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foreword
I have written quite a few programming books in the last 30 years, so it is perhaps
not surprising that every so often someone contacts me seeking advice about writing a
book. I always ask for a sample chapter. In most cases, I hear nothing further, and I
don’t feel bad about that. Obviously, if someone can’t produce a chapter, no book will
materialize, and there is nothing to discuss.

In January 2018, I got an email from Marco Faella, a professor from the University
of Naples, whom I had previously met when he worked at the University of California
in Santa Cruz. He asked for advice about a book project. And he had already finished
several chapters! I liked what I saw and replied with encouragement and a few sugges-
tions. I didn’t hear anything further. I wasn’t surprised. One of my editors once told
me that he knew a great number of people who started a book . . . but only a few who
finished one.

In April 2019, I got another email. The book was going to be published by Manning.
And it looked really good. In August, Marco asked me to write the foreword, which I
am delighted to do.

When I write a book about a programming language (such as the classic Core Java
book), I focus on the constructs and APIs that are specific to that language. I assume
that the reader has a good grasp of data structures, algorithms, and software engineer-
ing principles such as testing, refactoring, and design patterns. Of course, having been
a professor, I am aware that university curricula do not always do a good job of teaching
those topics in a practical and accessible manner.

That is where this book fills a real need. You, the reader, are expected to be familiar
with the fundamentals of Java programming, andMarco will show you the way to higher
quality programs. You probably have experience with algorithm design, API design,
testing, and concurrency, but Marco puts a new spin on these classic themes. He takes

xi
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xii FOREWORD

one example and derives an astounding number of insights from it by implementing it
over and over in different ways. Normally, I dislike the “running example” technique
because it forces me to read a book sequentially. I can’t just dive in at a spot that
interests me because I need to know the evolutionary state of the running example. But
Marco’s example (whose nature I don’t want to reveal in the foreword) is very cleverly
designed. You need to master a couple of surprising—and interesting—core concepts
when you first see it. Afterwards, each chapter evolves the code in an independent
direction. It is quite a tour de force.

In each of the principal chapters, you will find a section titled “And now for some-
thing completely different.” At this point, you are invited to apply the chapter’s tech-
niques to a different situation. I encourage you to work through these challenges, as
well as the pop quizzes and end-of-chapter exercises.

Building high-quality software is never simple, and it is always a good idea to re-
examine the principles of good design and craftsmanship. In this book, you will find a
fresh perspective that I hope you will enjoy as much as I did

—Cay Horstmann

Author of Core Java, Java/Scala/JavaScript
for the Impatient, andmany other books for
beginning and professional programmers
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preface
My personal title for this book is “Java: Exercises in Style.” After the wise people at
Manning taught me about catchiness, this preface is all that’s left of that title and its lit-
erary overtone. Indeed, in the modern classic Exercises in Style, French writer Raymond
Queneau writes the same story in 99 different ways. The point of the book is not the
story, which is intentionally unremarkable, but rather the whimsical exploration of the
virtually endless expressive capabilities of natural languages.

Programming is certainly not literature, despite efforts by renowed personalities
such as Donald Knuth to bring the two closer together. In fact, beginner program-
mers may be forgiven if they think there’s one best way to solve each programming
assignment, just like simple math problems have a single solution. In reality, modern
day programming can be much more similar to literature than to math. Programming
languages have evolved to include ever more abstract constructions, multiplying the
ways to achieve the same goal. Even after their introduction, languages evolve, often
by acquiring new ways of doing the same things. The most used languages, such as
Java, have been evolving at an accelerated pace to keep up with the younger languages
trying to take their positions.

In this book, I try to give a taste of the wide range of concerns and solutions that
you should consider, or at least be aware of, when undertaking any programming task.
The task I propose is quite mundane: a class representing water containers that you
can connect with pipes and fill with liquid. Clients interact continuously with the con-
tainers, adding or removing water and placing new pipes at any time. I present and
discuss 18 different implementations for this task, each striving to maximize a different
objective, be it performance, code clarity, or some other software quality. This book
is not a dry sequence of code snippets. Whenever the context calls for it, I take the
opportunity to discuss a number of specialized topics pertaining to computer science

xiii
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xiv PREFACE

(various data structures, complexity theory, and amortized complexity); Java program-
ming (thread synchronization and the Java memory model); and software engineering
(the design-by-contract methodology and testing techniques). My objective is to show
you that even a relatively simple case study, when analyzed in depth, is linked to a vast
network of topics, all of which contribute to writing better code.

FURTHER READING
One of the objectives of this book is to stimulate your curiosity about the various dis-
ciplines related to software development. That’s why each chapter ends with a Fur-
ther reading section, where I briefly introduce the best resources I could find on the
chapter’s topic. I think the preface should be no exception, so here it goes:

Raymond Queneau. Exercises in Style. New Directions, 2013.
The original “exercises in style” book. (Actually, the original was written in
French in 1947.)
Cristina Videira Lopes. Exercises in Programming Style. CRC, 2014.
The author solves a simple programming task in 33 different styles using Python.
Rather than optimizing different code qualities, every style results from obey-
ing certain constraints. Among other things, it teaches you a lot about the
history of programming languages.
Matt Madden. 99 Ways to Tell a Story: Exercises in Style. Jonathan Cape, 2006.
When you need a break from coding, check out this comic book featuring a
simple story drawn in 99 different styles.
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about this book
The core idea of this book is to convey the mindset of an experienced developer by
comparing and contrasting different code qualities (aka nonfunctional requirements).

The figure inside the front cover relates the content of this book to the wider land-
scape of the knowledge required of professional developers. First, you start by learn-
ing the basics of a programming language. In Java, that entails knowing about classes,
methods, fields, and so on. This book won’t teach you those basics. Then, you should
ideally follow three paths:

The programming language path—Learn about the more advanced language fea-
tures, such as generics and multithreading.
The algorithmic path—Learn about solid theoretical principles, standard algo-
rithms and data structures, and ways to measure their performance.
The software engineering path—Learn about design principles, methodologies,
and best practices that help manage complexity, especially in large projects.

This book covers all of these areas, with a twist. Rather than teaching these different
aspects separately, I’ll mix and match them according to the needs of each chapter.

Each chapter focuses on a specific software quality, like time efficiency or readability.
I’ve selected the chosen qualities not only because of their importance and universality,
but also as those that you can meaningfully apply to a small code unit (a single class).
Moreover, I try to focus on general principles and coding techniques, rather than spe-
cific tools. When appropriate, I’ll point to tools and libraries that can help you assess
and optimize a given software quality.

xvii
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xviii ABOUT THIS BOOK

WHO SHOULD READ THIS BOOK
This book is the ideal starting point for a junior developer with limited formal training
to widen their perspective on software development. Specifically, the book targets two
objectives and audiences:

For working developers with little formal training, or training in a different
area than CS/CE, it provides a tour of computer science and engineering
techniques, elucidating the trade-offs inherent in any nontrivial programming
task.
For computer science and engineering students, it provides a unifying case
study for a variety of topics that are traditionally taught in different courses.
As such, it may supplement your textbooks for programming and software
engineering classes.

In both cases, to make the most out of this book you should be familiar with the
following:

Basic programming notions, such as iteration and recursion
Basic object-oriented programming notions, such as encapsulation and inher-
itance
Intermediate Java language skills, including generics, standard collections, and
basic multithreading (thread creation and the synchronized keyword)

BOOK STRUCTURE
Here’s a breakdown of the chapters and their corresponding code qualities. Don’t over-
look the hands-on exercises at the end of all chapters. They come with detailed solu-
tions and complete the core chapter content by applying those techniques in different
contexts.

Chapter 1 The first chapter describes the programming task to be solved (a water con-
tainer class), followed by a naive implementation showcasing commonmiscon-
ceptions that affect inexperienced programmers.

Chapter 2 I detail the reference implementation (which I subsequently refer to as Refer-
ence), which strikes a balance between different qualities.

Chapter 3 Focusing on time efficiency, you’ll improve the running time of Reference by up
to two orders of magnitude (500x), and discover that different use cases lead
to different performance trade-offs.

Chapter 4 This chapters experiments with space (memory) efficiency. Compared to Ref-
erence, you’ll shrink the memory footprint of containers by more than 50%
when using objects and by 90% when forgoing an object for each water con-
tainer.

Chapter 5 To achieve reliability via monitoring, I introduce the design by contract method-
ology and show you how to harden the Reference class with runtime checks and
assertions based on method contracts and class invariants.
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Chapter 6 To achieve reliability via unit testing, I discuss techniques for designing and
executing a test suite for a class, including code coverage measures and tools.

Chapter 7 In this chapter on readability, you’ll refactor Reference to follow the best prac-
tices for clean self-documenting code.

Chapter 8 As we examine concurrency and thread safety, you’ll recall the basic notions
of thread synchronization and discover that our running example needs non-
trivial techniques to avoid deadlocks and race conditions.

Chapter 9 With a focus on reusability, using generics, you’ll generalize our reference class
to embrace other applications with a similar general structure.

Appendix A In discussing succinctness, I present a compact implementation of the recur-
ring example whose source code is only 15% as long as Reference. As expected,
the result is an unreadable, geekily satisfying tangle of code that would imme-
diately get you kicked out of any code review session.

Appendix B Finally, I put together the most important software qualities to give you the
ultimate water container class.

THE ONLINE REPOSITORY
All the code I’ve presented in the book is available in a public online git repository
(https://bitbucket.org/mfaella/exercisesinstyle) organized by chapter. The bulk of
the code consists of many different versions of the same Container class. Each version
has a nickname, corresponding to the name of its package. For example, the first
version is presented in section 1.8 with the nickname Novice. In the repository, the
corresponding class is eis.chapter1.novice.Container. The table inside the back
cover lists the main classes and their characteristics.

The code for the examples in this book is also available for download from the
Manning website at https://www.manning.com/books/seriously-good-software.

WHY JAVA? WHICH JAVA?
As you know, Java is evolving at an accelerated pace, with a new version coming out
every six months. As of this writing, the current version is Java 12.

This book, on the other hand, isn’t about Java programming in and of itself. It’s
about acquiring the habit of evaluating and balancing different software qualities, what-
ever language you happen to be using. The examples are in Java because of my own
expertise with it, and because it’s one of the most used languages around.

The principles I teach in this book work equally well in other languages. The closer
your language is to Java, the more content from this book you can export to it without
modification. For example, C# is very close to Java, and indeed the book is sprinkled
with C# notes highlighting the differences that are relevant to that chapter’s content.

As for the Java code shown in the book and stored in the online repository, 99% of
it is Java 8. In a few places, I’m using minor Java 9 utilities like the ability to construct
a list with the static method List.of.
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xx ABOUT THIS BOOK

LIVEBOOK DISCUSSION FORUM
Purchase of Seriously Good Software includes free access to a private web forum run
by Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the forum,
go to https://livebook.manning.com/#!/book/seriously-good-software/discussion.
You can also learn more about Manning’s forums and the rules of conduct at https://
livebook.manning.com/#!/discussion.

Manning’s commitment to our readers is to provide a venue where ameaningful dia-
logue between individual readers and between readers and the author can take place.
It is not a commitment to any specific amount of participation on the part of the author,
whose contribution to the forum remains voluntary (and unpaid). We suggest you try
asking the author some challenging questions lest his interest stray! The forum and
the archives of previous discussions will be accessible from the publisher’s website as
long as the book is in print.
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about the cover
The figure on the cover of Seriously Good Software is captioned “Homme Tscheremiss,”
or man of the Tscheremiss tribe, which was a clan of people from the area near present-
day Finland. The illustration is taken from a collection of dress costumes from various
countries by Jacques Grasset de Saint-Sauveur (1757–1810), titled Costumes de Différents
Pays, published in France in 1797. Each illustration is finely drawn and colored by
hand. The rich variety of Grasset de Saint-Sauveur’s collection reminds us vividly of
how culturally apart the world’s towns and regions were just 200 years ago. Isolated
from each other, people spoke different dialects and languages. In the streets or in the
countryside, it was easy to identify where they lived and what their trade or station in
life was just by their dress.

The way we dress has changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns, regions, or countries. Perhaps we have traded cultural
diversity for a more varied personal life—certainly for a more varied and fast-paced
technological life.

At a time when it is hard to tell one computer book from another, Manning cele-
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on the rich diversity of regional life of two centuries ago, brought back to life by Grasset
de Saint-Sauveur’s pictures.
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Part 1

Preliminaries

The idea of this book is to separately optimize different software qualities guided
by a single running example. In this first part, I introduce software qualities in general
and present the simple programming task that you’ll repeatedly solve throughout the
book.

Two preliminary implementations follow: a naive version that an inexperienced pro-
grammer might author, and a reference version that strikes reasonable compromises
between different quality criteria.
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1Software qualities and a
problem to solve

This chapter covers
Evaluating software from different points
of view and for different objectives

Distinguishing internal from external
software qualities

Distinguishing functional from nonfunctional
software qualities

Assessing interactions and trade-offs
between software qualities

The core idea of this book is to convey the mindset of an experienced developer by
comparing and contrasting different code qualities (aka nonfunctional requirements).
Most of these qualities—like performance or readability—are universal, in the sense
that they’re relevant to any piece of software. To emphasize this fact, you’ll revisit the
same recurring example in each chapter: a simple class representing a system of water
containers.

In this chapter, I’ll introduce the software qualities that this book addresses, and I’ll
present the specifications for the water container example, followed by a preliminary
implementation.

3
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4 CHAPTER 1 Software qualities and a problem to solve

1.1 Software qualities
In this book, you should interpret the word quality as a characteristic that a piece of
software may or may not have, not as its overall value. That’s why I talk about multiple
qualities. You can’t consider all characteristics qualities; for example, the programming
language in which a piece of software is written is certainly a characteristic of that soft-
ware but not a quality. Qualities are characteristics that you can grade on a scale, at
least in principle.

As with all products, the software qualities that people are mostly interested in are
those that measure the extent to which the system fulfills its requirements. Unfortu-
nately, just describing—let alone fulfilling—the requirements of a piece of software is
no easy task. Indeed, the entire field of Requirements Analysis is devoted to it. How
is that possible? Isn’t it enough for the system to reliably and consistently offer the
services its users need?

First of all, often the users themselves don’t exactly know what services they need—
they need time and assistance to figure that out. Second, fulfilling those needs isn’t the
end of the story at all. Those services may be offered more or less quickly, with more
or less accuracy, after a long user training or after just a quick glance at a well-designed
UI, and so on. In addition, over time you need to modify, fix, or improve any system,
which leads to more quality variables: How easy is it to understand the system’s inner
workings? How easy is it to modify and extend it without breaking other parts? The list
goes on and on.

To put some order in this multitude of criteria, experts suggest organizing them
according to two characteristics: internal versus external and functional versus non-
functional.

1.1.1 Internal vs. external qualities

Software quality standards
The ISO and IEC standardization
bodies have defined software qual-
ity requirements since 1991 in stan-
dard 9126, which was superseded
by standard 25010 in 2011.

The end user can perceive external quali-
ties while interacting with the system, whereas
you can appraise internal ones only by look-
ing at the source code. The boundary
between these two categories isn’t clear-cut.
The end user can indirectly perceive some
internal qualities. Vice versa, all external
qualities ultimately depend on the source
code.

For example, maintainability (how easy it is to modify, fix, or extend the software)
is an internal attribute, but end users will become aware of it if a defect is found and
programmers take a long time to fix it. Conversely, robustness to incorrect inputs is
generally considered an external attribute, but it becomes internal when the piece of
software under consideration—perhaps a library—isn’t exposed to the end user and
only interacts with other system modules.
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Mostly external software qualities 5

Deadlines!
Development time is a 
pervasive consideration.

Correct!
Functional correctness and 
reliability, chapters 5 and 6

Robust!
Tolerant of unexpected 
conditions, chapters 5 and 6

Efficient!
Time and space efficiency, 
chapters 3 and 4

Maintainable!
Related to testability and 
readability, chapters 6 and 7

Usable!
Easy to learn and use (not 
covered in this book)

Reusable!
Adaptability, chapter 9

Thread-safe!
Concurrency, chapter 8

Succinct
Rarely desirable, but a 
fun exercise!

Figure 1.1 Functional and nonfunctional requirements pull software in different directions. It’s your job
to find a balance.

1.1.2 Functional vs. nonfunctional qualities

The second distinction is between qualities that apply to what the software does (func-
tional qualities) and those that refer to how the software is (nonfunctional qualities)
(figure 1.1). The internal-external dichotomy applies to this distinction as well: if the
software does something, its effect is visible to the end user, one way or another. There-
fore, all functional qualities are external. On the other hand, nonfunctional qualities
can be either internal or external, depending on whether they’re more related to the
code itself or to its emerging traits. The following sections contain examples of both
kinds. In the meantime, take a look at figure 1.2, which puts all the qualities addressed
in this chapter in a 2D spectrum, representing the internal-external distinction on the
horizontal axis and the functional versus nonfunctional distinction on the vertical one.
The next section presents the main software qualities that the end user can directly
appraise.

1.2 Mostly external software qualities
External software qualities pertain to the observable behavior of the program and as
such are naturally the primary concern of the development process. Besides attributing
these qualities to software, I’ll discuss them in relation to a plain old toaster to try and
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InternalExternal

Usability

Correctness

Robustness

Readability

Succinctness

Reusability

Maintainability

Non-functional

Functional

Efficiency

Thread safety

Figure 1.2 Software qualities classified according to two dichotomies: internal versus external
(horizontal axis) and functional versus nonfunctional (vertical axis). The qualities that I specifically
address in the book have a thick border.

frame them in the most general and intuitive sense. The following subsections provide
a description of the most important external qualities.

1.2.1 Correctness

Adherence to stated objectives, aka requirements or specifications
For a toaster to be correct, it must cook sliced bread until it’s brown and crispy. Soft-
ware, on the other hand, must offer the functionalities that were agreed on with the
customer. This is the functional quality, by definition.

There’s no secret recipe for correctness, but people employ a variety of best practices
and development processes to improve the likelihood of writing correct software in the
first place, and catching defects after the fact. In this book, I’ll focus on the small-scale
techniques that a single programmer can employ on the job, regardless of the specific
development process their company has adopted.

First of all, there can be no correctness if the developer doesn’t have a clear idea of
the specifications they’re aiming at. Thinking of specifications in terms of contracts and
implementing safeguards to enforce those contracts are useful ideas I explore in chap-
ter 5. The primary way to catch the inevitable defects is to put the software through
simulated interactions, that is, testing. Chapter 6 discusses systematic ways to design
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test cases and measure their effectiveness. Finally, adopting the best practices for read-
able code benefits correctness by helping both the original author and their peers
spot problems, before and after they’re exposed by failed tests. Chapter 7 presents a
selection of such best practices.

1.2.2 Robustness

Resilience to incorrect inputs or adverse/unanticipated external conditions (such as the lack of
some resource)
Correctness and robustness are sometimes lumped together as reliability. A robust
toaster doesn’t catch fire if a bagel, a fork, or nothing at all is pushed in instead of
bread. It has safeguards in place against overheating, and so on.1

Robust software, among other things, checks that its inputs are valid values. If
they’re not, it signals the problem and reacts accordingly. If the error condition is
fatal, a robust program aborts after salvaging as much as possible of the user data or
the computation that has been performed so far. Chapter 5 addresses robustness by
promoting rigorous specification and runtime monitoring of method contracts and
class invariants.

1.2.3 Usability

A measure of the effort needed to learn how to use software and to achieve its goals; ease of use
Modern pop-up toasters are very easy to use, doing away with a lever to push the bread in
and start toasting, and a knob to adjust the amount of toasting desired. Software usabil-
ity is tied to the design of its user interface (UI) and is addressed by such disciplines
as human-computer interaction and user experience (UX) design. This book doesn’t
address usability because it’s focused on software systems with no direct exposure to
the end user.

1.2.4 Efficiency

Adequate consumption of resources
Toaster efficiency may refer to how much time and electricity is needed to complete
its toasting task. For software, time and space (memory) are the two resources that
all programs consume. Chapters 3 and 4 deal with time and space efficiency, respec-
tively. Many programs also require network bandwidth, database connections, and
many other resources. Trade-offs commonly arise between different resources. A more
powerful toaster may be faster but require more (peak) electricity. Analogously, some
programs may be made faster by employing more memory (more on this later).

Although I’m listing efficiency among the external qualities, its true nature is ambigu-
ous. For example, execution speed is definitely noticeable on the part of the end user,
especially when it’s limited. Consumption of other resources, like network bandwidth,
is instead hidden from the user, and you can appraise it only with specialized tools or

1 Toaster robustness is no joke: an estimated 700 people worldwide are killed every year in toaster-related
accidents.
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8 CHAPTER 1 Software qualities and a problem to solve

by analyzing the source code. That’s why I put efficiency somewhat in the middle in
figure 1.2.

Efficiency is a mostly nonfunctional quality, because in general the user doesn’t care
if some service is offered in one or two milliseconds, or whether one or two kilobytes
of data is sent over the network. It becomes a functional issue in two contexts:

In performance-critical applications—In these cases, performance guarantees are
part of the specifications. Think of an embedded device that interacts with
physical sensors and actuators. The response time of its software must obey
precise timeouts. Failure to do so may result in functional inconsistencies in
the best case, all the way to life-threatening incidents in industrial, medical, or
automotive applications.
Whenever the efficiency is so bad that it affects normal operations—Even for a consumer-
oriented, noncritical program, there’s a limit to the sluggishness and memory
hunger that the user is willing to put up with. Beyond that, the lack of efficiency
rises to the level of a functional defect.

1.3 Mostly internal software qualities
You can appraise internal qualities better by looking at the source code of a program
than by running it. The following subsections provide a list of the most important
internal qualities.

1.3.1 Readability

Clarity, understandability by fellow programmers
It may seem odd to speak of toaster readability, until we realize that, as for all internal
qualities, we are talking about its structure and design. In fact, the relevant interna-
tional standard for software qualities dubs this characteristic analyzability. So, a readable
toaster, once opened for inspection, is easy to analyze, revealing a clear internal layout,
with the heating elements well separated from the electronics, an easily identifiable
power circuit and timer, and so on.

A readable program is just what it sounds like: easy to understand by another pro-
grammer, or by the author after the program’s mental model has faded from their
mind. Readability is an extremely important, and often undervalued, code quality. It’s
the topic of chapter 7 of this book.

1.3.2 Reusability

Ease of reusing the code to solve similar problems, and amount of changes needed to do so—aka
adaptability
Youmay consider a toaster reusable in our sense if the company that makes it can adapt
its design and its parts to build other appliances. For example, its power cord is likely
to be standard and, as such, compatible with similar small appliances. Perhaps its timer
could be used in a microwave, and so on.
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Code reuse was one of the historical selling points of the object oriented (OO)
paradigm. Experience has proven that the vision of building complex systems out of
widely reusable software components was exaggerated. The modern trend, instead,
favors libraries and frameworks that are intentionally designed for reusability, on top of
which lies a not-so-thin layer of application-specific code that doesn’t aim at reusability.
I address reusability in chapter 9 of this book.

1.3.3 Testability

The ability to write tests, and how easy it is to do so, that can trigger all relevant program behaviors
and observe their effects
Before discussing testable toasters, let’s try to figure out what a toaster test might look
like.2 A reasonable test procedure would involve inserting suitable thermometers into
the slots and starting a toasting run. You’d measure success by the temperature change
in time being sufficiently close to a predetermined nominal one. A testable toaster
makes this procedure easy to perform repeatedly and automatically, with as little human
intervention as possible. For example, a toaster that you can start by pushing a button
is more testable than a toaster requiring a lever to be pulled down, because it’s easier
for a machine to push or bypass a button than to pull or bypass a lever.

