.1

3. To use the styles in the Android library, we must add them to the styles available in
the app by referencing them in App.xaml:

<Application

 x:Class="NetworkAssist.App"

 xmlns="http://schemas.microsoft.com/winfx/2006/
 xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/
 xaml"

 xmlns:android="http://uno.ui/android"

 xmlns:local="using:NetworkAssist"

 xmlns:mc="http://schemas.openxmlformats.org/
 markup-compatibility/2006"

 mc:Ignorable="android">

 <Application.Resources>

 <ResourceDictionary>

 <ResourceDictionary.MergedDictionaries>

Making your app look like it belongs on each platform 113

 <XamlControlsResources xmlns=

 "using:Microsoft.UI.Xaml.Controls" />

 <android:MaterialColors xmlns=
 "using:Uno.Material" />

 <android:MaterialResources xmlns=
 "using:Uno.Material" />

 </ResourceDictionary.MergedDictionaries>

 </ResourceDictionary>

 </Application.Resources>

</Application>

4. Some controls will pick up Material styling automatically, while others will need
to have the styles applied directly. To show this, we'll apply a specific style to the
refresh Button.

In ArrivalsControl.xaml, add the Android namespace alias to the top of the
file. We will only use this when running on Android. Then, apply the style to the
Button element:

xmlns:android="http://uno.ui/android"

mc:Ignorable="d android">

<Button

 Grid.Column="1"

 Width="60"

 Height="60"

 android:Style="{StaticResource
 MaterialContainedButtonStyle}"

 Command="{x:Bind VM.RefreshCommand}">

 <SymbolIcon Symbol="Refresh" />

</Button>

The preceding code has improved how the Button control looks on the arrivals
control, but it hasn't improved the buttons in CommandBar at the bottom of the
shell page. Let's address this now.

114 Mobilizing Your App

5. Rather than using the Windows CommandBar, the Material Design system has
a separate control that is more appropriate for showing navigation-related buttons
at the bottom of the screen. This is called BottomNavigationBar. We'll start
by adding this to MainPage.xaml and wrapping the existing CommandBar in
a Grid that will only be shown on Windows:

xmlns:android="http://uno.ui/android"

xmlns:win="http://schemas.microsoft.com/winfx/2006/xaml/
 presentation"

mc:Ignorable="d android">

<android:Grid Grid.Row="1" >

 <material:BottomNavigationBar

 xmlns:material="using:Uno.Material.Controls">

 <material:BottomNavigationBar.Items>

 <material:BottomNavigationBarItem

 Click="ShowArrivals">

 <material:
 BottomNavigationBarItem.Icon>

 <SymbolIcon Symbol="Clock" />

 </material:

 BottomNavigationBarItem.Icon>

 </material:BottomNavigationBarItem>

 <material:BottomNavigationBarItem

 Click="ShowQuickReport">

 <material:BottomNavigationBarItem.Icon>
 <FontIcon Glyph="" />

 </material:BottomNavigationBarItem.Icon>

 </material:BottomNavigationBarItem>

 </material:BottomNavigationBar.Items>

 </material:BottomNavigationBar>

</android:Grid>

<win:Grid Grid.Row="1">

 <CommandBar />

 // All XAML for this control notshown

</win:Grid>

Making your app look like it belongs on each platform 115

This new control will use the same images and Click events as before. It's only the
control that's displaying them that we're changing.

Note
After adding the Xamarin.AndroidX packages, you may get a compilation
error related to a file called abc_vector_test.xml. This error is due
to compatibility inconsistencies between different preview versions of the
packages and Visual Studio. This error can be addressed by opening the
Properties section of the Android project, selecting Android Options, and
unchecking the Use incremental Android packaging system (aap2) option.
This may lead to a separate build warning and slightly slower builds, but
the code will now compile. Hopefully, future updates that are made to these
packages will help us avoid this issue.

6. If you run the app now, you'll see that the button and navigation bar are purple.
This is part of a color scheme defined in the Uno.Material library. You can use
your own color scheme by including a ResourceDictionary that provides
different values for the predefined Material colors. Then, you can reference this
when you add the resources shown in step 2. A guide to doing this can be found at
https://platform.uno/docs/articles/features/uno-material.
html#getting-started.

Now that we've improved the app's look on Android, let's do the same for iOS.

Applying Cupertino styles to the iOS version of the app
Let's get started:

1. A separate package includes the Cupertino styles, so we must add a reference to
Uno.Cupertino in the iOS project:

Install-Package Uno.Cupertino -Version 1.0.0-dev.790

As with the Material package in the previous section, we need to load the resources
from this package in App.xaml by adding the following:

xmlns:ios="http://uno.ui/ios"

mc:Ignorable="android ios">

<Application.Resources>

 <ResourceDictionary>

 <ResourceDictionary.MergedDictionaries>

 <XamlControlsResources xmlns=
 "using:Microsoft.UI.Xaml.Controls" />

https://platform.uno/docs/articles/features/uno-material.html#getting-started
https://platform.uno/docs/articles/features/uno-material.html#getting-started

116 Mobilizing Your App

 <android:MaterialColors xmlns=
 "using:Uno.Material" />

 <android:MaterialResources xmlns=
 "using:Uno.Material" />

 <ios:CupertinoColors xmlns=
 "using:Uno.Cupertino" />

 <ios:CupertinoResources xmlns=
 "using:Uno.Cupertino" />

 </ResourceDictionary.MergedDictionaries>

 </ResourceDictionary>

</Application.Resources>

2. This package doesn't include a native tab bar control (a UITabBar) yet, but we can
easily create something that matches Apple's Human Interface Guidelines.

Add the following to MainPage.xaml, after the win:Grid element:
xmlns:converters="using:UnoBookRail.NetworkAssist.
Converters"

xmlns:ios="http://uno.ui/ios"

mc:Ignorable="d android ios">

<ios:Grid Grid.Row="1">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <Grid.Resources>

 <converters:CupertinoButtonColorConverter
 x:Key="CupertinoBtnColor" />

 </Grid.Resources>

 <Button Click="ShowArrivals"

 HorizontalAlignment="Center"

 Foreground="{Binding ElementName=Arrivals,
 Path=Visibility, Converter={
 StaticResource CupertinoBtnColor},
 ConverterParameter=Visible,
 Mode=OneWay}">

 <StackPanel>

 <SymbolIcon

Making your app look like it belongs on each platform 117

 Symbol="Clock"

 Width="25"

 Height="25"

 HorizontalAlignment="Center" />

 <TextBlock>Arrivals</TextBlock>

 </StackPanel>

 </Button>

 <Button

 Grid.Column="1"

 Click="ShowQuickReport"

 HorizontalAlignment="Center"

 Foreground="{Binding ElementName=
 QuickReport, Path=Visibility,
 Converter={StaticResource
 CupertinoBtnColor},
 ConverterParameter=Visible,
 Mode=OneWay}">

 <StackPanel>

 <FontIcon

 Glyph=""

 Width="25"

 Height="25"

 HorizontalAlignment="Center" />

 <TextBlock>Quick Report</TextBlock>

 </StackPanel>

 </Button>

</ios:Grid>

We're using the same icons and Click events that we did previously, but
we're using a new converter for ForegroundColor of the Buttons. For
this, you'll need to create a folder called Converters and create a file called
CupertinoButtonColorConverter.cs containing the following code:

using Windows.UI.Xaml.Data;

public class CupertinoButtonColorConverter :
IValueConverter

{

118 Mobilizing Your App

 public object Convert(object value, Type targetType,

 object parameter, string language)

 {

 if (value?.ToString() == parameter?.ToString())

 {

 return App.Current.Resources[
 "CupertinoBlueBrush"];

 }

 else

 {

 return App.Current.Resources[
 "CupertinoSecondaryGrayBrush"];

 }

 }

 public object ConvertBack(object value, Type
 targetType, object parameter, string language)

 => throw new NotImplementedException();

}

3. As with the Android project, the Cupertino styles won't be automatically applied
to the buttons in the app. However, rather than applying styles to each Button
element directly, we can create an implicit style that will be applied to all the
Button elements throughout the app. To do this, modify App.xaml to add the
style, as follows:

<Application.Resources>

 <ResourceDictionary>

 <ResourceDictionary.MergedDictionaries>

 <XamlControlsResources xmlns=
 "using:Microsoft.UI.Xaml.Controls" />

 <android:MaterialColors xmlns=
 "using:Uno.Material" />

 <android:MaterialResources xmlns=
 "using:Uno.Material" />

 <ios:CupertinoColors xmlns=
 "using:Uno.Cupertino" />

 <ios:CupertinoResources xmlns=
 "using:Uno.Cupertino" />

Accessing device capabilities 119

 </ResourceDictionary.MergedDictionaries>

 <ios:Style TargetType="Button"
 BasedOn="{StaticResource
 CupertinoButtonStyle}" />

 </ResourceDictionary>

</Application.Resources>

Implicit styles can be used for any platform so, if you wanted, you could do a similar
thing in the Android version of the app.

We now have an app that looks like it belongs on each platform, and it can display
content we retrieve from an external server. Now, let's look at how we can use the device's
capabilities to create data and send it to a remote source.

Accessing device capabilities
The final piece of functionality we'll add to the app is different from what we've done so
far. So far we've looked at consuming data, but we'll now look at creating it.

The requirement from the company for this part of the app is that it provides a way for
staff to capture information whenever an incident occurs. An "incident" could be anything
that the business may need to record or know about. It could be something minor such as
a customer tripping while on company property to a major accident. All these incidents
have something in common: that it's beneficial to capture details when they happen
rather than relying on people remembering details later. The goal is that giving staff
a way to capture an image or some text as quickly and simply as possible will increase
the amount of information that's captured. The software will augment the captured
information with the time and location of the incident and add who recorded it. This will
be aggregated and further documented in a separate backend system.

Let's create a simple way of meeting these requirements as a way of demonstrating how
Uno Platform provides a way to use UWP APIs on different platforms:

1. To use the camera and get the location of the device, we need to indicate that the
app will require the permissions that are necessary to do this. The way we specify
permissions is done slightly differently on each platform.

On Android, open the project's Properties window and select Android Manifest.
Under the list of Required permissions, select ACCESS_COARSE_LOCATION,
ACCESS_FINE_LOCATION, CAMERA, READ_EXTERNAL_STORAGE, and
WRITE_EXTERNAL_STORAGE.

120 Mobilizing Your App

On iOS, right-click on info.plist and open it with Generic PList Editor.
Double-clicking on the file will open the manifest editor, but this does not provide
us with a way to add the required new properties. Now, add properties for Privacy -
Camera Usage Description, Privacy - Photo Library Usage Description, Privacy
- Location Usage Description, and Privacy - Location When In Use Usage
Description. To add a new property, go to the bottom of the list, click the + symbol,
and select it from the dropdown. For each of these properties, you should add
a description in the Value column that explains why that permission is needed.
These descriptions will be displayed when the permission is requested.

On Windows, open Package.appxmanfiest, go to Capabilities, and check the
option for Location. You do not need to specify any permissions to use the camera
when accessing it through CameraCaptureUI.

2. We can create the UI by adding the following to Grid in
QuickReportControl.xaml:

xmlns:android="http://uno.ui/android"

mc:Ignorable="d android">

<Grid.RowDefinitions>

 <RowDefinition Height="Auto" />

 <RowDefinition Height="*" />

 <RowDefinition Height="Auto" />

 <RowDefinition Height="2*" />

</Grid.RowDefinitions>

<Button HorizontalAlignment="Right"

 Click="SendClicked"

 Margin="15,0"

 android:Style="{StaticResource
 MaterialContainedButtonStyle}">
 Send</Button>

<Image Grid.Row="1" x:Name="ImageToInclude" />

<Button x:Name="TakePictureButton" Grid.Row="1"
 Click="CaptureImageClicked"
 VerticalAlignment="Center"
 HorizontalAlignment="Center"

Accessing device capabilities 121

 android:Style="{StaticResource
 MaterialContainedSecondaryButtonStyle}">

 <SymbolIcon Symbol="Camera" Height="50" Width="50" />

</Button>

<TextBlock Grid.Row="2" Text="What do you have to
report?" />

<TextBox x:Name="EnteredText" Grid.Row="3"
 AcceptsReturn="True" />

<Grid x:Name="BusyOverlay" Grid.RowSpan="4"
 Visibility="Collapsed" >

 <Grid Background="{ThemeResource
 ApplicationPageBackgroundThemeBrush}"
 Opacity="0.5" />

 <ProgressRing

 Width="100"

 Height="100"

 IsActive="True"

 IsEnabled="True"/>

</Grid>

This XAML is very simple. The only new thing is that we've used different styling
for the Button elements on Android. This is to highlight the importance of
each button.

3. In QuickReportControl.xaml.cs, let's add the code to handle what happens
when the user clicks on the button to add a photo:

using Windows.Media.Capture;

using Windows.UI.Xaml.Media.Imaging;

Windows.Storage.StorageFile capturedPhoto;

private async void CaptureImageClicked(object sender,
RoutedEventArgs e)

{

 try

 {

122 Mobilizing Your App

 var captureUI = new CameraCaptureUI();

 capturedPhoto = await
 captureUI.CaptureFileAsync(
 CameraCaptureUIMode.Photo);

 if (capturedPhoto == null)

 {

 return;

 }

 else

 {

 var source = new BitmapImage(new
 Uri(capturedPhoto.Path));

 ImageToInclude.Source = source;

 TakePictureButton.Visibility =
 Visibility.Collapsed;

 }

 }

 catch (Exception ex)

 {

 // Log the exception as appropriate

 }

}

This code is simple: we create an instance of CameraCaptureUI and call
CaptureFileAsync to ask it to capture a photograph. When that returns
successfully (it isn't canceled by the user), we display the image on the screen
and store it in a field to send it to the server later.

4. We'll now create a method to encapsulate the logic to retrieve the device's location:

using Windows.Devices.Geolocation;

using System.Threading.Tasks;

private async Task<string> GetLocationAsync()

{

 try

 {

Accessing device capabilities 123

 var accessStatus = await
 Geolocator.RequestAccessAsync();

 switch (accessStatus)

 {

 case GeolocationAccessStatus.Allowed:

 var geolocator = new Geolocator();

 var pos = await
 geolocator.GetGeopositionAsync();

 return $"{pos.Coordinate.Latitude},
 {pos.Coordinate.Longitude},
 {pos.Coordinate.Altitude}";

 case GeolocationAccessStatus.Denied:

 return "Location access denied";

 case GeolocationAccessStatus.Unspecified:

 return "Location Error";

 }

 }

 catch (Exception ex)

 {

 // Log the exception as appropriate

 }

 return string.Empty;

}

5. The final step is to add the event handler for the Send button:

using System.Net.Http;

using System.IO;

using Windows.UI.Popups;

private async void SendClicked(object sender,
RoutedEventArgs e)

{

 var url = $"{ViewModels.DataService.WebApiDomain}/
 QuickReports/Create";

 BusyOverlay.Visibility = Visibility.Visible;

124 Mobilizing Your App

 try

 {

 var http = new HttpClient();

 var formContent =
 new MultipartFormDataContent();

 if (capturedPhoto != null)

 {

 var fileContent = new StreamContent(await
 capturedPhoto?.OpenStreamForReadAsync());

 formContent.Add(fileContent, "imageFile",

 "capturedFile");

 }

 formContent.Add(new StringContent(await
 GetLocationAsync()), "location");

 formContent.Add(new StringContent(
 EnteredText.Text), "information");

 var response = await http.PostAsync(new
 Uri(url), formContent);

 var serverResponse = await
 response.Content.ReadAsStringAsync();

 if (serverResponse == "success")

 {

 EnteredText.Text = string.Empty;

 capturedPhoto = null;

 ImageToInclude.Source = null;

 TakePictureButton.Visibility =
 Visibility.Visible;

 var msgDlg = new MessageDialog("Quick
 report submitted", "Thank you");

 await msgDlg.ShowAsync();

 }

 else

 {

Accessing device capabilities 125

 throw new HttpRequestException(
 "Unsuccessful upload");

 }

 }

 catch (Exception ex)

 {

 // Log or retry the request as appropriate.

 var msgDlg = new MessageDialog("Failed to
 upload quick report");

 await msgDlg.ShowAsync();

 }

 finally

 {

 BusyOverlay.Visibility = Visibility.Collapsed;

 }

}

This code shows a busy (Activity) indicator while uploading the image, location,
and any entered text in the server. The same WebAPI we've been using throughout
this chapter can receive such uploads and returns a message stating "success"
when valid data is submitted. The app checks for this and displays an appropriate
message to the user.

Note
You may think it will be more convenient to allow the user to speak to the app
and record their voice. This is a sensible suggestion and something that could
easily be added in the future. We're not including it here as most devices have
built-in capabilities to use speech to text to enter details. It can be quicker
and easier to use the existing functionality of a device rather than duplicating
what's already there.

126 Mobilizing Your App

With this final piece of functionality now complete, our app is finished. You can see how
it looks when run in the following figure:

Figure 4.4 – The Quick Report screen running on an iPhone (left) and showing a selected image,
and an Android device (right) showing the entry of some dictated text

Summary
In this chapter, we built an app that works on both iOS and Android devices. This allowed
you to learn what it means to create "mobile" apps, work with remote data, apply native
platform theming to apps, and use native device capabilities.

In the next chapter, we'll build another mobile app. This will be different from the ones
we've made so far in that it is intended to be used by customers rather than the company's
staff. Among other things, we'll use this app as an opportunity to look at accessibility,
localization, and using an SQLite database.

5
Making Your App

Ready for the Real
World

In the last chapter, we covered writing your first mobile app using Uno Platform that
was targeted toward employees of UnoBookRail. We will also write a mobile app in this
chapter; however, we will focus on making it ready for customers. In this chapter, you will
write an app that persists user preferences and larger sets of data on a device. In addition,
you will also learn how to make your app more visually appealing to users with a custom
app icon and how to write apps that can be used by people using assistive technology.

To do that, we'll cover the following topics in this chapter:

• Introducing the app

• Persisting data locally using the ApplicationData API and SQLite

• Making your app ready for customers

• Localizing your app

• Using a custom app icon and splash screen

• Making your app accessible for all users

128 Making Your App Ready for the Real World

By the end of this chapter, you'll have created a mobile app running on iOS and Android
that is ready for customers and is also localized and accessible.

Technical requirements
This chapter assumes that you already have your development environment set up,
including installing the project templates, as was covered in Chapter 1, Introducing
Uno Platform. The source code for this chapter is at https://github.com/
PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-
with-Uno-Platform/tree/main/Chapter05.

The code in this chapter makes use of the library from https://github.com/
PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-
with-Uno-Platform/tree/main/SharedLibrary.

Check out the following video to see the code in action: https://bit.ly/3AywuqQ

Introducing the app
In this chapter, we will build the UnoBookRail DigitalTicket app, an app targeting
UnoBookRail's customers that want to get from A to B using UnoBookRail. While the real
version of this app would have a lot of features, in this chapter, we will only develop the
following features:

• Booking tickets for journeys between two stations of the UnoBookRail network

• Viewing all booked tickets as well as QR codes for the ticket

• Localization of the app and letting users choose the language being used for the app

As part of this, we will also ensure that our app is accessible and allow more people of
different levels of ability to use our app. Let's start now by creating the app and adding the
first bit of content.

Creating the app
First of all, we need to set up the solution for our app:

1. Start by creating a new app using the Multi-Platform App (Uno Platform) template.
2. Name the project DigitalTicket. Of course, you can use a different name;

however, in this chapter, we will assume the app is named DigitalTicket and uses the
respective namespace.

https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter05
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter05
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter05
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/SharedLibrary
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/SharedLibrary
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/SharedLibrary
https://bit.ly/3AywuqQ

Introducing the app 129

3. Remove all platform heads except the Android, iOS, and UWP ones. Note that
we also remove the WASM head even if there might be a benefit to providing this
functionality on the web. While WASM works reasonably well on mobile devices, it is
not ideal, and for simplicity, we will continue without the WASM version of the app.

4. Add the UnoBookRail shared library to the solution since we will need its
functionality later. To do this, right-click on the solution file, select Add | Existing
Project…, navigate to the UnoBookRail.Common.csproj file, and click Open.

5. Reference the shared library project in every head project. To do this, right-click
on the head project, select Add | Reference… | Projects, check UnoBookRail.
Common, and click OK. Since we need a reference to the library in every head,
repeat this process for every head, that is, Android, iOS, and UWP.

Since our app will also follow the Model-View-Viewmodel (MVVM) pattern and we
want to avoid having to write boilerplate code for this, we will also use the Microsoft.
Toolkit.MVVM package, which you will also need to add a reference to:

1. Right-click the solution node in the solution view and select Manage NuGet
Packages for solution….

2. Search for Microsoft.Toolkit.MVVM and select the NuGet package.
3. Select the Android, iOS, and UWP heads in the project list and click Install.

Similar to the previous chapter, we will also need to modify our app to leave space for
camera notches to avoid the content of our app being occluded:

1. For this, add the following namespace to the MainPage.xaml file:
xmlns:toolkit="using:Uno.UI.Toolkit".

2. After this, add toolkit:VisibleBoundsPadding.PaddingMask="All" to
the grid inside our MainPage.xaml file.

Creating the main navigation and booking process
Since our app will contain different features, we will split up the functionality of our
app into different pages that we will navigate to. Inside MainPage, we will have our
navigation and the code related to that:

1. First, start by creating a views folder by right-clicking DigitalTicket.Shared and
clicking Add | New Folder, naming it Views.

130 Making Your App Ready for the Real World

2. Now, add the following three pages inside the Views folder by right-
clicking the folder, clicking Add | New Item…, and selecting Blank Page:
JourneyBookingPage.xaml, OwnedTicketsPage.xaml, and
SettingsPage.xaml.

