

The Modern C++ Challenge

Become an expert programmer by solving
real-world problems

Marius Bancila

BIRMINGHAM - MUMBAI

The Modern C++ Challenge
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Aaron Lazar
Acquisition Editors: Nitin Dasan, Chaitanya Nair
Content Development Editor: Nikhil Borkar
Technical Editor: Jijo Maliyekal
Copy Editor: Safis Editing
Project Coordinator: Ulhas Kambali
Proofreader: Safis Editing
Indexer: Mariammal Chettiyar
Graphics: Tania Dutta
Production Coordinator: Shantanu Zagade

First published: May 2018

Production reference: 1210518

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78899-386-9

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Marius Bancila is a software engineer with 15 years of experience in developing solutions
for the industrial and financial sectors. He is the author of Modern C++ Programming
Cookbook. He focuses on Microsoft technologies and mainly develops desktop applications
with C++ and C#.

He is passionate about sharing his technical expertise with others, and for that reason, he
was recognized as a Microsoft MVP for more than a decade. He can be contacted on Twitter
at @mariusbancila.

I would like to thank Nikhil Borkar, Jijo Maliyekal, Chaitanya Nair, Nitin Dasan, and all
the other people at Packt who contributed to this book. I would also like to thank the
reviewers who provided great feedback and steered the book in a better direction. Finally, a
special thanks to my wife and family, who supported me to work on this project.

About the reviewers
Aivars Kalvāns is the lead software architect at Tieto Latvia. He has been working on a
Card Suite payment card system for more than 16 years and maintains many of core C++
libraries and programs. He is also responsible for C++ programming guidelines, secure
coding training, and code reviews. He organizes and speaks at internal C++ developer
meetups.

I would like to thank my lovely wife, Anete, and sons, Kārlis, Gustavs, and Leo, for
making life much more interesting.

Arun Muralidharan is a software developer with over 8 years of experience as a systems
and full-stack developer. Distributed system design, architecture, event systems, scalability,
performance, and programming languages are some of the aspects of a product that interest
him the most.

He is an ardent fan of C++ and its template metaprogramming; he likes how the language
keeps his ego in check. So, one would find him working on C++ most of the time.

I would like to take this moment to thank the C++ community, from whom I have learned a
lot over the years.

Nibedit Dey is a technopreneur with a multidisciplinary technology background. He has a
bachelor's in biomedical engineering and a master’s in digital design and embedded
systems. Before starting his entrepreneurial journey, he worked for L&T and Tektronix for
several years in different R&D roles. He has been using C++ to build complex software-
based systems for the last 8 years.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Math Problems 10
Problems 10

1. Sum of naturals divisible by 3 and 5 10
2. Greatest common divisor 10
3. Least common multiple 10
4. Largest prime smaller than given number 11
5. Sexy prime pairs 11
6. Abundant numbers 11
7. Amicable numbers 11
8. Armstrong numbers 11
9. Prime factors of a number 11
10. Gray code 12
11. Converting numerical values to Roman 12
12. Largest Collatz sequence 12
13. Computing the value of Pi 12
14. Validating ISBNs 12

Solutions 13
1. Sum of naturals divisible by 3 and 5 13
2. Greatest common divisor 13
3. Least common multiple 14
4. Largest prime smaller than given number 15
5. Sexy prime pairs 16
6. Abundant numbers 17
7. Amicable numbers 18
8. Armstrong numbers 19
9. Prime factors of a number 21
10. Gray code 22
11. Converting numerical values to Roman 23
12. Largest Collatz sequence 25
13. Computing the value of Pi 26
14. Validating ISBNs 27

Chapter 2: Language Features 28
Problems 28

15. IPv4 data type 28
16. Enumerating IPv4 addresses in a range 28
17. Creating a 2D array with basic operations 28
18. Minimum function with any number of arguments 29

Table of Contents

[ii]

19. Adding a range of values to a container 29
20. Container any, all, none 29
21. System handle wrapper 30
22. Literals of various temperature scales 30

Solutions 31
15. IPv4 data type 31
16. Enumerating IPv4 addresses in a range 33
17. Creating a 2D array with basic operations 34
18. Minimum function with any number of arguments 37
19. Adding a range of values to a container 38
20. Container any, all, none 39
21. System handle wrapper 40
22. Literals of various temperature scales 44

Chapter 3: Strings and Regular Expressions 49
Problems 49

23. Binary to string conversion 49
24. String to binary conversion 49
25. Capitalizing an article title 50
26. Joining strings together separated by a delimiter 50
27. Splitting a string into tokens with a list of possible delimiters 50
28. Longest palindromic substring 51
29. License plate validation 51
30. Extracting URL parts 51
31. Transforming dates in strings 51

Solutions 52
23. Binary to string conversion 52
24. String to binary conversion 53
25. Capitalizing an article title 54
26. Joining strings together separated by a delimiter 55
27. Splitting a string into tokens with a list of possible delimiters 56
28. Longest palindromic substring 58
29. License plate validation 59
30. Extracting URL parts 60
31. Transforming dates in strings 62

Chapter 4: Streams and Filesystems 64
Problems 64

32. Pascal's triangle 64
33. Tabular printing of a list of processes 64
34. Removing empty lines from a text file 65
35. Computing the size of a directory 65
36. Deleting files older than a given date 65
37. Finding files in a directory that match a regular expression 65
38. Temporary log files 65

Solutions 66

Table of Contents

[iii]

32. Pascal's triangle 66
33. Tabular printing of a list of processes 67
34. Removing empty lines from a text file 69
35. Computing the size of a directory 70
36. Deleting files older than a given date 71
37. Finding files in a directory that match a regular expression 73
38. Temporary log files 74

Chapter 5: Date and Time 76
Problems 76

39. Measuring function execution time 76
40. Number of days between two dates 76
41. Day of the week 76
42. Day and week of the year 77
43. Meeting time for multiple time zones 77
44. Monthly calendar 77

Solutions 78
39. Measuring function execution time 78
40. Number of days between two dates 79
41. Day of the week 80
42. Day and week of the year 81
43. Meeting time for multiple time zones 82
44. Monthly calendar 84

Chapter 6: Algorithms and Data Structures 86
Problems 86

45. Priority queue 86
46. Circular buffer 87
47. Double buffer 87
48. The most frequent element in a range 87
49. Text histogram 87
50. Filtering a list of phone numbers 87
51. Transforming a list of phone numbers 88
52. Generating all the permutations of a string 88
53. Average rating of movies 88
54. Pairwise algorithm 88
55. Zip algorithm 89
56. Select algorithm 89
57. Sort algorithm 90
58. The shortest path between nodes 90
59. The Weasel program 91
60. The Game of Life 91

Solutions 92
45. Priority queue 92
46. Circular buffer 94
47. Double buffer 98

Table of Contents

[iv]

48. The most frequent element in a range 101
49. Text histogram 102
50. Filtering a list of phone numbers 104
51. Transforming a list of phone numbers 105
52. Generating all the permutations of a string 107
53. Average rating of movies 109
54. Pairwise algorithm 111
55. Zip algorithm 112
56. Select algorithm 114
57. Sort algorithm 115
58. The shortest path between nodes 118
59. The Weasel program 123
60. The Game of Life 125

Chapter 7: Concurrency 131
Problems 131

61. Parallel transform algorithm 131
62. Parallel min and max element algorithms using threads 131
63. Parallel min and max element algorithms using asynchronous functions 132
64. Parallel sort algorithm 132
65. Thread-safe logging to the console 132
66. Customer service system 132

Solutions 133
61. Parallel transform algorithm 133
62. Parallel min and max element algorithms using threads 135
63. Parallel min and max element algorithms using asynchronous functions 137
64. Parallel sort algorithm 139
65. Thread-safe logging to the console 141
66. Customer service system 142

Chapter 8: Design Patterns 147
Problems 147

67. Validating passwords 147
68. Generating random passwords 147
69. Generating social security numbers 148
70. Approval system 148
71. Observable vector container 149
72. Computing order price with discounts 149

Solutions 150
67. Validating passwords 150
68. Generating random passwords 154
69. Generating social security numbers 158
70. Approval system 163
71. Observable vector container 166
72. Computing order price with discounts 172

Table of Contents

[v]

Chapter 9: Data Serialization 179
Problems 179

73. Serializing and deserializing data to/from XML 179
74. Selecting data from XML using XPath 180
75. Serializing data to JSON 180
76. Deserializing data from JSON 181
77. Printing a list of movies to a PDF 181
78. Creating a PDF from a collection of images 182

Solutions 183
73. Serializing and deserializing data to/from XML 183
74. Selecting data from XML using XPath 187
75. Serializing data to JSON 189
76. Deserializing data from JSON 191
77. Printing a list of movies to a PDF 192
78. Creating a PDF from a collection of images 196

Chapter 10: Archives, Images, and Databases 199
Problems 199

79. Finding files in a ZIP archive 199
80. Compressing and decompressing files to/from a ZIP archive 199
81. Compressing and decompressing files to/from a ZIP archive with a
password 200
82. Creating a PNG that represents a national flag 200
83. Creating verification text PNG images 200
84. EAN-13 barcode generator 201
85. Reading movies from an SQLite database 201
86. Inserting movies into an SQLite database transactionally 202
87. Handling movie images in an SQLite database 202

Solutions 203
79. Finding files in a ZIP archive 203
80. Compressing and decompressing files to/from a ZIP archive 204
81. Compressing and decompressing files to/from a ZIP archive with
password 208
82. Creating a PNG that represents a national flag 211
83. Creating verification text PNG images 212
84. EAN-13 barcode generator 215
85. Reading movies from an SQLite database 221
86. Inserting movies into an SQLite database 227
87. Handling movie images in an SQLite database 232

Chapter 11: Cryptography 241
Problems 241

88. Caesar cipher 241
89. Vigenère cipher 241
90. Base64 encoding and decoding 242
91. Validating user credentials 242

Table of Contents

[vi]

92. Computing file hashes 242
93. Encrypting and decrypting files 242
94. File signing 242

Solutions 243
88. Caesar cipher 243
89. Vigenère cipher 245
90. Base64 encoding and decoding 248
91. Validating user credentials 253
92. Computing file hashes 256
93. Encrypting and decrypting files 258
94. File signing 260

Chapter 12: Networking and Services 264
Problems 264

95. Finding the IP address of a host 264
96. Client-server Fizz-Buzz 264
97. Bitcoin exchange rates 265
98. Fetching emails using IMAP 265
99. Translating text to any language 265
100. Detecting faces in a picture 265

Solutions 266
95. Finding the IP address of a host 266
96. Client-server Fizz-Buzz 268
97. Bitcoin exchange rates 273
98. Fetching emails using IMAP 277
99. Translating text to any language 282
100. Detecting faces in a picture 287

Bibliography 298

Other Books You May Enjoy 302

Index 305

Preface
C++ is a general-purpose programming language that combines different paradigms such
as object-oriented, imperative, generic, and functional programming. C++ is designed for
efficiency and is the primary choice in applications where performance is key. Over the last
few decades, C++ has been one of the most widely used programming languages in
industry, academia, and elsewhere. The language is standardized by the International
Organization for Standardization (ISO), which is currently working on the next version of
the standard, called C++20, due to be completed in 2020.

With the standard covering almost 1500 pages, C++ is not the simplest language to learn
and master. Skills are not acquired only by reading about them or watching others
exercising them, but by practicing them again and again. Programming is no different; we
developers do not learn new languages or technologies just by reading books, articles, or
watching video tutorials. Instead, we need practice to sediment and develop the new things
we learn so that we can eventually master them. Many a times, however, finding good
exercises to put our knowledge to test is a difficult task. Although there are many websites
that feature problems for different programming languages, most of these are mathematical
problems, algorithms, or problems for student competitions. These kinds of problems do
not help you exercise a large variety of a programming language functionalities. That is
where this book steps in.

This book is a collection of 100 real-world problems designed for you to practice a large
variety of the C++ language and standard library features as well as many third-party,
cross-platform libraries. Yet, a few of these problems are C++ specific and, in general, can be
solved in many programming languages. Of course, the intention is to help you master C++
and therefore you are expected to solve them in C++. All the solutions provided in the book
are in C++. However, you can use the book as a reference for its collection of proposed
problems when you learn other programming languages, although in this case, you will not
benefit from the solutions.

Preface

[2]

The problems in this book are grouped into 12 chapters. Each chapter contains problems on
similar or related topics. The problems have different levels of difficulty; some of them are
easy, some are moderate, and some are difficult. The book has a relatively equal number of
problems for each difficulty level. Each chapter starts with the description of the proposed
problems. The solutions to these problems ensue with recommendations, explanations, and
source code. Although you can find the solutions in the book, it is recommended that you
try to implement them by yourself first, and only afterward—or if you have difficulties
completing them—look at the proposed solutions. There is only one thing that is missing in
the source code presented in the book—the headers you have to include. This was left out
on purpose so that you figure those out by yourself. On the other hand, the source code
provided with the book is complete, and you can find all the required headers there.

At the time of writing this book, the C++20 version of the standard is in progress and will
continue for the next couple of years. However, some features have already been voted in,
and one of these features is the extension to the chrono library with calendars and time
zones. There are several problems in the fifth chapter on this topic, and although no
compiler supports these yet, you can solve them using the date library, based on which the
new standard additions have been designed. Many other libraries are used for solving
problems in the book. The list includes Asio, Crypto++, Curl, NLohmann/json, PDF-Writer,
PNGWriter, pugixml, SQLite, and ZipLib. Also, as an alternative to the std::optional
and the filesystem libraries used throughout the book, you can use Boost with compilers
where these are not available. All these libraries are open source and cross-platform. They
were chosen for reasons that include performance, good documentation, and wide use
within the community. However, you are free to use any other libraries you would like to
solve the problems.

Who this book is for
Are you trying to learn C++ and are looking for challenges to practice what you're learning?
If so, this book is for you. The book is intended for people learning C++, regardless of their
experience with other programming languages, as a valuable resource of practical exercises
and real-world problems. This book does not teach you the features of the language or the
standard library. You are expected to learn that from other resources, such as books,
articles, or video tutorials. This book is a learning companion and challenges you to solve
tasks of various difficulties, utilizing the skills you have previously learned from other
resources. Nevertheless, many of the problems proposed in this book are language
agnostic, and you can use them when learning other programming languages; however, in
this case, you won't be benefiting from the solutions provided here.

Preface

[3]

What this book covers
Chapter 1, Math Problems, contains a series of math exercises to warm you up for the more
challenging problems in the next chapters.

Chapter 2, Language Features, proposes problems for you to practice operator overloading,
move semantics, user-defined literals, and template metaprogramming aspects such as
variadic functions, fold expressions, and type traits.

Chapter 3, Strings and Regular Expressions, has several problems for string manipulation,
such as converting between strings and other data types, splitting and joining strings, and
also for working with regular expressions.

Chapter 4, Streams and Filesystems, covers output stream manipulation and working with
files and directories using the C++17 filesystem library.

Chapter 5, Date and Time, prepares you for the upcoming C++20 extensions to the chrono
library, with several calendar and time zone problems that you can solve with the date
library, on which the new standard additions are based.

Chapter 6, Algorithms and Data Structures, is one of the largest chapters and contains a
variety of problems where you need to utilize the existing standard algorithms; others are
where you need to implement your own general-purpose algorithms or data structures,
such as circular buffer and priority queue. The chapter ends with two rather fun problems,
Dawkins' Weasel program and Conway's Game of Life program, where you can learn
about evolutionary algorithms and cellular automata.

Chapter 7, Concurrency, is where we use threads and asynchronous functions to implement
general-purpose parallel algorithms, but also solve some real-word problems involving
concurrency.

Chapter 8, Design Patterns, proposes a series of problems suited to be solved with design
patterns such as decorator, composite, chain of responsibility, template method, and others.

Chapter 9, Data Serialization, covers most common formats of serialized data, JSON, and
XML, with several problems; but it also challenges you to create PDF files, all with the use
of third-party, open-source, and cross-platform libraries.

Chapter 10, Archives, Images, and Databases, teaches you to solve problems for working with
zip archives, creating PNG files for real-world problems, such as Captcha-like systems and
barcodes, and embedding and utilizing SQLite databases in your applications.

Preface

[4]

Chapter 11, Cryptography, mostly covers the user of the Crypto++ library for data
encryption and signing. It also challenges you to implement your own Base64 encoding and
decoding utilities.

Chapter 12, Networking and Services, is where you have to implement your own client-
server application communicating on TCP/IP, and also consume various REST services
such as bitcoin exchange rates or text translation APIs.

To get the most out of this book
As previously mentioned, you need a basic familiarity with the C++ language and the
standard library in order to be able to utilize this book, or you can learn that along the way.
In any case, this book will teach you how to solve problems, but it will not teach you about
the language and features utilized in the solutions. You will need a compiler with C++17
support; a complete list of required libraries as well as possible compilers you can use can
be found in the Software Hardware List available in the code bundle. In the following
sections, you will find detailed instructions for downloading and building the code from
this book.

Download the example code files
You can download the code files with the solutions to the problems in this book from your
account at www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[5]

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/The- Modern- Cpp- Challenge. We also have other code bundles from our
rich catalog of books and videos available at https:/ /github. com/ PacktPublishing/ .
Check them out!

Building the code
Although a large number of 3rd party libraries are used throughout the book, all these
libraries, as well as all the solutions provided in the book are cross-platform and run on all
platforms. However, the code has been developed and tested with Visual Studio 2017
v15.6/7 on Windows 10 and Xcode 9.3 on Mac OS 10.13.x.

If you are using Xcode on a Mac, there are two features used in the book that are not
available with the LLVM toolset included in Xcode; these are the filesystem library and
std::optional. However, these have been designed based on the Boost.Filesystem
and Boost.Optional libraries and the use of the mentioned standard libraries in the
proposed solutions is easily interchangeable with the Boost libraries. In fact, the
accompanying code is written so that it works with either of the two; controlling which one
to use is done with several macros. Instructions for building either with one or another are
provided below, although the same information is also available in the source archive.

In order to support most of the development environments and build systems you could
use on various platforms, the code is provided with CMake scripts. These are used to
generate projects or build scripts for your preferred toolset. If you do not have CMake
installed on your machine, you can get it from https:/ /cmake. org/. Below, you can find
instructions for using CMake to generate Visual Studio and Xcode scripts. For other tools,
please refer to the CMake documentation, if necessary.

How to generate projects for Visual Studio 2017
Do the following in order to generate Visual Studio 2017 projects to target the x86 platform:

Open a command prompt and go to the build directory in the source code root1.
folder.
Execute the following CMake command:2.

cmake -G "Visual Studio 15 2017" .. -DCMAKE_USE_WINSSL=ON -
DCURL_WINDOWS_SSPI=ON -DCURL_LIBRARY=libcurl -
DCURL_INCLUDE_DIR=..\libs\curl\include -DBUILD_TESTING=OFF -
DBUILD_CURL_EXE=OFF -DUSE_MANUAL=OFF

https://github.com/PacktPublishing/The-Modern-Cpp-Challenge
https://github.com/PacktPublishing/The-Modern-Cpp-Challenge
https://github.com/PacktPublishing/The-Modern-Cpp-Challenge
https://github.com/PacktPublishing/The-Modern-Cpp-Challenge
https://github.com/PacktPublishing/The-Modern-Cpp-Challenge
https://github.com/PacktPublishing/The-Modern-Cpp-Challenge
https://github.com/PacktPublishing/The-Modern-Cpp-Challenge
https://github.com/PacktPublishing/The-Modern-Cpp-Challenge
https://github.com/PacktPublishing/The-Modern-Cpp-Challenge
https://github.com/PacktPublishing/The-Modern-Cpp-Challenge
https://github.com/PacktPublishing/The-Modern-Cpp-Challenge
https://github.com/PacktPublishing/The-Modern-Cpp-Challenge
https://github.com/PacktPublishing/The-Modern-Cpp-Challenge
https://github.com/PacktPublishing/The-Modern-Cpp-Challenge
https://github.com/PacktPublishing/The-Modern-Cpp-Challenge
https://github.com/PacktPublishing/The-Modern-Cpp-Challenge
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/
https://cmake.org/

Preface

[6]

After completion, the Visual Studio solution can be found3.
at build/cppchallenger.sln.

If you want to target the x64 platform instead, use the generator called "Visual Studio
15 2017 Win64". Visual Studio 2017 15.4 supports both filesystem (as an experimental
library) and std::optional. If you use a previous version, or just want to use the Boost
libraries instead, you can generate the projects using the following command, after you
properly install Boost:

cmake -G "Visual Studio 15 2017" .. -DCMAKE_USE_WINSSL=ON -
DCURL_WINDOWS_SSPI=ON -DCURL_LIBRARY=libcurl -
DCURL_INCLUDE_DIR=..\libs\curl\include -DBUILD_TESTING=OFF -
DBUILD_CURL_EXE=OFF -DUSE_MANUAL=OFF -DBOOST_FILESYSTEM=ON -
DBOOST_OPTIONAL=ON -DBOOST_INCLUDE_DIR=<path_to_headers> -
DBOOST_LIB_DIR=<path_to_libs>

Make sure that the paths to the headers and static library files do not include trailing
backslashes (i.e. \).

How to generate projects for Xcode
Several solutions in the last chapter utilize the libcurl library. For SSL support, this
library needs to be linked with the OpenSSL library. Do the following to install OpenSSL:

Download the library from https:/ /www. openssl. org/ .1.
Unzip the archive and, in a terminal, go to its root directory.2.
Build and install the library with the following commands (executed in this3.
order):

./Configure darwin64-x86_64-cc shared enable-
ec_nistp_64_gcc_128 no-ssl2 no-ssl3 no-comp --
openssldir=/usr/local/ssl/macos-x86_64

make depend

sudo make install

https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/

Preface

[7]

Until std::optional and the filesystem library will be available with Xcode's Clang,
you need to use Boost. Do the following to install and build the Boost libraries:

Install Homebrew from https:/ /brew. sh/.1.
Run the following command to download and install Boost automatically.2.

brew install boost

After installation, the Boost library will be available at3.
/usr/local/Cellar/boost/1.65.0.

In order to generate projects for Xcode from the sources you have to:

Open a terminal and go to the build directory in the source code root directory.1.
Execute the following CMake command:2.

cmake -G Xcode .. -DOPENSSL_ROOT_DIR=/usr/local/bin -
DOPENSSL_INCLUDE_DIR=/usr/local/include/ -DBUILD_TESTING=OFF -
DBUILD_CURL_EXE=OFF -DUSE_MANUAL=OFF -DBOOST_FILESYSTEM=ON -
DBOOST_OPTIONAL=ON -
DBOOST_INCLUDE_DIR=/usr/local/Cellar/boost/1.65.0 -
DBOOST_LIB_DIR=/usr/local/Cellar/boost/1.65.0/lib

After completion, the Xcode project can be found3.
at build/cppchallenger.xcodeproj.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in the text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here
is an example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk
in your system."

https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://brew.sh/

Preface

[8]

A block of code is set as follows:

int main()
{
 std::cout << "Hello, World!\n";
}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

template<typename C, typename... Args>
void push_back(C& c, Args&&... args)
{
 (c.push_back(args), ...);
}

Any command-line input or output is written as follows:

$ mkdir build
$ cd build

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Preface

[9]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Math Problems

Problems

1. Sum of naturals divisible by 3 and 5
Write a program that calculates and prints the sum of all the natural numbers divisible by
either 3 or 5, up to a given limit entered by the user.

2. Greatest common divisor
Write a program that, given two positive integers, will calculate and print the greatest
common divisor of the two.

3. Least common multiple
Write a program that will, given two or more positive integers, calculate and print the least
common multiple of them all.

Math Problems Chapter 1

[11]

4. Largest prime smaller than given number
Write a program that computes and prints the largest prime number that is smaller than a
number provided by the user, which must be a positive integer.

5. Sexy prime pairs
Write a program that prints all the sexy prime pairs up to a limit entered by the user.

6. Abundant numbers
Write a program that prints all abundant numbers and their abundance, up to a number
entered by the user.

7. Amicable numbers
Write a program that prints the list of all pairs of amicable numbers smaller than 1,000,000.

8. Armstrong numbers
Write a program that prints all Armstrong numbers with three digits.

9. Prime factors of a number
Write a program that prints the prime factors of a number entered by the user.

Math Problems Chapter 1

[12]

10. Gray code
Write a program that displays the normal binary representations, Gray code
representations, and decoded Gray code values for all 5-bit numbers.

11. Converting numerical values to Roman
Write a program that, given a number entered by the user, prints its Roman numeral
equivalent.

12. Largest Collatz sequence
Write a program that determines and prints which number up to 1 million produces the
longest Collatz sequence and what its length is.

13. Computing the value of Pi
Write a program that computes the value of Pi with a precision of two decimal digits.

14. Validating ISBNs
Write a program that validates that 10-digit values entered by the user, as a string,
represent valid ISBN-10 numbers.

Math Problems Chapter 1

[13]

Solutions

1. Sum of naturals divisible by 3 and 5
The solution to this problem is to iterate through all numbers from 3 (1 and 2 are not
divisible by 3 so it does not make sense to test them) up to the limit entered by the user. Use
the modulo operation to check that the rest of the division of a number by 3 and 5 is 0.
However, the trick to being able to sum up to a larger limit is to use long long and
not int or long for the sum, which would result in an overflow before summing up to
100,000:

int main()
{
 unsigned int limit = 0;
 std::cout << "Upper limit:";
 std::cin >> limit;

 unsigned long long sum = 0;
 for (unsigned int i = 3; i < limit; ++i)
 {
 if (i % 3 == 0 || i % 5 == 0)
 sum += i;
 }

 std::cout << "sum=" << sum << std::endl;
}

2. Greatest common divisor
The greatest common divisor (gcd in short) of two or more non-zero integers, also known as
the greatest common factor (gcf), highest common factor (hcf), greatest common measure
(gcm), or highest common divisor, is the greatest positive integer that divides all of them.
There are several ways the gcd could be computed; an efficient method is Euclid's
algorithm. For two integers, the algorithm is:

gcd(a,0) = a
gcd(a,b) = gcd(b, a mod b)

Math Problems Chapter 1

[14]

This can be very simply implemented in C++ using a recursive function:

unsigned int gcd(unsigned int const a, unsigned int const b)
{
 return b == 0 ? a : gcd(b, a % b);
}

A non-recursive implementation of Euclid's algorithm should look like this:

unsigned int gcd(unsigned int a, unsigned int b)
{
 while (b != 0) {
 unsigned int r = a % b;
 a = b;
 b = r;
 }
 return a;
}

In C++17 there is a constexpr function called gcd() in the
header <numeric> that computes the greatest common divisor of two
numbers.

3. Least common multiple
The least common multiple (lcm) of two or more non-zero integers, also known as the
lowest common multiple, or smallest common multiple, is the smallest positive integer that
is divisible by all of them. A possible way to compute the least common multiple is by
reducing the problem to computing the greatest common divisor. The following formula is
used in this case:

lcm(a, b) = abs(a, b) / gcd(a, b)

A function to compute the least common multiple may look like this:

int lcm(int const a, int const b)
{
 int h = gcd(a, b);
 return h ? (a * (b / h)) : 0;
}

Math Problems Chapter 1

[15]

To compute the lcm for more than two integers, you could use
the std::accumulate algorithm from the header <numeric>:

template<class InputIt>
int lcmr(InputIt first, InputIt last)
{
 return std::accumulate(first, last, 1, lcm);
}

In C++17 there is a constexpr function called lcm() in the
header <numeric> that computes the least common multiple of two
numbers.

4. Largest prime smaller than given number
A prime number is a number that has only two divisors, 1 and the number itself. To find
the largest prime smaller than a given number you should first write a function that
determines if a number is prime and then call this function, starting from the given number,
towards 1 until the first prime is encountered. There are various algorithms for determining
if a number is prime. Common implementations for determining the primality appear as
follows:

bool is_prime(int const num)
{
 if (num <= 3) { return num > 1; }
 else if (num % 2 == 0 || num % 3 == 0)
 {
 return false;
 }
 else
 {
 for (int i = 5; i * i <= num; i += 6)
 {
 if (num % i == 0 || num % (i + 2) == 0)
 {
 return false;
 }
 }
 return true;
 }
}

Math Problems Chapter 1

[16]

This function can be used as follows:

int main()
{
 int limit = 0;
 std::cout << "Upper limit:";
 std::cin >> limit;

 for (int i = limit; i > 1; i--)
 {
 if (is_prime(i))
 {
 std::cout << "Largest prime:" << i << std::endl;
 return 0;
 }
 }
}

5. Sexy prime pairs
Sexy prime numbers are prime numbers that differ from each other by six (for example 5
and 11, or 13 and 19). There are also twin primes, which differ by two, and cousin primes,
which differ by four.

In the previous challenge, we implemented a function that determines whether an integer is
a prime number. We will reuse that function for this exercise. What you have to do is check
that if a number n is prime, the number n+6 is also prime, and in this case print the pair to
the console:

int main()
{
 int limit = 0;
 std::cout << "Upper limit:";
 std::cin >> limit;

 for (int n = 2; n <= limit; n++)
 {
 if (is_prime(n) && is_prime(n+6))
 {
 std::cout << n << "," << n+6 << std::endl;
 }
 }
}

Math Problems Chapter 1

[17]

You could take it as a further exercise to compute and displays the sexy prime triples,
quadruplets, and quintuplets.

6. Abundant numbers
An abundant number, also known as an excessive number, is a number for which the sum
of its proper divisors is greater than the number itself. The proper divisors of a number are
the positive prime factors of the number, other than the number itself. The amount by
which the sum of proper divisors exceeds the number itself is called abundance. For
instance, the number 12 has the proper divisors 1, 2, 3, 4, and 6. Their sum is 16, which
makes 12 an abundant number. Its abundance is 4 (that is, 16 - 12).

To determine the sum of proper divisors, we try all numbers from 2 to the square root of
the number (all prime factors are less than or equal to this value). If the current number,
let’s call it i, divides the number, then i and num/i are both divisors. However, if they are
equal (for example, if i = 3, and n = 9, then i divides 9, but n/i = 3), we add
only i because proper divisors must only be added once. Otherwise, we add
both i and num/i and continue:

int sum_proper_divisors(int const number)
{
 int result = 1;
 for (int i = 2; i <= std::sqrt(number); i++)
 {
 if (number%i == 0)
 {
 result += (i == (number / i)) ? i : (i + number / i);
 }
 }
 return result;
}

Math Problems Chapter 1

[18]

Printing abundant numbers is as simple as iterating up to the specified limit, computing the
sum of proper divisors and comparing it to the number:

void print_abundant(int const limit)
{
 for (int number = 10; number <= limit; ++number)
 {
 auto sum = sum_proper_divisors(number);
 if (sum > number)
 {
 std::cout << number << ", abundance="
 << sum - number << std::endl;
 }
 }
}

int main()
{
 int limit = 0;
 std::cout << "Upper limit:";
 std::cin >> limit;

 print_abundant(limit);
}

7. Amicable numbers
Two numbers are said to be amicable if the sum of the proper divisors of one number is
equal to that of the other number. The proper divisors of a number are the positive prime
factors of the number other than the number itself. Amicable numbers should not be
confused with friendly numbers. For instance, the number 220 has the proper divisors 1, 2, 4,
5, 10, 11, 20, 22, 44, 55, and 110, whose sum is 284. The proper divisors of 284 are 1, 2, 4, 71,
and 142; their sum is 220. Therefore, the numbers 220 and 284 are said to be amicable.

Math Problems Chapter 1

[19]

The solution to this problem is to iterate through all the numbers up to the given limit. For
each number, compute the sum of its proper divisors. Let’s call this sum1. Repeat the
process and compute the sum of the proper divisors of sum1. If the result is equal to the
original number, then the number and sum1 are amicable numbers:

void print_amicables(int const limit)
{
 for (int number = 4; number < limit; ++number)
 {
 auto sum1 = sum_proper_divisors(number);
 if (sum1 < limit)
 {
 auto sum2 = sum_proper_divisors(sum1);
 if (sum2 == number && number != sum1)
 {
 std::cout << number << "," << sum1 << std::endl;
 }
 }
 }
}

In the above sample, sum_proper_divisors() is the function seen in the solution to the
abundant numbers problem.

The above function prints pairs of numbers twice, such as 220,284 and
284,220. Modify this implementation to only print each pair a single time.

8. Armstrong numbers
An Armstrong number (named so after Michael F. Armstrong), also called a narcissistic
number, a pluperfect digital invariant, or a plus perfect number, is a number that is equal to
the sum of its own digits when they are raised to the power of the number of digits. As an
example, the smallest Armstrong number is 153, which is equal to .

Math Problems Chapter 1

[20]

To determine if a number with three digits is a narcissistic number, you must first
determine its digits in order to sum their powers. However, this involves division and
modulo operations, which are expensive. A much faster way to compute it is to rely on the
fact that a number is a sum of digits multiplied by 10 at the power of their zero-based
position. In other words, for numbers up to 1,000, we have a*10^2 + b*10^2 + c. Since
you are only supposed to determine numbers with three digits, that means a would start
from 1. This would be faster than other approaches because multiplications are faster to
compute than divisions and modulo operations. An implementation of such a function
would look like this:

void print_narcissistics()
{
 for (int a = 1; a <= 9; a++)
 {
 for (int b = 0; b <= 9; b++)
 {
 for (int c = 0; c <= 9; c++)
 {
 auto abc = a * 100 + b * 10 + c;
 auto arm = a * a * a + b * b * b + c * c * c;
 if (abc == arm)
 {
 std::cout << arm << std::endl;
 }
 }
 }
 }
}

You could take it as a further exercise to write a function that determines the narcissistic
numbers up to a limit, regardless their number of digits. Such a function would be slower
because you first have to determine the sequence of digits of the number, store them in a
container, and then sum together the digits raised to the appropriate power (the number of
the digits).

Math Problems Chapter 1

[21]

9. Prime factors of a number
The prime factors of a positive integer are the prime numbers that divide that integer
exactly. For instance, the prime factors of 8 are 2 x 2 x 2, and the prime factors of 42 are 2 x 3
x 7. To determine the prime factors you should use the following algorithm:

While n is divisible by 2, 2 is a prime factor and must be added to the list,1.
while n becomes the result of n/2. After completing this step, n is an odd
number.
Iterate from 3 to the square root of n. While the current number, let’s call it i,2.
divides n, i is a prime factor and must be added to the list, while n becomes the
result of n/i. When i no longer divides n, increment i by 2 (to get the next odd
number).
When n is a prime number greater than 2, the steps above will not result3.
in n becoming 1. Therefore, if at the end of step 2 n is still greater than 2, then n is
a prime factor.

std::vector<unsigned long long> prime_factors(unsigned long long n)
{
 std::vector<unsigned long long> factors;
 while (n % 2 == 0) {
 factors.push_back(2);
 n = n / 2;
 }
 for (unsigned long long i = 3; i <= std::sqrt(n); i += 2)
 {
 while (n%i == 0) {
 factors.push_back(i);
 n = n / i;
 }
 }

 if (n > 2)
 factors.push_back(n);
 return factors;
}

int main()
{
 unsigned long long number = 0;
 std::cout << "number:";
 std::cin >> number;

Math Problems Chapter 1

[22]

 auto factors = prime_factors(number);
 std::copy(std::begin(factors), std::end(factors),
 std::ostream_iterator<unsigned long long>(std::cout, " "));
}

As a further exercise, determine the largest prime factor for the number 600,851,475,143.

10. Gray code
Gray code, also known as reflected binary code or simply reflected binary, is a form of
binary encoding where two consecutive numbers differ by only one bit. To perform a
binary reflected Gray code encoding, we need to use the following formula:

if b[i-1] = 1 then g[i] = not b[i]
else g[i] = b[i]

This is equivalent to the following:

g = b xor (b logically right shifted 1 time)

For decoding a binary reflected Gray code, the following formula should be used:

b[0] = g[0]
b[i] = g[i] xor b[i-1]

These can be written in C++ as follows, for 32-bit unsigned integers:

unsigned int gray_encode(unsigned int const num)
{
 return num ^ (num >> 1);
}

unsigned int gray_decode(unsigned int gray)
{
 for (unsigned int bit = 1U << 31; bit > 1; bit >>= 1)
 {
 if (gray & bit) gray ^= bit >> 1;
 }
 return gray;
}

Math Problems Chapter 1

[23]

To print the all 5-bit integers, their binary representation, the encoded Gray code
representation, and the decoded value, we could use the following code:

std::string to_binary(unsigned int value, int const digits)
{
 return std::bitset<32>(value).to_string().substr(32-digits, digits);
}

int main()
{
 std::cout << "Number\tBinary\tGray\tDecoded\n";
 std::cout << "------\t------\t----\t-------\n";

 for (unsigned int n = 0; n < 32; ++n)
 {
 auto encg = gray_encode(n);
 auto decg = gray_decode(encg);

 std::cout
 << n << "\t" << to_binary(n, 5) << "\t"
 << to_binary(encg, 5) << "\t" << decg << "\n";
 }
}

11. Converting numerical values to Roman
Roman numerals, as they are known today, use seven symbols: I = 1, V = 5, X = 10, L = 50, C
= 100, D = 500, and M = 1000. The system uses additions and subtractions in composing the
numerical symbols. The symbols from 1 to 10 are I, II, III, IV, V, VI, VII, VIII, IX, and X.
Romans did not have a symbol for zero and used to write nulla to represent it. In this
system, the largest symbols are on the left, and the least significant are on the right. As an
example, the Roman numeral for 1994 is MCMXCIV. If you are not familiar with the rules
for Roman numerals, you should read more on the web.

To determine the Roman numeral of a number, use the following algorithm:

Check every Roman base symbol from the highest (M) to the lowest (I)1.
If the current value is greater than the value of the symbol, then concatenate the2.
symbol to the Roman numeral and subtract its value from the current one
Repeat until the current value reaches zero3.

Math Problems Chapter 1

[24]

For example, consider 42: the first Roman base symbol smaller than 42 is XL, which is 40.
We concatenate it to the numeral, resulting in XL, and subtract from the current number,
resulting in 2. The first Roman base symbol smaller than 2 is I, which is 1. We add that to
the numeral, resulting in XLI, and subtract 1 from the number, resulting in 1. We add one
more I to the numeral, which becomes XLII, and subtract again 1 from the number,
reaching 0 and therefore stopping:

std::string to_roman(unsigned int value)
{
 std::vector<std::pair<unsigned int, char const*>> roman {
 { 1000, "M" },{ 900, "CM" }, { 500, "D" },{ 400, "CD" },
 { 100, "C" },{ 90, "XC" }, { 50, "L" },{ 40, "XL" },
 { 10, "X" },{ 9, "IX" }, { 5, "V" },{ 4, "IV" }, { 1, "I" }};

 std::string result;
 for (auto const & kvp : roman) {
 while (value >= kvp.first) {
 result += kvp.second;
 value -= kvp.first;
 }
 }
 return result;
}

This function can be used as follows:

int main()
{
 for(int i = 1; i <= 100; ++i)
 {
 std::cout << i << "\t" << to_roman(i) << std::endl;
 }

 int number = 0;
 std::cout << "number:";
 std::cin >> number;
 std::cout << to_roman(number) << std::endl;
}

Math Problems Chapter 1

[25]

12. Largest Collatz sequence
The Collatz conjecture, also known as the Ulam conjecture, Kakutani's problem, the
Thwaites conjecture, Hasse's algorithm, or the Syracuse problem, is an unproven conjecture
that states that a sequence defined as explained in the following always reaches 1. The
series is defined as follows: start with any positive integer n and obtain each new term from
the previous one: if the previous term is even, the next term is half the previous term, or
else it is 3 times the previous term plus 1.

The problem you are to solve is to generate the Collatz sequence for all positive integers up
to one million, determine which of them is the longest, and print its length and the starting
number that produced it. Although we could apply brute force to generate the sequence for
each number and count the number of terms until reaching 1, a faster solution would be to
save the length of all the sequences that have already been generated. When the current
term of a sequence that started from a value n becomes smaller than n, then it is a number
whose sequence has already been determined, so we could simply fetch its cached length
and add it to the current length to determine the length of the sequence started from n. This
approach, however, introduces a limit to the Collatz sequences that could be computed,
because at some point the cache will exceed the amount of memory the system can allocate:

std::pair<unsigned long long, long> longest_collatz(
 unsigned long long const limit)
{
 long length = 0;
 unsigned long long number = 0;
 std::vector<int> cache(limit + 1, 0);
 for (unsigned long long i = 2; i <= limit; i++)
 {
 auto n = i;
 long steps = 0;
 while (n != 1 && n >= i)
 {
 if ((n % 2) == 0) n = n / 2;
 else n = n * 3 + 1;
 steps++;
 }
 cache[i] = steps + cache[n];

 if (cache[i] > length)
 {
 length = cache[i];
 number = i;

Math Problems Chapter 1

[26]

 }
 }

 return std::make_pair(number, length);
}

13. Computing the value of Pi
A suitable solution for approximately determining the value of Pi is using a Monte Carlo
simulation. This is a method that uses random samples of inputs to explore the behavior of
complex processes or systems. The method is used in a large variety of applications and
domains, including physics, engineering, computing, finance, business, and others.

To do this we will rely on the following idea: the area of a circle with diameter d is PI *
d^2 / 4. The area of a square that has the length of its sides equal to d is d^2. If we divide
the two we get PI/4. If we put the circle inside the square and generate random numbers
uniformly distributed within the square, then the count of numbers in the circle should be
directly proportional to the circle area, and the count of numbers inside the square should
be directly proportional to the square’s area. That means that dividing the total number of
hits in the square and circle should give PI/4. The more points generated, the more
accurate the result shall be.

For generating pseudo-random numbers we will use a Mersenne twister and a uniform
statistical distribution:

template <typename E = std::mt19937,
 typename D = std::uniform_real_distribution<>>
double compute_pi(E& engine, D& dist, int const samples = 1000000)
{
 auto hit = 0;
 for (auto i = 0; i < samples; i++)
 {
 auto x = dist(engine);
 auto y = dist(engine);
 if (y <= std::sqrt(1 - std::pow(x, 2))) hit += 1;
 }
 return 4.0 * hit / samples;
}

int main()
{
 std::random_device rd;
 auto seed_data = std::array<int, std::mt19937::state_size> {};
 std::generate(std::begin(seed_data), std::end(seed_data),

Math Problems Chapter 1

[27]

 std::ref(rd));
 std::seed_seq seq(std::begin(seed_data), std::end(seed_data));
 auto eng = std::mt19937{ seq };
 auto dist = std::uniform_real_distribution<>{ 0, 1 };

 for (auto j = 0; j < 10; j++)
 std::cout << compute_pi(eng, dist) << std::endl;
}

14. Validating ISBNs
The International Standard Book Number (ISBN) is a unique numeric identifier for books.
Currently, a 13-digit format is used. However, for this problem, you are to validate the
former format that used 10 digits. The last of the 10 digits is a checksum. This digit is
chosen so that the sum of all the ten digits, each multiplied by its (integer) weight,
descending from 10 to 1, is a multiple of 11.

The validate_isbn_10 function, shown as follows, takes an ISBN as a string, and returns
true if the length of the string is 10, all ten elements are digits, and the sum of all digits
multiplied by their weight (or position) is a multiple of 11:

bool validate_isbn_10(std::string_view isbn)
{
 auto valid = false;
 if (isbn.size() == 10 &&
 std::count_if(std::begin(isbn), std::end(isbn), isdigit) == 10)
 {
 auto w = 10;
 auto sum = std::accumulate(
 std::begin(isbn), std::end(isbn), 0,
 [&w](int const total, char const c) {
 return total + w-- * (c - '0'); });

 valid = !(sum % 11);
 }
 return valid;
}

You can take it as a further exercise to improve this function to also
correctly validate ISBN-10 numbers that include hyphens, such
as 3-16-148410-0. Also, you can write a function that validates ISBN-13
numbers.

2
Language Features

Problems

15. IPv4 data type
Write a class that represents an IPv4 address. Implement the functions required to be able
to read and write such addresses from or to the console. The user should be able to input
values in dotted form, such as 127.0.0.1 or 168.192.0.100. This is also the form in
which IPv4 addresses should be formatted to an output stream.

16. Enumerating IPv4 addresses in a range
Write a program that allows the user to input two IPv4 addresses representing a range and
list all the addresses in that range. Extend the structure defined for the previous problem to
implement the requested functionality.

17. Creating a 2D array with basic operations
Write a class template that represents a two-dimensional array container with methods for
element access (at() and data()), capacity querying, iterators, filling, and swapping. It
should be possible to move objects of this type.

Language Features Chapter 2

[29]

18. Minimum function with any number of
arguments
Write a function template that can take any number of arguments and returns the
minimum value of them all, using operator < for comparison. Write a variant of this
function template that can be parameterized with a binary comparison function to use
instead of operator <.

19. Adding a range of values to a container
Write a general-purpose function that can add any number of elements to the end of a
container that has a method push_back(T&& value).

20. Container any, all, none
Write a set of general-purpose functions that enable checking whether any, all, or none of
the specified arguments are present in a given container. These functions should make it
possible to write code as follows:

std::vector<int> v{ 1, 2, 3, 4, 5, 6 };
assert(contains_any(v, 0, 3, 30));

std::array<int, 6> a{ { 1, 2, 3, 4, 5, 6 } };
assert(contains_all(a, 1, 3, 5, 6));

std::list<int> l{ 1, 2, 3, 4, 5, 6 };
assert(!contains_none(l, 0, 6));

Language Features Chapter 2

[30]

21. System handle wrapper
Consider an operating system handle, such as a file handle. Write a wrapper that handles
the acquisition and release of the handle, as well as other operations such as verifying the
validity of the handle and moving handle ownership from one object to another.

22. Literals of various temperature scales
Write a small library that enables expressing temperatures in the three most used scales,
Celsius, Fahrenheit, and Kelvin, and converting between them. The library must enable you
to write temperature literals in all these scales, such as 36.5_deg for Celsius, 97.7_f for
Fahrenheit, and 309.65_K for Kelvin; perform operations with these values; and convert
between them.

Language Features Chapter 2

[31]

Solutions

15. IPv4 data type
The problem requires writing a class to represent an IPv4 address. This is a 32-bit value,
usually represented in decimal dotted format, such as 168.192.0.100; each part of it is an
8-bit value, ranging from 0 to 255. For easy representation and handling, we can use four
unsigned char to store the address value. Such a value could be constructed either from
four unsigned char or from an unsigned long. In order to be able to read a value
directly from the console (or any other input stream) and be able to write the value to the
console (or any other output stream), we have to overload operator>> and operator<<.
The following listing shows a minimal implementation that can meet the requested
functionality:

class ipv4
{
 std::array<unsigned char, 4> data;
public:
 constexpr ipv4() : data{ {0} } {}
 constexpr ipv4(unsigned char const a, unsigned char const b,
 unsigned char const c, unsigned char const d):
 data{{a,b,c,d}} {}
 explicit constexpr ipv4(unsigned long a) :
 data{ { static_cast<unsigned char>((a >> 24) & 0xFF),
 static_cast<unsigned char>((a >> 16) & 0xFF),
 static_cast<unsigned char>((a >> 8) & 0xFF),
 static_cast<unsigned char>(a & 0xFF) } } {}
 ipv4(ipv4 const & other) noexcept : data(other.data) {}
 ipv4& operator=(ipv4 const & other) noexcept
 {
 data = other.data;
 return *this;
 }

 std::string to_string() const
 {
 std::stringstream sstr;
 sstr << *this;
 return sstr.str();
 }

 constexpr unsigned long to_ulong() const noexcept
 {
 return (static_cast<unsigned long>(data[0]) << 24) |

Language Features Chapter 2

[32]

 (static_cast<unsigned long>(data[1]) << 16) |
 (static_cast<unsigned long>(data[2]) << 8) |
 static_cast<unsigned long>(data[3]);
 }

 friend std::ostream& operator<<(std::ostream& os, const ipv4& a)
 {
 os << static_cast<int>(a.data[0]) << '.'
 << static_cast<int>(a.data[1]) << '.'
 << static_cast<int>(a.data[2]) << '.'
 << static_cast<int>(a.data[3]);
 return os;
 }

 friend std::istream& operator>>(std::istream& is, ipv4& a)
 {
 char d1, d2, d3;
 int b1, b2, b3, b4;
 is >> b1 >> d1 >> b2 >> d2 >> b3 >> d3 >> b4;
 if (d1 == '.' && d2 == '.' && d3 == '.')
 a = ipv4(b1, b2, b3, b4);
 else
 is.setstate(std::ios_base::failbit);
 return is;
 }
};

The ipv4 class can be used as follows:

int main()
{
 ipv4 address(168, 192, 0, 1);
 std::cout << address << std::endl;

 ipv4 ip;
 std::cout << ip << std::endl;
 std::cin >> ip;
 if(!std::cin.fail())
 std::cout << ip << std::endl;
}

Language Features Chapter 2

[33]

16. Enumerating IPv4 addresses in a range
To be able to enumerate IPv4 addresses in a given range, it should first be possible to
compare IPv4 values. Therefore, we should implement at least operator<, but the
following listing contains implementation for all comparison operators: ==, !=, <, >, <=,
and >=. Also, in order to increment an IPv4 value, implementations for both the prefix and
postfix operator++ are provided. The following code is an extension of the IPv4 class from
the previous problem:

ipv4& operator++()
{
 *this = ipv4(1 + to_ulong());
 return *this;
}

ipv4& operator++(int)
{
 ipv4 result(*this);
 ++(*this);
 return *this;
}

friend bool operator==(ipv4 const & a1, ipv4 const & a2) noexcept
{
 return a1.data == a2.data;
}

friend bool operator!=(ipv4 const & a1, ipv4 const & a2) noexcept
{
 return !(a1 == a2);
}

friend bool operator<(ipv4 const & a1, ipv4 const & a2) noexcept
{
 return a1.to_ulong() < a2.to_ulong();
}

friend bool operator>(ipv4 const & a1, ipv4 const & a2) noexcept
{
 return a2 < a1;
}

friend bool operator<=(ipv4 const & a1, ipv4 const & a2) noexcept
{
 return !(a1 > a2);
}

Language Features Chapter 2

[34]

friend bool operator>=(ipv4 const & a1, ipv4 const & a2) noexcept
{
 return !(a1 < a2);
}

With these changes to the ipv4 class from the previous problem, we can write the
following program:

int main()
{
 std::cout << "input range: ";
 ipv4 a1, a2;
 std::cin >> a1 >> a2;
 if (a2 > a1)
 {
 for (ipv4 a = a1; a <= a2; a++)
 {
 std::cout << a << std::endl;
 }
 }
 else
 {
 std::cerr << "invalid range!" << std::endl;
 }
}

17. Creating a 2D array with basic operations
Before looking at how we could define such a structure, let's consider several test cases for
it. The following snippet shows all the functionality that was requested:

int main()
{
 // element access
 array2d<int, 2, 3> a {1, 2, 3, 4, 5, 6};
 for (size_t i = 0; i < a.size(1); ++i)
 for (size_t j = 0; j < a.size(2); ++j)
 a(i, j) *= 2;

 // iterating
 std::copy(std::begin(a), std::end(a),
 std::ostream_iterator<int>(std::cout, " "));

 // filling
 array2d<int, 2, 3> b;
 b.fill(1);

Language Features Chapter 2

[35]

 // swapping
 a.swap(b);

 // moving
 array2d<int, 2, 3> c(std::move(b));
}

Note that for element access, we are using operator(), such as in a(i,j), and not
operator[], such as in a[i][j], because only the former can take multiple arguments
(one for the index on each dimension). The latter can only have a single argument, and in
order to enable expressions like a[i][j], it has to return an intermediate type (one that
basically represents a row) that in turn overloads operator[] to return a single element.

There are already standard containers that store either fixed or variable-length sequences of
elements. This two-dimensional array class should be just an adapter for such a container.
In choosing between std::array and std::vector, we should consider two things:

The array2d class should have move semantics to be able to move objects
It should be possible to list initialize an object of this type

The std::array container is movable only if the elements it holds are move-constructible
and move-assignable. On the other hand, it cannot be constructed from an
std::initializer_list. Therefore, the more viable option remains an std::vector.

Internally, this adapter container can store its data either in a vector of vectors (each row is
a vector<T> with C elements, and the 2D array has R such elements stored in a
vector<vector<T>>) or single vector of R C elements of type T. In the latter case, the
element on row i and column j is found at index i * C + j. This approach has a smaller
memory footprint, stores all data in a single contiguous chunk, and is also simpler to
implement. For these reasons, it is the preferred solution.