Testable code exposes an API that allows the caller to verify all expected behaviors.
For example, a voidmethod (aka a procedure) is less testable than amethod returning
a value. This book addresses testing techniques and testability in chapter 6.

1.3.4 Maintainability

Ease of finding and fixing bugs, as well as evolving the software
A maintainable toaster is easy to pull apart and service. Its schematics are widely avail-
able, and its components are replaceable. Similarly, maintainable software is readable
and modular, with different parts having clearly defined responsibilities and interact-
ing in clearly defined ways. Testability and readability, addressed in chapters 6 and 7,
are among the main contributors to maintainability.

The FURPS model
Large companies with strong technical traditions develop their own quality model for
their software development processes. For example, Hewlett-Packard developed the
well-known FURPS model, which classifies software characteristics in five groups:
Functionality, Usability, Reliability, Performance, and Supportability.

2 According to some reports, “how to test a toaster” is a recurring question in software engineering job
interviews.
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Table 1.1 Typical interactions between code qualities:

Þ

stands for “hurts” and - for “no interaction.”
Inspired by Figure 20-1 in Code Complete (see the Further reading section at the end of this chapter).

Readability

Robustness -

Space efficiency

Þ

-

Time efficiency

Þ Þ Þ

Readability Robustness Space efficiency Time efficiency

1.4 Interactions between software qualities
Some software qualities represent contrasting objectives, while others go hand-in-hand.
The result is a balancing act common to all engineering specialties. Mathematicians
have a name for this type of problem: multi-criteria optimization; that is, finding optimal
solutions with respect to multiple competing quality measures. Contrary to an abstract
mathematical problem, software qualities may be impossible to quantify (think read-
ability). Luckily, you don’t need to find a truly optimal solution, just one that’s good
enough for your purposes.

Table 1.1 summarizes the relationships between four of the qualities that we examine
in this book. Both time and space efficiency may hinder readability. Seekingmaximum
performance leads to sacrificing abstraction and writing lower level code. In Java, this
may entail using primitive types instead of objects, plain arrays instead of collections,
or, in extreme cases, writing performance-critical parts in a lower level language like C
and connecting them with the main program using the Java Native Interface.

Minimizing memory requirements also favors the use of primitive types, as well as
special encodings, where a single value is used as a compact way to represent different
things. (You’ll see an example of this in section 4.4.) All these techniques tend to hurt
readability, and hencemaintainability. Conversely, readable code uses more temporary
variables and support methods and shies away from those low-level performance hacks.

Time and space efficiency also conflict with each other. For example, a common
strategy for improving performance involves storing extra information in memory,
instead of computing it every time it’s needed. A prominent example is the differ-
ence between singly and doubly linked lists. Even though the “previous” link of every
node could in principle be computed by scanning the list, storing and maintaining
those links allows for constant-time deletion of arbitrary nodes. The class in section 4.4
trades improved space efficiency for increased running time.

Maximizing robustness requires adding code that checks for abnormal circumstances
and reacts in the proper way. Such checks incur a performance overhead, albeit usually
quite limited. Space efficiency need not be impacted in any way. Similarly, in principle,
there’s no reason why robust code should be less readable.

Software metrics
Software qualities are related to software metrics, which are quantifiable properties
of a piece of software. Hundreds of metrics have been proposed in the literature,
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two of the most common being the mere number of lines of code (aka LOC) and the
cyclomatic complexity (a measure of the amount of nesting and branching). Metrics
provide objective means of evaluating and monitoring a project that are intended to
support decisions related to project development. For example, a method having high
cyclomatic complexity may require more testing effort.

Modern IDEs automatically compute common software metrics either natively or via
plugins. The relative merits of these metrics, their relationships with the general
software qualities described in this chapter, and their effective use are highly debated
topics in the software engineering community. In this book, we’ll make use of code
coverage metrics in chapter 6.

Opposite to these software qualities sits another force that contrasts them all: devel-
opment time. Business reasons push for writing software quickly, but maximizing any
quality attribute requires deliberate effort and time. Even when management is sensi-
tive to the prospective benefits of carefully designed software, it may be tricky to esti-
mate how much time is enough time for a high-quality result. Development processes,
of which there are a rich variety, propose different solutions to this problem, some
advocating the use of the software metrics mentioned in the sidebar.

This book doesn’t enter into the process debate (sometimes it feels like “war” is
a more appropriate term), instead focusing on those software qualities that remain
meaningful when applied to a small software unit consisting of a single class with a
fixed API. Time and space efficiency make the cut, together with reliability, readability,
and generality. I exclude other qualities, such as usability or security, from this analysis.

1.5 Special qualities
In addition to the quality attributes I’ve described in the previous sections, I’ll con-
sider two properties of a class that are not formally software qualities: thread safety and
succinctness.

1.5.1 Thread safety

The ability of a class to work seamlessly in a multithreaded environment
This isn’t a general software quality because it applies only to the specific context of
multithreaded programs. Still, such context has become so ubiquitous and thread
synchronization issues are so tricky that knowing your way around basic concurrency
primitives is a valuable skill to have in any programmer’s toolbox.

It’s tempting to put thread safety among the internal qualities, but that would be a
mistake. What’s truly hidden from the user is whether a program is sequential or multi-
threaded. In the realm of multithreaded programs, thread safety is a basic prerequisite
to correctness, and as such a very visible quality. Incidentally, thread safety issues lead
to some of the hardest bugs to detect because of their apparent randomness and poor
reproducibility. That’s why in figure 1.2 I put thread safety in the same area as cor-
rectness and robustness. Chapter 8 is devoted to ensuring thread safety while avoiding
common concurrency pitfalls.
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1.5.2 Succinctness

Writing the shortest possible program for a given task
Generally speaking, this isn’t a code quality at all. On the contrary, it leads to horrible,
obscure code. I’ve included it in this book (in appendix A) as a fun exercise that pushes
the language to its limits and challenges your knowledge of Java or any programming
language of your choice.

Still, you can find practical scenarios where succinctness is a desired objective. Low-
end embedded systems like smart cards, found in phones and credit cards, may be
equipped with so little memory that the program must not only occupy little memory
while running, but also exhibit a small footprint when stored on persistent memory.
Indeed, most smart cards these days feature 4 KB of RAM and 512 KB of persistent
storage. In such cases, the sheer number of bytecode instructions becomes a relevant
issue, and shorter source code may lead to fewer issues in that area.

1.6 The recurring example: A system of water containers
In this section, I’ll describe the programming problem that you’ll solve repeatedly in
the rest of the book, each time aiming at a different software quality objective. You’ll
learn the desired API, followed by a simple use case and a preliminary implementation.

Suppose you need to implement the core infrastructure for a new social network.
People can register and, of course, connect with each other. Connections are symmet-
ric (if I’m connected to you, you’re automatically connected to me, as with Facebook),
and one special feature of this network is that users can send a message to all the users
to whom they’re connected, directly or indirectly. In this book, I’ll take the essential
features of this scenario and put them in a simpler setting, where we don’t have to
worry about the content of the messages or the attributes of the people.

Instead of people, you’ll deal with a set of water containers, all identical and equipped
with a virtually unlimited capacity. At any given time, a container holds a certain
amount of liquid, and any two containers can be permanently connected by a pipe.
Instead of sending messages, you can pour water in or remove it from a container.
Whenever two or more containers are connected, they become communicating vessels,
and from that time on they split equally the liquid contained in them.

1.6.1 The API

This section describes the desired API for the water containers. At the very least, you’ll
build a Container class, endowed with a public constructor that takes no arguments
and creates an empty container, and the following three methods:

public double getAmount()—Return the amount of water currently held in
this container.
public void connectTo(Container other)—Permanently connect this con-
tainer with other.
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public void addWater(double amount)—Pour amountunits of water into this
container. This method automatically and equally distributes water among all
containers that are connected, directly or indirectly, to this one.

You can also use this method with a negative amount to remove water from
this container. In that case, the group of connected containers should be hold-
ing enough water to satisfy the request—you wouldn’t want to leave a negative
amount of water in a container.

Most of the implementations I present in the following chapters conform exactly to
this API, save for a couple of clearly marked exceptions, where tweaking the API helps
optimizing a certain software quality.

A connection between two containers is symmetric: water can flow in both direc-
tions. A set of containers connected by symmetric links form what is known in com-
puter science as an undirected graph. See the sidebar to learn the basic notions about
such graphs.

Undirected graphs
In computer science, networks of pairwise connected items are called graphs. In this
context, items are also known as nodes and their connections as edges. If connections
are symmetric, the graph is called undirected because the connections don’t have a
specific direction. A set of items that are connected, directly or indirectly, is called a
connected component. In this book, a maximal connected component is simply called
a group.

Edge
Node

A connected 
component of 

one node 

A connected 
component 

The elements of graphs according to computer science

A proper implementation of addWater in the container scenario requires that you
know what components are connected because you have to spread (or remove) water
evenly among all connected containers. In fact, themain algorithmic problem underly-
ing the proposed scenario consists of maintaining knowledge of the connected compo-
nents under node creation (new Container) and edge insertion (connectTomethod),
a type of dynamic graph connectivity problem.
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Figure 1.3 The four steps of the use case: from four empty isolated containers to a single group of
connected containers

Such problems are central to many applications involving networks of items: in a
social network, connected components represent groups of people linked by friend-
ship; in image processing, connected (in the sense of adjacent) regions of same-color
pixels help identify objects in a scene; in computer networks, discovering and main-
taining connected components is a basic step in routing. Chapter 9 explores the reach
and the limits of our specific version of the problem.

1.6.2 The use case

This section presents a simple use case that exemplifies the API outlined in the previous
section. You’ll create four containers, put some water in two of them, and then progres-
sively connect them until they form a single group (figure 1.3). For this preliminary
example, you’ll insert the water first and then connect the containers. In general, you
can freely interleave these two operations. What’s more, you can create new containers
at any time.

I’ve divided the use case (class UseCase in the online repository (https://bitbucket
.org/mfaella/exercisesinstyle)) into four parts so that in the other chapters you can
easily refer to specific points and examine how different implementations fulfill the
same requests. The four steps are illustrated in figure 1.3. In the first part, which
coincides with the following code snippet, you simply create four containers. Initially,
they’re empty and isolated (not connected).
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Container a = new Container();
Container b = new Container();
Container c = new Container();
Container d = new Container();

Next, you add water to the first and last containers and connect the first two with a
pipe. At the end, you print the water amount in each container to screen to check that
everything worked according to the specifications.

a.addWater(12);
d.addWater(8);
a.connectTo(b);
System.out.println(a.getAmount()+" "+b.getAmount()+" "+

c.getAmount()+" "+d.getAmount());

At the end of the previous snippet, containers a and b are connected, so they share the
water that you put into a, whereas containers c and d are isolated. The following is the
desired output from the println:
6.0 6.0 0.0 8.0

Let’s move on and connect c to b to check whether adding a new connection auto-
matically redistributes the water among all connected containers.

b.connectTo(c);
System.out.println(a.getAmount()+" "+b.getAmount()+" "+

c.getAmount()+" "+d.getAmount());

At this point, c is connected to b and, indirectly, to a. Now a, b, and c are communicat-
ing vessels, and the total amount of water contained in all of them distributes equally
among them. Container d is unaffected, leading to this output:
4.0 4.0 4.0 8.0

Pay special attention to the current point in the use case, as I will use it in the follow-
ing chapters as a standard scenario to show how different implementations represent
the same situation in memory.

Finally, connect d to b so that all containers form a single connected group:

b.connectTo(d);
System.out.println(a.getAmount()+" "+b.getAmount()+" "+

c.getAmount()+" "+d.getAmount());

As a consequence, in the final output, the water level is equal in all containers:
5.0 5.0 5.0 5.0

1.7 Data model and representations
Now that you know the requirements for your water container class, you can turn to
designing an actual implementation. The specifications fix the public API, so the next
step is to figure out which fields each Container object needs, and possibly the class
itself (aka static fields) needs. The examples in later chapters show that you can come
up with a surprisingly large number of different field choices, depending on which
quality objective you’re aiming for. This section presents some general observations
that apply regardless of the specific quality objective.
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First of all, the objects must include enough information to offer the services that
the specifications require. Once this basic criterion is met, you still have two types of
decisions to make:

1 Do you store any extra information, even if not strictly necessary?
2 How do you encode all the information you want to store? Which data types or
structures are the most appropriate? And which object(s) will be responsible
for it?

Regarding question 1, you may want to store unnecessary information for two possible
reasons. First, you may do so for performance; this is the case of information that you
could derive from other fields, but you prefer to have it ready because deriving it is
more expensive than maintaining it. Think of a linked list storing its length in a field,
even if that information could be computed on-the-fly by scanning the list and counting
the number of nodes. Second, you sometimes store extra information to make room
for future extensions. You’ll encounter an example of this in section 1.7.2.

Once you establish what information is to be stored, it’s time to answer question 2
by equipping classes and objects with fields of appropriate types. Even in a relatively
simple scenario like our water containers, this step can be far from trivial. As the whole
book tries to prove, several competing solutions may exist, all valid in different contexts
and with different quality objectives in mind.

Focusing on our scenario, the information describing the current state of a con-
tainer is composed of two aspects: the amount of water held in it and its connections
with other containers. The next two sections deal with each aspect separately.

1.7.1 Storing water amounts

First of all, the presence of the getAmount method requires containers to “know” the
amount of water in them. By “knowing,” I don’t mean that you should necessarily store
this information in the container. It’s too early to make that call. What I mean is simply
that the container has some way to appraise that value and return it. Additionally, the
API dictates that such an amount be represented by a double. The natural implemen-
tation choice is indeed to include an amount field of type double in each container.
Under closer inspection, youmight notice that each container in a group of connected
containers holds the same amount of water. So, it might be preferable to store such
amount information only once, in a separate object representing a group of contain-
ers. In this way, you’ll only need to update a single object when addWater is called,
even if the current container is connected to many others.

Finally, instead of a separate object, you also could store the group amount in a
special container, chosen as the representative for its group. Summarizing, at least
three approaches seem to make sense at this point:

1 Each container holds an up-to-date “amount” field.
2 A separate “group” object holds the “amount” field.
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3 Only one container in each group—the representative—holds the up-to-date
amount value, which applies to all containers in the group.

In the following chapters, various implementations side with each of these three alter-
native approaches (as well as a couple of extra approaches), and I’ll discuss the pros
and cons of each approach in detail.

1.7.2 Storing connections

When adding water to a container, the liquid must be distributed equally over all con-
tainers that are connected (directly or indirectly) to it. Each container therefore must
be able to identify all the containers that are connected to it. An important decision is
whether to distinguish direct from indirect connections. A direct connection between a

and b can be established only via the call a.connectTo(b) or b.connectTo(a), whereas
indirect connections arise as a consequence of direct ones.3

PICKING THE INFORMATION TO BE STORED
The operations that our specifications require don’t distinguish direct from indirect
connections, so you could just store the more general type: indirect connections. How-
ever, suppose that at some point in the future you want to add a “disconnectFrom” oper-
ation whose intent is to undo a previous “connectTo” operation. If you mix up direct
and indirect connections, you can’t hope to correctly implement “disconnectFrom.”

Indeed, consider the two scenarios represented in figure 1.4, where direct connec-
tions are drawn as lines between containers. If you store only indirect connections in
memory, the two scenarios are indistinguishable: in both cases, all containers aremutu-
ally connected. Hence, if the same sequence of operations is applied to both scenarios,
they’re bound to react in the exact same way. On the other hand, consider what should
happen if the client issues the following operations:

a.disconnectFrom(b);
a.addWater(1);

If these two lines are executed on the first scenario (figure 1.4, left), the three con-
tainers are still mutually connected, so the extra water must be split equally among all
of them. Conversely, in the second scenario (figure 1.4, right) disconnecting a from
b makes container a isolated, so the extra water must be added to a only. This shows
that only storing indirect connections is incompatible with a future “disconnectFrom”
operation.

Summarizing, if you think that the future addition of a “disconnectFrom” opera-
tion is likely, you may have reason to store direct connections explicitly and separately
from indirect ones. However, if you don’t have specific information about the future
evolution of your software, you should be wary of such temptations. Programmers are
known to be prone to overgeneralization and tend to weigh the hypothetical benefits
more than the certain costs that come with it. Consider that the costs associated with

3 In mathematical terms, indirect connections correspond to the transitive closure of direct ones.
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Figure 1.4 Two three-container scenarios. Lines between containers represent direct connections.

an extra feature aren’t limited to development time, as each unnecessary class member
needs to be tested, documented, and maintained just like the necessary ones.

Also, there’s no limit to the amount of extra information you may want to include.
What if you later want to remove all connections older than one hour? You should
store the time when each connection was made! What if you want to know how many
threads have created connections? You should store the set of all threads that have
ever created a connection, and so on. In the following chapters, I’ll generally stick to
storing only the information that’s necessary for present purposes,4 with a few clearly
marked exceptions.

PICKING A REPRESENTATION
Finally, assuming you’re satisfied with storing indirect connections, the next step is
to pick an actual representation for them. In this respect, the preliminary choice is
between explicitly forging a new class, say Pipe, to represent the connection between
two containers, or storing the corresponding information directly inside the container
objects (an implicit representation).

The first choice is more inline with the OO orthodoxy. In the real world, containers
are connected by pipes, and pipes are real objects, clearly distinguished from contain-
ers. Hence, the story goes, they deserve to be modeled separately. On the other hand,
the specifications laid out in this chapter don’t mention any Pipe objects, so they would
remain hidden within containers, unknown to the clients. Moreover, and more impor-
tantly, those pipe objects would contain very little behavior. Each pipe would hold two
references to the containers being connected, with no other attributes or nontrivial
methods.

Balancing these reasons, it seems there would be a pretty meager benefit from hav-
ing this extra class around, so you might as well follow the practical, implicit route and
avoid it altogether. Containers will be able to reach their group companions without

4 This principle has been formalized as the “You aren’t gonna need it” (YAGNI) slogan by the Extreme
Programming movement.
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resorting to a dedicated “pipe” object. But how exactly will you arrange the references
linking the connected containers? The core language and its API offer a variety of
solutions: plain arrays, lists, sets, and more. We won’t analyze them here because many
of them occur naturally in the following chapters (especially chapters 4 and 5) when
optimizing for different code qualities.

1.8 Hello containers! [Novice]
To break the ice, in this section we’ll consider a Container implementation that could
be authored by an inexperienced programmer who’s just picked up Java after some
exposure to a structured language like C. This class is the first in the long sequence of
versions that you’ll encounter throughout the book. I’ve assigned each version a nick-
name to help you navigate and compare them. The nickname for this version is Novice,
and its fully qualified name in the repository is eis.chapter1.novice.Container.

1.8.1 Fields and constructor

Even seasoned professionals have been beginners at some point, navigating the syntax
of a new language, unaware of the vast API hiding just around the corner. At first, arrays
are the data structure of choice, and resolving syntax errors is too demanding to also
worry about coding style issues. After some trial and error, the beginning programmer
puts together a class that compiles and seems to fulfill the requirements. Perhaps it
starts somewhat like listing 1.1.

Listing 1.1 Novice: Fields and constructor

public class Container {

Container[] g; b The group of connected containers
int n; c The actual size of the group
double x; d The water amount in this container

public Container() {
g = new Container[1000]; e Look: a magic number!
g[0] = this; f Puts this container in its group
n = 1;
x = 0;

}

These few lines contain a wealth of small and not-so-small defects. Let’s focus on the
ones that are superficial and easy to fix, as the others will become apparent when we
move to better versions in subsequent chapters.

The intent for the three instance fields is the following:

g is the array of all containers connected to this one, including this one (as is
clear from the constructor)
n is the number of containers in g

x is the amount of liquid in this container
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The single quirk that immediately marks the code as amateurish is the choice of vari-
able names: very short and completely uninformative. A pro wouldn’t call the group g

if a mobster gave them 60 seconds to hack into a super-secure system of water contain-
ers. Jokes aside, meaningful naming is the first rule of readable code, as you’ll see in
chapter 7.

Then we have the visibility issue. Fields should be private instead of default. Recall
that default visibility is more open than private; it allows access from other classes resid-
ing in the same package. Information hiding (aka encapsulation) is a fundamental OO
principle, enabling classes to ignore the internals of other classes and interact with
them via a well-defined public interface (a form of separation of concerns). In turn,
this allows classes to modify their internal representation without affecting existing
clients.

The principle of separation of concerns also provides the very footing for this book.
The many implementations I present in the following chapters comply with the same
public API, and therefore, in principle, clients can use them interchangeably. The way
each implementation realizes the API is appropriately hidden from the outside, thanks
to the visibility specifiers. At a deeper level, the very notion of individually optimizing
different software qualities is an extreme instance of separation of concerns. It’s so
extreme, in fact, to bemerely a didactic tool and not an approach to pursue in practice.

Moving along, the array size, as shown in the sixth line of code in listing 1.1, is
defined by a so-calledmagic number : a constant that’s not given any name. Best practices
dictate that you assign all constants to some final variable, so that (a) the variable name
can document the meaning of the constant, and (b) you set the value of that constant
at a single point, which is especially useful if you use the constant multiple times.

The choice of using a plain array is not very appropriate, as it puts an a-priori bound
to themaximumnumber of connected containers: too small a bound, and the program
is bound to fail; too large is just wasted space. Moreover, using an array forces us to
manually keep track of the number of containers actually in the group (field n here).
Better options exist in the Java API, and I discuss them in chapter 2. Nevertheless,
plain arrays will come in handy in chapter 5, where the primary objective will be to save
space.

1.8.2 Methods getAmount and addWater

Let’s proceed and examine the source code for the first two methods, as shown in the
following listing.

Listing 1.2 Novice: Methods getAmount and addWater

public double getAmount() { return x; }

public void addWater(double x) {
double y = x / n;
for (int i=0; i<n; i++)

g[i].x = g[i].x + y;
}
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getAmount is a trivial getter, and addWater shows the usual naming problems with
variables x and y, whereas i is acceptable as the traditional name for an array index.
If the last line of the listing used the += operator, it wouldn’t repeat g[i].x twice,
and you wouldn’t have to look back and forth to make sure the statement is actually
incrementing the same variable.

Notice that addWater doesn’t check whether its argument is negative and, in that
case, whether the group holds enough water to satisfy the request. I’ll deal with robust-
ness issues like this one specifically in chapter 6.

1.8.3 Method connectTo

Finally, our novice programmer implements the connectTo method, whose task is to
merge two groups of containers with a new connection. After this operation, all con-
tainers in the two groups must hold the same amount of water because they all become
communicating vessels. First, the method will compute the total amount of water in
both groups and the total size of the two groups. The water amount per container,
after the merge, is simply the former divided by the latter.

You’ll also need to update the arrays of all containers in the two groups. The naive
way to do so involves appending all containers in the second group to all the arrays
belonging to the first group, and vice versa. That’s what the following listing does,
using two nested loops. Finally, the method updates the size field n and the amount
field x of all affected containers.

Listing 1.3 Novice: Method connectTo

public void connectTo(Container c) {
double z = (x*n + c.x*c.n) / (n + c.n); b Amount per container

after merge
for (int i=0; i<n; i++) c For each container g[i] in 1st group

for (int j=0; j<c.n; j++) { d For each container c.g[j] in 2nd group
g[i].g[n+j] = c.g[j]; e Appends c.g[j] to group of g[i]
c.g[j].g[c.n+i] = g[i]; f Appends g[i] to group of c.g[j]

}

n += c.n;

for (int i=0; i<n; i++) { g Updates sizes and amounts
g[i].n = n;
g[i].x = z;

}
}

As you can see, the connectTo method is where the naming issues hurt the most.
All those single letter names make it really hard to understand what’s going on. For
a dramatic comparison, you may want to jump ahead and take a quick look at the
readability-optimized version in chapter 7.