3. Since we will need it later, create a Utils folder and add a
LocalizedResources class to it with the following code:

public static class LocalizedResources

{

 public static string GetString(string key) {
 return key;

 }

}

For now, this class will just return the string so we can reference the class and not
have to update the code later. Later in this chapter, though, we will update the
implementation to return the localized version for the keys provided.

4. After that, create a ViewModels folder in your shared project and create a
NavigationViewModel class.

5. Add the following to your NavigationViewModel class:

using DigitalTicket.Views;

using Microsoft.Toolkit.Mvvm.ComponentModel;

using Microsoft.UI.Xaml.Controls;

using System;

namespace DigitalTicket.ViewModels

{

 public class NavigationViewModel :
 ObservableObject

 {

 private Type pageType;

 public Type PageType

 {

 get

 {

 return pageType;

 }

 set

Introducing the app 131

 {

 SetProperty(ref pageType, value);

 }

 }

 public void NavigationView_SelectionChanged(
 NavigationView navigationView,
 NavigationViewSelectionChangedEventArgs
 args)

 {

 if (args.IsSettingsSelected)

 {

 PageType = typeof(SettingsPage);

 }

 else

 {

 switch ((args.SelectedItem as
 NavigationViewItem).Tag.ToString())

 {

 case "JourneyPlanner":

 PageType =
 typeof(JourneyBookingPage);

 break;

 case "OwnedTickets":

 PageType =
 typeof(OwnedTicketsPage);

 break;

 }

 }

 }

 }

}

This code will expose the type of page MainPage should navigate to and provide
a selection changed listener to update that whenever the selection of the app's
navigation changes. To determine the correct page type, we will use the Tag
property of the selected item.

132 Making Your App Ready for the Real World

6. Now, replace the content of MainPage with this:

 ...

 xmlns:muxc="using:Microsoft.UI.Xaml.Controls">

 <Grid toolkit:VisibleBoundsPadding.PaddingMask=
 "All">

 <muxc:NavigationView x:Name="AppNavigation"

 PaneDisplayMode="LeftMinimal"

 IsBackButtonVisible="Collapsed"

 Background="{ThemeResource
 ApplicationPageBackgroundThemeBrush}"

 SelectionChanged="{x:Bind
 navigationVM.NavigationView_
 SelectionChanged, Mode=OneTime}">

 <muxc:NavigationView.MenuItems>

 <muxc:NavigationViewItem
 x:Name="JourneyBookingItem"
 Content="Journey Booking"
 Tag="JourneyPlanner"/>

 <muxc:NavigationViewItem
 Content="Owned tickets"
 Tag="OwnedTickets"/>

 <muxc:NavigationViewItem Content="All
 day tickets - soon"
 Tag="AllDayTickets"
 IsEnabled="False"/>

 <muxc:NavigationViewItem
 Content="Network plan - soon"
 IsEnabled="False"/>

 <muxc:NavigationViewItem
 Content="Line overview - soon"
 IsEnabled="False"/>

 </muxc:NavigationView.MenuItems>

 <Frame x:Name="ContentFrame"
 Padding="0,40,0,0"/>

 </muxc:NavigationView>

 </Grid>

Introducing the app 133

This is the main navigation of our app. We use the NavigationView control
for this, which allows us to easily have a side pane that can be opened using a
hamburger button. Inside that, we provide the different navigation options and set
the Tag property to be used by NavigationViewModel. Since we only allow the
journey booking and the list of owned tickets in this chapter, we disable the other
options for now.

7. Replace your MainPage class with the following:

using DigitalTicket.ViewModels;

using DigitalTicket.Views;

using System;

using Windows.UI.Xaml.Controls;

using Windows.UI.Xaml.Navigation;

namespace DigitalTicket

{

 public sealed partial class MainPage : Page

 {

 public NavigationViewModel navigationVM = new
 NavigationViewModel();

 public MainPage()

 {

 InitializeComponent();

 if (navigationVM.PageType is null)

 {

 AppNavigation.SelectedItem =
 JourneyBookingItem;

 navigationVM.PageType =
 typeof(JourneyBookingPage);

 navigationVM.PageTypeChanged +=
 NavigationVM_PageTypeChanged;

 }

 }

 protected override void OnNavigatedTo(
 NavigationEventArgs e)

 {

 base.OnNavigatedTo(e);

 if (e.Parameter is Type navigateToType)

134 Making Your App Ready for the Real World

 {

 if (navigateToType ==
 typeof(SettingsPage))

 {

 AppNavigation.SelectedItem =
 AppNavigation.SettingsItem;

 }

 navigationVM.PageType =
 navigateToType;

 ContentFrame.Navigate(navigateToType);

 }

 }

 private void NavigationVM_PageTypeChanged(
 object sender, EventArgs e)

 {

 ContentFrame.Navigate(
 navigationVM.PageType);

 }

 }

}

With this, MainPage will create the necessary view models once it is created
and update the displayed content based on that. MainPage also listens to the
OnNavigatedTo event to update the displayed item based on the arguments
passed to it. Lastly, we also listen to the NavigationViewModels property
changed event.

Note that we are overriding the OnNavigatedTo function to be able to allow navigating to
MainPage and, within MainPage, to a specific page. While we don't need this right now,
we will use this later. Let's continue by filling the journey booking page with some content:

1. Create the JourneyBookingOption class inside the ViewModels folder.
2. Add the following code to the JourneyBookingOption class:

using DigitalTicket.Utils;

using UnoBookRail.Common.Tickets;

namespace DigitalTicket.ViewModels

Introducing the app 135

{

 public class JourneyBookingOption

 {

 public readonly string Title;

 public readonly string Price;

 public readonly PricingOption Option;

 public JourneyBookingOption(PricingOption
 option)

 {

 Title = LocalizedResources.GetString(
 option.OptionType.ToString() + "Label");

 Price = option.Price;

 Option = option;

 }

 }

}

Since this is a data object that will be used to display the options, it only contains
properties. Since the title will be displayed inside the app and needs to be localized,
we use the LocalizedResources.GetString function to determine the
correct value.

3. Now create the JourneyBookingViewModel class inside the ViewModels
folder and add the code as seen on GitHub (https://github.com/
PacktPublishing/Creating-Cross-Platform-C-Sharp-
Applications-with-Uno-Platform/blob/main/Chapter05/
DigitalTicket.Shared/ViewModels/JourneyBookingViewModel.
cs). Note that a few lines are commented out, and that's because we will need those
lines later; however, right now we haven't added the necessary code yet.

4. Update JourneyBookingPage.xaml.cs and JourneyBookingPage.xaml
so they are as seen on GitHub.

https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter05/DigitalTicket.Shared/ViewModels/JourneyBookingViewModel.cs
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter05/DigitalTicket.Shared/ViewModels/JourneyBookingViewModel.cs
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter05/DigitalTicket.Shared/ViewModels/JourneyBookingViewModel.cs
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter05/DigitalTicket.Shared/ViewModels/JourneyBookingViewModel.cs
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter05/DigitalTicket.Shared/ViewModels/JourneyBookingViewModel.cs

136 Making Your App Ready for the Real World

5. Copy the following entries into the Strings.resw file inside the Strings/en
folder. Note that you don't have to copy the Comments column word by word, as
it is only there to provide guidance and context for the other two columns:

As you might notice, some controls have the x:Uid property set, which is why the entries
inside the Strings.resw file are needed. We will cover how these things work in the
Localizing your app section; for now, we will only add the code and corresponding entries
to our resources file. Now, if you start the app, you should be greeted by something as
shown in Figure 5.1:

Introducing the app 137

Figure 5.1 – Journey booking page on Android

Now your users are able to configure their journey, select the ticket, and book it, albeit
with less-than-ideal ticket names. We will fix this in the Localizing your app section. For
simplicity, we will not deal with the actual payment and assume that payment information
is associated with the user's account.

In this section, we added the initial code and navigation of our app. We also added the
journey booking page, even though it currently doesn't actually book the tickets, which
we will change later. In the next section, we will cover how to persist data locally on the
user's device using two different methods, the ApplicationData API and SQLite.

138 Making Your App Ready for the Real World

Persisting data locally using the
ApplicationData API and SQLite
While in a lot of cases data can be fetched from the internet, as we have seen in Chapter
4, Mobilizing Your App, there is often a need to persist data on users' devices. This might
be the case for data that needs to be available even when there is no internet connection
or data that is device-specific such as settings. We will start by persisting small chunks of
data using the ApplicationData API.

Storing data using the ApplicationData API
Since we will localize our app, we also want to give the users the possibility to choose the
language of the app. To do this, first create a Models folder inside our shared project and
add a SettingsStore class. Now, add the following code to the SettingsStore class:

using Windows.Storage;

public static class SettingsStore

{

 private const string AppLanguageKey =
 "Settings.AppLanguage";

 public static void StoreAppLanguageOption(string
 appTheme)

 {

 ApplicationData.Current.LocalSettings.Values[
 AppLanguageKey] = appTheme.ToString();

 }

 public static string GetAppLanguageOption()

 {

 if (ApplicationData.Current.LocalSettings.Values.
 Keys.Contains(AppLanguageKey))

 {

 return ApplicationData.Current.LocalSettings.
 Values[AppLanguageKey].ToString();

 }

 return "SystemDefault";

 }

}

Persisting data locally using the ApplicationData API and SQLite 139

To access the app's default local application storage, we use the ApplicationData.
Current.LocalSettings object. The ApplicationData API also allows you to
access different ways of storing data, for example, you can use it to access the app's local
folder using ApplicationData.Current.LocalFolder. In our case, though,
we will use ApplicationData.Current.LocalSettings to persist data. The
LocalSettings object is an ApplicationDataContainer object, which you can
use just like a dictionary. Note, though, that the LocalSettings object only supports
simple data types such as strings and numbers. Now that we have added a way to store
which language to display the app in, we will need to let users change the language:

1. First, create a new class named SettingsViewModel inside our ViewModels
folder. You can find the code for this class here: https://github.
com/PacktPublishing/Creating-Cross-Platform-C-Sharp-
Applications-with-Uno-Platform/blob/main/Chapter05/
DigitalTicket.Shared/ViewModels/SettingsViewModel.cs.

2. Now, we update our settings page to include the UI to change the app's language. To
do this, replace the Grid element inside SettingsPage.xaml with the following:

<StackPanel Padding="10,0,10,10">

 <ComboBox x:Name="LanguagesComboBox"

 Header="Choose the app's language"

 SelectedIndex="{x:Bind
 settingsVM.SelectedLanguageIndex,
 Mode=TwoWay}"/>

</StackPanel>

3. In addition to this, we will also need to update SettingsPage.xaml.cs. Note
that we will set the ItemsSource of ComboBox in code-behind to ensure that
ItemsSource will be set after the ComboBox has been created and is ready so
that the ComboBox will update correctly. To do this, add the following code:

using DigitalTicket.ViewModels;

...

private SettingsViewModel settingsVM = new
SettingsViewModel();

public SettingsPage()

{

 InitializeComponent();

 LanguagesComboBox.ItemsSource =
 settingsVM.LanguageOptions;

}

https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter05/DigitalTicket.Shared/ViewModels/SettingsViewModel.cs
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter05/DigitalTicket.Shared/ViewModels/SettingsViewModel.cs
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter05/DigitalTicket.Shared/ViewModels/SettingsViewModel.cs
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter05/DigitalTicket.Shared/ViewModels/SettingsViewModel.cs

140 Making Your App Ready for the Real World

4. Finally, to ensure that the selected language will be respected on the app's start, add
the following code inside the OnLaunched function of App.xaml.cs and add
imports for DigitalTicket.Models and DigitalTicket.ViewModels:

ApplicationLanguages.PrimaryLanguageOverride =
SettingsViewModel.GetPrimaryLanguageOverrideFromLanguage(
SettingsStore.GetAppLanguageOption());

Now that we have added the language option, let's try it out. If you start the app now
and navigate to the settings page using the navigation on the left, you should see
something like on the left side of Figure 5.2. Now, if you select the Deutsch option
(German) and open the navigation, you will notice that the first item is now Reise
buchen, as shown on the right side of Figure 5.2. This is because SettingsViewModel
reloads MainPage and all other pages after setting the ApplicationLanguages.
PrimaryLanguageOverride property. We will talk more about this property in the
Localizing your app section and also update the app so that all text currently visible also
updates based on the language chosen:

Figure 5.2 – Left: Settings page; Right: Navigation after switching language to German

Persisting data locally using the ApplicationData API and SQLite 141

Using SQLite to store data
While the ApplicationData API is good for storing small chunks of data, if you want
to persist larger datasets of data, the ApplicationData API is not ideal since there
are space limitations for the entries stored using the ApplicationData.Current.
LocalSettings object. Namely, object keys can only be 255 characters in length and
the entries can only be 8 kilobytes in size on UWP. Of course, this doesn't mean that
you can't store larger or more complex datasets in your app. This is where SQLite comes
in. Of course, SQLite is not the only way to store data; there are plenty of alternatives.
For example, you could write your data to files and parse them yourself. In this chapter,
however, we will use SQLite due to its ease of use and integration. There are different C#
libraries available to include SQLite in your app and interact with SQLite databases. Since
we want to store the SQLite database on mobile Android and iOS devices (and UWP),
we will use the sqlite-net-pcl library as this library works on every platform
supported by our app. sqlite-net-pcl includes a platform-independent
implementation of SQLite and allows us to easily serialize objects into SQLite databases.

Let's start by adding a reference to sqlite-net-pcl to our app. To do this, right-click
the solution in the solution view, click Manage NuGet packages for Solution…, and
search for sqlite-net-pcl. Since at the time of writing this book the latest stable
release is version 1.7.335, select that version and select the Android, iOS, and UWP heads
in the project list. Then, click Install. Now we need to add code to create, load, and write
the SQLite database:

1. First of all, we need to add a class whose objects we want to persist using SQLite.
For this, add a new class called OwnedTicket inside the ViewModels folder.
You can find the source code for this class on GitHub here: https://github.
com/PacktPublishing/Creating-Cross-Platform-C-Sharp-
Applications-with-Uno-Platform/blob/main/Chapter05/
DigitalTicket.Shared/ViewModels/OwnedTicket.cs.

There are two important things to know:

Since every SQLite table needs a primary key, we added the DBId property with
the PrimaryKey and AutoIncrement attributes. Using these properties, we let
sqlite-net-pcl manage the primary keys for us and we don't have to deal
with this.

https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter05/DigitalTicket.Shared/ViewModels/OwnedTicket.cs
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter05/DigitalTicket.Shared/ViewModels/OwnedTicket.cs
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter05/DigitalTicket.Shared/ViewModels/OwnedTicket.cs
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter05/DigitalTicket.Shared/ViewModels/OwnedTicket.cs

142 Making Your App Ready for the Real World

When passing objects to sqlite-net-pcl to persist them into a SQLite
database, only properties will be persisted. Since we don't want to persist
ShowQRCodeCommand (and actually can't), this is only a field, not a property.

2. Now create the OwnedTicketsRepository class inside the Models folder and
add the following code to it:

using DigitalTicket.ViewModel;

using SQLite;

using System;

using System.IO;

using System.Threading.Tasks;

using Windows.Storage;

namespace DigitalTicket.Models

{

 public class OwnedTicketsRepository

 {

 const string DBFileName = "ownedTickets.db";

 private static SQLiteAsyncConnection database;

 public async static Task InitializeDatabase()

 {

 if(database != null)

 {

 return;

 }

 await ApplicationData.Current.LocalFolder.
 CreateFileAsync(DBFileName,
 CreationCollisionOption.OpenIfExists);

 string dbPath = Path.Combine(
 ApplicationData.Current.LocalFolder
 .Path, DBFileName);

 database =
 new SQLiteAsyncConnection(dbPath);

 database.CreateTableAsync<
 OwnedTicket>().Wait();

 }

 public static Task<int> SaveTicketAsync(
 OwnedTicket ticket)

 {

Persisting data locally using the ApplicationData API and SQLite 143

 if (ticket.DBId != 0)

 {

 // Update an existing ticket.

 return database.UpdateAsync(ticket);

 }

 else

 {

 // Save a new ticket.

 return database.InsertAsync(ticket);

 }

 }

 }

}

The InitializeDatabase function handles creating the file for our SQLite
database and creating the table if it does not exist, but also loads the existing
database if the file already exists. Inside the SaveTicketsAsync function,
we update and save the passed ticket to the database or update the ticket if
it already existed in the database.

3. Update App.xaml.cs to include the following code at the start of the
OnLaunched function and change the OnLaunched function to be async:

await OwnedTicketsRepository.InitializeDatabase();

This will initialize the SQLite connection when the app starts since creating the
connection on demand is not ideal, especially when loading the owned tickets page.

4. Now update JourneyBookingViewModel to save the ticket to
OwnedTicketsRepository. To do this, remove the current creation of
BookJourney and uncomment the using statements at the top of the file and the
code inside the JourneyBookingViewModel constructor.

Now let's talk about the steps we just did. First of all, we created our OwnedTicket
object, which we will write to SQLite and also load from SQLite in the next section.

144 Making Your App Ready for the Real World

We then added OwnedTicketsRepository, which we use to interact with our
SQLite database. Before any requests can be made to the SQLite database, we first need
to initialize it, for which we will need a file to write the SQLite database into. Using the
following code, we ensure that the file we want to write our database to exists:

await ApplicationData.Current.LocalFolder.
CreateFileAsync(DBFileName, CreationCollisionOption.
OpenIfExists);

After that, we create a SQLiteAsyncConnection object for our database. The
SQLiteAsyncConnection object will handle all communication to SQLite, including
creating tables and saving and loading data. Since we also need a table to write our
data to, we use SQLiteAsyncConnection to create a table for our OwnedTickets
objects if the table doesn't already exist within our SQLite database. To ensure that
those steps will be done before any request to our database has been made, we call
OwnedTicketsRepository.InitializeDatabase() inside our app constructor.

The last step was to update our JourneyBookingViewModel class to also persist data
to the SQLite database. While we only add new items to our database, we still need to
watch whether you are updating existing entries or adding a new entry, which is why the
SavedTicketAsync function ensures we are only creating items if there is no ID present.

Loading data from SQLite
Now that we have covered how to persist data, of course, we also need to load the data;
otherwise, we wouldn't need to persist the data in the first place. Let's change this by
adding an overview of all the tickets booked by the user. Since UnoBookRail customers
will need to present their tickets when boarding a train or when tickets are checked,
we also want to be able to display a QR code for every ticket. Since we will use ZXing.
Net.Mobile for this, please add that NuGet package to your solution now, namely the
Android, iOS, and UWP heads. Note that at the time of writing, version 2.4.1 was the
latest stable release and we will use that version for this chapter.

Persisting data locally using the ApplicationData API and SQLite 145

Before we want to display all tickets, we first need to load them from our SQLite database.
To do this, add the following method to our OwnedTicketsRepository class:

using System.Collections.Generic;

...

static Task<List<OwnedTicket>> LoadTicketsAsync()

{

 //Get all tickets.

 return database.Table<OwnedTicket>().ToListAsync();

}

Thanks to sqlite-net-pcl, this is all we need to do. The library handles the rest for
us, including reading the table and converting the rows into OwnedTicket objects.

Now that we can also load tickets, we can update the OwnedTicketsPage class
we created at the beginning of this chapter to display all the tickets booked by the user.
In our app, this means that we will only display the tickets that have been booked on this
device. In a real app, we would also access the tickets from a remote server and download
them to the device; however, we won't do this since it is out of scope for this chapter:

1. Before we update our owned tickets page, first add an OwnedTicketsViewModel
class inside the ViewModels folder. The source code for the class is available
here: https://github.com/PacktPublishing/Creating-Cross-
Platform-C-Sharp-Applications-with-Uno-Platform/
blob/main/Chapter05/DigitalTicket.Shared/ViewModels/
OwnedTicketsViewModel.cs.

2. Now, update OwnedTicketsPage.xaml and OwnedTicketsPage.xaml.
cs. You can find the source code for those two files on GitHub: https://
github.com/PacktPublishing/Creating-Cross-Platform-C-
Sharp-Applications-with-Uno-Platform/tree/main/Chapter05/
DigitalTicket.Shared/Views.

https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter05/DigitalTicket.Shared/ViewModels/OwnedTicketsViewModel.cs
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter05/DigitalTicket.Shared/ViewModels/OwnedTicketsViewModel.cs
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter05/DigitalTicket.Shared/ViewModels/OwnedTicketsViewModel.cs
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter05/DigitalTicket.Shared/ViewModels/OwnedTicketsViewModel.cs
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter05/DigitalTicket.Shared/Views
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter05/DigitalTicket.Shared/Views
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter05/DigitalTicket.Shared/Views
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter05/DigitalTicket.Shared/Views

146 Making Your App Ready for the Real World

Now, if you start the app and navigate to the owned tickets page, you should see an empty
page. If you have already booked a ticket, you should see something like on the left side
of Figure 5.3. If you click on the small, wide, gray box below the ticket, you should see
something like on the right side of Figure 5.3:

Figure 5.3 – Left: List of owned tickets with a single ticket; Right: Owned ticket and
the QR code of the booked ticket

Of course, this is not the final UI yet; users should see text indicating that they haven't
booked a ticket yet instead of a blank screen. Right now, though, it is expected that the
text is missing and buttons don't have labels either since they are using x:Uid instead
of having the Text or Content property set. In the next section, we will look at what
x:Uid is and update our app so that all the labels are being displayed correctly.

Making your app ready for customers
In this section, we will update our app to be ready for our customers, including
localization support to make the app easier to use for our customers. After adding
localization support, we will update the icon and splash screen of our app so it is more
easily recognizable for our users.