A possible implementation of the two-dimensional array class with the requested
functionality is shown here:

template <class T, size_t R, size_t C>
class array2d
{
 typedef T value_type;
 typedef value_type* iterator;
 typedef value_type const* const_iterator;
 std::vector<T> arr;
public:
 array2d() : arr(R*C) {}
 explicit array2d(std::initializer_list<T> l):arr(l) {}

Language Features Chapter 2

[36]

 constexpr T* data() noexcept { return arr.data(); }
 constexpr T const * data() const noexcept { return arr.data(); }

 constexpr T& at(size_t const r, size_t const c)
 {
 return arr.at(r*C + c);
 }

 constexpr T const & at(size_t const r, size_t const c) const
 {
 return arr.at(r*C + c);
 }

 constexpr T& operator() (size_t const r, size_t const c)
 {
 return arr[r*C + c];
 }

 constexpr T const & operator() (size_t const r, size_t const c) const
 {
 return arr[r*C + c];
 }

 constexpr bool empty() const noexcept { return R == 0 || C == 0; }

 constexpr size_t size(int const rank) const
 {
 if (rank == 1) return R;
 else if (rank == 2) return C;
 throw std::out_of_range("Rank is out of range!");
 }

 void fill(T const & value)
 {
 std::fill(std::begin(arr), std::end(arr), value);
 }

 void swap(array2d & other) noexcept { arr.swap(other.arr); }

 const_iterator begin() const { return arr.data(); }
 const_iterator end() const { return arr.data() + arr.size(); }
 iterator begin() { return arr.data(); }
 iterator end() { return arr.data() + arr.size(); }
};

Language Features Chapter 2

[37]

18. Minimum function with any number of
arguments
It is possible to write function templates that can take a variable number of arguments
using variadic function templates. For this, we need to implement compile-time recursion
(which is actually just calls through a set of overloaded functions). The following snippet
shows how the requested function could be implemented:

template <typename T>
T minimum(T const a, T const b) { return a < b ? a : b; }

template <typename T1, typename... T>
T1 minimum(T1 a, T... args)
{
 return minimum(a, minimum(args...));
}

int main()
{
 auto x = minimum(5, 4, 2, 3);
}

In order to be able to use a user-provided binary comparison function, we need to write
another function template. The comparison function must be the first argument because it
cannot follow the function parameter pack. On the other hand, this cannot be an overload
of the previous minimum function, but a function with a different name. The reason is that
the compiler would not be able to differentiate between the template parameter lists
<typename T1, typename... T> and <class Compare, typename T1,
typename... T>. The changes are minimal and should be easy to follow in this snippet:

template <class Compare, typename T>
T minimumc(Compare comp, T const a, T const b)
{ return comp(a, b) ? a : b; }

template <class Compare, typename T1, typename... T>
T1 minimumc(Compare comp, T1 a, T... args)
{
 return minimumc(comp, a, minimumc(comp, args...));
}

int main()
{
 auto y = minimumc(std::less<>(), 3, 2, 1, 0);
}

Language Features Chapter 2

[38]

19. Adding a range of values to a container
Writing functions with any number of arguments is possible using variadic function
templates. The function should have the container as the first parameter, followed by a
variable number of arguments representing the values to be added at the back of the
container. However, writing such a function template can be significantly simplified using
fold expressions. Such an implementation is shown here:

template<typename C, typename... Args>
void push_back(C& c, Args&&... args)
{
 (c.push_back(args), ...);
}

Examples of using this function template, with various container types, can be seen in the
following listing:

int main()
{
 std::vector<int> v;
 push_back(v, 1, 2, 3, 4);
 std::copy(std::begin(v), std::end(v),
 std::ostream_iterator<int>(std::cout, " "));

 std::list<int> l;
 push_back(l, 1, 2, 3, 4);
 std::copy(std::begin(l), std::end(l),
 std::ostream_iterator<int>(std::cout, " "));
}

Language Features Chapter 2

[39]

20. Container any, all, none
The requirement to be able to check the presence or absence of a variable number of
arguments suggests that we should write variadic function templates. However, these
functions require a helper function, a general-purpose one that checks whether an element
is found in a container or not and returns a bool to indicate success or failure. Since all
these functions, which we could call contains_all, contains_any, and contains_none,
do is apply logical operators on the results returned by the helper function, we would use
fold expressions to simplify the code. Short circuit evaluation is enabled after the expansion
of the fold expression, which means we are evaluating only the elements that lead to a
definitive result. So if we are looking for the presence of all 1, 2, and 3, and 2 is missing, the
function will return after looking up value 2 in the container without checking value 3:

template<class C, class T>
bool contains(C const & c, T const & value)
{
 return std::end(c) != std::find(std::begin(c), std::end(c), value);
}

template<class C, class... T>
bool contains_any(C const & c, T &&... value)
{
 return (... || contains(c, value));
}

template<class C, class... T>
bool contains_all(C const & c, T &&... value)
{
 return (... && contains(c, value));
}

template<class C, class... T>
bool contains_none(C const & c, T &&... value)
{
 return !contains_any(c, std::forward<T>(value)...);
}

Language Features Chapter 2

[40]

21. System handle wrapper
System handles are a form of reference to system resources. Because all operating systems
were at least initially written in C, creating and releasing the handles is done through
dedicated system functions. This increases the risk of leaking resources because of
erroneous disposal, such as in the case of an exception. In the following snippet, specific to
Windows, you can see a function where a file is opened, read from, and eventually closed.
However, this has a couple of problems: in one case, the developer forgot to close the
handle before leaving the function; in another case, a function that throws is called before
the handle is properly closed, without the exception being caught. However, since the
function throws, that cleanup code never executes:

void bad_handle_example()
{
 bool condition1 = false;
 bool condition2 = true;
 HANDLE handle = CreateFile(L"sample.txt",
 GENERIC_READ,
 FILE_SHARE_READ,
 nullptr,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL,
 nullptr);

 if (handle == INVALID_HANDLE_VALUE)
 return;

 if (condition1)
 {
 CloseHandle(handle);
 return;
 }

 std::vector<char> buffer(1024);
 unsigned long bytesRead = 0;
 ReadFile(handle,
 buffer.data(),
 buffer.size(),
 &bytesRead,
 nullptr);

 if (condition2)
 {
 // oops, forgot to close handle
 return;
 }

Language Features Chapter 2

[41]

 // throws exception; the next line will not execute
 function_that_throws();

 CloseHandle(handle);
}

A C++ wrapper class can ensure proper disposal of the handle when the wrapper object
goes out of scope and is destroyed (whether that happens through a normal execution path
or as the result of an exception). A proper implementation should account for different
types of handles, with a range of values to indicate an invalid handle (such as 0/null or -1).
The implementation shown next provides:

Explicit acquisition and automatic release of the handle when the object is
destroyed
Move semantics to enable transfer of ownership of the handle
Comparison operators to check whether two objects refer to the same handle
Additional operations such as swapping and resetting

The implementation shown here is a modified version of the handle class
implemented by Kenny Kerr and published in the article Windows with
C++ - C++ and the Windows API, MSDN Magazine, July 2011, https:/ /
msdn. microsoft. com/ en- us/magazine/ hh288076. aspx. Although the
handle traits shown here refer to Windows handles, it should be fairly
simple to write traits appropriate for other platforms.

template <typename Traits>
class unique_handle
{
 using pointer = typename Traits::pointer;
 pointer m_value;
public:
 unique_handle(unique_handle const &) = delete;
 unique_handle& operator=(unique_handle const &) = delete;

 explicit unique_handle(pointer value = Traits::invalid()) noexcept
 :m_value{ value }
 {}

 unique_handle(unique_handle && other) noexcept
 : m_value{ other.release() }
 {}

 unique_handle& operator=(unique_handle && other) noexcept
 {
 if (this != &other)

https://msdn.microsoft.com/en-us/magazine/hh288076.aspx
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx

Language Features Chapter 2

[42]

 reset(other.release());
 return *this;
 }

 ~unique_handle() noexcept
 {
 Traits::close(m_value);
 }

 explicit operator bool() const noexcept
 {
 return m_value != Traits::invalid();
 }

 pointer get() const noexcept { return m_value; }

 pointer release() noexcept
 {
 auto value = m_value;
 m_value = Traits::invalid();
 return value;
 }

 bool reset(pointer value = Traits::invalid()) noexcept
 {
 if (m_value != value)
 {
 Traits::close(m_value);
 m_value = value;
 }
 return static_cast<bool>(*this);
 }

 void swap(unique_handle<Traits> & other) noexcept
 {
 std::swap(m_value, other.m_value);
 }
};

template <typename Traits>
void swap(unique_handle<Traits> & left, unique_handle<Traits> & right)
noexcept
{
 left.swap(right);
}

template <typename Traits>
bool operator==(unique_handle<Traits> const & left,

Language Features Chapter 2

[43]

 unique_handle<Traits> const & right) noexcept
{
 return left.get() == right.get();
}

template <typename Traits>
bool operator!=(unique_handle<Traits> const & left,
 unique_handle<Traits> const & right) noexcept
{
 return left.get() != right.get();
}

struct null_handle_traits
{
 using pointer = HANDLE;
 static pointer invalid() noexcept { return nullptr; }
 static void close(pointer value) noexcept
 {
 CloseHandle(value);
 }
};

struct invalid_handle_traits
{
 using pointer = HANDLE;
 static pointer invalid() noexcept { return INVALID_HANDLE_VALUE; }
 static void close(pointer value) noexcept
 {
 CloseHandle(value);
 }
};

using null_handle = unique_handle<null_handle_traits>;
using invalid_handle = unique_handle<invalid_handle_traits>;

Language Features Chapter 2

[44]

With this handle type defined, we can rewrite the previous example in simpler terms,
avoiding all those problems with handles not properly closed because of exceptions
occurring that are not properly handled, or simply because developers forget to release
resources when no longer needed. This code is both simpler and more robust:

void good_handle_example()
{
 bool condition1 = false;
 bool condition2 = true;

 invalid_handle handle{
 CreateFile(L"sample.txt",
 GENERIC_READ,
 FILE_SHARE_READ,
 nullptr,
 OPEN_EXISTING,
 FILE_ATTRIBUTE_NORMAL,
 nullptr) };

 if (!handle) return;

 if (condition1) return;

 std::vector<char> buffer(1024);
 unsigned long bytesRead = 0;
 ReadFile(handle.get(),
 buffer.data(),
 buffer.size(),
 &bytesRead,
 nullptr);

 if (condition2) return;

 function_that_throws();
}

22. Literals of various temperature scales
To meet this requirement, we need to provide an implementation for several types,
operators, and functions:

An enumeration of supported temperature scales called scale.
A class template to represent a temperature value, parameterized with the scale,
called quantity.

Language Features Chapter 2

[45]

Comparison operators ==, !=, <, >, <=, and >= that compare two quantities of the
same time.
Arithmetic operators + and - that add and subtract values of the same quantity
type. Additionally, we could implement member operators += and -+.
A function template to convert temperatures from one scale to another, called
temperature_cast. This function does not perform the conversion itself but
uses type traits to do that.
Literal operators ""_deg, ""_f, and ""_k for creating user-defined temperature
literals.

For brevity, the following snippet only contains the code that handles
Celsius and Fahrenheit temperatures. You should take it as a further
exercise to extend the code with support for the Kelvin scale. The code
accompanying the book contains the full implementation of all three
required scales.

The are_equal() function is a utility function used to compare floating-point values:

bool are_equal(double const d1, double const d2,
 double const epsilon = 0.001)
{
 return std::fabs(d1 - d2) < epsilon;
}

The enumeration of possible temperature scales and the class that represents a temperature
value are defined as follows:

namespace temperature
{
 enum class scale { celsius, fahrenheit, kelvin };

 template <scale S>
 class quantity
 {
 const double amount;
 public:
 constexpr explicit quantity(double const a) : amount(a) {}
 explicit operator double() const { return amount; }
 };
}

Language Features Chapter 2

[46]

The comparison operators for the quantity<S> class can be seen here:

namespace temperature
{
 template <scale S>
 inline bool operator==(quantity<S> const & lhs, quantity<S> const & rhs)
 {
 return are_equal(static_cast<double>(lhs), static_cast<double>(rhs));
 }

 template <scale S>
 inline bool operator!=(quantity<S> const & lhs, quantity<S> const & rhs)
 {
 return !(lhs == rhs);
 }

 template <scale S>
 inline bool operator< (quantity<S> const & lhs, quantity<S> const & rhs)
 {
 return static_cast<double>(lhs) < static_cast<double>(rhs);
 }

 template <scale S>
 inline bool operator> (quantity<S> const & lhs, quantity<S> const & rhs)
 {
 return rhs < lhs;
 }

 template <scale S>
 inline bool operator<=(quantity<S> const & lhs, quantity<S> const & rhs)
 {
 return !(lhs > rhs);
 }

 template <scale S>
 inline bool operator>=(quantity<S> const & lhs, quantity<S> const & rhs)
 {
 return !(lhs < rhs);
 }

 template <scale S>
 constexpr quantity<S> operator+(quantity<S> const &q1,
 quantity<S> const &q2)
 {
 return quantity<S>(static_cast<double>(q1) +
 static_cast<double>(q2));
 }

Language Features Chapter 2

[47]

 template <scale S>
 constexpr quantity<S> operator-(quantity<S> const &q1,
 quantity<S> const &q2)
 {
 return quantity<S>(static_cast<double>(q1) -
 static_cast<double>(q2));
 }
}

To convert between temperature values of different scales, we will define a function
template called temperature_cast() that utilizes several type traits to perform the actual
conversion. All these are shown here, although not all type traits; the others can be found in
the code accompanying the book:

namespace temperature
{
 template <scale S, scale R>
 struct conversion_traits
 {
 static double convert(double const value) = delete;
 };

 template <>
 struct conversion_traits<scale::celsius, scale::fahrenheit>
 {
 static double convert(double const value)
 {
 return (value * 9) / 5 + 32;
 }
 };

 template <>
 struct conversion_traits<scale::fahrenheit, scale::celsius>
 {
 static double convert(double const value)
 {
 return (value - 32) * 5 / 9;
 }
 };

 template <scale R, scale S>
 constexpr quantity<R> temperature_cast(quantity<S> const q)
 {
 return quantity<R>(conversion_traits<S, R>::convert(
 static_cast<double>(q)));
 }
}

Language Features Chapter 2

[48]

The literal operators for creating temperature values are shown in the following
snippet. These operators are defined in a separate namespace, called
temperature_scale_literals, which is a good practice in order to minimize the risk of
name collision with other literal operators:

namespace temperature
{
 namespace temperature_scale_literals
 {
 constexpr quantity<scale::celsius> operator "" _deg(
 long double const amount)
 {
 return quantity<scale::celsius> {static_cast<double>(amount)};
 }

 constexpr quantity<scale::fahrenheit> operator "" _f(
 long double const amount)
 {
 return quantity<scale::fahrenheit> {static_cast<double>(amount)};
 }
 }
}

The following example shows how to define two temperature values, one in Celsius and
one in Fahrenheit, and convert between the two:

int main()
{
 using namespace temperature;
 using namespace temperature_scale_literals;

 auto t1{ 36.5_deg };
 auto t2{ 79.0_f };

 auto tf = temperature_cast<scale::fahrenheit>(t1);
 auto tc = temperature_cast<scale::celsius>(tf);
 assert(t1 == tc);
}

3
Strings and Regular

Expressions

Problems

23. Binary to string conversion
Write a function that, given a range of 8-bit integers (such as an array or vector), returns a
string that contains a hexadecimal representation of the input data. The function should be
able to produce both uppercase and lowercase content. Here are some input and output
examples:

Input: { 0xBA, 0xAD, 0xF0, 0x0D }, output: "BAADF00D" or "baadf00d"
Input: { 1,2,3,4,5,6 }, output: "010203040506"

24. String to binary conversion
Write a function that, given a string containing hexadecimal digits as the input argument,
returns a vector of 8-bit integers that represent the numerical deserialization of the string
content. The following are examples:

Input: "BAADF00D" or "baadF00D", output: {0xBA, 0xAD, 0xF0, 0x0D}
Input "010203040506", output: {1, 2, 3, 4, 5, 6}

Strings and Regular Expressions Chapter 3

[50]

25. Capitalizing an article title
Write a function that transforms an input text into a capitalized version, where every word
starts with an uppercase letter and has all the other letters in lowercase. For instance, the
text "the c++ challenger" should be transformed to "The C++ Challenger".

26. Joining strings together separated by a
delimiter
Write a function that, given a list of strings and a delimiter, creates a new string by
concatenating all the input strings separated with the specified delimiter. The delimiter
must not appear after the last string, and when no input string is provided, the function
must return an empty string.

Example: input { "this","is","an","example" } and delimiter ' ' (space), output:
"this is an example".

27. Splitting a string into tokens with a list of
possible delimiters
Write a function that, given a string and a list of possible delimiter characters, splits the
string into tokens separated by any of the delimiters and returns them in an std::vector.

Example: input: "this,is.a sample!!" with delimiters ",.! ", output: {"this",
"is", "a", "sample"}.

Strings and Regular Expressions Chapter 3

[51]

28. Longest palindromic substring
Write a function that, given an input string, locates and returns the longest sequence in the
string that is a palindrome. If multiple palindromes of the same length exist, the first one
should be returned.

29. License plate validation
Considering license plates with the format LLL-LL DDD or LLL-LL DDDD (where L is an
uppercase letter from A to Z and D is a digit), write:

One function that validates that a license plate number is of the correct format
One function that, given an input text, extracts and returns all the license plate
numbers found in the text

30. Extracting URL parts
Write a function that, given a string that represents a URL, parses and extracts the parts of
the URL (protocol, domain, port, path, query, and fragment).

31. Transforming dates in strings
Write a function that, given a text containing dates in the format dd.mm.yyyy or dd-mm-
yyyy, transforms the text so that it contains dates in the format yyyy-mm-dd.

Strings and Regular Expressions Chapter 3

[52]

Solutions

23. Binary to string conversion
In order to write a general-purpose function that can handle various sorts of ranges, such as
an std::array, std::vector, a C-like array, or others, we should write a function
template. In the following, there are two overloads; one that takes a container as an
argument and a flag indicating the casing style, and one that takes a pair of iterators (to
mark the first and then one past the end element of the range) and the flag to indicate
casing. The content of the range is written to an std::ostringstream object, with the
appropriate I/O manipulators, such as width, filling character, or case flag:

template <typename Iter>
std::string bytes_to_hexstr(Iter begin, Iter end,
 bool const uppercase = false)
{
 std::ostringstream oss;
 if(uppercase) oss.setf(std::ios_base::uppercase);
 for (; begin != end; ++begin)
 oss << std::hex << std::setw(2) << std::setfill('0')
 << static_cast<int>(*begin);
 return oss.str();
}

template <typename C>
std::string bytes_to_hexstr(C const & c, bool const uppercase = false)
{
 return bytes_to_hexstr(std::cbegin(c), std::cend(c), uppercase);
}

These functions can be used as follows:

int main()
{
 std::vector<unsigned char> v{ 0xBA, 0xAD, 0xF0, 0x0D };
 std::array<unsigned char, 6> a{ {1,2,3,4,5,6} };
 unsigned char buf[5] = {0x11, 0x22, 0x33, 0x44, 0x55};

 assert(bytes_to_hexstr(v, true) == "BAADF00D");
 assert(bytes_to_hexstr(a, true) == "010203040506");
 assert(bytes_to_hexstr(buf, true) == "1122334455");

 assert(bytes_to_hexstr(v) == "baadf00d");
 assert(bytes_to_hexstr(a) == "010203040506");

Strings and Regular Expressions Chapter 3

[53]

 assert(bytes_to_hexstr(buf) == "1122334455");
}

24. String to binary conversion
The operation requested here is the opposite of the one implemented in the previous
problem. This time, however, we could write a function and not a function template. The
input is an std::string_view, which is a lightweight wrapper for a sequence of
characters. The output is a vector of 8-bit unsigned integers. The
following hexstr_to_bytes function transforms every two text characters into an
unsigned char value ("A0" becomes 0xA0), puts them into an std::vector, and returns
the vector:

unsigned char hexchar_to_int(char const ch)
{
 if (ch >= '0' && ch <= '9') return ch - '0';
 if (ch >= 'A' && ch <= 'F') return ch - 'A' + 10;
 if (ch >= 'a' && ch <= 'f') return ch - 'a' + 10;
 throw std::invalid_argument("Invalid hexadecimal character");
}

std::vector<unsigned char> hexstr_to_bytes(std::string_view str)
{
 std::vector<unsigned char> result;
 for (size_t i = 0; i < str.size(); i += 2)
 {
 result.push_back(
 (hexchar_to_int(str[i]) << 4) | hexchar_to_int(str[i+1]));
 }
 return result;
}

This function assumes the input string contains an even number of
hexadecimal digits. In cases where the input string contains an odd
number of hexadecimal digits, the last one is discarded (so that "BAD"
becomes {0xBA}). As a further exercise, modify the preceding function so
that, instead of discarding the last odd digit, it considers a leading zero so
that "BAD" becomes {0x0B, 0xAD}. Also, as yet another exercise, you
can write a version of the function that deserializes content that has the
hexadecimal digits separated by a delimiter, such as space (for example
"BA AD F0 0D").

Strings and Regular Expressions Chapter 3

[54]

The next code sample shows how this function can be used:

int main()
{
 std::vector<unsigned char> expected{ 0xBA, 0xAD, 0xF0, 0x0D, 0x42 };
 assert(hexstr_to_bytes("BAADF00D42") == expected);
 assert(hexstr_to_bytes("BaaDf00d42") == expected);
}

25. Capitalizing an article title
The function template capitalize(), implemented as follows, works with strings of any
type of characters. It does not modify the input string but creates a new string. To do so, it
uses an std::stringstream. It iterates through all the characters in the input string and
sets a flag indicating a new word to true every time a space or punctuation is encountered.
Input characters are transformed to uppercase when they represent the first character in a
word and to lowercase otherwise:

template <class Elem>
using tstring = std::basic_string<Elem, std::char_traits<Elem>,
 std::allocator<Elem>>;
template <class Elem>
using tstringstream = std::basic_stringstream<
 Elem, std::char_traits<Elem>, std::allocator<Elem>>;

template <class Elem>
tstring<Elem> capitalize(tstring<Elem> const & text)
{
 tstringstream<Elem> result;
 bool newWord = true;
 for (auto const ch : text)
 {
 newWord = newWord || std::ispunct(ch) || std::isspace(ch);
 if (std::isalpha(ch))
 {
 if (newWord)
 {
 result << static_cast<Elem>(std::toupper(ch));
 newWord = false;
 }
 else
 result << static_cast<Elem>(std::tolower(ch));
 }
 else result << ch;

Strings and Regular Expressions Chapter 3

[55]

 }
 return result.str();
}

In the following program you can see how this function is used to capitalize texts:

int main()
{
 using namespace std::string_literals;
 assert("The C++ Challenger"s ==
 capitalize("the c++ challenger"s));
 assert("This Is An Example, Should Work!"s ==
 capitalize("THIS IS an ExamplE, should wORk!"s));
}

26. Joining strings together separated by a
delimiter
Two overloads called join_strings() are listed in the following code. One takes a
container of strings and a pointer to a sequence of characters representing a separator,
while the other takes two random access iterators, representing the first and one past the
last element of a range, and a separator. They both return a new string created by
concatenating all the input strings, using an output string stream and the
std::copy function. This general-purpose function copies all the elements in the specified
range to an output range, represented by an output iterator. We are using here an
std::ostream_iterator that uses operator<< to write the assigned value to the
specified output stream each time the iterator is assigned a value:

template <typename Iter>
std::string join_strings(Iter begin, Iter end,
 char const * const separator)
{
 std::ostringstream os;
 std::copy(begin, end-1,
 std::ostream_iterator<std::string>(os, separator));
 os << *(end-1);
 return os.str();
}

template <typename C>
std::string join_strings(C const & c, char const * const separator)
{
 if (c.size() == 0) return std::string{};

Strings and Regular Expressions Chapter 3

[56]

 return join_strings(std::begin(c), std::end(c), separator);
}

int main()
{
 using namespace std::string_literals;
 std::vector<std::string> v1{ "this","is","an","example" };
 std::vector<std::string> v2{ "example" };
 std::vector<std::string> v3{ };

 assert(join_strings(v1, " ") == "this is an example"s);
 assert(join_strings(v2, " ") == "example"s);
 assert(join_strings(v3, " ") == ""s);
}

As a further exercise, you should modify the overload that takes iterators
as arguments so that it works with other types of iterators, such as
bidirectional iterators, thereby enabling the use of this function with lists
or other containers.

27. Splitting a string into tokens with a list of
possible delimiters
Two different versions of a splitting function are listed as follows:

The first one uses a single character as the delimiter. To split the input string it
uses a string stream initialized with the content of the input string,
using std::getline() to read chunks from it until the next delimiter or an end-
of-line character is encountered.
The second one uses a list of possible character delimiters, specified in
an std::string. It uses std:string::find_first_of() to locate the first
position of any of the delimiter characters, starting from a given position. It does
so in a loop until the entire input string is being processed. The extracted
substrings are added to the result vector:

template <class Elem>
using tstring = std::basic_string<Elem, std::char_traits<Elem>,
 std::allocator<Elem>>;

template <class Elem>
using tstringstream = std::basic_stringstream<
 Elem, std::char_traits<Elem>, std::allocator<Elem>>;

Strings and Regular Expressions Chapter 3

[57]

template<typename Elem>
inline std::vector<tstring<Elem>> split(tstring<Elem> text,
 Elem const delimiter)
{
 auto sstr = tstringstream<Elem>{ text };
 auto tokens = std::vector<tstring<Elem>>{};
 auto token = tstring<Elem>{};
 while (std::getline(sstr, token, delimiter))
 {
 if (!token.empty()) tokens.push_back(token);
 }
 return tokens;
}

template<typename Elem>
inline std::vector<tstring<Elem>> split(tstring<Elem> text,
 tstring<Elem> const & delimiters)
{
 auto tokens = std::vector<tstring<Elem>>{};
 size_t pos, prev_pos = 0;
 while ((pos = text.find_first_of(delimiters, prev_pos)) !=
 std::string::npos)
 {
 if (pos > prev_pos)
 tokens.push_back(text.substr(prev_pos, pos - prev_pos));
 prev_pos = pos + 1;
 }
 if (prev_pos < text.length())
 tokens.push_back(text.substr(prev_pos, std::string::npos));
 return tokens;
}

The following sample code shows two examples of how different strings can be split using
either one delimiter character or multiple delimiters:

int main()
{
 using namespace std::string_literals;
 std::vector<std::string> expected{"this", "is", "a", "sample"};
 assert(expected == split("this is a sample"s, ' '));
 assert(expected == split("this,is a.sample!!"s, ",.! "s));
}

Strings and Regular Expressions Chapter 3

[58]

28. Longest palindromic substring
The simplest solution to this problem is to try a brute-force approach, checking if each
substring is a palindrome. However, this means we need to check C(N, 2) substrings (where
N is the number of characters in the string), and the time complexity would be . The
complexity could be reduced to by storing results of sub problems. To do so we need
a table of Boolean values, of size , where the element at [i, j] indicates whether the
substring from position i to j is a palindrome. We start by initializing all elements [i,i]
with true (one-character palindromes) and all the elements [i,i+i] with true for all
consecutive two identical characters (for two-character palindromes). We then go on to
inspect substrings greater than two characters, setting the element at [i,j] to true if the
element at [i+i,j-1] is true and the characters on the positions i and j in the string are
also equal. Along the way, we retain the start position and length of the longest
palindromic substring in order to extract it after finishing computing the table.

In code, this solution appears as follows:

std::string longest_palindrome(std::string_view str)
{
 size_t const len = str.size();
 size_t longestBegin = 0;
 size_t maxLen = 1;
 std::vector<bool> table(len * len, false);
 for (size_t i = 0; i < len; i++)
 table[i*len + i] = true;

 for (size_t i = 0; i < len - 1; i++)
 {
 if (str[i] == str[i + 1])
 {
 table[i*len + i + 1] = true;
 if (maxLen < 2)
 {
 longestBegin = i;
 maxLen = 2;
 }
 }
 }

 for (size_t k = 3; k <= len; k++)
 {
 for (size_t i = 0; i < len - k + 1; i++)
 {
 size_t j = i + k - 1;
 if (str[i] == str[j] && table[(i + 1)*len + j - 1])

Strings and Regular Expressions Chapter 3

[59]

 {
 table[i*len +j] = true;
 if (maxLen < k)
 {
 longestBegin = i;
 maxLen = k;
 }
 }
 }
 }
 return std::string(str.substr(longestBegin, maxLen));
}

Here are some test cases for the longest_palindrome() function:

int main()
{
 using namespace std::string_literals;
 assert(longest_palindrome("sahararahnide") == "hararah");
 assert(longest_palindrome("level") == "level");
 assert(longest_palindrome("s") == "s");
}

29. License plate validation
The simplest way to solve this problem is by using regular expressions. The regular
expression that meets the described format is "[A-Z]{3}-[A-Z]{2} \d{3,4}".

The first function only has to validate that an input string contains only text that matches
this regular expression. For that, we can use std::regex_match(), as follows:

bool validate_license_plate_format(std::string_view str)
{
 std::regex rx(R"([A-Z]{3}-[A-Z]{2} \d{3,4})");
 return std::regex_match(str.data(), rx);
}

int main()
{
 assert(validate_license_plate_format("ABC-DE 123"));
 assert(validate_license_plate_format("ABC-DE 1234"));
 assert(!validate_license_plate_format("ABC-DE 12345"));
 assert(!validate_license_plate_format("abc-de 1234"));
}

Strings and Regular Expressions Chapter 3

[60]

The second function is slightly different. Instead of matching the input string, it must
identify all occurrences of the regular expression within the string. The regular expression
would therefore change to "([A-Z]{3}-[A-Z]{2} \d{3,4})*". To iterate through all
matches we have to use std::sregex_iterator, which is as follows:

std::vector<std::string> extract_license_plate_numbers(
 std::string const & str)
{
 std::regex rx(R"(([A-Z]{3}-[A-Z]{2} \d{3,4})*)");
 std::smatch match;
 std::vector<std::string> results;

 for(auto i = std::sregex_iterator(std::cbegin(str), std::cend(str), rx);
 i != std::sregex_iterator(); ++i)
 {
 if((*i)[1].matched)
 results.push_back(i->str());
 }
 return results;
}

int main()
{
 std::vector<std::string> expected {
 "AAA-AA 123", "ABC-DE 1234", "XYZ-WW 0001"};
 std::string text("AAA-AA 123qwe-ty 1234 ABC-DE 123456..XYZ-WW 0001");
 assert(expected == extract_license_plate_numbers(text));
}

30. Extracting URL parts
This problem is also suited to being solved using regular expressions. Finding a regular
expression that could match any URL is, however, a difficult task. The purpose of this
exercise is to help you practice your skills with the regex library, and not to find the
ultimate regular expression for this particular purpose. Therefore, the regular expression
used here is provided only for didactic purposes.

You can try regular expressions using online testers and debuggers, such
as https:/ /regex101. com/ . This can be useful in order to work out your
regular expressions and try them against various datasets.

https://regex101.com/
https://regex101.com/
https://regex101.com/
https://regex101.com/
https://regex101.com/
https://regex101.com/
https://regex101.com/
https://regex101.com/

Strings and Regular Expressions Chapter 3

[61]

For this task we will consider that a URL has the following parts: protocol and domain
are mandatory, and port, path, query, and fragment are all optional. The following
structure is used to return results from parsing an URL (alternatively, you could return a
tuple and use structured binding to bind variables to the various sub parts of the tuple):

struct uri_parts
{
 std::string protocol;
 std::string domain;
 std::optional<int> port;
 std::optional<std::string> path;
 std::optional<std::string> query;
 std::optional<std::string> fragment;
};

A function that can parse a URL and extract and return its parts could have the following
implementation. Note that the return type is an std::optional<uri_parts> because the
function might fail in matching the input string to the regular expression; in this case, the
return value is std::nullopt:

std::optional<uri_parts> parse_uri(std::string uri)
{
 std::regex rx(R"(^(\w+):\/\/([\w.-
]+)(:(\d+))?([\w\/\.]+)?(\?([\w=&]*)(#?(\w+))?)?$)");
 auto matches = std::smatch{};
 if (std::regex_match(uri, matches, rx))
 {
 if (matches[1].matched && matches[2].matched)
 {
 uri_parts parts;
 parts.protocol = matches[1].str();
 parts.domain = matches[2].str();
 if (matches[4].matched)
 parts.port = std::stoi(matches[4]);
 if (matches[5].matched)
 parts.path = matches[5];
 if (matches[7].matched)
 parts.query = matches[7];
 if (matches[9].matched)
 parts.fragment = matches[9];
 return parts;
 }
 }
 return {};
}

Strings and Regular Expressions Chapter 3

[62]

The following program tests the parse_uri() function with two URLs that contain
different parts:

int main()
{
 auto p1 = parse_uri("https://packt.com");
 assert(p1.has_value());
 assert(p1->protocol == "https");
 assert(p1->domain == "packt.com");
 assert(!p1->port.has_value());
 assert(!p1->path.has_value());
 assert(!p1->query.has_value());
 assert(!p1->fragment.has_value());

 auto p2 = parse_uri("https://bbc.com:80/en/index.html?lite=true#ui");
 assert(p2.has_value());
 assert(p2->protocol == "https");
 assert(p2->domain == "bbc.com");
 assert(p2->port == 80);
 assert(p2->path.value() == "/en/index.html");
 assert(p2->query.value() == "lite=true");
 assert(p2->fragment.value() == "ui");
}

31. Transforming dates in strings
Text transformation can be performed with regular expressions using
std::regex_replace(). A regular expression that can match dates with the specified
formats is (\d{1,2})(\.|-|/)(\d{1,2})(\.|-|/)(\d{4}). This regex defines five
capture groups; the 1st is for the day, the 2nd is for the separator (. or -), the 3rd is for the
month, the 4th is again for the separator (. or -), and the 5th is for the year.

Strings and Regular Expressions Chapter 3

[63]

Since we want to transform dates from the format dd.mm.yyyy or dd-mm-yyyy to yyyy-
mm-dd, the regex replacement format string for std::regex_replace() should be "($5-
$3-$1)":

std::string transform_date(std::string_view text)
{
 auto rx = std::regex{ R"((\d{1,2})(\.|-|/)(\d{1,2})(\.|-|/)(\d{4}))" };
 return std::regex_replace(text.data(), rx, R"($5-$3-$1)");
}

int main()
{
 using namespace std::string_literals;
 assert(transform_date("today is 01.12.2017!"s) ==
 "today is 2017-12-01!"s);
}

4
Streams and Filesystems

Problems

32. Pascal's triangle
Write a function that prints up to 10 rows of Pascal's triangle to the console.

33. Tabular printing of a list of processes
Suppose you have a snapshot of the list of all processes in a system. The information for
each process includes name, identifier, status (which can be either running or suspended),
account name (under which the process runs), memory size in bytes, and platform (which
can be either 32-bit or 64-bit). Your task is to write a function that takes such a list of
processes and prints them to the console alphabetically, in tabular format. All columns
must be left-aligned, except for the memory column which must be right-aligned. The value
of the memory size must be displayed in KB. The following is an example of the output of
this function:

chrome.exe 1044 Running marius.bancila 25180 32-bit
chrome.exe 10100 Running marius.bancila 227756 32-bit
cmd.exe 512 Running SYSTEM 48 64-bit
explorer.exe 7108 Running marius.bancila 29529 64-bit
skype.exe 22456 Suspended marius.bancila 656 64-bit

Streams and Filesystems Chapter 4

[65]

34. Removing empty lines from a text file
Write a program that, given the path to a text file, modifies the file by removing all empty
lines. Lines containing only whitespaces are considered empty.

35. Computing the size of a directory
Write a function that computes the size of a directory, in bytes, recursively. It should be
possible to indicate whether symbolic links should be followed or not.

36. Deleting files older than a given date
Write a function that, given the path to a directory and a duration, deletes all the entries
(files or subdirectories) older than the specified duration, in a recursive manner. The
duration can represent anything, such as days, hours, minutes, seconds, and so on, or a
combination of that, such as one hour and twenty minutes. If the specified directory is itself
older than the given duration, it should be deleted entirely.

37. Finding files in a directory that match a
regular expression
Write a function that, given the path to a directory and a regular expression, returns a list of
all the directory entries whose names match the regular expression.

38. Temporary log files
Create a logging class that writes text messages to a discardable text file. The text file
should have a unique name and must be located in a temporary directory. Unless specified
otherwise, this log file should be deleted when the instance of the class is destroyed.
However, it should be possible to retain the log file by moving it to a permanent location.

Streams and Filesystems Chapter 4

[66]

Solutions

32. Pascal's triangle
Pascal's triangle is a construction representing binomial coefficients. The triangle starts with
a row that has a single value of 1. Elements of each row are constructed by summing the
numbers above, to the left and right, and treating blank entries as 0. Here is an example of
the triangle with five rows:

 1
 1 1
 1 2 1
 1 3 3 1
1 4 6 4 1

To print the triangle, we must:

Shift the output position to the right with an appropriate number of spaces, so
that the top is projected on the middle of the triangle's base.
Compute each value by summing the above left and right values. A simpler
formula is that for a row i and column j, each new value x is equal to the
previous value of x multiplied by (i - j) / (j + 1), where x starts at 1.

The following is a possible implementation of a function that prints the triangle:

unsigned int number_of_digits(unsigned int const i)
{
 return i > 0 ? (int)log10((double)i) + 1 : 1;
}

void print_pascal_triangle(int const n)
{
 for (int i = 0; i < n; i++)
 {
 auto x = 1;
 std::cout << std::string((n - i - 1)*(n / 2), ' ');
 for (int j = 0; j <= i; j++)
 {
 auto y = x;
 x = x * (i - j) / (j + 1);
 auto maxlen = number_of_digits(x) - 1;
 std::cout << y << std::string(n - 1 - maxlen - n%2, ' ');
 }
 std::cout << std::endl;

Streams and Filesystems Chapter 4

[67]

 }
}

The following program asks the user to enter the number of levels and prints the triangle to
the console:

int main()
{
 int n = 0;
 std::cout << "Levels (up to 10): ";
 std::cin >> n;
 if (n > 10)
 std::cout << "Value too large" << std::endl;
 else
 print_pascal_triangle(n);
}

33. Tabular printing of a list of processes
To solve this problem, we will consider the following class representing information about
a process:

enum class procstatus {suspended, running};
enum class platforms {p32bit, p64bit};

struct procinfo
{
 int id;
 std::string name;
 procstatus status;
 std::string account;
 size_t memory;
 platforms platform;
};

In order to print the status and platform as text and not as numerical values, we need
conversion functions from the enumerations to std::string:

std::string status_to_string(procstatus const status)
{
 if (status == procstatus::suspended) return "suspended";
 else return "running";
}

std::string platform_to_string(platforms const platform)
{

Streams and Filesystems Chapter 4

[68]

 if (platform == platforms::p32bit) return "32-bit";
 else return "64-bit";
}

The processes are required to be sorted alphabetically by process name. Therefore, the first
step would be to sort the input range of processes. For the printing itself, we should use the
I/O manipulators:

void print_processes(std::vector<procinfo> processes)
{
 std::sort(
 std::begin(processes), std::end(processes),
 [](procinfo const & p1, procinfo const & p2) {
 return p1.name < p2.name; });

 for (auto const & pi : processes)
 {
 std::cout << std::left << std::setw(25) << std::setfill(' ')
 << pi.name;
 std::cout << std::left << std::setw(8) << std::setfill(' ')
 << pi.id;
 std::cout << std::left << std::setw(12) << std::setfill(' ')
 << status_to_string(pi.status);
 std::cout << std::left << std::setw(15) << std::setfill(' ')
 << pi.account;
 std::cout << std::right << std::setw(10) << std::setfill(' ')
 << (int)(pi.memory/1024);
 std::cout << std::left << ' ' << platform_to_string(pi.platform);
 std::cout << std::endl;
 }
}

The following program defines a list of processes (you can actually retrieve the list of
running processes using operating system-specific APIs) and prints it to the console in the
requested format:

int main()
{
 using namespace std::string_literals;

 std::vector<procinfo> processes
 {
 {512, "cmd.exe"s, procstatus::running, "SYSTEM"s,
 148293, platforms::p64bit },
 {1044, "chrome.exe"s, procstatus::running, "marius.bancila"s,
 25180454, platforms::p32bit},
 {7108, "explorer.exe"s, procstatus::running, "marius.bancila"s,

Streams and Filesystems Chapter 4

[69]

 2952943, platforms::p64bit },
 {10100, "chrome.exe"s, procstatus::running, "marius.bancila"s,
 227756123, platforms::p32bit},
 {22456, "skype.exe"s, procstatus::suspended, "marius.bancila"s,
 16870123, platforms::p64bit },
 };

 print_processes(processes);
}

34. Removing empty lines from a text file
A possible approach to solving this task is to do the following:

Create a temporary file to contain only the text you want to retain from the1.
original file
Read line by line from the input file and copy to the temporary file all lines that2.
are not empty
Delete the original file after finishing processing it3.
Move the temporary file to the path of the original file4.

An alternative is to move the temporary file and overwrite the original one. The following
implementation follows the steps listed. The temporary file is created in the temporary
directory returned by filesystem::temp_directory_path():

namespace fs = std::experimental::filesystem;

void remove_empty_lines(fs::path filepath)
{
 std::ifstream filein(filepath.native(), std::ios::in);
 if (!filein.is_open())
 throw std::runtime_error("cannot open input file");
 auto temppath = fs::temp_directory_path() / "temp.txt";
 std::ofstream fileout(temppath.native(),
 std::ios::out | std::ios::trunc);
 if (!fileout.is_open())
 throw std::runtime_error("cannot create temporary file");

 std::string line;
 while (std::getline(filein, line))
 {
 if (line.length() > 0 &&
 line.find_first_not_of(' ') != line.npos)
 {

Streams and Filesystems Chapter 4

[70]

 fileout << line << '\n';
 }
 }
 filein.close();
 fileout.close();

 fs::remove(filepath);
 fs::rename(temppath, filepath);
}

35. Computing the size of a directory
To compute the size of a directory, we have to iterate through all the files and sum the size
of individual files.

filesystem::recursive_directory_iterator is an iterator from the filesystem
library that allows iterating all the entries of a directory in a recursive manner. It has
various constructors, some of them taking a value of the type
filesystem::directory_options that indicates whether symbolic links should be
followed or not. The general purpose std::accumulate() algorithm can be used to sum
together the file sizes. Since the total size of a directory could exceed 2 GB, you should not
use int or long, but unsigned long long for the sum type. The following function
shows a possible implementation for the required task:

namespace fs = std::experimental::filesystem;

std::uintmax_t get_directory_size(fs::path const & dir,
 bool const follow_symlinks = false)
{
 auto iterator = fs::recursive_directory_iterator(
 dir,
 follow_symlinks ? fs::directory_options::follow_directory_symlink :
 fs::directory_options::none);

 return std::accumulate(
 fs::begin(iterator), fs::end(iterator),
 0ull,
 [](std::uintmax_t const total,
 fs::directory_entry const & entry) {
 return total + (fs::is_regular_file(entry) ?
 fs::file_size(entry.path()) : 0);
 });
}

Streams and Filesystems Chapter 4

[71]

int main()
{
 std::string path;
 std::cout << "Path: ";
 std::cin >> path;
 std::cout << "Size: " << get_directory_size(path) << std::endl;
}

36. Deleting files older than a given date
To perform filesystem operations, you should be using the filesystem library. For
working with time and duration, you should be using the chrono library. A function that
implements the requested functionality has to do the following:

Check whether the entry indicated by the target path exists and is older than the1.
given duration, and if so, delete it
If it is not older and it's a directory, iterate through all its entries and call the2.
function recursively:

namespace fs = std::experimental::filesystem;
namespace ch = std::chrono;

template <typename Duration>
bool is_older_than(fs::path const & path, Duration const duration)
{
 auto ftimeduration = fs::last_write_time(path).time_since_epoch();
 auto nowduration = (ch::system_clock::now() - duration)
 .time_since_epoch();
 return ch::duration_cast<Duration>(nowduration - ftimeduration)
 .count() > 0;
}

template <typename Duration>
void remove_files_older_than(fs::path const & path,
 Duration const duration)
{
 try
 {
 if (fs::exists(path))
 {
 if (is_older_than(path, duration))
 {
 fs::remove(path);
 }
 else if(fs::is_directory(path))

Streams and Filesystems Chapter 4

[72]

 {
 for (auto const & entry : fs::directory_iterator(path))
 {
 remove_files_older_than(entry.path(), duration);
 }
 }
 }
 }
 catch (std::exception const & ex)
 {
 std::cerr << ex.what() << std::endl;
 }
}

An alternative to using directory_iterator and recursively calling
remove_files_older_than() would be to use recursive_directory_iterator and
simply delete the entry if older than the given duration. However, this approach would
employ undefined behavior, because if a file or a directory is deleted or added to the
directory tree after the recursive directory iterator has been created, it is not specified
whether the change would be observed through the iterator. Therefore, this method should
be avoided.

The is_older_than() function template determines the time that has passed since the
system's clock epoch for the current moment and the last file writing operation and checks
whether the difference of the two is greater than the specified duration.

The remove_files_older_than() function can be used as follows:

int main()
{
 using namespace std::chrono_literals;

#ifdef _WIN32
 auto path = R"(..\Test\)";
#else
 auto path = R"(../Test/)";
#endif

 remove_files_older_than(path, 1h + 20min);
}

Streams and Filesystems Chapter 4

[73]

37. Finding files in a directory that match a
regular expression
Implementing the specified functionality should be straightforward: iterate recursively
through all the entries of the specified directory and retain all the entries that are regular
files and whose name matches the regular expression. To do that, you should use the
following:

filesystem::recursive_directory_iterator to iterate through directory
entries
regex and regex_match() to check whether the filename matches the regular
expression
copy_if() and back_inserter to copy, at the end of a vector, the directory
entries that match a specific criteria.

Such a function may look like this:

namespace fs = std::experimental::filesystem;

std::vector<fs::directory_entry> find_files(
 fs::path const & path,
 std::string_view regex)
{
 std::vector<fs::directory_entry> result;
 std::regex rx(regex.data());

 std::copy_if(
 fs::recursive_directory_iterator(path),
 fs::recursive_directory_iterator(),
 std::back_inserter(result),
 [&rx](fs::directory_entry const & entry) {
 return fs::is_regular_file(entry.path()) &&
 std::regex_match(entry.path().filename().string(), rx);
 });

 return result;
}

Streams and Filesystems Chapter 4

[74]

With this available, we can write the following code:

int main()
{
 auto dir = fs::temp_directory_path();
 auto pattern = R"(wct[0-9a-zA-Z]{3}\.tmp)";
 auto result = find_files(dir, pattern);

 for (auto const & entry : result)
 {
 std::cout << entry.path().string() << std::endl;
 }
}

38. Temporary log files
The logging class that you have to implement for this task should:

Have a constructor that creates a text file in a temporary directory and opens it
for writing
During destruction, if the file still exists, close and delete it
Have a method that closes the file and moves it to a permanent path
Overloads operator<< to write a text message to the output file

In order to create unique names for the file, you could use a UUID (also known as GUID).
The C++ standard does not support any functionality related to that, but there are third-
party libraries, such as boost::uuid, CrossGuid, or stduuid, which is actually a library
that I created. For this implementation, I will use the last one. You can find it at https:/ /
github.com/mariusbancila/ stduuid:

namespace fs = std::experimental::filesystem;

class logger
{
 fs::path logpath;
 std::ofstream logfile;
public:
 logger()
 {
 auto name = uuids::to_string(uuids::uuid_random_generator{}());
 logpath = fs::temp_directory_path() / (name + ".tmp");
 logfile.open(logpath.c_str(), std::ios::out|std::ios::trunc);
 }

https://github.com/mariusbancila/stduuid
https://github.com/mariusbancila/stduuid
https://github.com/mariusbancila/stduuid
https://github.com/mariusbancila/stduuid
https://github.com/mariusbancila/stduuid
https://github.com/mariusbancila/stduuid
https://github.com/mariusbancila/stduuid
https://github.com/mariusbancila/stduuid
https://github.com/mariusbancila/stduuid
https://github.com/mariusbancila/stduuid

Streams and Filesystems Chapter 4

[75]

 ~logger() noexcept
 {
 try {
 if(logfile.is_open()) logfile.close();
 if (!logpath.empty()) fs::remove(logpath);
 }
 catch (...) {}
 }

 void persist(fs::path const & path)
 {
 logfile.close();
 fs::rename(logpath, path);
 logpath.clear();
 }

 logger& operator<<(std::string_view message)
 {
 logfile << message.data() << '\n';
 return *this;
 }
};

An example of using this class is as follows:

int main()
{
 logger log;
 try
 {
 log << "this is a line" << "and this is another one";
 throw std::runtime_error("error");
 }
 catch (...)
 {
 log.persist(R"(lastlog.txt)");
 }
}

5
Date and Time

Problems

39. Measuring function execution time
Write a function that can measure the execution time of a function (with any number of
arguments) in any required duration (such as seconds, milliseconds, microseconds, and so
on).

40. Number of days between two dates
Write a function that, given two dates, returns the number of days between the two dates.
The function should work regardless of the order of the input dates.

41. Day of the week
Write a function that, given a date, determines the day of the week. This function should
return a value between 1 (for Monday) and 7 (for Sunday).

Date and Time Chapter 5

[77]

42. Day and week of the year
Write a function that, given a date, returns the day of the year (from 1 to 365 or 366 for leap
years) and another function that, for the same input, returns the calendar week of the year.

43. Meeting time for multiple time zones
Write a function that, given a list of meeting participants and their time zones, displays the
local meeting time for each participant.

44. Monthly calendar
Write a function that, given a year and month, prints to the console the month calendar.
The expected output format is as follows (the example is for December 2017):

Mon Tue Wed Thu Fri Sat Sun
 1 2 3
 4 5 6 7 8 9 10
 11 12 13 14 15 16 17
 18 19 20 21 22 23 24
 25 26 27 28 29 30 31

Date and Time Chapter 5

[78]

Solutions

39. Measuring function execution time
To measure the execution time of a function, you should retrieve the current time before the
function execution, execute the function, then retrieve the current time again and determine
how much time passed between the two time points. For convenience, this can all be put in
a variadic function template that takes as arguments the function to execute and its
arguments, and:

Uses std::high_resolution_clock by default to determine the current time.
Uses std::invoke() to execute the function to measure, with its specified
arguments.
Returns a duration and not a number of ticks for a particular duration. This is
important so that you don't lose resolution. It enables you to add execution time
duration of various resolutions, such as seconds and milliseconds, which would
not be possible by returning a tick count:

template <typename Time = std::chrono::microseconds,
 typename Clock = std::chrono::high_resolution_clock>
struct perf_timer
{
 template <typename F, typename... Args>
 static Time duration(F&& f, Args... args)
 {
 auto start = Clock::now();
 std::invoke(std::forward<F>(f), std::forward<Args>(args)...);
 auto end = Clock::now();

 return std::chrono::duration_cast<Time>(end - start);
 }
};

This function template can be used as follows:

void f()
{
 // simulate work
 std::this_thread::sleep_for(2s);
}

Date and Time Chapter 5

[79]

void g(int const a, int const b)
{
 // simulate work
 std::this_thread::sleep_for(1s);
}

int main()
{
 auto t1 = perf_timer<std::chrono::microseconds>::duration(f);
 auto t2 = perf_timer<std::chrono::milliseconds>::duration(g, 1, 2);

 auto total = std::chrono::duration<double, std::nano>(t1 + t2).count();
}

40. Number of days between two dates
As of C++17, the chrono standard library does not have support for working with dates,
weeks, calendars, time zones, and other useful related features. This will change in C++20,
as time zones and calendar support have been added to the standard at the Jacksonville
meeting, in March 2018. The new additions are based on an open source library called
date, built on top of chrono, developed by Howard Hinnant and available on GitHub at
https://github.com/ HowardHinnant/ date. We will use this library to solve several of the
problems in this chapter. Although in this implementation the namespace is date, in C++20
it will be part of std::chrono. However, you should be able to simply replace the
namespace without any further code changes.

To solve this task, you could use the date::sys_days class, available in the
date.h header. It represents a count of days since the std::system_clock epoch. This is
a time_point with a resolution of a day and is implicitly convertible to
std::system_clock::time_point. Basically, you have to construct two objects of this
type and subtract them. The result is exactly the number of days between the two dates.
The following is a simple implementation of such a function:

inline int number_of_days(
 int const y1, unsigned int const m1, unsigned int const d1,
 int const y2, unsigned int const m2, unsigned int const d2)
{
 using namespace date;

 return (sys_days{ year{ y1 } / month{ m1 } / day{ d1 } } -
 sys_days{ year{ y2 } / month{ m2 } / day{ d2 } }).count();
}

https://github.com/HowardHinnant/date
https://github.com/HowardHinnant/date
https://github.com/HowardHinnant/date
https://github.com/HowardHinnant/date
https://github.com/HowardHinnant/date
https://github.com/HowardHinnant/date
https://github.com/HowardHinnant/date
https://github.com/HowardHinnant/date
https://github.com/HowardHinnant/date
https://github.com/HowardHinnant/date
https://github.com/HowardHinnant/date

Date and Time Chapter 5

[80]

inline int number_of_days(date::sys_days const & first,
 date::sys_days const & last)
{
 return (last - first).count();
}

Here are a couple of examples of how these overloaded functions could be used:

int main()
{
 auto diff1 = number_of_days(2016, 9, 23, 2017, 5, 15);

 using namespace date::literals;
 auto diff2 = number_of_days(2016_y/sep/23, 15_d/may/2017);
}

41. Day of the week
Solving this problem is again relatively straightforward if you use the date library.
However, this time, you have to use the following types:

date::year_month_day, a structure that represents a day with fields for year,
month (1 to 12), and day (1 to 31).
date::iso_week::year_weeknum_weekday, from the iso_week.h header, is
a structure that has fields for year, number of weeks in a year, and number of
days in a week (1 to 7). This class is implicitly convertible to and from
date::sys_days, which makes it explicitly convertible to any other calendar
system that is implicitly convertible to and from date::sys_days, such as
date::year_month_day.

With that being said, the problem resolves to creating a year_month_day object to
represent the desired date and then a year_weeknum_weekday object from it, and
retrieving the day of the week with weekday():

unsigned int week_day(int const y, unsigned int const m,
 unsigned int const d)
{
 using namespace date;

 if(m < 1 || m > 12 || d < 1 || d > 31) return 0;

 auto const dt = date::year_month_day{year{ y }, month{ m }, day{ d }};
 auto const tiso = iso_week::year_weeknum_weekday{ dt };

Date and Time Chapter 5

[81]

 return (unsigned int)tiso.weekday();
}

int main()
{
 auto wday = week_day(2018, 5, 9);
}

42. Day and week of the year
The solution to this two-part problem should be straightforward from the previous two:

To compute the day of the year, you subtract two date::sys_days objects, one
representing the given day and the other January 0 of the same year.
Alternatively, you could start from January 1 and add 1 to the result.
To determine the week number of the year, construct a year_weeknum_weekday
object, like in the previous problem, and retrieve the weeknum() value:

int day_of_year(int const y, unsigned int const m,
 unsigned int const d)
{
 using namespace date;

 if(m < 1 || m > 12 || d < 1 || d > 31) return 0;

 return (sys_days{ year{ y } / month{ m } / day{ d } } -
 sys_days{ year{ y } / jan / 0 }).count();
}

unsigned int calendar_week(int const y, unsigned int const m,
 unsigned int const d)
{
 using namespace date;

 if(m < 1 || m > 12 || d < 1 || d > 31) return 0;

 auto const dt = date::year_month_day{year{ y }, month{ m }, day{ d }};
 auto const tiso = iso_week::year_weeknum_weekday{ dt };

 return (unsigned int)tiso.weeknum();
}

Date and Time Chapter 5

[82]

These functions can be used as follows:

int main()
{
 int y = 0;
 unsigned int m = 0, d = 0;
 std::cout << "Year:"; std::cin >> y;
 std::cout << "Month:"; std::cin >> m;
 std::cout << "Day:"; std::cin >> d;

 std::cout << "Calendar week:" << calendar_week(y, m, d) << std::endl;
 std::cout << "Day of year:" << day_of_year(y, m, d) << std::endl;
}

43. Meeting time for multiple time zones
To work with time zones, you must use the tz.h header of the date library. However, this
needs the IANA Time Zone Database to be downloaded and uncompressed on your machine.