Readability would also be improved by replacing the three for-loops with enhanced-
for (aka foreach statement in C#), but the representation based on fixed-size arrays
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makes that a little cumbersome. Indeed, imagine you replaced the last loop from
listing 1.3 with the following:

for (Container c: g) {
c.n = n;
c.x = z;

}

This new loop is certainly more readable, but it’s going to crash with a NullPointer�

Exception as soon as the c variable goes beyond the cells that actually contain a ref-
erence to a container. The remedy is quite simple—exiting the loop as soon as you
detect a null reference:

for (Container c: g) {
if (c==null) break;
c.n = n;
c.x = z;

}

Despite being utterly unreadable, the connectTo method in listing 1.3 is logically
correct, with some restrictions. Indeed, consider what happens if this and c are already
connected before you call themethod. Let’s make it concrete and assume the following
use case, involving two brand new containers:

a.connectTo(b);
a.connectTo(b);

Can you see what’s going to happen? Is the method tolerant to this slight misstep by
the caller? Really think about it before reading ahead. I’ll wait . . .

The answer is that connecting two already connected containers messes up their
state. Container a ends up with two references to itself and two references to b in its
group array, and a size field n equal to 4 instead of 2. Something similar happens to
b. What’s worse, the defect manifests itself even if this and c were only indirectly con-
nected, which can’t be considered ill usage on the part of the caller. I’m talking about
a scenario like the following (once again, a, b, and c are three brand new containers):

a.connectTo(b);
b.connectTo(c);
c.connectTo(a);

Before the last line, containers a and c are already connected, albeit indirectly (as in
figure 1.4, right). The last line adds a direct connection between them, which is legit-
imate according to the specifications and leads to the situation depicted in figure 1.4,
left. But the connectTo implementation in listing 1.3, instead, adds a second copy of
all three containers to all group arrays, while erroneously setting all group sizes to 6
instead of 3.

Another obvious limitation of this implementation is that if the merged group con-
tains more than 1,000 members (the magic number), one of these two lines in list-
ing 1.3:
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g[i].g[n+j] = c.g[j];
c.g[j].g[c.n+i] = g[i];

will crash the program with an ArrayIndexOutOfBoundsException.
In the next chapter, I’ll present a reference implementation that solves most of

the superficial issues I’ve noted here, while striking a balance between different code
qualities.

Summary
You can distinguish between internal and external software qualities, as well as
functional and nonfunctional software qualities.
Some software qualities contrast with each other, and some go hand-in-hand.
This book addresses software qualities using a system of water containers as a
unifying example.

Further reading
This book tries to squeeze into 300 pages a varied range of topics that are seldom
treated together. To pull this off, I can only scratch the surface of each topic. That’s
why I end each chapter with a short list of resources you can refer to for in-depth
information on the chapter’s content.

Steve McConnell. Code Complete. Microsoft Press, 2nd edition, 2004.
A valuable book on coding style and all-around good software. Among many
other things, it discusses code qualities and their interactions.
Diomidis Spinellis. Code Quality: The Open Source Perspective. Addison Wesley,
2006.
The author takes you on a journey through quality attributes not unlike the one
offered by this book, but with an almost opposite guiding principle: instead of
a single running example, he employs a wealth of code fragments taken from
various popular open source projects.
Stephen H. Kan. Metrics and Models in Software Quality Engineering. Addison
Wesley, 2003.
Kan provides a systematic, in-depth treatment of software metrics, including
statistically sound ways to measure them and use them to monitor and manage
software development processes.
Christopher W.H. Davis. Agile Metrics in Action. Manning Publications, 2015.
Chapter 8 of this book discusses software qualities and the metrics you can use
to estimate them.
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This chapter covers
Using standard collections

Creating diagrams to illustrate a software
design

Expressing performance in big-O notation

Estimating the memory footprint of a
class

In this chapter, you’ll examine a version of the Container class that strikes a good
balance between different qualities, such as clarity, efficiency, and memory usage.

As you recall from section 1.7, I made the assumption that storing and maintain-
ing the set of indirect connections between containers would suffice. In practice, you
do this by equipping each container with a reference to the collection of containers
directly or indirectly connected to it, called its group. Being familiar with the Java Col-
lections Framework (JCF) (see sidebar), let’s go hunting for the best class to represent
one of these groups.

25
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Duplicates?

List

SetOrder?

Insertion
order SortedSetYes

No

None

Custom order

HashSet

TreeSet

LinkedList

ArrayList

ClassesInterfaces

Figure 2.1 Choosing the right Java interface and class for a collection of items

Java Collections Framework
Most standard collections were introduced in Java 1.2 and were heavily redesigned
for the 1.5 release (later renamed Java 5) to take advantage of the newly introduced
generics. The resulting API is called the JCF and is one of the crown jewels of the Java
ecosystem. It comprises approximately 25 classes and interfaces, providing common
data structures such as linked lists, hash tables, and balanced trees, as well as
concurrency-oriented facilities.

When choosing the right type to represent a collection of items, you should con-
sider two questions: whether the collection will contain duplicates, and whether the
ordering of the elements is relevant. In our case, the answer to both questions is “no.”
In other words, container groups function as mathematical sets, corresponding to the
Set interface from the JCF, as shown in figure 2.1.

Next, you need to choose an actual implementation of Set, that is, a class that
implements said interface. You have no reason to depart from the most common and
generally most efficient choice: HashSet.

POP QUIZ 1 Which collection interface and class would you choose to represent
your phone’s contact list?
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C# collections
C# collection hierarchy differs somewhat from Java’s, but the range of concrete classes
you ultimately instantiate is quite similar. For example, here are the C# closest
matches to each of the classes I mentioned in figure 2.1:

Java C#

HashSet HashSet

TreeSet SortedSet

ArrayList List

LinkedList LinkedList

2.1 The code [Reference]
Let’s design the reference version of the Container class, starting from its fields and
constructor. The nickname for this version will be, well, Reference. According to the
previous discussion on collections, you equip every new container with an initial group
consisting of that container only and represented by a HashSet.

Programming to an interface. . .
. . .refers to the general idea of focusing
your design efforts around APIs, rather
than concrete implementations. It’s akin
to the design-by-contract methodology I
discuss in chapter 5. Declaring a field
with the most general interface type that
gets the job done is a small-scale appli-
cation of this principle.

Following the program to an interface best
practice, you should declare the group
field as a Set and then instantiate it as a
concrete HashSet. Think of this as hid-
ing the concrete type from the rest of the
class. A benefit of this approach is that if
you later change your mind and switch
the concrete type from HashSet to some
other implementation of Set, the sur-
rounding code stays unchanged because
it refers only to the interface.

Additionally, each container is aware of the amount of water in it, encoded by a
double value that is implicitly initialized to zero. You should end up with code similar
to the following listing.

Listing 2.1 Reference: Fields and constructor

import java.util.*; b The following listings will omit the import statements.

/* A water container. c This freestyle comment should be
in Javadoc instead (see chapter 7).*

* by Marco Faella
*/
public class Container {

private Set<Container> group; d Containers connected to this one
private double amount; e Amount of water in this container
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/* Creates an empty container. */ f This should also be in Javadoc.
public Container() {

group = new HashSet<Container>();
group.add(this); g Group starts with this container.

}

For starters, compared with Novice, this version uses proper encapsulation and naming:
fields are private and have reasonably descriptive names. Then, I have intentionally
commented the code in a rather naive way to contrast this style with themore principled
approach that I discuss in chapter 7, where readability becomes the central issue.

Before presenting the various methods, I’ll introduce a couple of graphical devices
that will be useful for visually comparing different versions of containers that I’ll present
in the following chapters.

2.1.1 Memory layout diagrams

For every version of Container that uses a different choice of fields to represent its
data, I’ll show a memory layout picture, which is an abstract illustration of how a given
set of containers is realized in memory. The intent is to help you build a visual mental
model of that representation, and to ease comparison between different versions. To
that end, I’ll always depict the same scenario, namely the standard use case I described
in chapter 1, the way it looks when the first three parts have been executed. Recall that
those parts create four containers (a to d) and execute the following lines:

a.addWater(12);
d.addWater(8);
a.connectTo(b);
b.connectTo(c);

At this point, three of the four containers are connected in a group, and the fourth one
is isolated, as shown in figure 2.2. The memory layout diagram is a simplified scheme
of how the objects are arranged in memory, similar to UML object diagrams (explained
in the following subsection). Both display static snapshots of a set of objects, including
the value of their fields and their relationships. In this book, I prefer to use my own
style of object diagram because it’s more intuitive and I can tailor it to the specific point
I’m trying to make in each section. Figure 2.3 shows the memory layout of Reference,
after the first three parts of UseCase. As you can see, I’ve omitted many low-level details,
such as the type and width in bytes of each field. Additionally, I’ve completely hidden
the internal composition of the HashSet, because right now I’d like you to focus on

8
4 4 4

a b c d

Direct connections Isolated container

Figure 2.2 The situation
after executing the first
three parts of UseCase. You
have connected together
containers a through c and
poured water into a and d.
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Link back to 
container

Each container 
points to a set.

Water amount

a

b

c

d

a

b

c

d

HashSet

HashSet

4.0

4.0

4.0

8.0

Figure 2.3 The memory layout of Reference after executing the first three parts of UseCase. To avoid
clutter, I’ve pictured the references from the HashSets back to the containers as reaching the name
of the container.

which object contains each piece of information, and which object points to which
other object. We’ll return to the memory layout of a HashSet in section 2.2.1.

Unified Modeling Language
Unified Modeling Language (UML) is
a standard providing a rich collec-
tion of diagrams for describing various
aspects of a software system. Class
diagrams and sequence diagrams are
two of the most commonly used parts
of the standard. You’ll see an example
of a sequence diagram in chapter 3.

Naturally, in your job you’re more likely
to encounter standard UML diagrams, so
here’s a brief reminder of two common
types of UML diagrams.

UML CLASS DIAGRAM
A class diagram is a description of the
static properties of a set of classes, particu-
larly regarding their mutual relationships,
such as inheritance or containment. The
just-mentioned object diagrams are closely
related to class diagrams, except that they depict individual instances of those classes.

For example, a class diagram for Reference may look like figure 2.4. The Container

box is quite self-explanatory, listing fields and methods, whose visibility is denoted by
a plus (public) or minus (private) sign. The HashSet box doesn’t specify any field
or method, and that’s perfectly fine for such diagrams; they can be as abstract or as
detailed as you wish.

The line between the two boxes is called an association and represents a relation
between two classes. At each end of the line, you can describe the role of each class
in the association (“Member” and “Group” here) and the so-called cardinality of the
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groupmember

Association

For each container, 
one group

For each group, at 
least one member

Fields and 
methods are 
unexpressed.

public

private

Figure 2.4 UML class diagram for Reference (detailed version)

association. The latter specifies how many instances of that class are in relation to each
instance of the other class. In this case, each container belongs to a single group, and
each group includes one or more members, denoted by “1..*” in UML.

Although formally correct, the class diagram in figure 2.4 is too detailed for most
purposes. UML diagrams are intended to describe a model of the system, not the system
itself. If a diagram becomes too detailed, you might as well replace it with the actual
source code. Hence, you normally don’t mention standard collections such as Hash�
Set explicitly. Rather, they’re interpreted as just one possible implementation of an
association between classes.

In this case, you can replace the HashSet with a more abstract association linking
the Container class with itself. In this way, rather than describing the implementation,
you’re conveying the idea that each container may be connected to zero or more other
containers. Figure 2.5 represents this graphically.

Self-association

Each container 
is connected to 
0 or more 
containers.

Figure 2.5 UML class diagram for Reference (abstract version)

POP QUIZ 2 Use a class diagram to represent the main attributes of Java classes
and methods, and their mutual relationships.

UML OBJECT DIAGRAM
UML object diagrams appear very similar to class diagrams. You distinguish objects
(that is, class instances) from classes by having their names and types underlined. For
example, figure 2.6 shows the object diagram forReference, after executing the first three
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parts of UseCase. That figure is consistent with the abstract class diagram in figure 2.5,
where the HashSets are not explicitlymodeled, but rather hiddenwithin the association
between containers.

is connected to

Figure 2.6 UML object diagram for Reference (abstract version)

In chapter 3, you’ll learn about one more type of UML diagram: the sequence
diagram, designed to visualize the dynamic interactions among a set of objects.

2.1.2 The methods

The getAmount method is a trivial getter—nothing to write home about.

Listing 2.2 Reference: The getAmount method

public double getAmount() { return amount; }

Next, you can develop the connectTo method (listing 2.3).1 Start by observing that
connecting two containers essentially entails merging their two groups. As a result, the
method initially computes the total amount of water in the two groups and the amount
of water in each container after the merge. Then, you modify the group of this con-
tainer to absorb the second group, and you assign all containers of the second group
to the new, larger group. Finally, you update the amount of water in each container
with the precomputed new amount.

As before, listing 2.3 is heavily commented in an attempt to improve its readability.
The modern trend, instead, would be to split it into smaller methods with suitably
descriptive names. I’ll discuss that in depth in chapter 7.

Listing 2.3 Reference: The connectTo method

public void connectTo(Container other) {

// If they are already connected, do nothing
if (group==other.group) return;

int size1 = group.size(), b Computes the new amount
of water in each containersize2 = other.group.size();

double tot1 = amount * size1,

1 Here and in the following chapters, I’m taking some liberties with code formatting, like putting a loop
and its body on the same line. I’m doing so to shorten the listing and make it fit in a single page.
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tot2 = other.amount * size2,
newAmount = (tot1 + tot2) / (size1 + size2);

// Merge the two groups
group.addAll(other.group);
// Update group of containers connected with other c You can replace

comments like this
with a properly named
support method.

for (Container c: other.group) { c.group = group; }
// Update amount of all newly connected containers
for (Container c: group) { c.amount = newAmount; }

}

The addWatermethod simply distributes an equal amount of water to each container
in the group.

Listing 2.4 Reference: The addWater method

public void addWater(double amount) {
double amountPerContainer = amount / group.size();
for (Container c: group) c.amount += amountPerContainer;

}

As in Novice, this method accepts negative arguments—denoting water removal—
and doesn’t check whether the containers hold enough water to satisfy the request. It
thus runs the risk of leaving a negative amount of water in one or more containers. (I
address robustness issues like this in chapter 5.) In the next two sections, we’ll ana-
lyze the memory and time consumption of the implementation I’ve presented in this
section, so later you’ll be able to compare its performance with that of the following
versions.

2.2 Memory requirements
Despite the fact that primitive types have a fixed size, estimating the memory size of a
Java object is not trivial. Three factors render the exact size of an object dependent on
the architecture and even on the JDK vendor:

Reference size
Object headers
Padding

How these factors influence the size of an object depends on the specific JVM you
use to run your program. Recall that the Java framework is based on two official spec-
ifications: one for the Java language and one for the virtual machine (VM). Different
vendors are free to implement their own compiler or VM, and, indeed, as of writing
these lines, Wikipedia lists 18 actively developed JVMs.2 In the following VM-dependent
arguments, I’ll refer to Oracle’s standard JVM, which is called HotSpot.

Let’s consider each of the three memory factors in more detail. First, the size of a
reference is not fixed by the language. Whereas the size is 32 bits on 32-bit hardware,

2 See http://mng.bz/zlm6.
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on modern 64-bit processors it can be either 32 or 64 bits because of a technology
called compressed ordinary object pointers (OOPs). Compressed OOPs allow the program
to store references as 32-bit values, even when the hardware supports 64-bit addresses,
at the cost of addressing “only” 32 GB of the total available heap space. In the following
memory-occupancy estimates, assume a fixed reference size of 32 bits.

Compressed OOPs
Compressed OOPs work by implicitly adding three zeros at the end of each 32-bit
address, so a stored address of, say, 0x1 is interpreted as the machine address
0x1000. In this way, machine addresses effectively span 35 bits, and the program can
access up to 32 GB of memory. The JVM must also take steps to align all variables to
8-byte boundaries, because the program can only refer to addresses that are multiples
of eight.

Summarizing, this technology saves space for each reference but increases padding
space and incurs a time overhead whenmapping stored addresses to machine addresses
(a quick left-shift operation). Compressed OOPs are turned on by default but are auto-
matically disabled if you tell the VM that you intend to use more than 32 GB of memory
(with command-line options -Xms and -Xmx).

Second, the memory layout of all objects starts with a header containing some stan-
dard information that the JVM needs. As a consequence, even an object with no fields
(aka a stateless object) takes up some memory. The detailed composition of the object
header goes beyond the scope of this book,3 but three features of the Java language
are ultimately responsible for it: reflection, multithreading, and garbage collection.

1 Reflection requires objects to know their type. Hence, each object must store
a reference to its class, or a numeric identifier referring to a table of loaded
classes. This mechanism allows the instanceof operator to check the dynamic
type of an object and the getClass method of the Object class to return a
reference to the (dynamic) class of the object.

On a related note, arrays also need to store the type of their cells because
every write operation into an array is type-checked at runtime (and raises Array�
StoreException if incorrect). However, this information does not enlarge the
overhead of a single array, because it’s part of the type information and can
be shared among all arrays of the same type. For example, all arrays of strings
point to the same Class object, representing the type “array of strings.”

2 Multithreading support assigns a monitor to each object (accessible via the syn�
chronized keyword). Hence, the header must accommodate a reference to a
monitor object. Modern virtual machines create such a monitor on demand
only whenmultiple threads actually compete for exclusive access to that object.

3 If you’re curious for details, you can browse the source code for HotSpot, currently available
https://hg.openjdk.java.net/jdk10/jdk10/hotspot. The object headers’ content is described in the file
src/share/vm/oops/markOop.hpp.
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3 Garbage collection needs to store some information on each object, such as a
reference count. In fact, modern garbage collection algorithms assign objects to
different generations, based on the time since they were created. In that case,
the header also contains an age field.

In this book, assume a fixed 12-byte per-object overhead, which is typical of modern
64-bit JVMs. Besides this standard object header, arrays also need to store their length,
leading to a 16-byte total overhead (that is, even an empty array takes 16 bytes).

Finally, hardware architectures require or prefer data to be aligned to certain bound-
aries; that is, they work more efficiently if memory accesses employ addresses that
are multiples of some power of two (usually four or eight). This circumstance leads
compilers and virtual machines to employ padding : inflating the memory layout of an
object with empty space so that each field is properly aligned and the whole object fits
exactly into an integer number of words. For simplicity, we’ll ignore such architecture-
dependent padding issues in this book.

C# object size
The situation in C# is pretty similar to the one I’ve described here for Java, and the
causes for memory overhead are exactly the same, leading to 12-byte headers for
32-bit architectures and 16 bytes for 64 bit.

2.2.1 Memory requirements of Reference

Now turn your attention to the actual memory occupancy of the Reference implementa-
tion. For starters, each Container object requires the following:

12 bytes for overhead
8 bytes for the amount field (type double)
4 bytes for the reference to the set, plus the size of the set itself

To estimate the memory footprint of a HashSet, you need to peek under the hood at
its implementation. You typically implement a HashSet using an array of linked lists
(called buckets), plus a couple of extra fields for bookkeeping. Ideally, each element
goes into a different bucket, and there are exactly as many buckets as elements. With-
out going into too much detail,4 in this ideal scenario a barebone HashSet takes up
approximately 52 bytes. Each element in the set requires one reference (to its list)
and a list with one element: approximately 32 more bytes. I’m using the word bare-
bone instead of empty because an empty HashSet starts with a non-zero initial capacity
(16 buckets in the current OpenJDK), but it’s simpler and more orderly to ascribe that
space to the first elements that will be inserted. Figure 2.7 shows in some detail the
internals of the involved objects, with a breakdown of the memory requirements.

4 The actual implementation of HashSet goes through HashMap, complicating the analysis.
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Figure 2.7 The detailed memory footprint of a container in version Reference. The estimates for
HashSet assume a perfectly sized table of buckets and a perfect hashing function, resulting in exactly
one element in each bucket.

Measuring object size
The JDK includes a tool called JOL (for Java Object Layout) that inspects the inter-
nal memory layout of a given class, including the object header. It’s available at
http://openjdk.java.net/projects/code-tools/jol/.

POP QUIZ 3 The class android.graphics.Rect contains four public fields of type
int. How many bytes does a Rect object take?

To get actual numbers and ease comparisons with other implementations, I’ll esti-
mate the memory occupancy for two hypothetical scenarios: first, 1000 isolated con-
tainers; second, 1000 containers connected in 100 groups of 10 containers each. In
those two scenarios, our reference implementation performs as reported in table 2.1.
Are those numbers good or bad? Are 100 bytes too many for an isolated container?

Table 2.1 Memory requirements of Reference in two conventional scenarios

Scenario Size (calculations) Size (bytes)

1000 isolated 1000 ∗ (12 + 8 + 4 + 52 + 32) 108000

100 groups of 10 1000 ∗ (12 + 8 + 4) + 100 ∗ (52 + 10 ∗ 32) 61200

Can we do any better? It’s hard to judge those numbers as they stand. In the next

Licensed to Abner Lopez <ihackn3wton@gmail.com>

http://openjdk.java.net/projects/code-tools/jol/


36 CHAPTER 2 Reference implementation

two chapters, you’ll develop a number of alternative implementations, and then you’ll
be able to compare their memory occupancy and answer the previous questions with
solid arguments. (Spoiler alert: I present the most compact version in chapter 4, and
it requires just 4 KB for both scenarios, but it doesn’t comply with the established API.)

2.3 Time complexity
Whenmeasuring thememory footprint of a program, you can use bytes as the standard
basic unit. If you ignore the low-level details I discussed in the previous section, as a
rule of thumb, a given Java program will take the same amount of memory when run
on all computers.

The situation for time measurements is more complicated. The same program will
perform in vastly different ways on different computers. Rather than measuring actual
running time, you can count the number of basic steps that the program performs.
Roughly speaking, you can define as a basic step any operation that requires a con-
stant amount of time. For example, you can consider any arithmetic or comparison
operation a basic step.5

Another issue is the fact that the same function can execute a different number of
basic steps when given different inputs. For example, consider the connectTomethod
from listing 2.3. It takes two containers as inputs:

Its only explicit input is the parameter other of type Container.
Being an instance method, it also takes this as an implicit parameter, so the
current container is also an effective input.

That method contains two for loops, whose lengths (that is, number of iterations)
depend on the size of the two container groups being merged, which is a function of
the inputs.

In such cases, you summarize with one or more numeric parameters what it is in
the input that influences the running time of your algorithm. Usually, the summary
involves measuring the size of the input in some way. If the number of basic steps of
our algorithm varies even for same-sized inputs, we just consider the worst case—that
is, the maximum number of steps performed on any input of a given size.

Going back to the connectTomethod, as a first attempt you can consider two param-
eters: size1 and size2, the sizes of the two groups of containers you’remerging. Using
these parameters, you can analyze the connectTo method as shown in the following
listing.