Making your app ready for customers 147

Localizing your app
If you are developing an app targeting customers, being able to provide translations for
customers in their native tongue is very important, especially for apps that are targeted
toward customers from different countries. In the previous section, we already added the
x:Uid property and added entries to the Strings.resw file; however, there are also
other ways to localize resources, which we will cover later. We will start localizing text
with x:Uid.

Using x:Uid to localize your UI
Using x:Uid and resource files (.resw files) is the easiest way to localize your app,
especially since adding new translations, for example, for a new language, is very easy.
But how do you localize your app using x:Uid and .resw files?

The x:Uid property can be added to any elements of your XAML code. In addition to
setting the x:Uid property on controls you would like to provide translations for, you
also need to add those translations. This is where the .resw files come in. In a nutshell,
resw files are XML documents that contain the necessary entries. The easiest way of
thinking about them, though, is as a list of entries with three properties that is often
represented as a table. Those properties (or columns) are as follows:

• Name: The name you can use to find the resource. This path will also be used to
determine which property on which control to set.

• Value: The text being set or the text being returned when looking up this resource.

• Comment: You can use this column to provide comments explaining the row. This
is especially useful when translating the app into a new language since you can use
the comment to find out what the best translation would be. See the Comment
column in Figure 5.4 for how they might be used.

When opening a .resw file in Visual Studio, the representation will look as in Figure 5.4:

Figure 5.4 – View of the .resw file in Visual Studio

148 Making Your App Ready for the Real World

When using the x:Uid property in combination with .resw files, you need to watch
how you write the name entries for the resources. The name entry needs to start with the
x:Uid value of the control followed by a dot (.) and the name of the property that should
be set. So, in the preceding example, if we wanted to localize the text of the TextBlock
element, we would add an entry with the name value being ButtonTextBlock.Text
since we want to set the Text property of the TextBlock element.

"But how does localization work with this?" you might ask. After all, we have only added
a single entry; how would it know which language to pick? This is why the folder in which
you place your .resw files is important. Inside your project, you need to have a Strings
folder. In that folder, for every language you want to localize your app to, you need to have
a folder with the IETF BCP 47 tag of the language. So, for example, for British English,
you would create a folder named en-GB while for German (Germany), you would create
a folder called de-DE. Inside the folders that you create for every language you want to
support, you need to place your .resw files for the localization to work properly. Note
that if a certain language is not available, the resource lookup will try to find the next best
match. You can learn more about this procedure here since your Uno Platform app will
behave the same on every platform: https://docs.microsoft.com/windows/
uwp/app-resources/how-rms-matches-lang-tags.

Important note
Be careful how you name those folders. The resource lookup will be done based
on the folder's name. If the folder's name has a typo or does not adhere to the
IETF BCP 47 standard, the resource lookup might fail and your users will be
greeted with missing labels and texts or a mix of languages as resource lookup
will fall back to languages where the texts have been translated.

We already have a folder for the English text resources; however, we also want to support
German translations. To do this, create a new folder inside the Strings folder named
de-DE. Now, add a new .resw file with the name Resources.resw and add the
following entries:

https://docs.microsoft.com/windows/uwp/app-resources/how-rms-matches-lang-tags
https://docs.microsoft.com/windows/uwp/app-resources/how-rms-matches-lang-tags

Making your app ready for customers 149

If you start the app now and switch to German as the app's language, you will see that
the journey booking page is now localized. If your device's language was already set to
German, instead of showing the page in English, it should now be displayed in German,
even if you don't switch to the German option now.

Accessing resources from code-behind
Using x:Uid is not the only way to localize your app, though; we will now see how
you can access a resource from code-behind. This is useful, for example, when you want
to localize the items in a collection, for example, the list of owned tickets in our app.
To access string resources, you can use the ResourceLoader class. We added the
LocalizedResources class at the start of the chapter; however, until now, it hasn't
accessed any resources. Update LocalizedResources now by adding the following
import and replacing the GetString function with the following code:

using Windows.ApplicationModel.Resources;

...

private static ResourceLoader cachedResourceLoader;

public static string GetString(string name)

{

 if (cachedResourceLoader == null)

 {

 cachedResourceLoader =
 ResourceLoader.GetForViewIndependentUse();

 }

150 Making Your App Ready for the Real World

 if (cachedResourceLoader != null)

 {

 return cachedResourceLoader.GetString(name);

 }

 return null;

}

Since we will be using the loaded resource often, we are caching the value to avoid having
to call GetForViewIndependentUse as it is expensive.

Now that we have covered how x:Uid works and how you can access localized resources
from code-behind, let's update the rest of our app to be localized. Start by adding the
necessary entries to our .resw files. The following is the table of entries you need for the
MainPage.xaml file and their English and German entries:

Now, replace the NavigationViewItems property inside the MainPage.xaml file
with the following:

<muxc:NavigationViewItem x:Name="JourneyBookingItem"
x:Uid="JourneyBookingItem" Tag="JourneyPlanner"/>

<muxc:NavigationViewItem x:Uid="OwnedTicketsItem"
Tag="OwnedTickets"/>

<muxc:NavigationViewItem x:Uid="AllDayTicketsItem"
Tag="AllDayTickets" IsEnabled="False"/>

<muxc:NavigationViewItem x:Uid="NetworkPlanItem"
IsEnabled="False"/>

<muxc:NavigationViewItem x:Uid="LineOverViewItemItem"
IsEnabled="False"/>

Making your app ready for customers 151

To update the rest of the app to be localized, please view the source code on GitHub.
You can also find the updated Resources.resw files for English and German there.
Note that we chose to not localize the station names as localizing street and place names
might lead to confusion for customers.

Important note
You can also localize other resources such as images or audio files. To do that,
you need to put them inside correctly named folders. For example, if you
want to localize an image called Recipe.png, you need to put the localized
version of the image for a language inside the Assets/[language
identifier] folder, where language identifier is the IETF
BCP 47 identifier of the language the image is for. You can learn more about
customizing and localizing resources here: https://docs.microsoft.
com/windows/uwp/app-resources/images-tailored-for-
scale-theme-contrast.

In this section, we covered how to localize your app using x:Uid and resources file.
As your app becomes larger and more languages are provided, using the multilingual
app toolkit might be helpful. It allows you to check more easily which language keys
are not translated and integrates into Visual Studio. You can learn more about this
here: https://developer.microsoft.com/en-us/windows/downloads/
multilingual-app-toolkit/.

Customizing your app's appearance
When publishing an app to the store, you want your app to be recognizable to users and
convey your brand. However, so far, all the apps we developed have used the standard Uno
Platform app icon. Luckily, Uno Platform allows us to change our app's icon and lets us set
the splash image for our app.

Updating your app's icon
One of the most important things to make your app recognizable by users is having
an icon for your app. Updating the icon for your app is easy. You can find the image
we will use here: https://github.com/PacktPublishing/Creating-Cross-
Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/
Chapter05/DigitalTicket.Shared/Assets/AppIcon.png.

https://docs.microsoft.com/windows/uwp/app-resources/images-tailored-for-scale-theme-contrast
https://docs.microsoft.com/windows/uwp/app-resources/images-tailored-for-scale-theme-contrast
https://docs.microsoft.com/windows/uwp/app-resources/images-tailored-for-scale-theme-contrast
https://developer.microsoft.com/en-us/windows/downloads/multilingual-app-toolkit/
https://developer.microsoft.com/en-us/windows/downloads/multilingual-app-toolkit/
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter05/DigitalTicket.Shared/Assets/AppIcon.png
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter05/DigitalTicket.Shared/Assets/AppIcon.png
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/blob/main/Chapter05/DigitalTicket.Shared/Assets/AppIcon.png

152 Making Your App Ready for the Real World

Updating the Android app's icon
To update the app icon for the Android app, you just need to replace the Icon.png
file inside the drawable folder of the Android project with your desired app logo. Note
that you also need to select the correct image in the project properties. For this, double-
click the Properties node inside the Android project. Inside the Android Manifest
section, from the Application icon dropdown, select the icon you desire; for example,
if you named your icon Appicon, you would select the @drawable/Appicon option.
Alternatively, you can update the android:icon entry in the AndroidManifest.
xml file inside the Properties node.

Updating the iOS app's icon
Updating the icon of our iOS app requires a bit more work. For the iOS app, you will
need your app's icon in different sizes depending on the device the app is installed on.
To see the list of dimensions and to update the app icon of the iOS app, simply expand the
Assets Catalog node of the iOS project and double-click on the Media entry inside there.
Inside the AppIcons tab, you select the images for the different devices and categories, and
dimensions. It is not required to provide an image for every single dimension; however,
you should provide at least one icon for every category.

Updating the icon of the UWP app
The easiest way to update the app icon of the UWP head is using the Visual Assets tab of the
Package.appxmanifest file. For this, double-click Package.appxmanifest and
select the App icon option inside the Visual Assets tab. To update the app's icon, choose the
source image, select the destination folder, and click Generate. This will generate the app's
icon in different sizes and as such, update your app's icon to the image specified.

Updating the icon of the other projects
While our app won't be available on other platforms and we removed the heads for the
respective platforms, you might want to update the icon for the other platforms in
other projects:

• macOS: Replace the images inside the Assets/xcassets/AppIcon.
appiconset folder. If you rename the images, be sure to also update the
Contents.json file.

• Skia-based projects: Right-click the project in Visual Studio and select Properties.
Inside the Application tab, you can select a new icon using the Browse button in
the Resources section.

• WASM: To update the icon being displayed in a browser, add your icon as
favicon.ico inside the project's Assets folder.

Making your app ready for customers 153

Customizing your app's splash screen
Updating your app's icon is not the only way to make your app more recognizable. In
addition to the app's icon, you can also customize the splash screen of your app. Note that
at the time of writing this, only Android, iOS, UWP, and WASM apps support setting
a splash screen. As with the icon, you can find the image resources for this on GitHub.

Updating the Android splash screen
To add a splash screen to the Android app, you will first need to add your splash screen
image. In our case, we will name it SplashScreen.png. After this, add the following
entry to the Resource/values/Styles.xml file:

<item name="android:windowBackground">@drawable/splash</item>

Then, you need to add the splash.xml file inside Resources/drawable and add the
following code:

<?xml version="1.0" encoding="utf-8"?>

 <layer-list xmlns:android=
 "http://schemas.android.com/apk/res/android">

 <item>

 <!-- background color -->

 <color android:color="#008cff"/>

 </item>

 <item>

 <!-- splash image -->

 <bitmap android:src="@drawable/splashscreen"

 android:tileMode="disabled"

 android:gravity="center" />

 </item>

</layer-list>

Updating the iOS app's splash screen
As with any iOS app, the launch screen needs to be a storyboard. Uno Platform makes it
easy to have a single image displayed as a launch screen. All it takes are these simple steps:

1. In Solution Explorer, select the iOS project and press the Show All Files button.
2. You'll now be able to see a file called LaunchScreeen.storyboard. Right-click on

this and select Include In Project. This will now automatically be used when
you launch the app.

154 Making Your App Ready for the Real World

If you run the app, you'll see the Uno Platform logo displayed when you launch the
app. You can easily change this by replacing the images.

3. In the Resources folder, you'll find files named SplashScreen@2x.png and
SplashScreen@3x.png. These are the files used by the storyboard. Replace their
contents with the images you want.

4. To change the color used for the background, you can open the storyboard in the
Xcode Interface Builder and change the color. Alternatively, you can open the
storyboard file in an XML editor and change the red, green, and blue properties
of the color with the backgroundColor key.

It's possible to use a storyboard file with any content you wish as your launch screen.
To do this, you will need to use the Xcode Interface Builder. Prior to version 16.9,
Visual Studio included an iOS storyboard editor but this is no longer available. To edit
a storyboard now, you need to open the project in Visual Studio for Mac, right-click on
the file, and select Open With | Xcode interface Builder.

Updating the UWP app's splash screen
Similar to updating the app icon of your UWP app, use the Package.appxmanifest
file and the Visual Assets tab. Select the Splash Screen tab and select the image you want
to use for your splash screen. After this, uncheck Apply recommended padding and set
Splash screen background to the background color you would like to use. In our case,
this will be #008CFF. Now, click Generate to generate the splash screen images for the
UWP app.

Updating the splash screen of the WASM app
To update the splash screen of your WASM head, add your new splash screen image
inside the WASM project's Assets folder. After that, you only need to update the
AppManifest.js file inside the WasmScripts folder to reference that image and
update the splash screen color if necessary.

If you have followed the steps for our app successfully, you should be able to see the app in
the app list on Android as seen on the left side of Figure 5.5. Once you start the app, your
app should look as on the right side of Figure 5.5 before showing the journey booking
page. Note that the icon and splash screen provided are just examples here. In a real app,
you would ensure that your app's icon looks good even this small:

Making your app ready for customers 155

Figure 5.5 – Left: DigitalTicket in the list of apps; Right: Splash screen of DigitalTicket

Ensuring everyone can use your app
To make sure everyone can use your app, you need to make it accessible. Accessibility
is key when developing apps. People with all levels of ability will use your app; your app
not being accessible will make the life of your customers harder or might even make
it impossible for them to use your app.

When thinking about accessibility, what comes to mind to most people is making your
app accessible for blind people by adding labels and alt text for screen readers. However,
accessibility is about so much more. For example, someone who has low vision but is not
blind might not use a screen reader but instead might choose to use the high-contrast
theme to make apps easier to use or might choose to increase the font size to make the
text easier to read. Providing a dark theme is often seen as a purely aesthetic aspect;
however, it is also important with regard to accessibility. Some people might be able
to read text better while people with certain disabilities will have a harder time using
your app.

156 Making Your App Ready for the Real World

If you are already familiar with the APIs available in UWP to make your app, there are
a few things that are different when making your Uno Platform accessible. Since your
app will run on different platforms and those platforms all have different APIs to provide
accessible apps, Uno Platform only has a subset of properties available with regard to
accessibility. At the time of writing, only the following properties are supported and work
on every platform:

• AutomationProperties.AutomationId: You can set this property to allow
easier navigation to controls with assistive technology.

• AutomationProperties.Name: Assistive technology will use this property to
announce controls to users.

• AutomationProperties.LabeledBy: When setting this property, the control
you are setting this on will be announced using the control specified by this property.

• AutomationProperties.AccessibilityView: Using this property, you can
indicate that a control should not be read out to users by assistive technology or that
you want to include controls that would commonly not be announced.

In addition to the properties listed previously, Uno Platform also supports the
high-contrast theme on every platform. Since we are using the standard controls provided
by Uno Platform, we won't need to watch out for this as Uno Platform already provides
the right high-contrast look for our app. However, if you write your own controls,
you should also check the high-contrast version of your app to ensure it is acceptable.

Important note
You should always localize the resources that will be used by assistive
technology. Not doing this will potentially make your app inaccessible
since users might encounter a language barrier, especially if assistive
technology expects to read out words from a language and finds words from
a different one.

To be able to ensure your app is accessible to people using assistive technology, you
need to test your app using assistive technology. In the following section, you can find
instructions to start a platform's default screen reader.

Starting the screen reader on different platforms
Since the steps to activate a system's assistive technology vary depending on the platform,
we will go through them one by one, starting with Android.

Making your app ready for customers 157

TalkBack on Android
Launch the Settings app and open the Accessibility page. Press TalkBack and tap on the
switch to enable TalkBack. Finally, press OK to close the dialog.

VoiceOver on iOS
Open the Settings app and open the Accessibility options under General. Then, tap on
VoiceOver in the Vision category and tap on the switch to enable it.

VoiceOver on macOS
Launch System Preferences and click on Accessibility. Then, click on VoiceOver in the
Vision category. Check Enable VoiceOver to use VoiceOver.

Narrator on Windows (for UWP and WASM)
To start the Narrator screen reader on Windows, you just need to press the Windows logo
key, Ctrl, and Enter at the same time.

Updating our app to be accessible
In this chapter, we haven't ensured that our app is accessible. While a lot of controls are
already accessible on their own, for example, the button control that will announce its
content, there are still controls that we need to improve accessibility-wise. If a user were to
use the app with assistive technology, not everything will be announced in a meaningful
manner. Let's change this now by updating our app's UI to have all the necessary
properties set. To do this, we will first update our journey booking page.

Both ComboBox control on our journey booking page currently will just be announced
as ComboBox control, and as such, users with assistive technology have no idea what the
ComboBox control is actually for. Since we have already added TextBlock element that
describes their purpose, we will update them to use the AutomationProperties.
LabeledBy property:

<TextBlock x:Name="StartPointLabel" x:Uid="StartPointLabel"
FontSize="20"/>

<ComboBox ItemsSource="{x:Bind journeyBookingVM.AllStations}"
x:Uid="StartPointComboBox"

 AutomationProperties.LabeledBy="{x:Bind
 StartPointLabel}"

 SelectedItem="{x:Bind
 journeyBookingVM.SelectedStartpoint,Mode=TwoWay}"

 HorizontalAlignment="Stretch"

158 Making Your App Ready for the Real World

 DisplayMemberPath="Name"/>

<TextBlock x:Name="EndPointLabel" x:Uid="EndPointLabel"
FontSize="20"/>

<ComboBox ItemsSource="{x:Bind journeyBookingVM.
AvailableDestinations, Mode=OneWay}" x:Uid="EndPointComboBox"

 AutomationProperties.LabeledBy="{x:Bind EndPointLabel}"

 SelectedItem="{x:Bind
 journeyBookingVM.SelectedEndpoint,Mode=TwoWay}"

 HorizontalAlignment="Stretch"

 DisplayMemberPath="Name"/>

Now, when a user navigates to the ComboBox control using assistive technology, the
ComboBox control will be announced using the text of the TextBlock element referenced
by AutomationProperties.LabeledBy. Since the rest of the controls on that page are
already taking care of accessibility for us, let's move on to the owned tickets page.

On the owned tickets page, there are two potential problems:

• The icons beside the station names will be announced as a blank icon.

• The QR code will only be announced as an image.

Since the icons are only for visual representation, we indicated to assistive technologies
that the icons should not be announced using the AutomationProperties.
AccessibilityView property and setting it to Raw. If you want to include a control
for assistive technologies, you can set that property to Content.

To ensure that the QR code image will be announced in a meaningful way, we will add
a descriptive name to it. For simplicity, we will just announce that it is the QR for the
currently selected ticket. First, you need to update the image element as follows:

<Image x:Name="QRCodeDisplay" x:Uid="QRCodeDisplay"

 Source="{x:Bind ownedTicketsVM.CurrentQRCode,
 Mode=OneWay}"

 Grid.Row="4" MaxWidth="300" MaxHeight="300"
 Grid.ColumnSpan="2"/>

After this, add the following entries to the Resources.resw files:

Making your app ready for customers 159

English:

German:

By adding these entries, we have now provided a descriptive name for the QR code being
displayed while also ensuring that this text will be localized.

Lastly, we also need to update the settings page. Since it only contains a single ComboBox
control, which is missing a name, add the following entries to the Resources.resw files:

English:

German:

In this section, we briefly covered accessibility in Uno Platform; however, there are also
certain limitations and things to watch out for that we did not mention. You can read
more about these limitations in the official documentation: https://platform.uno/
docs/articles/features/working-with-accessibility.html. If you wish
to learn more about accessibility in general, you can take a look at the following resources:

• https://docs.microsoft.com/en-us/learn/paths/
accessibility-fundamentals/

• https://developer.mozilla.org/en-US/docs/Learn/
Accessibility/What_is_accessibility

• https://developers.google.com/web/fundamentals/
accessibility

https://platform.uno/docs/articles/features/working-with-accessibility.html
https://platform.uno/docs/articles/features/working-with-accessibility.html
https://docs.microsoft.com/en-us/learn/paths/accessibility-fundamentals/
https://docs.microsoft.com/en-us/learn/paths/accessibility-fundamentals/
https://developer.mozilla.org/en-US/docs/Learn/Accessibility/What_is_accessibility
https://developer.mozilla.org/en-US/docs/Learn/Accessibility/What_is_accessibility
https://developers.google.com/web/fundamentals/accessibility
https://developers.google.com/web/fundamentals/accessibility

160 Making Your App Ready for the Real World

Summary
In this chapter, we built a customer-facing app that runs on iOS and Android. We covered
how to store data using SQLite, how to make your app accessible, and making it ready for
customers. As part of this, we covered how to localize your app, letting users choose the
language of the app, and providing a custom splash screen for your app.

In the next chapter, we will write an information dashboard for UnoBookRail. The app
will be targeted at employees of UnoBookRail and run on desktop and the web.

6
Displaying Data in

Charts and with
Custom 2D Graphics

This chapter will look at apps that need to show graphs, reports, and complex graphics.
It's common for apps to include some sort of graph or chart. It's also becoming
increasingly common to include elements in the UI that can't easily be made with
standard controls.

As we progress through this chapter, we'll build a dashboard app for our fictional business
that will display information appropriate to different parts of the business. Such apps are
common as part of management reporting tools. You can imagine the different screens
being displayed on monitors mounted on the walls in each department. This enables staff
to instantly see what's going on in their part of the business.

In this chapter, we'll cover the following topics:

• Displaying graphs and charts

• Creating custom graphics with SkiaSharp

• Having the UI layout respond to changes in the screen size

162 Displaying Data in Charts and with Custom 2D Graphics

By the end of this chapter, you'll have created a dashboard app that shows financial,
operational, and network information that runs on UWP and the web. It will also adjust to
different screen proportions, so the contents of each page account for different screen sizes
and aspect ratios.

Technical requirements
This chapter assumes that you already have your development environment set up,
including installing the project templates, as was covered in Chapter 1, Introducing
Uno Platform. The source code for this chapter is at https://github.com/
PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-
with-Uno-Platform/tree/main/Chapter06.