This is how to prepare the time zone database for the date library:

Download the latest version of the database from https:/ /www. iana. org/ time-
zones. Currently, the latest version is called tzdata2017c.tar.gz.
Uncompress this to any location on your machine, in a subdirectory called
tzdata. Let's suppose the parent directory is
c:\work\challenges\libs\date (on a Windows machine); this will have a
sub directory called tzdata.
For Windows, you need to download a file called windowsZones.xml,
containing mappings of Windows time zones to IANA time zones. This is
available at https:/ / unicode. org/repos/ cldr/ trunk/ common/ supplemental/
windowsZones. xml. The file must be stored in the same tzdata sub directory
created earlier.
In your project settings, define a preprocessor macro called INSTALL that
indicates the parent directory for the tzdata sub directory. For the example
given here, you should have INSTALL=c:\\work\\challenges\\libs\\date.
(Note that the double backslash is necessary because the macro is used to create a
file path using stringification and concatenation, and would otherwise result in
an incorrect path.)

https://www.iana.org/time-zones
https://www.iana.org/time-zones
https://www.iana.org/time-zones
https://www.iana.org/time-zones
https://www.iana.org/time-zones
https://www.iana.org/time-zones
https://www.iana.org/time-zones
https://www.iana.org/time-zones
https://www.iana.org/time-zones
https://www.iana.org/time-zones
https://www.iana.org/time-zones
https://www.iana.org/time-zones
https://unicode.org/repos/cldr/trunk/common/supplemental/windowsZones.xml
https://unicode.org/repos/cldr/trunk/common/supplemental/windowsZones.xml
https://unicode.org/repos/cldr/trunk/common/supplemental/windowsZones.xml
https://unicode.org/repos/cldr/trunk/common/supplemental/windowsZones.xml
https://unicode.org/repos/cldr/trunk/common/supplemental/windowsZones.xml
https://unicode.org/repos/cldr/trunk/common/supplemental/windowsZones.xml
https://unicode.org/repos/cldr/trunk/common/supplemental/windowsZones.xml
https://unicode.org/repos/cldr/trunk/common/supplemental/windowsZones.xml
https://unicode.org/repos/cldr/trunk/common/supplemental/windowsZones.xml
https://unicode.org/repos/cldr/trunk/common/supplemental/windowsZones.xml
https://unicode.org/repos/cldr/trunk/common/supplemental/windowsZones.xml
https://unicode.org/repos/cldr/trunk/common/supplemental/windowsZones.xml
https://unicode.org/repos/cldr/trunk/common/supplemental/windowsZones.xml
https://unicode.org/repos/cldr/trunk/common/supplemental/windowsZones.xml
https://unicode.org/repos/cldr/trunk/common/supplemental/windowsZones.xml
https://unicode.org/repos/cldr/trunk/common/supplemental/windowsZones.xml
https://unicode.org/repos/cldr/trunk/common/supplemental/windowsZones.xml
https://unicode.org/repos/cldr/trunk/common/supplemental/windowsZones.xml
https://unicode.org/repos/cldr/trunk/common/supplemental/windowsZones.xml
https://unicode.org/repos/cldr/trunk/common/supplemental/windowsZones.xml

Date and Time Chapter 5

[83]

To solve this problem, we will consider a user structure with minimal information, such as
name and time zone. The time zone is created using the date::locate_zone() function:

struct user
{
 std::string Name;
 date::time_zone const * Zone;

 explicit user(std::string_view name, std::string_view zone)
 : Name{name.data()}, Zone(date::locate_zone(zone.data()))
 {}
};

A function that displays a list of users and their local time for the start of a meeting should
transform the given time from a reference zone to the time in their own zone. To do that,
we can use a conversion constructor of the date::zoned_time class:

template <class Duration, class TimeZonePtr>
void print_meeting_times(
 date::zoned_time<Duration, TimeZonePtr> const & time,
 std::vector<user> const & users)
{
 std::cout
 << std::left << std::setw(15) << std::setfill(' ')
 << "Local time: "
 << time << std::endl;

 for (auto const & user : users)
 {
 std::cout
 << std::left << std::setw(15) << std::setfill(' ')
 << user.Name
 << date::zoned_time<Duration, TimeZonePtr>(user.Zone, time)
 << std::endl;
 }
}

This function can be used as follows, where the given time (hour and minute) is
represented in the current time zone:

int main()
{
 std::vector<user> users{
 user{ "Ildiko", "Europe/Budapest" },
 user{ "Jens", "Europe/Berlin" },
 user{ "Jane", "America/New_York" }
 };

Date and Time Chapter 5

[84]

 unsigned int h, m;
 std::cout << "Hour:"; std::cin >> h;
 std::cout << "Minutes:"; std::cin >> m;

 date::year_month_day today =
 date::floor<date::days>(ch::system_clock::now());

 auto localtime = date::zoned_time<std::chrono::minutes>(
 date::current_zone(),
 static_cast<date::local_days>(today)+ch::hours{h}+ch::minutes{m});

 print_meeting_times(localtime, users);
}

44. Monthly calendar
Solving this task is actually partially based on the previous tasks. In order to print the days
of the month as indicated in the problem, you should know:

What weekday is the first day of the month. This can be determined using the
week_day() function created for a previous problem.
The number of days in the month. This can be determined using the
date::year_month_day_last structure and retrieving the value of day().

With this information determined first, you should:

Print empty values for the first week before the first weekday
Print the day number with the proper formatting from 1 to the last day of the
month
Break on a new line after every seven days (counting from day 1 of the first week,
even though that could belong to the previous month)

The implementation of all this is shown here:

unsigned int week_day(int const y, unsigned int const m,
 unsigned int const d)
{
 using namespace date;

 if(m < 1 || m > 12 || d < 1 || d > 31) return 0;

 auto const dt = date::year_month_day{year{ y }, month{ m }, day{ d }};
 auto const tiso = iso_week::year_weeknum_weekday{ dt };

Date and Time Chapter 5

[85]

 return (unsigned int)tiso.weekday();
}

void print_month_calendar(int const y, unsigned int m)
{
 using namespace date;
 std::cout << "Mon Tue Wed Thu Fri Sat Sun" << std::endl;

 auto first_day_weekday = week_day(y, m, 1);
 auto last_day = (unsigned int)year_month_day_last(
 year{ y }, month_day_last{ month{ m } }).day();

 unsigned int index = 1;
 for (unsigned int day = 1; day < first_day_weekday; ++day, ++index)
 {
 std::cout << " ";
 }

 for (unsigned int day = 1; day <= last_day; ++day)
 {
 std::cout << std::right << std::setfill(' ') << std::setw(3)
 << day << ' ';
 if (index++ % 7 == 0) std::cout << std::endl;
 }

 std::cout << std::endl;
}

int main()
{
 print_month_calendar(2017, 12);
}

6
Algorithms and Data Structures

Problems

45. Priority queue
Write a data structure that represents a priority queue that provides constant time lookup
for the largest element, but has logarithmic time complexity for adding and removing
elements. A queue inserts new elements at the end and removes elements from the top. By
default, the queue should use operator< to compare elements, but it should be possible
for the user to provide a comparison function object that returns true if the first argument
is less than the second. The implementation must provide at least the following operations:

push() to add a new element
pop() to remove the top element
top() to provide access to the top element
size() to indicate the number of elements in the queue
empty() to indicate whether the queue is empty

Algorithms and Data Structures Chapter 6

[87]

46. Circular buffer
Create a data structure that represents a circular buffer of a fixed size. A circular buffer
overwrites existing elements when the buffer is being filled beyond its fixed size. The class
you must write should:

Prohibit default construction
Support the creation of objects with a specified size
Allow checking of the buffer capacity and status
(empty(), full(), size(), capacity())
Add a new element, an operation that could potentially overwrite the oldest
element in the buffer
Remove the oldest element from the buffer
Support iteration through its elements

47. Double buffer
Write a class that represents a buffer that could be written and read at the same time
without the two operations colliding. A read operation must provide access to the old data
while a write operation is in progress. Newly written data must be available for reading
upon completion of the write operation.

48. The most frequent element in a range
Write a function that, given a range, returns the most frequent element and the number of
times it appears in the range. If more than one element appears the same maximum number
of times then the function should return all the elements. For instance, for the range
{1,1,3,5,8,13,3,5,8,8,5}, it should return {5, 3} and {8, 3}.

49. Text histogram
Write a program that, given a text, determines and prints a histogram with the frequency of
each letter of the alphabet. The frequency is the percentage of the number of appearances of
each letter from the total count of letters. The program should count only the appearances
of letters and ignore digits, signs, and other possible characters. The frequency must be
determined based on the count of letters and not the text size.

Algorithms and Data Structures Chapter 6

[88]

50. Filtering a list of phone numbers
Write a function that, given a list of phone numbers, returns only the numbers that are from
a specified country. The country is indicated by its phone country code, such as 44 for Great
Britain. Phone numbers may start with the country code, a + followed by the country code,
or have no country code. The ones from this last category must be ignored.

51. Transforming a list of phone numbers
Write a function that, given a list of phone numbers, transforms them so they all start with
a specified phone country code, preceded by the + sign. Any whitespaces from a phone
number should also be removed. The following is a list of input and output examples:

07555 123456 => +447555123456
07555123456 => +447555123456
+44 7555 123456 => +447555123456
44 7555 123456 => +447555123456
7555 123456 => +447555123456

52. Generating all the permutations of a string
Write a function that, prints on the console all the possible permutations of a given string.
You should provide two versions of this function: one that uses recursion, and one that
does not.

53. Average rating of movies
Write a program that calculates and prints the average rating of a list of movies. Each
movie has a list of ratings from 1 to 10 (where 1 is the lowest and 10 is the highest rating). In
order to compute the rating, you must remove 5% of the highest and lowest ratings before
computing their average. The result must be displayed with a single decimal point.

54. Pairwise algorithm
Write a general-purpose function that, given a range, returns a new range with pairs of
consecutive elements from the input range. Should the input range have an odd number of
elements, the last one must be ignored. For example, if the input range was {1, 1, 3, 5,
8, 13, 21}, the result must be { {1, 1}, {3, 5}, {8, 13}}.

Algorithms and Data Structures Chapter 6

[89]

55. Zip algorithm
Write a function that, given two ranges, returns a new range with pairs of elements from
the two ranges. Should the two ranges have different sizes, the result must contain as many
elements as the smallest of the input ranges. For example, if the input ranges were { 1, 2,
3, 4, 5, 6, 7, 8, 9, 10 } and { 1, 1, 3, 5, 8, 13, 21 }, the result should be
{{1,1}, {2,1}, {3,3}, {4,5}, {5,8}, {6,13}, {7,21}}.

56. Select algorithm
Write a function that, given a range of values and a projection function, transforms each
value into a new one and returns a new range with the selected values. For instance, if you
have a type book that has an id, title, and author, and have a range of such book values,
it should be possible for the function to select only the title of the books. Here is an example
of how the function should be used:

struct book
{
 int id;
 std::string title;
 std::string author;
};

std::vector<book> books{
 {101, "The C++ Programming Language", "Bjarne Stroustrup"},
 {203, "Effective Modern C++", "Scott Meyers"},
 {404, "The Modern C++ Programming Cookbook", "Marius Bancila"}};

auto titles = select(books, [](book const & b) {return b.title; });

Algorithms and Data Structures Chapter 6

[90]

57. Sort algorithm
Write a function that, given a pair of random-access iterators to define its lower and upper
bounds, sorts the elements of the range using the quicksort algorithm. There should be two
overloads of the sort function: one that uses operator< to compare the elements of the
range and put them in ascending order, and one that uses a user-defined binary
comparison function for comparing the elements.

58. The shortest path between nodes
Write a program that, given a network of nodes and the distances between them, computes
and displays the shortest distance from a specified node to all the others, as well as the path
between the start and end node. As input, consider the following undirected graph:

Algorithms and Data Structures Chapter 6

[91]

The program output for this graph should be the following:

A -> A : 0 A
A -> B : 7 A -> B
A -> C : 9 A -> C
A -> D : 20 A -> C -> D
A -> E : 20 A -> C -> F -> E
A -> F : 11 A -> C -> F

59. The Weasel program
Write a program that implements Richard Dawkins' weasel computer simulation, described
in Dawkins' words as follows (The Blind Watchmaker, chapter 3):

We again use our computer monkey, but with a crucial difference in its program. It again
begins by choosing a random sequence of 28 letters, just as before ... it duplicates it
repeatedly, but with a certain chance of random error – 'mutation' – in the copying. The
computer examines the mutant nonsense phrases, the 'progeny' of the original phrase, and
chooses the one which, however slightly, most resembles the target phrase, METHINKS IT
IS LIKE A WEASEL.

60. The Game of Life
Write a program that implements the Game of Life cellular automaton proposed by John
Horton Conway. The universe of this game is a grid of square cells that could have one of
two states: dead or alive. Every cell interacts with its adjacent neighbors, with the following
transactions occurring on every step:

Any live cell with fewer than two live neighbors dies, as if caused by under-
population
Any live cell with two or three live neighbors lives on to the next generation
Any live cell with more than three live neighbors dies, as if by overpopulation
Any dead cell with exactly three live neighbors becomes a live cell, as if by
reproduction

The status of the game on each iteration should be displayed on the console, and for
convenience, you should pick a reasonable size, such as 20 rows x 50 columns.

Algorithms and Data Structures Chapter 6

[92]

Solutions

45. Priority queue
A priority queue is an abstract data type whose elements have a priority attached to them.
Instead of working as a first-in-first-out container, a priority queue makes elements
available in the order of their priority. This data structure is used in algorithms such as
Dijkstra's shortest path, Prim's algorithm, heap sort, the A* search algorithm, in Huffman
codes used for data compression, and others.

A very simple approach to implement a priority queue would be to use an std::vector as
the underlying container of elements and always maintain it sorted. That means the
maximum and minimum elements are always at the two ends. However, this approach
does not provide the most efficient operations.

The most suitable data structure that can be used to implement a priority queue is a heap.
This is a tree-based data structure that satisfies the following property: if P is a parent node
of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less
than or equal to (in a min heap) the key of C.

The standard library provides several operations for working with heaps:

std::make_heap(): This creates a max heap for the given range, using
either operator< or a user-provided comparison function to order the elements
std::push_heap(): This inserts a new element at the end of the max heap
std::pop_heap(): This removes the first element of the heap (by swapping the
values in the first and last position and making the sub-range [first,
last-1) a max heap)

A priority queue implementation, that uses std::vector to hold data and the standard
functions for heaps, can look as follows:

template <class T,
 class Compare = std::less<typename std::vector<T>::value_type>>
class priority_queue
{
 typedef typename std::vector<T>::value_type value_type;
 typedef typename std::vector<T>::size_type size_type;
 typedef typename std::vector<T>::reference reference;
 typedef typename std::vector<T>::const_reference const_reference;
public:
 bool empty() const noexcept { return data.empty(); }

Algorithms and Data Structures Chapter 6

[93]

 size_type size() const noexcept { return data.size(); }

 void push(value_type const & value)
 {
 data.push_back(value);
 std::push_heap(std::begin(data), std::end(data), comparer);
 }

 void pop()
 {
 std::pop_heap(std::begin(data), std::end(data), comparer);
 data.pop_back();
 }

 const_reference top() const { return data.front(); }
 void swap(priority_queue& other) noexcept
 {
 swap(data, other.data);
 swap(comparer, other.comparer);
 }
private:
 std::vector<T> data;
 Compare comparer;
};

template<class T, class Compare>
void swap(priority_queue<T, Compare>& lhs,
 priority_queue<T, Compare>& rhs)
noexcept(noexcept(lhs.swap(rhs)))
{
 lhs.swap(rhs);
}

This class can be used as follows:

int main()
{
 priority_queue<int> q;
 for (int i : {1, 5, 3, 1, 13, 21, 8})
 {
 q.push(i);
 }

 assert(!q.empty());
 assert(q.size() == 7);

 while (!q.empty())
 {

Algorithms and Data Structures Chapter 6

[94]

 std::cout << q.top() << ' ';
 q.pop();
 }
}

46. Circular buffer
A circular buffer is a fixed-size container that behaves as if its two ends were connected to
form a virtual circular memory layout. Its main benefit is that you don't need a large
amount of memory to retain data, as older entries are overwritten by newer ones. Circular
buffers are used in I/O buffering, bounded logging (when you only want to retain the last
messages), buffers for asynchronous processing, and others.

We can differentiate between two situations:

The number of elements added to the buffer has not reached its capacity (its user-1.
defined fixed size). In this case, it behaves likes a regular container, such as a
vector.
The number of elements added to the buffer has reached and exceeded its2.
capacity. In this case, the buffer's memory is reused and older elements are being
overwritten.

We could represent such a structure using:

A regular container with a pre-allocated number of elements
A head pointer to indicate the position of the last inserted element
A size counter to indicate the number of elements in the container, which cannot
exceed its capacity (since elements are being overwritten in this case)

The two main operations with a circular buffer are:

Adding a new element to the buffer. We always insert at the next position of the
head pointer (or index). This is the push() method shown below.
Removing an existing element from the buffer. We always remove the oldest
element. That element is at position head - size (this must account for the
circular nature of the index). This is the pop() method shown below.

Algorithms and Data Structures Chapter 6

[95]

The implementation of such a data structure is shown here:

template <class T>
class circular_buffer
{
 typedef circular_buffer_iterator<T> const_iterator;

 circular_buffer() = delete;
public:
 explicit circular_buffer(size_t const size) :data_(size)
 {}

 bool clear() noexcept { head_ = -1; size_ = 0; }
 bool empty() const noexcept { return size_ == 0; }
 bool full() const noexcept { return size_ == data_.size(); }
 size_t capacity() const noexcept { return data_.size(); }
 size_t size() const noexcept { return size_; }

 void push(T const item)
 {
 head_ = next_pos();
 data_[head_] = item;
 if (size_ < data_.size()) size_++;
 }

 T pop()
 {
 if (empty()) throw std::runtime_error("empty buffer");
 auto pos = first_pos();
 size_--;
 return data_[pos];
 }

 const_iterator begin() const
 {
 return const_iterator(*this, first_pos(), empty());
 }

 const_iterator end() const
 {
 return const_iterator(*this, next_pos(), true);
 }

private:
 std::vector<T> data_;
 size_t head_ = -1;
 size_t size_ = 0;

Algorithms and Data Structures Chapter 6

[96]

 size_t next_pos() const noexcept
 { return size_ == 0 ? 0 : (head_ + 1) % data_.size(); }
 size_t first_pos() const noexcept
 { return size_ == 0 ? 0 : (head_ + data_.size() - size_ + 1) %
 data_.size(); }

 friend class circular_buffer_iterator<T>;
};

Because of the circular nature of the indexes mapped on a contiguous memory layout, the
iterator type for this class cannot be a pointer type. The iterators must be able to point
elements by applying modulo operations on the index. Here is a possible implementation
for such an iterator:

template <class T>
class circular_buffer_iterator
{
 typedef circular_buffer_iterator self_type;
 typedef T value_type;
 typedef T& reference;
 typedef T const& const_reference;
 typedef T* pointer;
 typedef std::random_access_iterator_tag iterator_category;
 typedef ptrdiff_t difference_type;
public:
 circular_buffer_iterator(circular_buffer<T> const & buf,
 size_t const pos, bool const last) :
 buffer_(buf), index_(pos), last_(last)
 {}

 self_type & operator++ ()
 {
 if (last_)
 throw std::out_of_range("Iterator cannot be incremented past the
end of range.");
 index_ = (index_ + 1) % buffer_.data_.size();
 last_ = index_ == buffer_.next_pos();
 return *this;
 }

 self_type operator++ (int)
 {
 self_type tmp = *this;
 ++*this;
 return tmp;
 }

Algorithms and Data Structures Chapter 6

[97]

 bool operator== (self_type const & other) const
 {
 assert(compatible(other));
 return index_ == other.index_ && last_ == other.last_;
 }

 bool operator!= (self_type const & other) const
 {
 return !(*this == other);
 }

 const_reference operator* () const
 {
 return buffer_.data_[index_];
 }

 const_reference operator-> () const
 {
 return buffer_.data_[index_];
 }
private:
 bool compatible(self_type const & other) const
 {
 return &buffer_ == &other.buffer_;
 }

 circular_buffer<T> const & buffer_;
 size_t index_;
 bool last_;
};

With all these implemented, we could write code such as the following. Notice that in the
comments, the first range shows the actual content of the internal vector, and the second
range shows the logical content as exposed with iterator access:

int main()
{
 circular_buffer<int> cbuf(5); // {0, 0, 0, 0, 0} -> {}

 cbuf.push(1); // {1, 0, 0, 0, 0} -> {1}
 cbuf.push(2); // {1, 2, 0, 0, 0} -> {1, 2}
 cbuf.push(3); // {1, 2, 3, 0, 0} -> {1, 2, 3}

 auto item = cbuf.pop(); // {1, 2, 3, 0, 0} -> {2, 3}
 cbuf.push(4); // {1, 2, 3, 4, 0} -> {2, 3, 4}
 cbuf.push(5); // {1, 2, 3, 4, 5} -> {2, 3, 4, 5}
 cbuf.push(6); // {6, 2, 3, 4, 5} -> {2, 3, 4, 5, 6}

Algorithms and Data Structures Chapter 6

[98]

 cbuf.push(7); // {6, 7, 3, 4, 5} -> {3, 4, 5, 6, 7}
 cbuf.push(8); // {6, 7, 8, 4, 5} -> {4, 5, 6, 7, 8}

 item = cbuf.pop(); // {6, 7, 8, 4, 5} -> {5, 6, 7, 8}
 item = cbuf.pop(); // {6, 7, 8, 4, 5} -> {6, 7, 8}
 item = cbuf.pop(); // {6, 7, 8, 4, 5} -> {7, 8}

 item = cbuf.pop(); // {6, 7, 8, 4, 5} -> {8}
 item = cbuf.pop(); // {6, 7, 8, 4, 5} -> {}

 cbuf.push(9); // {6, 7, 8, 9, 5} -> {9}
}

47. Double buffer
The problem described here is a typical double buffering situation. Double buffering is the
most common case of multiple buffering, which is a technique that allows a reader to see a
complete version of the data and not a partially updated version produced by a writer. This
is a common technique – especially in computer graphics – for avoiding flickering.

In order to implement the requested functionality, the buffer class that we should write
must have two internal buffers: one that contains temporary data being written, and
another one that contains completed (or committed) data. Upon the completion of a write
operation, the content of the temporary buffer is written in the primary buffer. For the
internal buffers, the implementation below uses std::vector. When the write operation
completes, instead of copying data from one buffer to the other, we just swap the content of
the two, which is a much faster operation. Access to the completed data is provided with
either the read() function, which copies the content of the read buffer into a designated
output, or with direct element access (overloaded operator[]). Access to the read buffer is
synchronized with an std::mutex to make it safe to read from one thread while another is
writing to the buffer:

template <typename T>
class double_buffer
{
 typedef T value_type;
 typedef T& reference;
 typedef T const & const_reference;
 typedef T* pointer;
public:
 explicit double_buffer(size_t const size) :
 rdbuf(size), wrbuf(size)
 {}

Algorithms and Data Structures Chapter 6

[99]

 size_t size() const noexcept { return rdbuf.size(); }

 void write(T const * const ptr, size_t const size)
 {
 std::unique_lock<std::mutex> lock(mt);
 auto length = std::min(size, wrbuf.size());
 std::copy(ptr, ptr + length, std::begin(wrbuf));
 wrbuf.swap(rdbuf);
 }

 template <class Output>
 void read(Output it) const
 {
 std::unique_lock<std::mutex> lock(mt);
 std::copy(std::cbegin(rdbuf), std::cend(rdbuf), it);
 }
 pointer data() const
 {
 std::unique_lock<std::mutex> lock(mt);
 return rdbuf.data();
 }

 reference operator[](size_t const pos)
 {
 std::unique_lock<std::mutex> lock(mt);
 return rdbuf[pos];
 }
 const_reference operator[](size_t const pos) const
 {
 std::unique_lock<std::mutex> lock(mt);
 return rdbuf[pos];
 }

 void swap(double_buffer other)
 {
 std::swap(rdbuf, other.rdbuf);
 std::swap(wrbuf, other.wrbuf);
 }

private:
 std::vector<T> rdbuf;
 std::vector<T> wrbuf;
 mutable std::mutex mt;
};

Algorithms and Data Structures Chapter 6

[100]

The following is an example of how this double buffer class can be used for both writing
and reading by two different entities:

template <typename T>
void print_buffer(double_buffer<T> const & buf)
{
 buf.read(std::ostream_iterator<T>(std::cout, " "));
 std::cout << std::endl;
}

int main()
{
 double_buffer<int> buf(10);

 std::thread t([&buf]() {
 for (int i = 1; i < 1000; i += 10)
 {
 int data[] = { i, i + 1, i + 2, i + 3, i + 4,
 i + 5, i + 6,i + 7,i + 8,i + 9 };
 buf.write(data, 10);

 using namespace std::chrono_literals;
 std::this_thread::sleep_for(100ms);
 }
 });

 auto start = std::chrono::system_clock::now();
 do
 {
 print_buffer(buf);

 using namespace std::chrono_literals;
 std::this_thread::sleep_for(150ms);
 } while (std::chrono::duration_cast<std::chrono::seconds>(
 std::chrono::system_clock::now() - start).count() < 12);

 t.join();
}

Algorithms and Data Structures Chapter 6

[101]

48. The most frequent element in a range
In order to determine and return the most frequent element in a range you should do the
following:

Count the appearances of each element in an std::map. The key is the element
and the value is its number of appearances.
Determine the maximum element of the map using std::max_element(). The
result is a map element, that is, a pair containing the element and its number of
appearances.

Copy all map elements that have the value (appearance count) equal to the
maximum element's value and return that as the final result.

An implementation of the steps described previously is shown in the following listing:

template <typename T>
std::vector<std::pair<T, size_t>> find_most_frequent(
 std::vector<T> const & range)
{
 std::map<T, size_t> counts;
 for (auto const & e : range) counts[e]++;

 auto maxelem = std::max_element(
 std::cbegin(counts), std::cend(counts),
 [](auto const & e1, auto const & e2) {
 return e1.second < e2.second;
 });

 std::vector<std::pair<T, size_t>> result;

 std::copy_if(
 std::begin(counts), std::end(counts),
 std::back_inserter(result),
 [maxelem](auto const & kvp) {
 return kvp.second == maxelem->second;
 });

 return result;
}

Algorithms and Data Structures Chapter 6

[102]

The find_most_frequent() function can be used as follows:

int main()
{
 auto range = std::vector<int>{1,1,3,5,8,13,3,5,8,8,5};
 auto result = find_most_frequent(range);

 for (auto const & e : result)
 {
 std::cout << e.first << " : " << e.second << std::endl;
 }
}

49. Text histogram
A histogram is a representation of the distribution of numerical data. Widely known
histograms are the color and image histograms that are used in photography and image
processing. A text histogram, as described here, is a representation of the frequency of
letters in a given text. This problem is partially similar to the previous one, except that the
range elements are characters now and we must determine the frequency of them all. To
solve this problem you should:

Count the appearances of each letter using a map. The key is the letter and the
value is its appearance count.
When counting, ignore all characters that are not letters. Uppercase and
lowercase characters must be treated as identical, as they represent the same
letter.
Use std::accumulate() to count the total number of appearances of all the
letters in the given text.
Use std::for_each() or a range-based for loop to go through all the elements
of the map and transform the appearance count into a frequency.

The following is a possible implementation of the problem:

std::map<char, double> analyze_text(std::string_view text)
{
 std::map<char, double> frequencies;
 for (char ch = 'a'; ch <= 'z'; ch++)
 frequencies[ch] = 0;

 for (auto ch : text)
 {
 if (isalpha(ch))

Algorithms and Data Structures Chapter 6

[103]

 frequencies[tolower(ch)]++;
 }

 auto total = std::accumulate(
 std::cbegin(frequencies), std::cend(frequencies),
 0ull,
 [](auto sum, auto const & kvp) {
 return sum + static_cast<unsigned long long>(kvp.second);
 });

 std::for_each(
 std::begin(frequencies), std::end(frequencies),
 [total](auto & kvp) {
 kvp.second = (100.0 * kvp.second) / total;
 });

 return frequencies;
}

The following program prints the frequency of the letters from a text on the console:

int main()
{
 auto result = analyze_text(R"(Lorem ipsum dolor sit amet, consectetur
 adipiscing elit, sed do eiusmod tempor incididunt ut labore et
 dolore magna aliqua.)");

 for (auto const & kvp : result)
 {
 std::cout << kvp.first << " : "
 << std::fixed
 << std::setw(5) << std::setfill(' ')
 << std::setprecision(2) << kvp.second << std::endl;
 }
}

Algorithms and Data Structures Chapter 6

[104]

50. Filtering a list of phone numbers
The solution to this problem is relatively simple: you have to iterate through all the phone
numbers and copy to a separate container (such as an std::vector) the phone numbers
that start with the country code. If the specified country code is, for instance, 44, then you
must check for both 44 and +44. Filtering the input range in this manner is possible using
the std::copy_if() function. A solution to this problem is shown here:

bool starts_with(std::string_view str, std::string_view prefix)
{
 return str.find(prefix) == 0;
}

template <typename InputIt>
std::vector<std::string> filter_numbers(InputIt begin, InputIt end,
 std::string const & countryCode)
{
 std::vector<std::string> result;
 std::copy_if(
 begin, end,
 std::back_inserter(result),
 [countryCode](auto const & number) {
 return starts_with(number, countryCode) ||
 starts_with(number, "+" + countryCode);
 });
 return result;
}

std::vector<std::string> filter_numbers(
 std::vector<std::string> const & numbers,
 std::string const & countryCode)
{
 return filter_numbers(std::cbegin(numbers), std::cend(numbers),
 countryCode);
}

Algorithms and Data Structures Chapter 6

[105]

This is how this function can be used:

int main()
{
 std::vector<std::string> numbers{
 "+40744909080",
 "44 7520 112233",
 "+44 7555 123456",
 "40 7200 123456",
 "7555 123456"
 };

 auto result = filter_numbers(numbers, "44");

 for (auto const & number : result)
 {
 std::cout << number << std::endl;
 }
}

51. Transforming a list of phone numbers
This problem is somewhat similar in some aspects to the previous one. However, instead of
selecting phone numbers that start with a specified country code, we must transform each
number so that they all start with that country code preceded by a +. There are several cases
that must be considered:

The phone number starts with a 0. That indicates a number without a country
code. To modify the number to include the country code we must replace the 0
with the actual country code, preceded by +.
The phone number starts with the country code. In this case, we just prepend +
sign to the beginning.
The phone number starts with + followed by the country code. In this case, the
number is already in the expected format.
None of these cases applies, therefore the result is obtained by concatenating the
country code preceded by + and the phone number.

For simplicity, we will ignore the possibility that the number is actually
prefixed with another country code. You can take it as a further exercise to
modify the implementation so that it can handle phone numbers with a
different country prefix. These numbers should be removed from the list.

Algorithms and Data Structures Chapter 6

[106]

In all of the preceding cases, it is possible that the number could contain spaces. According
to the requirements, these must be removed. The std::remove_if() and isspace()
functions are used for this purpose.

The following is an implementation of the described solution:

bool starts_with(std::string_view str, std::string_view prefix)
{
 return str.find(prefix) == 0;
}

void normalize_phone_numbers(std::vector<std::string>& numbers,
 std::string const & countryCode)
{
 std::transform(
 std::cbegin(numbers), std::cend(numbers),
 std::begin(numbers),
 [countryCode](std::string const & number) {
 std::string result;
 if (number.size() > 0)
 {
 if (number[0] == '0')
 result = "+" + countryCode +
 number.substr(1);
 else if (starts_with(number, countryCode))
 result = "+" + number;
 else if (starts_with(number, "+" + countryCode))
 result = number;
 else
 result = "+" + countryCode + number;
 }

 result.erase(
 std::remove_if(std::begin(result), std::end(result),
 [](const char ch) {return isspace(ch); }),
 std::end(result));
 return result;
 });
}

Algorithms and Data Structures Chapter 6

[107]

The following program normalizes a given list of phone numbers according to the
requirement and prints them on the console:

int main()
{
 std::vector<std::string> numbers{
 "07555 123456",
 "07555123456",
 "+44 7555 123456",
 "44 7555 123456",
 "7555 123456"
 };

 normalize_phone_numbers(numbers, "44");

 for (auto const & number : numbers)
 {
 std::cout << number << std::endl;
 }
}

52. Generating all the permutations of a string
You can solve this problem by taking advantage of some general-purpose algorithms from
the standard library. The simplest of the two required versions is the non-recursive one, at
least when you use std::next_permutation(). This function transforms the input range
(that is required to be sorted) into the next permutation from the set of all possible
permutations, ordered lexicographically with operator< or the specified comparison
function object. If such a permutation exists then it returns true, otherwise, it transforms
the range into the first permutation and returns false. Therefore, a non-recursive
implementation based on std::next_permuation() looks like this:

void print_permutations(std::string str)
{
 std::sort(std::begin(str), std::end(str));

 do
 {
 std::cout << str << std::endl;
 } while (std::next_permutation(std::begin(str), std::end(str)));
}

Algorithms and Data Structures Chapter 6

[108]

The recursive alternative is a little bit more complex. One way to implement it is to have an
input and output string; initially, the input string is the string for which we want to
generate permutations and the output string is empty. We take one character at a time from
the input string and put it in the output string. When the input string becomes empty, the
output string represents the next permutation. The recursive algorithm for doing this is the
following:

If the input string is empty, then print the output string and return
Otherwise iterate through all the characters in the input string, and for each
element:

Call the method recursively by removing the first character from
the input string and concatenating it at the end of the output string
Rotate the input string so that the first character becomes the last,
the second becomes the first, and so on

This algorithm is visually explained in the following diagram:

Algorithms and Data Structures Chapter 6

[109]

For rotating the input string, we could use the standard library function std::rotate(),
which performs a left rotation on a range of elements. An implementation of the described
recursive algorithm looks like this:

void next_permutation(std::string str, std::string perm)
{
 if (str.empty()) std::cout << perm << std::endl;
 else
 {
 for (size_t i = 0; i < str.size(); ++i)
 {
 next_permutation(str.substr(1), perm + str[0]);

 std::rotate(std::begin(str), std::begin(str) + 1, std::end(str));
 }
 }
}

void print_permutations_recursive(std::string str)
{
 next_permutation(str, "");
}

This is how both of these implementations can be used:

int main()
{
 std::cout << "non-recursive version" << std::endl;
 print_permutations("main");

 std::cout << "recursive version" << std::endl;
 print_permutations_recursive("main");
}

53. Average rating of movies
The problem requires the computing of a movie rating using a truncated mean. This is a
statistical measure of a central tendency where the mean is calculated after discarding parts
of a probability distribution or sample at the high and low ends. Typically, this is done by
removing an equal amount of points at the two ends. For this problem, you are required to
remove 5% of both the highest and lowest user ratings.

Algorithms and Data Structures Chapter 6

[110]

A function that calculates a truncated mean for a given range should do the following:

Sort the range so that elements are ordered (either ascending or descending)
Remove the required percentage of elements at both ends
Count the sum of all remaining elements
Compute the average by dividing the sum to the remaining count of elements

The truncated_mean() function shown here implements the described algorithm:

double truncated_mean(std::vector<int> values, double const percentage)
{
 std::sort(std::begin(values), std::end(values));
 auto remove_count = static_cast<size_t>(
 values.size() * percentage + 0.5);

 values.erase(std::begin(values), std::begin(values) + remove_count);
 values.erase(std::end(values) - remove_count, std::end(values));

 auto total = std::accumulate(
 std::cbegin(values), std::cend(values),
 0ull,
 [](auto const sum, auto const e) {
 return sum + e; });
 return static_cast<double>(total) / values.size();
}

A program that uses this function in order to calculate and print movie average ratings may
look like the following:

struct movie
{
 int id;
 std::string title;
 std::vector<int> ratings;
};

void print_movie_ratings(std::vector<movie> const & movies)
{
 for (auto const & m : movies)
 {
 std::cout << m.title << " : "
 << std::fixed << std::setprecision(1)
 << truncated_mean(m.ratings, 0.05) << std::endl;
 }
}

Algorithms and Data Structures Chapter 6

[111]

int main()
{
 std::vector<movie> movies
 {
 { 101, "The Matrix", {10, 9, 10, 9, 9, 8, 7, 10, 5, 9, 9, 8} },
 { 102, "Gladiator", {10, 5, 7, 8, 9, 8, 9, 10, 10, 5, 9, 8, 10} },
 { 103, "Interstellar", {10, 10, 10, 9, 3, 8, 8, 9, 6, 4, 7, 10} }
 };

 print_movie_ratings(movies);
}

54. Pairwise algorithm
The pairwise function proposed for this problem must pair adjacent elements of an input
range and produce std::pair elements that are added to an output range. The following
code listing provides two implementations:

A general function template that takes iterators as arguments: a begin and end
iterator define the input range, and an output iterator defines the position in the
output range where the results are to be inserted
An overload that takes an std::vector<T> as the input argument and returns
an std::vector<std::pair<T, T>> as the result; this one simply calls the first
overload:

template <typename Input, typename Output>
void pairwise(Input begin, Input end, Output result)
{
 auto it = begin;
 while (it != end)
 {
 auto v1 = *it++; if (it == end) break;
 auto v2 = *it++;
 result++ = std::make_pair(v1, v2);
 }
}
template <typename T>
std::vector<std::pair<T, T>> pairwise(std::vector<T> const & range)
{
 std::vector<std::pair<T, T>> result;
 pairwise(std::begin(range), std::end(range),
 std::back_inserter(result));
 return result;
}

Algorithms and Data Structures Chapter 6

[112]

The following program pairs the elements of a vector of integers and prints the pairs on the
console:

int main()
{
 std::vector<int> v{ 1, 1, 3, 5, 8, 13, 21 };
 auto result = pairwise(v);

 for (auto const & p : result)
 {
 std::cout << '{' << p.first << ',' << p.second << '}' << std::endl;
 }
}

55. Zip algorithm
This problem is relatively similar to the previous one, although there are two input ranges
instead of just one. The result is again a range of std::pair. However, the two input
ranges may hold elements of different types. Again, the implementation shown here
contains two overloads:

A general-purpose function with iterators as arguments. A begin and end iterator
for each input range define its bounds, and an output iterator defines the
position in the output range where the result must be written.
A function that takes two std::vector arguments, one that holds elements of
type T and one that holds elements of type U and returns
an std::vector<std::pair<T, U>>. This overload simply calls the previous
one:

template <typename Input1, typename Input2, typename Output>
void zip(Input1 begin1, Input1 end1,
 Input2 begin2, Input1 end2,
 Output result)
{

Algorithms and Data Structures Chapter 6

[113]

 auto it1 = begin1;
 auto it2 = begin2;
 while (it1 != end1 && it2 != end2)
 {
 result++ = std::make_pair(*it1++, *it2++);
 }
}

template <typename T, typename U>
std::vector<std::pair<T, U>> zip(
 std::vector<T> const & range1,
 std::vector<U> const & range2)
{
 std::vector<std::pair<T, U>> result;

 zip(std::begin(range1), std::end(range1),
 std::begin(range2), std::end(range2),
 std::back_inserter(result));

 return result;
}

In the following listing, you can see two vectors of integers zipped together and the result
printed on the console:

int main()
{
 std::vector<int> v1{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 std::vector<int> v2{ 1, 1, 3, 5, 8, 13, 21 };

 auto result = zip(v1, v2);
 for (auto const & p : result)
 {
 std::cout << '{' << p.first << ',' << p.second << '}' << std::endl;
 }
}

Algorithms and Data Structures Chapter 6

[114]

56. Select algorithm
The select() function that you have to implement takes an std::vector<T> as an input
argument and a function of type F and returns a std::vector<R> as the result, where R is
the result of applying F to T. We could use std::result_of() to deduce the return type
of an invoke expression at compile time. Internally, the select() function should use
std::transform() to iterate over the elements of the input vector, apply function f to
each element, and insert the result in an output vector.

The following listing shows the implementation for this function:

template <
 typename T, typename A, typename F,
 typename R = typename std::decay<typename std::result_of<
 typename std::decay<F>::type&(
 typename std::vector<T, A>::const_reference)>::type>::type>
std::vector<R> select(std::vector<T, A> const & c, F&& f)
{
 std::vector<R> v;
 std::transform(std::cbegin(c), std::cend(c),
 std::back_inserter(v),
 std::forward<F>(f));
 return v;
}

This function can be used as follows:

int main()
{
 std::vector<book> books{
 {101, "The C++ Programming Language", "Bjarne Stroustrup"},
 {203, "Effective Modern C++", "Scott Meyers"},
 {404, "The Modern C++ Programming Cookbook", "Marius Bancila"}};

 auto titles = select(books, [](book const & b) {return b.title; });
 for (auto const & title : titles)
 {
 std::cout << title << std::endl;
 }
}

Algorithms and Data Structures Chapter 6

[115]

57. Sort algorithm
Quicksort is a comparison sorting algorithm for elements of an array for which a total
order is defined. When implemented well, it is significantly faster than merge sort or heap
sort.

Although in worst-case scenarios the algorithm makes comparisons (when the range
is already sorted), on average the complexity is only . Quicksort is a divide and
conquer algorithm; it partitions (divides) a large range into smaller ones and sorts them
recursively. There are several partitioning schemes. In the implementation shown here, we
use the original one developed by Tony Hoare. The algorithm for this scheme is described in
pseudocode as follows:

algorithm quicksort(A, lo, hi) is
 if lo < hi then
 p := partition(A, lo, hi)
 quicksort(A, lo, p)
 quicksort(A, p + 1, hi)

algorithm partition(A, lo, hi) is
 pivot := A[lo]
 i := lo - 1
 j := hi + 1
 loop forever
 do
 i := i + 1
 while A[i] < pivot

 do
 j := j - 1
 while A[j] > pivot

 if i >= j then
 return j

 swap A[i] with A[j]

Algorithms and Data Structures Chapter 6

[116]

A general-purpose implementation of the algorithm should use iterators and not arrays and
indexes. The requirement for the following implementation is that the iterators are random-
access (so they could be moved to any element in constant time):

template <class RandomIt>
RandomIt partition(RandomIt first, RandomIt last)
{
 auto pivot = *first;
 auto i = first + 1;
 auto j = last - 1;
 while (i <= j)
 {
 while (i <= j && *i <= pivot) i++;
 while (i <= j && *j > pivot) j--;
 if (i < j) std::iter_swap(i, j);
 }

 std::iter_swap(i - 1, first);

 return i - 1;
}

template <class RandomIt>
void quicksort(RandomIt first, RandomIt last)
{
 if (first < last)
 {
 auto p = partition(first, last);
 quicksort(first, p);
 quicksort(p + 1, last);
 }
}

The quicksort() function, shown as follows, can be used to sort various types of
containers:

int main()
{
 std::vector<int> v{ 1,5,3,8,6,2,9,7,4 };
 quicksort(std::begin(v), std::end(v));

 std::array<int, 9> a{ 1,2,3,4,5,6,7,8,9 };
 quicksort(std::begin(a), std::end(a));

 int a[]{ 9,8,7,6,5,4,3,2,1 };
 quicksort(std::begin(a), std::end(a));
}

Algorithms and Data Structures Chapter 6

[117]

The requirement was that the sorting algorithm must allow the specifying of a user-defined
comparison function. The only change, in this case, is the partitioning function, where
instead of using operator < and > to compare the current element with the pivot, we use
the user-defined comparison function:

template <class RandomIt, class Compare>
RandomIt partitionc(RandomIt first, RandomIt last, Compare comp)
{
 auto pivot = *first;
 auto i = first + 1;
 auto j = last - 1;
 while (i <= j)
 {
 while (i <= j && comp(*i, pivot)) i++;
 while (i <= j && !comp(*j, pivot)) j--;
 if (i < j) std::iter_swap(i, j);
 }

 std::iter_swap(i - 1, first);

 return i - 1;
}

template <class RandomIt, class Compare>
void quicksort(RandomIt first, RandomIt last, Compare comp)
{
 if (first < last)
 {
 auto p = partitionc(first, last, comp);
 quicksort(first, p, comp);
 quicksort(p + 1, last, comp);
 }
}

With this overload we could sort a range in descending order, as shown in the following
example:

int main()
{
 std::vector<int> v{ 1,5,3,8,6,2,9,7,4 };
 quicksort(std::begin(v), std::end(v), std::greater<>());
}

Algorithms and Data Structures Chapter 6

[118]

It is possible to implement an iterative version of the quicksort algorithm also. The
performance of the iterative version is the same as for the recursive version
 for most cases, but degrading to in the worst case when the range is already sorted).
Converting from the recursive version of the algorithm to an iterative one is relatively
simple; it is done by using a stack to emulate the recursive calls and to store the bounds of
the partitions. The following is an iterative implementation of the version that uses
operator< to compare elements:

template <class RandomIt>
void quicksorti(RandomIt first, RandomIt last)
{
 std::stack<std::pair<RandomIt, RandomIt>> st;
 st.push(std::make_pair(first, last));
 while (!st.empty())
 {
 auto iters = st.top();
 st.pop();

 if (iters.second - iters.first < 2) continue;

 auto p = partition(iters.first, iters.second);

 st.push(std::make_pair(iters.first, p));
 st.push(std::make_pair(p+1, iters.second));
 }
}

This iterative implementation can be used just like its recursive counterpart:

int main()
{
 std::vector<int> v{ 1,5,3,8,6,2,9,7,4 };
 quicksorti(std::begin(v), std::end(v));
}

58. The shortest path between nodes
To solve the proposed problem you must use the Dijkstra algorithm for finding the shortest
path in a graph. Although the original algorithm finds the shortest path between two given
nodes, the requirement here is to find the shortest path between one specified node and all
the others in the graph, which is another version of the algorithm.

Algorithms and Data Structures Chapter 6

[119]

An efficient way to implement the algorithm is using a priority queue. The pseudocode for
the algorithm (see https:/ /en. wikipedia. org/wiki/ Dijkstra%27s_ algorithm) is the
following:

function Dijkstra(Graph, source):
 dist[source] ← 0 // Initialization

 create vertex set Q
 for each vertex v in Graph:
 if v ≠ source
 dist[v] ← INFINITY // Unknown distance from source to v
 prev[v] ← UNDEFINED // Predecessor of v

 Q.add_with_priority(v, dist[v])

 while Q is not empty: // The main loop
 u ← Q.extract_min() // Remove and return best vertex
 for each neighbor v of u: // only v that is still in Q
 alt ← dist[u] + length(u, v)
 if alt < dist[v]
 dist[v] ← alt
 prev[v] ← u
 Q.decrease_priority(v, alt)

 return dist[], prev[]

To represent the graph we could use the following data structure, which can be used for
both directional or unidirectional graphs. The class provides support for adding new
vertices and edges, and can return the list of vertices and the neighbors of a specified vertex
(that is, both the nodes and the distance to them):

template <typename Vertex = int, typename Weight = double>
class graph
{
public:
 typedef Vertex vertex_type;
 typedef Weight weight_type;
 typedef std::pair<Vertex, Weight> neighbor_type;
 typedef std::vector<neighbor_type> neighbor_list_type;
public:
 void add_edge(Vertex const source, Vertex const target,
 Weight const weight, bool const bidirectional = true)
 {
 adjacency_list[source].push_back(std::make_pair(target, weight));
 adjacency_list[target].push_back(std::make_pair(source, weight));
 }

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

Algorithms and Data Structures Chapter 6

[120]

 size_t vertex_count() const { return adjacency_list.size(); }
 std::vector<Vertex> verteces() const
 {
 std::vector<Vertex> keys;
 for (auto const & kvp : adjacency_list)
 keys.push_back(kvp.first);
 return keys;
 }

 neighbor_list_type const & neighbors(Vertex const & v) const
 {
 auto pos = adjacency_list.find(v);
 if (pos == adjacency_list.end())
 throw std::runtime_error("vertex not found");
 return pos->second;
 }

 constexpr static Weight Infinity =
 std::numeric_limits<Weight>::infinity();
private:
 std::map<vertex_type, neighbor_list_type> adjacency_list;
};

The implementation of the shortest path algorithm as described in the preceding
pseudocode could look like the following. An std::set (that is, a self-balancing binary
search tree) is used instead of the priority queue. std::set has the same
complexity for adding and removing the top element as a binary heap (used for a priority
queue). On the other hand, std::set also allows finding and removing any other element
in , which is helpful in order to implement the decrease-key step in logarithmic
time by removing and inserting again:

template <typename Vertex, typename Weight>
void shortest_path(
 graph<Vertex, Weight> const & g,
 Vertex const source,
 std::map<Vertex, Weight>& min_distance,
 std::map<Vertex, Vertex>& previous)
{
 auto const n = g.vertex_count();
 auto const verteces = g.verteces();

 min_distance.clear();
 for (auto const & v : verteces)
 min_distance[v] = graph<Vertex, Weight>::Infinity;
 min_distance[source] = 0;

Algorithms and Data Structures Chapter 6

[121]

 previous.clear();

 std::set<std::pair<Weight, Vertex> > vertex_queue;
 vertex_queue.insert(std::make_pair(min_distance[source], source));

 while (!vertex_queue.empty())
 {
 auto dist = vertex_queue.begin()->first;
 auto u = vertex_queue.begin()->second;

 vertex_queue.erase(std::begin(vertex_queue));

 auto const & neighbors = g.neighbors(u);
 for (auto const & neighbor : neighbors)
 {
 auto v = neighbor.first;
 auto w = neighbor.second;
 auto dist_via_u = dist + w;
 if (dist_via_u < min_distance[v])
 {
 vertex_queue.erase(std::make_pair(min_distance[v], v));

 min_distance[v] = dist_via_u;
 previous[v] = u;
 vertex_queue.insert(std::make_pair(min_distance[v], v));
 }
 }
 }
}

The following helper functions print the results in the specified format:

template <typename Vertex>
void build_path(
 std::map<Vertex, Vertex> const & prev, Vertex const v,
 std::vector<Vertex> & result)
{
 result.push_back(v);

 auto pos = prev.find(v);
 if (pos == std::end(prev)) return;

 build_path(prev, pos->second, result);
}

template <typename Vertex>
std::vector<Vertex> build_path(std::map<Vertex, Vertex> const & prev,
 Vertex const v)

Algorithms and Data Structures Chapter 6

[122]

{
 std::vector<Vertex> result;
 build_path(prev, v, result);
 std::reverse(std::begin(result), std::end(result));
 return result;
}

template <typename Vertex>
void print_path(std::vector<Vertex> const & path)
{
 for (size_t i = 0; i < path.size(); ++i)
 {
 std::cout << path[i];
 if (i < path.size() - 1) std::cout << " -> ";
 }
}

The following program solves the given task:

int main()
{
 graph<char, double> g;
 g.add_edge('A', 'B', 7);
 g.add_edge('A', 'C', 9);
 g.add_edge('A', 'F', 14);
 g.add_edge('B', 'C', 10);
 g.add_edge('B', 'D', 15);
 g.add_edge('C', 'D', 11);
 g.add_edge('C', 'F', 2);
 g.add_edge('D', 'E', 6);
 g.add_edge('E', 'F', 9);

 char source = 'A';
 std::map<char, double> min_distance;
 std::map<char, char> previous;
 shortest_path(g, source, min_distance, previous);

 for (auto const & kvp : min_distance)
 {
 std::cout << source << " -> " << kvp.first << " : "
 << kvp.second << '\t';

 print_path(build_path(previous, kvp.first));

 std::cout << std::endl;
 }
}

Algorithms and Data Structures Chapter 6

[123]

59. The Weasel program
The Weasel program is a thought experiment proposed by Richard Dawkins, intended to
demonstrate how the accumulated small improvements (mutations that bring a benefit to
the individual so that it is chosen by natural selection) produce fast results as opposed to
the mainstream misinterpretation that evolution happens in big leaps. The algorithm for the
Weasel simulation, as described on Wikipedia (see https:/ /en. wikipedia. org/ wiki/
Weasel_program), is as follows:

Start with a random string of 28 characters.1.
Make 100 copies of this string, with a 5% chance per character of that character2.
being replaced with a random character.
Compare each new string with the target METHINKS IT IS LIKE A WEASEL,3.
and give each a score (the number of letters in the string that are correct and in
the correct position).
If any of the new strings has a perfect score (28), then stop.4.
Otherwise, take the highest-scoring string and go to step 2.5.

A possible implementation is as follows. The make_random() function creates a random
starting sequence of the same length as the target; the fitness() function computes the
score of each mutated string (that is, resemblance with the target); the mutate() function
produces a new string from a parent with a given chance for each character to mutate:

class weasel
{
 std::string target;
 std::uniform_int_distribution<> chardist;
 std::uniform_real_distribution<> ratedist;
 std::mt19937 mt;
 std::string const allowed_chars = "ABCDEFGHIJKLMNOPQRSTUVWXYZ ";
public:
 weasel(std::string_view t) :
 target(t), chardist(0, 26), ratedist(0, 100)
 {
 std::random_device rd;
 auto seed_data = std::array<int, std::mt19937::state_size> {};
 std::generate(std::begin(seed_data), std::end(seed_data),
 std::ref(rd));
 std::seed_seq seq(std::begin(seed_data), std::end(seed_data));
 mt.seed(seq);
 }

https://en.wikipedia.org/wiki/Weasel_program
https://en.wikipedia.org/wiki/Weasel_program
https://en.wikipedia.org/wiki/Weasel_program
https://en.wikipedia.org/wiki/Weasel_program
https://en.wikipedia.org/wiki/Weasel_program
https://en.wikipedia.org/wiki/Weasel_program
https://en.wikipedia.org/wiki/Weasel_program
https://en.wikipedia.org/wiki/Weasel_program
https://en.wikipedia.org/wiki/Weasel_program
https://en.wikipedia.org/wiki/Weasel_program
https://en.wikipedia.org/wiki/Weasel_program
https://en.wikipedia.org/wiki/Weasel_program
https://en.wikipedia.org/wiki/Weasel_program
https://en.wikipedia.org/wiki/Weasel_program

Algorithms and Data Structures Chapter 6

[124]

 void run(int const copies)
 {
 auto parent = make_random();
 int step = 1;
 std::cout << std::left << std::setw(5) << std::setfill(' ')
 << step << parent << std::endl;

 do
 {
 std::vector<std::string> children;
 std::generate_n(std::back_inserter(children), copies,
 [parent, this]() {return mutate(parent, 5); });

 parent = *std::max_element(
 std::begin(children), std::end(children),
 [this](std::string_view c1, std::string_view c2) {
 return fitness(c1) < fitness(c2); });

 std::cout << std::setw(5) << std::setfill(' ') << step
 << parent << std::endl;

 step++;
 } while (parent != target);
 }
private:
 weasel() = delete;

 double fitness(std::string_view candidate) const
 {
 int score = 0;
 for (size_t i = 0; i < candidate.size(); ++i)
 {
 if (candidate[i] == target[i])
 score++;
 }
 return score;
 }

 std::string mutate(std::string_view parent, double const rate)
 {
 std::stringstream sstr;
 for (auto const c : parent)
 {
 auto nc = ratedist(mt) > rate ? c : allowed_chars[chardist(mt)];
 sstr << nc;
 }
 return sstr.str();
 }

Algorithms and Data Structures Chapter 6

[125]

 std::string make_random()
 {
 std::stringstream sstr;
 for (size_t i = 0; i < target.size(); ++i)
 {
 sstr << allowed_chars[chardist(mt)];
 }
 return sstr.str();
 }
};

This is how the class can be used:

int main()
{
 weasel w("METHINKS IT IS LIKE A WEASEL");
 w.run(100);
}

60. The Game of Life
The class universe presented below implements the game as described. There are several
functions of interest:

initialize() generates a starting layout; although the code accompanying the
book contains more options, only two are listed here: random, which generates a
random layout, and ten_cell_row, which represents a line of 10 cells in the
middle of the grid.
reset() sets all the cells as dead.
count_neighbors() returns the number of alive neighbors. It uses a helper
variadic function template count_alive(). Although this could be
implemented with fold expressions, this is not yet supported in Visual C++ and
therefore I have opted not to use it here.
next_generation() produces a new state of the game based on the transition
rules.
display() shows the game status on the console; this uses a system call to erase
the console, although you could use other means to do so, such as specific
operating system APIs.