5 The formal definition of basic step must be based on a formal model of computation, such as Turing
machines. You may then define a basic step as any operation that requires a constant number of steps of a
Turing machine.
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Listing 2.5 Reference: The connectTo method (comments stripped)

public void connectTo(Container other) {

if (group==other.group) return; b 1 step

int size1 = group.size(),
size2 = other.group.size();

double tot1 = amount * size1, c 5 steps
tot2 = other.amount * size2,
newAmount = (tot1 + tot2) / (size1 + size2);

group.addAll(other.group); d size2 steps
for (Container c: other.group) { c.group = group; } e size2 steps
for (Container c: group) { c.amount = newAmount; } f size1 + size2

steps}

I’m counting as one step anything that doesn’t involve a loop, because its running
time will be essentially constant, and in particular independent of the parameters size1
and size2. I’m also sweeping a lot of detail under the rug when labeling the group.addAll
line with “size2 steps.” In short, that estimate is the expected number of steps assum-
ing the hashCodemethod spreads objects uniformly over the whole set of representable
integers.

NOTE For a deeper understanding of hash tables and their performance, refer to
a book on data structures, such as the one I mention in the Further reading section
at the end of this chapter.

According to this reasoning, the number of basic steps that connectTo performs is

6 + 2 ∗ size2+ (size1+ size2) = 6 + size1+ 3 ∗ size2 (*)

However, you should recognize that the number 6 in this expression is somewhat arbi-
trary. If you counted assembly lines instead of Java lines, you might get 6 thousand
instead of 6, and 6 million steps if you counted the steps of a Turing machine. For the
same reason, the 3 multiplier in front of size2 is essentially arbitrary. In other words,
the constants 3 and 6 depend on the granularity you choose for the basic steps.

A more interesting way to count steps that elegantly sidesteps the granularity issue is
to focus on only how quickly the number of steps grows when the size parameters grow.
This is called the order of growth, and it’s the basic tenet of complexity theory, a branch
of computer science. The order of growth frees you from the burden of establishing a
specific granularity for the basic steps, thus providing performance estimates that are
more abstract but easier to compare with one another. At the same time, the order
of growth preserves the asymptotic behavior of our function, that is, the trend for large
values of its parameter(s).
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In practice, the most common way to indicate the order of growth is the so-called
big-O notation. For example, the basic steps expression (*) in big-O notation becomes
O(size1+size2), effectively hiding all arbitrary additive and multiplicative constants.
In so doing, it highlights the fact that the number of steps is linearly proportional to
size1 and size2. More precisely, the big-O notation establishes an upper bound to the
growth of a function. So, O(size1+size2) asserts that our running time grows at most
linearly with respect to size1 and size2.

The connectTo method is simple, always performing the same number of steps for
the same values of size1 and size2. Other algorithms are less regular in that their
performance depends on some feature of the input that the size parameter(s) don’t
express. For example, searching for a specific value in an unordered array may find
that value immediately (constant time) or may involve scanning the whole array before
realizing the value isn’t actually there (linear time). In that case, complexity analy-
sis suggests that you consider the input that requires the most steps to complete, aka
the worst case. That’s why the standard performance estimate for algorithms is called
worst-case asymptotic complexity. Summarizing, the (worst-case asymptotic) complexity
of searching in an unordered array is O(n). Table 2.2 presents some common big-O
bounds, their names, and examples of array algorithms matching that bound. For
algorithms running on arrays, the parameter n refers to the size of the array.

Table 2.2 Common complexity bounds in big-O notation

Notation Name Example

O(1) Constant time Checking whether the first element in an
array is zero

O(logn) Logarithmic time Binary search: the smart way to look for
a specific value in a sorted array

O(n) Linear time Finding the maximum value in an
unsorted array

O(n logn) Quasilinear time Sorting an array using merge sort

O(n2) Quadratic time Sorting an array using bubble sort

POP QUIZ 4 Given an unordered array of integers, what is the complexity of
checking whether the array is a palindrome?

Before we delve a little deeper into the asymptotic notation, let’s further simplify the
analysis of connectTo by switching from two size parameters to a single one. If you call
n the total number of containers ever created, then size1+size2 is at most equal to n

(distinct groups are disjoint by definition). Because the upper boundO(size1+size2)

holds for our function, so does O(n), which is greater than the first upper bound. In
other words, the time that a connectTo operation requires grows at most linearly with
the total number of containers around. This may seem like a brutal approximation,
and it is. After all, size1 and size2 are likely to be much smaller than n. However,
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rough as it is, this type of upper bound will be accurate enough to distinguish the
efficiency of the various implementations presented in the following chapters.

The formal definition of big-O notation
When someone says that an algorithm has complexity O(f(n)) for some function f ,
they mean that f(n) is an upper bound to the number of basic steps that the algorithm
performs on any input of size n. This makes sense if we agree on how to measure
the size of the input with a single parameter n.

More formally, you can apply the big-O notation to any function f(n), representing
the number of steps an algorithm requires when run on an input of size n. Consider
an algorithm and let g(n) be the actual number of “steps”—however they may be
defined—performed by the algorithm on an input of size n. Then, writing that the
algorithm has time complexity O(f(n)) means that two numbers m and c exist such
that, for all n ≥ m

g(n) ≤ c · f(n)

In other words, for sufficiently large inputs, the actual number of steps is at most
equal to a constant times the value of the f function.

Complexity theory includes several other notations, denoting lower bounds, simulta-
neous lower and upper bounds, and so on.

2.3.1 Time complexity of Reference

You can now precisely state the time complexity of all the methods from Reference. The
getAmountmethod is a simple getter and takes constant time. Methods connectTo and
addWater need to cycle over all containers in a group. Because a group can be as large
as the whole set of all containers, their complexity in the worst case is linear with the
total number n of containers. Table 2.3 summarizes these observations. In chapter 3,
you’ll learn how to improve these time complexities.

Table 2.3 Time complexities for Reference, with n standing for the total number of containers

Method Time complexity

getAmount O(1)

connectTo O(n)

addWater O(n)

2.4 Applying what you learned
This section, and the similar sections in the following chapters, applies the notions
developed in the chapter to different contexts. Because the whole book is based on
the idea of using a single example to tie together a variety of topics, it’s particularly
important to read and work through these applications. For this reason, I’ve framed
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them as exercises. Naturally, you should try to solve them on your own. If you don’t
have the time or the inclination to do that, at least read the exercises and their solutions. I
believe you’ll find that the solutions are carefully explained and sometimes add useful
insight to the core chapter contents. Besides, several exercises throughout the chapters
guide you in a behind-the-scenes exploration of various classes from the JDK and other
libraries.

EXERCISE 1
1. What is the complexity of the following method?

public static int[][] identityMatrix(int n) {
int[][] result = new int[n][n];
for (int i=0; i<n; i++) {

for (int j=0; j<n; j++) {
if (i==j) {

result[i][j] = 1;
}

}
}
return result;

}

2. Can you make it more efficient without changing its output?
3. If you were able to come up with a more efficient version, does that version have a
lower complexity?

EXERCISE 2
The class java.util.LinkedList<T> realizes a doubly linked list of references to objects
of type T. Check out its source code6 and estimate the size in bytes of a LinkedList with
n elements (excluding the space occupied by the n objects).

EXERCISE 3 (MINI-PROJECT)
Implement the class User, representing a person in a social network, with the following
functionalities:

Each user has a name. Provide a public constructor accepting that name.
Users can befriend each other using the following method:

public void befriend(User other)

Friendships are symmetric: a.befriend(b) is equivalent to b.befriend(a).
Clients can check whether two users are direct friends or indirect friends (friends
of friends) using the following two methods:

public boolean isDirectFriendOf(User other)
public boolean isIndirectFriendOf(User other)

6 As of this writing, the source code is available at http://mng.bz/KElg.
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Summary
You can visualize the structure and behavior of software using static and dynamic
diagrams, such as UML object diagrams and sequence diagrams.
An empty Java object takes 12 bytes of memory because of object headers.
Asymptotic complexity measures time efficiency in a hardware-independent
way.
Big-O notation is the most common way to express an asymptotic upper bound
to time complexity.

Answers to quizzes and exercises

POP QUIZ 1
Let’s say that a contact comprises a name and a phone number. You usually access a
contact list by name, in alphabetical order. That’s a custom order based on the con-
tent of the object, so, despite its name (“list”), a contact list is better represented by a
SortedSet, whose standard implementation is the class TreeSet.

In a real phone, a contact is a much more complex entity, including many attributes
and being connected with different apps. As such, it’s likely to be stored in some sort
of database (for example, Android uses SQLite).

POP QUIZ 2
Here’s a class diagram representing Java classes and methods:

member

Each class 
contains 0 or 
more methods.

Each method 
belongs to one class.

Only Object does 
not extend anything.

Class Method

0..*1

name: String
visibility: Visibility

extends

name: String
visibility: Visibility

1

0..1

Many more 
attributes are 
omitted.

POP QUIZ 3
An android.graphics.Rect object occupies 12 bytes for overhead and 4*4 bytes for its
four integer fields, for a total of 28 bytes. As usual in this book, this estimate ignores
padding issues, which are likely to bring the actual size up to the next multiple of 8,
which is 32.

POP QUIZ 4
Checking whether an array of even length n is a palindrome means checking whether
a[i] equals a[n-1-i] for each i from zero to n/2. That’s n/2 iterations, whose order
of growth is in O(n). (The constant factor 1

2 is irrelevant to the asymptotic notation.)
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EXERCISE 1
1. The complexity of the method is O(n2), that is, quadratic.
2. Here’s a more efficient version that avoids the nested loop and the if statement:

public static int[][] identityMatrix(int n) {
int[][] result = new int[n][n]; b The matrix is initialized with zeros.
for (int i=0; i<n; i++) {

result[i][i] = 1;
}
return result;

}

3. The complexity of the new version is still quadratic because of the array allocation
in the second line, which implicitly initializes all n2 cells to zero.

EXERCISE 2
Here are the relevant lines from the source code of LinkedList:

public class LinkedList<E> extends AbstractSequentialList<E> ... {
transient int size = 0;
transient Node<E> first;
transient Node<E> last;

...
private static class Node<E> {

E item;
Node<E> next;
Node<E> prev;
...

}
}

Aquick check reveals superclasses AbstractSequentialList, AbstractList, and Abstract�
Collection, in that order. Of those, only AbstractList contains an instance field,
used to detect concurrent modifications to the list during an iteration:

protected transient int modCount = 0;

That said, a LinkedList with n elements occupies

12 bytes for overhead
3*4 bytes for the three fields size, first, and last

4 bytes for the inherited modCount field

In addition, for each element it occupies

12 bytes for object overhead
3*4 bytes for the three fields item, next, and prev

Summarizing, a LinkedList with n elements occupies 28 + n ∗ 24 bytes.

EXERCISE 3
The specifications are somewhat similar to the container scenario, except that you need
to distinguish direct from indirect connections (aka friendships). A possible solution
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is to store direct connections explicitly and compute indirect connections on demand.
You can then start the class as follows:

public class User {
private String name;
private Set<User> directFriends = new HashSet<>();

public User(String name) {
this.name = name;

}

public void befriend(User other) {
directFriends.add(other);
other.directFriends.add(this);

}

public boolean isDirectFriendOf(User other) {
return directFriends.contains(other);

}

Checking indirect connections requires a visit to an (undirected) graph. The simplest
such algorithm is the breadth-first search (BFS), which maintains two sets of nodes:

A frontier of nodes waiting to be visited
A set of already visited (aka closed) nodes

Here’s a possible implementation of a BFS:

public boolean isIndirectFriendOf(User other) {
Set<User> visited = new HashSet<>();
Deque<User> frontier = new LinkedList<>();

frontier.add(this);
while (!frontier.isEmpty()) {

User user = frontier.removeFirst();
if (user.equals(other)) {

return true;
}
if (visited.add(user)) { b If not visited

frontier.addAll(user.directFriends); c addAll inserts at the tail end.
}

}
return false;

}

Further reading
You can find a thousand introductory books on Java programming. Here aremy favorites:

Cay S. Horstmann. Core Java. Prentice Hall, 2015.
A two-volume behemoth, coveringmany parts of the API in detail, with a strong
teaching emphasis
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Peter Sestoft. Java Precisely. MIT Press, 3rd edition, 2016.
Not an actual introductory book, but rather a concise and comprehensive ref-
erence guide to the language and a limited selection of the API (including
collections and Java 8 streams)

Regarding time complexity and big-O notation, any introductory book on algo-
rithms features comprehensive explanations on the topic. This is the classic one:

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, 2009.

Finally, for UML and related software engineering techniques, see the following:

Martin Fowler. UML Distilled. Addison-Wesley, 2003.
As its name suggests, this book condenses in fewer than 200 pages a solid intro-
duction to UML notation, with special focus on class and sequence diagrams.
Craig Larman. Applying UML and Patterns. Prentice Hall, 2004.
Much wider in scope and page count than Fowler’s book, this volume goes
way beyond UML and serves as a systematic introduction to OO analysis and
design. The second edition is also available as a free download.
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Part 2

Software Qualities

In this part, we dive into various software qualities and optimize the heck out of
them. In the first chapter of this part, you’ll deal with efficiency, in terms of time and
memory. Algorithms and data structures are the tools for this job.

Chapters 5 and 6 are focused on reliability, using techniques like design-by-contract
and testing. Chapter 7 presents the best practices for writing readable code. Finally, in
chapters 8 and 9, you’ll sink your teeth into advanced programming techniques related
to thread safety and reusability.
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3Need for speed:
Time efficiency

This chapter covers
Comparing the performance of common
data structures, including lists, sets,
and trees

Evaluating worst-case performance and
average long-run performance of a given
data structure

Focusing the computational load on a
specific method of a class, or spreading
it on all methods

Achieving the maximum possible speed for a given computational task has fascinated
programmers since the ancient times of punch-card programming. Indeed, you might
say that a large part of computer science itself was born to satisfy this urge. In this
chapter, I’ll present three different container implementations that optimize speed in
different ways. Why three? Can’t I just present you with the best one? The thing is,
there is no single best version, and that’s one of the main takeaways from this chapter.

Basic programming classes and even introductory computer science curricula over-
look this fact. The latter deal extensively with time efficiency, particularly in algorithm
and data structure classes. Those classes and their textbooks focus on one problem
at a time, be it visiting a graph or balancing a tree. When you consider a single algo-
rithmic problem, with given inputs and desired outputs, you can compare any two

47
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algorithms for performance. You may find that the fastest possible procedure is the
one with the least asymptotic worst-case time complexity. This is indeed how research
makes progress on single computational questions.

On the other hand, many real-world programming tasks, including our container
example, aren’t like that. They don’t accept an input, compute an output, and then
terminate. They ask you to design a number of interacting methods or functionalities
that you may use repeatedly any number of times. Different data structures may favor
one method over another, reducing the complexity of the first and slowing down the
latter. For this reason, often there’s no all-around best solution, just different trade-offs.

This chapter features three implementations of the container class, all conform-
ing to the API I established in chapter 1. They differ in their performance profiles,
but none of them is always faster than the others, at least according to their worst-
case complexity. But you’ll also learn to measure the average performance of a given
implementation when considering long sequences of operations. When you take aver-
age performance into account, the third implementation turns out to be the fastest
in all but the most contrived scenarios, as the simple performance tests I present in
section 3.4 will confirm.

Partial orders
In a multi-method context like ours, worst-case time complexity induces a partial order
between implementations. A partial order is a relation between pairs of items, such
that not every pair is comparable. For example, consider the relation “being descen-
dant from” applied to pairs of people. A pair like (Mike, Anna) belongs to the relation
if Mike descends from Anna. If two people a and b are unrelated, neither the pair (a, b)
nor the pair (b, a) belongs to the relation, which means that the relation is a partial
order. In a partial order, there might be items that are not smaller than any other.
They are top items.

Economists call these items Pareto optimal, and call Pareto front the set of all Pareto
optimal items. If we interpret “being descendant from” as “being smaller,” the mythical
Adam and Eve would be the only top elements, because they’re not smaller than (that
is, descendant from) any other person.

As a more computer-related example, the Java promotion rules between primitive
types induce a partial order among them. In that order, “int” is smaller than (that
is, convertible to) “long,” whereas “boolean” and “int” are uncomparable.

If you’re designing a class and you don’t have specific information on how many times
and in what sequence you’ll invoke each method (that is, if you don’t have a usage
profile), the best you can do is to pick an implementation whose performance profile
is Pareto optimal. In such an implementation, no method can be improved without
degrading the performance of another. This chapter presents three Pareto optimal
implementations for the water container problem.
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POP QUIZ 1 Name a partial order that holds between classes in a Java program.

3.1 Adding water in constant time [Speed1]
In this section, I’ll show you how to optimize the addWatermethod, whose complexity
in our Reference implementation (chapter 2) is linear. It turns out that you can bring its
complexity down to constant time without increasing the complexity of the other two
methods in the class. You truly couldn’t hope for anything better.

In Reference, the problem with addWater is that it needs to visit all containers that are
connected to the current one and update their water amount. This is a waste, especially
because all connected containers share the same amount. To prevent this waste, youmove the
amount field from the Container class to a new Group class. All containers belonging
to the same group will point to the same Group object, containing the amount of water
present in each of those containers.

In practice, the new Container class, called Speed1, has a single field:

private Group group = new Group(this);

Each container holds a reference to an object of a new class Group, which is the nested
class shown in listing 3.1. You pass this to the constructor, so the new group starts
with its first container inside. You’ll find two instance fields in each Group object: one
holding the amount of water in each container of the group, and the other storing the
set of all containers in the group. In this way, each container knows its group, and the
group knows all the containers it comprises.

The Group class is static because you don’t want each group to be permanently
linked to the container that created it. It’s private because it shouldn’t be exposed
to the clients: they have no use for it, and they’re not supposed to access it directly.
Because the whole class is private, there’s no point in applying visibility modifiers to
its constructor and fields.

Listing 3.1 Speed1: The nested class Group

private static class Group {
double amountPerContainer;
Set<Container> members; b The set of all connected containers

Group(Container c) {
members = new HashSet<>();
members.add(c);

}
}

Figure 3.1 shows the situation after executing the first three parts of UseCase. Recall
that those three parts create four containers (a, b, c, and d) and execute the following
method calls:
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8
4 4 4

a b c d

Direct connections Isolated container

Figure 3.1 The situation after
executing the first three parts of
UseCase. Containers a through c
have been connected together, and
water has been poured into a and d.

a.addWater(12);
d.addWater(8);
a.connectTo(b);
b.connectTo(c);

The connectTo method is very similar to the one in Reference, and you can find it in
the online repository for this book (https://bitbucket.org/mfaella/exercisesinstyle).

In figure 3.2, you can see the memory layout of Speed1 at this point of UseCase.
Because the containers have been connected in two groups, two objects of type Group

exist, each holding a reference to the set of all containers belonging to the group, along
with the water amount found in each of those containers.

Then, the read and write methods of Container operate straightforwardly on the
Group object, as you can see in listing 3.2.

Listing 3.2 Speed1: Methods getAmount and addWater

public double getAmount() { return group.amountPerContainer; }

public void addWater(double amount) {
double amountPerContainer = amount / group.members.size();
group.amountPerContainer += amountPerContainer;

Each container 
points to a group.

Each group points to 
a set of containers.

Link back to 
container

Water amount 
per container

Figure 3.2 The memory layout of Speed1 after executing the first three parts of UseCase
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}

3.1.1 Time complexity

Similarly to Reference, the connectTomethod still needs to iterate over all containers in
a group, leading to the time complexities in table 3.1. The table makes it clear that the
bottleneck for this implementation lies in the connectTo method.

Table 3.1 Time complexities of Speed1,
where n is the total number of containers

Method Time complexity

getAmount O(1)

connectTo O(n)

addWater O(1)

Two steps in the connectTo method require linear time to complete:

1 Merging the elements of the two groups with addAll

2 Informing the elements of one of the groups being merged that their group
has changed

The first step is easy to replace with a faster alternative. Switch from sets to linked lists
and voilà: merging two collections becomes a constant-time operation. The second
step is much more complicated to avoid. In fact, it’s impossible to make connectTo

run in constant time without raising the time complexity of getAmount. But if for some
reason you really need a constant-time connectTo, you can employ the implementation
from the next section.

3.2 Adding connections in constant time [Speed2]
The aim of this section is to bring down the complexity of connectTo to constant time,
leading to a new version of the container class, nicknamed Speed2. To achieve this
objective, you’ll use two techniques:

1 Represent groups of connected containers with a data structure that has a
constant-time merge operation

2 Delay the update of water amounts until the latest possible time

For the first technique, you’ll use a radically different way to represent a group of
connected containers: a manually implemented circular linked list.

3.2.1 Representing groups as circular lists

A circular linked list is a sequence of nodes where each node points to the next one, in a
circular fashion. There’s no first or last node, no head or tail. An empty circular linked
list contains no nodes at all, whereas in a list with a single node, that node points to
itself as its successor.
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In the water container application, each container is a node in a singly linked circu-
lar list, featuring an amount field and a single next reference, as shown in the following
listing.

Listing 3.3 Speed2: Fields

public class Container {
private double amount;
private Container next = this;

POP QUIZ 2 What’s the complexity of removing a given node from a singly linked
circular list?

A nice property of circular linked lists, and the very reason you’re using themhere, is
that if you’re given any two nodes from two such lists, you canmerge the lists in constant
time, even if the lists are singly linked. You accomplish the merge by swapping the next
references of the two nodes, as shown in figure 3.3.

A circular list with 
a single node

A circular list with 
3 nodes

A circular list 
with 4 nodes

(Before) (After)

Figure 3.3 Swapping the next pointers of two nodes (b and d) leads to merging two circular linked
lists into one.

However, this technique only works if the two nodes belong to different lists. If
they belong to the same list, swapping the references will produce the opposite effect:
splitting the list into two separate lists. Therefore, this implementation suffers from
the same limitation we observed for Novice: connectTo works correctly only if the two
containers being connected are not connected yet, not even indirectly.

You may think it would be better for the connectTo method to check whether the
two containers are already connected, before attempting to connect them. But doing
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so requires scanning at least one of the two lists, which is not a constant-time opera-
tion. You need to accept this lack of robustness to achieve the constant-time perfor-
mance objective. You’ll get your revenge in chapter 5, where you’ll build bullet-proof
container classes.

What about a plain old linked list?
Circular lists are not the only data structure to allow for constant-time merge. A plain
old linked list also has this property, as long as the merge operation can directly
access the first and last element of the two lists (aka their head and tail). To see
this, pretend you could directly access the head and tail fields of two non-empty
singly linked lists, list1 and list2. Merging them by concatenation boils down to
the following lines:

list1.tail.next = list2.head;
list1.tail = list2.tail;

After those two lines, list1 represents the concatenation and list2 is unchanged.

However, you can’t use linked lists to connect water containers in constant time. To
see this, recall that each container must have direct access to the head and tail of its
list. When merging two groups, you would have to update all the involved containers
so they’d reflect the new values for the head and tail after the merge. That update
requires linear time.

TIP The standard Java implementation of linked lists (LinkedList) doesn’t sup-
port constant-time concatenation. Calling list1.addAll(list2) iterates over all
the elements of list2.

Figure 3.4 represents the memory layout at two moments during the execution of Use-
Case, with the implementation of containers from this section (that is, Speed2). As you
can see, the structure is exactly the same as in figure 3.3, except that the nodes in the
lists are now water containers. On the left side of the figure, containers a, b, and c

have been connected into a single group, so they’re linked to each other in a circular
fashion. Container d is still isolated, so its next reference points to itself.

The right side shows the effect of running the b.connectTo(d) instruction. Swap-
ping the next references of b and d is sufficient to merge the two lists into one. Such
swapping is the only content of the connectTo implementation in the following listing.