The code in this chapter makes use of the library from https://github.com/
PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-
with-Uno-Platform/tree/main/SharedLibrary.

Check out the following video to see the code in action: https://bit.ly/3iDchtK

Introducing the app
The app we'll build in this chapter is called Dashboard. It's an application that displays
the current activity within the business divided by department. This isn't something that
would be available to all staff, but to allow us to focus on the features and areas of interest
in this chapter, we'll not concern ourselves with how access is controlled. The real version
of this app would have many features, but we're going to only implement three:

• Displaying current financial information

• Displaying live operational information

• Showing where the trains currently are in the network

As this application will be used by staff members in their offices, it will be available on
desktop (via UWP) and in a web browser (with a WASM version).

Creating the app
We'll start by creating the solution for the app:

1. In Visual Studio, create a new project with the Multi-Platform App
(Uno Platform) template.

https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter06
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter06
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter06
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/SharedLibrary
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/SharedLibrary
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/SharedLibrary
https://bit.ly/3iDchtK

Introducing the app 163

2. Give the project the name Dashboard. You can use a different name, but you'll
need to adjust all subsequent code snippets accordingly.

3. Remove all the platform head projects except for the UWP and WASM ones.
4. To avoid the need to write more code than necessary, we'll now add a reference to

the shared library project. Right-click on the solution node in Solution Explorer
and select Add | Existing Project…, navigate to the UnoBookRail.Common.
csproj file, and click Open.

5. For each platform-specific project, we need to add a reference to the common
library project. Right-click on the UWP project node in Solution Explorer and
select Add | Reference… | Projects, then check the entry for UnoBookRail.
Common and click OK. Now repeat this process for the WASM project.

With the basic solution structure now ready, we can add some functionality to the
main page.

Creating the individual pages
We'll use a separate page for each area of functionality we're going to show:

1. Create a new folder in the Shared project called Views.
2. In the Views folder, add three new pages named FinancePage.xaml,

OperationsPage.xaml, and NetworkPage.xaml.

We'll now update the main page to be able to navigate between these new pages.

Creating the main page
The app already contains the file MainPage.xaml, and we'll use it as the container for
the ability to navigate between the other pages:

1. Replace the grid in MainPage.xaml with the following NavigationView
control that contains options for each of the separate pages we'll implement:

<NavigationView

 PaneDisplayMode="Top"

 SelectionChanged="NavItemSelected"

 IsBackEnabled="{Binding Path=CanGoBack,
 ElementName=InnerFrame}"

 BackRequested="NavBackRequested"

 IsSettingsVisible="False">

 <NavigationView.MenuItems>

164 Displaying Data in Charts and with Custom 2D Graphics

 <NavigationViewItem Content="Finance" />

 <NavigationViewItem Content="Operations" />

 <NavigationViewItem Content="Network" />

 </NavigationView.MenuItems>

 <Frame x:Name="InnerFrame" />

</NavigationView>

2. We now need to add the handler for the NavItemSelected event mentioned
previously to do the actual navigation between pages. Add the following to
MainPage.xaml.cs:

using Dashboard.Views;

private void NavItemSelected(NavigationView sender,
NavigationViewSelectionChangedEventArgs args)

{

 var item = (args.SelectedItem as
 NavigationViewItem).Content.ToString();

 Type page = null;

 switch (item) {

 case "Finance":

 page = typeof(FinancePage);

 break;

 case "Operations":

 page = typeof(OperationsPage);

 break;

 case "Network":

 page = typeof(NetworkPage);

 break;

 }

 if (page != null && InnerFrame.CurrentSourcePageType
 != page) {

 InnerFrame.Navigate(page);

 }

}

Introducing the app 165

3. We also need to implement the NavBackRequested method to handle the user
pressing the back button to navigate back through the pages. Add the following to
do this:

private void NavBackRequested(object sender,
NavigationViewBackRequestedEventArgs e)

{

 InnerFrame.GoBack();

}

Navigation
This app uses a custom-defined frame and a stack-based navigation style. This
allows the user to press the built-in back button to return to a previous page.
While this may not be considered the most appropriate for this app, it is one of
the most popular ways that developers implement navigation within a UWP
app. For this reason, we thought it appropriate to include this in this book and
show it can be incorporated into an Uno Platform app.

4. The preceding will allow us to navigate between the pages when an item is selected
from the menu, but we also want a page to be shown when the app is first opened.
To do this, add the following call at the end of the MainPage constructor:

InnerFrame.Navigate(typeof(FinancePage));

Important note
The code in this section shows the simplest way to enable navigation between
pages in a NavigationView control. This is certainly not the only way to
do this or a recommendation that it should always be done this way.

With all the basics in place, we're now ready to add a graph to the finance page.

166 Displaying Data in Charts and with Custom 2D Graphics

Displaying charts with controls from SyncFusion
SyncFusion is a company that makes UI components for web, desktop, and mobile
development. Their Uno Platform controls are in the beta state at the time of writing and
are free to use during this preview period via their community license (https://www.
syncfusion.com/products/communitylicense). Many different chart types are
available, but we'll use a line chart to create a page like the one shown in Figure 6.1. The
chart is displayed along with some arrows that provide some general trend data so that the
person viewing them has an at-a-glance summary of the data. Imagine them representing
how the data compares to the same day in the previous week, month, and year:

Figure 6.1 – Finance information including a graph from SyncFusion

https://www.syncfusion.com/products/communitylicense
https://www.syncfusion.com/products/communitylicense

Displaying charts with controls from SyncFusion 167

Updating references to include the SyncFusion
controls
The beta version of the SyncFusion Uno chart controls is available with the full source
code on GitHub:

1. Download or clone the code from https://github.com/syncfusion/Uno.
SfChart.

2. Add the Syncfusion.SfChart.Uno.csproj project to the solution by right-clicking on
the solution and selecting Add | Existing Project….

3. Update the Syncfusion.SfChart.Uno project to use the latest version of the Uno.
UI package. This is to avoid any issues from trying to use different versions of the
library in different projects within the solution.

4. Reference the Syncfusion.SfChart.Uno project from the UWP and WASM projects.

We're now ready to use the controls in the app.

Important note
As the SyncFusion controls are only available from the source, while not
expected, they may have changed when you read this. Hopefully, compiled
versions of the controls are available, but if you need to get to a state
comparable to when this was written, use commit 43cd434.

Drawing a line chart
We can draw a simple line chart by following these steps:

1. Start by adding this namespace to FinancePage.xaml:

xmlns:sf="using:Syncfusion.UI.Xaml.Charts"

2. Now replace the grid with the following:

<RelativePanel HorizontalAlignment="Center">

 <sf:SfChart

 x:Name="MainChart"

 MaxWidth="600"

 MaxHeight="600">

 <sf:SfChart.PrimaryAxis>

 <sf:CategoryAxis LabelPlacement="BetweenTicks"
 ShowGridLines="False" />

https://github.com/syncfusion/Uno.SfChart
https://github.com/syncfusion/Uno.SfChart

168 Displaying Data in Charts and with Custom 2D Graphics

 </sf:SfChart.PrimaryAxis>

 <sf:SfChart.SecondaryAxis>

 <sf:NumericalAxis ShowGridLines="True"
 Visibility="Collapsed" />

 </sf:SfChart.SecondaryAxis>

 <sf:LineSeries

 ItemsSource="{x:Bind DailySales}"

 XBindingPath="Hour"

 YBindingPath="TotalSales" />

 </sf:SfChart>

 <TextBlock

 x:Name="SecondaryItem"

 FontSize="200"

 FontWeight="Black"

 RelativePanel.Below="MainChart"

 RelativePanel.AlignHorizontalCenterWithPanel=
 "True"

 Text="{x:Bind TrendArrows}" />

</RelativePanel>

This is the simplest SfChart class we can specify. We define a PrimaryAxis
class (for the X-axis), which reflects the hours of the day, with a SecondaryAxis
class (for the Y-axis) representing the numeric values and a set of data as
a LineSeries class.

We also specify a TextBlock element to appear below the chart but be horizontally
aligned. This will display arrows indicating trend information relating to the graph.

3. To provide the data, we need to add the following to the class in FinancePage.
xaml.cs:

public List<HourlySales> DailySales
 => FinanceInfo.DailySales
 .Select(s => new HourlySales(s.Hour,
 s.Sales)).ToList();

public string TrendArrows => FinanceInfo.TrendArrows;

Displaying charts with controls from Infragistics 169

4. These properties require you to add this using declaration:

using UnoBookRail.Common.DashboardData;

5. We must also create the following class that the SfChart object will use to find the
named properties we referenced in the XAML:

public class HourlySales

{

 public HourlySales(string hour, double totalSales)

 {

 Hour = hour;

 TotalSales = totalSales;

 }

 public string Hour { get; set; }

 public double TotalSales { get; set; }

}

We've obviously only created a simple chart here, but the critical point is to notice how
easy it was. A real dashboard would likely show more than a single chart. You can see
examples of the charts you could include in the sample app included in the repository at
https://github.com/syncfusion/Uno.SfChart.

We've seen how easy it was to include a chart from one vendor to show financial
information. Let's now add a chart from another to display some different information.

Displaying charts with controls from
Infragistics
Infragistics is a company that provides UI and UX tools for a variety of platforms.
They also have a selection of controls to use in Uno Platform apps that are free to use
while in preview.

https://github.com/syncfusion/Uno.SfChart

170 Displaying Data in Charts and with Custom 2D Graphics

You can learn more about these controls at https://www.infragistics.com/
products/uno-platform or follow along as we add a chart to the app to show
information relating to the current operation of the UnoBookRail business and create
a page that looks like the one in Figure 6.2:

Figure 6.2 – Network operations details shown on a chart from Infragistics

Updating references
To be able to use the controls in our app, we must first make the following modifications:

1. Reference the Infragistics.Uno.Charts NuGet package in the UWP project:

Install-Package Infragistics.Uno.Charts -Version 20.2.59-
alpha

https://www.infragistics.com/products/uno-platform
https://www.infragistics.com/products/uno-platform

Displaying charts with controls from Infragistics 171

2. Reference the Infragistics.Uno.Wasm.Charts NuGet package in the
WASM project:

Install-Package Infragistics.Uno.Wasm.Charts -Version
20.2.59-alpha

3. Reference the Uno.SkiaSharp.Views and Uno.SkiaSharp.Wasm NuGet
packages in the WASM project. This is necessary because the Infragistics controls
use SkiaSharp to draw the controls. This is different from the SyncFusion control
we used previously, which uses XAML:

Install-Package Uno.SkiaSharp.Views -Version 2.80.0-
uno.493

Install-Package Uno.SkiaSharp.Wasm -Version 2.80.0-
uno.493

With those simple modifications, we can now add the chart to our app.

Important note
If you notice any strange compilation behaviors after making the preceding
changes, try cleaning the solution, closing all open instances of Visual Studio,
and then reopening the solution. This shouldn't be necessary, but we have
found this to be required on a few occasions.

You may also see entries in the error list from the SyncFusion project despite
it successfully compiling. These errors can be safely ignored.

Drawing a column chart
We'll now add content to the Operations page of the app. For simplicity, we're going to
only add two pieces of information. We'll add a chart to show how many of each ticket
type has been used each hour today. Additionally, we'll display the number of people
currently on trains or in stations, based on people presenting tickets to enter a station but
not having subsequently exited:

1. Add the following namespace to the Page element of OperationsPage.xaml:

xmlns:ig="using:Infragistics.Controls.Charts"

2. Now add the following XAML as the contents of the page:

<Grid>

 <Grid.RowDefinitions>

172 Displaying Data in Charts and with Custom 2D Graphics

 <RowDefinition Height="*" />

 <RowDefinition Height="*" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="*" />

 <ColumnDefinition Width="*" />

 </Grid.ColumnDefinitions>

 <ig:XamDataChart Grid.Row="0" Grid.ColumnSpan="2"

 x:Name="PassengerChart">

 <ig:XamDataChart.Axes>

 <ig:CategoryXAxis x:Name="XAxis"
 ItemsSource="{x:Bind Passengers}" />

 <ig:NumericYAxis x:Name="YAxis" MinimumValue="0"
 Interval="500" Label="{}{}" />

 </ig:XamDataChart.Axes>

 <ig:XamDataChart.Series>

 <ig:StackedColumnSeries

 XAxis="{Binding ElementName=XAxis}"

 YAxis="{Binding ElementName=YAxis}"

 ItemsSource="{x:Bind Passengers}">

 <ig:StackedColumnSeries.Series>

 <ig:StackedFragmentSeries
 ValueMemberPath="Children" />

 <ig:StackedFragmentSeries
 ValueMemberPath="Adults" />

 <ig:StackedFragmentSeries
 ValueMemberPath="Seniors" />

 </ig:StackedColumnSeries.Series>

 </ig:StackedColumnSeries>

 </ig:XamDataChart.Series>

 </ig:XamDataChart>

 <TextBlock x:Name="CurrentCount"

 Grid.ColumnSpan="2" Grid.Row="1"

 Text="{x:Bind PsngrCount}"

Displaying charts with controls from Infragistics 173

 FontSize="300"

 HorizontalAlignment="Center"

 VerticalAlignment="Center" />

</Grid>

There are three parts to the preceding code. We started by defining two rows and
two columns. The content currently spans the columns, but the columns will be
used in other ways later.

The chart is a XamDataChart class. Within this, we specify the x and y axes
and the data to display as a StackedColumnSeries element. Within the series,
we detail the paths to the data for each fragment of the stack.

Finally, we added the TextBlock element that displays the current passenger count.
3. Add the following using directive to OperationsPage.xaml.cs:

using UnoBookRail.Common.DashboardData;

These are needed for the properties we'll add to this file.
4. Add the following to the OperationsPage class providing the data shown in

the chart:

public string PsngrCount => OperationsInfo.
CurrentPassengers;

private List<PersonCount> Passengers

 => OperationsInfo.Passengers.Select(p
 => new PersonCount(p.Hour, p.Children,
 p.Adults, p.Seniors)).ToList();

5. Now we need to add the PersonCount class we've just referenced:

public class PersonCount

{

 public PersonCount(string hour, double child,

 double adult, double senior)

 {

 Hour = hour;

 Children = child;

174 Displaying Data in Charts and with Custom 2D Graphics

 Adults = adult;

 Seniors = senior;

 }

 public string Hour { get; set; }

 public double Children { get; set; }

 public double Adults { get; set; }

 public double Seniors { get; set; }

}

With that, we now have a simple page charting the number of passengers traveling
each hour.

As with the SyncFusion charts, Infragistics has many more charts and other controls
available. You can find examples of these at https://github.com/Infragistics/
uno-samples.

Now that we've seen different ways of displaying more complex controls using libraries
from third parties, let's look at drawing something more complicated ourselves.

Drawing custom graphics with SkiaSharp
UWP and Uno Platform include support for creating shapes and provide basic drawing
capabilities. However, sometimes you need to display something in your app that can't
easily be done with standard controls, you require fine-grained control, or you encounter
performance issues when manipulating large numbers of XAML controls. In these
situations, it can be necessary to draw directly onto the UI yourself. One of the ways to do
this is with SkiaSharp. SkiaSharp is a cross-platform 2D graphics API based on Google's
Skia graphics library that we can use in our Uno Platform apps. To show how simple it is
to use, we'll create the final part of our application, which shows on a map where the trains
in the network currently are. In just a few lines of code, we'll create something that looks
as in the screenshot shown in Figure 6.3:

https://github.com/Infragistics/uno-samples
https://github.com/Infragistics/uno-samples

Drawing custom graphics with SkiaSharp 175

Figure 6.3 – The network map shown in the app when running in a browser

Now you've seen what we're going to create, let's get on and do it.

176 Displaying Data in Charts and with Custom 2D Graphics

Updating project references
The references we need to use SkiaSharp in our app have already been added as part of the
references we added to use the Infragistics controls. If you've made these changes, there's
nothing to do here.

If you are following along and haven't added the Infragistics controls in the last section,
you'll need to make the following change to your solution:

• Reference the Uno.SkiaSharp.Views and Uno.SkiaSharp.Wasm NuGet
packages in the WASM project:

Install-Package Uno.SkiaSharp.Views -Version 2.80.0-
uno.493

Install-Package Uno.SkiaSharp.Wasm -Version 2.80.0-
uno.493

With the relevant references added, we're now ready to draw the network map.

Drawing the network map
To draw the network map in the app, we need to take the following steps:

1. In NetworkPage.xaml, add the following as the only content. This is the control
that will show our drawing:

<skia:SKXamlCanvas xmlns:skia="using:SkiaSharp.Views.UWP"
PaintSurface="OnPaintSurface" />

2. To draw the map on the SKXamlCanvas control, we'll need to add the following
using declarations to NetworkPage.xaml.cs:

using SkiaSharp;

using SkiaSharp.Views.UWP;

using UnoBookRail.Common.Mapping;

using UnoBookRail.Common.Network;

3. Next, we must add the OnPaintSurface method we referenced in the XAML.
This method is called by the control whenever it needs to redraw the image. This
will be when the control is first loaded and whenever the rendered size of the
control changes:

private void OnPaintSurface(object sender,
SKPaintSurfaceEventArgs e)

{

Drawing custom graphics with SkiaSharp 177

 var canvas = SetUpCanvas(e);

 DrawLines(canvas);

 DrawStations(canvas);

 DrawTrains(canvas);

}

4. Add the SetUpCanvas method to initialize and position the image correctly:

private SKCanvas SetUpCanvas(SKPaintSurfaceEventArgs e)

{

 var canvas = e.Surface.Canvas;

 var relativeWidth = e.Info.Width / ImageMap.Width;

 var relativeHeight =
 e.Info.Height / ImageMap.Height;

 canvas.Scale(Math.Min(relativeWidth,
 relativeHeight));

 var x = 0f;

 var y = 0f;

 if (relativeWidth > relativeHeight)

 {

 x = (e.Info.Width - (ImageMap.Width *
 relativeHeight)) / 2f / relativeHeight;

 }

 else {

 y = (e.Info.Height - (ImageMap.Height *
 relativeWidth)) / 2f / relativeWidth;

 }

 canvas.Translate(x, y);

 canvas.Clear();

 return canvas;

}

The SetUpCanvas method sizes our drawing area to be as big as possible without
distorting or stretching it and ensures it is always centered horizontally and
vertically. Finally, it clears the canvas and returns it, ready for the other methods
to draw upon it.

178 Displaying Data in Charts and with Custom 2D Graphics

5. Add the DrawLines method to draw the branch lines on the canvas:

void DrawLines(SKCanvas canvas)

{

 var paint = new SKPaint

 {

 Color = SKColors.Black,

 StrokeWidth = 1,

 };

 var northPnts =
 ImageMap.GetStations(Branch.NorthBranch);

 var mainPnts =
 ImageMap.GetStations(Branch.MainLine);

 var southPnts =
 ImageMap.GetStations(Branch.SouthBranch);

 SKPoint[] ToSKPointArray(List<(float X, float Y)>
 list)

 => list.Select(p => new SKPoint(p.X,
 p.Y)).ToArray();

 void DrawBranch(SKPoint[] stnPoints)

 => canvas.DrawPoints(SKPointMode.Polygon,
 stnPoints, paint);

 DrawBranch(ToSKPointArray(northPnts));

 DrawBranch(ToSKPointArray(mainPnts));

 DrawBranch(ToSKPointArray(southPnts));

}

In the preceding code, the station positions returned by the library are converted to
a Skia-specific array used to draw a polygon connecting all the points.

6. Add the DrawStations method to draw the station positions on the branch lines:

void DrawStations(SKCanvas canvas)

{

 var paint = new SKPaint

Drawing custom graphics with SkiaSharp 179

 {

 Color = SKColors.Black,

 Style = SKPaintStyle.Fill,

 };

 foreach (var (X, Y) in ImageMap.Stations)

 {

 canvas.DrawCircle(new SKPoint(X, Y), 2,
 paint);

 }

}

The DrawStations method is simple as all it does is draw a circle for each station.
7. Add the DrawTrains method to show where the trains currently are on the map:

void DrawTrains(SKCanvas canvas)

{

 var trainPaint = new SKPaint

 {

 Color = SKColors.Cyan,

 Style = SKPaintStyle.Fill,

 };

 foreach (var train in ImageMap.GetTrainsInNetwork())

 {

 canvas.DrawCircle(new SKPoint(
 train.MapPosition.X, train.MapPosition.Y),
 1.8f, trainPaint);

 }

}

The DrawTrains method is again simple as it loops through the provided data
and draws a cyan circle at each position. Because this is drawn after the station
circles, it will appear above them when a train is at a station.

180 Displaying Data in Charts and with Custom 2D Graphics

Important note
In this chapter, we've only used a few circles and lines to create our map.
However, SkiaSharp is capable of much more than we have space to cover here.
You might want to explore the other functionality available by extending the
map we've just created to include the names of stations or add other details that
show the direction a train is heading or if it is at a station.

We now have all the pages of our app implemented, but we can further improve things
by having the content adjust depending on the size of the screen or window.

Responding to changes in the UI
Your apps will need to run on different sized screens and windows. Some of these
differences will be due to the different devices the app will run on, but you may also need
to account for windows that can be resized by the user.

It's possible to design multiple versions of a page and load the appropriate one at runtime.
However, it's usually much easier to create a single page that adjusts to the available
dimensions. We'll look at how to do that with the features available.

Changing the page layout
Uno Platform allows you to create a responsive UI by switching between
VisualStates.