Algorithms and Data Structures Chapter 6

[126]

run() initializes the starting layout and then produces a new generation at a
user-specified interval, for a user-specified number of iterations, or indefinitely
(if the number of iterations was set to 0).

class universe
{
private:
 universe() = delete;
public:
 enum class seed
 {
 random, ten_cell_row
 };
public:
 universe(size_t const width, size_t const height):
 rows(height), columns(width),grid(width * height), dist(0, 4)
 {
 std::random_device rd;
 auto seed_data = std::array<int, std::mt19937::state_size> {};
 std::generate(std::begin(seed_data), std::end(seed_data),
 std::ref(rd));
 std::seed_seq seq(std::begin(seed_data), std::end(seed_data));
 mt.seed(seq);
 }

 void run(seed const s, int const generations,
 std::chrono::milliseconds const ms =
 std::chrono::milliseconds(100))
 {
 reset();
 initialize(s);
 display();

 int i = 0;
 do
 {
 next_generation();
 display();

 using namespace std::chrono_literals;
 std::this_thread::sleep_for(ms);
 } while (i++ < generations || generations == 0);
 }

private:
 void next_generation()
 {

Algorithms and Data Structures Chapter 6

[127]

 std::vector<unsigned char> newgrid(grid.size());

 for (size_t r = 0; r < rows; ++r)
 {
 for (size_t c = 0; c < columns; ++c)
 {
 auto count = count_neighbors(r, c);

 if (cell(c, r) == alive)
 {
 newgrid[r * columns + c] =
 (count == 2 || count == 3) ? alive : dead;
 }
 else
 {
 newgrid[r * columns + c] = (count == 3) ? alive : dead;
 }
 }
 }

 grid.swap(newgrid);
 }

 void reset_display()
 {
#ifdef WIN32
 system("cls");
#endif
 }

 void display()
 {
 reset_display();

 for (size_t r = 0; r < rows; ++r)
 {
 for (size_t c = 0; c < columns; ++c)
 {
 std::cout << (cell(c, r) ? '*' : ' ');
 }
 std::cout << std::endl;
 }
 }

 void initialize(seed const s)
 {
 if (s == seed::ten_cell_row)
 {

Algorithms and Data Structures Chapter 6

[128]

 for (size_t c = columns / 2 - 5; c < columns / 2 + 5; c++)
 cell(c, rows / 2) = alive;
 }
 else
 {
 for (size_t r = 0; r < rows; ++r)
 {
 for (size_t c = 0; c < columns; ++c)
 {
 cell(c, r) = dist(mt) == 0 ? alive : dead;
 }
 }
 }
 }

 void reset()
 {
 for (size_t r = 0; r < rows; ++r)
 {
 for (size_t c = 0; c < columns; ++c)
 {
 cell(c, r) = dead;
 }
 }
 }

 int count_alive() { return 0; }

 template<typename T1, typename... T>
 auto count_alive(T1 s, T... ts) { return s + count_alive(ts...); }

 int count_neighbors(size_t const row, size_t const col)
 {
 if (row == 0 && col == 0)
 return count_alive(cell(1, 0), cell(1,1), cell(0, 1));
 if (row == 0 && col == columns - 1)
 return count_alive(cell(columns - 2, 0), cell(columns - 2, 1),
 cell(columns - 1, 1));
 if (row == rows - 1 && col == 0)
 return count_alive(cell(0, rows - 2), cell(1, rows - 2),
 cell(1, rows - 1));
 if (row == rows - 1 && col == columns - 1)
 return count_alive(cell(columns - 1, rows - 2),
 cell(columns - 2, rows - 2),
 cell(columns - 2, rows - 1));

Algorithms and Data Structures Chapter 6

[129]

 if (row == 0 && col > 0 && col < columns - 1)
 return count_alive(cell(col - 1, 0), cell(col - 1, 1),
 cell(col, 1), cell(col + 1, 1),
 cell(col + 1, 0));
 if (row == rows - 1 && col > 0 && col < columns - 1)
 return count_alive(cell(col - 1, row), cell(col - 1, row - 1),
 cell(col, row - 1), cell(col + 1, row - 1),
 cell(col + 1, row));
 if (col == 0 && row > 0 && row < rows - 1)
 return count_alive(cell(0, row - 1), cell(1, row - 1),
 cell(1, row), cell(1, row + 1),
 cell(0, row + 1));
 if (col == columns - 1 && row > 0 && row < rows - 1)
 return count_alive(cell(col, row - 1), cell(col - 1, row - 1),
 cell(col - 1, row), cell(col - 1, row + 1),
 cell(col, row + 1));

 return count_alive(cell(col - 1, row - 1), cell(col, row - 1),
 cell(col + 1, row - 1), cell(col + 1, row),
 cell(col + 1, row + 1), cell(col, row + 1),
 cell(col - 1, row + 1), cell(col - 1, row));
 }

 unsigned char& cell(size_t const col, size_t const row)
 {
 return grid[row * columns + col];
 }

private:
 size_t rows;
 size_t columns;

 std::vector<unsigned char> grid;
 const unsigned char alive = 1;
 const unsigned char dead = 0;

 std::uniform_int_distribution<> dist;
 std::mt19937 mt;
};

Algorithms and Data Structures Chapter 6

[130]

This is how the game can be run for 100 iterations starting from a random state:

int main()
{
 using namespace std::chrono_literals;
 universe u(50, 20);
 u.run(universe::seed::random, 100, 100ms);
}

Here is an example of the program output (the screenshot represents a single iteration in
the Game of Life's universe):

7
Concurrency

Problems

61. Parallel transform algorithm
Write a general-purpose algorithm that applies a given unary function to transform the
elements of a range in parallel. The unary operation used to transform the range must not
invalidate range iterators or modify the elements of the range. The level of parallelism, that
is, the number of execution threads and the way it is achieved, is an implementation detail.

62. Parallel min and max element algorithms
using threads
Implement general-purpose parallel algorithms that find the minimum value
and, respectively, the maximum value in a given range. The parallelism should be
implemented using threads, although the number of concurrent threads is an
implementation detail.

Concurrency Chapter 7

[132]

63. Parallel min and max element algorithms
using asynchronous functions
Implement general-purpose parallel algorithms that find the minimum value and,
respectively, the maximum value in a given range. The parallelism should be implemented
using asynchronous functions, although the number of concurrent functions is an
implementation detail.

64. Parallel sort algorithm
Write a parallel version of the sort algorithm as defined for problem 53. Sort Algorithm,
in Chapter 6, Algorithms and Data Structures, which, given a pair of random access iterators
to define its lower and upper bounds, sorts the elements of the range using the quicksort
algorithm. The function should use the comparison operators for comparing the elements
of the range. The level of parallelism and the way to achieve it is an implementation detail.

65. Thread-safe logging to the console
Write a class that enables components running in different threads to safely print log
messages to the console by synchronizing access to the standard output stream to
guarantee the integrity of the output. This logging component should have a method called
log() with a string argument representing the message to be printed to the console.

66. Customer service system
Write a program that simulates the way customers are served in an office. The office has
three desks where customers can be served at the same time. Customers can enter the office
at any time. They take a ticket with a service number from a ticketing machine and wait
until their number is next for service at one of the desks. Customers are served in the order
they entered the office, or more precisely, in the order given by their ticket. Every time a
service desk finishes serving a customer, the next customer in order is served. The
simulation should stop after a particular number of customers have been issued tickets and
served.

Concurrency Chapter 7

[133]

Solutions

61. Parallel transform algorithm
The general-purpose function std::transform() applies a given function to a range and
stores the result in another (or the same) range. The requirement for this problem is
implementing a parallel version of such a function. A general-purpose one would take
iterators as arguments to define the first and one-past-last element of the range. Because the
unary function is applied in the same manner to all the elements of the range, it is fairly
simple to parallelize the operation. For this task, we will be using threads. Since it is not
specified how many threads should be running at the same time, we could use
std::thread::hardware_concurrency(). This function returns a hint for the number
of concurrent threads supported by the implementation.

A parallel version of the algorithm performs better than a sequential implementation only if
the size of the range exceeds a particular threshold, which may vary with compilation
options, platform, or hardware. In the following implementation that threshold is set to
10,000 elements. As a further exercise, you could experiment with various thresholds and
range sizes to see how the execution time changes.

The following function, ptransform(), implements the parallel transform algorithm as
requested. It simply calls std::transform() if the range size does not exceed the defined
threshold. Otherwise, it splits the range into several equal parts, one for each thread, and
calls std::transform() on each thread for a particular subrange. In this case, the function
blocks the calling thread until all the worker threads finish execution:

template <typename RandomAccessIterator, typename F>
void ptransform(RandomAccessIterator begin, RandomAccessIterator end,
 F&& f)
{
 auto size = std::distance(begin, end);
 if (size <= 10000)
 {
 std::transform(begin, end, begin, std::forward<F>(f));
 }
 else
 {
 std::vector<std::thread> threads;
 int thread_count = std::thread::hardware_concurrency();
 auto first = begin;
 auto last = first;
 size /= thread_count;

Concurrency Chapter 7

[134]

 for (int i = 0; i < thread_count; ++i)
 {
 first = last;
 if (i == thread_count - 1) last = end;
 else std::advance(last, size);

 threads.emplace_back([first, last, &f]() {
 std::transform(first, last, first, std::forward<F>(f));
 });
 }

 for (auto & t : threads) t.join();
 }
}

The function palter(), shown as follows, is a helper function that applies ptransform()
to an std::vector and returns another std::vector with the result:

template <typename T, typename F>
std::vector<T> palter(std::vector<T> data, F&& f)
{
 ptransform(std::begin(data), std::end(data),
 std::forward<F>(f));
 return data;
}

The function can be used as follows (a complete example can be found in the source code
accompanying this book):

int main()
{
 std::vector<int> data(1000000);
 // init data
 auto result = palter(data, [](int const e) {return e * e; });
}

In C++17, a series of standard general-purpose algorithms, including
std::transform(), have overloads that implement a parallel version of
the algorithm that can be executed according to a specified execution
policy.

Concurrency Chapter 7

[135]

62. Parallel min and max element algorithms
using threads
This problem, and its solution, is similar in most ways to the previous one. What is slightly
different is that the function concurrently executing on each thread must return a value that
represents the minimum or the maximum element in the subrange.
The pprocess() function template, shown as follows, is a higher-level function that
implements the requested functionality generically, in the following way:

Its arguments are the first and one-past-last iterators to the range and a function
object that processes the range that we will call f.
If the size of the range is smaller than a particular threshold, set to 10,000
elements here, it simply executes the function object f received as argument.
Otherwise, it splits the input range into a number of subranges of equal size, one
for each concurrent thread that could be executed. Each thread runs f for the
selected subrange.
The results of the parallel execution of f are collected in an std::vector, and
after the execution of all threads is completed, f is used again to determine the
overall result from the intermediate results:

template <typename Iterator, typename F>
auto pprocess(Iterator begin, Iterator end, F&& f)
{
 auto size = std::distance(begin, end);
 if (size <= 10000)
 {
 return std::forward<F>(f)(begin, end);
 }
 else
 {
 int thread_count = std::thread::hardware_concurrency();
 std::vector<std::thread> threads;
 std::vector<typename std::
 iterator_traits<Iterator>::value_type>
 mins(thread_count);

 auto first = begin;
 auto last = first;
 size /= thread_count;
 for (int i = 0; i < thread_count; ++i)
 {
 first = last;
 if (i == thread_count - 1) last = end;

Concurrency Chapter 7

[136]

 else std::advance(last, size);

 threads.emplace_back([first, last, &f, &r=mins[i]]() {
 r = std::forward<F>(f)(first, last);
 });
 }

 for (auto & t : threads) t.join();

 return std::forward<F>(f)(std::begin(mins), std::end(mins));
 }
}

Two functions, called pmin() and pmax(), are provided to implement the required
general-purpose min and max parallel algorithms. These two are in turn calling
pprocess(), passing for the third argument a lambda that uses either the
std::min_element() or the std::max_element() standard algorithm:

template <typename Iterator>
auto pmin(Iterator begin, Iterator end)
{
 return pprocess(begin, end,
 [](auto b, auto e){return *std::min_element(b, e);});
}

template <typename Iterator>
auto pmax(Iterator begin, Iterator end)
{
 return pprocess(begin, end,
 [](auto b, auto e){return *std::max_element(b, e);});
}

These functions can be used as follows:

int main()
{
 std::vector<int> data(count);
 // init data
 auto rmin = pmin(std::begin(data), std::end(data));
 auto rmax = pmin(std::begin(data), std::end(data));
}

Concurrency Chapter 7

[137]

You can take it as a further exercise to implement yet another general-
purpose algorithm that computes the sum of all the elements of a range in
parallel using threads.

63. Parallel min and max element algorithms
using asynchronous functions
The only difference between this problem and the previous one is how the parallelism is
achieved. For the previous problem, the use of threads was required. For this one, you must
use asynchronous functions. A function can be executed asynchronously with
std::async(). This function creates a promise, which is an asynchronous provider of the
result of a function executed asynchronously. A promise has a shared state (which can store
either the return value of a function or an exception that resulted from the execution of the
function) and an associated future object that provides access to the shared state from a
different thread. The promise-future pair defines a channel that enables communicating
values across threads. std::async() returns the future associated with the promise it
creates.

In the following implementation of pprocess(), the use of threads from the previous
version has been replaced with calls to std::async(). Note that you must specify
std::launch::async as the first parameter to std::async() to guarantee an
asynchronous execution and not a lazy evaluation. The amount of changes from the
previous implementation is very small and it should be easy to follow the code based on
the description of the algorithm from the previous implementation:

template <typename Iterator, typename F>
auto pprocess(Iterator begin, Iterator end, F&& f)
{
 auto size = std::distance(begin, end);
 if (size <= 10000)
 {
 return std::forward<F>(f)(begin, end);
 }
 else
 {
 int task_count = std::thread::hardware_concurrency();
 std::vector<std::future<
 typename std::iterator_traits<Iterator>::value_type>> tasks;

 auto first = begin;
 auto last = first;

Concurrency Chapter 7

[138]

 size /= task_count;
 for (int i = 0; i < task_count; ++i)
 {
 first = last;
 if (i == task_count - 1) last = end;
 else std::advance(last, size);

 tasks.emplace_back(std::async(
 std::launch::async,
 [first, last, &f]() {
 return std::forward<F>(f)(first, last);
 }));
 }

 std::vector<typename std::iterator_traits<Iterator>::value_type>
 mins;

 for (auto & t : tasks)
 mins.push_back(t.get());

 return std::forward<F>(f)(std::begin(mins), std::end(mins));
 }
}

template <typename Iterator>
auto pmin(Iterator begin, Iterator end)
{
 return pprocess(begin, end,
 [](auto b, auto e){return *std::min_element(b, e);});
}

template <typename Iterator>
auto pmax(Iterator begin, Iterator end)
{
 return pprocess(begin, end,
 [](auto b, auto e){return *std::max_element(b, e);});
}

The following code shows how this function can be used:

int main()
{
 std::vector<int> data(count);
 // init data
 auto rmin = pmin(std::begin(data), std::end(data));
 auto rmax = pmax(std::begin(data), std::end(data));
}

Concurrency Chapter 7

[139]

You can again take it as a further exercise to implement a general-purpose
algorithm that computes the sum of all the elements of a range in parallel
using asynchronous functions.

64. Parallel sort algorithm
We saw a sequential implementation of the quicksort algorithm earlier. Quicksort is a
divide and conquer algorithm that relies on partitioning the range to be sorted into two
parts, one that contains only elements smaller than a selected element, called the pivot, and
one that contains only elements greater than the pivot. It then proceeds to recursively apply
the same algorithm on the two partitions, until the partitions have only one element or
none. Because of the nature of the algorithm, quicksort can be easily parallelized to
recursively apply the algorithm on the two partitions concurrently.

The pquicksort() function uses asynchronous functions for this purpose. However,
parallelization is only efficient for larger ranges. There is a threshold under which the
overhead with context switches for parallel execution is too large and the parallel execution
time is greater than the sequential execution time. In the following implementation, this
threshold is set to 100,000 elements, but as a further exercise, you could experiment with
setting different values and see how the parallel version performs compared to the
sequential one:

template <class RandomIt>
RandomIt partition(RandomIt first, RandomIt last)
{
 auto pivot = *first;
 auto i = first + 1;
 auto j = last - 1;
 while (i <= j)
 {
 while (i <= j && *i <= pivot) i++;
 while (i <= j && *j > pivot) j--;
 if (i < j) std::iter_swap(i, j);
 }

 std::iter_swap(i - 1, first);

 return i - 1;
}

Concurrency Chapter 7

[140]

template <class RandomIt>
void pquicksort(RandomIt first, RandomIt last)
{
 if (first < last)
 {
 auto p = partition(first, last);

 if(last - first <= 100000)
 {
 pquicksort(first, p);
 pquicksort(p + 1, last);
 }
 else
 {
 auto f1 = std::async(std::launch::async,
 [first, p](){ pquicksort(first, p);});
 auto f2 = std::async(std::launch::async,
 [last, p]() { pquicksort(p+1, last);});
 f1.wait();
 f2.wait();
 }
 }
}

The following code shows how a large vector of random integers (with values between 1
and 1000) can be sorted using the pquicksort() function:

int main()
{
 std::random_device rd;
 std::mt19937 mt;
 auto seed_data = std::array<int, std::mt19937::state_size> {};
 std::generate(std::begin(seed_data), std::end(seed_data),
 std::ref(rd));
 std::seed_seq seq(std::begin(seed_data), std::end(seed_data));
 mt.seed(seq);
 std::uniform_int_distribution<> ud(1, 1000);

 const size_t count = 1000000;
 std::vector<int> data(count);
 std::generate_n(std::begin(data), count,
 [&mt, &ud]() {return ud(mt); });

 pquicksort(std::begin(data), std::end(data));
}

Concurrency Chapter 7

[141]

65. Thread-safe logging to the console
Although C++ does not have the concept of a console and uses streams to perform input
and output operations on sequential media such as files, the std::cout and std::wcout
global objects control the output to a stream buffer associated with the C output stream
stdout. These global stream objects cannot be safely accessed from different threads.
Should you need that, you must synchronize the access to them. That is exactly the purpose
of the requested component for this problem.

The logger class, shown as follows, uses an std::mutex to synchronize access to the
std::cout object in the log() method. The class is implemented as a thread-safe
singleton. The static method instance() returns a reference to a local static object (that
has storage duration). In C++11, initialization of a static object happens only once, even if
several threads attempt to initialize the same static object at the same time. In such a case,
concurrent threads are blocked until the initialization executed on the first calling thread
completes. Therefore, there is no need for additional user-defined synchronization
mechanisms:

class logger
{
protected:
 logger() {}
public:
 static logger& instance()
 {
 static logger lg;
 return lg;
 }

 logger(logger const &) = delete;
 logger& operator=(logger const &) = delete;

 void log(std::string_view message)
 {
 std::lock_guard<std::mutex> lock(mt);
 std::cout << "LOG: " << message << std::endl;
 }

private:
 std::mutex mt;
};

Concurrency Chapter 7

[142]

The preceding logger class can be used to write console message from multiple threads:

int main()
{
 std::vector<std::thread> modules;

 for(int id = 1; id <= 5; ++id)
 {
 modules.emplace_back([id](){
 std::random_device rd;
 std::mt19937 mt(rd());
 std::uniform_int_distribution<> ud(100, 1000);

 logger::instance().log(
 "module " + std::to_string(id) + " started");

 std::this_thread::sleep_for(std::chrono::milliseconds(ud(mt)));

 logger::instance().log(
 "module " + std::to_string(id) + " finished");
 });
 }

 for(auto & m : modules) m.join();
}

66. Customer service system
In order to implement the simulation of the customer service office as required, we could
use several helper classes. ticketing_machine is a class that models a very simple
machine that issues incremental ticketing numbers, starting with an initial, user-specified
seed. customer is a class that represents a customer that enters the store and receives a
ticket from the ticketing machine. operator< is overloaded for this class in order to store
customers in a priority queue from which they should be taken in the order given by their
ticket number. In addition, the logger class from the previous problem is used to print
messages to the console:

class ticketing_machine
{
public:
 ticketing_machine(int const start) :
 last_ticket(start),first_ticket(start)
 {}

Concurrency Chapter 7

[143]

 int next() { return last_ticket++; }
 int last() const { return last_ticket - 1; }
 void reset() { last_ticket = first_ticket; }
private:
 int first_ticket;
 int last_ticket;
};

class customer
{
public:
 customer(int const no) : number(no) {}

 int ticket_number() const noexcept { return number; }
private:
 int number;
 friend bool operator<(customer const & l, customer const & r);
};

bool operator<(customer const & l, customer const & r)
{
 return l.number > r.number;
}

Each desk from the office is modeled using a different thread. Customers entering the store
and queuing after getting a ticket are modeled using a separate thread. In the
following simulation, a new customer enters the store every 200-500 milliseconds, gets a
ticket and is placed in a priority queue. The execution of the store thread finishes after 25
customers enter the store and are placed in the queue. An std::condition_variable is
used to communicate between threads to notify that a new customer has been placed in the
queue or that an existing customer has been removed from the queue (which happens
when a customer moves to an open desk). The threads that represent the office desk are
running until a flag indicating the office is opened is reset but not before all customers that
are in the queue are served. In this simulation, each customer spends 2,000 to 3,000
milliseconds at a desk:

int main()
{
 std::priority_queue<customer> customers;
 bool office_open = true;
 std::mutex mt;
 std::condition_variable cv;

 std::vector<std::thread> desks;
 for (int i = 1; i <= 3; ++i)
 {

Concurrency Chapter 7

[144]

 desks.emplace_back([i, &office_open, &mt, &cv, &customers]() {
 std::random_device rd;
 auto seed_data = std::array<int, std::mt19937::state_size> {};
 std::generate(std::begin(seed_data), std::end(seed_data),
 std::ref(rd));
 std::seed_seq seq(std::begin(seed_data), std::end(seed_data));
 std::mt19937 eng(seq);
 std::uniform_int_distribution<> ud(2000, 3000);

 logger::instance().log("desk " + std::to_string(i) + " open");

 while (office_open || !customers.empty())
 {
 std::unique_lock<std::mutex> locker(mt);

 cv.wait_for(locker, std::chrono::seconds(1),
 [&customers]() {return !customers.empty(); });

 if (!customers.empty())
 {
 auto const c = customers.top();
 customers.pop();

 logger::instance().log(
 "[-] desk " + std::to_string(i) + " handling customer "
 + std::to_string(c.ticket_number()));

 logger::instance().log(
 "[=] queue size: " + std::to_string(customers.size()));

 locker.unlock();
 cv.notify_one();

 std::this_thread::sleep_for(
 std::chrono::milliseconds(ud(eng)));

 logger::instance().log(
 "[] desk " + std::to_string(i) + " done with customer "
 + std::to_string(c.ticket_number()));
 }
 }

 logger::instance().log("desk " + std::to_string(i) + " closed");
 });
 }

 std::thread store([&office_open, &customers, &mt, &cv]() {
 ticketing_machine tm(100);

Concurrency Chapter 7

[145]

 std::random_device rd;
 auto seed_data = std::array<int, std::mt19937::state_size> {};
 std::generate(std::begin(seed_data), std::end(seed_data),
 std::ref(rd));
 std::seed_seq seq(std::begin(seed_data), std::end(seed_data));
 std::mt19937 eng(seq);
 std::uniform_int_distribution<> ud(200, 500);

 for (int i = 1; i <= 25; ++i)
 {
 customer c(tm.next());
 customers.push(c);

 logger::instance().log("[+] new customer with ticket " +
 std::to_string(c.ticket_number()));
 logger::instance().log("[=] queue size: " +
 std::to_string(customers.size()));

 cv.notify_one();

 std::this_thread::sleep_for(std::chrono::milliseconds(ud(eng)));
 }

 office_open = false;
 });

 store.join();
 for (auto & desk : desks) desk.join();
}

Here is a snippet of the output of an execution of this problem:

LOG: desk 1 open
LOG: desk 2 open
LOG: desk 3 open
LOG: [+] new customer with ticket 100
LOG: [-] desk 2 handling customer 100
LOG: [=] queue size: 0
LOG: [=] queue size: 0
LOG: [+] new customer with ticket 101
LOG: [=] queue size: 1
LOG: [-] desk 3 handling customer 101
LOG: [=] queue size: 0
LOG: [+] new customer with ticket 102
LOG: [=] queue size: 1
LOG: [-] desk 1 handling customer 102
LOG: [=] queue size: 0
LOG: [+] new customer with ticket 103

Concurrency Chapter 7

[146]

LOG: [=] queue size: 1
...
LOG: [+] new customer with ticket 112
LOG: [=] queue size: 7
LOG: [+] new customer with ticket 113
LOG: [=] queue size: 8
LOG: [] desk 2 done with customer 103
LOG: [-] desk 2 handling customer 106
LOG: [=] queue size: 7
...
LOG: [] desk 1 done with customer 120
LOG: [-] desk 1 handling customer 123
LOG: [=] queue size: 1
LOG: [] desk 2 done with customer 121
LOG: [-] desk 2 handling customer 124
LOG: [=] queue size: 0
LOG: [] desk 3 done with customer 122
LOG: desk 3 closed
LOG: [] desk 1 done with customer 123
LOG: desk 1 closed
LOG: [] desk 2 done with customer 124
LOG: desk 2 closed

As a further exercise, you can try to change the intervals at which the customers enter the
store, how many customers are allowed to get a ticket before the office closes, how long it
takes to serve them, or how many desks are opened in the office.

8
Design Patterns

Problems

67. Validating passwords
Write a program that validates password strength based on predefined rules, which may
then be selected in various combinations. At a minimum, every password must meet a
minimum length requirement. In addition, other rules could be enforced, such as the
presence of at least one symbol, digit, uppercase and lowercase letter, and so on.

68. Generating random passwords
Write a program that can generate random passwords according to some predefined rules.
Every password must have a configurable minimum length. In addition, it should be
possible to include in the generation rules such as the presence of at least one digit, symbol,
lower or uppercase character, and so on. These additional rules must be configurable and
composable.

Design Patterns Chapter 8

[148]

69. Generating social security numbers
Write a program that can generate social security numbers for two countries, Northeria and
Southeria, that have different but similar formats for the numbers:

In Northeria, the numbers have the format SYYYYMMDDNNNNNC, where S is a digit
representing the sex, 9 for females and 7 for males, YYYYMMDD is the birth date,
NNNNN is a five-digit random number, unique for a day (meaning that the same
number can appear twice for two different dates, but not the same date), and C is
a digit picked so that the checksum computed as described later is a multiple of
11.
In Southeria, the numbers have the format SYYYYMMDDNNNNC, where S is a digit
representing the sex, 1 for females and 2 for males, YYYYMMDD is the birth date,
NNNN is a four-digit random number, unique for a day, and C is a digit picked so
that the checksum computed as described below is a multiple of 10.

The checksum in both cases is a sum of all the digits, each multiplied by its weight
(the position from the most significant digit to the least). For example, the checksum for the
Southerian number 12017120134895 is computed as follows:

crc = 14*1 + 13*2 + 12*0 + 11*1 + 10*7 + 9*1 + 8*2 + 7*0 + 6*1 + 5*3
 + 4*4 + 3*8 + 2*9 + 1*5
 = 230 = 23 * 10

70. Approval system
Write a program for a purchasing department of a company that allows employees to
approve new purchases (or expenses). However, based on their position, each employee
may only approve expenses up to a predefined limit. For instance, regular employees can
approve expenses up to 1,000 currency units, team managers up to 10,000, and the
department manager up to 100,000. Any expense greater than that must be explicitly
approved by the company president.

Design Patterns Chapter 8

[149]

71. Observable vector container
Write a class template that behaves like a vector but can notify registered parties of internal
state changes. The class must provide at least the following operations:

Various constructors for creating new instances of the class
operator= to assign values to the container
push_back() to add a new element at the end of the container
pop_back() to remove the last element from the container
clear() to remove all the elements from the container
size() to return the number of elements from the container
empty() to indicate whether the container is empty or has elements

operator=, push_back(), pop_back(), and clear() must notify others of the state
changes. The notification should include the type of the change, and, when the case, the
index of the element that was changed (such as added or removed).

72. Computing order price with discounts
A retail store sells a variety of goods and can offer various types of discount, for selected
customers, articles, or per order. The following types of discount could be available:

A fixed discount, such as 5%, regardless of the article or the quantity that is
purchased.
A volume discount, such as 10%, for each article when buying more than a
particular quantity of that article.
A price discount per total order of an article, that is, a discount for an article
when a customer buys a quantity of that article so that the total cost exceeds a
particular amount. For instance, a 15% discount for an article when the total cost
of that article exceeds $100. If the article costs $5, and the customer buys 30 units,
the total cost is $150; therefore, a 15% discount applies to the order of that article.
A price discount per entire order (regardless what articles and in which quantity
they were ordered).

Write a program that can calculate the final price of a particular order. It is possible to
compute the final price in different ways; for instance, all discounts could be cumulative, or
on the other hand, if an article has a discount, a customer or total order discount might not
be considered.

Design Patterns Chapter 8

[150]

Solutions

67. Validating passwords
The problem described here is a typical case for the decorator pattern. This design pattern
allows adding behavior to an object without affecting other objects of the same type. This is
achieved by wrapping an object within another object. Multiple decorators could be stacked
on top of each other, each time adding new functionality. In our case, the functionality
would be validating that a given password meets a particular requirement.

The following class diagram describes the pattern for validating passwords:

Design Patterns Chapter 8

[151]

The implementation of the pattern, as described in the diagram, is as follows:

class password_validator
{
public:
 virtual bool validate(std::string_view password) = 0;
 virtual ~password_validator() {}
};

class length_validator final : public password_validator
{
public:
 length_validator(unsigned int min_length): length(min_length)
 {}

 virtual bool validate(std::string_view password) override
 {
 return password.length() >= length;
 }

private:
 unsigned int length;
};

class password_validator_decorator : public password_validator
{
public:
 explicit password_validator_decorator(
 std::unique_ptr<password_validator> validator):
 inner(std::move(validator))
 {
 }

 virtual bool validate(std::string_view password) override
 {
 return inner->validate(password);
 }

private:
 std::unique_ptr<password_validator> inner;
};

class digit_password_validator final : public password_validator_decorator
{
public:
 explicit digit_password_validator(
 std::unique_ptr<password_validator> validator):
 password_validator_decorator(std::move(validator))

Design Patterns Chapter 8

[152]

 {
 }

 virtual bool validate(std::string_view password) override
 {
 if(!password_validator_decorator::validate(password))
 return false;

 return password.find_first_of("0123456789") != std::string::npos;
 }
};

class case_password_validator final : public password_validator_decorator
{
public:
 explicit case_password_validator(
 std::unique_ptr<password_validator> validator):
 password_validator_decorator(std::move(validator))
 {
 }

 virtual bool validate(std::string_view password) override
 {
 if(!password_validator_decorator::validate(password))
 return false;

 bool haslower = false;
 bool hasupper = false;

 for(size_t i = 0; i < password.length() && !(hasupper && haslower);
 ++i)
 {
 if(islower(password[i])) haslower = true;
 else if(isupper(password[i])) hasupper = true;
 }

 return haslower && hasupper;
 }
};

class symbol_password_validator final : public password_validator_decorator
{
public:
 explicit symbol_password_validator(
 std::unique_ptr<password_validator> validator):
 password_validator_decorator(std::move(validator))
 {
 }

Design Patterns Chapter 8

[153]

 virtual bool validate(std::string_view password) override
 {
 if(!password_validator_decorator::validate(password))
 return false;

 return password.find_first_of("!@#$%^&*(){}[]?<>") !=
 std::string::npos;
 }
};

password_validator is the base class and has a single virtual method called validate()
with a string argument representing the password. length_validator is derived from
this class and implements the mandatory password requirement for a minimum length.

password_validator_decorator is also derived from password_validator and
contains an inner password_validator component. Its validate() implementation
simply resolves to calling inner->validate(). The other classes,
digit_password_validator, symbol_password_validator, and
case_password_validator, are derived from it and implement the other individual
password strength requirements.

The following are examples of how these classes could be composed to create various
password validators:

int main()
{
 auto validator1 = std::make_unique<digit_password_validator>(
 std::make_unique<length_validator>(8));

 assert(validator1->validate("abc123!@#"));
 assert(!validator1->validate("abcde!@#"));

 auto validator2 =
 std::make_unique<symbol_password_validator>(
 std::make_unique<case_password_validator>(
 std::make_unique<digit_password_validator>(
 std::make_unique<length_validator>(8))));

 assert(validator2->validate("Abc123!@#"));
 assert(!validator2->validate("Abc123567"));
}

Design Patterns Chapter 8

[154]

68. Generating random passwords
This problem could be solved using the composite pattern or a variation of the pattern. This
design pattern composes objects into tree hierarchies and enables treating groups (or trees)
of objects the same way as individual objects of the same type. The following class diagram
shows a hierarchy of classes that can be used for generating passwords:

Design Patterns Chapter 8

[155]

password_generator is the base class and has several virtual methods:
generate() returns a new random string, length() specifies the length of the strings it
generates, allowed_chars() returns a string with all the characters it uses for generating
passwords, and add() adds a new child component to a composite generator.
basic_password_generator is derived from this base class and defines a generator with
a minimum length. digit_generator, symbol_generator, upper_letter_generator,
and lower_letter_generator are derived from basic_password_generator and
override allowed_chars() to define subsets of characters used to generate random texts.

composite_password_generator is also derived from password_generator and has a
collection of password_generator objects that it uses to compose a random text. This is
done in the overridden generate() method, which concatenates all the strings generated
by the child components and then randomly shuffles them to produce a final string
representing a password:

class password_generator
{
public:
 virtual std::string generate() = 0;

 virtual std::string allowed_chars() const = 0;
 virtual size_t length() const = 0;
 virtual void add(std::unique_ptr<password_generator> generator) = 0;

 virtual ~password_generator(){}
};

class basic_password_generator : public password_generator
{
 size_t len;
public:
 explicit basic_password_generator(size_t const len) noexcept : len(len)
 {}

 virtual std::string generate() override
 { throw std::runtime_error("not implemented"); }

 virtual void add(std::unique_ptr<password_generator>) override
 { throw std::runtime_error("not implemented"); }

 virtual size_t length() const override final
 {return len;}
};

Design Patterns Chapter 8

[156]

class digit_generator : public basic_password_generator
{
public:
 explicit digit_generator(size_t const len) noexcept
 : basic_password_generator(len) {}

 virtual std::string allowed_chars() const override
 {return "0123456789";}
};

class symbol_generator : public basic_password_generator
{
public:
 explicit symbol_generator(size_t const len) noexcept
 : basic_password_generator(len) {}

 virtual std::string allowed_chars() const override
 {return "!@#$%^&*(){}[]?<>";}
};

class upper_letter_generator : public basic_password_generator
{
public:
 explicit upper_letter_generator(size_t const len) noexcept
 : basic_password_generator(len) {}

 virtual std::string allowed_chars() const override
 {return "ABCDEFGHIJKLMNOPQRSTUVXYWZ";}
};

class lower_letter_generator : public basic_password_generator
{
public:
 explicit lower_letter_generator(size_t const len) noexcept
 : basic_password_generator(len) {}

 virtual std::string allowed_chars() const override
 {return "abcdefghijklmnopqrstuvxywz";}
};

class composite_password_generator : public password_generator
{
 virtual std::string allowed_chars() const override
 { throw std::runtime_error("not implemented"); };
 virtual size_t length() const override
 { throw std::runtime_error("not implemented"); };
public:
 composite_password_generator()

Design Patterns Chapter 8

[157]

 {
 auto seed_data = std::array<int, std::mt19937::state_size> {};
 std::generate(std::begin(seed_data), std::end(seed_data),
 std::ref(rd));
 std::seed_seq seq(std::begin(seed_data), std::end(seed_data));
 eng.seed(seq);
 }

 virtual std::string generate() override
 {
 std::string password;
 for(auto & generator : generators)
 {
 std::string chars = generator->allowed_chars();
 std::uniform_int_distribution<> ud(
 0, static_cast<int>(chars.length() - 1));

 for(size_t i = 0; i < generator->length(); ++i)
 password += chars[ud(eng)];
 }

 std::shuffle(std::begin(password), std::end(password), eng);

 return password;
 }

 virtual void add(std::unique_ptr<password_generator> generator) override
 {
 generators.push_back(std::move(generator));
 }

private:
 std::random_device rd;
 std::mt19937 eng;
 std::vector<std::unique_ptr<password_generator>> generators;
};

Design Patterns Chapter 8

[158]

The preceding code can be used to generate passwords in the following manner:

int main()
{
 composite_password_generator generator;
 generator.add(std::make_unique<symbol_generator>(2));
 generator.add(std::make_unique<digit_generator>(2));
 generator.add(std::make_unique<upper_letter_generator>(2));
 generator.add(std::make_unique<lower_letter_generator>(4));

 auto password = generator.generate();
}

You could use the password validator we wrote for the previous problem to make sure the
passwords generated in this way do indeed meet the expected requirements.

69. Generating social security numbers
The formats for both countries are very similar, although several details are different:

The value of the digit for the sex
The length of the random part, and therefore the length of the entire number
The number the checksum must be a multiple of

This problem can be solved using the template method design pattern, which defines the
skeleton of an algorithm and lets subclasses redefine particular steps:

Design Patterns Chapter 8

[159]

social_number_generator is a base class that has a public method called generate()
that produces a new social security number for a specified sex and birth date. This method
internally calls several protected virtual methods, sex_digit(), next_random(), and
modulo_value(). These virtual methods are overridden in the two derived classes,
northeria_social_number_generator and southeria_social_number_generator.
In addition, a factory class holds instances of these social number generators and makes
them available to the calling clients:

enum class sex_type {female, male};

class social_number_generator
{
protected:
 virtual int sex_digit(sex_type const sex) const noexcept = 0;
 virtual int next_random(unsigned const year, unsigned const month,
 unsigned const day) = 0;
 virtual int modulo_value() const noexcept = 0;

 social_number_generator(int const min, int const max):ud(min, max)
 {
 std::random_device rd;
 auto seed_data = std::array<int, std::mt19937::state_size> {};
 std::generate(std::begin(seed_data), std::end(seed_data),
 std::ref(rd));
 std::seed_seq seq(std::begin(seed_data), std::end(seed_data));
 eng.seed(seq);
 }

public:
 std::string generate(
 sex_type const sex,
 unsigned const year, unsigned const month, unsigned const day)
 {
 std::stringstream snumber;

 snumber << sex_digit(sex);

 snumber << year << month << day;

 snumber << next_random(year, month, day);

 auto number = snumber.str();

 auto index = number.length();
 auto sum = std::accumulate(std::begin(number), std::end(number), 0,
 [&index](int const s, char const c) {

Design Patterns Chapter 8

[160]

 return s + index-- * (c-'0');});

 auto rest = sum % modulo_value();
 snumber << modulo_value() - rest;

 return snumber.str();
 }

 virtual ~social_number_generator() {}

protected:
 std::map<unsigned, int> cache;
 std::mt19937 eng;
 std::uniform_int_distribution<> ud;
};

class southeria_social_number_generator final :
 public social_number_generator
{
public:
 southeria_social_number_generator():
 social_number_generator(1000, 9999)
 {
 }

protected:
 virtual int sex_digit(sex_type const sex) const noexcept override
 {
 if(sex == sex_type::female) return 1;
 else return 2;
 }

 virtual int next_random(unsigned const year, unsigned const month,
 unsigned const day) override
 {
 auto key = year * 10000 + month * 100 + day;
 while(true)
 {
 auto number = ud(eng);
 auto pos = cache.find(number);
 if(pos == std::end(cache))
 {
 cache[key] = number;
 return number;
 }
 }
 }

Design Patterns Chapter 8

[161]

 virtual int modulo_value() const noexcept override
 {
 return 11;
 }
};

class northeria_social_number_generator final :
 public social_number_generator
{
public:
 northeria_social_number_generator():
 social_number_generator(10000, 99999)
 {
 }

protected:
 virtual int sex_digit(sex_type const sex) const noexcept override
 {
 if(sex == sex_type::female) return 9;
 else return 7;
 }

 virtual int next_random(unsigned const year, unsigned const month,
 unsigned const day) override
 {
 auto key = year * 10000 + month * 100 + day;
 while(true)
 {
 auto number = ud(eng);
 auto pos = cache.find(number);
 if(pos == std::end(cache))
 {
 cache[key] = number;
 return number;
 }
 }
 }

 virtual int modulo_value() const noexcept override
 {
 return 11;
 }
};

class social_number_generator_factory
{
public:
 social_number_generator_factory()

Design Patterns Chapter 8

[162]

 {
 generators["northeria"] =
 std::make_unique<northeria_social_number_generator>();
 generators["southeria"] =
 std::make_unique<southeria_social_number_generator>();
 }

 social_number_generator* get_generator(std::string_view country) const
 {
 auto it = generators.find(country.data());
 if(it != std::end(generators))
 return it->second.get();

 throw std::runtime_error("invalid country");
 }

private:
 std::map<std::string,
 std::unique_ptr<social_number_generator>> generators;
};

Using this code, social security numbers can be generated as follows:

int main()
{
 social_number_generator_factory factory;

 auto sn1 = factory.get_generator("northeria")->generate(
 sex_type::female, 2017, 12, 25);
 auto sn2 = factory.get_generator("northeria")->generate(
 sex_type::female, 2017, 12, 25);
 auto sn3 = factory.get_generator("northeria")->generate(
 sex_type::male, 2017, 12, 25);

 auto sss1 = factory.get_generator("southeria")->generate(
 sex_type::female, 2017, 12, 25);
 auto ss2 = factory.get_generator("southeria")->generate(
 sex_type::female, 2017, 12, 25);
 auto ss3 = factory.get_generator("southeria")->generate(
 sex_type::male, 2017, 12, 25);
}

Design Patterns Chapter 8

[163]

70. Approval system
The problem described can be expressed in a series of if … else if … else … endif

statements. An object-oriented version of this idiom is the chain of responsibility design
pattern. This pattern defines a chain of receiver objects that have the responsibility of either
handling a request or passing it to the next receiver in the chain if one exists. The following
class diagram shows a possible implementation of the pattern for this problem:

Design Patterns Chapter 8

[164]

employee is a class that represents an employee in the company. An employee may have a
direct manager that is set with a call to the set_direct_manager() method. Every
employee has a name and a role that defines their responsibilities and permissions. role is
an abstract base class for possible roles and has a pure virtual
method, approval_limit(), that derived classes such as employee_role,
team_manager_role, department_manager_role, and president_role override to
indicate the limit up to which an employee can approve expenses. The
approve() method from the employee class is used to let an employee approve an
expense. If the role of the employee allows them to approve an expense, they do so;
otherwise, the request is passed to their direct manager, if any is defined:

class role
{
public:
 virtual double approval_limit() const noexcept = 0;
 virtual ~role() {}
};

class employee_role : public role
{
public:
 virtual double approval_limit() const noexcept override
 {
 return 1000;
 }
};

class team_manager_role : public role
{
public:
 virtual double approval_limit() const noexcept override
 {
 return 10000;
 }
};

class department_manager_role : public role
{
public:
 virtual double approval_limit() const noexcept override
 {
 return 100000;
 }
};

Design Patterns Chapter 8

[165]

class president_role : public role
{
public:
 virtual double approval_limit() const noexcept override
 {
 return std::numeric_limits<double>::max();
 }
};

struct expense
{
 double amount;
 std::string description;

 expense(double const amount, std::string_view desc):
 amount(amount), description(desc)
 {
 }
};

class employee
{
public:
 explicit employee(std::string_view name, std::unique_ptr<role> ownrole)
 : name(name), own_role(std::move(ownrole))
 {
 }

 void set_direct_manager(std::shared_ptr<employee> manager)
 {
 direct_manager = manager;
 }

 void approve(expense const & e)
 {
 if(e.amount <= own_role->approval_limit())
 std::cout << name << " approved expense '" << e.description
 << "', cost=" << e.amount << std::endl;
 else if(direct_manager != nullptr)
 direct_manager->approve(e);
 }

private:
 std::string name;
 std::unique_ptr<role> own_role;
 std::shared_ptr<employee> direct_manager;
};

Design Patterns Chapter 8

[166]

The following example shows how this code can be used to approve expenses:

int main()
{
 auto john = std::make_shared<employee>("john smith",
 std::make_unique<employee_role>());

 auto robert = std::make_shared<employee>("robert booth",
 std::make_unique<team_manager_role>());

 auto david = std::make_shared<employee>("david jones",
 std::make_unique<department_manager_role>());

 auto cecil = std::make_shared<employee>("cecil williamson",
 std::make_unique<president_role>());

 john->set_direct_manager(robert);
 robert->set_direct_manager(david);
 david->set_direct_manager(cecil);

 john->approve(expense{500, "magazins"});
 john->approve(expense{5000, "hotel accomodation"});
 john->approve(expense{50000, "conference costs"});
 john->approve(expense{200000, "new lorry"});
}

71. Observable vector container
The observable vector described in this problem is a typical example of a subject in the
design pattern called observer. This pattern describes an object, called the subject, that
maintains a list of dependent objects, called observers, and notifies them of any state
changes by calling one of their methods. The class diagram shown here describes a possible
pattern implementation for the proposed problem:

Design Patterns Chapter 8

[167]

observable_vector is a class that wraps an std::vector and exposes the required
operations. It also maintains a list of pointers to collection_observer objects. This is a
base class for objects that want to be informed of any state changes in the
observable_vector. It has a virtual method called collection_changed() with an
argument of type collection_changed_notification that contains information about
the change. When any change in the internal state of observable_vector occurs, it calls
this method on all the registered observers. Observers can be added to the vector with the
add_observer() method, or removed from the vector by calling the remove_observer()
method:

enum class collection_action
{
 add,
 remove,
 clear,
 assign
};

std::string to_string(collection_action const action)
{
 switch(action)
 {
 case collection_action::add: return "add";
 case collection_action::remove: return "remove";
 case collection_action::clear: return "clear";
 case collection_action::assign: return "assign";

Design Patterns Chapter 8

[168]

 }
}

struct collection_change_notification
{
 collection_action action;
 std::vector<size_t> item_indexes;
};

class collection_observer
{
public:
 virtual void collection_changed(
 collection_change_notification notification) = 0;
 virtual ~collection_observer() {}
};

template <typename T, class Allocator = std::allocator<T>>
class observable_vector final
{
 typedef typename std::vector<T, Allocator>::size_type size_type;
public:
 observable_vector() noexcept(noexcept(Allocator()))
 : observable_vector(Allocator()) {}
 explicit observable_vector(const Allocator& alloc) noexcept
 : data(alloc){}
 observable_vector(size_type count, const T& value,
 const Allocator& alloc = Allocator())
 : data(count, value, alloc){}
 explicit observable_vector(size_type count,
 const Allocator& alloc = Allocator())
 :data(count, alloc){}
 observable_vector(observable_vector&& other) noexcept
 :data(other.data){}
 observable_vector(observable_vector&& other,
 const Allocator& alloc)
 :data(other.data, alloc){}
 observable_vector(std::initializer_list<T> init,
 const Allocator& alloc = Allocator())
 :data(init, alloc){}
 template<class InputIt>
 observable_vector(InputIt first, InputIt last, const
 Allocator& alloc = Allocator())
 :data(first, last, alloc){}

 observable_vector& operator=(observable_vector const & other)
 {
 if(this != &other)

Design Patterns Chapter 8

[169]

 {
 data = other.data;

 for(auto o : observers)
 {
 if(o != nullptr)
 {
 o->collection_changed({
 collection_action::assign,
 std::vector<size_t> {}
 });
 }
 }
 }

 return *this;
 }

 observable_vector& operator=(observable_vector&& other)
 {
 if(this != &other)
 {
 data = std::move(other.data);

 for(auto o : observers)
 {
 if(o != nullptr)
 {
 o->collection_changed({
 collection_action::assign,
 std::vector<size_t> {}
 });
 }
 }
 }

 return *this;
 }

 void push_back(T&& value)
 {
 data.push_back(value);

 for(auto o : observers)
 {
 if(o != nullptr)
 {
 o->collection_changed({

Design Patterns Chapter 8

[170]

 collection_action::add,
 std::vector<size_t> {data.size()-1}
 });
 }
 }
 }

 void pop_back()
 {
 data.pop_back();

 for(auto o : observers)
 {
 if(o != nullptr)
 {
 o->collection_changed({
 collection_action::remove,
 std::vector<size_t> {data.size()+1}
 });
 }
 }
 }

 void clear() noexcept
 {
 data.clear();

 for(auto o : observers)
 {
 if(o != nullptr)
 {
 o->collection_changed({
 collection_action::clear,
 std::vector<size_t> {}
 });
 }
 }
 }

 size_type size() const noexcept
 {
 return data.size();
 }

 [[nodiscard]] bool empty() const noexcept
 {
 return data.empty();
 }

Design Patterns Chapter 8

[171]

 void add_observer(collection_observer * const o)
 {
 observers.push_back(o);
 }

 void remove_observer(collection_observer const * const o)
 {
 observers.erase(std::remove(std::begin(observers),
 std::end(observers), o),
 std::end(observers));
 }

private:
 std::vector<T, Allocator> data;
 std::vector<collection_observer*> observers;
};

class observer : public collection_observer
{
public:
 virtual void collection_changed(
 collection_change_notification notification) override
 {
 std::cout << "action: " << to_string(notification.action);
 if(!notification.item_indexes.empty())
 {
 std::cout << ", indexes: ";
 for(auto i : notification.item_indexes)
 std::cout << i << ' ';
 }
 std::cout << std::endl;
 }
};

The following are examples of using the observable_vector class and getting
notifications of the changes in its internal state:

int main()
{
 observable_vector<int> v;
 observer o;

 v.add_observer(&o);

 v.push_back(1);
 v.push_back(2);
 v.pop_back();

Design Patterns Chapter 8

[172]

 v.clear();

 v.remove_observer(&o);

 v.push_back(3);
 v.push_back(4);

 v.add_observer(&o);

 observable_vector<int> v2 {1,2,3};
 v = v2;
 v = observable_vector<int> {7,8,9};
}

You can take it as a further exercise to add more functionality to
observable_vector, such as providing access to the elements using
iterators.

72. Computing order price with discounts
The problem proposed here can be solved with the strategy pattern. This design pattern
defines a family of algorithms and makes them interchangeable within the family. In this
particular problem, both the discounts and the final order price calculators could be
implemented based on the strategy pattern. The following diagram describes the hierarchy
of discount types and their interchangeable use within the other classes, customer,
article, order_line, and order:

Design Patterns Chapter 8

[173]

The implementation of the discount types is shown here:

struct discount_type
{
 virtual double discount_percent(
 double const price, double const quantity) const noexcept = 0;
 virtual ~discount_type() {}
};

struct fixed_discount final : public discount_type
{
 explicit fixed_discount(double const discount) noexcept
 : discount(discount) {}
 virtual double discount_percent(
 double const, double const) const noexcept
 {return discount;}

private:
 double discount;

Design Patterns Chapter 8

[174]

};

struct volume_discount final : public discount_type
{
 explicit volume_discount(double const quantity,
 double const discount) noexcept
 : discount(discount), min_quantity(quantity) {}
 virtual double discount_percent(
 double const, double const quantity) const noexcept
 {return quantity >= min_quantity ? discount : 0;}

private:
 double discount;
 double min_quantity;
};

struct price_discount : public discount_type
{
 explicit price_discount(double const price,
 double const discount) noexcept
 : discount(discount), min_total_price(price) {}
 virtual double discount_percent(
 double const price, double const quantity) const noexcept
 {return price*quantity >= min_total_price ? discount : 0;}

private:
 double discount;
 double min_total_price;
};

struct amount_discount : public discount_type
{
 explicit amount_discount(double const price,
 double const discount) noexcept
 : discount(discount), min_total_price(price) {}
 virtual double discount_percent(
 double const price, double const) const noexcept
 {return price >= min_total_price ? discount : 0;}

private:
 double discount;
 double min_total_price;
};

Design Patterns Chapter 8

[175]

The classes that model customers, articles, and orders have only a minimum structure, in
order to keep the solution simple. They are shown here:

struct customer
{
 std::string name;
 discount_type* discount;
};

enum class article_unit
{
 piece, kg, meter, sqmeter, cmeter, liter
};

struct article
{
 int id;
 std::string name;
 double price;
 article_unit unit;
 discount_type* discount;
};

struct order_line
{
 article product;
 int quantity;
 discount_type* discount;
};

struct order
{
 int id;
 customer* buyer;
 std::vector<order_line> lines;
 discount_type* discount;
};

Design Patterns Chapter 8

[176]

For computing the final price of an order, we could use various types of calculator. This is
yet another instantiation of the strategy pattern:

price_calculator is an abstract base class that has a pure virtual
method, calculate_price(). The classes derived from price_calculator, such as
cumulative_price_calculator, provide the actual algorithm implementation by
overriding the calculate_price() method. For simplicity, in this implementation only
one concrete strategy for price calculation is provided. As a further exercise, you can
implement others:

struct price_calculator
{
 virtual double calculate_price(order const & o) = 0;
};

struct cumulative_price_calculator : public price_calculator
{
 virtual double calculate_price(order const & o) override
 {
 double price = 0;

 for(auto ol : o.lines)
 {
 double line_price = ol.product.price * ol.quantity;

 if(ol.product.discount != nullptr)
 line_price *= (1.0 - ol.product.discount->discount_percent(
 ol.product.price, ol.quantity));

 if(ol.discount != nullptr)

Design Patterns Chapter 8

[177]

 line_price *= (1.0 - ol.discount->discount_percent(
 ol.product.price, ol.quantity));

 if(o.buyer != nullptr && o.buyer->discount != nullptr)
 line_price *= (1.0 - o.buyer->discount->discount_percent(
 ol.product.price, ol.quantity));

 price += line_price;
 }

 if(o.discount != nullptr)
 price *= (1.0 - o.discount->discount_percent(price, 0));

 return price;
 }
};

Here are examples of how to compute the final order price using
cumulative_price_calculator:

inline bool are_equal(double const d1, double const d2,
 double const diff = 0.001)
{
 return std::abs(d1 - d2) <= diff;
}

int()
{
 fixed_discount d1(0.1);
 volume_discount d2(10, 0.15);
 price_discount d3(100, 0.05);
 amount_discount d4(100, 0.05);

 customer c1 {"default", nullptr};
 customer c2 {"john", &d1};
 customer c3 {"joane", &d3};

 article a1 {1, "pen", 5, article_unit::piece, nullptr};
 article a2 {2, "expensive pen", 15, article_unit::piece, &d1};
 article a3 {3, "scissors", 10, article_unit::piece, &d2};

 cumulative_price_calculator calc;

 order o1 {101, &c1, {{a1, 1, nullptr}}, nullptr};
 assert(are_equal(calc.calculate_price(o1), 5));

Design Patterns Chapter 8

[178]

 order o3 {103, &c1, {{a2, 1, nullptr}}, nullptr};
 assert(are_equal(calc.calculate_price(o3), 13.5));

 order o6 {106, &c1, {{a3, 15, nullptr}}, nullptr};
 assert(are_equal(calc.calculate_price(o6), 127.5));

 order o9 {109, &c3, {{a2, 20, &d1}}, &d4};
 assert(are_equal(calc.calculate_price(o9), 219.3075));
}

9
Data Serialization

Problems

73. Serializing and deserializing data to/from XML
Write a program that can serialize a list of movies to an XML file, and deserialize an XML
file with a list of movies. Each movie has a numerical identifier, title, release year, length in
minutes, a list of directors, a list of writers, and a list of casting roles with actor name and
character name. Such an XML may look like the following:

<?xml version="1.0"?>
<movies>
 <movie id="9871" title="Forrest Gump" year="1994" length="202">
 <cast>
 <role star="Tom Hanks" name="Forrest Gump" />
 <role star="Sally Field" name="Mrs. Gump" />
 <role star="Robin Wright" name="Jenny Curran" />
 <role star="Mykelti Williamson" name="Bubba Blue" />
 </cast>
 <directors>
 <director name="Robert Zemeckis" />
 </directors>
 <writers>
 <writer name="Winston Groom" />
 <writer name="Eric Roth" />
 </writers>
 </movie>
 <!-- more movie elements -->
</movies>

Data Serialization Chapter 9

[180]

74. Selecting data from XML using XPath
Consider an XML file with a list of movies as described for the previous problem. Write a
program that can select and print the following:

The title of all the movies released after a given year
The name of the last actor in the casting list for each movie in the file

75. Serializing data to JSON
Write a program that can serialize a list of movies, as defined for the previous problems, to
a JSON file. Each movie has a numerical identifier, title, release year, length in minutes, a
list of directors, a list of writers, and a list of casting roles with actor name and character
name. The following is an example of the expected JSON format:

{
 "movies": [{
 "id": 9871,
 "title": "Forrest Gump",
 "year": 1994,
 "length": 202,
 "cast": [{
 "star": "Tom Hanks",
 "name": "Forrest Gump"
 },
 {
 "star": "Sally Field",
 "name": "Mrs. Gump"
 },
 {
 "star": "Robin Wright",
 "name": "Jenny Curran"
 },
 {
 "star": "Mykelti Williamson",
 "name": "Bubba Blue"
 }
],
 "directors": ["Robert Zemeckis"],
 "writers": ["Winston Groom", "Eric Roth"]
 }]
}

Data Serialization Chapter 9

[181]

76. Deserializing data from JSON
Consider a JSON file with a list of movies as shown in the previous problem. Write a
program that can deserialize its content.