Listing 3.4 Speed2: Method connectTo

public void connectTo(Container other) { b Swaps the next fields
of this and otherContainer oldNext = next;

next = other.next;
other.next = oldNext;

}
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4.0 4.0

4.0
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A group with 4 
containers
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Figure 3.4 The memory layout of Speed2 during the execution of UseCase, before and after
b.connectTo(d). Swapping the next pointers of b and d leads to merging the two groups into one.

3.2.2 Delaying the updates

To keep connectTo running in constant time, it doesn’t update the water amounts
in any way. After all, water amounts are only visible when getAmount is called. As a
result, you can delay the update until the next call to getAmount. This approach is a
standard trick in the programmer’s toolbox, called laziness or lazy evaluation—a staple
of functional programming. Laziness is the general idea of delaying a computation
until you actually need it.

Laziness in the JDK
Standard Java collections are eager (the opposite of lazy). Java 8 introduced the
streams library, a powerful framework for manipulating data sequences. Among other
features, streams employ lazy evaluation. To appreciate the difference, start with a
list of integers list. If you run

list.sort(null);

it will immediately sort the list, because the list is eager. (The null here signals that
integers have a natural order, so no comparator is needed.) On the other hand, try
converting that list to a stream and then sorting the stream:

Stream<Integer> stream = list.stream();
Stream<Integer> sortedStream = stream.sorted();

Contrary to the previous example, in this case, no sorting has taken place yet. The
sorted method only sets a flag that promises to eventually sort the data. The library
will actually sort the data when you apply a terminal operation to the stream, that is,
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when you convert the stream back into a collection or scan its elements in some way
(by the forEachOrdered method, for example).

POP QUIZ 3 Think of two activities in your life that you perform eagerly (as soon
as possible) and two activities that you delay as much as possible.

You use the same laziness with addWater so it updates only the current container,
without actually distributing water among the group. Unfortunately, sooner or later
you’ll call getAmount, and you’ll have to pay for all the laziness with a costly update
operation, which distributes water amounts equally within a group. To improve clarity,
you can delegate the update to a separate private method updateGroup. The resulting
addWater and getAmount are shown in the following listing.

Listing 3.5 Speed2: Methods addWater and getAmount

public void addWater(double amount) {
this.amount += amount; b Updates the local container only

}

public double getAmount() {
updateGroup(); c Support method responsible for distributing water
return amount;

}

The update method, shown in listing 3.6, makes two passes over the circular list
representing this group. In the first pass, it computes the total amount of water in
the group and counts the number of containers in it. In the second pass, it uses the
information it collected during the first pass to actually update the amount of water in
each container to the new value.

Listing 3.6 Speed2: Support method updateGroup

private void updateGroup() {
Container current = this;
double totalAmount = 0;
int groupSize = 0;

do { b First pass:
collect amount and counttotalAmount += current.amount;

groupSize++;
current = current.next;

} while (current != this);
double newAmount = totalAmount / groupSize;

current = this;
do { c Second pass:

update amountscurrent.amount = newAmount;
current = current.next;

} while (current != this);
}
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In each pass, you need to visit each node in a circular list. To do so without circling
forever, you can start from any node, follow the next references, and stop when you
get back to your initial node.

A couple of questions come to mind:

1 Do you really need to invoke updateGroup every time getAmount is called?
Perhaps you could use a boolean flag to remember whether this container
is already updated and avoid unnecessary calls to updateGroup.

2 Can you move the updateGroup call from getAmount to addWater? It would be
more reasonable to pay the price when writing, rather than reading.

Unfortunately, neither of these potential improvements is feasible—that is, assuming
you want to keep the connection operation constant-time.

First, suppose you add an updated flag to all containers. Whenever a group is
updated, its containers are flagged as updated. Subsequent calls to getAmount on
those containers don’t need to invoke updateGroup—so far, so good. Now, suppose
you merge two groups with connectTo. The updated flags of their containers need to
be reset, but you can’t do this in constant time.1 There goes your first improvement
attempt.

Second, moving the updateGroup call from getAmount to addWater is fine, but only
if you introduce a similar call in connectTo as well. Otherwise, reading the amount
right after a group merge would give a stale result. This change also puts connectTo in
linear-time complexity, which is against the objectives of this section.

Theworst-case time complexity of the Speed2 implementation is summarized in table 3.2.
As expected, connectTo and addWater take constant time because we moved all the
heavy lifting to getAmount, which requires linear time.

Table 3.2 Time complexities of Speed2,
where n is the total number of containers

Method Time complexity

getAmount O(n)

connectTo O(1)

addWater O(1)

1 To be fair, this would work if youmoved the updated flag from single containers to a separate Group object,
similar to Speed1. Still, even with this optimization, the worst-case complexity of getAmount would remain
the same (linear).
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3.3 The best balance: Union-find algorithms [Speed3]
It turns out that our little container problem is similar to the classic union-find setting.
In that scenario, you want to maintain disjoint sets of elements, along with a distin-
guished element for each set called the set representative. You’ll need to support the
following two operations:

Merge two sets (union operation)
Given an element, find the representative from its set (find operation)

This section applies the union-find scenario to water containers, leading to an imple-
mentation nicknamed Speed3, which will turn out to be the best performing one in
practice.

When applying the general union-find scenario to water containers, the sets you
want to maintain are the groups of mutually connected containers. The representative
for a group can be any container, and you’ll use that container to store the official water
amount for that group. When a container receives a getAmount call, you’ll invoke a find
operation to get the value from its group representative.

Many smart computer scientists have tackled this type of problem, eventually devel-
oping the following, provably optimal, algorithm. It suggests to represent a group as a
tree of containers, where each container only needs to know its parent in the tree. The
root of each tree is the representative for the group. Roots also should store the size
of their tree, for reasons that will become clear shortly.

Parent pointer trees
A parent pointer tree is a linked data structure in which each node points to exactly
another node, called its parent, except one special node, called the root, that points
to no other node. Also, all nodes can reach the root by following the pointers. These
constraints ensure that the pointers form no cycle, so trees are a special type of
directed acyclic graph (DAG).

Root

Leaf
Height is 3

A parent pointer tree

Nodes having no children are called leaves. In a parent pointer tree, each node knows
its parent, but the parent doesn’t hold references to its children. As a result, you
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can navigate the tree only in the direction going from the leaves toward the root. The
height of a tree is the length of the longest path from any node to the root.

Computer science trees are traditionally drawn with the root at the top and the rest
growing downward; they’re rooted in the sky.

POP QUIZ 4 You’re writing a Java compiler andmust represent the subclass relation
between classes, which arranges classes in a tree. Do you employ a parent pointer
or a children pointer tree?

According to the discussion of the tree algorithm, you end up with the fields shown
in the following listing in each container.

Listing 3.7 Speed3: Fields, with no constructor needed

public class Container {
private double amount;
private Container parent = this; b Initially, each container is the root of its tree.
private int size = 1;

You identify the root of a tree by having parent==this. You can see in listing 3.7
that each new container is initially the root of its tree, and the only node in it. You’re
using the fields amount and size for only the root containers. For the other contain-
ers, they’re just wasting space. A memory-optimized implementation may want to do
something about that.2

3.3.1 Finding the group representative

To get the desired performance, it’s not enough to simply represent groups of contain-
ers as parent pointer trees. You must employ two techniques during tree operations:

1 During the find operation: the path compression technique
2 During the union operation: the link-by-size policy

I’ll talk about the find operation and the path compression technique first. All oper-
ations on a Container need to find the group representative, because that’s where the
water amount information is located. Given the previous discussion on parent pointer
trees, finding the group representative is easy. You just follow the parent references
until you reach the root of your tree, recognizable by having parent==this. The path
compression technique consists of turning every node that you encounter into a direct child of
the root. You modify the tree while you navigate it, in such a way that future operations
will be more efficient.

In practice, let’s assign the root-finding task to a private support method called find�

RootAndCompress (listing 3.8). This method navigates the tree from this container up
to the root of its tree, following the parent links. Along the way, it updates the parent
reference of all encountered containers to point directly at the root. As a consequence,

2 Exercise 3 in chapter 4 asks you to address this issue and then offers a possible solution.
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whenever you call it again on any of those objects, it will terminate in constant time,
because it will immediately find the root.

For example, consider three containers x, y, and root that have been connected
together in such a way that root is the group representative, y is its child, and x is the
child of y, as in figure 3.5 (Before).

x is now 
connected 

directly to root.

(Before) (After)

Figure 3.5 The memory layout of three connected containers in Speed3, before and after the call
x.findRootAndCompress(). After the call, container x has become a direct child of root. The
amount and size values are omitted as unimportant.

A call to x.findRootAndCompress() must return a reference to root, as well as flat-
ten the path connecting x to root, turning every intermediate container on the path
from x to root into a direct child of root. In this example, the only container that can
be flattened is x itself, because y is already a direct child of root. The desired situation
after the call is depicted in figure 3.5 (After). You can elegantly accomplish the seem-
ingly complex flattening task using the three-line recursive implementation shown in
the following listing.

Listing 3.8 Speed3: Support method findRootAndCompress

private Container findRootAndCompress() {
if (parent != this) b Checks if this is the root of its tree

parent = parent.findRootAndCompress(); c Recursively finds the root and
set it as the parent of thisreturn parent;

}

Recursive methods can be tricky to follow, so let’s analyze the behavior of the previ-
ous listing step by step. Whenever you call findRootAndCompress on a root container,
it simply returns the container itself (this). If you call themethod on a container that’s
further down the tree, the method invokes itself on its parent. If its parent is still not

Licensed to Abner Lopez <ihackn3wton@gmail.com>



60 CHAPTER 3 Need for speed: Time efficiency

the root of the group, the method will again invoke itself on its parent, and so on, until
eventually the method will be called on the root. At that point, a cascade of returns
will start from the root and propagate to the original caller. Along the way, the method
will update all parent references to point directly to the root.

Going back to the three-container example, you can follow the execution of

x.findRootAndCompress();

on the UML sequence diagram in figure 3.6. If you’re not familiar with this type of
diagram, check out the sidebar.

UML sequence diagrams
Sequence diagrams like the one in figure 3.6 show interactions between objects in
time. Each object is represented by a box connected to a dashed vertical line called its
lifeline. Time flows from top to bottom, and method calls (aka messages) are depicted
as arrows from the lifeline of the caller to the lifeline of the callee. A message starts
the execution of a method. Graphically, this is represented by a thin, empty, vertical
activation box drawn on top of the callee’s lifeline. If you want to emphasize the return
value from a method (as I did in figure 3.6), you can add a dashed arrow from the
activation box back to the caller.

Starting from the call x.findRootAndCompress(), figure 3.6 shows the sequence of
actions that ensue: findRootAndCompress calls itself on y and then on root. At that
point, a reference to root is returned all the way to the original caller, and along the
way, all parent references are updated to root itself. As discussed earlier, this leads to
the final memory layout in figure 3.5(After), with x now connected directly to root as
a consequence of the flattening.

x y root

findRootAndCompress

fRAC

root

fRAC

root

parent = rootroot

parent = root

Lifeline 
of root

External call

Return 
value

Figure 3.6 A sequence diagram for the call x.findRootAndCompress(), in the three-container
scenario depicted in figure 3.5. The callouts are not standard UML. fRAC is short for
findRootAndCompress.
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Once you’ve implemented findRootAndCompress, methods getAmount and addWa�

ter are quite straightforward: they obtain the root of their group and then read or
update its amount field, as you can see in the following listing.

Listing 3.9 Speed3: Methods getAmount and addWater

public double getAmount() {
Container root = findRootAndCompress(); b Obtains the root and flattens

the path
return root.amount; c Reads the amount from root

}
public void addWater(double amount) {

Container root = findRootAndCompress(); d Obtains the root and flattens
the path

root.amount += amount / root.size; e Adds water to root
}

3.3.2 Connecting trees of containers

The tree structure allows for a straightforward connection algorithm that involves find-
ing the roots of the two groups being merged and turning one of the roots into a child
of the other root, as in figure 3.7.

Size: 5

+

Size: 3

=

This root 
becomes a 
child of the 
other root.

Figure 3.7 Merging two trees according to the link-by-size policy. The smaller tree gets attached to
the root of the larger tree.

To limit the height of the resulting tree, you need to apply the following rule: attach
the smaller tree (the one with fewer nodes) to the root of the larger tree. If the two
trees have the same size, the choice is arbitrary. This is called link-by-size policy and is
an important ingredient for obtaining the desired performance, as explained in the
following section. Because of this policy, roots must know the size of their tree, hence
the size field in every container.

Listing 3.10 shows a possible implementation of the connectTo method. It starts
by identifying the roots of the two groups you’re merging. Then, it checks whether
those roots are the same—that is, if the two containers are already connected. Without
this step, you would incur the same error (or rather, lack of robustness) of Novice and
Speed2; connecting two containers that already belong to the same group would put
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the data structure into an inconsistent state. After that, the method computes the new
water amount to be put in each container and merges the two trees according to the
link-by-size policy I explained.

Listing 3.10 Speed3: Method connectTo

public void connectTo(Container other) {
Container root1 = findRootAndCompress(), b Finds the two roots

root2 = other.findRootAndCompress();
if (root1==root2) return; c This check is necessary!
int size1 = root1.size, size2 = root2.size;
double newAmount = ((root1.amount * size1) +

(root2.amount * size2)) / (size1 + size2);

if (size1 <= size2) { d The link-by-size policy
root1.parent = root2; e Attaches the first tree

to the root of the secondroot2.amount = newAmount;
root2.size += size1;

} else {
root2.parent = root1; f Attaches the second tree

to the root of the firstroot1.amount = newAmount;
root1.size += size2;

}
}

You now have all the information you need to perform the usual simulation of Use-
Case and obtain the memory layout shown in figure 3.8, which refers to the situation
after the first three parts of UseCase. At that point, b is the representative for the
group comprising containers a, b, and c, whereas d is isolated and consequently its
own representative.

Unused fields

b is the 
representative for 

its group.

sizeparentamount

Figure 3.8 The memory layout of Speed3 after executing the first three parts of UseCase. The amount
and size fields of a and c are grayed out because they contain stale values that are irrelevant to the
behavior of their objects. Only the fields of the group representatives are relevant and up-to-date.
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3.3.3 Worst-case time complexity

As all container methods start by invoking findRootAndCompress (twice, in the case
of connectTo), to compare Speed3 with the previous container implementations you
need to assess the worst-case complexity of that method. Since findRootAndCompress

is a recursive method with no loops, its complexity is nothing other than the number
of recursive calls it makes (aka the depth of the recursion), which in turn is equal to
the length of the path from this container to the root of its tree. In the worst case,
the method is called on a container that’s the farthest away from the root, that is, as far
from the root as the height of the tree. You still need to figure out themaximumheight
that a tree with a given number of nodes can reach. This is where the link-by-size policy
enters the picture, ensuring that the height of a tree is at most logarithmic with respect to
its size. For example, a tree representing a group of 8 containers can’t be higher than
3 (recall that 3 = log2 8 because 23 = 8).

Figure 3.9 shows a sequence of union operations that build a tree with logarithmic
height. The trick is to always merge trees with the same size. For every such merge,
the height of the resulting tree increases by one, but the number of nodes doubles.
Hence, the height is constantly equal to the base-2 logarithm of the size.

Height after 
mergeNodes

Make two 
copies of this 
tree for the 
next step.

Two copies of 
this tree for the 

next step

+

+

+

=

=

=

Final height is 3. It 
can’t be higher 
with 8 nodes.

3 = log2 8

Figure 3.9 A sequence of union operations building a tree whose height is logarithmic in its size. This
is the maximum height achievable with a given number of nodes.

You’ve seen how some findRootAndCompress calls require logarithmic time. Because
all three of the public methods call that method, you’ll obtain the worst-case time
complexities shown in table 3.3.
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Table 3.3 Worst-case time complexities of Speed3,
where n is the total number of containers

Method Time complexity

getAmount O(logn)

connectTo O(logn)

addWater O(logn)

Notice that, even if one specific call to x.findRootAndCompress() takes logarithmic
time, the path compression technique ensures that future calls to the same method on
the same container, as well as any other container sitting along the path from x to the
root of its tree, will be executed in constant time. This observation suggests that it’s
somewhat misleading, albeit formally correct, to attribute logarithmic complexity to
the three container methods, because that cost only applies to the first call on a given
container. In the next section, I’ll address this concern by switching to a different type
of complexity analysis. For the moment, I’ll use the worst-case complexities reported
in table 3.3 to compare the performance of the three implementations I’ve presented
in this chapter.

Figure 3.10 provides a graphical representation of the complexity of methods getA�
mount and connectTo in the three versions from this chapter. As anticipated, none of
them is always better than the others. Speed1 is the only one with guaranteed con-
stant time for getAmount. Symmetrically, Speed2 features the best performance for
connectTo. Speed3 strikes a balance between the two methods, attributing the same
logarithmic complexity to both. When comparing any pair of implementations, one
method improves its performance, and the other method worsens it. As I explained at
the beginning of this chapter, you can describe this in fancier jargon as being Pareto
optimal.

According to figure 3.10, to choose one of the implementations from this chap-
ter, you should analyze the application context and figure out how often clients will
call each method. If they’ll make most calls to getAmount, you should choose Speed1.
Conversely, if clients are more likely to invoke connectTo, you should pick Speed2.

In the next section, you’ll find out that this type of worst-case analysis is in fact quite
unfair to Speed3, whose performance really shines if you replace worst-case complexity
analysis with amortized complexity analysis. This doesn’t mean that the worst-case analysis
is wrong, just that with Speed3 the worst case happens so rarely that the corresponding
performance is hardly relevant.

3.3.4 Amortized time complexity

Whereas standard analysis focuses on a single run of an algorithm, amortized analysis
takes into account sequences of runs. This kind of analysis is the most appropriate for
algorithms that perform extra operations so that future calls may be more efficient.
Those extra operations work as an investment: they’re an immediate cost for a future
benefit. Single-run analysis would account for the cost but not for the benefit. By
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getAmount

connectTo

O(log(n)) O(n)

O(log(n))

O(n)

O(1)

Speed1

Speed2

Speed3

Figure 3.10 A graphical representation of the worst-case time complexity of methods getAmount
and connectTo in implementations Speed1, Speed2, and Speed3. The dashed line connecting the
three implementations represents the Pareto front.

considering sequences of operations, amortized analysis manages to measure both the
cost and its future benefit.

In our case, the “compress” part of findRootAndCompress is the extra cost. You don’t
need it to find the root, but it makes future calls faster.

To perform amortized analysis, you have to decide on a sequence of operations of
arbitrary length m, performed on a set of n containers. Being interested in the long-
run cost, we can assume that m is bigger than n. Next, you have to choose how many
of those m operations are connectTo, getAmount, or addWater. Notice that only n− 1

calls to connectTo are significant: after that, all containers will be connected in a single
group. So, it makes sense to analyze sequences composed as follows:

1 They comprise at least n operations.
2 They contain n− 1 calls to connectTo.
3 All the other operations are either getAmount or addWater.

Now, in line with standard complexity analysis, you can ask what the order of growth
is of the number of basic steps that any such sequence performs (that is, the worst
case among all the sequences satisfying your assumptions). The actual analysis is way
beyond the scope of this book, and I refer you to the Further reading section at the end
of the chapter for details. In fact, even stating the complexity upper bound is somewhat
complex! The most accurate upper bound for a sequence of m operations is not one
of the easy functions, being slightly more than constant but way less than quasilinear
(m logm). As shown in table 3.4, you can write it as O

(
m ∗α(n)

)
, where α is the inverse

Ackermann function.
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Table 3.4 Amortized time complexity for Speed3, where α(·) is the inverse Ackermann function

Scenario Amortized time complexity

A sequence of m operations on n containers O
(
m ∗ α(n)

)

The Ackermann function
Wilhelm Ackermann originally proposed the eponymous function A(k, j) in 1928. He
was a student of renownedmathematician David Hilbert and an accomplished researcher
himself. It was the first known example of a function that’s algorithmically computable,
but not computable through a limited set of operations called primitive recursive. The
key property of this function is that it grows extremely fast, even when its arguments
have small values. For example, A(2, 1) = 7, A(3, 1) = 2047, and A(4, 1) > 1080.

The inverse Ackermann function α(n) is defined as the smallest integer k such that
A(k, 1) ≥ n. As A(k, 1) grows extremely rapidly, small values of k are sufficient to
make it bigger than n. In particular, α(n) is at most 4 for all values of n smaller than
1080, which is the estimated number of atoms in the known universe.

As explained in the sidebar, the inverse Ackermann function is essentially constant,
so the upper bound O(m ∗ α(n)) is equivalent to O(m) for all practical purposes.
Because we’re discussing the complexity of a sequence of m operations, the O(m)

upper bound means that, in the long run, each operation takes constant time. You
couldn’t hope for anything better. In fact, the experiments I present in section 3.4.1
show that, in this case, the amortized analysis is much more relevant than the standard
worst-case analysis, putting Speed3 way ahead of the competition in a typical scenario.

3.3.5 Amortized analysis of resizable arrays

Amortized analysis of union-find trees is too complex to follow all the details, so let’s
do it on a simpler but highly relevant case: automatically resizable arrays like the Java
classes Vector and ArrayList, and C# List. Those classes offer a handy service: store
a variable-sized collection in contiguous memory, allowing for constant-time random
access to any item in the collection. To do so, they store the collection in an array and
resize it when needed. Unfortunately, you can’t expand arrays in place.3 In case of
expansion, the class needs to allocate a new, larger array and then copy the content of
the old array onto the new one. How expensive is this operation? What’s the resulting
complexity for adding a new element to the collection, given that any addition may
trigger a costly resizing operation? Amortized complexity is the right tool for answering
these questions. Indeed, the following is how Oracle’s documentation puts it, when
presenting the ArrayList class:

The add operation runs in amortized constant time; that is, adding n elements requires O(n) time.

3 Actually, lower level languages allow this. Check out the realloc function from the C standard library.
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Let’s see why that’s the case by analyzing the current OpenJDK implementation of
ArrayList.4 You can easily discover that the initial capacity of an empty ArrayList is
10 cells, and that the private method grow is responsible for expanding the underlying
array. Inside that method you’ll find the following crucial lines:

int newCapacity = oldCapacity + (oldCapacity >{}> 1);
...
elementData = Arrays.copyOf(elementData, newCapacity);

The >> operator is the bitwise right shift, an efficient way to divide an integer by two,
so the net effect of the first line is to increase the capacity by 50%. Every time the array
needs to be enlarged, it isn’t enlarged by a single element, but by 50%. This strategy is
essential to keep the (amortized) complexity in check. Then, the method reallocates
the array to the new capacity with a call to Arrays.copyOf, a static utility method that
allocates a new array and copies the contents of an existing array into it.

Now, consider a sequence of n insertions (method add) into a new ArrayList, and
let’s compute their total complexity. You need to know howmany times the underlying
array will be reallocated. Call this number k. Each reallocation multiplies the capacity
by 1.5. As the initial capacity is 10, after k reallocations the capacity is 10 ∗ 1.5k. To
accommodate n insertions, we want this capacity to be at least n:

10 ∗ 1.5k ≥ n.

That is, k ≥ log1.5
n
10 . That’s the logarithm to base 1.5. Don’t worry, it’ll go away

soon; it’s sufficient to know that 1.5(log1.5 x) = x. Because k is by definition an integer,
k is the smallest integer greater than or equal to log1.5

n
10 .