It's possible to create StateTriggers elements (to trigger changes between states) for many
scenarios, but the most common is to use an AdaptiveTrigger element that fires
based on the size of the control to which it is attached. We'll now use adaptive triggers
to adjust the Finance and Operations pages to better lay out their contents based on the
available width:

1. Add the following as the first child of RelativePanel in FinancePage.xaml:

<VisualStateManager.VisualStateGroups>

 <VisualStateGroup>

 <VisualState>

 <VisualState.StateTriggers>

 <AdaptiveTrigger MinWindowWidth="1200" />

 </VisualState.StateTriggers>

 <VisualState.Setters>

 <Setter Target="SecondaryItem.

Responding to changes in the UI 181

 (RelativePanel.AlignTopWithPanel)"
 Value="True"/>

 <Setter Target="SecondaryItem.
 (RelativePanel.AlignVerticalCenterWithPanel)"
 Value="False"/>

 <Setter Target="SecondaryItem.
 (RelativePanel.RightOf)"
 Value="MainChart"/>

 <Setter Target="SecondaryItem.
 (RelativePanel.Below)"
 Value="{x:Null}"/>

 <Setter Target="SecondaryItem.Margin"
 Value="0,200,0,0"/>

 </VisualState.Setters>

 </VisualState>

 </VisualStateGroup>

</VisualStateManager.VisualStateGroups>

This defines an AdaptiveTrigger element that's applied when the panel is at
least 1,200 relative pixels wide. When this visual state is triggered, the TextBlock
element is set to the right of the chart and has its alignment adjusted accordingly.
The left-hand side of Figure 6.4 shows how this looks.

2. We can now do a similar thing with the grid in the OperationsPage.xaml page.
Add the following immediately below the row and column definitions:

<VisualStateManager.VisualStateGroups>

 <VisualStateGroup>

 <VisualState>

 <VisualState.StateTriggers>

 <AdaptiveTrigger MinWindowWidth="1200" />

 </VisualState.StateTriggers>

 <VisualState.Setters>

 <Setter Target="PassengerChart.
 (Grid.ColumnSpan)" Value="1"/>

 <Setter Target="PassengerChart.(Grid.RowSpan)"
 Value="2"/>

 <Setter Target="CurrentCount.(Grid.Row)"
 Value="0"/>

182 Displaying Data in Charts and with Custom 2D Graphics

 <Setter Target="CurrentCount.(Grid.Column)"
 Value="1"/>

 <Setter Target="CurrentCount.
 (Grid.ColumnSpan)" Value="1"/>

 <Setter Target="CurrentCount.
 (Grid.RowSpan)" Value="2"/>

 </VisualState.Setters>

 </VisualState>

 </VisualStateGroup>

</VisualStateManager.VisualStateGroups>

With these setters, we're making use of the row and column definitions we created
earlier. While the initial code put the controls in separate rows, here we're changing
the controls so they are in different columns and span the rows when the window is
wider. As you can see in Figure 6.4, this means that the number of people currently
on trains is displayed beside the chart, rather than below it:

Figure 6.4 – The Finance and Operations pages shown in a landscape layout

With these two examples, we've seen different ways of changing how the elements on
a page can be repositioned to change the layout. There is no one right way to adjust all
pages for different amounts of available space. State triggers can be used to change any
property on an element, and it's also possible to have multiple triggers so you could, for
example, have different layouts for small, medium, and large screens.

Changing the layout of the elements on the screen isn't the only way to adjust what's
shown. It's also possible to have the controls themselves adjust, resize, and redraw
themselves to fit the space.

Summary 183

Stretching and scaling content to fit
the available space
One of the strengths of XAML is its ability to dynamically lay out controls and not rely on
providing specific sizes for each element. It's possible to resize individual XAML controls
by setting the HorizontalAlignment and VerticalAlignment properties to
control how they make use of the available space. Setting the values of these properties to
Stretch will allow them to take up all the available space in their parent element. For
more complex scenarios, you can also use a ViewBox element to transform controls by
stretching them in different ways and directions.

If you wish to know more about creating layouts with XAML elements, you'll find some
useful links at https://platform.uno/docs/articles/winui-doc-links-
development.html#layouting.

Many controls also automatically adjust to use all or as much of the available space as
appropriate. We did this with the map we drew with SkiaSharp. The map was drawn as
large as possible without distorting it. It was aligned in the center of the available space
regardless of whether the window was of a portrait or landscape aspect ratio.

Now that all the pages adjust to the available space, our app and this chapter are complete.

Summary
In this chapter, we built an app that works on UWP and in a web browser. The app used
graphing controls from SyncFusion and Infragistics. We also created a custom map with
SkiaSharp. Finally, we looked at how to adjust the UI layout in response to different and
changing screen sizes.

This chapter is the last in this part of the book. In the next part, we'll move on from
building apps to look at how to test and deploy them. In the next chapter, we'll look at how
to use the Uno.UITest library as part of your broader testing strategy. When building
applications that run on multiple platforms, automating the testing across those platforms
can save lots of time and boost your productivity.

https://platform.uno/docs/articles/winui-doc-links-development.html#layouting
https://platform.uno/docs/articles/winui-doc-links-development.html#layouting

Section 3:
Test, Deploy, and

Contribute

This final part of the book focuses on app development after the code has been written.
Specifically, it focuses on how you can test the UI of the apps you create and then deploy
them to the cloud (in the case of WebAssembly) or an app store. Finally, it shows you
where to go for more resources, help, or information, before ending by looking at how
you can contribute to the wider project.

In this section, we include the following chapters:

• Chapter 7, Testing Your Apps

• Chapter 8, Deploying Your Apps and Going Further

7
Testing Your Apps

In the previous chapters, we covered developing multiple different types of apps using
Uno Platform. Uno Platform not only allows apps to be written, however; it also allows
automated UI tests to be written that will run on Android, iOS, and WebAssembly using
the Uno.UITest framework. During this chapter, we will write our first test using Uno.
UITest and run it on different platforms, including using emulators. After this, you will
also learn how to write tests for Windows using WinAppDriver.

In this chapter, we'll cover the following topics:

• Setting up the Uno.UITest project for your app

• Authoring Uno.UITest tests for your Uno Platform app

• Running your tests against the WASM, Android, and iOS versions of your app

• Writing unit tests for your Uno Platform app

• Using WinAppDriver to author automated tests for the UWP head of your app

• Why manual testing is still important

By the end of this chapter, you'll have learned how to write tests using Uno.UITest
and WinAppDriver for your app, how to run those tests on different platforms, and why
manually testing your app is still important.

188 Testing Your Apps

Technical requirements
This chapter assumes that you already have your development environment set up,
including installing the project templates, as was covered in Chapter 1, Introducing Uno
Platform. The source code for this chapter is available at https://github.com/
PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-
with-Uno-Platform/tree/main/Chapter07.

The code in this chapter makes use of the library from https://github.com/
PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-
with-Uno-Platform/tree/main/SharedLibrary.

Check out the following video to see the code in action: https://bit.ly/3iBFZ2e

Getting started with Uno.UITest
Before we get started with Uno.UITest, let's cover what Uno.UITest is and what its
aim is. Uno.UITest is a library developed and maintained by the Uno Platform team to
allow developers to write unified UI tests for their Uno Platform apps. These UI tests
allow you to simulate users interacting with your app and verify the UI of your app to
ensure that user interactions work correctly and that your app behaves as designed. With
Uno.UITest, you can write UI tests (also sometimes referred to as interaction tests), which
you can run against the Android, iOS, and WASM heads of your app.

Under the hood, Uno.UITest uses Xamarin.UITest to run tests against the Android and
iOS head of the app. For the WASM version of the app, Uno.UITest uses Selenium and
Google Chrome. Using these libraries, Uno.UITest allows you to write tests that mimic
user interactions with the UI of your app, including mimicking mouse input such
as clicking, and keyboard input such as entering text.

But when should you use UI tests? When writing complex apps, ensuring that changes to
your code did not break existing features can often be difficult to test, especially as some
changes only become noticeable when using the app, not when testing components
or classes alone. UI tests are ideal for this kind of scenario as you can write tests
simulating a normal user using your app without having to manually go through dozens
or hundreds of steps. A common scenario for writing UI tests is to check whether users
can successfully achieve certain tasks within your app, for example, sign in to your app
or search for a specific thing. While UI tests are good for testing these kinds of scenarios,
UI tests are no silver bullet and also have their drawbacks. Since UI tests simulate user
input, they are slower to run compared to normal unit tests, which are only testing single
objects or classes. In addition to this, since the UI testing framework or library needs to
find a way to interact with your app, UI tests can sometimes break when updating the
UI of your app or changing texts or names within your app.

https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter07
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter07
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter07
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/SharedLibrary
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/SharedLibrary
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/SharedLibrary
https://bit.ly/3iBFZ2e

Getting started with Uno.UITest 189

Nonetheless, when developing an app, writing UI tests is very important when you try
to ensure that no bugs have snuck into the app. This is especially useful when writing apps
that will run on a variety of different devices having different screen sizes, capabilities, and
OS versions as this makes it easier to test your app on a lot of different configurations
as manual testing is slow and error-prone.

Before we use Uno.UITest, we first need an app that we can use to write tests for. For this,
let's start by creating a new solution for our app that we will use to write tests for:

1. Create a new project with the Multi-Platform App (Uno Platform) template.
2. Name the project UnoAutomatedTestsApp. Of course, you can use

a different name; however, in this chapter, we will assume that the project is named
UnoAutomatedTestsApp.

3. Remove all the platform head projects except for Android, iOS, UWP, and WASM.
4. Now we need to add a reference to our shared library. To do this, right-click on the

solution file, select Add > Existing Project…, navigate to the UnoBookRail.
Common.csproj file, and then click Open.

5. Reference the shared library project in every head project. For this, right-click
on the head project, select Add > Reference… > Projects, check UnoBookRail.
Common, and click OK. Since we need a reference to the library in every head,
repeat this process for every head, in other words, Android, iOS, UWP, and WASM.

Now that we have created the project, let's add some content to our app that we can test:

1. Add xmlns:toolkit="using:Uno.UI.Toolkit" to the Page element at the
root of MainPage.xaml.

2. Replace the Grid control inside your MainPage.xaml file with the following:

<StackPanel Spacing="10" Padding="10"

 toolkit:VisibleBoundsPadding.PaddingMask="All"

 Background="{ThemeResource
 ApplicationPageBackgroundThemeBrush}">

 <StackPanel x:Name="SignInForm" Spacing="10">

 <TextBox x:Name="UsernameInput"

 AutomationProperties.AutomationId=
 "UsernameInput"

 TextChanged="Username_TextChanged"
 Header="Username"/>

 <PasswordBox x:Name="PasswordInput"

190 Testing Your Apps

 AutomationProperties.AutomationId=
 "PasswordInput"

 PasswordChanged="Password_PasswordChanged"
 Header="Password"/>

 <TextBlock x:Name=
 "SignInErrorMessageTextBlock"
 AutomationProperties.AutomationId="
 SignInErrorMessageTextBlock"

 Foreground="{ThemeResource
 SystemErrorTextColor}"
 Visibility="Collapsed"/>

 <Button x:Name="SignInButton"

 AutomationProperties.AutomationId=
 "SignInButton"

 Click="SignInButton_Click"
 Content="Sign in" IsEnabled="False"

 HorizontalAlignment="Center"
 BorderThickness="1"/>

 </StackPanel>

 <TextBlock x:Name="SignedInLabel"

 AutomationProperties.AutomationId=
 "SignedInLabel"

 Text="Successfully signed in!"
 Visibility="Collapsed"/>

</StackPanel>

3. This is a simple sign-in interface that we will write tests for later in this chapter.
It includes sign-in controls, a sign-in button, and a label that will be shown when
signed in.

4. Now, add the following two methods to the MainPage class:

using UnoBookRail.Common.Auth;

...

private void Username_TextChanged(object sender,
TextChangedEventArgs e)

{

 SignInButton.IsEnabled = UsernameInput.Text.Length
 > 0 && PasswordInput.Password.Length > 0;

}

Getting started with Uno.UITest 191

private void Password_PasswordChanged(object sender,
RoutedEventArgs e)

{

 SignInButton.IsEnabled = UsernameInput.Text.Length
 > 0 && PasswordInput.Password.Length > 0;

}

private void SignInButton_Click(object sender,
RoutedEventArgs args)

{

 var signInResult = Authentication.SignIn(
 UsernameInput.Text, PasswordInput.Password);

 if(!signInResult.IsSuccessful &&
 signInResult.Messages.Count > 0)

 {

 SignInErrorMessageTextBlock.Text =
 signInResult.Messages[0];

 SignInErrorMessageTextBlock.Visibility =
 Visibility.Visible;

 }

 else

 {

 SignInErrorMessageTextBlock.Visibility =
 Visibility.Collapsed;

 SignInForm.Visibility = Visibility.Collapsed;

 SignedInLabel.Visibility = Visibility.Visible;

 }

}

This code adds handlers that allow us to enable the sign-in button as soon as the
user has entered a username and password. Otherwise, the sign-in button will be
disabled. In addition to this, we also handle the sign-in button click and update the
UI accordingly, including showing the error message if the sign-in failed.

192 Testing Your Apps

Now, if you start the UWP head of your app, you will see something like Figure 7.1:

Figure 7.1 – Screenshot of the running app with the sign-in form

Now that we have added a simple test app that we can test again, we can now add our
Uno.UITest tests project:

1. If you want to run tests for the WASM head of your app, make sure you have Google
Chrome installed.

2. First, you will need to update the project files for the Android, iOS, and WASM
heads. For that, add the following entries before the last closing project tag of the
.csproj files for those projects:

<PropertyGroup Condition="'$(Configuration)'=='Debug' or
'$(IsUiAutomationMappingEnabled)'=='True'">

 <IsUiAutomationMappingEnabled>
 True</IsUiAutomationMappingEnabled>

 <DefineConstants>$(DefineConstants);
 USE_UITESTS</DefineConstants>

 </PropertyGroup>

3. For the iOS project, add a reference to the Xamarin.TestCloud.Agent NuGet
package. Since, as of the time of writing, the latest stable version was 0.22.2, we will
use that.

Inside the OnLaunched method of your App.xaml.cs file, add the following
at the beginning of the method:

#if __IOS__ && USE_UITESTS

 // Launches Xamarin Test Cloud Agent

Getting started with Uno.UITest 193

 Xamarin.Calabash.Start();

 #endif

Since the Uno.UITest library uses Xamarin.UITest under the hood, for the iOS app,
we need to add the preceding code. Otherwise Xamarin.UITest can't interact with
the running iOS app and the tests won't work.

4. Since the Uno.UITest project type is not included in the Uno Platform Visual
Studio templates extension, make sure you have the Uno Platform dotnet new
templates installed. You can find the instructions for this in Chapter 1, Introducing
Uno Platform.

5. Inside the UnoAutomatedTestsApp folder, create a folder named
UnoAutomatedTestsApp.UITests.

6. Inside the newly created folder, run the following command:

dotnet new unoapp-uitest

This will create a new Uno.UITest project inside the folder and also add the project
to the solution file.

7. Update the Android and iOS apps package names. For Android, replace the
package entry inside the Properties/AndroidManifest.xml file of the
Android project with package="UnoBook.UnoAutomatedTestsApp". To
replace the iOS package name, open the Info.plist file inside the iOS project
and replace Bundle Identifier with UnoBook.UnoAutomatedTestsApp.

8. Now we need to update the Constants.cs file inside the Uno.UITests app project
to point to the correct app. For this, replace lines 13, 14, and 15 with the following:

public readonly static string iOSAppName = "UnoBook.
UnoAutomatedTestsApp";

public readonly static string AndroidAppName = "UnoBook.
UnoAutomatedTestsApp";

public readonly static string WebAssemblyDefaultUri =
"http://localhost:[PORT]/";

Since the port of the WASM app is generated randomly, replace [PORT] from the
preceding code with the following information

194 Testing Your Apps

Note
We need to update the Constants.cs file since Uno.UITest needs to be
able to find the app through the app name or app URI in the case of WASM.
To find out which URI your WASM head is running on, open Properties/
launchSettings.json inside the WASM head. Inside there, depending
on whether you will be using the IIS Express or the [ProjectName].
Wasm target, either use applicationUrl from the iisSettings option
or applicationUrl from the [Project name].Wasm profile to
ascertain the port. In this chapter, we will be using IIS Target. The iOS app
name is defined by the Bundle identifier inside the Info.plist file located
inside the iOS project. For the Android app name, refer to the package property
inside the Properties/AndroidManifest.xml file of the
Android project.

Inside the UnoAutomatedTestsApp.UITests project, you will find three files:

• Constants.cs: This contains the configuration to find the running app using the
app package name or URL of the app, as explained earlier.

• Given_MainPage.cs: This is a sample test file with a small test showing how to
write a test.

• TestBase.cs: This file contains all the bootstrap code that takes care of starting
and tearing down the app and also exposes an IApp instance (more on this in the
next section). This file also exports a TakeScreenshot function that you can use
to take screenshots of the running app being tested.

Now that we have covered how to set up the Uno.UITest project and its structure, let's
continue by writing our first Uno.UITest and learn how to run those tests.

Writing and running your first test
Before we start writing our first test, we will cover how you can use Uno.UITest to
interact with your apps. For this, we will first start by covering the basics of the addressing
elements using Uno.UITests query feature objects.

How Uno.UITest works
Since UI tests need to address UI elements of your app, every UI testing library needs to
have a way to allow developers to address those elements. Uno.UITest does this using
the IAppQuery interface to define queries and the IApp interface to run those queries
and inject input.

Writing and running your first test 195

The IApp interface provides you with the necessary APIs to interact with your app,
including clicking elements, simulating scrolling, and injecting text input. As part of the
creation of the Uno.UITest project, the TestBase class will provide you with an IApp
instance. Since the IApp interface allows you to simulate input to your app and most
interactions require a specific control to be the target of your interaction, most methods
on the IApp interface require you to specify the AutomationID property of the control
or by using the IAppQuery interface.

In the following example, we will use AutomationID to click the button, as defined
by the following XAML:

<!-- Setting AutomationId to reference button from UI test -->

<Button AutomationProperties.AutomationId="SignInButton
Content="Sign in"/>

When writing a Uno.UITest test, we can then press the button using the following code:

App.Tap("SignInButton");

In contrast to using x:Name/AutomationID of a control to specify the element, by
using the IAppQuery interface, you can address controls based on other properties,
for example, their type, or based on specific properties being set on a control.
When working with IAppQuery, you will notice that the IApp interface does
not expect to get an element of the IAppQuery type, but rather an element of the
Func<IAppQuery,IAppQuery> type. Since the IApp interface relies heavily on
this, you will often see the following using-alias statement:

using Query=System.Func<Uno.UITest.IAppQuery,Uno.UITest.
IAppQuery>;

This allows developers to write queries more easily since you can simply use the Query
type alias instead of having to write it out every time. For simplicity, in this chapter,
we will also use this using statement and use the Query type.

If we take the XAML from before, pressing the button with the IAppQuery interface can
be done as follows:

Query signInButton = q => q.Marked("SignInButton");

App.Tap(signInButton);

196 Testing Your Apps

When we created the Uno.UITest project, you may have also noticed that a reference to
the NUnit NuGet package was added. By default, Uno.UITest uses NUnit for assertions
and their tests. Of course, this does not mean that you have to use NUnit for your tests.
However, if you wish to use a different testing framework, you will need to update the
TestBase.cs file since it uses NUnit attributes to hook into the setup and teardown
of the tests.

Now that we covered the basics of how Uno.UITest works, we will now continue
by writing tests for our sign-in interface.

Authoring your first test
We will start by writing our first tests for the sign-in interface we added at the start of
this chapter. For simplicity, we will use NUnit since Uno.UITest uses this by default
when creating a new Uno.UITest project, meaning that we don't have to update the
TestBase class. We begin by creating a new file for our tests:

1. First, remove the existing Given_MainPage.cs file.
2. Create a new folder called Tests.
3. Create a new class called SignInTests.cs inside the Tests folder.
4. Update SignInTests.cs with the following code:

using NUnit.Framework;

using Query = System.Func<Uno.UITest.IAppQuery, Uno.
UITest.IAppQuery>;

namespace UnoAutomatedTestsApp.UITests.Tests

{

 public class SignInTests : TestBase

 {

 }

}

We are inheriting from TestBase to access the IApp instance of the current test
run and to be able to send input to our app. In addition to that, we are also adding
a using statement for the NUnit library as we will use it later and add the named
using statement we covered in the section How Uno.UITest works.

Writing and running your first test 197

Now, let's add our first test. Let's start by simply checking whether the email and password
input fields and the sign-in button exist. For the rest of this section, we will only be
working inside the SignInTests.cs file since we are writing tests for the sign-in
user interface:

1. Start by adding a new public function, which will be our test case. We will name the
function VerifySignInRenders.

2. Add the Test attribute. This lets NUnit know that the function is a test.
3. Now, add the following code inside the function:

App.WaitForElement("UsernameInput");

App.WaitForElement("PasswordInput");

App.WaitForElement("SignInButton");

Your SignInTests class should now look something like this:

public class SignInTests : TestBase

{

 [Test]

 public void VerifySignInRenders()

 {

 App.WaitForElement("UsernameInput", "Username input
 wasn't found.");

 App.WaitForElement("PasswordInput", "Password input
 wasn't found.");

 App.WaitForElement("SignInButton", "Sign in button
 wasn't found.");

 }

}

Now what our test does is try to find the elements with the automation ID
UserNameInput, PasswordInput, and SignInButton, and fail the test if it can't
find any of those elements.

Now that we have written our first test, let's try it out! To do this, we'll first cover how to
run those tests.

198 Testing Your Apps

Running your tests on Android, iOS, and WASM
Running your Uno.UITest tests against the Android, iOS, and WASM head of your
app is fairly simple, although the process is always slightly different depending on what
platform you are trying to start.