77. Printing a list of movies to a PDF
Write a program that can print to a PDF file a list of movies in a tabular form, with the
following requirements:

There must be a heading to the list with the content List of movies. This must
appear only on the first page of the document.
For each movie, it should display the title, the release year, and the length.
The title, followed by the release year in parentheses, must be left-aligned.
The length, in hours and minutes (for example, 2:12), must be right-aligned.
There must be a line above and below the movie listing on each page.

Here is an example of such a PDF output:

Data Serialization Chapter 9

[182]

78. Creating a PDF from a collection of images
Write a program that can create a PDF document that contains images from a user-specified
directory. The images must be displayed one after another. If an image does not fit on the
remainder of a page, it must be placed on the next page.

The following is an example of such a PDF file, created from several images of Albert
Einstein (these pictures are featured along with the source code accompanying the book):

Data Serialization Chapter 9

[183]

Solutions

73. Serializing and deserializing data to/from XML
The C++ standard library does not have any support for XML, but there are multiple open
source, cross-platform libraries that you can use. Some libraries are lightweight, supporting
a set of basic XML features, while others are more complex and rich in functionality. It is up
to you to decide which is most suitable for a particular project.

The list of libraries you may want to consider should include Xerces-C++, libxml++, tinyxml
or tinyxml2, pugixml, gSOAP, and RapidXml. For solving this particular task I will choose
pugixml. This is a cross-platform, lightweight library, with a fast, although non-validating,
XML parser. It has a DOM-like interface with rich traversal/modification capabilities, with
support for Unicode and XPath 1.0. On the limitations of the library, it should be mentioned
that it lacks support for schema validation. The pugixml library is available at https:/ /
pugixml.org/.

To represent the movies, as described in the problem, we shall use the following structures:

struct casting_role
{
 std::string actor;
 std::string role;
};

struct movie
{
 unsigned int id;
 std::string title;
 unsigned int year;
 unsigned int length;
 std::vector<casting_role> cast;
 std::vector<std::string> directors;
 std::vector<std::string> writers;
};

using movie_list = std::vector<movie>;

https://pugixml.org/
https://pugixml.org/
https://pugixml.org/
https://pugixml.org/
https://pugixml.org/
https://pugixml.org/
https://pugixml.org/

Data Serialization Chapter 9

[184]

To create an XML document you must use the pugi::xml_document class. After
constructing the DOM tree you can save it to a file by calling save_file(). Nodes can be
added by calling append_child(), and attributes with append_attribute(). The
following method serializes a list of movies in the requested format:

void serialize(movie_list const & movies, std::string_view filepath)
{
 pugi::xml_document doc;
 auto root = doc.append_child("movies");

 for (auto const & m : movies)
 {
 auto movie_node = root.append_child("movie");

 movie_node.append_attribute("id").set_value(m.id);
 movie_node.append_attribute("title").set_value(m.title.c_str());
 movie_node.append_attribute("year").set_value(m.year);
 movie_node.append_attribute("length").set_value(m.length);

 auto cast_node = movie_node.append_child("cast");
 for (auto const & c : m.cast)
 {
 auto node = cast_node.append_child("role");
 node.append_attribute("star").set_value(c.actor.c_str());
 node.append_attribute("name").set_value(c.role.c_str());
 }

 auto directors_node = movie_node.append_child("directors");
 for (auto const & director : m.directors)
 {
 directors_node.append_child("director")
 .append_attribute("name")
 .set_value(director.c_str());
 }

 auto writers_node = movie_node.append_child("writers");
 for (auto const & writer : m.writers)
 {
 writers_node.append_child("writer")
 .append_attribute("name")
 .set_value(writer.c_str());
 }
 }

 doc.save_file(filepath.data());
}

Data Serialization Chapter 9

[185]

For the opposite operation, you can load the content of the XML file into
a pugi::xml_document by calling its load_file() method. You can access nodes by
calling methods such as child() and next_sibling(), and attributes by calling
attribute(). The deserialize() method, shown as follows, reads the DOM tree and
constructs a list of movies:

movie_list deserialize(std::string_view filepath)
{
 pugi::xml_document doc;
 movie_list movies;

 auto result = doc.load_file(filepath.data());
 if (result)
 {
 auto root = doc.child("movies");
 for (auto movie_node = root.child("movie");
 movie_node;
 movie_node = movie_node.next_sibling("movie"))
 {
 movie m;
 m.id = movie_node.attribute("id").as_uint();
 m.title = movie_node.attribute("title").as_string();
 m.year = movie_node.attribute("year").as_uint();
 m.length = movie_node.attribute("length").as_uint();

 for (auto role_node :
 movie_node.child("cast").children("role"))
 {
 m.cast.push_back(casting_role{
 role_node.attribute("star").as_string(),
 role_node.attribute("name").as_string() });
 }

 for (auto director_node :
 movie_node.child("directors").children("director"))
 {
 m.directors.push_back(
 director_node.attribute("name").as_string());
 }

 for (auto writer_node :
 movie_node.child("writers").children("writer"))
 {
 m.writers.push_back(
 writer_node.attribute("name").as_string());
 }

Data Serialization Chapter 9

[186]

 movies.push_back(m);
 }
 }

 return movies;
}

An example of how these functions can be used is shown in the following listing:

int main()
{
 movie_list movies
 {
 {
 11001, "The Matrix",1999, 196,
 { {"Keanu Reeves", "Neo"},
 {"Laurence Fishburne", "Morpheus"},
 {"Carrie-Anne Moss", "Trinity"},
 {"Hugo Weaving", "Agent Smith"} },
 {"Lana Wachowski", "Lilly Wachowski"},
 {"Lana Wachowski", "Lilly Wachowski"},
 },
 {
 9871, "Forrest Gump", 1994, 202,
 { {"Tom Hanks", "Forrest Gump"},
 {"Sally Field", "Mrs. Gump"},
 {"Robin Wright","Jenny Curran"},
 {"Mykelti Williamson","Bubba Blue"} },
 {"Robert Zemeckis"},
 {"Winston Groom", "Eric Roth"},
 }
 };

 serialize(movies, "movies.xml");
 auto result = deserialize("movies.xml");

 assert(result.size() == 2);
 assert(result[0].title == "The Matrix");
 assert(result[1].title == "Forrest Gump");
}

Data Serialization Chapter 9

[187]

74. Selecting data from XML using XPath
Navigation through the elements and attributes of an XML file can be done with XPath.
XPath uses XPath expressions for that purpose and there is a long list of built-in functions
for that. pugixml supports XPath expressions and you can use the select_nodes()
method from the xml_document class for that purpose. Note that, if an error occurs during
the XPath selection, an xpath_exception is thrown. The following XPath expressions can
be used for selecting the nodes according to the problem requirements:

For all movies released after a given year (in this example that year is 1995):
/movies/movie[@year>1995]

For the last casting role of each movie: /movies/movie/cast/role[last()]

The following program loads an XML document from a string buffer and then performs
node selection using the XPath expressions listed earlier. The XML document is defined as
follows:

std::string text = R"(
<?xml version="1.0"?>
<movies>
 <movie id="11001" title="The Matrix" year="1999" length="196">
 <cast>
 <role star="Keanu Reeves" name="Neo" />
 <role star="Laurence Fishburne" name="Morpheus" />
 <role star="Carrie-Anne Moss" name="Trinity" />
 <role star="Hugo Weaving" name=" Agent Smith" />
 </cast>
 <directors>
 <director name="Lana Wachowski" />
 <director name="Lilly Wachowski" />
 </directors>
 <writers>
 <writer name="Lana Wachowski" />
 <writer name="Lilly Wachowski" />
 </writers>
 </movie>
 <movie id="9871" title="Forrest Gump" year="1994" length="202">
 <cast>
 <role star="Tom Hanks" name="Forrest Gump" />
 <role star="Sally Field" name="Mrs. Gump" />
 <role star="Robin Wright" name="Jenny Curran" />
 <role star="Mykelti Williamson" name="Bubba Blue" />
 </cast>
 <directors>
 <director name="Robert Zemeckis" />

Data Serialization Chapter 9

[188]

 </directors>
 <writers>
 <writer name="Winston Groom" />
 <writer name="Eric Roth" />
 </writers>
 </movie>
</movies>
)";

The selection of the requested data can be done in the following manner:

pugi::xml_document doc;
if (doc.load_string(text.c_str()))
{
 try
 {
 auto titles = doc.select_nodes("/movies/movie[@year>1995]");

 for (auto it : titles)
 {
 std::cout << it.node().attribute("title").as_string()
 << std::endl;
 }
 }
 catch (pugi::xpath_exception const & e)
 {
 std::cout << e.result().description() << std::endl;
 }

 try
 {
 auto titles = doc.select_nodes("/movies/movie/cast/role[last()]");

 for (auto it : titles)
 {
 std::cout << it.node().attribute("star").as_string()
 << std::endl;
 }
 }
 catch (pugi::xpath_exception const & e)
 {
 std::cout << e.result().description() << std::endl;
 }
}

Data Serialization Chapter 9

[189]

75. Serializing data to JSON
As with XML, no standard support for JSON exists. However, there are a large number of
cross-platform libraries for this purpose. At the time of writing, the nativejson-benchmark
project, available at https:/ /github. com/ miloyip/ nativejson- benchmark, lists more than
40 libraries. This project is a benchmark that evaluates the conformance and performance
(speed, memory, and code size) of open source C/C++ libraries with JSON
parsing/generation capabilities. This makes it perhaps a bit hard to choose the right library,
although top contenders may include RapidJSON, NLohmann, taocpp/json, Configuru,
json_spirit, jsoncpp. For solving this task we will use here the nlohmann/json library.
It is a cross-platform, header only library for C++11, with an intuitive syntax and good
documentation. This library is available at https:/ /github. com/nlohmann/ json.

We will use the same data structures to represent movies that we used for the
problem Serializing and deserializing data to/from XML. The nlohmann library uses
nlohmann::json as its main data type for representing JSON objects. Although you can
create JSON values with a more explicit syntax, there are also implicit conversions to and
from scalar types and standard containers. In addition, you can also enable this implicit
conversion to and from your custom types by providing a to_json() and from_json()
method in the namespace of the type to be converted. There are some requirements for
these functions that you can read about in the documentation.

In the following code, this is the chosen approach. Since the movie and
casting_role types were defined in the global namespace, the to_json() overloads that
serialize these types are also defined in the global namespace. On the other hand, the type
movie_list is actually a type alias for std::vector<movie> and can be serialized and
deserialized directly because, as mentioned earlier, the library supports implicit conversion
to and from standard containers:

using json = nlohmann::json;

void to_json(json& j, casting_role const & c)
{
 j = json{ {"star", c.actor}, {"name", c.role} };
}

void to_json(json& j, movie const & m)
{
 j = json::object({
 {"id", m.id},
 {"title", m.title},
 {"year", m.year},
 {"length", m.length},

https://github.com/miloyip/nativejson-benchmark
https://github.com/miloyip/nativejson-benchmark
https://github.com/miloyip/nativejson-benchmark
https://github.com/miloyip/nativejson-benchmark
https://github.com/miloyip/nativejson-benchmark
https://github.com/miloyip/nativejson-benchmark
https://github.com/miloyip/nativejson-benchmark
https://github.com/miloyip/nativejson-benchmark
https://github.com/miloyip/nativejson-benchmark
https://github.com/miloyip/nativejson-benchmark
https://github.com/miloyip/nativejson-benchmark
https://github.com/miloyip/nativejson-benchmark
https://github.com/miloyip/nativejson-benchmark
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json

Data Serialization Chapter 9

[190]

 {"cast", m.cast },
 {"directors", m.directors},
 {"writers", m.writers}
 });
}

void serialize(movie_list const & movies, std::string_view filepath)
{
 json jdata{ { "movies", movies } };

 std::ofstream ofile(filepath.data());
 if (ofile.is_open())
 {
 ofile << std::setw(2) << jdata << std::endl;
 }
}

The function serialize() can be used as shown in the following example:

int main()
{
 movie_list movies
 {
 {
 11001, "The Matrix", 1999, 196,
 { {"Keanu Reeves", "Neo"},
 {"Laurence Fishburne", "Morpheus"},
 {"Carrie-Anne Moss", "Trinity"},
 {"Hugo Weaving", "Agent Smith"} },
 {"Lana Wachowski", "Lilly Wachowski"},
 {"Lana Wachowski", "Lilly Wachowski"},
 },
 {
 9871, "Forrest Gump", 1994, 202,
 { {"Tom Hanks", "Forrest Gump"},
 {"Sally Field", "Mrs. Gump"},
 {"Robin Wright","Jenny Curran"},
 {"Mykelti Williamson","Bubba Blue"} },
 {"Robert Zemeckis"},
 {"Winston Groom", "Eric Roth"},
 }
 };

 serialize(movies, "movies.json");
}

Data Serialization Chapter 9

[191]

76. Deserializing data from JSON
For solving this task we will use the nlohmann/json library again. Instead of writing
from_json() functions, as was mentioned in the solution to the previous problem, we will
take a more explicit approach. The content of a JSON file can be loaded into
an nlohmann::json object using the overloaded operator>>. To access the object values,
you should use the at() method rather than operator[], because the former throws an
exception if the key does not exist (an exception that you can handle), while the latter
exhibits undefined behavior. To retrieve an object value as a particular T object, use the
get<T>() method. However, this requires the type T to be default constructible.

The deserialize() function shown here returns an std::vector<movie> constructed
from the content of a specified JSON file:

using json = nlohmann::json;

movie_list deserialize(std::string_view filepath)
{
 movie_list movies;

 std::ifstream ifile(filepath.data());
 if (ifile.is_open())
 {
 json jdata;

 try
 {
 ifile >> jdata;

 if (jdata.is_object())
 {
 for (auto & element : jdata.at("movies"))
 {
 movie m;

 m.id = element.at("id").get<unsigned int>();
 m.title = element.at("title").get<std::string>();
 m.year = element.at("year").get<unsigned int>();
 m.length = element.at("length").get<unsigned int>();

 for (auto & role : element.at("cast"))
 {
 m.cast.push_back(casting_role{
 role.at("star").get<std::string>(),
 role.at("name").get<std::string>() });

Data Serialization Chapter 9

[192]

 }

 for (auto & director : element.at("directors"))
 {
 m.directors.push_back(director);
 }

 for (auto & writer : element.at("writers"))
 {
 m.writers.push_back(writer);
 }

 movies.push_back(m);
 }
 }
 }
 catch (std::exception const & ex)
 {
 std::cout << ex.what() << std::endl;
 }
 }

 return movies;
}

This deserialization function can be used as follows:

int main()
{
 auto movies = deserialize("movies.json");

 assert(movies.size() == 2);
 assert(movies[0].title == "The Matrix");
 assert(movies[1].title == "Forrest Gump");
}

77. Printing a list of movies to a PDF
There are various C++ libraries for working with PDF files. HaHu, PoDoFo, JagPDF,
and PDF-Writer (also known as Hummus) are some of the open source and cross-platform
libraries that you could use for this purpose. In this book, I will use PDF-Writer, available at
https://github.com/ galkahana/ PDF- Writer. This is a free, fast, and extensible library with
a basic feature set that includes support for text, images, and shapes with both PDF
operators and higher-level functions (which I will use for the solution to this problem).

https://github.com/galkahana/PDF-Writer
https://github.com/galkahana/PDF-Writer
https://github.com/galkahana/PDF-Writer
https://github.com/galkahana/PDF-Writer
https://github.com/galkahana/PDF-Writer
https://github.com/galkahana/PDF-Writer
https://github.com/galkahana/PDF-Writer
https://github.com/galkahana/PDF-Writer
https://github.com/galkahana/PDF-Writer
https://github.com/galkahana/PDF-Writer
https://github.com/galkahana/PDF-Writer
https://github.com/galkahana/PDF-Writer
https://github.com/galkahana/PDF-Writer

Data Serialization Chapter 9

[193]

The function print_pdf(), shown as follows, implements the following algorithm:

Start a new PDF document with PDFWriter::StartPDF().
Print at most 25 movies on each page. Each page is represented by a PDFPage()
object and has a PageContentContext object, which is created with
PDFPage::StartPageContentContext() and used to draw items on the page.
On the first page, put a heading with the content List of movies. Text is written on
the page using PageContentContext::WriteText().
Movie information is written using different fonts.
Lines are drawn on the top and bottom of the movie list on each page using
PageContentContext::DrawPath().
PDFWriter::EndPageContentContext() and
PDFWriter::WritePageAndRelease() must be called after finishing writing
content to a page.
PDFWriter::EndPDF() must be called when finishing writing the PDF
document:

For information about the types and methods used in the following code,
as well as more information about creating PDF documents and working
with text, shapes, and images, see the project documentation available at
https:/ /github. com/ galkahana/ PDF- Writer/ wiki.

#ifdef _WIN32
static const std::string fonts_dir = R"(c:\windows\fonts\)";
#elif defined (__APPLE__)
static const std::string fonts_dir = R"(/Library/Fonts/)";
#else
static const std::string fonts_dir = R"(/usr/share/fonts)";
#endif

void print_pdf(movie_list const & movies,
 std::string_view path)
{
 const int height = 842;
 const int width = 595;
 const int left = 60;
 const int top = 770;
 const int right = 535;
 const int bottom = 60;
 const int line_height = 28;

https://github.com/galkahana/PDF-Writer/wiki
https://github.com/galkahana/PDF-Writer/wiki
https://github.com/galkahana/PDF-Writer/wiki
https://github.com/galkahana/PDF-Writer/wiki
https://github.com/galkahana/PDF-Writer/wiki
https://github.com/galkahana/PDF-Writer/wiki
https://github.com/galkahana/PDF-Writer/wiki
https://github.com/galkahana/PDF-Writer/wiki
https://github.com/galkahana/PDF-Writer/wiki
https://github.com/galkahana/PDF-Writer/wiki
https://github.com/galkahana/PDF-Writer/wiki
https://github.com/galkahana/PDF-Writer/wiki
https://github.com/galkahana/PDF-Writer/wiki
https://github.com/galkahana/PDF-Writer/wiki
https://github.com/galkahana/PDF-Writer/wiki

Data Serialization Chapter 9

[194]

 PDFWriter pdf;
 pdf.StartPDF(path.data(), ePDFVersion13);
 auto font = pdf.GetFontForFile(fonts_dir + "arial.ttf");

 AbstractContentContext::GraphicOptions pathStrokeOptions(
 AbstractContentContext::eStroke,
 AbstractContentContext::eRGB,
 0xff000000,
 1);

 PDFPage* page = nullptr;
 PageContentContext* context = nullptr;
 int index = 0;
 for (size_t i = 0; i < movies.size(); ++i)
 {
 index = i % 25;
 if (index == 0)
 {
 if (page != nullptr)
 {
 DoubleAndDoublePairList pathPoints;
 pathPoints.push_back(DoubleAndDoublePair(left, bottom));
 pathPoints.push_back(DoubleAndDoublePair(right, bottom));
 context->DrawPath(pathPoints, pathStrokeOptions);

 pdf.EndPageContentContext(context);
 pdf.WritePageAndRelease(page);
 }

 page = new PDFPage();
 page->SetMediaBox(PDFRectangle(0, 0, width, height));
 context = pdf.StartPageContentContext(page);

 {
 DoubleAndDoublePairList pathPoints;
 pathPoints.push_back(DoubleAndDoublePair(left, top));
 pathPoints.push_back(DoubleAndDoublePair(right, top));
 context->DrawPath(pathPoints, pathStrokeOptions);
 }
 }

 if (i == 0)
 {
 AbstractContentContext::TextOptions const textOptions(
 font, 26, AbstractContentContext::eGray, 0);

Data Serialization Chapter 9

[195]

 context->WriteText(left, top + 15,
 "List of movies", textOptions);
 }

 auto textw = 0;
 {
 AbstractContentContext::TextOptions const textOptions(
 font, 20, AbstractContentContext::eGray, 0);

 context->WriteText(left, top - 20 - line_height * index,
 movies[i].title, textOptions);
 auto textDimensions = font->CalculateTextDimensions(
 movies[i].title, 20);
 textw = textDimensions.width;
 }

 {
 AbstractContentContext::TextOptions const textOptions(
 font, 16, AbstractContentContext::eGray, 0);

 context->WriteText(left + textw + 5,
 top - 20 - line_height * index,
 " (" + std::to_string(movies[i].year) + ")",
 textOptions);

 std::stringstream s;
 s << movies[i].length / 60 << ':' << std::setw(2)
 << std::setfill('0') << movies[i].length % 60;

 context->WriteText(right - 30, top - 20 - line_height * index,
 s.str(),
 textOptions);
 }
 }

 DoubleAndDoublePairList pathPoints;
 pathPoints.push_back(
 DoubleAndDoublePair(left, top - line_height * (index + 1)));
 pathPoints.push_back(
 DoubleAndDoublePair(right, top - line_height * (index + 1)));
 context->DrawPath(pathPoints, pathStrokeOptions);

 if (page != nullptr)
 {

Data Serialization Chapter 9

[196]

 pdf.EndPageContentContext(context);
 pdf.WritePageAndRelease(page);
 }

 pdf.EndPDF();
}

The print_pdf() function can be used as follows:

int main()
{
 movie_list movies
 {
 { 1, "The Matrix", 1999, 136},
 { 2, "Forrest Gump", 1994, 142},
 // .. other movies
 { 28, "L.A. Confidential", 1997, 138},
 { 29, "Shutter Island", 2010, 138},
 };

 print_pdf(movies, "movies.pdf");
}

78. Creating a PDF from a collection of images
To solve this problem we will use the same PDF-Writer library we used for the previous
problem. I recommend that you look at and implement the previous problem first, if you
have not done that already, before continuing with this one.

The following get_images() function returns a vector of strings that represent the path of
all JPG images from a specified directory:

namespace fs = std::experimental::filesystem;

std::vector<std::string> get_images(fs::path const & dirpath)
{
 std::vector<std::string> paths;

 for (auto const & p : fs::directory_iterator(dirpath))
 {

Data Serialization Chapter 9

[197]

 if (p.path().extension() == ".jpg")
 paths.push_back(p.path().string());
 }

 return paths;
}

The print_pdf() function creates a PDF document with all the JPG images from a
specified directory. It implements the following algorithm:

Create a new PDF document with PDFWriter::StartPDF()
Create a page and its content and put as many images as can fit on the page,
arranged vertically one after the other
When a new image does not fit in the current page, close the page with
PDFWriter::EndPageContentContext() and
PDFWriter::SavePageAndRelease() and start a new page
Write images on the page content using PageContentContext::DrawImage()
End the document by calling PDFWriter::EndPDF()

void print_pdf(fs::path const & pdfpath,
 fs::path const & dirpath)
{
 const int height = 842;
 const int width = 595;
 const int margin = 20;

 auto image_paths = get_images(dirpath);

 PDFWriter pdf;
 pdf.StartPDF(pdfpath.string(), ePDFVersion13);

 PDFPage* page = nullptr;
 PageContentContext* context = nullptr;

 auto top = height - margin;
 for (size_t i = 0; i < image_paths.size(); ++i)
 {
 auto dims = pdf.GetImageDimensions(image_paths[i]);

 if (i == 0 || top - dims.second < margin)
 {
 if (page != nullptr)
 {

Data Serialization Chapter 9

[198]

 pdf.EndPageContentContext(context);
 pdf.WritePageAndRelease(page);
 }

 page = new PDFPage();
 page->SetMediaBox(PDFRectangle(0, 0, width, height));
 context = pdf.StartPageContentContext(page);

 top = height - margin;
 }

 context->DrawImage(margin, top - dims.second, image_paths[i]);

 top -= dims.second + margin;
 }

 if (page != nullptr)
 {
 pdf.EndPageContentContext(context);
 pdf.WritePageAndRelease(page);
 }

 pdf.EndPDF();
}

The print_pdf() can be used as in the following example, where sample.pdf is the name
of the output, and res is the name of the folder that contains the images:

int main()
{
 print_pdf("sample.pdf", "res");
}

10
Archives, Images, and

Databases

Problems

79. Finding files in a ZIP archive
Write a program that can search for and print all the files in a ZIP archive whose name
matches a user-provided regular expression (for instance, use ^.*\.jpg$ to find all files
with the extension .jpg).

80. Compressing and decompressing files
to/from a ZIP archive
Write a program that can do the following:

Compress either a file or the contents of a user-specified directory, recursively, to
a ZIP archive
Decompress the contents of a ZIP archive to a user-specified destination
directory

Archives, Images, and Databases Chapter 10

[200]

81. Compressing and decompressing files
to/from a ZIP archive with a password
Write a program that can do the following:

Compress either a file or the contents of a user-specified directory, recursively, to
a password-protected ZIP archive
Decompress the content of a password-protected ZIP archive to a user-specified
destination directory

82. Creating a PNG that represents a national flag
Write a program that generates a PNG file that represents the national flag of Romania,
shown here. The size of the image in pixels, as well as the path to the destination file,
should be provided by the user:

83. Creating verification text PNG images
Write a program that can create Captcha-like PNG images for verifying human users to a
system. Such an image should have:

A gradient-colored background
A series of random letters displayed at different angles both to the right and left
Several random lines of different colors across the image (on top of the text)

Here is an example of such an image:

Archives, Images, and Databases Chapter 10

[201]

84. EAN-13 barcode generator
Write a program that can generate a PNG image with an EAN-13 barcode for any
international article number in version 13 of the standard. For simplicity, the image should
only contain the barcode and can skip the EAN-13 number printed under the barcode. Here
is an example of the expected output for the number 5901234123457:

85. Reading movies from an SQLite database
Write a program that reads movies from an SQLite database and displays them on the
console. Each movie must have a numerical identifier, a title, release year, length in
minutes, list of directors, list of writers, and a cast that includes both the actor and the
character names. The following is a diagram of the database that should be used for this
purpose:

Archives, Images, and Databases Chapter 10

[202]

86. Inserting movies into an SQLite database
transactionally
Extended the program written for the previous problem so that it can add new movies to
the database. The movies could be read from the console, or alternatively from a text file.
The insertion of movie data into several tables in the database must be performed
transactionally.

87. Handling movie images in an SQLite database
Modify the program written for the previous problem to support adding media files (such
as images, but also videos) to a movie. These files must be stored in a separate table in the
database and have a unique numerical identifier, the movie identifier, a name (typically the
filename), an optional description, and the actual media content, stored as a blob. The
following is a diagram with the structure of the table that must be added to the existing
database:

The program written for this problem must support several commands:

Listing all movies that match a search criterion (notably the title)
Listing information about all existing media files for a movie
Adding a new media file for a movie
Deleting an existing media file

Archives, Images, and Databases Chapter 10

[203]

Solutions

79. Finding files in a ZIP archive
There are a variety of libraries that provide support for working with ZIP archives. Among
the ones available for free, the most used ones include ZipLib, Info-Zip, MiniZip, and LZMA
SDK from 7z. And then, there are also commercial implementations. For the problems
regarding ZIP archives in this book, I have chosen ZipLib. This is a lightweight, open
source cross-platform C++11 library built around standard library streams, with no
additional dependencies. The library, along with its documentation, is available at https:/
/bitbucket.org/wbenny/ ziplib.

To implement the required functionality, you have to:

Open the ZIP archive using ZipFile::Open()
Enumerate all the entries in the archive using ZipArchive::GetEntry() and
ZipArchive::GetEntryCount()

For all entries that represent files, check that the name matches the provided
regular expression using ZipArchiveEntry::GetName()
For all entries that match the regular expression, add the full name to the list of
results using ZipArchiveEntry::GetFullName()

The find_in_archive() function here is an implementation of the described algorithm:

namespace fs = std::experimental::filesystem;

std::vector<std::string> find_in_archive(
 fs::path const & archivepath,
 std::string_view pattern)
{
 std::vector<std::string> results;

 if (fs::exists(archivepath))
 {
 try
 {
 auto archive = ZipFile::Open(archivepath.string());

 for (size_t i = 0; i < archive->GetEntriesCount(); ++i)
 {
 auto entry = archive->GetEntry(i);
 if (entry)

https://bitbucket.org/wbenny/ziplib
https://bitbucket.org/wbenny/ziplib
https://bitbucket.org/wbenny/ziplib
https://bitbucket.org/wbenny/ziplib
https://bitbucket.org/wbenny/ziplib
https://bitbucket.org/wbenny/ziplib
https://bitbucket.org/wbenny/ziplib
https://bitbucket.org/wbenny/ziplib
https://bitbucket.org/wbenny/ziplib
https://bitbucket.org/wbenny/ziplib

Archives, Images, and Databases Chapter 10

[204]

 {
 if (!entry->IsDirectory())
 {
 auto name = entry->GetName();
 if (std::regex_match(name,
 std::regex{ pattern.data() }))
 {
 results.push_back(entry->GetFullName());
 }
 }
 }
 }
 }
 catch (std::exception const & ex)
 {
 std::cout << ex.what() << std::endl;
 }
 }

 return results;
}

The following example shows how to search for all the files with the extension .jpg in a
ZIP archive called sample79.zip. This file is available for testing together with the source
code for the book:

int main()
{
 auto results = find_in_archive("sample79.zip", R"(^.*\.jpg$)"));
 for(auto const & name : results)
 {
 std::cout << name << std::endl;
 }
}

80. Compressing and decompressing files
to/from a ZIP archive
To solve this two-part problem, we will use the same ZipLib library we saw for the
solution of the previous problem. The solution to this problem consists of two functions,
one that is able to perform the compression to a ZIP archive and one that is able to perform
decompression from a ZIP archive.

Archives, Images, and Databases Chapter 10

[205]

In order to perform the requested compression, we should do the following:

If the source path represents a regular file, then add that file to the ZIP archive
using ZipFile::AddFile()
If the source path represents a recursive directory, then:

Iterate recursively through all the entries in the directory
If an entry is a directory, then create a directory entry in the ZIP
archive with that name using ZipArchive::CreateEntry()
If an entry is a regular file, then add that file to the ZIP archive
using ZipFile::AddFile()

The compress() function shown in the following snippet implements this algorithm. It has
three parameters: the first is the path of the file or folder to compress, the second is the path
to the destination ZIP archive, and the third is a function object that is used to report the
progress of the operation (such as a function that prints a message to the console):

namespace fs = std::experimental::filesystem;

void compress(fs::path const & source,
 fs::path const & archive,
 std::function<void(std::string_view)> reporter)
{
 if (fs::is_regular_file(source))
 {
 if (reporter) reporter("Compressing " + source.string());
 ZipFile::AddFile(archive.string(), source.string(),
 LzmaMethod::Create());
 }
 else
 {
 for (auto const & p : fs::recursive_directory_iterator(source))
 {
 if (reporter) reporter("Compressing " + p.path().string());

 if (fs::is_directory(p))
 {
 auto zipArchive = ZipFile::Open(archive.string());
 auto entry = zipArchive->CreateEntry(p.path().string());
 entry->SetAttributes(ZipArchiveEntry::Attributes::Directory);
 ZipFile::SaveAndClose(zipArchive, archive.string());
 }
 else if (fs::is_regular_file(p))
 {
 ZipFile::AddFile(archive.string(), p.path().string(),
 LzmaMethod::Create());

Archives, Images, and Databases Chapter 10

[206]

 }
 }
 }
}

To implement the opposite operation, decompression, we must do the following:

Open the ZIP archive using ZipFile::Open()
Iterate through all the entries in the archive using
ZipArchive::GetEntriesCount() and ZipArchive::GetEntry()
If the entry is a directory, create it recursively in the destination path
If the entry is a file, create a corresponding file in the destination and copy the
content of the compressed file using
ZipArchiveEntry::GetDecompressionStream()

The decompress() function shown here implements the preceding algorithm. Its
parameters are similar to those of the compress() method: the first is the path to a
destination directory, the second is the path to the ZIP archive to decompress, and the third
is a function object used to report the progress of the operation:

void decompress(fs::path const & destination,
 fs::path const & archive,
 std::function<void(std::string_view)> reporter)
{
 ensure_directory_exists(destination);

 auto zipArchive = ZipFile::Open(archive.string());

 for (int i = 0; i < zipArchive->GetEntriesCount(); ++i)
 {
 auto entry = zipArchive->GetEntry(i);
 if (entry)
 {
 auto filepath = destination / fs::path{
 entry->GetFullName() }.relative_path();
 if (reporter) reporter("Creating " + filepath.string());

 if (entry->IsDirectory())
 {
 ensure_directory_exists(filepath);
 }
 else
 {
 ensure_directory_exists(filepath.parent_path());

Archives, Images, and Databases Chapter 10

[207]

 std::ofstream destFile;
 destFile.open(filepath.string().c_str(),
 std::ios::binary | std::ios::trunc);

 if (!destFile.is_open())
 {
 if(reporter)
 reporter("Cannot create destination file!");
 }

 auto dataStream = entry->GetDecompressionStream();
 if (dataStream)
 {
 utils::stream::copy(*dataStream, destFile);
 }
 }
 }
 }
}

This function uses ensure_directory_exists() to create a directory path recursively if
it does not already exist. The implementation of this function is as follows:

void ensure_directory_exists(fs::path const & dir)
{
 if (!fs::exists(dir))
 {
 std::error_code err;
 fs::create_directories(dir, err);
 }
}

The following program allows the user to select the command to execute, either
compression or decompression, as well as the path of the source and destination. It uses the
compress() and decompress() functions shown above, providing them with a lambda
function to be called for displaying the progress to the console:

int main()
{
 char option = 0;
 std::cout << "Select [c]ompress/[d]ecompress?";
 std::cin >> option;

 if (option == 'c')
 {
 std::string archivepath;
 std::string inputpath;

Archives, Images, and Databases Chapter 10

[208]

 std::cout << "Enter file or dir to compress:";
 std::cin >> inputpath;
 std::cout << "Enter archive path:";
 std::cin >> archivepath;

 compress(inputpath, archivepath,
 [](std::string_view message) {
 std::cout << message << std::endl; });
 }
 else if (option == 'd')
 {
 std::string archivepath;
 std::string outputpath;
 std::cout << "Enter dir to decompress:";
 std::cin >> outputpath;
 std::cout << "Enter archive path:";
 std::cin >> archivepath;

 decompress(outputpath, archivepath,
 [](std::string_view message) {
 std::cout << message << std::endl; });
 }
 else
 {
 std::cout << "invalid option" << std::endl;
 }
}

81. Compressing and decompressing files
to/from a ZIP archive with password
This problem is very similar to the previous one with the addition that the files must be
encrypted. The ZipLib library supports PKWare encryption only. Should you need to use
another method for encryption, then you have to use another library. The compress() and
decompress() functions, shown in the following, are similar to the implementation from
the previous problem, but have a few differences, apart from the extra parameter that
represents the password for the encryption/decryption of files:

Adding encrypted files to the archive is done with
ZipFile::AddEncryptedFile() instead of ZipFile::AddFile()
When decompressing, the password must be set with
ZipArchiveEntry::SetPassword() if the entry is password-protected

Archives, Images, and Databases Chapter 10

[209]

The compress() function, with the aforementioned changes, is implemented as follows:

namespace fs = std::experimental::filesystem;

void compress(fs::path const & source,
 fs::path const & archive,
 std::string_view password,
 std::function<void(std::string_view)> reporter)
{
 if (fs::is_regular_file(source))
 {
 if (reporter) reporter("Compressing " + source.string());
 ZipFile::AddEncryptedFile(
 archive.string(),
 source.string(),
 source.filename().string(),
 password.data(),
 LzmaMethod::Create());
 }
 else
 {
 for (auto const & p : fs::recursive_directory_iterator(source))
 {
 if (reporter) reporter("Compressing " + p.path().string());

 if (fs::is_directory(p))
 {
 auto zipArchive = ZipFile::Open(archive.string());
 auto entry = zipArchive->CreateEntry(p.path().string());
 entry->SetAttributes(ZipArchiveEntry::Attributes::Directory);
 ZipFile::SaveAndClose(zipArchive, archive.string());
 }
 else if (fs::is_regular_file(p))
 {
 ZipFile::AddEncryptedFile(
 archive.string(),
 p.path().string(),
 p.path().filename().string(),
 password.data(),
 LzmaMethod::Create());
 }
 }
 }
}

Archives, Images, and Databases Chapter 10

[210]

The decompress() function must set the password on each archive entry before using the
decompression stream to copy the content of the file to the destination. You can find the
function in the following listing:

void decompress(fs::path const & destination,
 fs::path const & archive,
 std::string_view password,
 std::function<void(std::string_view)> reporter)
{
 ensure_directory_exists(destination);

 auto zipArchive = ZipFile::Open(archive.string());

 for (size_t i = 0; i < zipArchive->GetEntriesCount(); ++i)
 {
 auto entry = zipArchive->GetEntry(i);
 if (entry)
 {
 auto filepath = destination / fs::path{
 entry->GetFullName() }.relative_path();
 if (reporter) reporter("Creating " + filepath.string());

 if(entry->IsPasswordProtected())
 entry->SetPassword(password.data());

 if (entry->IsDirectory())
 {
 ensure_directory_exists(filepath);
 }
 else
 {
 ensure_directory_exists(filepath.parent_path());

 std::ofstream destFile;
 destFile.open(filepath.string().c_str(),
 std::ios::binary | std::ios::trunc);

 if (!destFile.is_open())
 {
 if (reporter)
 reporter("Cannot create destination file!");
 }

 auto dataStream = entry->GetDecompressionStream();
 if (dataStream)
 {
 utils::stream::copy(*dataStream, destFile);

Archives, Images, and Databases Chapter 10

[211]

 }
 }
 }
 }
}

The ensure_directory_exists() helper function is identical to the one with the same
name from the previous problem and will not be listed again.

You can use these functions just like in the previous problem, except that you have to pass
the password as well.

82. Creating a PNG that represents a national flag
The most feature-rich library for working with PNG files is libpng, a platform-independent,
open source library written in C. There are also C++ libraries, some of which are wrappers
for libpng, such as png++, lodepng, or PNGWriter. For the problems in this book, we will use
the last one, PNGWriter. It is an open source library that works on Linux, Unix, macOS, and
Windows. Its supported features include opening existing PNG images; plotting and
reading pixels in the RGB, HSV, and CMYK color spaces; basic shapes; scaling; bilinear
interpolation; full TrueType antialiased and rotated text support; and Bezier curves. It is a
wrapper for libpng and also requires the FreeType2 library for text support.

The library source code, along with documentation, can be found at https:/ /github. com/
pngwriter/pngwriter. Follow the installation instructions there to install the library.

The pngwriter class represents a PNG image. Its constructor allows us to set the width
and height in pixels, a background color, and the path to the file where the image should be
saved. There is a multitude of member functions that can write pixels, shapes, or text. For
this problem, we need to fill three rectangles with different colors. For that, we can use the
filledsquare() function. When we are done writing the image in memory, we have to
call the close() method to save it to a disk file.

The following function creates a three-color flag with the size and destination file path
provided as arguments:

void create_flag(int const width, int const height,
 std::string_view filepath)
{
 pngwriter flag { width, height, 0, filepath.data() };

 int const size = width / 3;
 // red rectangle

https://github.com/pngwriter/pngwriter
https://github.com/pngwriter/pngwriter
https://github.com/pngwriter/pngwriter
https://github.com/pngwriter/pngwriter
https://github.com/pngwriter/pngwriter
https://github.com/pngwriter/pngwriter
https://github.com/pngwriter/pngwriter
https://github.com/pngwriter/pngwriter
https://github.com/pngwriter/pngwriter
https://github.com/pngwriter/pngwriter

Archives, Images, and Databases Chapter 10

[212]

 flag.filledsquare(0, 0, size, 2 * size, 65535, 0, 0);
 // yellow rectangle
 flag.filledsquare(size, 0, 2 * size, 2 * size, 65535, 65535, 0);
 // blue rectangle
 flag.filledsquare(2 * size, 0, 3 * size, 2 * size, 0, 0, 65535);

 flag.close();
}

This following program allows the user to enter the width and height of the image as well
as the path to the output file, and uses create_flag() to generate the PNG image:

int main()
{
 int width = 0, height = 0;
 std::string filepath;

 std::cout << "Width: ";
 std::cin >> width;

 std::cout << "Heigh: ";
 std::cin >> height;

 std::cout << "Output: ";
 std::cin >> filepath;

 create_flag(width, height, filepath);
}

83. Creating verification text PNG images
This problem can be solved in a similar manner to the previous one with the national flag.
If you haven’t done that one first, I recommend that you do so before continuing with this
one.

There are basically three elements that the image must have:

A gradient-color background. This can be achieved by drawing lines (vertically
or horizontally) of a different color from one side to the other of the image.
Drawing lines can be done with the pngwriter::line() function. There are
several overloads available; the one used in the following code takes the start and
end position and three values for the red, green, and blue channels of the RGB
color space.

Archives, Images, and Databases Chapter 10

[213]

A random text with letters displayed at various random angles, both towards the
left and right. Writing text is done with the pngwriter::plot_text()
functions. This requires a dependency on the FreeType2 library. The overloaded
function used here allows the specifying of the font file and its size, the position
where the text should be written, the angle in radians, the text, and the color.
Random lines across the image plotted on top of the text. Again, these are written
using the pngwritter::line() function.

In order to display random text, colors, and line positions, the following code uses an
std::mt19937 pseudo-random number generator and several uniform integer
distributions:

void create_image(int const width, int const height,
 std::string_view font, int const font_size,
 std::string_view filepath)
{
 pngwriter image { width, height, 0, filepath.data() };

 std::random_device rd;
 std::mt19937 mt;
 auto seed_data = std::array<int, std::mt19937::state_size> {};
 std::generate(std::begin(seed_data), std::end(seed_data),
 std::ref(rd));
 std::seed_seq seq(std::begin(seed_data), std::end(seed_data));
 mt.seed(seq);
 std::uniform_int_distribution<> udx(0, width);
 std::uniform_int_distribution<> udy(0, height);
 std::uniform_int_distribution<> udc(0, 65535);
 std::uniform_int_distribution<> udt(0, 25);

 // gradient background
 for (int iter = 0; iter < width; iter++)
 {
 image.line(
 iter, 0, iter, height,
 65535 - int(65535 * ((double)iter) / (width)),
 int(65535 * ((double)iter) / (width)),
 65535);
 }

 // random text
 std::string font_family = font.data();
 for (int i = 0; i < 6; ++i)
 {
 image.plot_text(
 // font

Archives, Images, and Databases Chapter 10

[214]

 font_family.data(), font_size,
 // position
 i*width / 6 + 10, height / 2 - 10,
 // angle
 (i % 2 == 0 ? -1 : 1)*(udt(mt) * 3.14) / 180,
 // text
 std::string(1, char('A' + udt(mt))).data(),
 // color
 0, 0, 0);
 }

 // random lines
 for (int i = 0; i < 4; ++i)
 {
 image.line(udx(mt), 0, udx(mt), height,
 udc(mt), udc(mt), udc(mt));

 image.line(0, udy(mt), width, udy(mt),
 udc(mt), udc(mt), udc(mt));
 }

 image.close();
}

This function can be used as in the following example. Note that the path to the font file
(Arial in this case) is hard coded for Windows and Apple systems, but must be provided by
the user for other platforms:

int main()
{
 std::string font_path;

#ifdef WIN32
 font_path = R"(c:\windows\fonts\arial.ttf)";
#elif defined (__APPLE__)
 font_path = R"(/Library/Fonts/Arial.ttf)";
#else
 std::cout << "Font path: ";
 std::cin >> font_path;
#endif

 create_image(200, 50,
 font_path, 18,
 "validation.png");
}

Archives, Images, and Databases Chapter 10

[215]

The color scheme for the background in the create_image() function
always produces the same gradient for images of equal width. You can
take it as a further exercise to modify the function to randomize the
gradient colors, as well as text colors.

84. EAN-13 barcode generator
The International Article Number (aka European Article Number or EAN), as described on
Wikipedia, is a standard describing a barcode symbology and numbering system that is
used in global trade to identify a specific retail product type, in a specific packaging
configuration, from a specific manufacturer. The most commonly used EAN standard is the
13-digit EAN-13. A description of the standard, including information on how the barcode
should be generated, can be found on Wikipedia at https:/ /en.wikipedia. org/ wiki/
International_Article_ Number and will not be detailed in this book. The following is the
EAN-13 barcode for the number 5901234123457, given as an example in the problem’s
description (source: Wikipedia):

The ean13 class that is shown in the following code represents a number in the EAN-13
standard. It can be created from a string or an unsigned long long and can be converted
back to a string or an array of digits. It can either compute the 13th digit, representing the
checksum if the provided constructor argument has 12 digits, or it can validate that the 13th
digit is the correct checksum of the number if the provided argument has 13 digits. The
checksum is the number that must be added to the weighted sum of the first 12 digits in
order to make it a multiple of 10:

struct ean13
{
public:
 ean13(std::string_view code)
 {
 if (code.length() == 13)
 {
 if (code[12] != '0' + get_crc(code.substr(0,12)))
 throw std::runtime_error("Not an EAN-13 format.");

https://en.wikipedia.org/wiki/International_Article_Number
https://en.wikipedia.org/wiki/International_Article_Number
https://en.wikipedia.org/wiki/International_Article_Number
https://en.wikipedia.org/wiki/International_Article_Number
https://en.wikipedia.org/wiki/International_Article_Number
https://en.wikipedia.org/wiki/International_Article_Number
https://en.wikipedia.org/wiki/International_Article_Number
https://en.wikipedia.org/wiki/International_Article_Number
https://en.wikipedia.org/wiki/International_Article_Number
https://en.wikipedia.org/wiki/International_Article_Number
https://en.wikipedia.org/wiki/International_Article_Number
https://en.wikipedia.org/wiki/International_Article_Number
https://en.wikipedia.org/wiki/International_Article_Number
https://en.wikipedia.org/wiki/International_Article_Number
https://en.wikipedia.org/wiki/International_Article_Number
https://en.wikipedia.org/wiki/International_Article_Number

Archives, Images, and Databases Chapter 10

[216]

 number = code;
 }
 else if (code.length() == 12)
 {
 number = code.data() + std::string(1, '0' + get_crc(code));
 }
 }

 ean13(unsigned long long code) :ean13(std::to_string(code))
 { }

 std::array<unsigned char, 13> to_array() const
 {
 std::array<unsigned char, 13> result;
 for (int i = 0; i < 13; ++i)
 result[i] = static_cast<unsigned char>(number[i] - '0');
 return result;
 }

 std::string to_string() const noexcept { return number; }

private:
 unsigned char get_crc(std::string_view code)
 {
 unsigned char weights[12] = { 1,3,1,3,1,3,1,3,1,3,1,3 };
 size_t index = 0;
 auto sum = std::accumulate(
 std::begin(code), std::end(code), 0,
 [&weights, &index](int const total, char const c) {
 return total + weights[index++] * (c - '0'); });
 return 10 - sum % 10;
 }

 std::string number;
};

As described on Wikipedia, the barcode consists of 95 equally spaced areas, which are,
from left to right:

Three areas for the start marker.
42 areas for the left group of six digits. These 42 areas can be divided into six
groups of seven areas, encoding the digits 2-7. These encodings can have even or
odd parity and these parities together encode the first digit of EAN-13.
5 areas for the center marker.

Archives, Images, and Databases Chapter 10

[217]

42 areas for the right group of six digits. These 42 areas can be divided into six
groups of seven areas, encoding the digits 8-13. These digits are all encoded with
even parity. Digit 13 is the check digit.
3 areas for the end marker.

The following tables, taken as they are from Wikipedia, show the encoding of the two
groups of six digits (the first table), as well as the encoding of the digits themselves, based
on the value of the first digit (the second table):

Archives, Images, and Databases Chapter 10

[218]

The ean13_barcode_generator class encapsulates the functionality for creating an
EAN-13 barcode PNG from an ean13 number representation and saving it to a disk file.
There are several members of this class:

create() is the only public function of the class. Its arguments are the EAN-13
number, the path of the output file, the width in pixels of each bit, the height of
the barcode bar, and the margins for the barcode area. It draws, in order, the start
marker, the first six digits, the center marker, the last six digits, and the end
marker, and then saves the image to a file.
draw_digit() is a private helper function that draws the seven-bit digits and
the start, center, and end markers using the pngwriter::filledsquare()
method.
The encoding tables, as well as the marker values, are defined in the private
member variables encodings, eandigits, marker_start, marker_end, and
marker_center.

The ean13_barcode_generator class is shown in the following listing:

struct ean13_barcode_generator
{
 void create(ean13 const & code,
 std::string_view filename,
 int const digit_width = 3,
 int const height = 50,
 int const margin = 10);
private:
 int draw_digit(unsigned char code, unsigned int size,
 pngwriter& image,
 int const x, int const y,
 int const digit_width, int const height)
 {
 std::bitset<7> bits(code);
 int pos = x;
 for (int i = size - 1; i >= 0; --i)
 {
 if (bits[i])
 {
 image.filledsquare(pos, y, pos + digit_width, y + height,
 0, 0, 0);
 }

 pos += digit_width;
 }

 return pos;

Archives, Images, and Databases Chapter 10

[219]

 }

 unsigned char encodings[10][3] =
 {
 { 0b0001101, 0b0100111, 0b1110010 },
 { 0b0011001, 0b0110011, 0b1100110 },
 { 0b0010011, 0b0011011, 0b1101100 },
 { 0b0111101, 0b0100001, 0b1000010 },
 { 0b0100011, 0b0011101, 0b1011100 },
 { 0b0110001, 0b0111001, 0b1001110 },
 { 0b0101111, 0b0000101, 0b1010000 },
 { 0b0111011, 0b0010001, 0b1000100 },
 { 0b0110111, 0b0001001, 0b1001000 },
 { 0b0001011, 0b0010111, 0b1110100 },
 };

 unsigned char eandigits[10][6] =
 {
 { 0,0,0,0,0,0 },
 { 0,0,1,0,1,1 },
 { 0,0,1,1,0,1 },
 { 0,0,1,1,1,0 },
 { 0,1,0,0,1,1 },
 { 0,1,1,0,0,1 },
 { 0,1,1,1,0,0 },
 { 0,1,0,1,0,1 },
 { 0,1,0,1,1,0 },
 { 0,1,1,0,1,0 },
 };

 unsigned char marker_start = 0b101;
 unsigned char marker_end = 0b101;
 unsigned char marker_center = 0b01010;
};

The create() method is implemented as follows:

void ean13_barcode_generator::create(ean13 const & code,
 std::string_view filename,
 int const digit_width = 3,
 int const height = 50,
 int const margin = 10)
{
 pngwriter image(
 margin * 2 + 95 * digit_width,
 height + margin * 2,
 65535,
 filename.data());

Archives, Images, and Databases Chapter 10

[220]

 std::array<unsigned char, 13> digits = code.to_array();

 int x = margin;
 x = draw_digit(marker_start, 3, image, x, margin,
 digit_width, height);

 for (int i = 0; i < 6; ++i)
 {
 int code = encodings[digits[1 + i]][eandigits[digits[0]][i]];
 x = draw_digit(code, 7, image, x, margin, digit_width, height);
 }

 x = draw_digit(marker_center, 5, image, x, margin,
 digit_width, height);

 for (int i = 0; i < 6; ++i)
 {
 int code = encodings[digits[7 + i]][2];
 x = draw_digit(code, 7, image, x, margin, digit_width, height);
 }

 x = draw_digit(marker_end, 3, image, x, margin,
 digit_width, height);

 image.close();
}

This class can be used as in the following example:

int main()
{
 ean13_barcode_generator generator;

 generator.create(ean13("5901234123457"), "5901234123457.png",
 5, 150, 30);
}

You can take it as a further exercise to print the EAN-13 number below the
generated barcode.

Archives, Images, and Databases Chapter 10

[221]

85. Reading movies from an SQLite database
SQLite is an in-process relational database management library written in C (although a
large number of programming languages provide bindings to it). SQLite is not a client-
server database engine, but one embedded into the application. The entire database,
including tables, indexes, triggers, and views, is contained within a single disk file. Because
accessing the database means accessing a local disk file, without any inter-process
communication, SQLite has a better performance compared to other relational database
engines. SQLite, as the name implies, uses SQL, although it does not implement all the
features (such as RIGHT OUTER JOIN). SQLite is used in not just web browsers (several
major ones allow storing and retrieving data to and from an SQLite database using the Web
SQL Database technology), web frameworks (such as Bugzilla, Django, Drupal, or Ruby on
Rails), and operating systems (included by default in Android, Windows 10, FreeBSD,
OpenBSD, Symbian OS, and others), but also in mobile applications and games. SQLite has
limitations too, with the most notable being the lack of any user management. A third
party extension called SQLCipher provides transparent 256-bit AES encryption for an
SQLite database. The library is available at https:/ /www. sqlite. org/.

The SQLite library contains a lot of source files and scripts, but also provides a compact
version of these, called an amalgamation, which is the actual version of the library that is
recommended for use in all applications. The amalgamation contains only two files,
sqlite3.h and sqlite3.c, that can be compiled with the application. The amalgamation
package, as well as other library packages, including tools, can be downloaded
from https://www. sqlite. org/ download. html.

As mentioned earlier, the library is written in C. However, there are a variety of libraries
that provide C++ wrappers, including SQLiteCPP, CppSQLite, sqlite3cc, and
sqlite_modern_cpp. In this book, we will use the latter, sqlite_modern_cpp, because it
is a lightweight wrapper, written in modern C++, with support for C++17 features but also
for SQLCipher. The library is available at https:/ /github. com/SqliteModernCpp/ sqlite_
modern_cpp. To use this library, you must include the sqlite_modern_cpp.h header in
your sources.