5 You can simplify calcula-
tions by relaxing the constraint that k be an integer and setting k = log1.5

n
10 . It’s an

approximation that doesn’t bear on the final result.
In a sequence of n insertions, the first 10 will be fast (cost 1) because the initial

capacity of an empty ArrayList is 10. The 11th insertion triggers the first call to grow,
bringing the capacity to 15. The cost of this call is also 15, because Arrays.copyOf (see
the previous code lines) needs to copy the 10 values from the old array to the new one
and initialize the five extra cells to null. Summarizing, you can then express the cost of n
insertions as follows:

cost(n) = 1 + 1 + . . .+ 1︸ ︷︷ ︸
10 adds

+ 15︸︷︷︸
grow

+1 + 1 + . . .+ 1︸ ︷︷ ︸
5 adds

+ 22︸︷︷︸
grow

+1 + 1 + . . . ,

4 Currently available at http://mng.bz/j5m8.
5 Actually, no integer can be equal to log1.5

n
10

. Do you know why?
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which you can rearrange as follows:

cost(n) = 10 + (15 + 5) + (22 + 7) + (33 + 11) + . . .

= 10 + (15 ∗ 1 + 5 ∗ 1) + (15 ∗ 1.5 + 5 ∗ 1.5) +
(
15 ∗ (1.5)2 + 5 ∗ (1.5)2

)
+ . . .

= 10 +

k∑
i=0

(
15 ∗ (1.5)i + 5 ∗ (1.5)i

)
= 10 + 20

k∑
i=0

(1.5)i

You can then employ the standard formula for the sum of the first k powers of a
constant a:

k∑
i=0

ai =
ak+1 − 1

a− 1

If you apply that formula to a = 1.5 and k = log1.5
n
10 , you’ll get

cost(n) = 10 + 20 ∗ 1.5(log1.5
n
10+1) − 1

1.5− 1

= 10 + 20 ∗ 1.5 ∗ 1.5(log1.5
n
10 ) − 1

0.5

= 10 + 20 ∗ 2 ∗
(
1.5 ∗ n

10
− 1

)
= 10 + 60 ∗ n

10
− 40

= 6 ∗ n− 30

= O(n) .

Summarizing, the cost of n insertions is linearly proportional to n, which means that
the average long-run cost of a single insertion is constant. This calculation certifies that
the calls to grow become more costly as fast as they move apart along the sequence of
insertions. If you spread those costs over a long sequence of insertions, the average
burden on each operation is constant (6 in this formula).

Insertion into ArrayLists isn’t all roses. The same analysis showing that the long-run
cost of each insertion is constant also highlights that the performance of a sequence
of insertions is very uneven. Most insertions are extremely cheap, but every once in a
while an insertion triggers a full copy of all previously inserted elements (a copy of their
references, that is). The networking jargon gives us a nice way to put this: insertion
into an ArrayList is a high-throughput operation (long-run constant time) plagued
by high jitter (time variability). In contrast, insertion into a LinkedList has a similar
throughput but essentially no jitter, because every insertion takes the same amount of
time (the time needed to allocate a new node in the list).

Licensed to Abner Lopez <ihackn3wton@gmail.com>



Comparing implementations 69

3.4 Comparing implementations
In the previous sections, we developed three container implementations that optimize
performance in different ways. We estimated that performance using worst-case and
amortized complexity analysis. Worst-case analysis considers a singlemethod, assuming
the worst possible input, whereas amortized analysis considers arbitrarily long sequences
of operations involving different methods. In both cases, only the order of growth is
reported (see section 2.3 for details), which is both a blessing, because it facilitates
comparisons, and a curse, because it’s detached from actual running times. If you’re a
skeptic likeme, you’ll want to experimentally check that these theoretical performance
measures correspond to actual running times.

3.4.1 Experiments

Let’s start with a simple experiment, where the three implementations from this chap-
ter challenge Reference on the following test case:

1 Create 20,000 containers and add some water to each one (20k constructor
calls and 20k addWater calls).

2 Connect the containers in 10,000 pairs, add some water to each pair, and query
the amount in each pair (10k connectTo, 10k addWater, and 10k getAmount).

3 Connect pairs of containers until all containers are connected into a single
group. After each connection, add some water and query the resulting amount
(10k connectTo, 10k addWater, and 10k getAmount).

I chose the total number of containers by trial and error so the running times would be
long enough to show clear distinctions between implementations, and short enough to
run the experiment repeatedly in a short amount of time. Table 3.5 reports the running
times I get on my laptop. As expected, all classes from this chapter greatly outperform
Reference, by as much as two orders of magnitude. In particular, our best attempt, Speed3
is 500 times faster. On the other hand, Speed2 is an order of magnitude slower than
Speed1 and Speed3 (but still significantly faster than Reference). As I noted before, Speed2
is a rather odd implementation that only makes sense if getAmount queries are rare
compared to the other operations. That’s not the case for the tested scenario.

Table 3.5 First experiment: Running times in milliseconds
for a balanced use case involving 20,000 containers

Version Time (msec)

Reference 2300

Speed1 26

Speed2 505

Speed3 6

To confirm these observations, you can run a modified use case, where you remove
all calls to getAmount except for one, at the end. This strange scenario is designed to
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favor Speed2 in the strongest possible way. When running the experiment on my lap-
top, I get the running times shown in table 3.6. As you can see, Speed2 nowmatches the
performance of Speed3, whereas the other three implementations are essentially unaf-
fected by the change, demonstrating that the amount query is a very cheap operation
in all other versions. This second experiment confirms that Speed3 is, in practice, the
best choice overall as far as performance is concerned.

Table 3.6 Second experiment: Running times in milliseconds for
a use case involving 20,000 containers and a single call to getAmount

Version Time (msec)

Reference 2300

Speed1 25

Speed2 4

Speed3 5

Benchmarking
Comparing the performance of Java programs, or those in any other language executed
by a VM, requires special caution. Both the compiler and the VM can make significant
changes to the program, concealing what you’re actually measuring. For example,
these are two common optimizations:

The compiler can drop certain lines of code if it realizes that they have no
visible effect.
The VM can switch back and forth between interpreting bytecode and compil-
ing it to native code (this is called just-in-time compilation).

You can try to dodge these optimizations with suitable workarounds, such as the
following:

Make sure that each operation eventually contributes to a visible effect, like
a printout or a file write.
Run the code you’re benchmarking multiple times before you start measuring
time. These so-called dry runs induce the VM to compile the performance-
critical sections and produce more meaningful timings.

In addition, Java comes with a standard benchmarking framework, called Java micro-
benchmarking harness (JMH), that gives you fine-grained control over compiler and VM
optimizations.

3.4.2 Theory vs. practice

When comparing the three implementations in this chapter, standard worst-case com-
plexity analysis stops at table 3.7 and declares them essentially uncomparable: each is
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superior to the others in some use cases, but none of them is always optimal. More
specifically, Speed1 is the fastest when connections don’t change often, and you add,
remove, and query water amounts frequently. Speed2 is optimal when you add new
connections all the time and add and remove water constantly, but you seldom query
the current water level in any container. Finally, Speed3 appears like a compromise ver-
sion, where all operations are not particularly fast and require about the same time. As
such, it seems suitable for scenarios where you don’t have a clear idea of how clients
will use the class (aka the usage profile). Amortized analysis and actual experiments
reveal that Speed3 is in fact the fastest version in all but the most contrived examples
(such as the second experiment).

Table 3.7 The worst-case time complexity of the three versions from
this chapter and Reference from chapter 2

Version getAmount addWater connectTo

Reference O(1) O(n) O(n)

Speed1 O(1) O(1) O(n)

Speed2 O(n) O(1) O(1)

Speed3 O(logn) O(logn) O(logn)

This doesn’t mean you should throw worst-case complexity analysis out the window.
It’s still the most useful formal framework for comparing algorithms for an isolated,
one-shot task. Besides, the asymptotic notation (big-O and the like) that comes with
it is a powerful abstraction that applies to all kinds of performance analysis, such as
amortized analysis or average-case analysis.

Average-case analysis. . .
. . .is still another kind of complex-
ity analysis. Instead of focusing on
the worst possible input for a given
algorithm, it estimates the average
complexity over all possible inputs,
assuming that all inputs can occur
with the same probability.

You shouldn’t forget the worst-case qual-
ifier, and keep in mind that sophisticated
algorithms, like union-find, may make time
investments that repay over time and only
show their strength over long sequences of
operations.

You’ve learned in this chapter that, when
designing a class supporting an ongoing
interaction with a method’s clients, it may
not be enough to consider the complexity of each method separately. First, inter-
actions between the performance of different methods may occur. As in our exam-
ple, it might be possible to shift the computational burden from one method to
another—that is, make one method faster at the expense of another. Second, it
might be possible to make time investments that speed up future executions of one or
more methods.

In the first case (interactions between methods), you need to pair complexity analy-
sis with a usage profile to guide you toward the best solution. A usage profile is a char-
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acterization of how the clients will interact with a class. Typical information includes
the relative frequency and the order in which you’ll invoke the class methods. Such
information can tell you which method is the most critical and warrants the maximum
performance.

In the second scenario, amortized analysis like the one we performed on Speed3 is a
formal way to ascertain the value of a time investment in the long run. Both techniques
are heavy on the brain and light on the fingers—no need to create the software and
run it. In practice, the easiest (though not the quickest) path is to implement and
profile different solutions. This path is also the most accurate, as long as the operating
conditions remain similar to those used for profiling.

3.5 And now for something completely different
In this section, I’ll apply the performance techniques I’ve covered so far to a different
example. In fact, starting from this chapter, every chapter will feature this structure:

1 You’ll tackle the familiar water container example, slowly and in detail.
2 You’ll face a different example, but I’ll only get you started on it, leaving some
details to you.

3 At the very end of each chapter, you’ll find a couple more exercises to help
you really absorb the subject.

The task you’re facing in this section is the following: Design a class IntStats that
computes summary statistics for a list of integers, providing three public methods:6

public void insert(int n)—Adds an integer to the list; integers can be inserted
in any order.
public double getAverage()—Returns the arithmetic mean of the integers
inserted so far.
public double getMedian()—Returns the median of the integers inserted so
far. Recall that the median is the value that lies in the middle of the ordered
sequence of integers. For example, the median of 2, 10, 11, 20, 100 is 11, which
is the middle element. The median of an even number of numbers is defined
as the arithmetic mean of the two central elements in the sequence. For exam-
ple, the median of 2, 10, 11, 20 is 10.5. The median of a sequence of integers
can be a real number.

You’ll have to deal with three different performance requirements, which I’ve described
in the following subsections.

6 Java 8 introduced a similar class called IntSummaryStatistics, but it doesn’t compute the median.
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3.5.1 Fast insertion

Design the class IntStats so that insert and getAverage take constant time.
The following implementation features constant-time insertion and average. For

simplicity, computation of the median proceeds by sorting the list, so it requires quasi-
linear time (O(n logn)). It’s possible to implement getMedian in linear time, but the
algorithms for doing so go beyond the scope of this book.7

public class IntStats {
private long sum; b The current sum of all integers
private List<Integer> numbers = new ArrayList<>();

public void insert(int n) {
numbers.add(n);
sum += n;

}
public double getAverage() {

return sum / (double) numbers.size();
}
public double getMedian() {

Collections.sort(numbers); c Library method for sorting a list
final int size = numbers.size();
if (size \% 2 == 1) { d Odd size

return numbers.get(size/2);
} else { e Even size

return (numbers.get(size/2 -1) + numbers.get(size/2)) / 2.0;
}

}
}

3.5.2 Fast queries

Design the class IntStats so that getAverage and getMedian take constant time.
You can easily shift the computational burden from getMedian to insert by sort-

ing the sequence after each insertion. As a consequence, insertion time grows from
constant to quasilinear (O(n logn)).

A slightly more interesting solution is to maintain the list sorted by inserting every
new number in the right position:

public void insert(int n) {
int i = 0;
for (Integer k: numbers) {

if (k >= n) break; b Stops at the first number
greater than or equal to ni++;

}
numbers.add(i, n); c Inserts n at position i
sum += n;

}

7 Search for “linear-time selection algorithms” online or in the algorithm books from the Further reading
section at the end of this chapter.
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The other two methods can stay the same as in the previous version, except that get�
Median doesn’t need to perform the sorting step because the sequence is already sorted.
In this way, insert takes linear time, whereas getAverage and getMedian need only
constant time.

Finally, by switching from a list to a balanced tree (similar to a TreeSet), you could
lower the complexity of insert from linear to logarithmic.

3.5.3 Fast everything

Design the class IntStats so that all three public methods take constant time.
Sorry, not possible. In fact, it’s impossible to offer just insert and getMedian in

constant time. Having the median in constant time requires it to be always up-to-date.
So, every insertmust update themedian, which in turn requires searching for the next
larger or smaller element. You can do that with a simple linear-time search or with a
data structure that maintains the integers in order, as discussed in the “Fast queries”
section. In both cases, insertion is not constant-time anymore.

More formally, you can prove that if such a data structure existed, you could sort
arbitrary data in linear time, which is a well-known impossibility.

3.6 Real-world use cases
The type of reasoning I’m promoting in this chapter comes in handy in numerous
performance-critical applications. Here are some suggestions:

Youmight want to consider time efficiency whenworking withmodernmachine
learning algorithms. The process of training a model requires two important
ingredients: (a) lots of data, and (b) experimentation to determine the opti-
mal model, which involves trial and error. Staring at your monitor while a
model is working to converge to a solution is neither cool nor productive. Pop-
ular deep-learning frameworks take advantage of modern computer architec-
tures by expressing the operations as amodel that performs as a computational
graph during training. These graphs are distributed acrossmultiple processors
to be executed in parallel.
Even if you think you can get away with a suboptimal offline system, like a
sluggish deep-learning model, it’s difficult to do so when responsiveness is
involved. Searching for books about algorithms in an online store that returns
results to your queries in 10 minutes would probably make you look some-
where else. In fact, a slow system can be the least popular choice even if the
recommendations it produces are much more relevant. (In practice, there’s
almost always a trade-off between the degree of accuracy and time efficiency.)
There are other occasions when time efficiency can have instantaneous effects
on the earnings of the company you work for. High-frequency trading of finan-
cial products executes literally in the range ofmicroseconds, and efficient algo-
rithms with extremely low latency characteristics are not simply desirable but
necessary. As you can imagine, high-frequency trading occurs automatically,
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and trading at a rate twice as slow as the competition wouldn’t lead to a happy
path for your company.
A poorly designed high-frequency trading system that can drive a handful of
people out of business is an unfortunate event, but consequences from the
failure of a real-time system can be catastrophic. A real-time system is designed
to respond to a physical process, and time efficiency becomes a constraint:
either the system operates within some specified time boundaries or it’s not
considered operational at all.

In electric power systems, the Automatic Generation Control runs in the
data room of a control center and sends control signals to adjust the output of
power plants to maintain the generation-load/consumption balance. Failure
to produce correct signals in a timely fashion can lead to a catastrophic event,
such as a blackout.

3.7 Applying what you learned
Consider the following functionalities that you may want to add to containers.

groupSize—An instance method with no parameters that returns the number
of containers connected directly or indirectly to this one
flush—An instancemethod with no parameters and no return value that emp-
ties all containers connected directly or indirectly to this one

EXERCISE 1
Add the groupSize method to the three water container implementations from this
chapter without adding fields or modifying any other method.
1. What’s its worst-case asymptotic complexity in the three cases?
2. Can youmodify Speed2 so that groupSize takes constant time, without increasing the
asymptotic complexity of the other methods?

EXERCISE 2
Add the flushmethod to the three water container implementations from this chapter
without modifying any other method.
1. What’s its worst-case asymptotic complexity in the three cases?
2. Can you modify Speed2 so that flush takes constant time without increasing the
asymptotic complexity of the other methods?

EXERCISE 3 (MINI-PROJECT)
1. Design two classes, Grid and Appliance, representing an electrical grid and an appli-
ance that the grid can power. Each grid (or each appliance) is characterized by the
maximum power it provides (or absorbs). You can connect an appliance to a grid using
the plugInto method, and you can turn it on and off using the on and off instance
methods. (Initially, any new appliance is turned off.) Connecting an appliance to
another grid automatically disconnects it from the first one. If turning an appliance on
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overloads its grid, the method onmust throw an exception. Finally, the residualPower
method of Grid returns the power that’s still available on this grid.

Make sure your solution will work with the following use case:

Appliance tv = new Appliance(150), radio = new Appliance(30);
Grid grid = new Grid(3000);

tv.plugInto(grid);
radio.plugInto(grid);
System.out.println(grid.residualPower());
tv.on();
System.out.println(grid.residualPower());
radio.on();
System.out.println(grid.residualPower());

Desired output from the use case:

3000
2850
2820

2. Can you design those two classes so that all their methods run in constant time?

EXERCISE 4
1. If ArrayList enlarged the array by 10% when full, would the amortized complexity
of add still be constant?
2. That would make resizing more frequent. By how much exactly?

Summary
You can optimize the same class for performance in different ways.
You can move around the most expensive calculations that a class needs to
perform according to a usage profile.
A circular linked list is a good data structure formerging two sequences starting
from arbitrary elements.
Parent pointer trees are the data structure of choice for union-find scenarios.
Amortized analysis is the formal way to characterize the average performance
of a class over a long sequence of operations.

Answers to quizzes and exercises

POP QUIZ 1
There are two partial orders between pairs of classes in a Java program: (a) being a
subclass, and (b) being an internal class.

POP QUIZ 2
Removing a given node from a singly linked circular list takes linear time (O(n)). Start-
ing from that node, you need to walk the entire list until you come back to the prede-
cessor of the node you wish to remove. At that point, you update the next reference
of the predecessor to jump over the node you want to remove.
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POP QUIZ 3
For me, it’s very easy to identify activities that I put off as long as possible: car washing
and dental appointments come quickly to mind. It’s harder to find tasks I’m eager to
do: finishing this answer is not one of them.

POP QUIZ 4
A parent pointer tree is more appropriate. Compiling a class requires knowing its
immediate superclass; for example, in each constructor, the compiler will insert an
invocation to a superclass constructor. On the other hand, knowing the subclasses is
irrelevant to compiling a given class.

EXERCISE 1
1. For Speed1 (constant time):
public int groupSize() {

return group.members.size();
}

For Speed2 (linear time):
public int groupSize() {

int size = 0;
Container current = this;
do {

size++;
current = current.next;

} while (current != this);
return size;

}

For Speed3 (logarithmic worst-case time, constant amortized time):
public int groupSize() {
Container root = findRootAndCompress();
return root.size;

}

2. For the second part of the exercise, it’s easy to improve the time complexity of group�
Size in Speed2 by adding a groupSize instance field and keeping it updated during
connectTo.

EXERCISE 2
1. For Speed1 (constant time):
public void flush() {

group.amountPerContainer = 0;
}

For Speed2 (linear time):
public void flush() {

Container current = this;
do {

current.amount = 0;
current = current.next;

} while (current != this);
}
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For Speed3 (logarithmic worst-case time, constant amortized time):

public void flush() {
Container root = findRootAndCompress();
root.amount = 0;

}

2. As for the second question, it’s impossible to achieve constant-time flush in Speed2
without increasing the complexity of any other method. To do so, flush would have to
lazily mark the current container in a way that encodes the fact that its group has been
flushed. However, this event may be followed by more addWater, more connectTo,
and even more flush actions, so the special mark you insert would become a complex
history of events that have happened to this container since the last call to getAmount.
In other words, a constant-time (and hence local) implementation of flush requires
storing an unbounded trace of events in each container that will need to be replayed
when getAmount is called, thus raising its complexity beyond linear.

EXERCISE 3
1. and 2. It’s possible to perform all operations in constant time by storing in the Grid
its residual power and keeping it updated at all times. Notice how grids don’t need to
know their appliances. It’s enough for each appliance to have a reference to the grid
it’s currently plugged into, or null if it’s still unplugged. We end up with the following
structure for grids:

public class Grid {
private final int maxPower;
private int residualPower;
...

and the following for appliances:

public class Appliance {
private final int powerAbsorbed;
private Grid grid;
private boolean isOn;
...

Appliances must have a way to update the residual power of their grid when you turn
them on and off. Rather than accessing the residualPower field directly, you can
achieve this best through a Grid method that throws the required exception if the
operation overloads this grid:

void addPower(int power) {
if (residualPower + power < 0)

throw new IllegalArgumentException("Not enough power.");
if (residualPower + power > maxPower)

throw new IllegalArgumentException("Maximum power exceeded.");
residualPower += power;

}

Ideally, only appliances shoud be able to access that method, but controlling access
in this way isn’t possible in Java, as long as Grid and Appliance are separate top-level
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classes. To partially hide that method, you can put the two classes in their own package
and give package (aka default) visibility to addPower, as I did.

I chose to throw IllegalArgumentException when the grid is overloaded, even
though IllegalStateException describes the situation equally well. Indeed, the error
condition is due to the value of an argument (power) being incompatible with the
current state of an object field (residualPower). In these cases, Joshua Bloch recom-
mends throwing IllegalArgumentException (see Effective Java, item 72) and resorting
to IllegalStateException only when no other argument value would work.

You can find the full Appliance and Grid classes in the accompanying repository
(https://bitbucket.org/mfaella/exercisesinstyle).

EXERCISE 4
1. The answer is positive. Enlarging the array by any percentage, including a meager
10%, leads to constant amortized complexity of insertions. To prove it, just replace the
1.5 factor you used in the calculations in section 3.3.5 with another enlarging factor,
such as 1.1 for 10%.

Choosing the right percentage is a balancing act between time and space. The
smaller the percentage, the larger that constant will be, and so the less time-efficient.
On the other hand, a more conservative percentage saves space because the ArrayList
capacity will generally be closer to its size.
2. As I explained in this chapter, enlarging by a factor of f causes logf

n
10 reallocations

in the course of n insertions. Accordingly, enlarging by 10% instead of 50% leads to
the following increase in reallocations:

log1.1
n
10

log1.5
n
10

= log1.1 1.5 ≈ 4.25.

Enlarging by 10% causes 4.25 times more reallocations than enlarging by 50%.

Further reading
There are several standard algorithmbooks that cover union-find algorithms and amor-
tized complexity.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, 2009.
J. Kleinberg and E. Tardos. Algorithm Design. Pearson, 2005.
For a quick overview of union-find algorithms, Kevin Wayne from Princeton
maintains high-quality slides that summarize their history and properties, based
on the Algorithm Design book. You can easily find them online.

In this chapter, I didn’t discuss Java-specific performance tips and tricks, choosing
instead to focus on high-level, mostly language-independent algorithmic principles.
You can use the following book to fill this gap by learning about the many ways you can
tune a VM to the needs of a concrete application.
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A substantial part of the book is devoted to garbage collection, as that is an area
where several competing algorithms offer different performance profiles, with no sin-
gle algorithm being superior for all applications. Additionally, the book discusses a
range of monitoring and profiling tools available for Java.

Scott Oaks. Java Performance: The Definitive Guide. O’Reilly Media, 2014.
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4Precious memory:
Space efficiency

This chapter covers
Writing space-efficient classes

Comparing the memory requirements
of common data structures, including
arrays, lists, and sets

Assessing trade-offs between performance
and memory footprint

Exploiting memory locality to improve
performance

Sometimes, programmers need to store their data in as little space as possible. Contrary
to intuition, this rarely happens because the device they’re targeting comes with little
memory. Rather, it happens because the amount of data is huge. For example, video
games are a type of software that often pushes the limits of the hardware. No matter
how many GB of memory the next console boasts, soon games will run out of it and
start packing data in weird ways.