Running tests against the WASM head
Let's start by running our test against the WASM head of our app:

1. First, you will need to deploy the WASM head of the app. For this, select the
UnoAutomatedTestsApp.Wasm start up project and select the IIS Express target,
as shown in Figure 7.2. Then, press Ctrl + F5, which will deploy the project.

Figure 7.2 – WASM project with IIS Express selected

2. Update Constants.cs and change Constants.CurrentPlatform
to Platform.Browser. If you haven't updated the Constants.
WebAssemblyDefaultUri property, do that as in the Getting started with Uno.
UITest section.

3. Open Test Explorer by clicking View in the menu bar and clicking on Test
Explorer. Now, expand the tree and right-click the VerifySignInRenders test.
Click the Run option from the popup. Now, the test will run against the app
running in Chrome.

Important note
At the time of writing, due to a known bug with Uno.UITest, running the
tests against the WASM head might not work as Chrome might fail to start.
Unfortunately, no workaround is known yet. To learn more about the current
state of this bug, refer to the following GitHub issue: https://github.
com/unoplatform/Uno.UITest/issues/60.

Once the tests have started, Chrome will be started in headless mode and once the tests
have finished, the test will be marked as passed in the Visual Studio Test Explorer.

https://github.com/unoplatform/Uno.UITest/issues/60
https://github.com/unoplatform/Uno.UITest/issues/60

Writing and running your first test 199

Running tests against the Android version of your app
In addition to running your tests against the WASM head, you can also run the tests
against the Android version of your app running on an emulator or running on an
Android device. To do this, follow these steps:

1. Ensure that Android Emulator is running and that the app has been deployed.
To deploy the Android version of your app, select the Android project as the start
up project and press Ctrl + F5. If you want to run the tests against the app running
on your Android device, make sure the app is deployed on the device and that your
device is connected to your computer.

2. Update Constants.cs and change Constants.CurrentPlatform
to Platform.Android. In case you haven't updated the Constants.
AndroidAppName property, do that as in the Getting started with Uno.
UITest section.

3. As was the case with WASM, now right-click the test in Test Explorer and click
on Run. The app will start inside the emulator or on your Android device and the
tests will be running against the running Android app.

Running tests against the iOS version of your app
You can also run your UI tests against the iOS version of your app running on an emulator
or on an iOS device. Note that macOS is required for this. To run the tests against the iOS
head, follow these steps:

1. Ensure that the iOS simulator is running and that the app has been deployed.
To deploy the iOS version of your app, select the iOS project as the start up project
and run the app. If you want to run the tests against the app running on your iOS
device, make sure the app is deployed on the device and that it is connected
to your computer.

2. Update Constants.cs and change Constants.CurrentPlatform to
Platform.iOS. Set iOSDeviceNameOrId to the name of the emulator
or tethered device you wish to use.

If using a tethered device, you may also need to change iOSAppName and
the Bundle Identifier in info.plist so that it is compatible with your
developer certificate.

3. Now, right-click the test project in the Tests window and click on Run Test. The app
will start and the tests will be run.

200 Testing Your Apps

Additional information
Running the UI tests on a mac requires having compatible versions of the test
libraries, tools, and OS versions. If you encounter errors when running the
tests, ensure you have the latest versions of OS X, Xcode, Visual Studio for Mac,
and the NuGet packages you are using in the test project. You may also need
to ensure that the device or simulator you are running against is the latest iOS
version (including any updates).

Running the UI tests on a simulator can be resource-intensive. You may
find it necessary to run the tests on a connected device if they don't start on
the simulator.

If testing on a physical device, UI automation must be enabled. Enable this
at Settings > Developer > UI Automation.

Hopefully, more documentation will be added that will make testing and
debugging tests on a Mac easier. For progress on this, see https://
github.com/unoplatform/Uno.UITest/issues/66.

Now that we have covered how to run your tests against the Android, iOS, and WASM
versions of the app, we will dive deeper into writing tests by writing more UI tests for
our sign-in interface.

Writing more complex tests
So far, we have only tested the very basic example of our sign-in interface rendering.
However, we also want to make sure that our sign-in interface actually works and allows
users to sign in. For this, we will write a new test that ensures that when a username and
password are being provided, the sign-in button is clickable:

1. Create a new function,
VerifyButtonIsEnabledWithUsernameAndPassword, inside the
SignInTests.cs file and add the Test attribute to it.

2. Since we will use those queries more often, add the following Query objects to the
SignInTests class:

Query usernameInput = q => q.Marked("UsernameInput");

Query passwordInput = q => q.Marked("PasswordInput");

Query signInButton = q => q.Marked("SignInButton");

https://github.com/unoplatform/Uno.UITest/issues/66
https://github.com/unoplatform/Uno.UITest/issues/66

Writing more complex tests 201

3. Now, let's simulate entering text in the username and
password fields by inserting the following code into the
VerifyButtonIsEnabledWithUsernameAndPassword test:

App.ClearText(usernameInput);

App.EnterText(usernameInput, "test"); App.
ClearText(passwordInput);

App.EnterText(passwordInput, "test");

Important note
Due to a bug with Xamarin.UITest, the testing library Uno.UITest uses
for Android and iOS, clearing and entering tests does not work on every
Android device or emulator. You can find more information on this
bug here: https://github.com/microsoft/appcenter/
issues/1451. As a workaround, you can use an Android emulator with
API version 28 or lower as those Android versions are not affected by this bug.

This will simulate a user entering the text test into the username input field
and the same text into the password input field. Note that in this and the following
tests, we will always clear the text beforehand to ensure that the correct text has
been entered.

Note
When running multiple tests as a group, for example, by selecting multiple
tests or their root node in the Test Explorer, Uno.UITest will not reset the app
between the individual tests. That means that you will need an initialization
code for your tests if those rely on a specific initial app state.

4. Now, let's verify that the sign-in button is enabled by using the following code:

var signInButtonResult = App.WaitForElement(signInButton);

Assert.IsTrue(signInButtonResult[0].Enabled, "Sign in
button was not enabled.");

For this, we ensure that the button exists and grab the IAppResult[] object for
that query. We then check that the button is enabled through the IAppResult.
Enabled property. Note that we added a message to the assert that will be
displayed when the assert fails by providing a second parameter.

Now, if you run the test for Android, the app will start on your Android device or the
emulator. Uno.UITest will then enter text inside the Username and Password input
fields and you should see the sign-in button become clickable.

https://github.com/microsoft/appcenter/issues/1451
https://github.com/microsoft/appcenter/issues/1451

202 Testing Your Apps

Let's now test whether invalid sign-in credentials provide a meaningful error message.
For this, we will write a new test:

1. Create a new function, VerifyInvalidCredentialsHaveErrorMessage,
inside the SignInTests.cs file and add the Test attribute to it.

2. Now, add a new query to the SignInTests class that we will use to access the
error message label:

Query errorMessageLabel = q =>
q.Marked("SignInErrorMessageTextBlock");

3. Now, let's enter credentials that are definitely invalid and press the Sign in button
using the following code:

App.ClearText(usernameInput);

App.EnterText(usernameInput, "invalid");

App.ClearText(passwordInput);

App.EnterText(passwordInput, "invalid");

App.Tap(signInButton);

4. Since we will be using Uno.UITest extensions methods and Linq inside our test,
add the following using statements:

using System.Linq;

using Uno.UITest.Helpers.Queries;

5. Lastly, we need to verify the error message using the following code. By that, we
check that the error label is displaying the appropriate error message:

var errorMessage = App.Query(q => errorMessageLabel (q).
GetDependencyPropertyValue("Text").Value<string>()).
First();

Assert.AreEqual(errorMessage, "Username or password
invalid or user does not exist.", "Error message not
correct.");

Writing more complex tests 203

6. If you run this test now, you will see how the username "invalid" and the password
"invalid" will be entered. After that, the test clicks on the sign-in button and you
will see the error message Username or password invalid or user does not exist..

Lastly, we want to verify the fact that with valid credentials, users can sign in. For this,
we will use the username demo and the password 1234, as these are known to the
authentication code as a demo user:

1. As with the previous tests, create a new function with the name
VerifySigningInWorks inside the SignInTests.cs file and add the Test
attribute to it.

2. Since we will use the SignedInLabel to detect whether we are signed in, add the
following query as we will use it later to detect whether the label is visible.

3. Add the following code to enter the demo user credentials and sign in:

App.ClearText(usernameInput);

App.EnterText(usernameInput, "demo");

App.ClearText(passwordInput);

App.EnterText(passwordInput, "1234");

App.Tap(signInButton);

4. Lastly, check whether we are signed in by verifying that the signed-in label is visible
and displaying the correct text using the following code:

var signedInMessage = App.Query(q => signedInLabel(q).
GetDependencyPropertyValue("Text").Value<string>()).
First();

Assert.AreEqual(signedInMessage, "Successfully signed
in!", "Success message not correct.");

5. If you run this test, you will see how the username demo and the password 1234
have been entered. After the sign-in button gets clicked by the test, the sign-in form
will disappear and you will see the text Successfully signed in.

204 Testing Your Apps

While we covered writing tests using Uno.UITest, of course, we didn't cover all the
available APIs. Figure 7.3 shows a list of different APIs available as part of Uno.UITest
and how you can use them:

Figure 7.3 – List of additional APIs available as part of Uno.UITest

Now that we have covered writing tests using Uno.UITest, let's look at tools you can use
to write automated tests for your app, including using WinAppDriver to write UI tests for
the UWP head of your app.

Test tools beside Uno.UITest 205

Test tools beside Uno.UITest
Uno.UITest is not the only tool you can use to write automated tests for your Uno
Platform app. In this section, we will cover writing UI tests for the UWP head of your
project using WinAppDriver and Selenium and writing unit tests for the UWP head
of the project.

Testing the UWP head of your app with WinAppDriver
At the time of writing, Uno.UITest does not support running the tests against the UWP
head of your app. However, you might also want to run UI tests against the UWP
version of your app. Luckily, WinAppDriver and Appium allow us to achieve this.
WinAppDriver is a tool developed by Microsoft that allows developers to simulate input
to Windows apps, including UWP apps. While WinAppDriver allows you to interact
with Windows apps, it does so by starting a web server locally and allows interaction with
apps by communicating with WinAppDriver through a web-based protocol. To make the
development process easier for us, we will use Appium.WebDriver as our library to write
the UI tests. We will start by creating our test project and adding the necessary tests. Note
that we will be creating a new project since we don't want Appium.WebDriver to interfere
with Uno.UITest and we can't use Appium and WinAppDriver from inside a UWP
project, meaning we can't reuse our UWP Unit test project:

1. First, you will need to install WinAppDriver. For this, go to the releases page of
WinAppDriver (https://github.com/Microsoft/WinAppDriver/
releases) and download the latest MSI installer. At the time of writing, the
latest stable release was version 1.2.1, and we will be using this version for this
chapter. After downloading the MSI installer, run it to install WinAppDriver.
Note that you will later need to start the WinAppDriver.exe file and if you
install WinAppDriver in a different folder, you should make a note of the
installation folder.

2. Open the UnoAutomatedTestsApp solution and create a new Unit Test project.
To do this, right-click on the solution node and click Add > New Project.

https://github.com/Microsoft/WinAppDriver/releases
https://github.com/Microsoft/WinAppDriver/releases

206 Testing Your Apps

3. In the dialog, search for Unit Test App and select the option highlighted in
Figure 7.4:

Figure 7.4 – Unit Test Project template in the new project dialog

4. Press Next and enter the project name. We will name the project
UnoAutomatedTestsApp.UWPUITests. Of course, you can name
the project differently; however, we will assume that the project is named
UnoAutomatedTestsApp.UWPUITests in this chapter. Then, press Next.

5. Now, select the target framework; we will be using .NET 5.0. Now, click Create to
create the project.

6. Once the project is created, right-click the project in the solution view and click
on Manage NuGet Packages…. Now, install the Appium.WebDriver package
by searching for Appium.WebDriver in the Browse section and installing
the package.

Test tools beside Uno.UITest 207

Now that we have created the unit test project, we can write our first UI test using
Appium.Webdriver. We will only cover how to write your first test using Appium and
WinAppDriver. You can find more information about WinAppDriver and writing tests
in their official documentation:

1. Before we write our first test, first rename the UnitTest1.cs file to
SignInTests.cs. and also rename the UnitTest1 class to SignInTests.

2. Open the Package.appxmanifest file located inside the UWP head
of the app and change the package name located under Packaging to
UnoAutomatedTestsApp. Now, deploy the UWP head of your app by selecting
the UWP head and pressing Ctrl + F5. Since we have changed the package name,
we want the test to start the app using the updated package name.

3. Add the following using statements to the SignInTests class:

using OpenQA.Selenium.Appium;

using OpenQA.Selenium.Appium.Windows;

4. Now, add the following code to the SignInTests class.

private static WindowsDriver<WindowsElement> session;

[AssemblyInitialize]

public static void InitializeTests(TestContext _)

{

 AppiumOptions appiumOptions = new AppiumOptions();

 appiumOptions.AddAdditionalCapability("app",
 "UnoAutomatedTestsApp_cdfyh0xbha7kw!App");

 appiumOptions.AddAdditionalCapability(
 "deviceName", "WindowsPC");

 session = new WindowsDriver<WindowsElement>(new
 Uri("http://127.0.0.1:4723"), appiumOptions);

}

This will start the app using the app's package identity and connect to the running
WinAppDriver. Since we will use the created WindowsDriver object to
interact with the app, we store a reference to it. Note that the highlighted section
will be different for your app. To get the correct value, open the Package.
appxmanifest file and open the Packaging tab. Then, replace the highlighted
part with the Package family name value.

208 Testing Your Apps

5. Now, remove the existing TestMethod1 test and add the following test:

[TestMethod]

public void
VerifyButtonIsEnabledWithUsernameAndPasswordUWP()

{

 var usernameInput =
 session.FindElementByAccessibilityId(
 "usernameInput");

 usernameInput.SendKeys("test");

 var passwordInput =
 session.FindElementByAccessibilityId(
 "passwordInput");

 passwordInput.SendKeys("test");

 var signInButton =
 session.FindElementByAccessibilityId(
 "signInButton");

 Assert.IsTrue(signInButton.Enabled, "Sign in
 button should be enabled.");

}

Like the VerifyButtonIsEnabledWithUsernameAndPassword test
we wrote in the Uno.UITest section, this test verifies that when a username
and password have been entered, the sign-in button is enabled.

Now that we have written our first test, let's run it! To do this, you will first need to
start WinAppDriver. If you have installed WinAppDriver in the default folder, you will
find the WinAppDriver.exe file in the C:\Program Files (x86)\Windows
Application Driver folder. If you have chosen a different installation folder earlier,
open that folder and start the WinAppDriver.exe file inside there. Upon starting, you
should see something as shown in Figure 7.5:

Figure 7.5 – Window running WinAppDriver

Test tools beside Uno.UITest 209

Now, you can start the test by right-clicking the
VerifyButtonIsEnabledWithUsernameAndPasswordUWP test inside the test explorer
and clicking on Run. The test will start the app, enter the text, and then check whether the
sign-in button is enabled.

Automated accessibility testing with Axe.Windows
In addition to writing normal UI tests, you can also add Axe.Windows to your testing
suite to automatically check your app for accessibility issues as part of the UI testing
strategy. Axe.Windows is a library developed and maintained by Microsoft that aims
to detect accessibility issues in apps. Adding Axe.Windows to your UI tests is simple:

1. Add a reference to the Axe.Windows package in the UnoAutomatedTestsApp.
UWPUITests project. To do this, right-click the project and click on Manage
NuGet Packages…. Search for Axe.Windows and install the package.

2. Now, add the following two using statements to the SignInTests.cs file:

using Axe.Windows.Automation;

using System.Diagnostics;

3. Lastly, add the following test to the SignInTests class:

[TestMethod]

public void VerifySignInInterfaceIsAccessible()

{

 var processes = Process.GetProcessesByName(
 "UnoAutomatedTestsApp");

 Assert.IsTrue(processes.Length > 0);

 var config = Config.Builder.ForProcessId(
 processes[0].Id).Build();

 var scanner = ScannerFactory.CreateScanner(
 config);

 Assert.IsTrue(scanner.Scan().ErrorCount == 0,
 "Accessibility issues found.");

}

210 Testing Your Apps

Since Axe.Windows needs to know the process ID, we first get the process ID of the
running app using the System.Diagnostics.Process API. We then create a new Axe.
Windows configuration using the process ID, which we then use to create a new Axe.
Windows scanner. The Axe.Windows scanner allows us to scan our app for accessibility
issues using the Scan function. Since Scan() returns a scan result object telling us that
all accessibility issues have been found, we assert that we have found zero accessibility
errors. When writing UI tests for more complex apps, you would scan the app more often
to ensure that every scenario and view inside your app will be covered by this accessibility
scan. For example, you could scan the app for accessibility issues every time you navigate
to a different view. If you now run the test, the test app will start and after a few seconds,
the test will be marked as Passed since our sign-in interface has no accessibility issues
that can be found by Axe.Windows.

In this section, we have only scratched the surface in terms of testing with WinAppDriver
and Axe.Windows and there is a lot more we could cover. If you would like to learn
more about authoring tests with WinAppDriver, you can find more information in
their authoring test scripts documentation (https://github.com/microsoft/
WinAppDriver/blob/master/Docs/AuthoringTestScripts.md) or take
a look at their sample code: https://github.com/microsoft/WinAppDriver/
tree/master/Samples/C%23. If you wish to learn more about Axe.Windows,
you can visit their GitHub repository: https://github.com/microsoft/
axe-windows.

In the next section, we will cover how to write unit tests for your Uno Platform app,
including the different approaches to it.

Writing unit tests for your Uno Platform app
As app complexity increases, ensuring that your app's logic is working becomes
increasingly difficult to validate without tests. While you can use UI tests to validate the
logic, you can only verify logic that gets exposed as part of the UI. Things such as network
access or error handling, however, become very difficult to validate using UI tests as those
things are generally exposed through the UI. In addition to that, UI tests are slower since
they are mimicking user interaction and rely on the rendered UI to update.

This is where unit tests come in. Unit tests are small tests that verify single units of your
code. Most commonly, classes or functions are treated as individual units and tests are
grouped based on the class or function they are testing; in other words, for every class you
want to test, there is a set of tests only targeting that class and not any other class. As the
complexity of your app increases, unit tests allow you to verify that single classes are still
working as expected.

https://github.com/microsoft/WinAppDriver/blob/master/Docs/AuthoringTestScripts.md
https://github.com/microsoft/WinAppDriver/blob/master/Docs/AuthoringTestScripts.md
https://github.com/microsoft/WinAppDriver/tree/master/Samples/C%23
https://github.com/microsoft/WinAppDriver/tree/master/Samples/C%23
https://github.com/microsoft/axe-windows
https://github.com/microsoft/axe-windows

Test tools beside Uno.UITest 211

Important note
Unit tests are no silver bullet! While unit tests allow you to verify the behavior
of single pieces of functionality, larger and more complex apps also require
more tests besides unit tests, in other words, UI tests to ensure that the app
as a whole works as expected. Only because single classes work correctly
in isolation, this does not mean that the whole construct works together as
expected and is bug-free!

Since, at the time of writing, only creating unit tests against the UWP head is well
supported, we will focus on this. We will now cover the different ways to create the unit
test project.

Different approaches to adding a unit test project
Since most, if not all, of your app's logic sits inside a shared project, writing unit tests is
a bit more complex. Since the shared project does not actually produce an assembly that
you can reference, there are different ways to test your app's logic, which both come with
their own benefits and drawbacks.

The first option is to create a project containing the unit tests for the platform you want
to run the tests on and reference the shared project in that project. This is the easiest way
to get started since you just need to create a new project and reference the shared project.
One of the downsides is that since shared projects don't allow references such as NuGet
packages to be added to them, any libraries you are using inside your shared project also
need to be referenced by your test project. In addition to this, since the shared project
does not create a binary but is compiled into the projects that are referencing it, changes
made to the shared project will always result in the tests project recompiling.

The next option is to leave your code inside the shared project and reference the platforms
head project inside the unit test projects; for example, create a UWP Unit test project
and reference the UWP head of your app inside it. This option is better than the first
option since you don't encounter the issues of library references needing to be added
to the test project since the platform head references the libraries for us. We will use
this approach in this chapter.

212 Testing Your Apps

The last option is to move the code inside the shared project into a Cross Platform
Library (Uno Platform) project and reference the library in the platform heads and unit
test projects. This approach has the benefit that you can add library references to the
library project on its own and don't have to manually add the reference to the individual
projects. One of the downsides is that you have to switch to a cross-platform library
project type instead of being able to use the existing shared project. This approach also
has the downside that the cross-platform library will always be compiled for all platforms,
thereby increasing the build time when only requiring specific platforms.

Let's now add a unit test to our app by using the second option previously discussed, that
is, adding a reference to the platforms head project.

Adding your first unit test project
Since we will reference the UWP platform head, we need a UWP unit test app. For this,
we first need to add a new project:

1. Right-click the solution and click Add > New Project.
2. In the dialog, search for the Unit Test App (Universal Windows) text and select the

Unit Test App (Universal Windows) project type, as shown in Figure 7.6:

Figure 7.6 – Unit Test App (Universal Windows) project type in a new project dialog

Test tools beside Uno.UITest 213

3. Click Next and name the project UnoAutomatedTestsApp.UWPUnitTests.
You can name the project differently, of course; however, in this and the following
sections, we will assume that the project is named as mentioned previously.

4. Select the minimum and target version. We will use 18362 for both since the UWP
head of the app also uses those. Not using the same minimum and target version
of the UWP head might result in build errors, so you should always aim to match
the UWP head.