Before we start writing the code to solve the proposed problem, we should create a
database. The structure of the database is indicated in the problem description and we can
use the SQLite command-line tool called sqlite3 to do this. To create a new database, or
open an existing one, you must execute the following command:

sqlite3 <filename>

https://www.sqlite.org/
https://www.sqlite.org/
https://www.sqlite.org/
https://www.sqlite.org/
https://www.sqlite.org/
https://www.sqlite.org/
https://www.sqlite.org/
https://www.sqlite.org/
https://www.sqlite.org/
https://www.sqlite.org/
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://www.sqlite.org/download.html
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://github.com/SqliteModernCpp/sqlite_modern_cpp

Archives, Images, and Databases Chapter 10

[222]

In the source code accompanying this book, you can find an already created database called
cppchallenger85.db. However, you can create the database yourself, by opening a new
database file and then running the following commands:

create table movies(title text not null,
 year integer not null,
 length integer not null);

create table persons(name text not null);

create table directors(movieid integer not null,
 personid integer not null);

create table writers(movieid integer not null,
 personid integer not null);

create table casting(movieid integer not null,
 personid integer not null,
 role text not null);

Note that, apart from the columns defined here, SQLite adds an implicit column called
rowid, which is an autoincremented 64-bit signed integer that uniquely identifies a row
within the table. The cppchallenger85.db database contains several movies that have
already been added using the following commands:

insert into movies values ('The Matrix', 1999, 196);
insert into movies values ('Forrest Gump', 1994, 202);

insert into persons values('Keanu Reeves');
insert into persons values('Laurence Fishburne');
insert into persons values('Carrie-Anne Moss');
insert into persons values('Hugo Weaving');
insert into persons values('Lana Wachowski');
insert into persons values('Lilly Wachowski');
insert into persons values('Tom Hanks');
insert into persons values('Sally Field');
insert into persons values('Robin Wright');
insert into persons values('Mykelti Williamson');
insert into persons values('Robert Zemeckis');
insert into persons values('Winston Groom');
insert into persons values('Eric Roth');

insert into directors values(1, 5);
insert into directors values(1, 6);
insert into directors values(2, 11);

Archives, Images, and Databases Chapter 10

[223]

insert into writers values(1, 5);
insert into writers values(1, 6);
insert into writers values(2, 12);
insert into writers values(2, 13);

insert into casting values(1, 1, 'Neo');
insert into casting values(1, 2, 'Morpheus');
insert into casting values(1, 3, 'Trinity');
insert into casting values(1, 4, 'Agent Smith');
insert into casting values(2, 7, 'Forrest Gump');
insert into casting values(2, 8, 'Mrs. Gump');
insert into casting values(2, 9, 'Jenny Curran');
insert into casting values(2, 10, 'Bubba Blue');

With the database created and populated with data, we can move on to the next phase of
solving the problem. The following classes will be used for this problem and the next ones
to represent a movie:

struct casting_role
{
 std::string actor;
 std::string role;
};

struct movie
{
 unsigned int id;
 std::string title;
 int year;
 unsigned int length;
 std::vector<casting_role> cast;
 std::vector<std::string> directors;
 std::vector<std::string> writers;
};

using movie_list = std::vector<movie>;

Archives, Images, and Databases Chapter 10

[224]

The main class from the sqlite_modern_cpp library that we will work with is
sqlite::database. It provides functionalities such as connecting to a database, preparing
and executing statements, binding parameters and callbacks, and handling transactions.
You can simply open a database by providing its file path to the sqlite::database
constructor. Should any exceptions occur during an SQLite operation,
an sqlite::sqlite_exception object is thrown. The following code shows the main()
function of the program, which connects to a database file called cppchallenger85.db
(from the current folder). If the connection is successful, it proceeds to fetch all the movies
from the database and display them:

int main()
{
 try
 {
 sqlite::database db(R"(cppchallenger85.db)");

 auto movies = get_movies(db);
 for (auto const & m : movies)
 print_movie(m);
 }
 catch (sqlite::sqlite_exception const & e)
 {
 std::cerr << e.get_code() << ": " << e.what() << " during "
 << e.get_sql() << std::endl;
 }
 catch (std::exception const & e)
 {
 std::cerr << e.what() << std::endl;
 }
}

The print_movie() function, shown as follows, displays a movie on the console:

void print_movie(movie const & m)
{
 std::cout << "[" << m.id << "] "
 << m.title << " (" << m.year << ") "
 << m.length << "min" << std::endl;
 std::cout << " directed by: ";
 for (auto const & d : m.directors) std::cout << d << ",";
 std::cout << std::endl;
 std::cout << " written by: ";
 for (auto const & w : m.writers) std::cout << w << ",";
 std::cout << std::endl;
 std::cout << " cast: ";
 for (auto const & r : m.cast)

Archives, Images, and Databases Chapter 10

[225]

 std::cout << r.actor << " (" << r.role << "),";
 std::cout << std::endl << std::endl;
}

The sqlite::database class has the overloaded operators << and >>, the former to
prepare statements and bind parameters and perform other input operations on the
database, and the latter to retrieve data from the database. To bind a parameter, you use the
symbol ? for the parameter name in the SQL statement and then input the parameter value
with the overloaded operator <<. Parameters are bound in the order they are written to
the sqlite::database object. For each row that results from the evaluation of the SQL
statement, a callback function is invoked. In sqlite_modern_cpp, you define a lambda
function that has a parameter (with the appropriate type) for each column in a row. For
columns that can have null values, you can use either std::unique_ptr<T> or
std::optional<T> if your compiler supports this C++17 feature.

The following function, called get_directors(), reads all the directors of a movie from
the directors and persons tables. Note that in the following SQL statement, and the next
ones, we use the implicitly added rowid column:

std::vector<std::string> get_directors(sqlite3_int64 const movie_id,
 sqlite::database & db)
{
 std::vector<std::string> result;
 db << R"(select p.name from directors as d
 join persons as p on d.personid = p.rowid
 where d.movieid = ?;)"
 << movie_id
 >> [&result](std::string const name)
 {
 result.emplace_back(name);
 };

 return result;
}

In a very similar manner, get_writers() reads the movie writers from the writers table,
as shown in the following listing:

std::vector<std::string> get_writers(sqlite3_int64 const movie_id,
 sqlite::database & db)
{
 std::vector<std::string> result;
 db << R"(select p.name from writers as w
 join persons as p on w.personid = p.rowid
 where w.movieid = ?;)"

Archives, Images, and Databases Chapter 10

[226]

 << movie_id
 >> [&result](std::string const name)
 {
 result.emplace_back(name);
 };

 return result;
}

The movie cast is fetched from the casting table using the get_cast() function, as
follows:

std::vector<casting_role> get_cast(sqlite3_int64 const movie_id,
 sqlite::database & db)
{
 std::vector<casting_role> result;
 db << R"(select p.name, c.role from casting as c
 join persons as p on c.personid = p.rowid
 where c.movieid = ?;)"
 << movie_id
 >> [&result](std::string const name, std::string role)
 {
 result.emplace_back(casting_role{ name, role });
 };

 return result;
}

All these functions are used in the get_movies() function, which returns a list of all the
movies from the database. This function can be implemented as follows:

movie_list get_movies(sqlite::database & db)
{
 movie_list movies;

 db << R"(select rowid, * from movies;)"
 >> [&movies, &db](sqlite3_int64 const rowid,
 std::string const & title,
 int const year, int const length)
 {
 movies.emplace_back(movie{
 static_cast<unsigned int>(rowid),
 title,
 year,
 static_cast<unsigned int>(length),
 get_cast(rowid, db),
 get_directors(rowid, db),

Archives, Images, and Databases Chapter 10

[227]

 get_directors(rowid, db)
 });
 };

 return movies;
}

With all these implemented, the solution is now complete. The following screenshot shows
the output of the program with the data added as seen in the preceding code:

86. Inserting movies into an SQLite database
The solution to this problem builds upon the previous one. You must solve that one before
continuing here. Also, the function split() that is used in the code here is the same from
problem 27, Splitting a string into tokens with a list of possible delimiters, from Chapter 3,
Strings and Regular Expressions. For this reason, it will not be listed here again. In the source
code for this book, you will find a database file called cppchallenger86.db that is
prepared with several records for this problem.

Archives, Images, and Databases Chapter 10

[228]

The following function, read_movie(), reads information about a movie from the console
(title, release year, length in minutes, directors, writers, and cast), creates a movie object,
and returns it. The cast is expected to be provided as a comma-separated list of elements of
the form actor name=role name. For example, the cast for the movie The Matrix, as already
seen in previous problems, must be entered as a single line in the form Keanu
Reeves=Neo,Laurence Fishburne=Morpheus,Carrie-Anne Moss=Trinity,Hugo

Weaving=Agent Smith. In order to read lines of text that contain whitespaces, we must
use the std::getline() function; reading using the std::cin object would limit the
input to the first whitespace:

movie read_movie()
{
 movie m;

 std::cout << "Enter movie" << std::endl;
 std::cout << "Title: ";
 std::getline(std::cin, m.title);
 std::cout << "Year: "; std::cin >> m.year;
 std::cout << "Length: "; std::cin >> m.length;
 std::cin.ignore();
 std::string directors;
 std::cout << "Directors: ";
 std::getline(std::cin, directors);
 m.directors = split(directors, ',');
 std::string writers;
 std::cout << "Writers: ";
 std::getline(std::cin, writers);
 m.writers = split(writers, ',');
 std::string cast;
 std::cout << "Cast: ";
 std::getline(std::cin, cast);
 auto roles = split(cast, ',');
 for (auto const & r : roles)
 {
 auto pos = r.find_first_of('=');
 casting_role cr;
 cr.actor = r.substr(0, pos);
 cr.role = r.substr(pos + 1, r.size() - pos - 1);
 m.cast.push_back(cr);
 }

 return m;
}

Archives, Images, and Databases Chapter 10

[229]

The following function, get_person_id(), returns the numerical identifier of a person,
which is the rowid autoincremented field added automatically by SQLite when you create
a table (unless specified otherwise). The type of rowid column is sqlite_int64, which is
a 64-bit signed integer:

sqlite_int64 get_person_id(std::string const & name, sqlite::database & db)
{
 sqlite_int64 id = 0;
 db << "select rowid from persons where name=?;"
 << name
 >> [&id](sqlite_int64 const rowid) {id = rowid; };

 return id;
}

The functions insert_person(), insert_directors(), insert_writers(), and
insert_cast() are inserting new records in the tables persons, directors, writers,
and casting. To do so, we are using a sqlite::database object passed as an argument
from main(), as will be seen later on. When inserting a director, writer, or actor, we first
check if the person already exists in the database, and if not, we add it:

sqlite_int64 insert_person(std::string_view name, sqlite::database & db)
{
 db << "insert into persons values(?);"
 << name.data();
 return db.last_insert_rowid();
}

void insert_directors(sqlite_int64 const movie_id,
 std::vector<std::string> const & directors,
 sqlite::database & db)
{
 for (auto const & director : directors)
 {
 auto id = get_person_id(director, db);

 if (id == 0)
 id = insert_person(director, db);

 db << "insert into directors values(?, ?);"
 << movie_id
 << id;
 }
}

Archives, Images, and Databases Chapter 10

[230]

void insert_writers(sqlite_int64 const movie_id,
 std::vector<std::string> const & writers,
 sqlite::database & db)
{
 for (auto const & writer : writers)
 {
 auto id = get_person_id(writer, db);

 if (id == 0)
 id = insert_person(writer, db);

 db << "insert into writers values(?, ?);"
 << movie_id
 << id;
 }
}

void insert_cast(sqlite_int64 const movie_id,
 std::vector<casting_role> const & cast,
 sqlite::database & db)
{
 for (auto const & cr : cast)
 {
 auto id = get_person_id(cr.actor, db);

 if (id == 0)
 id = insert_person(cr.actor, db);

 db << "insert into casting values(?,?,?);"
 << movie_id
 << id
 << cr.role;
 }
}

The function insert_movie() inserts a new record in the movies table and then calls the
previously considered functions to also insert the movie directors, writers, and cast. All
these operations are performed in a single transaction. Transactions are handled by
the sqlite::database object using the begin;, commit;, and rollback; commands
(note the semicolon at the end of each command). These commands are executed with the
overloaded operator<< for the sqlite::database class. A transaction is started at the
beginning of the function and committed at the end. If any exception occurs during the
execution of the SQL commands, the transaction is rolled back:

Archives, Images, and Databases Chapter 10

[231]

void insert_movie(movie& m, sqlite::database & db)
{
 try
 {
 db << "begin;";

 db << "insert into movies values(?,?,?);"
 << m.title
 << m.year
 << m.length;

 auto movieid = db.last_insert_rowid();

 insert_directors(movieid, m.directors, db);
 insert_writers(movieid, m.writers, db);
 insert_cast(movieid, m.cast, db);

 m.id = static_cast<unsigned int>(movieid);

 db << "commit;";
 }
 catch (std::exception const &)
 {
 db << "rollback;";
 }
}

With all of these defined, we can write the following program that opens the SQLite
database called cppchallenger86.db, reads a movie from the console, inserts it into the
database, and then prints the entire list of movies to the console:

int main()
{
 try
 {
 sqlite::database db(R"(cppchallenger86.db)");

 auto movie = read_movie();
 insert_movie(movie, db);

 auto movies = get_movies(db);
 for (auto const & m : movies)
 print_movie(m);
 }
 catch (sqlite::sqlite_exception const & e)
 {
 std::cerr << e.get_code() << ": " << e.what() << " during "

Archives, Images, and Databases Chapter 10

[232]

 << e.get_sql() << std::endl;
 }
 catch (std::exception const & e)
 {
 std::cerr << e.what() << std::endl;
 }
}

87. Handling movie images in an SQLite database
If you have not done so already, you must complete the previous two problems before
continuing with this one. For this problem, we must extend the database model with an
additional table to store images and possibly other media files, such as videos. The actual
content of the media files must be stored in a blob field, but other attributes, such as
description and filename, should also be stored.

When you are using large objects you have two options: either store them
directly in the database as blobs or keep them in separate files and store
only the file paths in the database. According to the tests performed by the
developers of SQLite, for objects smaller than 100KB, reads are faster
when they are stored directly in the database. For objects bigger than
100KB, reads are faster when the objects are stored in separate files. You
should take this aspect into consideration when designing your database
model. In this book, however, we will ignore these performance aspects
and preserve the media files inside the database.

To create the additional tables for media files (which we will simply call media), open the
database file in the command-line tool sqlite3 as shown for problem 85, and then run the
following command. Note that in the code provided with this book you can find a database
file called cppchallenger87.db that already contains the extended database model:

create table media(movieid integer not null,
 name text not null,
 description text,
 content blob not null);

The field description can contain null values. With sqlite_modern_cpp you can use
std::optional<T> if your compiler supports this C++17 feature. However, to do so, you
must define the macro MODERN_SQLITE_STD_OPTIONAL_SUPPORT. Otherwise, you can use
std::unique_ptr<T> instead.

Archives, Images, and Databases Chapter 10

[233]

To handle objects from the media table, we will use the types shown as follows. Although
the type of the rowid field is sqlite3_int64, here we are using unsigned int only for
the purpose of being consistent with the movie type seen in the previous two solutions and
used for several other problems throughout this book:

struct media
{
 unsigned int id;
 unsigned int movie_id;
 std::string name;
 std::optional<std::string> text;
 std::vector<char> blob;
};

using media_list = std::vector<media>;

The functions add_media(), get_media(), and delete_media() add, retrieve, and
delete media files for a movie. They should be simple to follow based on the experience
with the sqlite_modern_cpp API accumulated from the previous problems. One
important thing to note is that when selecting fields from a table—the media table, in this
case—the rowid field must be explicitly specified, because it is not included by using * to
select all the table fields:

bool add_media(sqlite_int64 const movieid,
 std::string_view name,
 std::string_view description,
 std::vector<char> content,
 sqlite::database & db)
{
 try
 {
 db << "insert into media values(?,?,?,?)"
 << movieid
 << name.data()
 << description.data()
 << content;
 return true;
 }
 catch (...) { return false; }
}

media_list get_media(sqlite_int64 const movieid,
 sqlite::database & db)
{
 media_list list;

Archives, Images, and Databases Chapter 10

[234]

 db << "select rowid, * from media where movieid = ?;"
 << movieid
 >> [&list](sqlite_int64 const rowid,
 sqlite_int64 const movieid,
 std::string const & name,
 std::optional<std::string> const text,
 std::vector<char> const & blob
)
 {
 list.emplace_back(media{
 static_cast<unsigned int>(rowid),
 static_cast<unsigned int>(movieid),
 name,
 text,
 blob});
 };

 return list;
}

bool delete_media(sqlite_int64 const mediaid,
 sqlite::database & db)
{
 try
 {
 db << "delete from media where rowid = ?;"
 << mediaid;

 return true;
 }
 catch (...) { return false; }
}

The media files are associated with a movie by specifying the movie identifier. To find the
identifier of a movie specified by its title, we use the function get_movies(), shown as
follows. This retrieves a list of all the movies that match a specified title. If there is more
than one, we can select which of the movies we want to add the media file to:

movie_list get_movies(std::string_view title, sqlite::database & db)
{
 movie_list movies;

 db << R"(select rowid, * from movies where title=?;)"
 << title.data()
 >> [&movies, &db](sqlite3_int64 const rowid,
 std::string const & title,
 int const year, int const length)

Archives, Images, and Databases Chapter 10

[235]

 {
 movies.emplace_back(movie{
 static_cast<unsigned int>(rowid),
 title,
 year,
 static_cast<unsigned int>(length),
 {},
 {},
 {}
 });
 };

 return movies;
}

The main program will be implemented as a small utility that accepts commands and prints
the result of their execution to the console. The commands include finding movies and
adding, listing, and deleting media files for a movie. The function print_commands(),
shown as follows, displays the available supported commands:

void print_commands()
{
 std::cout
 << "find <title> finds a movie ID\n"
 << "list <movieid> lists the images of a movie\n"
 << "add <movieid>,<path>,<description> adds a new image\n"
 << "del <imageid> delete an image\n"
 << "help shows available commands\n"
 << "exit exists the application\n";
}

The implementation of the function main() is listed in the following code. We start by
opening an SQLite database called cppchallenger87.db. Then we loop indefinitely on
reading user input to the console and executing the command. The loop, and the main
program implicitly, ends when the user inputs the command exit:

int main()
{
 try
 {
 sqlite::database db(R"(cppchallenger87.db)");

 while (true)
 {
 std::string line;
 std::getline(std::cin, line);

Archives, Images, and Databases Chapter 10

[236]

 if (line == "help") print_commands();
 else if (line == "exit") break;
 else
 {
 if (starts_with(line, "find"))
 run_find(line, db);
 else if (starts_with(line, "list"))
 run_list(line, db);
 else if (starts_with(line, "add"))
 run_add(line, db);
 else if (starts_with(line, "del"))
 run_del(line, db);
 else
 std::cout << "unknown command" << std::endl;
 }

 std::cout << std::endl;
 }
 }
 catch (sqlite::sqlite_exception const & e)
 {
 std::cerr << e.get_code() << ": " << e.what() << " during "
 << e.get_sql() << std::endl;
 }
 catch (std::exception const & e)
 {
 std::cerr << e.what() << std::endl;
 }
}

Each of the supported commands is implemented in a separate function. run_find(),
run_list(), run_add(), and run_del() parse the user input, call the appropriate
function for database access that we have seen earlier, and print the results to the console.
These functions do not perform thorough checks on user input. The commands are case-
sensitive and must be entered in lowercase.

The function run_find() extracts a movie title from the user input, calls get_movie() to
retrieve the list of all the movies with that title, and prints the result to the console:

void run_find(std::string_view line, sqlite::database & db)
{
 auto title = trim(line.substr(5));

 auto movies = get_movies(title, db);
 if(movies.empty())
 std::cout << "empty" << std::endl;
 else

Archives, Images, and Databases Chapter 10

[237]

 {
 for (auto const m : movies)
 {
 std::cout << m.id << " | "
 << m.title << " | "
 << m.year << " | "
 << m.length << "min"
 << std::endl;
 }
 }
}

The function run_list() extracts a movie's numerical identifier from the user input, calls
get_media() to retrieve the list of all the media files for that movie, and prints them to the
console. This function only prints the length of the blob field and not the entire object:

void run_list(std::string_view line, sqlite::database & db)
{
 auto movieid = std::stoi(trim(line.substr(5)));
 if (movieid > 0)
 {
 auto list = get_media(movieid, db);
 if (list.empty())
 {
 std::cout << "empty" << std::endl;
 }
 else
 {
 for (auto const & m : list)
 {
 std::cout
 << m.id << " | "
 << m.movie_id << " | "
 << m.name << " | "
 << m.text.value_or("(null)") << " | "
 << m.blob.size() << " bytes"
 << std::endl;
 }
 }
 }
 else
 std::cout << "input error" << std::endl;
}

Archives, Images, and Databases Chapter 10

[238]

Adding a file to a movie is done with run_add(). This function extracts the movie
identifier, the file path, and its description from the comma-separated format in the user
input (as in add <movieid>,<path>,<description>), loads the content of the file from
disk using the helper function load_image(), and then adds it as a new record to the
media table. The implementation seen here does not do any checks on the file type, which
makes it possible to actually add any file, not just images or videos, to a movie. You can
take it as a further exercise to add additional validation to the program:

std::vector<char> load_image(std::string_view filepath)
{
 std::vector<char> data;

 std::ifstream ifile(filepath.data(), std::ios::binary | std::ios::ate);
 if (ifile.is_open())
 {
 auto size = ifile.tellg();
 ifile.seekg(0, std::ios::beg);

 data.resize(static_cast<size_t>(size));
 ifile.read(reinterpret_cast<char*>(data.data()), size);
 }

 return data;
}

void run_add(std::string_view line, sqlite::database & db)
{
 auto parts = split(trim(line.substr(4)), ',');
 if (parts.size() == 3)
 {
 auto movieid = std::stoi(parts[0]);
 auto path = std::experimental::filesystem::path{parts[1]};
 auto desc = parts[2];

 auto content = load_image(parts[1]);
 auto name = path.filename().string();

 auto success = add_media(movieid, name, desc, content, db);
 if (success)
 std::cout << "added" << std::endl;
 else
 std::cout << "failed" << std::endl;
 }
 else
 std::cout << "input error" << std::endl;
}

Archives, Images, and Databases Chapter 10

[239]

The last command left to implement is deleting a media file. The function run_del() takes
the identifier of the record in the media table that is supposed to be deleted and calls
delete_media() to remove it from the table:

void run_del(std::string_view line, sqlite::database & db)
{
 auto mediaid = std::stoi(trim(line.substr(4)));
 if (mediaid > 0)
 {
 auto success = delete_media(mediaid, db);
 if (success)
 std::cout << "deleted" << std::endl;
 else
 std::cout << "failed" << std::endl;
 }
 else
 std::cout << "input error" << std::endl;
}

In the preceding code, there are several helper functions: split(), which splits a text into
tokens separated by a specified delimiter character; starts_with(), which checks
whether a given string starts with a specified sub string; and trim(), which removes all the
spaces at the beginning and the end of a string. These functions are as follows:

std::vector<std::string> split(std::string text, char const delimiter)
{
 auto sstr = std::stringstream{ text };
 auto tokens = std::vector<std::string>{};
 auto token = std::string{};
 while (std::getline(sstr, token, delimiter))
 {
 if (!token.empty()) tokens.push_back(token);
 }
 return tokens;
}

inline bool starts_with(std::string_view text, std::string_view part)
{
 return text.find(part) == 0;
}

inline std::string trim(std::string_view text)
{
 auto first{ text.find_first_not_of(' ') };
 auto last{ text.find_last_not_of(' ') };
 return text.substr(first, (last - first + 1)).data();
}

Archives, Images, and Databases Chapter 10

[240]

The following is a listing of running several commands, as described previously. We start
by displaying all movies called The Matrix, although only one is found. Then we list the
media files for this movie, but none exist at this point. After that, we add a file called
the_matrix.jpg from the res folder and print the list of media files again. Lastly, we delete the
recently added media file and display the files again to make sure the list is empty:

find The Matrix
1 | The Matrix | 1999 | 196min

list 1
empty

add 1,.\res\the_matrix.jpg,Main poster
added

list 1
1 | 1 | the_matrix.jpg | Main poster | 193906 bytes

del 1
deleted

list 1
empty

11
Cryptography

Problems

88. Caesar cipher
Write a program that can encrypt and decrypt messages using a Caesar cipher with a right
rotation and any shift value. For simplicity, the program should consider only uppercase
text messages and only encode letters, ignoring digits, symbols, and other types of
characters.

89. Vigenère cipher
Write a program that can encrypt and decrypt messages using the Vigenère cipher. For
simplicity, the input plain-text messages for encryption should consist of only uppercase
letters.

Cryptography Chapter 11

[242]

90. Base64 encoding and decoding
Write a program that can encode and decode binary data using the base64 encoding
scheme. You must implement the encoding and decoding functions yourself and not use a
3rd party library. The table used for encoding should be the one from the MIME
specification.

91. Validating user credentials
Write a program that simulates the way users authenticate to a secured system. In order to
log in, a user must be already registered with the system. The user enters a username and a
password and the program checks if it matches any of its registered users; if it does, the
user is granted access, otherwise, the operation fails. For security reasons, the system must
not record the password but use an SHA hash instead.

92. Computing file hashes
Write a program that, given a path to a file, computes and prints to the console the SHA1,
SHA256, and MD5 hash values for the content of the file.

93. Encrypting and decrypting files
Write a program that can encrypt and decrypt files using the Advanced Encryption
Standard (AES or Rijndael). It should be possible to specify both a source file and a
destination file path, as well as a password.

94. File signing
Write a program that is able to sign files and verify that a signed file has not been tampered
with, using RSA cryptography. When signing a file, the signature should be written to a
separate file and used later for the verification process. The program should provide at least
two functions: one that signs a file (taking as arguments the path to the file, the path to the
RSA private key, and the path to the file where the signature will be written) and one that
verifies a file (taking as arguments the path to the file, the path to the RSA public key, and
the path to the signature file).

Cryptography Chapter 11

[243]

Solutions

88. Caesar cipher
A Caesar cipher, also known as Caesar’s cipher, Caesar’s code, Caesar shift, or shift cipher, is a
very old, simple, and widely known encryption technique that substitutes each letter in the
plain-text with a letter some fixed number of positions down the alphabet. This method
was used by Julius Caesar to protect messages of military importance. He used a shift of
three letters, therefore replacing A with D, B with E, and so on. In this encoding, the text
CPPCHALLENGER becomes FSSFKDOOHQJHU. The cipher is described in detail on
Wikipedia at https:/ / en. wikipedia. org/ wiki/ Caesar_ cipher.

Although the Caesar cipher has no place in modern cryptography since it
is trivial to break, it is still used on online forums or newsgroups as a way
to scramble text to hide spoilers, offensive words, puzzle solutions, and so
on. This problem is intended only as a simple exercise along these lines.
You should not use such a simple substitution cipher for any
cryptographic purposes.

In order to solve the proposed problem, we must implement two functions: one that
performs the encryption of a plain-text and one that decrypts an encrypted text. In the code
listed as follows:

caesar_encrypt() is a function that takes a string_view representing the
plain-text and a shift value that indicates how many letters down the alphabet
the substitution should occur. This function accounts for and substitutes only
uppercase letters and leaves the other characters from the plain-text unmodified.
The alphabet is modeled in a circular sequence, so that, in the case of a right shift
of 3, X becomes A, Y becomes B, and Z becomes C.
caesar_decrypt() is a function that takes a string_view representing a
Caesar-encrypted text and a shift value that indicates how many letters down the
alphabet (that is, a right rotation) the substitution occurred for the encryption.
Like its encryption counterpart, this function only transforms uppercase letters
and leaves the others untouched.

std::string caesar_encrypt(std::string_view text, int const shift)
{
 std::string str;
 str.reserve(text.length());
 for (auto const c : text)
 {

https://en.wikipedia.org/wiki/Caesar_cipher
https://en.wikipedia.org/wiki/Caesar_cipher
https://en.wikipedia.org/wiki/Caesar_cipher
https://en.wikipedia.org/wiki/Caesar_cipher
https://en.wikipedia.org/wiki/Caesar_cipher
https://en.wikipedia.org/wiki/Caesar_cipher
https://en.wikipedia.org/wiki/Caesar_cipher
https://en.wikipedia.org/wiki/Caesar_cipher
https://en.wikipedia.org/wiki/Caesar_cipher
https://en.wikipedia.org/wiki/Caesar_cipher
https://en.wikipedia.org/wiki/Caesar_cipher
https://en.wikipedia.org/wiki/Caesar_cipher
https://en.wikipedia.org/wiki/Caesar_cipher
https://en.wikipedia.org/wiki/Caesar_cipher
https://en.wikipedia.org/wiki/Caesar_cipher

Cryptography Chapter 11

[244]

 if (isalpha(c) && isupper(c))
 str += 'A' + (c - 'A' + shift) % 26;
 else
 str += c;
 }

 return str;
}

std::string caesar_decrypt(std::string_view text, int const shift)
{
 std::string str;
 str.reserve(text.length());
 for (auto const c : text)
 {
 if (isalpha(c) && isupper(c))
 str += 'A' + (26 + c - 'A' - shift) % 26;
 else
 str += c;
 }

 return str;
}

The following is an example of how these functions can be used. The plain-text to be
encrypted is actually the entire English alphabet, and the encryption/decryption is executed
for every possible shift value:

int main()
{
 auto text = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
 for (int i = 1; i <= 26; ++i)
 {
 auto enc = caesar_encrypt(text, i);
 auto dec = caesar_decrypt(enc, i);
 assert(text == dec);
 }
}

Cryptography Chapter 11

[245]

89. Vigenère cipher
The Vigenère cipher is an encryption technique that uses a series of interwoven Caesar
ciphers. Although described in 1553 by Giovan Battista Ballaso, it was misattributed in the
19th century to Blaise de Vigenère and ended up being named after him. The cipher is
described in detail on Wikipedia at https:/ / en.wikipedia. org/ wiki/ Vigen%C3%A8re_
cipher. Only a short summary is presented here.

Although the Vigenère cipher took three centuries to be broken, it is
nowadays trivial to break, just as in the case of the Caesar cipher, on
which it is based. Like the previous problem, this one is proposed only as
a fun and simple exercise and not as an argument in favor of using this
cipher for cryptographic purposes.

The technique uses a table called tabula recta or a Vigenère table. For the English alphabet,
this table has 26 rows and 26 columns, where each row is the entire alphabet shifted
cyclically using a Caesar cipher. The following image, from the Wikipedia article listed
above, shows the content of this table:

https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher
https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher
https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher
https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher
https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher
https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher
https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher
https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher
https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher
https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher
https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher
https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher
https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher
https://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher

Cryptography Chapter 11

[246]

A key is necessary for encryption and decryption. The key is written down until it matches
the length of the text to encrypt and respectively decrypt (they have the same size).
Encryption is performed by looking at each letter from the plain-text, taking its
corresponding letter in the key, and replacing it with the letter found at the intersection of
the row corresponding to the key letter and the column corresponding to the plain-text
letter. Decryption is done by going to the row that corresponds to the key letter, identifying
the encrypted text letter in the row, and using the column label as the letter for the plain-
text.

The function that performs the encryption is called vigenere_encrypt(). It takes a plain-
text and a key, encrypts the plain-text according to the method described previously, and
returns the encrypted text:

std::string vigenere_encrypt(std::string_view text, std::string_view key)
{
 std::string result;
 result.reserve(text.length());
 static auto table = build_vigenere_table();

 for (size_t i = 0; i < text.length(); ++i)
 {
 auto row = key[i%key.length()] - 'A';
 auto col = text[i] - 'A';

 result += table[row * 26 + col];
 }

 return result;
}

Its counterpart is called vigenere_decrypt(). This is a function that takes an encrypted
text and the key used for encrypting it and decrypts the text using the method described
previously, returning the resultant plain-text:

std::string vigenere_decrypt(std::string_view text, std::string_view key)
{
 std::string result;
 result.reserve(text.length());
 static auto table = build_vigenere_table();

 for (size_t i = 0; i < text.length(); ++i)
 {
 auto row = key[i%key.length()] - 'A';

 for (size_t col = 0; col < 26; col++)
 {

Cryptography Chapter 11

[247]

 if (table[row * 26 + col] == text[i])
 {
 result += 'A' + col;
 break;
 }
 }
 }

 return result;
}

Both these functions use a third one, called build_vigenere_table(), which creates the
Vigenère table by performing a Caesar encryption of the entire alphabet 26 times, each time
with a new shift value. The table is represented as a single string:

std::string build_vigenere_table()
{
 std::string table;
 table.reserve(26*26);
 for (int i = 0; i < 26; ++i)
 table += caesar_encrypt("ABCDEFGHIJKLMNOPQRSTUVWXYZ", i);

 return table;
}

These functions for encryption and decryption can be used as follows:

int main()
{
 auto text = "THECPPCHALLENGER";
 auto enc = vigenere_encrypt(text, "SAMPLE");
 auto dec = vigenere_decrypt(enc, "SAMPLE");
 assert(text == dec);
}

Cryptography Chapter 11

[248]

90. Base64 encoding and decoding
Base64 is an encoding scheme used for representing binary data in ASCII format using an
alphabet of 64 characters. Although all implementations use the same first 62 characters (A-
Z, a-z, and 0-9), the last two values may differ. The symbols + and / are used in the MIME
specification. A base64 digit represents 6 bits of data, and four base64 digits encode exactly
three bytes (8-bit) of binary data. When the number of digits is not divisible by three, extra
bytes with a value of zero are added before converting to base64. Padding the encoded text
with == or = can be used to indicate that the final group of three bytes from the plain data
actually contained only one or two bytes.

Here is an example of encoding the text cpp. The result, in this case, is Y3Bw:

Source ASCII cpp

Source octets 0x63 0x70 0x70
Source binary 01100011 01110000 01110000
Base64 binary index 011000 110111 000001 110000
Base64 decimal index 24 55 1 48
Base64 encoding Y3Bw

The algorithm is described in detail on Wikipedia at https:/ /en.
wikipedia. org/ wiki/ Base64. You can use an online encoder, such as the
one available at https:/ / www.base64encode. org/ , to verify that the
results you get for base64 encoding and decoding are actually correct.

The class encoded, shown as follows, has two public methods: to_base64() encodes a
vector of bytes to base64 and returns the result as a string, and from_base64() decodes a
base64 encoded string to a vector of bytes and returns it. Two distinct tables are used for
encoding and decoding. The table for encoding is actually a plain string called table_enc
that contains the base64 alphabet. The table used for decoding is called table_dec and is
an array of 256 integers, representing the index in the encryption table (table_enc) of each
base64 6-bit digit:

class encoder
{
 std::string const table_enc =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
 char const padding_symbol = '=';

 char const table_dec[256] =
 {
 -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,64,-1,-1,-1,-1,-1,

https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://www.base64encode.org/
https://www.base64encode.org/
https://www.base64encode.org/
https://www.base64encode.org/
https://www.base64encode.org/
https://www.base64encode.org/
https://www.base64encode.org/
https://www.base64encode.org/
https://www.base64encode.org/
https://www.base64encode.org/

Cryptography Chapter 11

[249]

 -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,62,-1,-1,-1,63,
 52,53,54,55,56,57,58,59,60,61,-1,-1,-1,65,-1,-1,
 -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,
 15,16,17,18,19,20,21,22,23,24,25,-1,-1,-1,-1,-1,
 -1,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,
 41,42,43,44,45,46,47,48,49,50,51,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
 -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1
 };
 char const invalid_char = -1;
 char const padding_char = 65;
public:
 std::string to_base64(std::vector<unsigned char> const & data);
 std::vector<unsigned char> from_base64(std::string data);
};

The method to_base64() is implemented as follows. This function appends = or == at the
end of the encoded string to indicate the actual length of the plain data:

std::string encoder::to_base64(std::vector<unsigned char> const & data)
{
 std::string result;
 result.resize((data.size() / 3 + ((data.size() % 3 > 0) ? 1 : 0)) * 4);
 auto result_ptr = &result[0];
 size_t i = 0;
 size_t j = 0;
 while (j++ < data.size() / 3)
 {
 unsigned int value = (data[i] << 16) | (data[i+1] << 8) | data[i+2];
 i += 3;

 *result_ptr++ = table_enc[(value & 0x00fc0000) >> 18];
 *result_ptr++ = table_enc[(value & 0x0003f000) >> 12];
 *result_ptr++ = table_enc[(value & 0x00000fc0) >> 6];
 *result_ptr++ = table_enc[(value & 0x0000003f)];
 };

 auto rest = data.size() - i;
 if (rest == 1)
 {

Cryptography Chapter 11

[250]

 *result_ptr++ = table_enc[(data[i] & 0x000000fc) >> 2];
 *result_ptr++ = table_enc[(data[i] & 0x00000003) << 4];
 *result_ptr++ = padding_symbol;
 *result_ptr++ = padding_symbol;
 }
 else if (rest == 2)
 {
 unsigned int value = (data[i] << 8) | data[i + 1];

 *result_ptr++ = table_enc[(value & 0x0000fc00) >> 10];
 *result_ptr++ = table_enc[(value & 0x000003f0) >> 4];
 *result_ptr++ = table_enc[(value & 0x0000000f) << 2];
 *result_ptr++ = padding_symbol;
 }

 return result;
}

The method from_base64() is also shown here. This function is able to decode both
strings with and without padding:

std::vector<unsigned char> encored::from_base64(std::string data)
{
 size_t padding = data.size() % 4;
 if (padding == 0)
 {
 if (data[data.size() - 1] == padding_symbol) padding++;
 if (data[data.size() - 2] == padding_symbol) padding++;
 }
 else
 {
 data.append(2, padding_symbol);
 }

 std::vector<unsigned char> result;
 result.resize((data.length() / 4) * 3 - padding);
 auto result_ptr = &result[0];

 size_t i = 0;
 size_t j = 0;
 while (j++ < data.size() / 4)
 {
 unsigned char c1 = table_dec[static_cast<int>(data[i++])];
 unsigned char c2 = table_dec[static_cast<int>(data[i++])];
 unsigned char c3 = table_dec[static_cast<int>(data[i++])];
 unsigned char c4 = table_dec[static_cast<int>(data[i++])];

Cryptography Chapter 11

[251]

 if (c1 == invalid_char || c2 == invalid_char ||
 c3 == invalid_char || c4 == invalid_char)
 throw std::runtime_error("invalid base64 encoding");

 if (c4 == padding_char && c3 == padding_char)
 {
 unsigned int value = (c1 << 6) | c2;
 *result_ptr++ = (value >> 4) & 0x000000ff;
 }
 else if (c4 == padding_char)
 {
 unsigned int value = (c1 << 12) | (c2 << 6) | c3;
 *result_ptr++ = (value >> 10) & 0x000000ff;
 *result_ptr++ = (value >> 2) & 0x000000ff;
 }
 else
 {
 unsigned int value = (c1 << 18) | (c2 << 12) | (c3 << 6) | c4;

 *result_ptr++ = (value >> 16) & 0x000000ff;
 *result_ptr++ = (value >> 8) & 0x000000ff;
 *result_ptr++ = value & 0x000000ff;
 }
 }

 return result;
}

Since the encoder class encodes binary data to base64 and decodes to binary data from
base64, a helper class is provided for converting a string to a sequence of bytes and the
other way around. The class called converter in the following has two static methods; one
called from_string() that takes a string_view and returns a vector of bytes with the
content of the string, and one called from_range() that constructs a string from a vector
of bytes:

struct converter
{
 static std::vector<unsigned char> from_string(std::string_view data)
 {
 std::vector<unsigned char> result;

 std::copy(
 std::begin(data), std::end(data),
 std::back_inserter(result));

 return result;
 }

Cryptography Chapter 11

[252]

 static std::string from_range(std::vector<unsigned char> const & data)
 {
 std::string result;

 std::copy(
 std::begin(data), std::end(data),
 std::back_inserter(result));

 return result;
 }
};

The encoder and converter classes are used in the following sample to encode and
decode to and from base64 data of various lengths. It validates that the result of decoding
the encoded text is the same as the original:

int main()
{
 std::vector<std::vector<unsigned char>> data
 {
 { 's' },
 { 's','a' },
 { 's','a','m' },
 { 's','a','m','p' },
 { 's','a','m','p','l' },
 { 's','a','m','p','l','e' },
 };

 encoder enc;

 for (auto const & v : data)
 {
 auto encv = enc.to_base64(v);

 auto decv = enc.from_base64(encv);

 assert(v == decv);
 }

 auto text = "cppchallenge";
 auto textenc = enc.to_base64(converter::from_string(text));
 auto textdec = converter::from_range(enc.from_base64(textenc));
 assert(text == textdec);
}

Cryptography Chapter 11

[253]

Although the implementation of base64 encoding and decoding provided
here is complete, it is not the most performant one. According to my tests,
it performs similarly to the implementation available in Boost.Beast.
However, I do not necessarily recommend that you use it in production
code. Instead, you should use a more thoroughly tested and widely used
implementation, such as the ones available in Boost.Beast, Crypto++, or
other libraries.

91. Validating user credentials
A good choice for a free, cross-platform C++ library for cryptographic schemes is Crypto++.
This library is widely used in both non-commercial and commercial projects, as well as
academia, student projects, and others, for its industry-proven implementation of
cryptographic functionalities. The library provides support for AES and AES candidates, as
well as other block ciphers, message authentication codes, hash functions, public key
cryptography, and many other features, including non-cryptographic functionalities such
as pseudo-random number generators, prime number generation and verification,
DEFLATE compression/decompression, encoding schemes, checksum functions, and more.
The library is available at https:/ / www. cryptopp. com/ and will be used to solve the
cryptography problems in this chapter.

When you download the library, you will find several projects
corresponding to different configurations of the library. The one you
should use is cryptolib, which produces a static library. The dynamic
library version, cryptodll, has been validated by NIST and CSE for FIPS
140-2 Level 1 Conformance. FIPS 140-2 is a series of US government
computer security standards that specify requirements for cryptography
modules. Because of this compliance, cryptodll does not contain
anything else that does not meet the requirements, including DES and
MD5.

To solve the problem, we will model a system that maintains a database of users. A user
has a numerical identifier, a username, the hash value of his password, as well as optional
first name and last name inputs. The following class, called user, is used for this purpose:

struct user
{
 int id;
 std::string username;
 std::string password;
 std::string firstname;

https://www.cryptopp.com/
https://www.cryptopp.com/
https://www.cryptopp.com/
https://www.cryptopp.com/
https://www.cryptopp.com/
https://www.cryptopp.com/
https://www.cryptopp.com/
https://www.cryptopp.com/
https://www.cryptopp.com/
https://www.cryptopp.com/

Cryptography Chapter 11

[254]

 std::string lastname;
};

Computing the hash value for a password is done in the function get_hash(). This
function takes a string_view that represents the password (or any text, for that matter)
and returns its SHA512 hash value. Crypto++ includes a number of hash functions,
including SHA-1, SHA-2 (SHA-224, SHA-256, SHA-384, and SHA-512), SHA-3, Tiger,
WHIRLPOOL, RIPEMD-128, RIPEMD-256, RIPEMD-160, and RIPEMD-320, all in the
CryptoPP namespace, as well as MD5 (in the CryptoPP::Weak namespace) if you use the
static library version. All these hashes are derived from the class HashTransformation
and are interchangeable. To compute the hash we must:

Create a HashTransformation-derived object, such as SHA512.
Define an array of bytes large enough to retrieve the hash digest.
Call CalculateDigest(), passing the output buffer, the text to transform, and
its length.
The digest resulting from hashing the original text has a binary form. This can be
encoded in a more human-readable form as a string containing hexadecimal
digits. This can be done using the HexEncoder class. You can attach a sink, such
as StringSink or FileSink, to accumulate the output.

The Crypto++ library uses the concept of a pipeline to flow data from a
source to a sink. Within this flow, data can encounter filters that transform
it before it reaches the sink. Objects within the pipeline take ownership of
other objects passed to them via a pointer in the constructor and
automatically destroy them when they are destroyed themselves. The
following quote is taken from the library's documentation: "If a constructor
for A takes a pointer to an object B (except primitive types such as int and char),
then A owns B and will delete B at A's destruction. If a constructor for A takes a
reference to an object B, then the caller retains ownership of B and should not
destroy it until A no longer needs it."

Following is the implementation of the get_hash() function:

std::string get_hash(std::string_view password)
{
 CryptoPP::SHA512 sha;
 CryptoPP::byte digest[CryptoPP::SHA512::DIGESTSIZE];

 sha.CalculateDigest(
 digest,
 reinterpret_cast<CryptoPP::byte const*>(password.data()),

Cryptography Chapter 11

[255]

 password.length());

 CryptoPP::HexEncoder encoder;
 std::string result;

 encoder.Attach(new CryptoPP::StringSink(result));
 encoder.Put(digest, sizeof(digest));
 encoder.MessageEnd();

 return result;
}

The following program uses the class user and the function get_hash() to model the
login system. users, as the name implies, is a list of users. Although this list is hardcoded,
it could be read from a database. You can take it as an extra exercise to store the users in a
SQLite database and retrieve it from there. After the user enters his username and
password, the program computes the SHA512 hash of the password, checks the list of users
for an exact match of the username and the password hash, and displays a message
accordingly:

int main()
{
 std::vector<user> users
 {
 {
 101, "scarface",
"07A8D53ADAB635ADDF39BAEACFB799FD7C5BFDEE365F3AA721B7E25B54A4E87D419ADDEA34
BC3073BAC472DCF4657E50C0F6781DDD8FE883653D10F7930E78FF",
 "Tony", "Montana"
 },
 {
 202, "neo",
"C2CC277BCC10888ECEE90F0F09EE9666199C2699922EFB41EA7E88067B2C075F3DD3FBF3CF
E9D0EC6173668DD83C111342F91E941A2CADC46A3A814848AA9B05",
 "Thomas", "Anderson"
 },
 {
 303, "godfather",
"0EA7A0306FE00CD22DF1B835796EC32ACC702208E0B052B15F9393BCCF5EE9ECD8BAAF2784
0D4D3E6BCC3BB3B009259F6F73CC77480C065DDE67CD9BEA14AA4D",
 "Vito", "Corleone"
 }
 };

 std::string username, password;
 std::cout << "Username: ";
 std::cin >> username;

Cryptography Chapter 11

[256]

 std::cout << "Password: ";
 std::cin >> password;

 auto hash = get_hash(password);

 auto pos = std::find_if(
 std::begin(users), std::end(users),
 [username, hash](user const & u) {
 return u.username == username &&
 u.password == hash; });

 if (pos != std::end(users))
 std::cout << "Login successful!" << std::endl;
 else
 std::cout << "Invalid username or password" << std::endl;
}

92. Computing file hashes
File hashes are often used to ensure the integrity of content, such as in the case of
downloading a file from the web. Although implementations of the SHA1 and MD5
hashing functions can be found in a variety of libraries, we will again use the Crypto++
library. If you did not follow the previous problem and its solution, Validating user
credentials, you should do so before continuing with this one, because the general
information about the Crypto++ library that was given there will not be repeated here.

Computing a hash for a file is relatively simple using the Crypto++ library. The following
code uses several components:

FileSource, which allows reading data from a file using a
BufferedTransformation. By default, it pumps data in blocks or chunks of
4,096 bytes, although manual pumping is also possible. The constructor used
here takes a path to an input file, a Boolean that indicates whether all data should
be pumped or not, and a BufferTransformation object.
HashFilter, which uses the specified hash algorithm to calculate the hash of all
input data up to the first MessageEnd signal, at which time it outputs the
resultant hash value to its attached transformation.
HexEncoder, which encodes bytes in base 16 using the alphabet
0123456789ABCDEF.

Cryptography Chapter 11

[257]

StringSink, which represents a destination of string data in a pipeline. It takes
a reference to a string object where data is to be stored:

BufferedTransformation is the basic unit of data flow in Crypto++. It
represents a generalization of BlockTransformation,
StreamTransformation, and HashTransformation. A
BufferedTransformation is an object that takes a stream of bytes as
input (this may be done in stages), does some computation on them, and
then places the result into an internal buffer for later retrieval. Any partial
result already in the output buffer is not modified by a further input.
Objects deriving from BufferedTransformation can participate in
pipelining, which allows data to flow from a source to a sink.

template <class Hash>
std::string compute_hash(fs::path const & filepath)
{
 std::string digest;
 Hash hash;

 CryptoPP::FileSource source(
 filepath.c_str(),
 true,
 new CryptoPP::HashFilter(hash,
 new CryptoPP::HexEncoder(
 new CryptoPP::StringSink(digest))));

 return digest;
}

The function template compute_hash() from the preceding code can be used as follows to
determine various hashing values:

int main()
{
 std::string path;
 std::cout << "Path: ";
 std::cin >> path;

 try
 {
 std::cout << "SHA1: "
 << compute_hash<CryptoPP::SHA1>(path) << std::endl;
 std::cout << "SHA256: "
 << compute_hash<CryptoPP::SHA256>(path) << std::endl;
 std::cout << "MD5: "

Cryptography Chapter 11

[258]

 << compute_hash<CryptoPP::Weak::MD5>(path) << std::endl;
 }
 catch (std::exception const & ex)
 {
 std::cerr << ex.what() << std::endl;
 }
}

It is important to note that the MD5 hash is obsolete and insecure and is only provided for
backward compatibility. In order to use it, you must define the
CRYPTOPP_ENABLE_NAMESPACE_WEAK macro before including the md5.h header, as
follows:

#define CRYPTOPP_ENABLE_NAMESPACE_WEAK 1
#include "md5.h"

93. Encrypting and decrypting files
In order to solve this problem with the Crypto++ library, we need to use several
components:

FileSource, which allows reading data from a file using a
BufferedTransformation. By default, it pumps data in blocks or chunks of
4,096 bytes, although manual pumping is also possible.
FileSink, which allows you to write data to a file using a
BufferedTransformation. It is the companion sink object to a FileSource
source object.
DefaultEncryptorWithMAC and DefaultDecryptorWithMAC, which encrypt
and decrypt strings and files with an authentication tag to detect tampering.
They use AES as the default block cipher and SHA256 as the default hash for the
MAC. Each run through these two classes produces a different result due to the
use of a time-based salt.

Two overloads are provided both for encryption and decryption:

One overload takes a source file path, a destination file path, and a password. It
encrypts or decrypts the source file, and the result is written in the destination
file.
The other overload takes a file path and a password. It encrypts or decrypts the
file, writing the result in a temporary file, deletes the original file, and then
moves the temporary file to the original file path. Its implementation is based on
the first overload.

Cryptography Chapter 11

[259]

The functions that perform file encryption are shown here:

void encrypt_file(fs::path const & sourcefile,
 fs::path const & destfile,
 std::string_view password)
{
 CryptoPP::FileSource source(
 sourcefile.c_str(),
 true,
 new CryptoPP::DefaultEncryptorWithMAC(
 (CryptoPP::byte*)password.data(), password.size(),
 new CryptoPP::FileSink(
 destfile.c_str())
)
);
}

void encrypt_file(fs::path const & filepath,
 std::string_view password)
{
 auto temppath = fs::temp_directory_path() / filepath.filename();

 encrypt_file(filepath, temppath, password);

 fs::remove(filepath);
 fs::rename(temppath, filepath);
}

The decrypting equivalent functions are basically identical, but instead of using
DefaultEncryptorWithMAC for the buffered transformation they use
DefaultDecryptorWithMAC. The two afore mentioned overloads are shown as follows:

void decrypt_file(fs::path const & sourcefile,
 fs::path const & destfile,
 std::string_view password)
{
 CryptoPP::FileSource source(
 sourcefile.c_str(),
 true,
 new CryptoPP::DefaultDecryptorWithMAC(
 (CryptoPP::byte*)password.data(), password.size(),
 new CryptoPP::FileSink(
 destfile.c_str())
)
);
}

Cryptography Chapter 11

[260]

void decrypt_file(fs::path const & filepath,
 std::string_view password)
{
 auto temppath = fs::temp_directory_path() / filepath.filename();

 decrypt_file(filepath, temppath, password);

 fs::remove(filepath);
 fs::rename(temppath, filepath);
}

These functions can be used as follows:

int main()
{
 encrypt_file("sample.txt", "sample.txt.enc", "cppchallenger");
 decrypt_file("sample.txt.enc", "sample.txt.dec", "cppchallenger");

 encrypt_file("sample.txt", "cppchallenger");
 decrypt_file("sample.txt", "cppchallenger");
}

94. File signing
The process of signing and verifying is similar to encryption and decryption, although it
differs in a fundamental way; encryption is done using the public key and decryption using
the private key, while signing is done using the private key and verification is done using
the public key. Signing helps a recipient that owns a public key to verify that a file is
unmodified by using the signature and its public key. Having the public key, however, is
not enough to change the file and sign it again. The Crypto++ library is used for solving this
problem too.

Although you can use any pair of public-private RSA keys to perform the signing and
verification, in the implementation provided here the keys are randomly generated when
the program starts. Obviously, in practice, you would generate the keys independent of the
signing and verification, and not every time you do that. The function generate_keys() ,
which is shown at the end of the following listing, creates a pair of RSA public-private
3,072-bit keys. Several helper functions, all shown here, are used for this purpose:

void encode(fs::path const & filepath,
 CryptoPP::BufferedTransformation const & bt)
{
 CryptoPP::FileSink file(filepath.c_str());
 bt.CopyTo(file);

Cryptography Chapter 11

[261]

 file.MessageEnd();
}

void encode_private_key(fs::path const & filepath,
 CryptoPP::RSA::PrivateKey const & key)
{
 CryptoPP::ByteQueue queue;
 key.DEREncodePrivateKey(queue);
 encode(filepath, queue);
}

void encode_public_key(fs::path const & filepath,
 CryptoPP::RSA::PublicKey const & key)
{
 CryptoPP::ByteQueue queue;
 key.DEREncodePublicKey(queue);
 encode(filepath, queue);
}

void decode(fs::path const & filepath,
 CryptoPP::BufferedTransformation& bt)
{
 CryptoPP::FileSource file(filepath.c_str(), true);
 file.TransferTo(bt);
 bt.MessageEnd();
}

void decode_private_key(fs::path const & filepath,
 CryptoPP::RSA::PrivateKey& key)
{
 CryptoPP::ByteQueue queue;
 decode(filepath, queue);
 key.BERDecodePrivateKey(queue, false, queue.MaxRetrievable());
}

void decode_public_key(fs::path const & filepath,
 CryptoPP::RSA::PublicKey& key)
{
 CryptoPP::ByteQueue queue;
 decode(filepath, queue);
 key.BERDecodePublicKey(queue, false, queue.MaxRetrievable());
}

void generate_keys(fs::path const & privateKeyPath,
 fs::path const & publicKeyPath,
 CryptoPP::RandomNumberGenerator& rng)
{
 try

Cryptography Chapter 11

[262]

 {
 CryptoPP::RSA::PrivateKey rsaPrivate;
 rsaPrivate.GenerateRandomWithKeySize(rng, 3072);

 CryptoPP::RSA::PublicKey rsaPublic(rsaPrivate);

 encode_private_key(privateKeyPath, rsaPrivate);
 encode_public_key(publicKeyPath, rsaPublic);
 }
 catch (CryptoPP::Exception const & e)
 {
 std::cerr << e.what() << std::endl;
 }
}

In order to perform the signing, we use a pipeline that starts with a FileSource, ends with
a FileSink, and contains a filter called SignerFilter, which creates a signature over a
message. It uses the RSASSA_PKCS1v15_SHA_Signer signer to transform the source data:

void rsa_sign_file(fs::path const & filepath,
 fs::path const & privateKeyPath,
 fs::path const & signaturePath,
 CryptoPP::RandomNumberGenerator& rng)
{
 CryptoPP::RSA::PrivateKey privateKey;
 decode_private_key(privateKeyPath, privateKey);

 CryptoPP::RSASSA_PKCS1v15_SHA_Signer signer(privateKey);

 CryptoPP::FileSource fileSource(
 filepath.c_str(),
 true,
 new CryptoPP::SignerFilter(
 rng,
 signer,
 new CryptoPP::FileSink(
 signaturePath.c_str())));
}

The opposite process of verification is implemented in a similar way. The filter used in this
case is SignatureVerificationFilter, which is the counterpart of SignerFilter, and
the verifier is RSASSA_PKCS1v15_SHA_Verifier, which is the counterpart of
RSASSA_PKCS1v15_SHA_Signer:

bool rsa_verify_file(fs::path const & filepath,
 fs::path const & publicKeyPath,
 fs::path const & signaturePath)

Cryptography Chapter 11

[263]

{
 CryptoPP::RSA::PublicKey publicKey;
 decode_public_key(publicKeyPath.c_str(), publicKey);

 CryptoPP::RSASSA_PKCS1v15_SHA_Verifier verifier(publicKey);

 CryptoPP::FileSource signatureFile(signaturePath.c_str(),
 true);

 if (signatureFile.MaxRetrievable() != verifier.SignatureLength())
 return false;

 CryptoPP::SecByteBlock signature(verifier.SignatureLength());
 signatureFile.Get(signature, signature.size());

 auto* verifierFilter =
 new CryptoPP::SignatureVerificationFilter(verifier);
 verifierFilter->Put(signature, verifier.SignatureLength());

 CryptoPP::FileSource fileSource(
 filepath.c_str(),
 true,
 verifierFilter);

 return verifierFilter->GetLastResult();
}

The following program generates a pair of RSA public-private keys, then uses the private
key to sign a file using the rsa_sign_file() function, and then uses the public key and
the signature file to verify the file using the rsa_verify_file() counterpart function:

int main()
{
 CryptoPP::AutoSeededRandomPool rng;

 generate_keys("rsa-private.key", "rsa-public.key", rng);

 rsa_sign_file("sample.txt", "rsa-private.key", "sample.sign", rng);

 auto success =
 rsa_verify_file("sample.txt", "rsa-public.key", "sample.sign");

 assert(success);
}

12
Networking and Services

Problems

95. Finding the IP address of a host
Write a program that can retrieve and print the IPv4 address of a host. If multiple addresses
are found, then all of them should be printed. The program should work on all platforms.