In this chapter, assume your water-management program will deal with millions,
perhaps even billions of containers, and you want to keep as many of them as possible
in main memory. Clearly, you’ll want to shrink the memory footprint of each container
as much as possible. On the other hand, you don’t need to worry about the memory
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that temporary local variables use because they live only the short time span of amethod
call.

For each implementation in this chapter, you’ll compare its memory footprint with
the one of Reference, discussed in chapter 2. In the meantime, recall the fields used in
that class:

public class Container {
private Set<Container> group; b Containers connected to this one
private double amount; c Amount of water in this container

4.1 Gently squeezing [Memory1]
You can do somewhat better than Reference with a few simple tricks. First, it’s quite
unlikely that you really need the resolution or range of double-precision numbers to
represent the amount of water in a container, so you can save 4 bytes per container
by downgrading the amount field from double to float. You need to downgrade the
argument of addWater and the return type of getAmount accordingly, so you’re slightly
modifying the public API. Note that the resulting class is still 100% compatible with
UseCase from chapter 1 because that use case passes water amounts as integers, and
integer arguments are compatible with both float and double parameters.

Space-saving data types
Reduced-size data types play a limited role in the main Java API, but they’re well sup-
ported in more specialized contexts where memory may be an issue. For example,
Android provides a FloatMath class with commonmathematical operations performed
on floats instead of doubles. Also, in the Java specification for smart cards (aka
Java Card), most integers occurring in the API are encoded as either shorts or bytes.

POP QUIZ 1 If your program contains 10 occurrences of the string literal "Hello
World", how much memory is devoted to those strings?

Regarding the group field, its Set type was chosen in the reference implementation
because it clearly expresses the intent that groups are unordered and contain no dupli-
cates. By giving up this clarity of intent and switching to an ArrayList, you can save a
significant amount of memory. After all, an ArrayList is a thin wrapper around a plain
array, so the net memory cost of an extra element is just 4 bytes. Your new Container

class, nicknamed Memory1, should start as shown in the following listing.

Listing 4.1 Memory1: Fields and method getAmount—no constructor needed

public class Container {
private List<Container> group; b It will be initialized with an ArrayList.
private float amount;

public float getAmount() { return amount; }
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Additionally, if many containers are never connected to a group, you can save space
by instantiating the list only when actually needed (aka lazy initialization). In other
words, the group field equal to null represents an isolated container. This choice
allows you to provide no explicit constructor, although it also means that connectTo
and addWater need to treat isolated containers as special cases, as you’ll see in aminute.

In general, you should be careful when migrating from a Set to a List because
you’re losing the ability to automatically reject duplicate elements. Luckily, you weren’t
using that ability in Reference because the groups you merged using the connectTo

method are guaranteed to be disjoint in the first place. The implementation for con�
nectTo shown in the following listing is what you obtain.

Listing 4.2 Memory1: Method connectTo

public void connectTo(Container other) {
if (group==null) { b If this is isolated, initializes its group

group = new ArrayList<>();
group.add(this);

}
if (other.group==null) { c If other is isolated, initializes its group

other.group = new ArrayList<>();
other.group.add(other);

}
if (group==other.group) return; d Checks if they’re already connected

int size1 = group.size(), e Computes the new water amount
size2 = other.group.size();

float tot1 = amount * size1,
tot2 = other.amount * size2,
newAmount = (tot1 + tot2) / (size1 + size2);

group.addAll(other.group); f Merges the two groups
for (Container x: other.group) { x.group = group; }
for (Container x: group) { x.amount = newAmount; }

}

Finally, the addWater method also needs to take into account the special case of an
isolated container, to avoid dereferencing a null pointer, as shown in the following
listing.

Listing 4.3 Memory1: Method addWater

public void addWater(double amount) {
if (group==null) { b If this is isolated, updates locally

this.amount += amount;
} else {

double amountPerContainer = amount / group.size();
for (Container c: group) {

c.amount += amountPerContainer;
}

}
}
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Let’s end this section by taking a look at the memory layout of this implementation.
As usual, assume you run the first three parts of UseCase, which consist of creating four
containers (a to d) and running the following lines:

a.addWater(12);
d.addWater(8);
a.connectTo(b);
b.connectTo(c);

The scenario is illustrated in figure 4.1, and the corresponding memory layout of Mem-
ory1 is depicted in figure 4.2. The layout is very similar to Reference, except for the
ArrayList instead of HashSet, and except for the null value in container d, instead of a
reference to a one-element HashSet. The third difference in comparison to Reference—
water amounts of type float instead of double—doesn’t show in the diagram.

8
4 4 4

a b c d

Direct connections Isolated container

Figure 4.1 The situation after
executing the first three parts of
UseCase. You’ve connected
containers a through c together and
poured water into a and d.

a

b

c

d

a

b

c

ArrayList

null
Isolated 

container

Water 
amount

Link back to 
container

Figure 4.2 The memory layout of Memory1 after executing the first three parts of UseCase

4.1.1 Space and time complexity

To estimate the memory footprint of a Memory1 container, start by evaluating the size
of an ArrayList, which is internally implemented as an array and a couple of book-
keeping fields. The length of the internal array is called the capacity of the ArrayList,
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to distinguish it from its size, which is the number of elements actually stored in it. The
memory requirements of an ArrayList come from the following features:

12 bytes for the standard object overhead
4 bytes for an integral field counting the number of structural modifications
(insertions and deletions) ever performed on the list (This field is used to raise
an exception if the list is modified during an iteration.)
4 bytes for the integral size field
4 bytes for the reference to the array
16 bytes for the standard array overhead
4 bytes for each array cell

The memory layout of an ArrayList is sketched in figure 4.3. Because an ArrayList

with n elements contains at least n array cells, based on those features it occupies at
least 40 + 4n bytes.

ArrayList<T>

overhead

modCount (int)

12

4

...

overhead

First element
elemData

16

4

4 bytes for each 
element

Array of T 
references

4

40 bytes for a 
barebone ArrayList

size (int)4 Second element

Detects 
concurrent 
modifications

Figure 4.3 The memory layout of an ArrayList

In reality, the capacity of an ArrayList is often larger than its size. If you add an extra
element to an ArrayList that’s at full capacity, the class will create a larger array and
copy the old one onto the new one. To improve its overall performance, the enlarged
array will not be tight—just one cell longer than the old one. As I explained in detail
in chapter 3 (section 3.3.5), the capacity actually will increase by 50%. As a result, at
any given time the capacity of an ArrayList is between 100% and 150% of its size. In
the following estimates, assume the average value is 125%.

Your results should look like the estimates in table 4.1. An isolated container (first
scenario) carries no ArrayList. Only the container objects themselves take memory:
4 bytes for the group reference (which holds null) and 4 bytes for the amount field, plus
the usual 12-byte object overhead. When you organize containers in 100 groups of 10
(second scenario), you have to add 100 ArrayLists to the footprint of 1,000 container
objects.
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Table 4.1 Memory requirements of Memory1

Scenario Size (calculations) Size (bytes)
reference
% of

1000 isolated 1000 ∗ (12 + 4 + 4) 20000 19%

100 groups of 10 1000 ∗ (12 + 4 + 4) + 100 ∗ (40 + 10 ∗ 1.25 ∗ 4) 29000 47%

As you can see from table 4.1, with a few simple changes to Reference, you can save
a significant amount of space. In particular, the idea of allocating the lists when you
first need them obviously brings about great savings in the first scenario, where all
containers are isolated, so no list is ever allocated. The 50% savings in the second
scenario are instead entirely due to having replaced HashSet with ArrayList.

Notice that thememory savings you’ve achieved in this section come at essentially no
performance cost because the three operations keep the same complexity they have in
Reference, as reported in table 4.2. On the other hand, the class is somewhat less readable
thanReference. First, declaring the group field of type List hides the fact that groups are
in fact unordered collections with no duplicates. Secondly, treating isolated containers
as special cases is an unnecessary complication whose only aim is to save some space.

Table 4.2 Time complexities for Memory1, where n is the total number of containers. These
complexities coincide with those of Reference.

Method Time complexity

getAmount O(1)

connectTo O(n)

addWater O(n)

The high memory overhead of HashSet and other standard collections is a well-
known fact, so much so that several frameworks provide more space-efficient alterna-
tives. For example, Android provides a class called SparseArray, representing a map
with integer keys and reference values, which is implemented based on two same-length
arrays. The first array stores the keys in ascending order and the second array stores
the corresponding values. With this data structure, you pay for the improved memory
efficiency with a worse time complexity: finding the value corresponding to a given key
requires a binary search over the key array, which in turn requires logarithmic time.
Exercise 2 at the end of this chapter invites you to further analyze the SparseArray

class.
When you only need to store primitive values, several libraries, such as GNU Trove

(https://bitbucket.org/trove4j/trove), provide specialized set and map implementa-
tions that avoid wrapping each value in the corresponding class.
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4.2 Plain arrays [Memory2]
In your second attempt at saving memory, nicknamed Memory2, you’ll replace the
ArrayList representing a group with a plain array and keep its length exactly equal
to the size of the group. The following listing shows what the beginning of the class
should look like.

Listing 4.4 Memory2: Fields and method getAmount—no constructor needed

public class Container {
private Container[] group;
private float amount;

public float getAmount() { return amount; }

As for Memory1, you may want to allocate the group array only when necessary, that is,
when this container is connected to at least another one. The resulting memory layout
in the usual scenario is shown in figure 4.4.

a

b

c

d

4.0

4.0

4.0

8.0 null

a

b

c

Link back to 
container

Water amount

Container[]

Figure 4.4 Memory layout of Memory2 after executing the first three parts of UseCase

The connectTo method is quite similar to the one in Memory1, just slightly more
cumbersome, because of its lower level of abstraction. For example, merging two
ArrayLists is a simple matter of invoking the addAll method, whereas merging two
arrays requires reallocating one of them and then iterating over the other.

Listing 4.5 Memory2: method connectTo

public void connectTo(Container other) {
if (group==null) { b If this is isolated, initializes its group

group = new Container[] { this };
}
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if (other.group==null) { c If other is isolated,
initializes its groupother.group = new Container[] { other };

}
if (group == other.group) return; d Checks if they’re already connected

int size1 = group.length, e Computes the new water amount
size2 = other.group.length;

float amount1 = amount * size1,
amount2 = other.amount * size2,
newAmount = (amount1 + amount2) / (size1 + size2);

Container[] newGroup = new Container[size1 + size2]; f Allocates new group

int i=0;
for (Container a: group) { g For each container in 1st group. . .

a.group = newGroup; h . . .updates its group
a.amount = newAmount; i . . .updates its amount
newGroup[i++] = a; j . . .and appends it to newGroup

}
for (Container b: other.group) { � Does the same for 2nd group

b.group = newGroup;
b.amount = newAmount;
newGroup[i++] = b;

}
}

Finally, the addWater method is almost identical to the one from Memory1, except
for the type of the water amount variables—float instead of double—as shown in the
following listing.

Listing 4.6 Memory2: Method addWater

public void addWater(float amount) {
if (group==null) {
this.amount += amount;

} else {
float amountPerContainer = amount / group.length;
for (Container c: group) {

c.amount += amountPerContainer;
}

}
}

4.2.1 Space and time complexity

A plain array containing references to n containers takes 16 + 4n bytes, leading to the
estimates in table 4.3 for our standard scenarios. An isolated container (first scenario)
allocates no group array, and its memory footprint is exactly as large as in Memory1:
20 bytes. When you organize the containers in 100 groups of 10 (second scenario), a
10-cell array represents each group, taking 16 bytes of array overhead and 4*10 bytes
for its actual content.

The bad news is that the memory savings you achieve with Memory2 are insignifi-
cant compared with the previous version of Memory1. Isolated containers occupy the

Licensed to Abner Lopez <ihackn3wton@gmail.com>



Plain arrays 89

Table 4.3 Memory requirements of Memory2

Scenario Size (calculations) Size (bytes)
reference
% of

1000 isolated 1000 ∗ (12 + 4 + 4) 20000 19%

100 groups of 10 1000 ∗ (12 + 4 + 4) + 100 ∗ (16 + 10 ∗ 4) 25600 42%

same amount of memory, and groups of containers, now represented by arrays, are
only marginally more compact than ArrayLists. In fact, the bigger savings come from
keeping the arrays tight, that is, exactly as long as they need to be, rather than relatively
loose as an ArrayList.

It’s a good time to recall and compare the memory requirements of the three stan-
dard data structures you’ve used so far to represent groups of containers: HashSet (Ref-
erence and Speed1), ArrayList (Memory1), and plain arrays (Memory2). I’m not includ-
ing classes Speed2 and Speed3 in the comparison because they’re based on custom data
structures that aren’t immediately available for general use.

Table 4.4 summarizes these memory requirements. The size estimate for a plain
array of object references is easy to make: 16 bytes of overhead and 4 bytes for each
reference. I carried out the size analysis of ArrayList in detail in section 4.1.1. Here,
I’m assuming that its capacity is equal to its size. (In reality, the former can be up to
50% larger than the latter.) Similar simplifying assumptions apply to the size analysis
for HashSet, which I presented in section 2.2.1.

Table 4.4 Memory requirements of common collections, assuming that the capacity of the
ArrayList and the HashSet is equal to their size. The second column is tagged “barebone” instead
of “empty” because it doesn’t take into account the default initial capacity of that collection.

Type Size (barebone) Size (each extra element)

array 16 4

ArrayList 40 4

LinkedList 24 24

HashSet 52 32

As you can see from the table, an array and an ArrayList are very close in terms
of memory requirements, but ArrayList is more useful, supporting automatic resiz-
ing and other utilities, and leads to more readable code because of its higher level of
abstraction. Moreover, ArrayList plays nicely with generics, whereas arrays are at odds
with them.

POP QUIZ 2 For a type parameter T, why isn’t “new T[10]” a legal Java expression?

HashSet is in a different, much bulkier league, particularly because it wraps each
inserted element into a new object. However, it provides unique services in optimal
time:
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Membership query in constant time (method contains)
Rejection of duplicate elements in constant time (method add)
Removal of an arbitrary element in constant time (method remove)

If your application requires those services, and you’re not memory-constrained, a Hash�
Set will generally more than repay for its larger memory footprint.

Regarding performance, the time complexity of Memory2 turns out to be the same
as Memory1 and Reference, as reported in table 4.5. After all, Memory2 is just a variation
of Memory1 with plain arrays instead of ArrayLists.

Table 4.5 Time complexities for Memory2, where n is the total number of containers. These
complexities coincide with those of Reference.

Method Time complexity

getAmount O(1)

connectTo O(n)

addWater O(n)

Youmay be wondering why the smart resizing policy of ArrayList, which guarantees
amortized constant-time insertions, doesn’t provide any advantage to Memory2. The
explanation is that it does provide some advantage in the performance of connectTo,
but the other operations the method performs hide that advantage. In detail, Memory1
merges two groups through the line

group.addAll(other.group);

where group and other.group are two ArrayLists. Memory2 instead executes the line

Container[] newGroup = new Container[size1 + size2];

The first is generally more efficient than the second because the extra capacity of the
first ArrayList may be enough to insert all the elements from the second ArrayList

without any new allocation. However, both versions of connectTo then proceed to iter-
ate over all the elements from both of the old groups. As a result, asymptotically speak-
ing, the later loops overrule the early savings, leading to the same big-O complexity of
O(n) for both versions of connectTo.

There’s one more reason to like Memory2: it’s entirely self-contained, in that it does
not mention any other class from the Java API. In special circumstances, this could be
beneficial, because it means that this class can function in a context with a very limited
runtime environment, as allowed by the module system introduced with Java 9.

4.3 Forgoing objects [Memory3]
Even an empty Java object takes 12 bytes, so if we respect the use case from chapter 1,
a container can’t take less space than that. Now, assume you can change the API to
whatever takes the least amount of space, while still offering the same services as the
original class: get the current water amount in a container, change the current amount,
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and connect two containers. What’s the least amount of space you need to store the
information that’s actually necessary to offer those services?

To significantly reduce space usage, you can’t afford to keep an object for each con-
tainer, but clients still need a way to identify a specific container. The solution is to give
clients a handle, a piece of information that uniquely identifies a container. A reference
to a container object is a perfectly fine handle, but it comes with the 12-byte overhead
you’re trying to avoid. What you’re looking for is an alternative handle that does not
come with a memory overhead.

4.3.1 The object-less API

Rather than providing one object for each container, to save space you can let the
client identify each container with an integer ID—the client-side handle for a container.
It’s then just natural to store the required information (water amounts and mutual
connections) in a space-efficient data structure that’s indexed by integers. Is there any
particular structure that comes to mind? That’s right, arrays.

Consequently, instead of a constructor, the class will include a static method that
returns the ID of a new container:

int id = Container.newContainer();

Then, instead of calling c.getAmount() on a container object, the client will call a static
method accepting a container ID:

float amount = Container.getAmount(id);

Analogously, to connect two containers, clients will pass their identifiers to a static
connect method:

Container.connect(id1, id2);

Clearly, this implementation is against all OO canons, and you should consider it only
for the sake of pushing our assumptions to the limit.

To familiarize yourself with the resulting API, check out how the use case from chap-
ter 1 (nicknamed UseCase) is transformed to employ integer IDs instead of container
objects. Recall the first lines of UseCase:

Container a = new Container();
Container b = new Container();
Container c = new Container();
Container d = new Container();

a.addWater(12);
d.addWater(8);
a.connectTo(b);
System.out.println(a.getAmount() + " " + b.getAmount() + " " +

c.getAmount() + " " + d.getAmount());

When forgoing container objects, you identify each container using an integer, and the
previous lines become the following:
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int a = Container.newContainer(), b = Container.newContainer(),
c = Container.newContainer(), d = Container.newContainer();

Container.addWater(a, 12);
Container.addWater(d, 8);
Container.connect(a, b);
System.out.println(Container.getAmount(a) + " " +

Container.getAmount(b) + " " +
Container.getAmount(c) + " " +
Container.getAmount(d));

Although I’m recommending plain arrays for memory efficiency reasons, in practice
you’re as likely to use them for time efficiency reasons, because arrays bring the benefits
of cache locality. In short, data that’s closer together in memory (as in an array) is faster
to access than data that’s randomly spread around (as in a linked list). This fact is due
to the organization of the CPU cache, a memory buffer bridging the performance gap
between the CPU and the main memory. The cache keeps at hand small chunks of
adjacent data. Keeping two related data items closer together in memory improves the
likelihood that loading one piece of data into the cache also will carry the second piece
of data with it, thus speeding up the ensuing operations. For example, all fields of the
same object are arranged close together inmemory. Hence, accessing one field is likely
to speed up access to all other fields of the same object.

The memory hierarchy
The memory of modern computers is organized into a hierarchy of levels, each one
larger and slower than the one above it. The top level comprises the CPU registers,
typically spanning a few hundred bytes. Registers are the only kind of memory that
can keep up with the CPU’s native processing speed: registers can be read or written
in every single CPU cycle.

Below the registers lays the cache, divided into several levels and comprising a few
megabytes. Reading from the top-level cache (that is, moving data from the top-
level cache to a register) takes only a few cycles, whereas reading directly from main
memory requires hundreds of cycles.

The cache is organized in lines, each comprising multiple machine words. Whenever
the program addresses a new memory location, the cache loads a full line starting at
the address of that location. If that location is the first element of an array, several
more array elements will be automatically loaded into the same cache line, ready to
be quickly moved to the registers, if requested.

For the sake of concreteness, consider the recent AMD Zen architecture for desktop
CPUs. Its cache is divided into three levels, and each line is 64 bytes long. The follow-
ing are the main characteristics of the memory hierarchy (see http://mng.bz/E1lX):
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Level Size (per core) Latency (cycles)

Registers 128 bytes 1

L1 cache 32 KB 4

L2 cache 512 KB 17

L3 cache 2 MB 40

Main memory 16 GB (typical) ∼300

POP QUIZ 3 If set is a HashSet, would you expect the call set.contains(x) to
speed up a subsequent call set.contains(y)? What if set was a TreeSet?

In Java, you can store a collection of items in a cache-local way only via arrays or
classes based on arrays, such as ArrayList. However, generic collections like ArrayList
can hold only references, so the cache locality is limited to the references themselves
and doesn’t extend to the data they point to. For example, an ArrayList<Integer>

holds an array of references to Integers. The references will be adjacent in memory,
but the actual integer values won’t. The same applies to a plain array of Integer objects,
as shown in figure 4.5.

You need external libraries, such as the GNU Trove I mentioned, to combine the
automatic resizing and other handy capabilities of ArrayList with the cache locality of
an array of primitive values. For example, GNU Trove class TIntArrayList represents
a resizable array of primitive integers.

4.3.2 Fields and the getAmount method

The new Container class, nicknamed Memory3, identifies both containers and groups
of containers via integral IDs. It uses two class arrays (that is, static fields) to encode
the required information:

They benefit from 
memory locality.

Integer
Integer[]

... References occupy 
contiguous memory.

Integer

Integer

They do not 
benefit from 
memory locality.

Integers are not 
contiguous.

Figure 4.5 An array of Integer objects. The array itself occupies a contiguous chunk of memory, but
the Integer objects the array points to are scattered in memory.
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The group array maps a container ID to its group ID.
The amount array maps a group ID to the amount of water found in each
container of that group.

Given a container ID, the getAmount method will access the group array to obtain the
group ID for that container, and then the amount array to obtain the water amount in
that group, as you can see in the following listing.

Listing 4.7 Memory3: Fields and method getAmount

public class Container {
private static int group[] = new int[0]; b From containerID to its group
private static float amount[] = new float[0]; c From groupID to

the per-container amount
public static float getAmount(int containerID) {

int groupID = group[containerID];
return amount[groupID];

}

It may seem odd to initialize those fields with zero-sized arrays, but there’s a perfectly
good reason to do it: if you do so, you don’t have to treat the creation of the first
container in any special way. You’re improving uniformity and streamlining the code.
In particular, you can always access group.length and amount.length because those
arrays will never be null.

4.3.3 Creating containers with a factory method

Now, focus on the static method newContainer that replaces the constructor. Amethod
returning a new instance of a class is often called a factory method. The newContainer

method doesn’t actually create an instance of an object because the whole point of
Memory3 is to avoid having an object for each container. However, by returning the ID
of a new container, it fulfills the role of a factory method.

Factory methods vs. FACTORY METHOD
Any method that returns a new instance of a class is called a factory method. Com-
pared to a constructor, a factory method has the following advantages:

It’s not bound to return an object of a specific class; any subtype of its
declared return type would work.
For example, the class EnumSet (an implementation of Set whose elements
must belong to a given enumeration) provides new sets only through various
static factory methods. For performance reasons, they return different imple-
mentations (subclasses of EnumSet) depending on the size of the underlying
enumeration.
Despite what I wrote earlier, a factory method is not forced to return an object
that’s actually new.
It can cache or recycle objects, as long as doing so isn’t cause for concern—
perhaps because those objects are immutable. That’s the case of the factory
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method Integer.valueOf, which wraps a primitive integer into an immutable
Integer object that may or may not be new.

On the other hand, FACTORY METHOD (spelled in all caps for clarity) is one of the
original design patterns that the so-called Gang of Four defined. Naturally, the pattern
features a factory method, but in a specific context: a class needs to provide an object
to its clients, while leaving to its subclasses the ability to change the actual type of
that object. For example, you can consider the Iterable interface with its iterator
method an application of this pattern.