5. Now, add a reference for the UWP head to the Unit Test App project. For this,
right-click the UnoAutomatedTestsApp.UWPUnitTests project in the solution
view, click Add > Reference… > Projects, check UnoAutomatedTestsApp.UWP,
and then click OK.

6. Since the reference to the UWP head will also copy the Properties/Default.
rd.xml file into the build output folder, this will result in a build issue as there
are two Default.rd.xml files that the compiler wants to copy into the same
folder. Because of that, rename the Default.rd.xml file of the unit test app to
TestsDefault.rd.xml. Then, also update the UnoAutomatedTestsApp.
UWPUnitTests.csproj file to point to that file. If you are renaming the file from
the Solution view, you just need to select the project and press Ctrl + S.

7. In addition to that, we also need to rename the image assets of the unit test project.
For this, prepend all images inside the Assets folder with UWPUnitTestApp-.

We are now able to write and run unit tests for everything included inside the UWP
head, including classes included inside the shared project. For larger apps that also have
platform conditional code, you will only be able to reference classes and code inside
the UWP unit test project that are getting compiled for the UWP head. Now that
we have created the project, let's write a small unit test. In contrast to the Uno.UITest
tests project, the Unit Test App (Universal Windows) project type uses MSTest as the
testing framework. Of course, you can change this, but for simplicity, we will stick with
MSTest. Note that you can't use NUnit for UWP unit tests as it does not support UWP:

1. Since we don't have many classes we can test now, let's add a new class to the shared
project. To do this, create a new class named DemoUtils.

2. Replace the code of the file with the following:

namespace UnoAutomatedTestsApp

{

 public class DemoUtils

 {

 public static bool IsEven(int number)

214 Testing Your Apps

 {

 return number % 2 == 0;

 }

 }

}

We will just use this code so that we have something easy to write unit tests for.
3. Now, rename the UnitTest.cs file inside the UnoAutomatedTestsApp.

UWPUnitTests project to DemoUtilsTests.cs.
4. Now, replace the content of the DemoUtilsTests.cs file with the following:

using UnoAutomatedTestsApp;

using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace UnoAutomatedTests.UWPUnitTests

{

 [TestClass]

 public class DemoUtilsTests

 {

 [TestMethod]

 public void VerifyEvenNumberIsEven()

 {

 Assert.IsTrue(DemoUtils.IsEven(2),
 "Number 2 should be even");

 }

 }

}

This is a small unit test to verify that our DemoUtils.IsEven function
successfully determines that the number 2 is even.

We have now added our first unit test. As is the case with the UI test, you can
run the test by opening the test explorer, expanding the tree, right-clicking the
VerifyEvenNumberIsEven test, and clicking on Run. The test will then compile, deploy
the unit test app, and start it. Your tests will be run and the unit test app will then close.

In the last section of this chapter, we will cover manual testing, why it is important,
and how to approach testing accessibility manually using Accessibility Insights.

Performing manual testing and why it is important 215

Performing manual testing and why
it is important
While automated tests help to find bugs and issues, there are certain things they cannot
cover that still require manual testing. When developing apps that make use of features
such as a camera, Bluetooth, or other device capabilities, writing automated tests is hard
and sometimes even impossible. In these scenarios, manual testing is necessary. This
is especially important with connectivity features to see how your app handles unstable
connections and whether your app still provides a good user experience, especially with
varying connection quality. More importantly, testing using emulators makes it hard to
verify how the app will feel on actual devices, especially when thinking about the user
experience, such as elements being the right size and easily tappable on screens.

In addition to testing specific features that are hard to simulate as part of an automated
test such as GPS or roaming data access, manual testing is also critical to ensure that
your app is great usability-wise. While during development, running the app inside
your emulator is fine, manual testing becomes more and more important as
development progresses.

Besides manually testing your app by using the app on a device or emulator, another
important aspect is manually testing your app for accessibility. Ensuring that your app
is accessible by users is crucial when developing apps, and while automated tests, such
as Axe.Windows tests, can help find issues, they are not perfect. Since people with all
levels of ability might use your app, making your app not accessible makes your app
harder or even impossible to use for those customers. Since everyone should be able to use
your app regardless of their level of ability, there are different tools when testing your app
for accessibility. In this section, however, we will focus on using assistive technology and
using the Accessibility Insights scanning tool.

Accessibility insights is a tool that allows you to scan your app for accessibility issues
manually, similar to what Axe.Windows does. In fact, Accessibility insights for
Windows uses Axe.Windows under the hood. In contrast to Axe.Windows,
Accessibility Insights also allows the testing of your web app and Android app for
accessibility issues. In this chapter, you will learn how you can use Accessibility Insights
for Windows. If you wish to learn more about Accessibility Insights, including using
Accessibility Insights for Web and Accessibility Insights for Android, you can check out
the official website: https://accessibilityinsights.io/.

https://accessibilityinsights.io/

216 Testing Your Apps

Now, let's get started by using Accessibility Insights for Windows by using it on the
UWP head of the UnoAutomatedTestsApp:

1. To do this, first, you need to download Accessibility Insights for Windows from
https://accessibilityinsights.io/docs/en/windows/overview/
by clicking on Download for Windows. If you have already installed Accessibility
Insights for Windows, you can proceed with step 4.

2. Once the download has finished, run the MSI Installer to install
Accessibility Insights.

3. Once the installation process has finished, Accessibility Insights for Windows
should start and you will see something similar to that shown in Figure 7.7 after
dismissing the telemetry dialog:

Figure 7.7 – Screenshot of Accessibility Insights

https://accessibilityinsights.io/docs/en/windows/overview/

Performing manual testing and why it is important 217

4. Once you have closed the popups, start the UWP head of
UnoAutomatedTestsApp.

Now, if you hover over the app, you will notice that the area you are hovering over
and the controls in that area will be surrounded by a dark blue area. In Accessibility
Insights, you can see the different UI automation properties of the control, for
example, the control's control type or whether they are keyboard-focusable.
To scan a control, you can either select the control from Live Inspect tree or click
on the scan button in the top-right corner of the blue rectangle, as shown in
Figure 7.8:

Figure 7.8 – Highlighted scan icon on control

While Accessibility Insights is a useful tool for finding accessibility issues, testing your app
by using it with assistive technology is crucial to ensure that your app can be used by users
with all levels of ability. For this, we will manually test the UWP head using Narrator.
However, similar testing can be done on Android, iOS, and macOS. To learn how to start
the assistive technology on different platforms, please refer to the Starting the screen reader
on different platforms section in Chapter 5, Making Your App Ready for the Real World.

Let's walk through our app now using Narrator. To do this, start Narrator by pressing
Windows logo key, Ctrl, and Enter at the same time and open UnoAutomatedTestsApp.
Narrator should then announce UnoAutomatedTestsApp, Window. Using the Caps Lock
key and the arrow keys, you can navigate through the app. As you navigate through the
app, Narrator will then announce the header of the username input, the password input,
and then the sign-in button. This also allows us to find potential accessibility issues that
Axe.Windows and Accessibility Insights for Windows did not catch. For this, enter a
username by navigating to the username input field, entering the text invalid, and
repeating the process for the password field. Upon navigating to the sign-in button and
hitting the space bar, you will notice that you are
not being notified of any error messages. This is an accessibility issue as users relying
on assistive technology will not be notified of the error message and will not know
what happened.

218 Testing Your Apps

For larger apps, navigating through the app will be more complicated. While our test
app is small and all controls are accessible, for larger apps using this testing, you can find
crucial accessibility issues, for example, controls that have an unhelpful or even misleading
representation for assistive technology. Finding these issues early in the development
process makes them easier to fix and prevents them from impairing users.

In this section, we scratched the surface of manual testing and why it is necessary.
We also covered how to approach accessibility testing using Accessibility Insights and
assistive technology.

Summary
In this chapter, we have learned how to write automated UI tests for your app using
Uno.UITest and Selenium. We also then learned how to run those tests on different
platforms, including running them on your app running on an emulator. After that,
we covered how to write UI tests for the UWP head of the app using WinAppDriver and
also write unit tests for the UWP head. Lastly, we covered manual testing and how to test
for accessibility issues.

In the next chapter, we'll talk about deploying your app and how you can bring your
Xamarin.Forms app to the web using Uno Platform. We will also cover how to build for
other platforms and cover how you can join and even contribute to the Uno community.

8
Deploying Your Apps

and Going Further
This chapter concludes our introduction to Uno Platform, but there's still a lot more
to cover before we finish. You already know that Uno Platform allows for the creation
of apps that run in multiple environments. This does not apply just to new apps. A large
part of the appeal of Uno Platform is that it enables developers to also take existing
apps and run them in new environments. Because it is built on UWP and WinUI,
Uno Platform provides an excellent way for you to take existing apps and run them in
new environments.

In this chapter, we'll cover the following topics:

• Bringing Xamarin.Forms apps to WebAssembly

• Deploying a Wasm Uno Platform app to the web

• Deploying your app to a store

• Engaging with Uno Platform community

By the end of this chapter, you'll know how to deploy your applications, and you'll be
confident about the subsequent steps to take in your journey with Uno Platform.

220 Deploying Your Apps and Going Further

Technical requirements
This chapter assumes that you already have your development environment set up,
including installing the project templates. This was covered in Chapter 1, Introducing
Uno Platform.

This chapter will also use source code that was created in Chapter 6, Displaying Data in
Charts and with Custom 2D Graphics. This is available at the following URL: https://
github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-
Applications-with-Uno-Platform/tree/main/Chapter06.

Check out the following video to see the code in action: https://bit.ly/3xDJDwT

Bringing Xamarin.Forms apps to WebAssembly
If you use .NET for your development and have previously created a mobile (iOS and/or
Android) app, you may have used Xamarin.Forms. If you have mobile apps built with
Xamarin.Forms that you now want to run on WebAssembly, you may be worried that
a rewrite of code is in order, but it's not.

Xamarin.Forms can create UWP apps. Uno Platform allows UWP apps to run on other
platforms. Therefore, it's possible to use the UWP app produced by Xamarin.Forms
and pass that as input for Uno Platform to use to create a Wasm app. Fortunately, and
for simplicity, all the connecting of project inputs and outputs is taken care of by
a provided template.

Tip
It's also possible to use Uno Platform controls within a Xamarin app. Doing so
is simple, and there's a guide showing how at the following URL: https://
platform.uno/docs/articles/howto-use-uno-in-
xamarin-forms.html.

To show how a UWP app created by Xamarin.Forms can be used by Uno Platform to
create a Wasm app, let's create a new Xamarin.Forms app and add a Wasm head using
Uno. You can, of course, do the same thing with an existing Xamarin.Forms app, but
only if it has a UWP head. If you have an existing Xamarin.Forms app without a UWP
head, you'll need to add one before you can create a Wasm head:

1. Inside Visual Studio, create a new project with the Mobile App (Xamarin.Forms)
project template.

2. Give the project (and solution) the name UnoXfDemo. You can, of course,
use a different name, but you will need to need to adjust all subsequent
references accordingly.

https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter06
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter06
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter06
https://bit.ly/3xDJDwT
https://platform.uno/docs/articles/howto-use-uno-in-xamarin-forms.html
https://platform.uno/docs/articles/howto-use-uno-in-xamarin-forms.html
https://platform.uno/docs/articles/howto-use-uno-in-xamarin-forms.html

Bringing Xamarin.Forms apps to WebAssembly 221

3. Check the place solution and project in the same directory box.
4. Select the Blank template option and be sure to check the option to say you plan

to develop for Windows (UWP).

We'll use a blank application template for simplicity. Most Xamarin.Forms-
specific content should work fine. However, you are advised to test this early in
your process to identify any possible issues you may encounter with custom UI
or third-party controls.

5. Right-click on Solution node in Solution Explorer and select Open in Terminal.
6. The Developer PowerShell windows will open in the directory of the solution. In it,

type the following:

dotnet new -i Uno.ProjectTemplates.Dotnet::*

This will ensure that you have the latest versions of the templates installed.
7. Now type the following:

dotnet new wasmxfhead

This will add the new project to the solution.
8. Select Reload, when prompted, to reload the solution and you'll see UnoXfDemo.

Wasm as a new project inside the solution.
9. Downgrade all the references of Xamarin.Forms to be version 5.0.0.1931, as this is

the latest version supported by Uno Project.
10. Add a reference to the Xamarin.Forms package in the Wasm project, as follows:

Install-Package Xamarin.Forms -Version 5.0.0.1931

Note that all versions of Xamarin.Forms referenced from the projects in the
solution should be the same, and they must also match the version supported by
the Uno.Xamarin.Forms.Platform package. If they don't, you'll get an error
explaining the different versions referenced and how to address them.

11. Update the version of Uno.Xamarin.Forms.Platform used by the Wasm project
to 5.0.0-uno.1799. This is to ensure compatibility with version 5.0 of Xamarin.
Forms that, at the time of writing, is referenced in the latest version of
the templates.

222 Deploying Your Apps and Going Further

12. Set the UnoXfDemo.Wasm project as the start up project, and then start
debugging. You'll see something that looks similar to Figure 8.1:

Figure 8.1 – A default (blank) Xamarin.Forms app running through WebAssembly

Of course, you can continue developing the app, adding or changing features
or functionality, and then deploy the latest version to WebAssembly like any other project
in the solution.

Now, we've seen how simple it is to use Uno Platform to have a Xamarin.Forms app run
as a Wasm app.

Important note
In addition to being able to take an existing Xamarin.Forms app and
have it work with Uno Platform, it's also possible to take an existing UWP app
and convert that to use Uno Platform to target other operating systems too.
The Uno Platform team has published an official guide on how to do this at
the following URL: https://platform.uno/docs/articles/
howto-migrate-existing-code.html.

After you've created the Wasm version of your app (whether it started out as a Xamarin.
Forms app or not), you'll want to make it available on the web so that other people can
use it. We'll look at that now.

https://platform.uno/docs/articles/howto-migrate-existing-code.html
https://platform.uno/docs/articles/howto-migrate-existing-code.html

Deploying a Wasm Uno Platform app to the web 223

Deploying a Wasm Uno Platform app
to the web
Building a Wasm app and having it running locally on your machine is an exciting step
that shows the power and potential of Uno Platform. However, running locally on your
machine makes it hard for other people to use it. What you need to do is host the app
somewhere that everyone can access it.

Probably the most popular choice for hosting a .NET-based web application is on Azure.
You can host your app anywhere, and the process is very similar for all services as there is
no server-side processing needed. On the assumption that Azure is where you're likely to
want to host your app, let's now see how this is done. If you've never deployed a web app
or used Azure before, it can seem daunting, but you'll see how easy it is and that there's
nothing to fear.

Try Azure for free
If you don't already have an Azure account, you can sign up for a free trial
by visiting the following URL: https://azure.microsoft.com/
free/.

Rather than create a new app purely to show it being deployed, let's use the app we created
in Chapter 6, Displaying Data in Charts and with Custom 2D Graphics:

1. Open the Dashboard app you created previously (or download the version
from https://github.com/PacktPublishing/Creating-Cross-
Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/
Chapter06).

2. Right-click on the WASM project and select Publish….
3. You'll see that there are many places you can publish your app to, but as we want to

publish the app to Azure, select the Azure option and click Next.
4. For the specific target, we'll select the Azure App Service (Windows) option,

although you could use any of the other options.

Important note
Static Web Apps is another suitable way of hosting a Wasm app. See
https://azure.microsoft.com/services/app-service/
static/ for more details.

https://azure.microsoft.com/free/
https://azure.microsoft.com/free/
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter06
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter06
https://github.com/PacktPublishing/Creating-Cross-Platform-C-Sharp-Applications-with-Uno-Platform/tree/main/Chapter06
https://azure.microsoft.com/services/app-service/static/
https://azure.microsoft.com/services/app-service/static/

224 Deploying Your Apps and Going Further

5. If you haven't already done so, sign in to your Azure linked account.
6. We'll create a new app service to host the app, so click on the plus sign for Create

an Azure App Service.
7. A default name for your app will be automatically assigned. As this will be used

as the subdomain where the app will be made available, this must be unique. The
default name will have a number appended to the project name based on the
current date and time. You can change this if you wish, but if the value you specify
isn't unique, you'll see a warning that the name is not available, and you must
choose another.

8. If you have multiple subscriptions linked to your account, select the one you want to
use for this app.

9. Select or create new resource groups and hosting plans. For demonstration
purposes, you can use a Free hosting plan for now. If the needs of your app mean
this is insufficient, you can change this in the future.

Important note
When you move on from the free trial and have an app in production, it's
vital that you fully understand the options and billing-related choices you
have configured for your web app. This will avoid any unexpected charges to
your credit card, or a critical app being disabled when you run out of credit.
The appropriate settings for you and your app will depend on your app and
individual requirements. Details of the billing options can be found at the
following URL: https://azure.microsoft.com/pricing/
details/app-service/windows/.

10. Click the Create button and the service will be created for you. This may take
a few seconds, and a message will be shown in the corner of the screen while this
takes place.

https://azure.microsoft.com/pricing/details/app-service/windows/
https://azure.microsoft.com/pricing/details/app-service/windows/

Deploying a Wasm Uno Platform app to the web 225

11. You'll now see something like Figure 8.2. This shows I've used the name
UnoBookRailDashboard, so the app will be available at the following URL:
https://unobookraildashboard.azurewebsites.net/. Now click
Finish, and the app will be built ready for deployment:

Figure 8.2 – The Azure Publish dialog ready to publish the app

12. Now that you've set up your web app, you're ready to publish the app. Click the
Publish button at the top right of the window.

https://unobookraildashboard.azurewebsites.net/

226 Deploying Your Apps and Going Further

It might take a minute or two, but eventually, the browser will open a new tab with
your app running from Azure. This should look similar to Figure 8.3:

Figure 8.3 – Dashboard app running on Azure

If you're not hosting your app on Azure, you may find helpful guidance by searching
how to deploy a Blazor app, as the process is likely to be similar. Ultimately, an Uno
Platform-based WebAssembly app is all static files and can be deployed to any server
capable of hosting static content.

Publishing from Visual Studio is convenient. However, it is not desirable in terms of
creating a tracked, repeatable process. Ideally, you should set up an automated process
to deploy your app. Having continuous integration and deployment (CI/CD) processes
is what we'll look at next.

Automating build, tests, and distribution 227

Automating build, tests, and distribution
Ideally, you'll be using an automated process to build, test, and deploy your application,
and not rely on doing it all manually, as manual processes are more error-prone.

This is where a CI/CD process is essential. As we've just manually deployed a Wasm app
to Azure, let's start by looking at automating that process. Fortunately, the Visual Studio
tooling makes it simple.

If you go through the Publish wizard for a project that is in a source control repository,
after creating the web app, you'll be presented with an extra step (as seen in Figure 8.4).
This can be used to create a YAML file with the workflow configured for you:

Figure 8.4 – Creating a GitHub action to publish your Wasm app via the Publish wizard

The generated file will only need a single modification to account for the solution
structure used by the Uno Platform templates. The working directory will need to be
changed to Dashboard\Dashboard.Wasm.

Once you've made any changes and pushed them to GitHub, the code will be built and
deployed automatically.

You can see an example of a GitHub Actions workflow file that deploys an Uno
Platform-based Wasm app at the following URL: https://github.com/
mrlacey/UnoWasmGithubActions/blob/main/.github/workflows/
UnoWasmGithubActions.yml.

GitHub isn't the only place where you may store your code, and GitHub Actions isn't
the only CI/CD pipeline option. For developers working with .NET, Azure DevOps
(previously Visual Studio Online) is a popular solution.

https://github.com/mrlacey/UnoWasmGithubActions/blob/main/.github/workflows/UnoWasmGithubActions.yml
https://github.com/mrlacey/UnoWasmGithubActions/blob/main/.github/workflows/UnoWasmGithubActions.yml
https://github.com/mrlacey/UnoWasmGithubActions/blob/main/.github/workflows/UnoWasmGithubActions.yml

228 Deploying Your Apps and Going Further

Nick Randolph has created a comprehensive guide to creating an Azure
DevOps-based build pipeline for Uno Platform apps at the following URL: https://
nicksnettravels.builttoroam.com/uno-complete-pipeline/.

Lance McCarthy has also created an example repository that shows multiple Azure
DevOps build pipelines being used with a repository hosted on GitHub. This can serve
as a helpful reference if you need to do something similar, and can be found at the
following URL: https://github.com/LanceMcCarthy/UnoPlatformDevOps.

Due to the number of platforms that Uno Platform allows you to create, and the variety
of ways you can build and deploy those apps, it is impractical to provide walk-throughs
of all scenarios. Fortunately, because Uno Platform is built on top of other well-known
technologies, the build processes for those other technologies are also the same ones
you'll use to build your Uno Platform-based apps. For example, because the Android, iOS,
and macOS apps are built on top of Xamarin, the build and deployment processes are
likely to be the same as if building with Xamarin directly.

We started this section on CI/CD by looking at deploying the Wasm-based version of an
app built with Uno. This isn't the only place you may need to deploy your app. App stores
are where you're likely to need to deploy at least some of the apps you build, so we'll look
at them next.

Deploying your app to a store
Suppose you're building an app for public use. In that case, you'll likely need to deploy
it via the appropriate app store for that operating system. The rules, policies, and
restrictions that a store applies for an app built with Uno Platform are the same as for
an app built with any other toolset.