96. Client-server Fizz-Buzz
Write a client-server application that can be used for playing the Fizz-Buzz game. The client
sends numbers to the server that answer back with fizz, buzz, fizz-buzz, or the number
itself, according to the game rules. Communication between the client and the server must
be done over TCP. The server should run indefinitely. The client should run as long as the
user enters numbers between 1 and 99.

Fizz-Buzz is a game for children, intended to teach them arithmetic division. A player must
say a number and another player should answer with:

Fizz, if the number is divisible by 3
Buzz, if the number is divisible by 5
Fizz-buzz, if the number is divisible by both 3 and 5
The number itself in all other cases

Networking and Services Chapter 12

[265]

97. Bitcoin exchange rates
Write a program that displays Bitcoin exchange rates for the most important currencies
(such as USD, EUR, or GBP). The exchange rates must be fetched from an online service,
such as: https:/ /blockchain. info.

98. Fetching emails using IMAP
Write a program that can get information from an email server using IMAP. The program
should be able to:

Get a list of folders from the mailbox
Get unread emails from a particular folder

99. Translating text to any language
Write a program that can translate text from one language to another using an online
service. It should be possible to specify the text that you wish to translate, the language of
the text, and the language to translate to.

100. Detecting faces in a picture
Write a program that can identify people's faces from pictures. At a minimum, the program
must detect the face area and the gender of the person. This information should be printed
to the console. The pictures must be loaded from the disk.

https://blockchain.info
https://blockchain.info
https://blockchain.info
https://blockchain.info
https://blockchain.info
https://blockchain.info
https://blockchain.info

Networking and Services Chapter 12

[266]

Solutions

95. Finding the IP address of a host
Host information, including IP addresses, can be retrieved with system-specific network
utilities, such as gethostbyname(). Although this is available on all platforms, the way it
is used is different and the requirement is to write a program that works on all platforms.
There are various open source cross-platform libraries for networking, such as POCO and
Asio/Boost.Asio. POCO is a more complex library, with support for not only networking but
also data access, cryptography, XML, JSON, Zip, and others. Asio is a stand-alone, header-
only library with a consistent asynchronous I/O model for network programming. It is also
available as part of the Boost library, and a standardization proposal based on it is under
evaluation. In this book, I will be using the standalone version of Asio, because it is a
header-only library and does not have additional dependencies and is, therefore, easier to
use. Asio can be used for solving this task.

The stand-alone Asio library can be found at https:/ / think- async. com/ , although the
latest version seems to be available only on GitHub at: https:/ /github. com/
chriskohlhoff/asio/ . All you have to do in order to use it is clone or download and unzip
the repository and include the asio.hpp header in your sources. If you do not want any
Boost dependencies, then make sure you define the macro ASIO_STANDALONE before
including the library header.

The get_ip_address() function shown in the following code snippet takes a hostname
and returns a list of strings representing the IPv4 addresses for that hostname. To do this, it
relies on several Asio components:

asio::io_context provides core I/O functionality for async I/O objects.
asio::ip::tcp::resolver provides the ability to resolve a query to a list of
endpoints. Its member function, resolve(), is used to resolve host and service
names into a list of endpoints. Although there are various overloads, the one
used here takes a protocol (in this case IPv4, but it can also use IPv6), a host
identifier (either the name of a numeric address as a string), and a service
identifier (this can be a port number). If successful, this function returns a list of
endpoints, otherwise, it throws an exception.
asio::ip::tcp::endpoint represents an endpoint that can be associated with
a TCP socket.

https://think-async.com/
https://think-async.com/
https://think-async.com/
https://think-async.com/
https://think-async.com/
https://think-async.com/
https://think-async.com/
https://think-async.com/
https://think-async.com/
https://think-async.com/
https://github.com/chriskohlhoff/asio/
https://github.com/chriskohlhoff/asio/
https://github.com/chriskohlhoff/asio/
https://github.com/chriskohlhoff/asio/
https://github.com/chriskohlhoff/asio/
https://github.com/chriskohlhoff/asio/
https://github.com/chriskohlhoff/asio/
https://github.com/chriskohlhoff/asio/
https://github.com/chriskohlhoff/asio/
https://github.com/chriskohlhoff/asio/
https://github.com/chriskohlhoff/asio/

Networking and Services Chapter 12

[267]

The get_ip_address() function is implemented as follows:

#define ASIO_STANDALONE
#include "asio.hpp"

std::vector<std::string> get_ip_address(std::string_view hostname)
{
 std::vector<std::string> ips;

 try
 {
 asio::io_context context;
 asio::ip::tcp::resolver resolver(context);
 auto endpoints = resolver.resolve(asio::ip::tcp::v4(),
 hostname.data(), "");

 for (auto e = endpoints.begin(); e != endpoints.end(); ++e)
 ips.push_back(
 ((asio::ip::tcp::endpoint)*e).address().to_string());
 }
 catch (std::exception const & e)
 {
 std::cerr << "exception: " << e.what() << std::endl;
 }

 return ips;
}

The function can be used as follows:

int main()
{
 auto ips = get_ip_address("packtpub.com");
 for (auto const & ip : ips)
 std::cout << ip << std::endl;
}

Networking and Services Chapter 12

[268]

96. Client-server Fizz-Buzz
In order to solve this problem, we will use the Asio library again. However, this time we
need to write two programs: a server and a client. The server accepts TCP connections on a
particular port, opens a connected socket, and starts reading on the socket. When it reads
something from the socket, it interprets it as a number for the Fizz-Buzz game, writes back
the answer, and continues to wait for another input. The client connects to a host on a
particular port, sends a number read from the console, and then waits to receive an answer
from the server before printing it to the console.

On the server side, the implementation of the Fizz-Buzz game is rather straightforward and
should not require additional explanations. The fizzbuzz() function shown in the
following code snippet takes a number and returns the result as a string:

std::string fizzbuzz(int const number)
{
 if(number != 0)
 {
 auto m3 = number % 3;
 auto m5 = number % 5;
 if(m3 == 0 && m5 == 0) return "fizzbuzz";
 else if(m5 == 0) return "buzz";
 else if(m3 == 0) return "fizz";
 }

 return std::to_string(number);
}

There are two main components that we will implement on the server side. The first
component is called session. Its purpose is to read from and write to a connected socket. It
is constructed from an asio::ip::tcp::socket object and uses its async_read_some()
and async_write_some() methods to read and write data. As the name implies, these are
asynchronous operations and a handler is called when they are completed. After
successfully reading from the socket, it writes back the result of the fizzbuzz() function
for the received number. When the writing to the socket completes successfully, it starts
reading again. The implementation of the session class is shown as follows:

#define ASIO_STANDALONE
#include "asio.hpp"

class session : public std::enable_shared_from_this<session>
{
public:
 session(asio::ip::tcp::socket socket) :
 tcp_socket(std::move(socket))

Networking and Services Chapter 12

[269]

 { }

 void start()
 {
 read();
 }

private:
 void read()
 {
 auto self(shared_from_this());

 tcp_socket.async_read_some(
 asio::buffer(data, data.size()),
 [this, self](std::error_code const ec, std::size_t const length){
 if (!ec)
 {
 auto number = std::string(data.data(), length);
 auto result = fizzbuzz(std::atoi(number.c_str()));
 std::cout << number << " -> " << result << std::endl;
 write(result);
 }
 });
 }

 void write(std::string_view response)
 {
 auto self(shared_from_this());

 tcp_socket.async_write_some(
 asio::buffer(response.data(), response.length()),
 [this, self](std::error_code const ec, std::size_t const) {
 if (!ec)
 read();
 });
 }

 std::array<char, 1024> data;
 asio::ip::tcp::socket tcp_socket;
};

Networking and Services Chapter 12

[270]

The other component that we will be writing is used for accepting incoming connections. It
is called server and uses asio::ip::tcp::acceptor for accepting new connections on
the local host on a designated port. After successfully opening a new socket, it creates a
session object from the socket and calls its start() method in order to begin reading
data from the client. The server class is shown here:

class server
{
public:
 server(asio::io_context& context, short const port)
 : tcp_acceptor(context,
 asio::ip::tcp::endpoint(asio::ip::tcp::v4(), port))
 , tcp_socket(context)
 {
 std::cout << "server running on port " << port << std::endl;

 accept();
 }

private:
 void accept()
 {
 tcp_acceptor.async_accept(tcp_socket, [this](std::error_code ec)
 {
 if (!ec)
 std::make_shared<session>(std::move(tcp_socket))->start();

 accept();
 });
 }

 asio::ip::tcp::acceptor tcp_acceptor;
 asio::ip::tcp::socket tcp_socket;
};

The following run_server() function creates an asio::io_context object and an
instance of server that immediately starts accepting incoming connections, and calls the
run() method of the context. This executes an event processing loop, blocking until all
work has finished and there are no more handlers to be dispatched, or until the
asio::io_context object has been stopped, with a call to the stop() method. The
run_server() function runs indefinitely until an exception occurs:

void run_server(short const port)
{
 try
 {

Networking and Services Chapter 12

[271]

 asio::io_context context;

 server srv(context, port);

 context.run();
 }
 catch (std::exception& e)
 {
 std::cerr << "exception: " << e.what() << std::endl;
 }
}

int main()
{
 run_server(11234);
}

On the client side, the implementation is a bit simpler. asio::connect() is used to
establish a TCP connection with a host on a specified port. After the connection is
established, the synchronous write_some() and read_some() methods of
asio::ip::tcp::socket are used to send and receive data to and from the server. This is
executed in a loop, based on the user's input to the console, and runs as long as the user
enters a number between 1 and 99. The run_client() function shown in the following
code snippet implements all of this:

void run_client(std::string_view host, short const port)
{
 try
 {
 asio::io_context context;
 asio::ip::tcp::socket tcp_socket(context);
 asio::ip::tcp::resolver resolver(context);
 asio::connect(tcp_socket,
 resolver.resolve({ host.data(),
 std::to_string(port) }));

 while (true)
 {
 std::cout << "number [1-99]: ";

 int number;
 std::cin >> number;
 if (std::cin.fail() || number < 1 || number > 99)
 break;

 auto request = std::to_string(number);

Networking and Services Chapter 12

[272]

 tcp_socket.write_some(asio::buffer(request, request.length()));

 std::array<char, 1024> reply;
 auto reply_length = tcp_socket.read_some(
 asio::buffer(reply, reply.size()));

 std::cout << "reply is: ";
 std::cout.write(reply.data(), reply_length);
 std::cout << std::endl;
 }
 }
 catch (std::exception& e)
 {
 std::cerr << "exception: " << e.what() << std::endl;
 }
}

int main()
{
 run_client("localhost", 11234);
}

The following image is a screenshot of the server (on the left) and client (on the right)
outputs, side by side:

Networking and Services Chapter 12

[273]

97. Bitcoin exchange rates
Various online services provide APIs for checking bitcoin market prices and exchange rates.
A service that you can use for free is available at https://blockchain.info/ticker. A
GET HTTP request returns a JSON object with the market price for various currencies.
Documentation for the API can be found at: https:/ /blockchain. info/ api/ exchange_
rates_api. An excerpt from such a JSON object is shown here:

{
 "USD": {
 "15m": 8196.491155299998,
 "last": 8196.491155299998,
 "buy": 8196.491155299998,
 "sell": 8196.491155299998,
 "symbol": "$"
 },
 "GBP": {
 "15m": 5876.884158350099,
 "last": 5876.884158350099,
 "buy": 5876.884158350099,
 "sell": 5876.884158350099,
 "symbol": "£"
 }
}

There are various libraries that you can use for transferring data over a network. A widely
used one is curl. This is a project that contains a command-line tool (cURL) and a library
(libcurl), both written in C that supports a multitude of protocols, including HTTP/HTTPS,
FTP/FTPS, Gopher, LDAP/LDAPS, POP3/POP3S, and SMTP/SMTPS. The project is
available at: https:/ / curl. haxx. se/ . There are several C++ libraries on top of libcurl. Such
an open source cross-platform library is curlcpp, which was written by Giuseppe Persico
and is available at: https:/ / github. com/ JosephP91/ curlcpp. We will use these two
libraries for solving this problem and the ones that follow.

Instructions for building the libcurl and curlcpp libraries can be found in the documentation
for the two projects. If you are using the source code for the book, everything is configured
for you through CMake scripts. If you want to build the libraries yourself for other projects,
then you need to do different things, depending on the platform you're building for. You
can find building instructions for a debug configuration for Windows and macOS as
follows:

https://blockchain.info/api/exchange_rates_api
https://blockchain.info/api/exchange_rates_api
https://blockchain.info/api/exchange_rates_api
https://blockchain.info/api/exchange_rates_api
https://blockchain.info/api/exchange_rates_api
https://blockchain.info/api/exchange_rates_api
https://blockchain.info/api/exchange_rates_api
https://blockchain.info/api/exchange_rates_api
https://blockchain.info/api/exchange_rates_api
https://blockchain.info/api/exchange_rates_api
https://blockchain.info/api/exchange_rates_api
https://blockchain.info/api/exchange_rates_api
https://blockchain.info/api/exchange_rates_api
https://blockchain.info/api/exchange_rates_api
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://curl.haxx.se/
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp

Networking and Services Chapter 12

[274]

On Windows, using Visual Studio 2017, you need to do the following:

Download cURL (from: https:/ /curl. haxx. se/ download. html), and unzip and1.
locate the Visual Studio solution (it should be
at projects\Windows\VC15\curl-all.sln). Open the solution and build
the LIB Debug - DLL Windows SSPI configurations for the target platform
that you need (Win32 or x64). The result is a static library file called
libcurl.lib.
Download curlcpp (from: https:/ /github. com/ JosephP91/ curlcpp), create a 2.
folder called build, and run CMake from it, setting the CURL_LIBRARY and
CURL_INCLUDE_DIR variables. The former must point to libcurl.lib, and the
latter to the folder with the CURL headers. Open the generated project and build
it. The result is a static library file called curlcpp.lib.
In the Visual Studio project where you need to use curlcpp,3.
add CURL_STATICLIB to the preprocessor definition, the path to
the curl\include and curlcpp\include folders to the list of Additional
Include Directories, and the output folders of the two libraries to the Additional
Library Directories. Lastly, you need to link your project to the following static
libraries: libcurl.lib, curlcpp.lib, Crypt32.lib, ws2_32.lib,
winmm.lib, and wldap32.lib.

On macOS using Xcode, on the other hand, you need to do the following:

Download openssl (from: https:/ /www. openssl. org/), and unzip and run the1.
following commands to build and install it:

 ./Configure darwin64-x86_64-cc shared enable-
 ec_nistp_64_gcc_128 no-ssl2 no-ssl3 no-comp --
 openssldir=/usr/local/ssl/macos-x86_64
 make depend
 sudo make install

Download cURL (from: https:/ /curl. haxx. se/ download. html), and unzip and2.
create a folder called build from which you can run CMake, specifying
the OPENSSL_ROOT_DIR and OPENSSL_INCLUDE_DIR variables to pinpoint
openssl. If you want to disable generating test and documentation projects, set the
variables BUILD_TESTING, BUILD_CURL_EXE, and USE_MANUAL to OFF. The
result for a debug build is a file called libcurl-d.dylib:

 cmake -G Xcode .. -DOPENSSL_ROOT_DIR=/usr/local/bin -
 DOPENSSL_INCLUDE_DIR=/usr/local/include/

https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://www.openssl.org/
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html

Networking and Services Chapter 12

[275]

Download curlcpp (from: https:/ /github. com/ JosephP91/ curlcpp), create a 3.
folder called build, and run CMake from it, setting
the CURL_LIBRARY and CURL_INCLUDE_DIR variables. The former must point
to libcurl-d.dylib, and the latter to the folder with the CURL headers. Open
the generated project and build it. The result is a file called libcurlcpp.a:

 cmake -G Xcode .. -DCURL_LIBRARY=<path>/curl-
 7.59.0/build/lib/Debug/libcurl-d.dylib -DCURL_INCLUDE_DIR=
 <path>/curl-7.59.0/include

In the Xcode project where you want to use cURL and curlcpp,4.
add CURL_STATICLIB to the preprocessor macros, the paths to the
directories curl/include and curlcpp/include to Header Search Paths, the
output directories of the two libraries to Library Search Paths, and the two static
libraries, libcurl-d.dylib and libcurlcpp.a, to the list in Link Binary With
Libraries.

Libcurl has two programming models (called interfaces): easy and multi. The easy interface
provides a synchronous, efficient, and simple to use programming model for transferring
data. The multi interface is an asynchronous model that provides multiple data transfers
using a single thread or multiple threads. When using the easy interface, you first initialize a
session, then set various options, including the URL and perhaps callbacks that will be
called when data is available. After finishing the setup, you perform the transfer, which is a
blocking operation that returns only when it's done. After the transfer has completed, you
may get information about the transfer, and, in the end, you must clean up the session.
Initialization and cleanup are handled according to the RAII idiom in the curlcpp library.

The following get_json_document() function takes an URL and performs a HTTP GET
request. The response from the server is written to an std::stringstream that is returned
to the caller:

#include "curl_easy.h"
#include "curl_form.h"
#include "curl_ios.h"
#include "curl_exception.h"

std::stringstream get_json_document(std::string_view url)
{
 std::stringstream str;

 try
 {
 curl::curl_ios<std::stringstream> writer(str);
 curl::curl_easy easy(writer);

https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp
https://github.com/JosephP91/curlcpp

Networking and Services Chapter 12

[276]

 easy.add<CURLOPT_URL>(url.data());
 easy.add<CURLOPT_FOLLOWLOCATION>(1L);

 easy.perform();
 }
 catch (curl::curl_easy_exception const & error)
 {
 auto errors = error.get_traceback();
 error.print_traceback();
 }

 return str;
}

When performing an HTTP GET to https:/ /blockchain. info/ ticker, we get back a JSON
object, as shown earlier. The following types are used to represent the data returned by this
API:

struct exchange_info
{
 double delay_15m_price;
 double latest_price;
 double buying_price;
 double selling_price;
 std::string symbol;
};

using blockchain_rates = std::map<std::string, exchange_info>;

We can use the nlohmann/json library for handling JSON data. Details about this library
can be found in the Chapter 9, Data Serialization. The following from_json() function
deserializes an exchange_info object from JSON:

#include "json.hpp"

using json = nlohmann::json;

void from_json(const json& jdata, exchange_info& info)
{
 info.delay_15m_price = jdata.at("15m").get<double>();
 info.latest_price = jdata.at("last").get<double>();
 info.buying_price = jdata.at("buy").get<double>();
 info.selling_price = jdata.at("sell").get<double>();
 info.symbol = jdata.at("symbol").get<std::string>();
}

https://blockchain.info/ticker
https://blockchain.info/ticker
https://blockchain.info/ticker
https://blockchain.info/ticker
https://blockchain.info/ticker
https://blockchain.info/ticker
https://blockchain.info/ticker
https://blockchain.info/ticker
https://blockchain.info/ticker

Networking and Services Chapter 12

[277]

Putting all of these together, we can write a program that fetches exchange rate information
from the server, deserializes the JSON response, and prints the exchange rates to the
console:

int main()
{
 auto doc = get_json_document("https://blockchain.info/ticker");

 json jdata;
 doc >> jdata;

 blockchain_rates rates = jdata;

 for (auto const & kvp : rates)
 {
 std::cout << "1BPI = " << kvp.second.latest_price
 << " " << kvp.first << std::endl;
 }
}

98. Fetching emails using IMAP
The Internet Message Access Protocol (IMAP) is an internet protocol for retrieving email
messages from an email server using TCP/IP. Most email server providers, including major
ones like Gmail, Outlook.com, and Yahoo! Mail offer support for it. There are some C++
libraries for working with IMAP, such as VMIME, that is open source and cross-platform
and supports IMAP, POP, and SMTP. However, in this book, I will use cURL (or more
specifically, libcurl) to make HTTP requests to an email server using IMAPS.

The required operations can be achieved with several IMAP commands. In the following
list, imap.domain.com is an example domain:

GET imaps://imap.domain.com retrieves all of the folders in the mailbox. If
you want to get the subfolders from a specific folder, such as inbox, then you
should do a GET imaps://imap.domain.com/<foldername>.
SEARCH UNSEEN imaps://imap.domain.com/<foldername> retrieves the
identifiers of all the unread emails from the folder.
GET imaps://imap.domain.com/<foldername>/;UID=<id> retrieves the
email with a specified ID from a particular folder name.

Networking and Services Chapter 12

[278]

If you are using Gmail, Outlook.com, or Yahoo! Mail as your email server
provider, the IMAP settings are very similar. They all use the port 933
with TLS encryption; instead of, the username is your email address, and
the password is your account password. What differs is the server
hostname. For Gmail, it is imap.gmail.com, for Outlook.com, it is imap-
mail.outlook.com, and for Yahoo! Mail, it is imap.mail.yahoo.com.
Beware that if you’re using 2-FA, then you need to generate a third-party
application password and use that one instead of your account password.

These functionalities are implemented in the following code snippet as member functions
of the class imap_connection. This class is constructed with the server URL, the port
number, a username, and a password. The helper method setup_easy() initializes a
curl::curl_easy object with authentication settings, such as the port, the username and
password, and TLS encryption, as well as other common settings, such as the user agent
(which is optional):

class imap_connection
{
public:
 imap_connection(std::string_view url,
 unsigned short const port,
 std::string_view user,
 std::string_view pass):
 url(url), port(port), user(user), pass(pass)
 {
 }

 std::string get_folders();
 std::vector<unsigned int> fetch_unread_uids(std::string_view folder);
 std::string fetch_email(std::string_view folder, unsigned int uid);

private:
 void setup_easy(curl::curl_easy& easy)
 {
 easy.add<CURLOPT_PORT>(port);
 easy.add<CURLOPT_USERNAME>(user.c_str());
 easy.add<CURLOPT_PASSWORD>(pass.c_str());
 easy.add<CURLOPT_USE_SSL>(CURLUSESSL_ALL);
 easy.add<CURLOPT_SSL_VERIFYPEER>(0L);
 easy.add<CURLOPT_SSL_VERIFYHOST>(0L);
 easy.add<CURLOPT_USERAGENT>("libcurl-agent/1.0");
 }

private:
 std::string url;

Networking and Services Chapter 12

[279]

 unsigned short port;
 std::string user;
 std::string pass;
};

The get_folders() method returns the list of folders in the mailbox. However, the
function simply returns the string received from the server without actually parsing the
content. You can take it as a further exercise to do that and return a list of folders. The
function creates a curl::curl_easy object, initializes it with the appropriate parameters,
such as the URL and authentication information, performs the request, and then returns the
result from the server from the std::stringstream in which it was copied:

std::string imap_connection::get_folders()
{
 std::stringstream str;
 try
 {
 curl::curl_ios<std::stringstream> writer(str);

 curl::curl_easy easy(writer);
 easy.add<CURLOPT_URL>(url.data());
 setup_easy(easy);

 easy.perform();
 }
 catch (curl::curl_easy_exception const & error)
 {
 auto errors = error.get_traceback();
 error.print_traceback();
 }

 return str.str();
}

Here is an example of what the output may look like:

* LIST (\HasNoChildren) "/" "INBOX"
* LIST (\HasNoChildren) "/" "Notes"
* LIST (\HasNoChildren) "/" "Trash"
* LIST (\HasChildren \Noselect) "/" "[Gmail]"
* LIST (\All \HasNoChildren) "/" "[Gmail]/All Mail"
* LIST (\Drafts \HasNoChildren) "/" "[Gmail]/Drafts"
* LIST (\HasNoChildren \Important) "/" "[Gmail]/Important"
* LIST (\HasNoChildren \Sent) "/" "[Gmail]/Sent Mail"
* LIST (\HasNoChildren \Junk) "/" "[Gmail]/Spam"
* LIST (\Flagged \HasNoChildren) "/" "[Gmail]/Starred"

Networking and Services Chapter 12

[280]

The fetch_unread_uids() method is quite similar. This function returns a vector of
unsigned integers representing the identifiers of unread emails from a specified folder. It
performs the request in a similar manner as the previous function, except that it parses the
result to create a list of email IDs. It also sets a CURLOPT_CUSTOMREQUEST option to SEARCH
UNSEEN. The result of this is that the default GET method is replaced with the specified
method (SEARCH, in this case):

std::vector<unsigned int>
imap_connection::fetch_unread_uids(std::string_view folder)
{
 std::stringstream str;

 try
 {
 curl::curl_ios<std::stringstream> writer(str);

 curl::curl_easy easy(writer);
 easy.add<CURLOPT_URL>((url.data() + std::string("/") +
 folder.data() + std::string("/")).c_str());
 easy.add<CURLOPT_CUSTOMREQUEST>("SEARCH UNSEEN");
 setup_easy(easy);

 easy.perform();
 }
 catch (curl::curl_easy_exception const & error)
 {
 auto errors = error.get_traceback();
 error.print_traceback();
 }

 std::vector<unsigned int> uids;
 str.seekg(8, std::ios::beg);
 unsigned int uid;
 while (str >> uid)
 uids.push_back(uid);

 return uids;
}

The last method to implement is fetch_email(), which takes a folder name and an email
identifier and returns the email as a string. This method is shown as follows:

std::string imap_connection::fetch_email(std::string_view folder,
 unsigned int uid)
{
 std::stringstream str;

Networking and Services Chapter 12

[281]

 try
 {
 curl::curl_ios<std::stringstream> writer(str);

 curl::curl_easy easy(writer);
 easy.add<CURLOPT_URL>((url.data() + std::string("/") +
 folder.data() + std::string("/;UID=") +
 std::to_string(uid)).c_str());
 setup_easy(easy);

 easy.perform();
 }
 catch (curl::curl_easy_exception error)
 {
 auto errors = error.get_traceback();
 error.print_traceback();
 }

 return str.str();
}

This class can be used to fetch the requested content, as shown in the following code
snippet. In this snippet, we read the mailbox folders, then retrieve the IDs of all the unread
emails from the inbox folder, and then, if any exist, we fetch and display the most recent
one:

int main()
{
 imap_connection imap("imaps://imap.gmail.com",
 993,
 "...(your username)...",
 "...(your password)...");

 auto folders = imap.get_folders();
 std::cout << folders << std::endl;

 auto uids = imap.fetch_unread_uids("inbox");

 if (!uids.empty())
 {
 auto email = imap.fetch_email("inbox", uids.back());
 std::cout << email << std::endl;
 }
}

Networking and Services Chapter 12

[282]

99. Translating text to any language
Text translation capabilities are available on many cloud computing services, including
Microsoft Cognitive Services, Google Cloud Translation API, and Amazon Translate. In this
book, I will be using Cognitive Services in Microsoft Azure. Azure Cognitive Services is a
collection of machine learning and artificial intelligence algorithms that can be used to
easily add intelligent functionalities to applications. One of the included services is Text
Translate API, which provides capabilities such as language detection, translation from one
language to another, and converting text to speech. We will also use libcurl for making
HTTP requests.

Although there are various pricing plans for using the Text Translate API service, a free tier
is also available. For text translation, it supports the translation of up to two million
characters per month, which should be enough for most demo and prototyping purposes.
In order to start using these APIs, you have to:

Have an Azure account. You should create one if you don’t already have one.1.
Create a new Translator Text API resource.2.
After the resource is created, navigate to it and copy one of the two application3.
keys generated for it. This key is necessary for making calls to this service.
The endpoint for calling the service is https:/ /api. microsofttranslator. com/4.
V2/Http. svc, not the one shown in the resource overview.

Documentation for the API for text translation is available at: http:/ /docs.
microsofttranslator. com/ text- translate. html. To translate a text, you must:

Make a GET request to [endpoint]/Translate.1.
Provide the required query parameters (text and to) and possibly the optional2.
ones such as from, for the language to translate from, which by default is
English. The text to translate must not exceed 10,000 characters and must be URL
encoded.
Provide the necessary headers. At a minimum, Ocp-Apim-Subscription-Key3.
is required to pass the application key of the Azure resource.

As an example, the GET request for translating "hello world!" from English to French is
the following:

GET /V2/Http.svc/Translate?to=fr&text=hello%20world%21
host: api.microsofttranslator.com
ocp-apim-subscription-key: <your key here>

https://api.microsofttranslator.com/V2/Http.svc
https://api.microsofttranslator.com/V2/Http.svc
https://api.microsofttranslator.com/V2/Http.svc
https://api.microsofttranslator.com/V2/Http.svc
https://api.microsofttranslator.com/V2/Http.svc
https://api.microsofttranslator.com/V2/Http.svc
https://api.microsofttranslator.com/V2/Http.svc
https://api.microsofttranslator.com/V2/Http.svc
https://api.microsofttranslator.com/V2/Http.svc
https://api.microsofttranslator.com/V2/Http.svc
https://api.microsofttranslator.com/V2/Http.svc
https://api.microsofttranslator.com/V2/Http.svc
https://api.microsofttranslator.com/V2/Http.svc
https://api.microsofttranslator.com/V2/Http.svc
http://docs.microsofttranslator.com/text-translate.html
http://docs.microsofttranslator.com/text-translate.html
http://docs.microsofttranslator.com/text-translate.html
http://docs.microsofttranslator.com/text-translate.html
http://docs.microsofttranslator.com/text-translate.html
http://docs.microsofttranslator.com/text-translate.html
http://docs.microsofttranslator.com/text-translate.html
http://docs.microsofttranslator.com/text-translate.html
http://docs.microsofttranslator.com/text-translate.html
http://docs.microsofttranslator.com/text-translate.html
http://docs.microsofttranslator.com/text-translate.html
http://docs.microsofttranslator.com/text-translate.html
http://docs.microsofttranslator.com/text-translate.html
http://docs.microsofttranslator.com/text-translate.html

Networking and Services Chapter 12

[283]

What we get back in case of success is an XML string representing the translated text. The
text is encoded with UTF-8. At this point, it is not possible to receive the result as a JSON.
For the preceding example, the result from the server is:

<string xmlns="http://schemas.microsoft.com/2003/10/Serialization/">Salut
tout le monde !</string>

We can encapsulate the text translation functionality into a class that can handle application
keys and endpoints in order to make the translation function simpler. The
following text_translator class does exactly that. It is constructed from two strings, one
representing the endpoint for the Text Translation API, and the other being the application
key. As mentioned previously, the result from the server is returned in an XML format. The
member function deserialize_result() extracts the actual text from its XML serialized
form. However, to keep it simple, it just uses a regular expression to do so, and not an XML
library, which should be enough for the purpose of this demo:

class text_translator
{
public:
 text_translator(std::string_view endpoint,
 std::string_view key)
 : endpoint(endpoint), app_key(key)
 {}

 std::wstring translate_text(std::wstring_view wtext,
 std::string_view to,
 std::string_view from = "en");

private:
 std::string deserialize_result(std::string_view text)
 {
 std::regex rx(R"(<string.*>(.*)<\/string>)");
 std::cmatch match;
 if (std::regex_search(text.data(), match, rx))
 {
 return match[1];
 }

 return "";
 }

 std::string endpoint;
 std::string app_key;
};

Networking and Services Chapter 12

[284]

The translate_text() member function performs the actual translation. Its inputs are
the text to translate, the language to translate to, and the language of the text, which by
default is English. The input text for this method is a UTF-16 character string, but it must be
converted to UTF-8. Also, the return from the server is text encoded as UTF-8 and must be
converted to UTF-16. This is done with the helper functions utf16_to_utf8() and
utf8_to_utf16():

std::wstring text_translator::translate_text(std::wstring_view wtext,
 std::string_view to,
 std::string_view from = "en")
{
 try
 {
 using namespace std::string_literals;

 std::stringstream str;
 std::string text = utf16_to_utf8(wtext);

 curl::curl_ios<std::stringstream> writer(str);
 curl::curl_easy easy(writer);

 curl::curl_header header;
 header.add("Ocp-Apim-Subscription-Key:" + app_key);

 easy.escape(text);
 auto url = endpoint + "/Translate";
 url += "?from="s + from.data();
 url += "&to="s + to.data();
 url += "&text="s + text;

 easy.add<CURLOPT_URL>(url.c_str());
 easy.add<CURLOPT_HTTPHEADER>(header.get());

 easy.perform();

 auto result = deserialize_result(str.str());
 return utf8_to_utf16(result);
 }
 catch (curl::curl_easy_exception const & error)
 {
 auto errors = error.get_traceback();
 error.print_traceback();
 }
 catch (std::exception const & ex)
 {
 std::err << ex.what() << std::endl;

Networking and Services Chapter 12

[285]

 }

 return {};
}

The two helper functions for converting between UTF-8 and UTF-16 are as follows:

std::wstring utf8_to_utf16(std::string_view text)
{
 std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> converter;
 std::wstring wtext = converter.from_bytes(text.data());
 return wtext;
}

std::string utf16_to_utf8(std::wstring_view wtext)
{
 std::wstring_convert<std::codecvt_utf8_utf16<wchar_t>> converter;
 std::string text = converter.to_bytes(wtext.data());
 return text;
}

The text_translator class can be used to translate texts between various languages, as
shown in the following example:

int main()
{
#ifdef _WIN32
 SetConsoleOutputCP(CP_UTF8);
#endif

 set_utf8_conversion(std::wcout);

 text_translator tt(
 "https://api.microsofttranslator.com/V2/Http.svc",
 "...(your app key)...");

 std::vector<std::tuple<std::wstring, std::string, std::string>> texts
 {
 { L"hello world!", "en", "ro"},
 { L"what time is it?", "en", "es" },
 { L"ceci est un exemple", "fr", "en" }
 };

 for (auto const [text, from, to] : texts)
 {
 auto result = tt.translate_text(text, to, from);

 std::cout << from << ": ";

Networking and Services Chapter 12

[286]

 std::wcout << text << std::endl;
 std::cout << to << ": ";
 std::wcout << result << std::endl;
 }
}

Printing UTF-8 characters to a console is, however, not straightforward. On Windows, you
need to call SetConsoleOutputCP(CP_UTF8) to enable an appropriate code page for that.
But you also need to set a proper UTF-8 locale for the output stream, which is done with the
set_utf8_conversion() function:

void set_utf8_conversion(std::wostream& stream)
{
 auto codecvt = std::make_unique<std::codecvt_utf8<wchar_t>>();
 std::locale utf8locale(std::locale(), codecvt.get());
 codecvt.release();
 stream.imbue(utf8locale);
}

The output for running the preceding example is as follows:

Networking and Services Chapter 12

[287]

100. Detecting faces in a picture
This is yet another problem that can be solved using Microsoft Cognitive Services. One of
the services available in this group, called Face API, provides algorithms for detecting faces,
gender, age, emotion, and various face landmarks and attributes, as well as the ability to
find face similarities, identify people, group pictures based on visual faces similarities, and
others.

Similar to the Text Translate API, there is a free plan that allows up to 30,000 transactions
per month, but only 20 every minute. A transaction is basically an API call. There are
several paid plans that allow for more transactions per month and per minute, but for the
purpose of this problem, you can use the free tier. There is also a 30-day trial that you can
use. To get started with the Face API, you have to:

Have an Azure account. You should create one if you don’t already have one.1.
Create a new Face API resource.2.
After the resource is created, navigate to it and copy one of the two application3.
keys generated for it and the resource endpoint. These are both necessary in
order to call the service.

Documentation for the Face API is available at: https:/ /azure. microsoft. com/ en- us/
services/cognitive- services/ face/ . You should read the information about the Detect
method carefully. In short, what we have to do is the following:

Make a POST request to [endpoint]/Detect.
Provide optional query parameters, such as flags for returning the face ID, the
face landmarks, and a string to indicate what face attributes to analyze and
return.
Provide optional and mandatory request headers. At a minimum, Ocp-Apim-
Subscription-Key is required to pass the application key of the Azure
resource.
Provide the image to analyze. You can either pass an URL to an image in a JSON
object (with the content type application/json), or the actual image (with the
content type application/octet-stream). The requirement was that the
picture should be loaded from a disk file, therefore we must use the latter option.

In the case of success, the response is a JSON object containing all of the requested
information. In the case of failure, the response is another JSON object with information
about the error.

https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/
https://azure.microsoft.com/en-us/services/cognitive-services/face/

Networking and Services Chapter 12

[288]

Here is a request to analyze and return the face landmarks, age, gender, and emotion, as
well as the face identifier. Information about the identified face is preserved on the server
for 24 hours and can be used with other Face API algorithms:

POST
/face/v1.0/detect?returnFaceId=true&returnFaceLandmarks=true&returnFaceAttr
ibutes=age,gender,emotion
host: westeurope.api.cognitive.microsoft.com
ocp-apim-subscription-key: <your key here>
content-type: application/octet-stream
content-length: <length>
accept: */*

The JSON result returned by the server looks like the following. Notice this is only a
snippet because the entire response is rather long. The actual result includes 27 different
face landmarks, with only the first two being shown in the following output:

[{
 "faceId": "0ddb348a-6038-4cbb-b3a1-86fffe6c1f26",
 "faceRectangle": {
 "top": 86,
 "left": 165,
 "width": 72,
 "height": 72
 },
 "faceLandmarks": {
 "pupilLeft": {
 "x": 187.5,
 "y": 102.9
 },
 "pupilRight": {
 "x": 214.6,
 "y": 104.7
 }
 },
 "faceAttributes": {
 "gender": "male",
 "age": 54.9,
 "emotion": {
 "anger": 0,
 "contempt": 0,
 "disgust": 0,
 "fear": 0,
 "happiness": 1,
 "neutral": 0,
 "sadness": 0,
 "surprise": 0

Networking and Services Chapter 12

[289]

 }
 }
}]

We will use the nlohmann/json library to deserialize the JSON object and libcurl to make
HTTP requests. The following classes model the result from the server in case of success:

struct face_rectangle
{
 int width = 0;
 int height = 0;
 int left = 0;
 int top = 0;
};

struct face_point
{
 double x = 0;
 double y = 0;
};

struct face_landmarks
{
 face_point pupilLeft;
 face_point pupilRight;
 face_point noseTip;
 face_point mouthLeft;
 face_point mouthRight;
 face_point eyebrowLeftOuter;
 face_point eyebrowLeftInner;
 face_point eyeLeftOuter;
 face_point eyeLeftTop;
 face_point eyeLeftBottom;
 face_point eyeLeftInner;
 face_point eyebrowRightInner;
 face_point eyebrowRightOuter;
 face_point eyeRightInner;
 face_point eyeRightTop;
 face_point eyeRightBottom;
 face_point eyeRightOuter;
 face_point noseRootLeft;
 face_point noseRootRight;
 face_point noseLeftAlarTop;
 face_point noseRightAlarTop;
 face_point noseLeftAlarOutTip;
 face_point noseRightAlarOutTip;
 face_point upperLipTop;

Networking and Services Chapter 12

[290]

 face_point upperLipBottom;
 face_point underLipTop;
 face_point underLipBottom;
};

struct face_emotion
{
 double anger = 0;
 double contempt = 0;
 double disgust = 0;
 double fear = 0;
 double happiness = 0;
 double neutral = 0;
 double sadness = 0;
 double surprise = 0;
};

struct face_attributes
{
 std::string gender;
 double age;
 face_emotion emotion;
};

struct face_info
{
 std::string faceId;
 face_rectangle rectangle;
 face_landmarks landmarks;
 face_attributes attributes;
};

Because a picture may contain multiple faces, the actual response from the server is an
array of objects. The face_detect_response shown in the following code is the actual
type of the response:

using face_detect_response = std::vector<face_info>;

Deserialization is done as in other cases in this book, by using from_json() overloaded
functions. If you have already solved the other problems involving JSON deserialization,
you should be very familiar with these:

using json = nlohmann::json;

void from_json(const json& jdata, face_rectangle& rect)
{
 rect.width = jdata.at("width").get<int>();

Networking and Services Chapter 12

[291]

 rect.height = jdata.at("height").get<int>();
 rect.top = jdata.at("top").get<int>();
 rect.left = jdata.at("left").get<int>();
}

void from_json(const json& jdata, face_point& point)
{
 point.x = jdata.at("x").get<double>();
 point.y = jdata.at("y").get<double>();
}

void from_json(const json& jdata, face_landmarks& mark)
{
 mark.pupilLeft = jdata.at("pupilLeft");
 mark.pupilRight = jdata.at("pupilRight");
 mark.noseTip = jdata.at("noseTip");
 mark.mouthLeft = jdata.at("mouthLeft");
 mark.mouthRight = jdata.at("mouthRight");
 mark.eyebrowLeftOuter = jdata.at("eyebrowLeftOuter");
 mark.eyebrowLeftInner = jdata.at("eyebrowLeftInner");
 mark.eyeLeftOuter = jdata.at("eyeLeftOuter");
 mark.eyeLeftTop = jdata.at("eyeLeftTop");
 mark.eyeLeftBottom = jdata.at("eyeLeftBottom");
 mark.eyeLeftInner = jdata.at("eyeLeftInner");
 mark.eyebrowRightInner = jdata.at("eyebrowRightInner");
 mark.eyebrowRightOuter = jdata.at("eyebrowRightOuter");
 mark.eyeRightInner = jdata.at("eyeRightInner");
 mark.eyeRightTop = jdata.at("eyeRightTop");
 mark.eyeRightBottom = jdata.at("eyeRightBottom");
 mark.eyeRightOuter = jdata.at("eyeRightOuter");
 mark.noseRootLeft = jdata.at("noseRootLeft");
 mark.noseRootRight = jdata.at("noseRootRight");
 mark.noseLeftAlarTop = jdata.at("noseLeftAlarTop");
 mark.noseRightAlarTop = jdata.at("noseRightAlarTop");
 mark.noseLeftAlarOutTip = jdata.at("noseLeftAlarOutTip");
 mark.noseRightAlarOutTip = jdata.at("noseRightAlarOutTip");
 mark.upperLipTop = jdata.at("upperLipTop");
 mark.upperLipBottom = jdata.at("upperLipBottom");
 mark.underLipTop = jdata.at("underLipTop");
 mark.underLipBottom = jdata.at("underLipBottom");
}

void from_json(const json& jdata, face_emotion& emo)
{
 emo.anger = jdata.at("anger").get<double>();
 emo.contempt = jdata.at("contempt").get<double>();
 emo.disgust = jdata.at("disgust").get<double>();
 emo.fear = jdata.at("fear").get<double>();

Networking and Services Chapter 12

[292]

 emo.happiness = jdata.at("happiness").get<double>();
 emo.neutral = jdata.at("neutral").get<double>();
 emo.sadness = jdata.at("sadness").get<double>();
 emo.surprise = jdata.at("surprise").get<double>();
}

void from_json(const json& jdata, face_attributes& attr)
{
 attr.age = jdata.at("age").get<double>();
 attr.emotion = jdata.at("emotion");
 attr.gender = jdata.at("gender").get<std::string>();
}

void from_json(const json& jdata, face_info& info)
{
 info.faceId = jdata.at("faceId").get<std::string>();
 info.attributes = jdata.at("faceAttributes");
 info.landmarks = jdata.at("faceLandmarks");
 info.rectangle = jdata.at("faceRectangle");
}

However, if the function fails for some reason, a different object is returned to describe the
error. The face_error_response class is used for this purpose:

struct face_error
{
 std::string code;
 std::string message;
};

struct face_error_response
{
 face_error error;
};

We also need from_json() overloads to deserialize the error response. The
implementation of these functions is as follows:

void from_json(const json& jdata, face_error& error)
{
 error.code = jdata.at("code").get<std::string>();
 error.message = jdata.at("message").get<std::string>();
}

Networking and Services Chapter 12

[293]

void from_json(const json& jdata, face_error_response& response)
{
 response.error = jdata.at("error");
}

Having all of these defined so far, we can write the actual calls to Face API. Like in the case
of text translation, we can write a class to encapsulate this functionality (where we can add
more). This can help to easily manage the application key and endpoint (instead of passing
them with every single function call). The face_manager class is used for this purpose:

class face_manager
{
public:
 face_manager(std::string_view endpoint,
 std::string_view key)
 : endpoint(endpoint), app_key(key)
 {}

 face_detect_response detect_from_file(std::string_view path);

private:
 face_detect_response parse_detect_response(long const status,
 std::stringstream & str);

 std::string endpoint;
 std::string app_key;
};

The detect_from_file() method takes a string representing the path to an image on the
disk. It loads the image, sends it to Face API, deserializes the answer, and returns a
face_detect_response object, which is a collection of face_info objects. Because the
actual image is passed with the call, the content type is application/octet-stream. We
need to pass the content of the file into the CURLOPT_POSTFIELDS field with the
curl_easy interface, and its length into the CURLOPT_POSTFIELDSIZE field:

face_detect_response face_manager::detect_from_file(std::string_view path)
{
 try
 {
 auto data = load_image(path);
 if (!data.empty())
 {
 std::stringstream str;
 curl::curl_ios<std::stringstream> writer(str);
 curl::curl_easy easy(writer);

Networking and Services Chapter 12

[294]

 curl::curl_header header;
 header.add("Ocp-Apim-Subscription-Key:" + app_key);
 header.add("Content-Type:application/octet-stream");

 auto url = endpoint +
 "/detect"
 "?returnFaceId=true"
 "&returnFaceLandmarks=true"
 "&returnFaceAttributes=age,gender,emotion";

 easy.add<CURLOPT_URL>(url.c_str());
 easy.add<CURLOPT_HTTPHEADER>(header.get());

 easy.add<CURLOPT_POSTFIELDSIZE>(data.size());
 easy.add<CURLOPT_POSTFIELDS>(reinterpret_cast<char*>(
 data.data()));

 easy.perform();

 auto status = easy.get_info<CURLINFO_RESPONSE_CODE>();

 return parse_detect_response(status.get(), str);
 }
 }
 catch (curl::curl_easy_exception const & error)
 {
 auto errors = error.get_traceback();
 error.print_traceback();
 }
 catch (std::exception const & ex)
 {
 std::cerr << ex.what() << std::endl;
 }

 return {};
}

The parse_detect_response() method is responsible for deserializing the JSON
response from the server. It does so based on the actual HTTP response code. If the function
succeeded, the status is 200. In the case of failure, it is a 4xx code:

face_detect_response face_manager::parse_detect_response(
 long const status, std::stringstream & str)
{
 json jdata;
 str >> jdata;

Networking and Services Chapter 12

[295]

 try
 {
 if (status == 200)
 {
 face_detect_response response = jdata;

 return response;
 }
 else if (status >= 400)
 {
 face_error_response response = jdata;

 std::cout << response.error.code << std::endl
 << response.error.message << std::endl;
 }
 }
 catch (std::exception const & ex)
 {
 std::cerr << ex.what() << std::endl;
 }

 return {};
}

To read the image file from the disk, the detect_from_file() function uses another
function called load_image(). This function takes a string representing the path to the file
and returns the content of the file in an std::vector<uint8_t>. The implementation of
this function is as follows:

std::vector<uint8_t> load_image(std::string_view filepath)
{
 std::vector<uint8_t> data;

 std::ifstream ifile(filepath.data(), std::ios::binary | std::ios::ate);
 if (ifile.is_open())
 {
 auto size = ifile.tellg();
 ifile.seekg(0, std::ios::beg);

 data.resize(static_cast<size_t>(size));
 ifile.read(reinterpret_cast<char*>(data.data()), size);
 }

 return data;
}

Networking and Services Chapter 12

[296]

At this point, we have all that is necessary to make calls to the Detect algorithm from Face
API, deserialize the response, and print its content to the console. The following program
prints information for the faces identified in a file called albert_and_elsa.jpg from the
res folder of the project. Remember to use your actual endpoint and application key for
your Face API resource:

int main()
{
 face_manager manager(
 "https://westeurope.api.cognitive.microsoft.com/face/v1.0",
 "...(your api key)...");

#ifdef _WIN32
 std::string path = R"(res\albert_and_elsa.jpg)";
#else
 std::string path = R"(./res/albert_and_elsa.jpg)";
#endif

 auto results = manager.detect_from_file(path);

 for (auto const & face : results)
 {
 std::cout << "faceId: " << face.faceId << std::endl
 << "age: " << face.attributes.age << std::endl
 << "gender: " << face.attributes.gender << std::endl
 << "rect: " << "{" << face.rectangle.left
 << "," << face.rectangle.top
 << "," << face.rectangle.width
 << "," << face.rectangle.height
 << "}" << std::endl << std::endl;
 }
}

Networking and Services Chapter 12

[297]

The image albert_and_elsa.jpg is also shown here:

The following is the program's output. Keep in mind that the actual temporary face
identifiers will, of course, differ with each call. As you can see in the result, two faces were
identified. The first is of Albert Einstein and his detected age is 54.9 years old. This picture
was taken in 1921 when he was 42. The second face is of Elsa Einstein, the wife of Albert
Einstein, who was 45 at that time. In her case, the detected age is 41.6 years old. From this,
you can see that the detected age is only a rough indication, and not something that is very
precise:

faceId: 77e0536f-073d-41c5-920d-c53264d17b98
age: 54.9
gender: male
rect: {165,86,72,72}

faceId: afb22044-14fa-46bf-9b65-16d4fe1d9817
age: 41.6
gender: female
rect: {321,151,59,59}

Should the API call fail, an error message is returned instead (with the HTTP status 400).
The parse_detect_response() method will deserialize the error response and print a
message to the console. For instance, in case a wrong API key is used, the following
message is returned from the server and displayed in the console:

Unspecified
Access denied due to invalid subscription key. Make sure you are subscribed
to an API you are trying to call and provide the right key.