The policies for each store can change frequently (typically, at least a couple of times each
year) and are also quite long. For this reason, we saw no value in reproducing them here.
Instead, you should look to the official documentation in the following list:

• Windows Store (for UWP): https://docs.microsoft.com/windows/
uwp/publish/

• Google Play Store (for Android): https://support.google.com/
googleplay/android-developer#topic=3450769

• iOS App Store: https://developer.apple.com/ios/submit/

• macOS App Store: https://developer.apple.com/macos/submit/

https://nicksnettravels.builttoroam.com/uno-complete-pipeline/
https://nicksnettravels.builttoroam.com/uno-complete-pipeline/
https://github.com/LanceMcCarthy/UnoPlatformDevOps
https://docs.microsoft.com/windows/uwp/publish/
https://docs.microsoft.com/windows/uwp/publish/
https://support.google.com/googleplay/android-developer#topic=3450769
https://support.google.com/googleplay/android-developer#topic=3450769
https://developer.apple.com/ios/submit/
https://developer.apple.com/macos/submit/

Engaging with the Uno Platform community 229

The process for distributing your Uno-based app is the same as for any other app.
You'll need to create a developer account for each of the stores you wish to deploy
through, and then upload the relevant files, packages, and bundles to the store as required.

As the Android, iOS, and Mac apps are all built on top of platform-specific Xamarin
technologies, you may also find their publishing-related documentation useful:

• Google Play Store: https://docs.microsoft.com/xamarin/android/
deploy-test/publishing/publishing-to-google-play/

• iOS App Store: https://docs.microsoft.com/xamarin/ios/deploy-
test/app-distribution/app-store-distribution/publishing-
to-the-app-store

• macOS App Store: https://docs.microsoft.com/xamarin/mac/
deploy-test/publishing-to-the-app-store/

The preceding links point to general information for each of the stores. If you do
encounter any specific Uno-related issues, there is a large community ready to help you.

Engaging with the Uno Platform community
That Uno Platform is an open source project is part of its appeal for many people. Like
many open source projects, a core team helps lead a community of contributors. It's this
broad community that you can look to for information, help, and become a part of.

Sources of information
Beyond this book (obviously!), the central place to go for information is the official
website at the following URL: https://platform.uno/. On the website, you'll find
documentation, guides, samples, and a blog. Subscribing to the blog is an excellent way
of keeping up with all future announcements, as is following the official Twitter account
at the following URL: https://twitter.com/unoplatform.

The official website also includes information on topics beyond the scope of this book,
such as using Uno Platform to target Windows 7 or on Linux (see https://platform.
uno/uno-platform-for-linux/).

The official website is chock full of information, but with so many features and things
you might want to do in your apps, you'll reach a point where you have questions that
need answering.

https://docs.microsoft.com/xamarin/android/deploy-test/publishing/publishing-to-google-play/
https://docs.microsoft.com/xamarin/android/deploy-test/publishing/publishing-to-google-play/
https://docs.microsoft.com/xamarin/ios/deploy-test/app-distribution/app-store-distribution/publishing-to-the-app-store
https://docs.microsoft.com/xamarin/ios/deploy-test/app-distribution/app-store-distribution/publishing-to-the-app-store
https://docs.microsoft.com/xamarin/ios/deploy-test/app-distribution/app-store-distribution/publishing-to-the-app-store
https://docs.microsoft.com/xamarin/ios/deploy-test/app-distribution/app-store-distribution/publishing-to-the-app-store
https://docs.microsoft.com/xamarin/mac/deploy-test/publishing-to-the-app-store/
https://docs.microsoft.com/xamarin/mac/deploy-test/publishing-to-the-app-store/
https://platform.uno/
https://twitter.com/unoplatform
https://platform.uno/uno-platform-for-linux/
https://platform.uno/uno-platform-for-linux/

230 Deploying Your Apps and Going Further

Sources of help
There are four places you can go to for help relating to working with Uno Platform:

• Stack Overflow

• Discord

• GitHub

• Professional support

Stack Overflow is the internet's repository of software development-related questions and
answers. It's your first port of call for questions about how to use Uno Platform. You'll find
many of the core team and regular contributors answering questions there. Make sure
your questions are tagged with uno-platform, and ask at the following URL: https://
stackoverflow.com/questions/tagged/uno-platform.

How to ask for help
As with most things, you get more out when you put in more effort. This
applies to asking for help too. If you're not familiar with it, Stack Overflow
has a guide to asking questions at the following URL: https://
stackoverflow.com/help/how-to-ask.

There are two general principles behind asking for help well. Firstly, remember
that you're asking for help, not for someone else to do the work for you.
Secondly, making it easier for someone to help you increases the likelihood that
they can and will do so.

A good request for help includes all and only the necessary specific information
needed to provide an answer. A vague description of a problem or your code
is a lot less helpful than providing details of what you've tried or a simple,
minimal way of reproducing the problem.

If your questions relate to the internals of Uno Platform, or you're working with the
latest preview versions, you're better off asking your questions on Discord. The UWP
community server has an uno-platform channel that includes lots of enthusiastic
community members and members of the core team. You can join this by going to the
following URL: https://discord.com/invite/eBHZSKG.

https://stackoverflow.com/questions/tagged/uno-platform
https://stackoverflow.com/questions/tagged/uno-platform
https://stackoverflow.com/help/how-to-ask
https://stackoverflow.com/help/how-to-ask
https://discord.com/invite/eBHZSKG

Engaging with the Uno Platform community 231

Using Uno Platform, as with any open source project, comes with a level of responsibility.
Open source software is a collective process where everyone is working to enable everyone
to have better software. This means there is an expectation that you will report a bug, even
if you can't fix it yourself. If you think you have found a bug in the platform, a sample,
or the documentation, you should file an issue on GitHub at the following URL:
https://github.com/unoplatform/uno/issues/new/choose. As with
a request for help, you should provide as much appropriate information as possible,
including a minimal way of reproducing the issue, to make it easy for the issue you have
found to be reproduced and fixed. Be sure to provide all the requested information, as this
helps issues be addressed quickly and without wasted effort, or the need for people to ask
for more information.

Finally, if you need an issue addressed promptly, or you have deeper support requirements
than can be handled on Stack Overflow or Discord, professional paid support is also
available from the company behind Uno Platform. Go to https://platform.uno/
contact to discuss your requirements.

Contributing
There's a common misconception that contributing to an open source project means
adding code, but as with any software project, there is a lot more involved in having
something successful and valuable than just the code. Of course, if you want to help
contribute code, you'll be warmly welcomed. Start by looking at issues labeled good first
issue, and check out the contribution guide at the following URL: https://platform.
uno/docs/articles/uno-development/contributing-intro.html. But
remember, there are lots of other things you could do instead.

It's a cliché, but it's true that everything helps, no matter the size. Sharing your experiences
is one of the easiest but also most valuable things you can do. This could be providing
a formal how-to guide or code sample. Alternatively, it might be as simple as answering
the question of someone who wants to know how to do something you've already done.

Whether large or small, we look forward to seeing how you contribute.

https://github.com/unoplatform/uno/issues/new/choose
https://platform.uno/contact
https://platform.uno/contact
https://platform.uno/docs/articles/uno-development/contributing-intro.html
https://platform.uno/docs/articles/uno-development/contributing-intro.html

232 Deploying Your Apps and Going Further

Summary
In this chapter, we've looked at various areas to round out your introduction to Uno
Platform. You've seen how Uno Platform can extend an existing Xamarin.Forms app
so that it can run via WebAssembly. You saw how to deploy the Wasm version of your
app to Azure. We looked at continuous integration and deployment. You saw where to
go to further your learning, and we looked at how you can engage with the Uno Platform
developer community.

With that, we have come to the end of this book. If you've worked your way through each
chapter, you will now have the knowledge and confidence to use Uno Platform to build
apps that run on multiple operating systems. We look forward to seeing what you create.

Thanks for reading!

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

• Improve your learning with Skill Plans built especially for you

• Get a free eBook or video every month

• Fully searchable for easy access to vital information

• Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
https://packt.com
mailto:customercare@packtpub.com
https://www.packt.com

234 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

C# 9 and .NET 5 – Modern Cross-Platform Development - Fifth Edition

Mark J. Price

ISBN: 978-1-80056-810-5

• Build your own types with object-oriented programming

• Query and manipulate data using LINQ

• Build websites and services using ASP.NET Core 5

• Create intelligent apps using machine learning

• Use Entity Framework Core and work with relational databases

• Discover Windows app development using the Universal Windows Platform
and XAML

• Build rich web experiences using the Blazor framework

• Build mobile applications for iOS and Android using Xamarin.Forms

https://www.packtpub.com/product/c-9-and-net-5-modern-cross-platform-development-fifth-edition/9781800568105

Why subscribe? 235

Mobile Development with .NET - Second Edition

Can Bilgin

ISBN: 978-1-80020-469-0

• Discover the latest features of .NET 5 that can be used in mobile
application development

• Explore Xamarin.Forms Shell for building cross-platform mobile UIs

• Understand the technical design requirements of a consumer mobile app

• Get to grips with advanced mobile development concepts such as app data
management, push notifications, and graph APIs

• Manage app data with Entity Framework Core

• Use Microsoft's Project Rome for creating cross-device experiences with Xamarin

• Become well-versed with implementing machine learning in your mobile apps

https://www.packtpub.com/product/mobile-development-with-asp-net-core-5-second-edition/9781800204690

236 Other Books You May Enjoy

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Hi!

We're Matt Lacey and Marcel Alexander Wagner, authors of Creating Cross-Platform
C# Applications with Uno Platform. We really hope you enjoyed reading this book and
found it useful for increasing your productivity and efficiency in developing cross
platform Applications.

It would really help us (and other potential readers!) if you could leave a review
on Amazon sharing your thoughts on Creating Cross-Platform C# Applications with
Uno Platform.

Go to the link below to leave your review:

https://packt.link/r/1801078491

Your review will help us to understand what's worked well in this book, and what could be
improved upon for future editions, so it really is appreciated.

Best wishes,

https://authors.packtpub.com
https://authors.packtpub.com
https://packt.link/r/1801078491

Index

Symbols
.NET Multi-platform App UI (MAUI) 13

A
Accessibility Insights

about 215
reference link 215

Android
Uno.UITest tests, running

against 198, 199
app

creating 24
deploying, to store 228
developing, with Visual Studio 14
WASM head, debugging of 35-37

Appium 205
Appium.WebDriver 205, 206
ApplicationData API

used, for storing data 138-140
Avalonia

reference link 14
Axe.Windows

scanner 210
used, for testing automated

accessibility 209, 210

Azure, billing options
reference link 224

Azure, free trial
reference link 223

B
build

automating 227

C
C# Edit and Continue 38-41
charts

displaying, with controls
from Infragistics 169

displaying, with controls from
SyncFusion 166

column chart
drawing 171-174

content
scaling, to fit available space 183
stretching, to fit available space 183

continuous integration and
deployment (CI/CD) 226

238 Index

Cross-Platform Library (Uno
Platform) type 46

Cross-Platform UI Tests Library 51
Cupertino styles

about 111
applying, to iOS version of app 115-119

custom graphics
drawing, with SkiaSharp 174

D
dashboard app

about 162
creating 162, 163
individual pages, creating 163
main page, creating 163-165

data
loading, from SQLite 144-146
storing, with ApplicationData

API 138-140
storing, with SQLite 141-144

DataGrid
used, for displaying data 73-78

desktop
issues, exporting on 81-83

development environment
setting up 14

device capabilities
accessing 119-126

Discord 230
distribution

automating 227
dotnet CLI

project, creating with 27, 28
dotnet global tool 19

E
exceptions

handling, with Polly 110, 111
exponential backoff strategy 111

F
FileSavePicker 84

G
Google Play Store

reference link 228

H
head projects 30

I
Infragistics

charts, displaying with
controls from 169

reference link 170
references, updating 170

Integrated Development
Environment (IDE) 14

interaction tests 188
iOS App Store

reference link 228
iOS version

Uno.UITest tests, running
against 198-200

Index 239

issues
exporting, in PDF format 78-80
exporting, on desktop 81-83
exporting, on web with

download link 84-87
iText library 78

J
JetBrains Rider

reference link 19
used, for building Uno Platform apps 18

L
line chart

drawing 167-169

M
Mac

Visual Studio for Windows,
pairing with 33, 34

macOS App Store
reference link 228

manual testing
importance 215-218
performing 215-218

Material styles
about 111
applying, to Android version

of app 112-115
reference link 115

mobile 90
Model 57
Model-View-ViewModel

(MVVM) pattern 57, 95

MSTest 213
multi-platform library project type 46-49

N
namespace URI 44
Network Assist app

about 90
applying, Material styles to

Android version 115
creating 91
Cupertino styles, applying to

iOS version 115-119
main page, creating 91, 92
Material styles, applying to

Android version 112-115
upcoming arrival details,

displaying 95-106
view, creating on different platforms 111

Network Assist app, main page
camera notches, allowing 92
content, implementing 93-95
creating 91, 92
cutouts, allowing 92
safe areas, allowing 92

network map
drawing 176-179

Nick's .NET Travels
reference link 228

NuGet package 144
nventive

about 6
reference link 6

240 Index

P
PDF format

issues, exporting in 78-80
platform-specific C# 41, 42
platform-specific XAML 42-45
Polly

policy 110
using, to handle exceptions 110, 111
using to retry requests 110, 111

Prism
URL 50

project
creating, with dotnet CLI 27, 28
creating, with Uno Platform

Solution Templates 25-27
heads 29
structure 28, 29

R
references

updating, to include SyncFusion
controls 167

remote data
retrieving 107

remote data source
connecting to 107-109

request fail
retrying, with Polly 110, 111

S
Scan function 210
Services 105
shared project 30
Skia 7

SkiaSharp
references, updating 176
used, for drawing custom graphics 174

SQLite
about 141
data, loading from 144-146
used, for storing data 141-144

Stack Overflow
about 230
reference link 230

StateTriggers 180
Static Web Apps

reference link 223
SwitchPresenter 69
SyncFusion

charts, displaying with
controls from 166

SyncFusion, community license
reference link 166

SyncFusion controls
including, references update 167

System.Diagnostics.Process 210

T
tests

automating 227

U
UI tests 188
unit test project

adding 212-214
adding, approaches 211

unit tests
writing, for Uno Platform app 210

Universal Windows Platform
(UWP) 5, 27

Index 241

UnoBookRailDashboard
reference link 225

UnoBookRail DigitalTicket app
about 128
creating 128, 129
localizing 147
main navigation and booking

process, creating 129-137
making, ready for customers 146
resources, accessing from

code-behind 149-151
x:Uid, using to localize UI 147-149

UnoBookRail ResourcePlanner app
about 56
creating 56-61
data, entering 62-69
data, validating 62-69

uno-check 19
Uno Platform

about 4, 5, 230
history 5, 6
project types 50
reference link 4, 222, 229
setup, checking 19
setup, debugging 19, 20
using 9
using, factors 9-13
working 6, 7

Uno Platform app
building 31
debugging, with Visual

Studio for Mac 34
debugging, with Visual Studio

on Windows 31-33
running 31
running, with Visual Studio for Mac 34
running, with Visual Studio

on Windows 31-33

screen reader, starting on
different platforms 156

unit tests, writing for 210
updating, to be accessible 157-159
used, by users ensuring 155, 156

Uno Platform app appearance
customizing 151
icon, updating 151
splash screen, customizing 153

Uno Platform app appearance, icon
Android app's icon, updating 152
icon, updating of other project 152
icon, updating of UWP app 152
iOS app's icon, updating 152

Uno Platform app appearance,
splash screen

Android splash screen, updating 153
iOS app's splash screen,

updating 153, 154
updating, of WASM app 154

Uno Platform app, default screen reader
narrator, on Windows for UWP 157
narrator, on Windows for WASM 157
TalkBack, on Android 157
VoiceOver, on iOS 157
VoiceOver, on macOS 157

Uno Platform apps
building, with JetBrains Rider 18
building, with Visual Studio Code 18
building, with Visual Studio for Mac 17

Uno Platform community
contributing 231
engaging with 229
sources of help 230, 231
sources of information 229

Uno Platform, contribution guide
reference link 231

242 Index

Uno Platform controls, using
within Xamarin app

reference link 220
Uno Platform features

reference link 12
Uno Platform, for Linux

reference link 229
Uno Platform, for Windows 7

reference link 229
Uno Platform Solution Templates

installing, from marketplace 15, 16
installing, from within Visual Studio 16
installing, with command line 17
project, creating with 25-27

Uno Platform Visual Studio solution
templates extension 46

Uno.UITest
about 188
APIs, listing 204
authoring 196, 197
complex tests, writing 200-204
files 194
running 194
running, on Android version 198, 199
running, on iOS version 198-200
running, on WASM 198
starting with 188-193
test tools 205
use cases 204
UWP head, testing with

WinAppDriver 205-208
working 194-196
writing 194

User Interface (UI)
about 4
changes, responding 180
page layout, changing 180-182

UWP community 230

V
View 57
ViewModel 57
Visual Studio

used, for developing apps 14
Visual Studio Code

reference link 18
used, for building Uno Platform apps 18

Visual Studio for Mac
reference link 18
Uno Platform app, debugging with 34
Uno Platform app, running with 34
used, for building Uno Platform apps 17

Visual Studio for Windows
pairing, with Mac 33, 34

Visual Studio installer
workload options 15
workloads, selecting 14

Visual Studio on Windows
Uno Platform app, debugging

with 31-33
Uno Platform app, running with 31-33

W
WASM

Uno.UITest tests, running against 198
WASM head

debugging, of app 35-37
Wasm Uno Platform app

deploying, to web 223-226
WebAssembly

Xamarin.Forms apps, extending
to run via 220-222

web, with download link
issues, exporting on 84-87

Index 243

WinAppDriver
used, for testing UWP head of

Uno.UITest 205-208
Windows Community Toolkit controls

reference, adding 63, 64
using 69-73

Windows Presentation Foundation
(WPF) 5, 27

Windows Store
reference link 228

WinUI 3 5

X
Xamarin documentation

reference link 21
Xamarin.Forms 12
Xamarin.Forms apps

extending, to run via
WebAssembly 220-222

XAML elements, layouts creating
reference link 183

XAML Hot Reload 38, 39

	Cover
	Title Page
	Copyright and Credits
	Contributors
	Table of Contents
	Preface
	Section 1:
Getting to Know
Uno Platform
	Chapter 1: Introducing Uno Platform
	Technical requirements
	Understanding what Uno Platform is
	A brief history of Uno Platform
	How Uno Platform works
	Is it a panacea?

	Using Uno Platform
	Uno Platform allows you to use what
you already know
	Uno Platform supports many platforms
	Can Uno Platform do everything that your app requires?
	How does Uno Platform compare to the alternatives?

	Setting up your development environment
	Developing with Visual Studio
	Using other editors and IDEs
	Checking your setup
	Debugging your setup

	Summary
	Further reading

	Chapter 2: Writing Your First Uno Platform App
	Technical requirements
	Creating your first app
	Creating your project with the Uno Platform
solution templates
	Creating your project with the .NET CLI
	Project structure and the heads

	Building and running your first Uno
Platform app
	Running and debugging your app with Visual Studio
on Windows
	Running and debugging your apps with Visual Studio for Mac
	Debugging the WASM head of your app
	XAML Hot Reload and C# Edit and Continue

	Platform-specific XAML and C#
	Platform-specific C#
	Platform-specific XAML

	Going beyond the default cross-platform
app structure
	The multi-platform library project type
	Other project types

	Summary

	Section 2:
Writing and Developing Uno Platform Apps
	Chapter 3: Working with
Forms and Data
	Technical requirements
	Introducing the app
	Creating the app

	Entering and validating data
	Using Windows Community Toolkit controls

	Displaying data using DataGrid
	Displaying data with the DataGrid control

	Exporting issues in PDF format
	Exporting on desktop
	Exporting on the web with a download link

	Summary

	Chapter 4: Mobilizing Your App
	Technical requirements
	Introducing the app
	Creating the app
	Creating the main page
	Showing upcoming arrival details

	Retrieving remote data
	Connecting to a remote data source
	Using Polly to handle exceptions and retry requests

	Making your app look like it belongs
on each platform
	Applying Material styles to the Android version
of the app
	Applying Cupertino styles to the iOS version of the app

	Accessing device capabilities
	Summary

	Chapter 5: Making Your App Ready for the Real World
	Technical requirements
	Introducing the app
	Creating the app
	Creating the main navigation and booking process

	Persisting data locally using the ApplicationData API and SQLite
	Storing data using the ApplicationData API
	Using SQLite to store data
	Loading data from SQLite

	Making your app ready for customers
	Localizing your app
	Customizing your app's appearance
	Ensuring everyone can use your app

	Summary

	Chapter 6: Displaying Data in Charts and with Custom 2D Graphics
	Technical requirements
	Introducing the app
	Creating the app
	Creating the individual pages
	Creating the main page

	Displaying charts with controls from SyncFusion
	Updating references to include the SyncFusion controls
	Drawing a line chart

	Displaying charts with controls from Infragistics
	Updating references
	Drawing a column chart

	Drawing custom graphics with SkiaSharp
	Updating project references
	Drawing the network map

	Responding to changes in the UI
	Changing the page layout
	Stretching and scaling content to fit
the available space

	Summary

	Section 3:
Test, Deploy, and Contribute
	Chapter 7: Testing Your Apps
	Technical requirements
	Getting started with Uno.UITest
	Writing and running your first test
	How Uno.UITest works
	Authoring your first test
	Running your tests on Android, iOS, and WASM

	Writing more complex tests
	Test tools beside Uno.UITest
	Testing the UWP head of your app with WinAppDriver
	Writing unit tests for your Uno Platform app

	Performing manual testing and why
it is important
	Summary

	Chapter 8: Deploying Your Apps and Going Further
	Technical requirements
	Bringing Xamarin.Forms apps to WebAssembly
	Deploying a Wasm Uno Platform app
to the web
	Automating build, tests, and distribution
	Deploying your app to a store
	Engaging with the Uno Platform community
	Sources of information
	Sources of help
	Contributing

	Summary

	Other Books You May Enjoy
	Index