Bibliography

Articles
1337C0D3R, 2011. Longest Palindromic Substring Part I, https:/ /articles.
leetcode. com/ longest- palindromic- substring- part- i/

Aditya Goel, 2016. Permutations of a given string using STL, https:/ /www.
geeksforgeeks. org/ permutations- of- a-given- string- using- stl/

Andrei Jakab, 2010. Using libcurl with SSH support in Visual Studio 2010, https:/ /
curl.haxx. se/ libcurl/ c/ Using- libcurl- with- SSH-support- in- Visual-
Studio-2010. pdf

Ashwani Gautam, 2017. What is the analysis of quick sort?, https:/ / www.quora.
com/What- is- the- analysis- of- quick- sort

Ashwin Nanjappa, 2014. How to build Boost using Visual Studio, https:/ /
codeyarns. com/ 2014/ 06/ 06/ how- to- build- boost- using- visual- studio/

busycrack, 2012. Telnet IMAP Commands Note, https:/ /busylog. net/ telnet-
imap-commands- note/

Dan Madden, 2000. Encrypting Log Files, https:/ /www. codeproject. com/
Articles/ 644/ Encrypting- Log- Files

Georgy Gimel’farb, 2016. Algorithm Quicksort: Analysis of Complexity, https:/ /
www.cs. auckland. ac. nz/ courses/ compsci220s1c/ lectures/ 2016S1C/ CS220-
Lecture10. pdf

Jay Doshi, Chanchal Khemani, Juhi Duseja. Dijkstra’s Algorithm, http:/ /
codersmaze. com/ data- structure- explanations/ graphs- data- structure/
dijkstras- algorithm- for- shortest- path/

Jeffrey Walton, 2008. Applied Crypto++: Block Ciphers, https:/ /www. codeproject.
com/Articles/ 21877/ Applied- Crypto- Block- Ciphers

Jeffrey Walton, 2007. Product Keys Based on the Advanced Encryption Standard
(AES), https:/ /www. codeproject. com/ Articles/ 16465/ Product- Keys- Based-
on-the- Advanced- Encryption- Stan

https://articles.leetcode.com/longest-palindromic-substring-part-i/
https://articles.leetcode.com/longest-palindromic-substring-part-i/
https://articles.leetcode.com/longest-palindromic-substring-part-i/
https://articles.leetcode.com/longest-palindromic-substring-part-i/
https://articles.leetcode.com/longest-palindromic-substring-part-i/
https://articles.leetcode.com/longest-palindromic-substring-part-i/
https://articles.leetcode.com/longest-palindromic-substring-part-i/
https://articles.leetcode.com/longest-palindromic-substring-part-i/
https://articles.leetcode.com/longest-palindromic-substring-part-i/
https://articles.leetcode.com/longest-palindromic-substring-part-i/
https://articles.leetcode.com/longest-palindromic-substring-part-i/
https://articles.leetcode.com/longest-palindromic-substring-part-i/
https://articles.leetcode.com/longest-palindromic-substring-part-i/
https://articles.leetcode.com/longest-palindromic-substring-part-i/
https://articles.leetcode.com/longest-palindromic-substring-part-i/
https://articles.leetcode.com/longest-palindromic-substring-part-i/
https://articles.leetcode.com/longest-palindromic-substring-part-i/
https://articles.leetcode.com/longest-palindromic-substring-part-i/
https://articles.leetcode.com/longest-palindromic-substring-part-i/
https://www.geeksforgeeks.org/permutations-of-a-given-string-using-stl/
https://www.geeksforgeeks.org/permutations-of-a-given-string-using-stl/
https://www.geeksforgeeks.org/permutations-of-a-given-string-using-stl/
https://www.geeksforgeeks.org/permutations-of-a-given-string-using-stl/
https://www.geeksforgeeks.org/permutations-of-a-given-string-using-stl/
https://www.geeksforgeeks.org/permutations-of-a-given-string-using-stl/
https://www.geeksforgeeks.org/permutations-of-a-given-string-using-stl/
https://www.geeksforgeeks.org/permutations-of-a-given-string-using-stl/
https://www.geeksforgeeks.org/permutations-of-a-given-string-using-stl/
https://www.geeksforgeeks.org/permutations-of-a-given-string-using-stl/
https://www.geeksforgeeks.org/permutations-of-a-given-string-using-stl/
https://www.geeksforgeeks.org/permutations-of-a-given-string-using-stl/
https://www.geeksforgeeks.org/permutations-of-a-given-string-using-stl/
https://www.geeksforgeeks.org/permutations-of-a-given-string-using-stl/
https://www.geeksforgeeks.org/permutations-of-a-given-string-using-stl/
https://www.geeksforgeeks.org/permutations-of-a-given-string-using-stl/
https://www.geeksforgeeks.org/permutations-of-a-given-string-using-stl/
https://www.geeksforgeeks.org/permutations-of-a-given-string-using-stl/
https://www.geeksforgeeks.org/permutations-of-a-given-string-using-stl/
https://www.geeksforgeeks.org/permutations-of-a-given-string-using-stl/
https://www.geeksforgeeks.org/permutations-of-a-given-string-using-stl/
https://www.geeksforgeeks.org/permutations-of-a-given-string-using-stl/
https://www.geeksforgeeks.org/permutations-of-a-given-string-using-stl/
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://curl.haxx.se/libcurl/c/Using-libcurl-with-SSH-support-in-Visual-Studio-2010.pdf
https://www.quora.com/What-is-the-analysis-of-quick-sort
https://www.quora.com/What-is-the-analysis-of-quick-sort
https://www.quora.com/What-is-the-analysis-of-quick-sort
https://www.quora.com/What-is-the-analysis-of-quick-sort
https://www.quora.com/What-is-the-analysis-of-quick-sort
https://www.quora.com/What-is-the-analysis-of-quick-sort
https://www.quora.com/What-is-the-analysis-of-quick-sort
https://www.quora.com/What-is-the-analysis-of-quick-sort
https://www.quora.com/What-is-the-analysis-of-quick-sort
https://www.quora.com/What-is-the-analysis-of-quick-sort
https://www.quora.com/What-is-the-analysis-of-quick-sort
https://www.quora.com/What-is-the-analysis-of-quick-sort
https://www.quora.com/What-is-the-analysis-of-quick-sort
https://www.quora.com/What-is-the-analysis-of-quick-sort
https://www.quora.com/What-is-the-analysis-of-quick-sort
https://www.quora.com/What-is-the-analysis-of-quick-sort
https://www.quora.com/What-is-the-analysis-of-quick-sort
https://www.quora.com/What-is-the-analysis-of-quick-sort
https://www.quora.com/What-is-the-analysis-of-quick-sort
https://www.quora.com/What-is-the-analysis-of-quick-sort
https://www.quora.com/What-is-the-analysis-of-quick-sort
https://www.quora.com/What-is-the-analysis-of-quick-sort
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://codeyarns.com/2014/06/06/how-to-build-boost-using-visual-studio/
https://busylog.net/telnet-imap-commands-note/
https://busylog.net/telnet-imap-commands-note/
https://busylog.net/telnet-imap-commands-note/
https://busylog.net/telnet-imap-commands-note/
https://busylog.net/telnet-imap-commands-note/
https://busylog.net/telnet-imap-commands-note/
https://busylog.net/telnet-imap-commands-note/
https://busylog.net/telnet-imap-commands-note/
https://busylog.net/telnet-imap-commands-note/
https://busylog.net/telnet-imap-commands-note/
https://busylog.net/telnet-imap-commands-note/
https://busylog.net/telnet-imap-commands-note/
https://busylog.net/telnet-imap-commands-note/
https://busylog.net/telnet-imap-commands-note/
https://busylog.net/telnet-imap-commands-note/
https://www.codeproject.com/Articles/644/Encrypting-Log-Files
https://www.codeproject.com/Articles/644/Encrypting-Log-Files
https://www.codeproject.com/Articles/644/Encrypting-Log-Files
https://www.codeproject.com/Articles/644/Encrypting-Log-Files
https://www.codeproject.com/Articles/644/Encrypting-Log-Files
https://www.codeproject.com/Articles/644/Encrypting-Log-Files
https://www.codeproject.com/Articles/644/Encrypting-Log-Files
https://www.codeproject.com/Articles/644/Encrypting-Log-Files
https://www.codeproject.com/Articles/644/Encrypting-Log-Files
https://www.codeproject.com/Articles/644/Encrypting-Log-Files
https://www.codeproject.com/Articles/644/Encrypting-Log-Files
https://www.codeproject.com/Articles/644/Encrypting-Log-Files
https://www.codeproject.com/Articles/644/Encrypting-Log-Files
https://www.codeproject.com/Articles/644/Encrypting-Log-Files
https://www.codeproject.com/Articles/644/Encrypting-Log-Files
https://www.codeproject.com/Articles/644/Encrypting-Log-Files
https://www.codeproject.com/Articles/644/Encrypting-Log-Files
https://www.codeproject.com/Articles/644/Encrypting-Log-Files
https://www.cs.auckland.ac.nz/courses/compsci220s1c/lectures/2016S1C/CS220-Lecture10.pdf
https://www.cs.auckland.ac.nz/courses/compsci220s1c/lectures/2016S1C/CS220-Lecture10.pdf
https://www.cs.auckland.ac.nz/courses/compsci220s1c/lectures/2016S1C/CS220-Lecture10.pdf
https://www.cs.auckland.ac.nz/courses/compsci220s1c/lectures/2016S1C/CS220-Lecture10.pdf
https://www.cs.auckland.ac.nz/courses/compsci220s1c/lectures/2016S1C/CS220-Lecture10.pdf
https://www.cs.auckland.ac.nz/courses/compsci220s1c/lectures/2016S1C/CS220-Lecture10.pdf
https://www.cs.auckland.ac.nz/courses/compsci220s1c/lectures/2016S1C/CS220-Lecture10.pdf
https://www.cs.auckland.ac.nz/courses/compsci220s1c/lectures/2016S1C/CS220-Lecture10.pdf
https://www.cs.auckland.ac.nz/courses/compsci220s1c/lectures/2016S1C/CS220-Lecture10.pdf
https://www.cs.auckland.ac.nz/courses/compsci220s1c/lectures/2016S1C/CS220-Lecture10.pdf
https://www.cs.auckland.ac.nz/courses/compsci220s1c/lectures/2016S1C/CS220-Lecture10.pdf
https://www.cs.auckland.ac.nz/courses/compsci220s1c/lectures/2016S1C/CS220-Lecture10.pdf
https://www.cs.auckland.ac.nz/courses/compsci220s1c/lectures/2016S1C/CS220-Lecture10.pdf
https://www.cs.auckland.ac.nz/courses/compsci220s1c/lectures/2016S1C/CS220-Lecture10.pdf
https://www.cs.auckland.ac.nz/courses/compsci220s1c/lectures/2016S1C/CS220-Lecture10.pdf
https://www.cs.auckland.ac.nz/courses/compsci220s1c/lectures/2016S1C/CS220-Lecture10.pdf
https://www.cs.auckland.ac.nz/courses/compsci220s1c/lectures/2016S1C/CS220-Lecture10.pdf
https://www.cs.auckland.ac.nz/courses/compsci220s1c/lectures/2016S1C/CS220-Lecture10.pdf
https://www.cs.auckland.ac.nz/courses/compsci220s1c/lectures/2016S1C/CS220-Lecture10.pdf
https://www.cs.auckland.ac.nz/courses/compsci220s1c/lectures/2016S1C/CS220-Lecture10.pdf
https://www.cs.auckland.ac.nz/courses/compsci220s1c/lectures/2016S1C/CS220-Lecture10.pdf
https://www.cs.auckland.ac.nz/courses/compsci220s1c/lectures/2016S1C/CS220-Lecture10.pdf
https://www.cs.auckland.ac.nz/courses/compsci220s1c/lectures/2016S1C/CS220-Lecture10.pdf
https://www.cs.auckland.ac.nz/courses/compsci220s1c/lectures/2016S1C/CS220-Lecture10.pdf
https://www.cs.auckland.ac.nz/courses/compsci220s1c/lectures/2016S1C/CS220-Lecture10.pdf
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
http://codersmaze.com/data-structure-explanations/graphs-data-structure/dijkstras-algorithm-for-shortest-path/
https://www.codeproject.com/Articles/21877/Applied-Crypto-Block-Ciphers
https://www.codeproject.com/Articles/21877/Applied-Crypto-Block-Ciphers
https://www.codeproject.com/Articles/21877/Applied-Crypto-Block-Ciphers
https://www.codeproject.com/Articles/21877/Applied-Crypto-Block-Ciphers
https://www.codeproject.com/Articles/21877/Applied-Crypto-Block-Ciphers
https://www.codeproject.com/Articles/21877/Applied-Crypto-Block-Ciphers
https://www.codeproject.com/Articles/21877/Applied-Crypto-Block-Ciphers
https://www.codeproject.com/Articles/21877/Applied-Crypto-Block-Ciphers
https://www.codeproject.com/Articles/21877/Applied-Crypto-Block-Ciphers
https://www.codeproject.com/Articles/21877/Applied-Crypto-Block-Ciphers
https://www.codeproject.com/Articles/21877/Applied-Crypto-Block-Ciphers
https://www.codeproject.com/Articles/21877/Applied-Crypto-Block-Ciphers
https://www.codeproject.com/Articles/21877/Applied-Crypto-Block-Ciphers
https://www.codeproject.com/Articles/21877/Applied-Crypto-Block-Ciphers
https://www.codeproject.com/Articles/21877/Applied-Crypto-Block-Ciphers
https://www.codeproject.com/Articles/21877/Applied-Crypto-Block-Ciphers
https://www.codeproject.com/Articles/21877/Applied-Crypto-Block-Ciphers
https://www.codeproject.com/Articles/21877/Applied-Crypto-Block-Ciphers
https://www.codeproject.com/Articles/21877/Applied-Crypto-Block-Ciphers
https://www.codeproject.com/Articles/21877/Applied-Crypto-Block-Ciphers
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan
https://www.codeproject.com/Articles/16465/Product-Keys-Based-on-the-Advanced-Encryption-Stan

Bibliography

[299]

Jeffrey Walton, 2006. Compiling and Integrating Crypto++ into the Microsoft Visual
C++ Environment, https:/ /www. codeguru. com/cpp/ v- s/devstudio_ macros/
openfaq/ article. php/ c12853/ Compiling- and-Integrating- Crypto- into- the-
Microsoft- Visual- C- Environment. htm

Jonathan Boccara, 2017. How to split a string in C++, https:/ /www. fluentcpp. com/
2017/04/ 21/ how- to- split- a- string- in-c/

Kenny Kerr, 2013. Resource Management in the Windows API, https:/ /
visualstudiomagazine. com/ articles/ 2013/ 09/ 01/get- a-handle- on-the-
windows- api. aspx

Kenny Kerr, 2011. Windows with C++ - C++ and the Windows API, https:/ /msdn.
microsoft. com/ en- us/ magazine/ hh288076. aspx? f=255 MSPPError= -2147217396

Marius Bancila, 2015. Integrate Windows Azure Face APIs in a C++ application,
https:// www. codeproject. com/ Articles/ 989752/ Integrate- Windows- Azure-
Face-APIs- in- a-Cplusplus- a

Marius Bancila, 2018. Using Cognitive Services to find your Game of Thrones look-
alike, https:/ / www. codeproject. com/ Articles/ 1234217/ Using- Cognitive-
Services- to- find- your- Game- of-Thro

Mary K. Vernon. Priority Queues, http:/ /pages. cs. wisc. edu/ ~vernon/ cs367/
notes/11. PRIORITY- Q.html

Mathias Bynens. In search of the perfect URL validation regex, https:/ /
mathiasbynens. be/ demo/ url- regex

O.S. Tezer, 2014. SQLite vs MySQL vs PostgreSQL: A Comparison Of Relational
Database Management Systems, https:/ /www. digitalocean. com/ community/
tutorials/ sqlite- vs- mysql- vs-postgresql- a- comparison- of-relational-
database- management- systems

Robert Nystrom, 2014. Game Programming patterns: Double Buffer, http:/ /
gameprogrammingpatterns. com/ double- buffer. html

Robert Sedgewick, Philippe Flajolet, 2013. Introduction to the Analysis of
Algorithms, http:/ / www. informit. com/ articles/ article. aspx? p= 2017754
seqNum=5

Rosso Salmanzadeh, 2002. Using libcurl in Visual Studio, https:/ / curl. haxx. se/
libcurl/ c/visual_ studio. pdf

Sergii Bratus, 2010. Implementation of the Licensing System for a Software Product,
https:// www. codeproject. com/ Articles/ 99499/ Implementation- of-the-
Licensing- System- for- a- Softw

Shubham Agrawal, 2016. Dijkstra’s Shortest Path Algorithm using priority_queue of
STL, https:/ /www. geeksforgeeks. org/ dijkstras- shortest- path- algorithm-
using-priority_ queue- stl/

https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.codeguru.com/cpp/v-s/devstudio_macros/openfaq/article.php/c12853/Compiling-and-Integrating-Crypto-into-the-Microsoft-Visual-C-Environment.htm
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://www.fluentcpp.com/2017/04/21/how-to-split-a-string-in-c/
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://visualstudiomagazine.com/articles/2013/09/01/get-a-handle-on-the-windows-api.aspx
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/magazine/hh288076.aspx?f=255&MSPPError=-2147217396
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/989752/Integrate-Windows-Azure-Face-APIs-in-a-Cplusplus-a
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
https://www.codeproject.com/Articles/1234217/Using-Cognitive-Services-to-find-your-Game-of-Thro
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
http://pages.cs.wisc.edu/~vernon/cs367/notes/11.PRIORITY-Q.html
https://mathiasbynens.be/demo/url-regex
https://mathiasbynens.be/demo/url-regex
https://mathiasbynens.be/demo/url-regex
https://mathiasbynens.be/demo/url-regex
https://mathiasbynens.be/demo/url-regex
https://mathiasbynens.be/demo/url-regex
https://mathiasbynens.be/demo/url-regex
https://mathiasbynens.be/demo/url-regex
https://mathiasbynens.be/demo/url-regex
https://mathiasbynens.be/demo/url-regex
https://mathiasbynens.be/demo/url-regex
https://mathiasbynens.be/demo/url-regex
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
http://gameprogrammingpatterns.com/double-buffer.html
http://gameprogrammingpatterns.com/double-buffer.html
http://gameprogrammingpatterns.com/double-buffer.html
http://gameprogrammingpatterns.com/double-buffer.html
http://gameprogrammingpatterns.com/double-buffer.html
http://gameprogrammingpatterns.com/double-buffer.html
http://gameprogrammingpatterns.com/double-buffer.html
http://gameprogrammingpatterns.com/double-buffer.html
http://gameprogrammingpatterns.com/double-buffer.html
http://gameprogrammingpatterns.com/double-buffer.html
http://gameprogrammingpatterns.com/double-buffer.html
http://gameprogrammingpatterns.com/double-buffer.html
http://www.informit.com/articles/article.aspx?p=2017754&seqNum=5
http://www.informit.com/articles/article.aspx?p=2017754&seqNum=5
http://www.informit.com/articles/article.aspx?p=2017754&seqNum=5
http://www.informit.com/articles/article.aspx?p=2017754&seqNum=5
http://www.informit.com/articles/article.aspx?p=2017754&seqNum=5
http://www.informit.com/articles/article.aspx?p=2017754&seqNum=5
http://www.informit.com/articles/article.aspx?p=2017754&seqNum=5
http://www.informit.com/articles/article.aspx?p=2017754&seqNum=5
http://www.informit.com/articles/article.aspx?p=2017754&seqNum=5
http://www.informit.com/articles/article.aspx?p=2017754&seqNum=5
http://www.informit.com/articles/article.aspx?p=2017754&seqNum=5
http://www.informit.com/articles/article.aspx?p=2017754&seqNum=5
http://www.informit.com/articles/article.aspx?p=2017754&seqNum=5
http://www.informit.com/articles/article.aspx?p=2017754&seqNum=5
http://www.informit.com/articles/article.aspx?p=2017754&seqNum=5
http://www.informit.com/articles/article.aspx?p=2017754&seqNum=5
http://www.informit.com/articles/article.aspx?p=2017754&seqNum=5
http://www.informit.com/articles/article.aspx?p=2017754&seqNum=5
http://www.informit.com/articles/article.aspx?p=2017754&seqNum=5
http://www.informit.com/articles/article.aspx?p=2017754&seqNum=5
http://www.informit.com/articles/article.aspx?p=2017754&seqNum=5
http://www.informit.com/articles/article.aspx?p=2017754&seqNum=5
https://curl.haxx.se/libcurl/c/visual_studio.pdf
https://curl.haxx.se/libcurl/c/visual_studio.pdf
https://curl.haxx.se/libcurl/c/visual_studio.pdf
https://curl.haxx.se/libcurl/c/visual_studio.pdf
https://curl.haxx.se/libcurl/c/visual_studio.pdf
https://curl.haxx.se/libcurl/c/visual_studio.pdf
https://curl.haxx.se/libcurl/c/visual_studio.pdf
https://curl.haxx.se/libcurl/c/visual_studio.pdf
https://curl.haxx.se/libcurl/c/visual_studio.pdf
https://curl.haxx.se/libcurl/c/visual_studio.pdf
https://curl.haxx.se/libcurl/c/visual_studio.pdf
https://curl.haxx.se/libcurl/c/visual_studio.pdf
https://curl.haxx.se/libcurl/c/visual_studio.pdf
https://curl.haxx.se/libcurl/c/visual_studio.pdf
https://curl.haxx.se/libcurl/c/visual_studio.pdf
https://curl.haxx.se/libcurl/c/visual_studio.pdf
https://curl.haxx.se/libcurl/c/visual_studio.pdf
https://curl.haxx.se/libcurl/c/visual_studio.pdf
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.codeproject.com/Articles/99499/Implementation-of-the-Licensing-System-for-a-Softw
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-using-priority_queue-stl/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-using-priority_queue-stl/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-using-priority_queue-stl/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-using-priority_queue-stl/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-using-priority_queue-stl/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-using-priority_queue-stl/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-using-priority_queue-stl/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-using-priority_queue-stl/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-using-priority_queue-stl/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-using-priority_queue-stl/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-using-priority_queue-stl/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-using-priority_queue-stl/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-using-priority_queue-stl/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-using-priority_queue-stl/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-using-priority_queue-stl/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-using-priority_queue-stl/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-using-priority_queue-stl/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-using-priority_queue-stl/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-using-priority_queue-stl/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-using-priority_queue-stl/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-using-priority_queue-stl/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-using-priority_queue-stl/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-using-priority_queue-stl/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-using-priority_queue-stl/
https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-using-priority_queue-stl/

Bibliography

[300]

Travis Tidwell, 2013. An Online RSA Public and Private Key Generator, http:/ /
travistidwell. com/ blog/ 2013/ 09/06/ an- online- rsa- public- and- private-
key-generator/

Victor Volkman, 2006. Crypto++ Holds the Key to Encrypting Your C++ Application
Data, https:/ / www. codeguru. com/ cpp/ misc/ misc/ cryptoapi/ article. php/
c11953/Cryptosupregsup- Holds- the- Key- to-Encrypting- Your- C- Application-
Data.htm

Yang Song, 2014. Split a string using C++, http:/ /ysonggit. github. io/coding/
2014/12/ 16/ split- a- string- using- c.html

Decorator Design Pattern, https:/ /sourcemaking. com/ design_ patterns/
decorator

Composite Design Pattern, https:/ /sourcemaking. com/ design_ patterns/
composite

Template Method Design Pattern, https:/ /sourcemaking. com/ design_ patterns/
template_ method

Strategy Design Pattern, https:/ /sourcemaking. com/ design_ patterns/ strategy

Chain of Responsibility, https:/ /sourcemaking. com/ design_ patterns/ chain_ of_
responsibility

Understanding the PDF File Format: Overview, https:/ /blog. idrsolutions. com/
2013/01/ understanding- the- pdf-file- format- overview/

RSA Signing is Not RSA Decryption, https:/ /www. cs.cornell. edu/ courses/
cs5430/2015sp/ notes/ rsa_ sign_ vs_ dec.php

RSA Cryptography, https:/ /www.cryptopp. com/ wiki/ RSA_ Cryptography

Using rand() (C/C++), http:/ /eternallyconfuzzled. com/ arts/ jsw_ art_ rand.
aspx

Crypto++ Keys and Formats, https:/ / www.cryptopp. com/ wiki/ Keys_ and_ Formats

INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4 rev1, https:/ / tools.
ietf.org/ html/ rfc3501. html

Internal Versus External BLOBs in SQLite, https:/ /www. sqlite. org/intern- v-
extern-blob. html

OpenSSL Compilation and Installation, https:/ /wiki. openssl. org/index. php/
Compilation_ and_ Installation

http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
http://travistidwell.com/blog/2013/09/06/an-online-rsa-public-and-private-key-generator/
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
https://www.codeguru.com/cpp/misc/misc/cryptoapi/article.php/c11953/Cryptosupregsup-Holds-the-Key-to-Encrypting-Your-C-Application-Data.htm
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
http://ysonggit.github.io/coding/2014/12/16/split-a-string-using-c.html
https://sourcemaking.com/design_patterns/decorator
https://sourcemaking.com/design_patterns/decorator
https://sourcemaking.com/design_patterns/decorator
https://sourcemaking.com/design_patterns/decorator
https://sourcemaking.com/design_patterns/decorator
https://sourcemaking.com/design_patterns/decorator
https://sourcemaking.com/design_patterns/decorator
https://sourcemaking.com/design_patterns/decorator
https://sourcemaking.com/design_patterns/decorator
https://sourcemaking.com/design_patterns/decorator
https://sourcemaking.com/design_patterns/decorator
https://sourcemaking.com/design_patterns/decorator
https://sourcemaking.com/design_patterns/composite
https://sourcemaking.com/design_patterns/composite
https://sourcemaking.com/design_patterns/composite
https://sourcemaking.com/design_patterns/composite
https://sourcemaking.com/design_patterns/composite
https://sourcemaking.com/design_patterns/composite
https://sourcemaking.com/design_patterns/composite
https://sourcemaking.com/design_patterns/composite
https://sourcemaking.com/design_patterns/composite
https://sourcemaking.com/design_patterns/composite
https://sourcemaking.com/design_patterns/composite
https://sourcemaking.com/design_patterns/composite
https://sourcemaking.com/design_patterns/template_method
https://sourcemaking.com/design_patterns/template_method
https://sourcemaking.com/design_patterns/template_method
https://sourcemaking.com/design_patterns/template_method
https://sourcemaking.com/design_patterns/template_method
https://sourcemaking.com/design_patterns/template_method
https://sourcemaking.com/design_patterns/template_method
https://sourcemaking.com/design_patterns/template_method
https://sourcemaking.com/design_patterns/template_method
https://sourcemaking.com/design_patterns/template_method
https://sourcemaking.com/design_patterns/template_method
https://sourcemaking.com/design_patterns/template_method
https://sourcemaking.com/design_patterns/template_method
https://sourcemaking.com/design_patterns/template_method
https://sourcemaking.com/design_patterns/strategy
https://sourcemaking.com/design_patterns/strategy
https://sourcemaking.com/design_patterns/strategy
https://sourcemaking.com/design_patterns/strategy
https://sourcemaking.com/design_patterns/strategy
https://sourcemaking.com/design_patterns/strategy
https://sourcemaking.com/design_patterns/strategy
https://sourcemaking.com/design_patterns/strategy
https://sourcemaking.com/design_patterns/strategy
https://sourcemaking.com/design_patterns/strategy
https://sourcemaking.com/design_patterns/strategy
https://sourcemaking.com/design_patterns/strategy
https://sourcemaking.com/design_patterns/strategy
https://sourcemaking.com/design_patterns/chain_of_responsibility
https://sourcemaking.com/design_patterns/chain_of_responsibility
https://sourcemaking.com/design_patterns/chain_of_responsibility
https://sourcemaking.com/design_patterns/chain_of_responsibility
https://sourcemaking.com/design_patterns/chain_of_responsibility
https://sourcemaking.com/design_patterns/chain_of_responsibility
https://sourcemaking.com/design_patterns/chain_of_responsibility
https://sourcemaking.com/design_patterns/chain_of_responsibility
https://sourcemaking.com/design_patterns/chain_of_responsibility
https://sourcemaking.com/design_patterns/chain_of_responsibility
https://sourcemaking.com/design_patterns/chain_of_responsibility
https://sourcemaking.com/design_patterns/chain_of_responsibility
https://sourcemaking.com/design_patterns/chain_of_responsibility
https://sourcemaking.com/design_patterns/chain_of_responsibility
https://sourcemaking.com/design_patterns/chain_of_responsibility
https://sourcemaking.com/design_patterns/chain_of_responsibility
https://blog.idrsolutions.com/2013/01/understanding-the-pdf-file-format-overview/
https://blog.idrsolutions.com/2013/01/understanding-the-pdf-file-format-overview/
https://blog.idrsolutions.com/2013/01/understanding-the-pdf-file-format-overview/
https://blog.idrsolutions.com/2013/01/understanding-the-pdf-file-format-overview/
https://blog.idrsolutions.com/2013/01/understanding-the-pdf-file-format-overview/
https://blog.idrsolutions.com/2013/01/understanding-the-pdf-file-format-overview/
https://blog.idrsolutions.com/2013/01/understanding-the-pdf-file-format-overview/
https://blog.idrsolutions.com/2013/01/understanding-the-pdf-file-format-overview/
https://blog.idrsolutions.com/2013/01/understanding-the-pdf-file-format-overview/
https://blog.idrsolutions.com/2013/01/understanding-the-pdf-file-format-overview/
https://blog.idrsolutions.com/2013/01/understanding-the-pdf-file-format-overview/
https://blog.idrsolutions.com/2013/01/understanding-the-pdf-file-format-overview/
https://blog.idrsolutions.com/2013/01/understanding-the-pdf-file-format-overview/
https://blog.idrsolutions.com/2013/01/understanding-the-pdf-file-format-overview/
https://blog.idrsolutions.com/2013/01/understanding-the-pdf-file-format-overview/
https://blog.idrsolutions.com/2013/01/understanding-the-pdf-file-format-overview/
https://blog.idrsolutions.com/2013/01/understanding-the-pdf-file-format-overview/
https://blog.idrsolutions.com/2013/01/understanding-the-pdf-file-format-overview/
https://blog.idrsolutions.com/2013/01/understanding-the-pdf-file-format-overview/
https://blog.idrsolutions.com/2013/01/understanding-the-pdf-file-format-overview/
https://blog.idrsolutions.com/2013/01/understanding-the-pdf-file-format-overview/
https://blog.idrsolutions.com/2013/01/understanding-the-pdf-file-format-overview/
https://blog.idrsolutions.com/2013/01/understanding-the-pdf-file-format-overview/
https://blog.idrsolutions.com/2013/01/understanding-the-pdf-file-format-overview/
https://blog.idrsolutions.com/2013/01/understanding-the-pdf-file-format-overview/
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cs.cornell.edu/courses/cs5430/2015sp/notes/rsa_sign_vs_dec.php
https://www.cryptopp.com/wiki/RSA_Cryptography
https://www.cryptopp.com/wiki/RSA_Cryptography
https://www.cryptopp.com/wiki/RSA_Cryptography
https://www.cryptopp.com/wiki/RSA_Cryptography
https://www.cryptopp.com/wiki/RSA_Cryptography
https://www.cryptopp.com/wiki/RSA_Cryptography
https://www.cryptopp.com/wiki/RSA_Cryptography
https://www.cryptopp.com/wiki/RSA_Cryptography
https://www.cryptopp.com/wiki/RSA_Cryptography
https://www.cryptopp.com/wiki/RSA_Cryptography
https://www.cryptopp.com/wiki/RSA_Cryptography
https://www.cryptopp.com/wiki/RSA_Cryptography
https://www.cryptopp.com/wiki/RSA_Cryptography
https://www.cryptopp.com/wiki/RSA_Cryptography
https://www.cryptopp.com/wiki/RSA_Cryptography
http://eternallyconfuzzled.com/arts/jsw_art_rand.aspx
http://eternallyconfuzzled.com/arts/jsw_art_rand.aspx
http://eternallyconfuzzled.com/arts/jsw_art_rand.aspx
http://eternallyconfuzzled.com/arts/jsw_art_rand.aspx
http://eternallyconfuzzled.com/arts/jsw_art_rand.aspx
http://eternallyconfuzzled.com/arts/jsw_art_rand.aspx
http://eternallyconfuzzled.com/arts/jsw_art_rand.aspx
http://eternallyconfuzzled.com/arts/jsw_art_rand.aspx
http://eternallyconfuzzled.com/arts/jsw_art_rand.aspx
http://eternallyconfuzzled.com/arts/jsw_art_rand.aspx
http://eternallyconfuzzled.com/arts/jsw_art_rand.aspx
http://eternallyconfuzzled.com/arts/jsw_art_rand.aspx
http://eternallyconfuzzled.com/arts/jsw_art_rand.aspx
http://eternallyconfuzzled.com/arts/jsw_art_rand.aspx
http://eternallyconfuzzled.com/arts/jsw_art_rand.aspx
http://eternallyconfuzzled.com/arts/jsw_art_rand.aspx
https://www.cryptopp.com/wiki/Keys_and_Formats
https://www.cryptopp.com/wiki/Keys_and_Formats
https://www.cryptopp.com/wiki/Keys_and_Formats
https://www.cryptopp.com/wiki/Keys_and_Formats
https://www.cryptopp.com/wiki/Keys_and_Formats
https://www.cryptopp.com/wiki/Keys_and_Formats
https://www.cryptopp.com/wiki/Keys_and_Formats
https://www.cryptopp.com/wiki/Keys_and_Formats
https://www.cryptopp.com/wiki/Keys_and_Formats
https://www.cryptopp.com/wiki/Keys_and_Formats
https://www.cryptopp.com/wiki/Keys_and_Formats
https://www.cryptopp.com/wiki/Keys_and_Formats
https://www.cryptopp.com/wiki/Keys_and_Formats
https://www.cryptopp.com/wiki/Keys_and_Formats
https://www.cryptopp.com/wiki/Keys_and_Formats
https://www.cryptopp.com/wiki/Keys_and_Formats
https://www.cryptopp.com/wiki/Keys_and_Formats
https://tools.ietf.org/html/rfc3501.html
https://tools.ietf.org/html/rfc3501.html
https://tools.ietf.org/html/rfc3501.html
https://tools.ietf.org/html/rfc3501.html
https://tools.ietf.org/html/rfc3501.html
https://tools.ietf.org/html/rfc3501.html
https://tools.ietf.org/html/rfc3501.html
https://tools.ietf.org/html/rfc3501.html
https://tools.ietf.org/html/rfc3501.html
https://tools.ietf.org/html/rfc3501.html
https://tools.ietf.org/html/rfc3501.html
https://tools.ietf.org/html/rfc3501.html
https://tools.ietf.org/html/rfc3501.html
https://tools.ietf.org/html/rfc3501.html
https://www.sqlite.org/intern-v-extern-blob.html
https://www.sqlite.org/intern-v-extern-blob.html
https://www.sqlite.org/intern-v-extern-blob.html
https://www.sqlite.org/intern-v-extern-blob.html
https://www.sqlite.org/intern-v-extern-blob.html
https://www.sqlite.org/intern-v-extern-blob.html
https://www.sqlite.org/intern-v-extern-blob.html
https://www.sqlite.org/intern-v-extern-blob.html
https://www.sqlite.org/intern-v-extern-blob.html
https://www.sqlite.org/intern-v-extern-blob.html
https://www.sqlite.org/intern-v-extern-blob.html
https://www.sqlite.org/intern-v-extern-blob.html
https://www.sqlite.org/intern-v-extern-blob.html
https://www.sqlite.org/intern-v-extern-blob.html
https://www.sqlite.org/intern-v-extern-blob.html
https://www.sqlite.org/intern-v-extern-blob.html
https://www.sqlite.org/intern-v-extern-blob.html
https://www.sqlite.org/intern-v-extern-blob.html
https://wiki.openssl.org/index.php/Compilation_and_Installation
https://wiki.openssl.org/index.php/Compilation_and_Installation
https://wiki.openssl.org/index.php/Compilation_and_Installation
https://wiki.openssl.org/index.php/Compilation_and_Installation
https://wiki.openssl.org/index.php/Compilation_and_Installation
https://wiki.openssl.org/index.php/Compilation_and_Installation
https://wiki.openssl.org/index.php/Compilation_and_Installation
https://wiki.openssl.org/index.php/Compilation_and_Installation
https://wiki.openssl.org/index.php/Compilation_and_Installation
https://wiki.openssl.org/index.php/Compilation_and_Installation
https://wiki.openssl.org/index.php/Compilation_and_Installation
https://wiki.openssl.org/index.php/Compilation_and_Installation
https://wiki.openssl.org/index.php/Compilation_and_Installation
https://wiki.openssl.org/index.php/Compilation_and_Installation
https://wiki.openssl.org/index.php/Compilation_and_Installation
https://wiki.openssl.org/index.php/Compilation_and_Installation
https://wiki.openssl.org/index.php/Compilation_and_Installation
https://wiki.openssl.org/index.php/Compilation_and_Installation

Bibliography

[301]

Library documentation
C/C++ JSON parser/generator benchmark, https:/ / github. com/ miloyip/
nativejson- benchmark

Crypto++, https:/ / www. cryptopp. com/ wiki/ Main_ Page

Hummus PDF, http:/ /pdfhummus. com/How- To

JSON for Modern C++, https:/ / github. com/ nlohmann/ json

PDF-Writer, https:/ / github. com/ galkahana/ PDF- Writer

PNGWriter, https:/ / github. com/ pngwriter/ pngwriter

pugixml 1.8 quick start guide, https:/ /pugixml. org/docs/ quickstart. html

SQLite, https:/ / www. sqlite. org/ docs. html

sqlite_modern_cpp, https:/ / github. com/ SqliteModernCpp/ sqlite_ modern_ cpp

Ziplib wiki, https:/ /bitbucket. org/ wbenny/ ziplib/ wiki/ Home

https://github.com/miloyip/nativejson-benchmark
https://github.com/miloyip/nativejson-benchmark
https://github.com/miloyip/nativejson-benchmark
https://github.com/miloyip/nativejson-benchmark
https://github.com/miloyip/nativejson-benchmark
https://github.com/miloyip/nativejson-benchmark
https://github.com/miloyip/nativejson-benchmark
https://github.com/miloyip/nativejson-benchmark
https://github.com/miloyip/nativejson-benchmark
https://github.com/miloyip/nativejson-benchmark
https://github.com/miloyip/nativejson-benchmark
https://github.com/miloyip/nativejson-benchmark
https://www.cryptopp.com/wiki/Main_Page
https://www.cryptopp.com/wiki/Main_Page
https://www.cryptopp.com/wiki/Main_Page
https://www.cryptopp.com/wiki/Main_Page
https://www.cryptopp.com/wiki/Main_Page
https://www.cryptopp.com/wiki/Main_Page
https://www.cryptopp.com/wiki/Main_Page
https://www.cryptopp.com/wiki/Main_Page
https://www.cryptopp.com/wiki/Main_Page
https://www.cryptopp.com/wiki/Main_Page
https://www.cryptopp.com/wiki/Main_Page
https://www.cryptopp.com/wiki/Main_Page
https://www.cryptopp.com/wiki/Main_Page
https://www.cryptopp.com/wiki/Main_Page
https://www.cryptopp.com/wiki/Main_Page
http://pdfhummus.com/How-To
http://pdfhummus.com/How-To
http://pdfhummus.com/How-To
http://pdfhummus.com/How-To
http://pdfhummus.com/How-To
http://pdfhummus.com/How-To
http://pdfhummus.com/How-To
http://pdfhummus.com/How-To
http://pdfhummus.com/How-To
http://pdfhummus.com/How-To
http://pdfhummus.com/How-To
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/galkahana/PDF-Writer
https://github.com/galkahana/PDF-Writer
https://github.com/galkahana/PDF-Writer
https://github.com/galkahana/PDF-Writer
https://github.com/galkahana/PDF-Writer
https://github.com/galkahana/PDF-Writer
https://github.com/galkahana/PDF-Writer
https://github.com/galkahana/PDF-Writer
https://github.com/galkahana/PDF-Writer
https://github.com/galkahana/PDF-Writer
https://github.com/galkahana/PDF-Writer
https://github.com/galkahana/PDF-Writer
https://github.com/galkahana/PDF-Writer
https://github.com/pngwriter/pngwriter
https://github.com/pngwriter/pngwriter
https://github.com/pngwriter/pngwriter
https://github.com/pngwriter/pngwriter
https://github.com/pngwriter/pngwriter
https://github.com/pngwriter/pngwriter
https://github.com/pngwriter/pngwriter
https://github.com/pngwriter/pngwriter
https://github.com/pngwriter/pngwriter
https://github.com/pngwriter/pngwriter
https://github.com/pngwriter/pngwriter
https://pugixml.org/docs/quickstart.html
https://pugixml.org/docs/quickstart.html
https://pugixml.org/docs/quickstart.html
https://pugixml.org/docs/quickstart.html
https://pugixml.org/docs/quickstart.html
https://pugixml.org/docs/quickstart.html
https://pugixml.org/docs/quickstart.html
https://pugixml.org/docs/quickstart.html
https://pugixml.org/docs/quickstart.html
https://pugixml.org/docs/quickstart.html
https://pugixml.org/docs/quickstart.html
https://pugixml.org/docs/quickstart.html
https://pugixml.org/docs/quickstart.html
https://www.sqlite.org/docs.html
https://www.sqlite.org/docs.html
https://www.sqlite.org/docs.html
https://www.sqlite.org/docs.html
https://www.sqlite.org/docs.html
https://www.sqlite.org/docs.html
https://www.sqlite.org/docs.html
https://www.sqlite.org/docs.html
https://www.sqlite.org/docs.html
https://www.sqlite.org/docs.html
https://www.sqlite.org/docs.html
https://www.sqlite.org/docs.html
https://www.sqlite.org/docs.html
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://github.com/SqliteModernCpp/sqlite_modern_cpp
https://bitbucket.org/wbenny/ziplib/wiki/Home
https://bitbucket.org/wbenny/ziplib/wiki/Home
https://bitbucket.org/wbenny/ziplib/wiki/Home
https://bitbucket.org/wbenny/ziplib/wiki/Home
https://bitbucket.org/wbenny/ziplib/wiki/Home
https://bitbucket.org/wbenny/ziplib/wiki/Home
https://bitbucket.org/wbenny/ziplib/wiki/Home
https://bitbucket.org/wbenny/ziplib/wiki/Home
https://bitbucket.org/wbenny/ziplib/wiki/Home
https://bitbucket.org/wbenny/ziplib/wiki/Home
https://bitbucket.org/wbenny/ziplib/wiki/Home
https://bitbucket.org/wbenny/ziplib/wiki/Home
https://bitbucket.org/wbenny/ziplib/wiki/Home
https://bitbucket.org/wbenny/ziplib/wiki/Home
https://bitbucket.org/wbenny/ziplib/wiki/Home

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

C++17 STL Cookbook
Jacek Galowicz

ISBN: 978-1-78712-049-5

Learn about the new core language features and the problems they were
intended to solve
Understand the inner workings and requirements of iterators by implementing
them
Explore algorithms, functional programming style, and lambda expressions
Leverage the rich, portable, fast, and well-tested set of well-designed algorithms
provided in the STL
Work with strings the STL way instead of handcrafting C-style code
Understand standard support classes for concurrency and synchronization, and
how to put them to work
Use the filesystem library addition available with the C++17 STL

https://www.packtpub.com/application-development/c17-stl-cookbook

Other Books You May Enjoy

[303]

C++ Data Structures and Algorithms
Wisnu Anggoro

ISBN: 978-1-78883-521-3

Know how to use arrays and lists to get better results in complex scenarios
Build enhanced applications by using hashtables, dictionaries, and sets
Implement searching algorithms such as linear search, binary search, jump
search, exponential search, and more
Have a positive impact on the efficiency of applications with tree traversal
Explore the design used in sorting algorithms like Heap sort, Quick sort, Merge
sort and Radix sort
Implement various common algorithms in string data types
Find out how to design an algorithm for a specific task using the common
algorithm paradigms

https://www.packtpub.com/application-development/c-data-structures-and-algorithms

Other Books You May Enjoy

[304]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

2
2D array
 creating, with basic operations 34, 35

A
abundant number
 about 17
 determining 17
Advanced Encryption Standard (AES or Rijndael)

242

amicable numbers
 about 18
 computing 19
Armstrong number
 about 19
 computing 20
article title
 capitalizing 54, 55
Asio library
 reference 266
asynchronous functions
 parallel min and max element algorithms,

implementing 137, 138

B
base64 decoding
 about 248
 implementing 248, 249, 251, 252
base64 encoding
 about 248
 implementing 248, 249, 251, 252
 reference 248
binary to string conversion
 implementing 52
bitcoin exchange rates

 checking 273, 274, 275, 276, 277
BufferedTransformation 257

C
Caesar cipher
 about 243
 implementing 243, 244
 reference 243
client-server Fizz-Buzz
 creating 268, 270, 272
Collatz conjecture 25
console
 thread-safe logging 141, 142
container
 elements, evaluating 39
 range of values, adding 38
Crypto++ library
 about 253
 URL 253
cURL
 URL 274
curlcpp library
 reference 273, 274, 275
customer service system
 creating 142, 143, 145, 146

D
data structure, issues
 circular buffer 87
 double buffer 87
 frequent element, in range 87
 game of life 91
 list of movies, average rating 88
 list of phone numbers, filtering 88
 list of phone numbers, transforming 88
 nodes, shortest path 90

[306]

 pairwise algorithm 88
 permutations of string, generating 88
 priority queue 86
 select algorithm 89
 sort algorithm 90
 text histogram 87
 weasel program 91
 zip algorithm 89
data structure, solutions
 circular buffer 94, 96, 97
 double buffer 98, 100
 frequent element, in range 101
 game of life 125, 130
 list of movies, average rating 109
 list of phone numbers, filtering 104
 list of phone numbers, transforming 105
 nodes, shortest path 118, 120, 121
 pairwise algorithm 111
 permutations of string, generating 107
 priority queue 92
 select algorithm 114
 sort algorithm 115, 116, 117, 118
 text histogram 102
 weasel program 123
 zip algorithm 112
date library
 reference 79
dates
 transforming, in strings 62
day and week of year
 determining 81, 82
day of week
 determining 80
DefaultDecryptorWithMAC component 258
DefaultEncryptorWithMAC component 258
directory
 files, searching that match a regular expression

73, 74
 size, computing 70

E
EAN standard
 reference 215
EAN-13 barcode generator
 creating 215, 216, 218, 219, 220

emails
 fetching, with Internet Message Access Protocol

(IMAP) 277, 278, 279, 280, 281
Exchange Rates API
 URL 273

F
Face API
 reference 287
faces
 detecting, in picture 287, 289, 290, 292, 293,

294, 296, 297
file hashes
 computing 256, 257
files
 compressing, to/from ZIP archive 204, 206, 207
 compressing, to/from ZIP archive with password

208, 210, 211
 decompressing, to/from ZIP archive 204, 206,

207

 decompressing, to/from ZIP archive with
password 208, 210, 211

 decrypting 258, 259
 encrypting 258, 259
 older files, deleting 71, 72
 searching, in directory that match regular

expression 73, 74
 searching, in ZIP archive 203, 204
 signing 260, 262, 263
 temporary log files, creating 74, 75
FileSink component 258
FileSource component 256, 258
function execution time
 measuring 78

G
Gray code
 about 22
 performing 22, 23
greatest common divisor (gcd)
 calculating 13
greatest common factor (gcf) 13
greatest common measure (gcm) 13

[307]

H
HashFilter component 256
Hasse's algorithm 25
HexEncoder component 256
highest common divisor 13
highest common factor (hcf) 13
host
 IP address, searching 266, 267

I
International Standard Book Number (ISBN)
 validating 27
Internet Message Access Protocol (IMAP)
 emails, fetching 277, 278, 279, 280, 281
IP address
 searching, of host 266, 267
IPv4 addresses
 enumerating, in range 33, 34
IPv4 data type
 representing 31, 32

K
Kakutani's problem 25

L
largest Collatz sequence
 determining 25
largest prime number
 computing 15
least common multiple (lcm)
 computing 14
license plate validation
 with regular expressions 59
literals, of various temperature scales
 defining 44, 46, 47, 48
longest palindromic substring
 determining 58, 59

M
meeting time
 printing, for multiple time zones 82, 83
minimum function
 creating, for multiple arguments 37

monthly calendar
 printing 84
movies
 inserting, into SQLite database 227, 229, 230,

231

 reading, from SQLite database 221, 222, 223,
225, 226, 227

N
narcissistic number 19
nativejson-benchmark project
 reference 189
naturals divisible by 3 and 5
 summation, calculating 13
number of days between two dates
 calculating 79
numerical values
 converting, to Roman 23, 24

O
openssl
 URL 274

P
parallel min and max element algorithms
 implementing, with asynchronous functions 137,

138

 implementing, with threads 135, 136
parallel sort algorithm
 implementing 139, 140
parallel transform algorithm
 implementing 133, 134
Pascal's triangle
 about 66
 printing 66, 67
PDF-Writer
 reference 192
Pi
 value, computing 26
PNG
 creating, that represents national flag 211, 212
PNGWriter library
 about 211
 reference 211

[308]

prime factors
 about 21
 determining 21
problems, data serialization
 data, deserializing from XML 179
 data, deserializing to JSON 181
 data, serializing to JSON 180
 data, serializing to XML 179
 list of movies, printing to PDF 181
 PDF, creating from collection of images 182
 XPath, used for selecting data from XML 180
problems, design patterns
 approval system 148
 observable vector container 149
 order price, computing with discounts 149
 passwords, validating 147
 random passwords, generating 147
 social security numbers, generating 148
process lists
 printing 67, 68
pugixml library
 reference 183

Q
Quicksort 115, 139

R
regular expressions
 reference 60
 used, for license plate validation 59
Roman numerals
 about 23
 numerical values, converting 23, 24

S
sexy prime pairs
 about 16
 computing 16
solutions, data serialization
 data, deserializing from JSON 191, 192
 data, deserializing from XML 183
 data, serializing to JSON 189, 190
 data, serializing to XML 183
 list of movies, printing to PDF 193, 196

 PDF, creating from collection of images 196,
198

 XPath, used for selecting data from XML 187,
188

solutions, design patterns
 approval system 163, 164
 observable vector container 166, 171
 order price, computing with discounts 172, 175,

177

 passwords, validating 150, 153
 random passwords, generating 154, 155
 social security numbers, generating 158, 162
SQLCipher
 reference 221
SQLite database
 movie images, handling 232, 233, 234, 235,

236, 238, 239, 240
 movies, inserting 227, 229, 230, 231
 movies, reading 221, 222, 223, 225, 226, 227
SQLite library
 about 221
 reference 221
sqlite_modern_cpp
 about 221
 reference 221
stduuid
 reference 74
string to binary conversion
 implementing 53
strings
 dates, transforming 62
 joining together 55
 splitting, into tokens with list of possible

delimiters 56, 57
StringSink component 257
Syracuse problem 25
system handles
 about 40
 defining 40, 41, 44

T
tabula recta 245
temporary log files
 creating 74, 75
text file

 empty lines, removing 69
Text Translate API
 reference 282
text
 translating, to any language 282, 284, 285, 286
thread-safe logging
 to console 141, 142
threads
 parallel min and max element algorithms,

implementing 135, 136
Thwaites conjecture 25
time zones
 meeting time, printing 82, 83
 reference 82

U
Ulam conjecture 25
URL parts
 extracting 60, 62
user credentials
 validating 253, 254

V
verification text PNG images
 creating 212, 214
Vigenère cipher
 about 245
 implementing 245, 246, 247
 reference 245
Vigenère table 245

W
windowsZones.xml file
 URL 82

Z
ZIP archive
 files, compressing 204, 206, 207
 files, compressing with password 208, 210, 211
 files, decompressing 204, 206, 207
 files, decompressing with password 208, 210,

211

 files, searching 203, 204

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Math Problems
	Problems
	1. Sum of naturals divisible by 3 and 5
	2. Greatest common divisor
	3. Least common multiple
	4. Largest prime smaller than given number
	5. Sexy prime pairs
	6. Abundant numbers
	7. Amicable numbers
	8. Armstrong numbers
	9. Prime factors of a number
	10. Gray code
	11. Converting numerical values to Roman
	12. Largest Collatz sequence
	13. Computing the value of Pi
	14. Validating ISBNs

	Solutions
	1. Sum of naturals divisible by 3 and 5
	2. Greatest common divisor
	3. Least common multiple
	4. Largest prime smaller than given number
	5. Sexy prime pairs
	6. Abundant numbers
	7. Amicable numbers
	8. Armstrong numbers
	9. Prime factors of a number
	10. Gray code
	11. Converting numerical values to Roman
	12. Largest Collatz sequence
	13. Computing the value of Pi
	14. Validating ISBNs

	Chapter 2: Language Features
	Problems
	15. IPv4 data type
	16. Enumerating IPv4 addresses in a range
	17. Creating a 2D array with basic operations
	18. Minimum function with any number of arguments
	19. Adding a range of values to a container
	20. Container any, all, none
	21. System handle wrapper
	22. Literals of various temperature scales

	Solutions
	15. IPv4 data type
	16. Enumerating IPv4 addresses in a range
	17. Creating a 2D array with basic operations
	18. Minimum function with any number of arguments
	19. Adding a range of values to a container
	20. Container any, all, none
	21. System handle wrapper
	22. Literals of various temperature scales

	Chapter 3: Strings and Regular Expressions
	Problems
	23. Binary to string conversion
	24. String to binary conversion
	25. Capitalizing an article title
	26. Joining strings together separated by a delimiter
	27. Splitting a string into tokens with a list of possible delimiters
	28. Longest palindromic substring
	29. License plate validation
	30. Extracting URL parts
	31. Transforming dates in strings

	Solutions
	23. Binary to string conversion
	24. String to binary conversion
	25. Capitalizing an article title
	26. Joining strings together separated by a delimiter
	27. Splitting a string into tokens with a list of possible delimiters
	28. Longest palindromic substring
	29. License plate validation
	30. Extracting URL parts
	31. Transforming dates in strings

	Chapter 4: Streams and Filesystems
	Problems
	32. Pascal's triangle
	33. Tabular printing of a list of processes
	34. Removing empty lines from a text file
	35. Computing the size of a directory
	36. Deleting files older than a given date
	37. Finding files in a directory that match a regular expression
	38. Temporary log files

	Solutions
	32. Pascal's triangle
	33. Tabular printing of a list of processes
	34. Removing empty lines from a text file
	35. Computing the size of a directory
	36. Deleting files older than a given date
	37. Finding files in a directory that match a regular expression
	38. Temporary log files

	Chapter 5: Date and Time
	Problems
	39. Measuring function execution time
	40. Number of days between two dates
	41. Day of the week
	42. Day and week of the year
	43. Meeting time for multiple time zones
	44. Monthly calendar

	Solutions
	39. Measuring function execution time
	40. Number of days between two dates
	41. Day of the week
	42. Day and week of the year
	43. Meeting time for multiple time zones
	44. Monthly calendar

	Chapter 6: Algorithms and Data Structures
	Problems
	45. Priority queue
	46. Circular buffer
	47. Double buffer
	48. The most frequent element in a range
	49. Text histogram
	50. Filtering a list of phone numbers
	51. Transforming a list of phone numbers
	52. Generating all the permutations of a string
	53. Average rating of movies
	54. Pairwise algorithm
	55. Zip algorithm
	56. Select algorithm
	57. Sort algorithm
	58. The shortest path between nodes
	59. The Weasel program
	60. The Game of Life

	Solutions
	45. Priority queue
	46. Circular buffer
	47. Double buffer
	48. The most frequent element in a range
	49. Text histogram
	50. Filtering a list of phone numbers
	51. Transforming a list of phone numbers
	52. Generating all the permutations of a string
	53. Average rating of movies
	54. Pairwise algorithm
	55. Zip algorithm
	56. Select algorithm
	57. Sort algorithm
	58. The shortest path between nodes
	59. The Weasel program
	60. The Game of Life

	Chapter 7: Concurrency
	Problems
	61. Parallel transform algorithm
	62. Parallel min and max element algorithms using threads
	63. Parallel min and max element algorithms using asynchronous functions
	64. Parallel sort algorithm
	65. Thread-safe logging to the console
	66. Customer service system

	Solutions
	61. Parallel transform algorithm
	62. Parallel min and max element algorithms using threads
	63. Parallel min and max element algorithms using asynchronous functions
	64. Parallel sort algorithm
	65. Thread-safe logging to the console
	66. Customer service system

	Chapter 8: Design Patterns
	Problems
	67. Validating passwords
	68. Generating random passwords
	69. Generating social security numbers
	70. Approval system
	71. Observable vector container
	72. Computing order price with discounts

	Solutions
	67. Validating passwords
	68. Generating random passwords
	69. Generating social security numbers
	70. Approval system
	71. Observable vector container
	72. Computing order price with discounts

	Chapter 9: Data Serialization
	Problems
	73. Serializing and deserializing data to/from XML
	74. Selecting data from XML using XPath
	75. Serializing data to JSON
	76. Deserializing data from JSON
	77. Printing a list of movies to a PDF
	78. Creating a PDF from a collection of images

	Solutions
	73. Serializing and deserializing data to/from XML
	74. Selecting data from XML using XPath
	75. Serializing data to JSON
	76. Deserializing data from JSON
	77. Printing a list of movies to a PDF
	78. Creating a PDF from a collection of images

	Chapter 10: Archives, Images, and Databases
	Problems
	79. Finding files in a ZIP archive
	80. Compressing and decompressing files to/from a ZIP archive
	81. Compressing and decompressing files to/from a ZIP archive with a password
	82. Creating a PNG that represents a national flag
	83. Creating verification text PNG images
	84. EAN-13 barcode generator
	85. Reading movies from an SQLite database
	86. Inserting movies into an SQLite database transactionally
	87. Handling movie images in an SQLite database

	Solutions
	79. Finding files in a ZIP archive
	80. Compressing and decompressing files to/from a ZIP archive
	81. Compressing and decompressing files to/from a ZIP archive with password
	82. Creating a PNG that represents a national flag
	83. Creating verification text PNG images
	84. EAN-13 barcode generator
	85. Reading movies from an SQLite database
	86. Inserting movies into an SQLite database
	87. Handling movie images in an SQLite database

	Chapter 11: Cryptography
	Problems
	88. Caesar cipher
	89. Vigenère cipher
	90. Base64 encoding and decoding
	91. Validating user credentials
	92. Computing file hashes
	93. Encrypting and decrypting files
	94. File signing

	Solutions
	88. Caesar cipher
	89. Vigenère cipher
	90. Base64 encoding and decoding
	91. Validating user credentials
	92. Computing file hashes
	93. Encrypting and decrypting files
	94. File signing

	Chapter 12: Networking and Services
	Problems
	95. Finding the IP address of a host
	96. Client-server Fizz-Buzz
	97. Bitcoin exchange rates
	98. Fetching emails using IMAP
	99. Translating text to any language
	100. Detecting faces in a picture

	Solutions
	95. Finding the IP address of a host
	96. Client-server Fizz-Buzz
	97. Bitcoin exchange rates
	98. Fetching emails using IMAP
	99. Translating text to any language
	100. Detecting faces in a picture

	Bibliography
	Other Books You May Enjoy
	Index