To implement newContainer, consider that this method needs to update the arrays
to accommodate a new container and then return its ID. As every new container comes
with its new group, you need to add an extra cell to both arrays. To do so, you use the
static Arrays.copyOf method, which copies an array to a possibly different—smaller
or larger—size. If the new size is smaller, the method discards the extra elements. If
the new size is larger, as in the current case, it adds extra zeros, as is usual when you
allocate a new array. The default zero value is just fine for the new amount cell because
containers start empty. On the other hand, you need to explicitly set the new group

cell to the ID of the new group, which you can take to be the smallest integer that’s not
yet the ID of a group—in other words, the size of the old amount array. You should end
up with an implementation similar to the following listing.

Listing 4.8 Memory3: Method newContainer

public static int newContainer() {
int nContainers = group.length,

nGroups = amount.length;
amount = Arrays.copyOf(amount, nGroups + 1); b Appends zero to amount
group = Arrays.copyOf(group, nContainers + 1); c Appends zero to group
group[nContainers] = nGroups; d Sets the group ID of the new container

return nContainers; e Returns the ID of the new container
}

Additionally, there’s no point in allowing clients to create Container objects, so you
better forbid it. One way of doing so is by adding a private constructor with an empty
body, thus preventing the compiler from adding the default constructor. The “Non-
instantiable classes” sidebar compares different ways to achieve this effect.

Non-instantiable classes
Version Memory3 of the container class holds only static members and is not meant
to be instantiated. There are several ways in Java to prevent the client from creating
objects of this class at compile time:

Turning the class into an interface
Declaring the class abstract
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Providing a private constructor (as the only constructor)

The first two techniques are not appropriate here because they invite the client to
extend the class, whereas it’s pointless to extend such a non-instantiable class. The
third technique is the right choice because it prevents both instantiation and extension
at the same time. Indeed, if you try to extend such a class, you’ll realize that the
constructor from the subclass has no way to make the mandatory call to a constructor
from the superclass.

Moreover, the third technique is the way non-instantiable classes from the JDK work.
Common examples include the so-called utility classes Math, Arrays, and Collec�

tions. Those classes have no state (no mutable fields) and are only meant to pro-
vide utility functions. Memory3 is not a utility class because it stores information in
its fields. It’s a module providing its services outside the OO canon.

POP QUIZ 4 How do you design a class that can only be instantiated once (aka a
singleton)?

Figure 4.6 shows the memory layout of this implementation after executing the first
three parts of UseCase. Containers are organized in two groups, whose IDs are 0 and 1.
The group array holds the group ID of each container, and the amount array holds the
per-container water amount in each group.

group

Container 
2 belongs 
to group 0.

amount

Every container 
in group 0 holds 
4 units of water.

Figure 4.6 Memory layout of Memory3 after executing the first three parts of UseCase

To keep the amount array at its optimal size, you need to ensure that there’s no gap
among the group IDs. Say there was a gap, and the group IDs for three groups were
0, 1, and 5. Those IDs correspond to indices in the amount array, so that array would
need six cells for just three groups. More formally, you should maintain the following
class invariant:

If there are n groups overall, then their IDs are the integers from 0 to n− 1.

A class invariant is a property that holds at all times, except during the execution
of a method of that class. So, methods from that class can count on invariants being
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true when they start, and they must ensure that those invariants are still true when they
finish. (We’ll return to this subject in chapter 6.)

The previous invariant makes sure that the amount array is as short as possible:
exactly as long as the total number of groups. This property is easy to guarantee as
long as groups are added but not removed. Unfortunately, each connect operation
removes a group, by merging two groups into a single one. Hence, you need to per-
form some extra work to rearrange the group IDs after an operation has removed a
group. A simple solution for removing a gap in the sequence of IDs is to move the gap
to the end of the sequence, by assigning themissing ID (the gap) to the group currently
holding the largest ID. That’s the responsibility of the method removeGroupAndDefrag,
described in the next section.

4.3.4 Connecting containers by ID

Next, let’s examine the connect method, as shown in listing 4.9. At this point, its
structure should be familiar to you, except for the following special features ofMemory3:

The size of a group isn’t immediately available; the support method groupSize

computes it by counting the number of occurrences of a given group ID in the
group array.
It merges two groups by assigning the ID of the first group to all containers in
the second group.
At the end, the support method removeGroupAndDefrag has to rearrange the
group IDs.

Listing 4.9 Memory3: Method connect

public static void connect(int containerID1, int containerID2) {
int groupID1 = group[containerID1],

groupID2 = group[containerID2],
size1 = groupSize(groupID1), b This method is presented later.
size2 = groupSize(groupID2);

if (groupID1 == groupID2) return; c Checks if they’re already connected

float amount1 = amount[groupID1] * size1, d Computes the new water amount
amount2 = amount[groupID2] * size2;

amount[groupID1] = (amount1 + amount2) / (size1 + size2);

for (int i=0; i<group.length; i++) { e Assigns the first group ID
to the members of the second groupif (group[i] == groupID2) {

group[i] = groupID1;
}

}
removeGroupAndDefrag(groupID2);

}

As usual, connect needs to compute the new amount of water in each container
after the connection is made. To do so, it needs to know the size of the two groups
being merged. However, the size of a group isn’t stored anywhere, and you need to
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compute it by counting the number of containers sharing the given group ID. This is
the purpose of the private support method groupSize, shown in the following listing.

Listing 4.10 Memory3: Support method groupSize

private static int groupSize(int groupID) {
int size = 0;
for (int otherGroupID: group) {

if (otherGroupID == groupID) {
size++;

}
}
return size;

}

Data streams
The groupSize method is the ideal occasion to show the potential benefits of the
stream library that Java 8 introduced. You can convert the group array into a stream
of integers (interface IntStream) and filter them according to a predicate (interface
IntPredicate), leaving only the values that coincide with the given group ID. Finally,
you can use the terminal operation count to count those values.

You also can use Lambda expressions, which Java 8 also introduced, to define the
filtering predicate with a much shorter syntax than previously available (that is, instead
of an anonymous class).

The result is the following one-liner, which replaces the whole body of groupSize:

return Arrays.stream(group)
.filter(otherGroupID -> otherGroupID == groupID)
.count();

I’ll show you a more extensive application of streams in chapter 9.

Finally, as I explained earlier, the method removeGroupAndDefrag is responsible for
removing a group while maintaining the class invariant.1 To understand its inner work-
ings, start by observing that when connect invokes removeGroupAndDefrag with argu-
ment k, no cell in the group array contains value k—no container belongs to group k

anymore. Still, you can’t just erase group ID k because that would leave a gap in the
sequence of IDs, which is against the class invariant. Instead, you have to assign ID k

to another group and update the two arrays accordingly. Say that before removal the
group IDs span the range from 0 to n − 1. The simplest thing you can do is assign ID
k to the group n− 1, then drop the ID n− 1 altogether.

Looking at listing 4.11, the for loop assigns group ID k to all containers previously
associated with group n− 1. The amount[groupID] line copies the amount of the old
group n − 1 to the new group k. The last amount line truncates the last cell from the

1 The defrag name refers to the filesystemmaintenance operation called defragmentation, whichmoves blocks
around to make sure that files occupy contiguous space.
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amount array, effectively erasing group n − 1 and restoring the class invariant. At the
end, the group IDs span the range from 0 to n− 2, as desired.

Listing 4.11 Memory3: support method removeGroupAndDefrag

private static void removeGroupAndDefrag(int groupID) {
for (int containerID=0; containerID<group.length; containerID++) {

if (group[containerID] == amount.length-1) {
group[containerID] = groupID;

}
}
amount[groupID] = amount[amount.length-1];
amount = Arrays.copyOf(amount, amount.length-1);

}

Figure 4.7 shows the step-by-step effect of running the following three lines from the
revised use case I presented earlier:

Container.addWater(a, 12);
Container.addWater(d, 8);
Container.connect(a, b);

group

Group 3 is 
renamed 1.

amount

Gap in the 
group IDs

(1 is missing)

0.0

0.0

0

1

0

1

2

3

2

3

0.0

0.0

group

amount

12.0

0.0

0

1

2

3

0.0

8.0

addWater(a, 12);
addWater(d, 8);

group

amount

6.0

0.0

0

0

2

3

0.0

8.0

connect(a, b);
(before defrag)

group

amount

6.0

8.0

0

0

2

1

0.0

(after defrag)

Group 1 
takes the 
amount of 

old group 3. 

Group 3 is 
removed.

0 (a)

1 (b)

2 (c)

3 (d)

Invariant 
violated! 

Invariant 
restored! 

Figure 4.7 How the method removeGroupAndDefrag deletes a group while restoring the class
invariant
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In particular, the figure shows the situation toward the end of connect, before and
after the call to removeGroupAndDefrag (last line in listing 4.9). Before the call, the
invariant doesn’t hold because group ID 1 is not assigned to any container. After the
call, defragmenting has renamed group 3 as 1 and moved its amount to amount[1],
thus restoring the invariant.

Youmay be wondering what happens if the group to be removed is the very last (that
is, if k = n − 1). A quick check reveals that you don’t need to treat that case in any
special way. Indeed, if k = n − 1, the for loop has no effect, because the condition
in the if statement is always false. The next assignment (the amount[groupID] line)
is also vacuous, and the last line (the amount line) simply drops the last cell from the
amount array.

4.3.5 Space and time complexity

This implementation is based on two plain arrays whose sizes are kept respectively equal
to the number of containers and to the number of groups. As a result, you can easily
estimate the memory consumption, as shown in table 4.6.

Table 4.6 Memory requirements of Memory3

Scenario Size (calculations) Size (bytes)
reference
% of

1000 isolated 4 + 16 + 1000 ∗ 4 + 4 + 16 + 1000 ∗ 4 8040 7%

100 groups of 10 4 + 16 + 1000 ∗ 4 + 4 + 16 + 100 ∗ 4 4440 7%

Dropping the container objects grants big memory savings and doesn’t cost any
performance—at least not in terms of asymptotic complexity, which stays the same
as for Reference. In practice, all previous implementations of connect(To) and addWa�

ter iterate over only the groups being processed, whereas in Memory3 those methods
need to iterate over all containers. Indeed, both connect and addWater need to know
the size of a group, which in turns requires iterating over the array of all containers
(the group array). With many containers around, these loops may very well lower the
effective performance, compared with Reference.

Moreover, we’re focusing on the three public methods, but notice that the newCon�

tainer method, which plays the role of a constructor, takes linear time because of the
calls to Arrays.copyOf. In all previous versions, starting from Reference, the constructor
contains no loops, so it works in constant time.

4.4 The black hole [Memory4]
The final implementation of this chapter, nicknamed Memory4, manages to use just
4 bytes for each extra container, at the expense of a higher time complexity. The idea
is to employ a single static array, featuring one cell for each container and serving a
dual purpose. For some indices, the array contains the index to the next container
in the same group, as if groups were stored as linked lists. For containers that have
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no next container, because they’re isolated or are simply the last one in their list, the
array stores the amount of water in that container (and in each container of the same
group).

I’m suggesting that you store both indices and water amounts in the same array.
The first are integers, and the latter are naturally floating-point numbers. What type
should the array be? Two options come tomind, leading to the samememory footprint
(4 bytes per container):

1 Array of type int—When you have to interpret cell content as a water amount,
you can divide it by a constant denominator, effectively implementing fixed-
point numbers. For example, if you divide all water amounts by 10,000, you’re
providing them with five decimal digits after the decimal point.

2 Array of type float—When you have to interpret cell content as an array index,
you must ensure that its value is a non-negative integer. After all, non-negative
integers (up to a certain value) are a special case of floating-point numbers.

In the following listing, I’ll go with option 2, which seems simpler, although you’ll see
in a minute that it comes with its share of caveats.

Listing 4.12 Memory4: Field—no constructor required

public class Container {
private static float[] nextOrAmount;

When reading the content of a cell, how do you distinguish between next values and
amount values? You can use an old trick from the bygone era when computer memory
was really tight: encoding one of the two cases with positive numbers and the other
case with negative numbers. More precisely, you’ll interpret a positive number as the
index of the next container, whereas a negative number stands for the opposite of the
water amount in that container. For example, if nextOrAmount[4] == -2.5, it means
that container 4 is the last in its group (or perhaps is isolated) and contains 2.5 units
of water.

There’s still a small catch: a zero value could be both an index and a valid amount
value, but floats don’t distinguish “plus zero” from “minus zero.” You can avoid this
ambiguity by assuming that zero is an amount, and never using zero as the index of
the next container. Because you don’t want to sacrifice cell zero, add 1 to all the
indices you’ve stored in the array (aka a bias). For example, if container 4 is followed
by container 7, you’ll have nextOrAmount[4] == 8.

Figure 4.8 shows the memory layout of this implementation after executing the first
three parts of UseCase. The value 2.0 in the first cell is a biased next pointer, indicating
that the first container (that is, container a) is linked to container number 1 (that is,
b). The value −4.0 in the third cell signifies that c is the last container in its group and
that each container in the group holds 4.0 units of water.

Listing 4.13 presents the code for the getAmount method. It follows the next val-
ues, just like a linked list (second line of code), until it finds the last container in the
list, identified by having a negative or zero value in it. That value is the desired water
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2.0

3.0

-4.0

-8.0

The next container in 
the group of 0 is 

container 1 (2.0 - 1).

nextOrAmount

The next container in 
the group of 1 is 

container 2 (3.0 - 1).

Container 2 is the 
last of its group.

Every container in its group 
holds 4 units of water.

0 (a)

1 (b)

2 (c)

3 (d)

Figure 4.8 Memory layout of Memory4 after executing the first three parts of UseCase. An array of
four floats serves a dual purpose: linking containers belonging to the same group and storing the
amount of water.

amount, with the opposite sign. Pay special attention to the −1 at the end of the third
line of code, which removes the bias, and to theminus sign after return, which restores
the proper sign for a water amount value.

Listing 4.13 Memory4: Method getAmount

public static float getAmount(int containerID) {
while (nextOrAmount[containerID]>0) { b Looks for the last one in the group

containerID = (int) nextOrAmount[containerID] -1; c Removes the bias
}
return -nextOrAmount[containerID]; d Restores the correct sign

}

Using floats to represent array indices comes with a hidden drawback. In principle,
array indices can span the whole range of non-negative 32-bit integers: 0 to 231 − 1

(approximately 2 billion, also known as Integer.MAX_VALUE). Floats have amuch wider
range, but a varying resolution. The distance between two consecutive floats changes
with their size, as shown schematically in figure 4.9. When a float is small (close to zero),
the next float is extremely close to it. When a float is large, the next float is farther away.
At some point, that distance becomes larger than 1, and floats start skipping integer
values.

real numbers
0

floats

Float.MAX_VALUE-Float.MAX_VALUE
At some point, this 
distance becomes >1.

Figure 4.9 The relationship between real numbers and values of type float
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For example, because of the wider range, a float can exactly represent 1E10 (1010,
that is, 10 billion), whereas an integer can’t. Both types can represent 1E8 (100 mil-
lion), but if a float variable contains 1E8 and you add 1 to it, it remains 1E8. Floats
don’t have enough significant digits to represent the number 100,000,001. The dis-
tance between 1E8 and the next float is larger than 1. Although 1E8 is well within
the range of floats, it’s outside their uninterrupted integer range, that is, the range of
integers that can be represented exactly and without gaps. Table 4.7 summarizes the
uninterrupted integer range of the most common numeric primitive types.

Table 4.7 Comparing the uninterrupted integer range of primitive types. The uninterrupted integer
range is the set of (non-negative) integers that can be represented exactly and without gaps.

Type Significant bits
decimal digits
Significant

integer range
Uninterrupted

int 31 9 0 to 231 − 1 ≈ 2 ∗ 109

long 63 18 0 to 263 − 1 ≈ 9 ∗ 1018

float 24 7 0 to 224 − 1 ≈ 16 ∗ 106

double 53 15 0 to 253 − 1 ≈ 9 ∗ 1015

POP QUIZ 5 Choose a data type and an initial value for variable x in such a way
that the loop while (x+1==x) {} goes on forever.

Using floats as array indices isn’t a terribly good idea and will work satisfactorily
only as long as the indices stay below the uninterrupted integer range, which is much
lower than Integer.MAX_VALUE. To see exactly howmuch lower it is, consider that non-
negative integers have 31 significant bits, whereas non-negative floats only have 24 sig-
nificant bits. Because 31 − 24 = 7, the threshold for floats is 27 = 128 times smaller
than Integer.MAX_VALUE.

Funny things will happen if you createmore than 224 containers, and you’d be better
off placing suitable runtime checks in the newContainer method. However, because
this chapter is about memory consumption, let’s stick to the plan and optimize only
one code quality at a time, deferring such robustness considerations to chapter 6. You
can find the rest of the source code for Memory4 in the accompanying online repository
(https://bitbucket.org/mfaella/exercisesinstyle).

4.4.1 Space and time complexity

The single static array from Memory4 requires 4 bytes for the reference to the array,
16 bytes of standard array overhead, and 4 bytes for each actual cell. In this implemen-
tation, a given number of containers always takes the same amount of space, regardless
of how they’re connected. Table 4.8 provides the space estimates for our two usual
scenarios.

These extreme memory savings come at a significant performance cost, as shown in
table 4.9. Methods connect and addWater need to figure out the size of a group, given
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Table 4.8 Memory requirements of Memory4

Scenario Size (calculations) Size (bytes)
reference
% of

1000 isolated 4 + 16 + 1000 ∗ 4 4020 4%

100 groups of 10 4 + 16 + 1000 ∗ 4 4020 7%

the index of an arbitrary container in that group. This entails going back to the first
container in a group and then visiting the whole virtual list of containers to appraise
its length. Finding the first container in a group is tricky: the first container is the only
element of the group that’s not the target of any next pointer. To find it, you must visit
the group list backwards, which requires quadratic time.

Table 4.9 Time complexities of Memory4

Method Time complexity

getAmount O(n)

connectTo O(n2)

addWater O(n2)

4.5 Space-time trade-offs
I’ll start by summarizing the space requirements of the four container versions from
this chapter and comparing them with Reference from chapter 2. (See table 4.10.)

Table 4.10 Memory requirements of all implementations from this chapter, plus Reference.
Recall that Memory3 and Memory4 expose a different, object-less API.

Scenario Version Bytes % of Reference

1000 isolated

Reference 108000 100%

Memory1 20000 19%

Memory2 20000 19%

Memory3 8040 7%

Memory4 4020 4%

100 groups of 10

Reference 61200 100%

Memory1 29000 47%

Memory2 25600 42%

Memory3 4440 7%

Memory4 4020 7%

As you can see from table 4.10, we managed to obtain significant memory savings by
choosing suitable collections and encodings. To go beyond the barrier represented by
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the per-object overhead, we had to break the API established in chapter 1 and identify
containers using integer IDs instead of container objects. All the implementations from
this chapter also sacrifice readability and, as a consequence, maintainability. The quest
for memory efficiency leads to using lower-level types (mostly arrays) instead of higher-
level collections and special encodings, to the point of employing a float as an array
index in Memory4. Most programming environments frown upon these techniques,
but they come up in niche applications that are either severely memory-constrained,
like some embedded systems, or need to keep a huge amount of data in main memory.

As I discussed in chapter 1, space and time efficiency are often at odds. This chapter
and the previous one provide positive and negative examples of this rule of thumb, as
highlighted in figure 4.10. The figure plots the space versus time requirements of
the seven implementations from these chapters, plus Reference from chapter 2. Recall
that Memory3 and Memory4 can achieve such noticeable memory savings at the cost of
changing the API for containers.

Ti
m

e

Space (bytes per container)

The fastest

The most compact

Speed3

Speed2

Speed1
Reference

Memory1
Memory2Memory3

Memory4

Object-less API

Cannot connect the 
same containers twice

Figure 4.10 Performance profiles of the implementations from chapters 3 and 4, plus Reference. For
the space measure, you take the average number of bytes per container in scenario 2 (1000 containers
connected in 100 groups of 10). For the time measure, you take the maximum complexity among the
three class methods, with the caveat that you’re measuring Speed3 according to amortized complexity.

The plot confirms that the most advanced implementations from the two chapters
are indeed those that maximize the corresponding quality: Speed3 has the maximum
time performance, and Memory4 the maximum space efficiency. Moreover, squeezing
the memory requirements all the way to the approximately 4 bytes per container of
Memory4 raises the time complexity to a quadratic function. This is expected and in
line with the typical trade-off between time and space.
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On the other hand, Speed3 excels in both time and space performance, exhibiting
a memory footprint whose size is remarkably close to that of Memory2, which was the
minimum we could achieve without sacrificing our standard API. Hence, in most prac-
tical circumstances, except the most memory-constrained, you really should consider
Speed3 to be the best data structure for the job.

4.6 And now for something completely different
It’s time to apply space-saving techniques to a different scenario: meet multi-sets. A
multi-set is a set that can contain duplicate elements. So, the multi-set {a, a, b} is
different from {a, b}, but it’s indistinguishable from {a, b, a} because the order of its
elements doesn’t matter.

Design a space-efficient multi-set implementation, called MultiSet<T>, supporting
the following methods:

public void add(T elem)—Inserts elem into the multi-set
public long count(T elem)—Returns the number of occurrences of elem in
the multi-set

Use the following questions as guidelines in comparing and choosing among differ-
ent implementations:

1 Assume you insert n distinct objects multiple times, for a total of m insertions
(so, m is at least as much as n). How many bytes does your implementation
need for storing them?

2 What is the time complexity of add and count in your implementation?

It turns out there are two space-optimal implementations, depending on how many
duplicates you expect.

4.6.1 Low duplicate count

If you expect few duplicates, you can use a single array of objects and append every
inserted object at the end, both when it’s the first appearance and when it’s a duplicate.

As discussed in this chapter, using an ArrayList instead of a plain array makes per-
fect sense because it consumes only slightly more memory but greatly simplifies your
implementation. Moreover, unlike arrays, ArrayLists work nicely with generics.

You should obtain something like the following:

public class MultiSet<T> {
private List<T> data = new ArrayList<>();

public void add(T elem) {
data.add(elem);

}
public long count(T elem) {

long count = 0;
for (T other: data) {

if (other.equals(elem)) {
count++;

Licensed to Abner Lopez <ihackn3wton@gmail.com>



And now for something completely different 107

}
}
return count;

}
}

Using the newer stream library, you can rewrite the count method as the following
one-liner:

public long count(T elem) {
return data.stream().filter(x -> x.equals(elem)).count();

}

The addmethod takes constant (amortized) time (recall section 3.3.5) and count takes
linear time. The memory footprint afterm insertions of n distinct objects is 56+ 4 ∗m
bytes (independently of n), which breaks down as follows:

12 bytes for overhead of the MultiSet object
4 bytes for the reference to the ArrayList
40 bytes for a barebone ArrayList (see table 4.4)
4 ∗m bytes for the references to the elements of the multi-set

4.6.2 High duplicate count

If duplicates are common, you’re better off using two arrays: one to hold the objects
themselves and one to hold the number of repetitions for each object. If you’re familiar
with the collection framework, you’ll recognize that this would be the perfect job for
a Map. However, both standard implementations of Map (HashMap and TreeMap) are
linked structures that take a lot more memory than two ArrayLists.

You end up with something like the following:

public class MultiSet<T> {
private List<T> elements = new ArrayList<>();
private List<Long> repetitions = new ArrayList<>();
...

I’ll leave the rest of the implementation to you as an exercise. Just make sure that
the i-th element of repetitions (the one you get from repetitions.get(i)) is the
number of repetitions of the object elements.get(i).

As far as performance is concerned, insertion needs to scan the first array to figure
out whether the object is new or a duplicate. In the worst case, both methods add and
count take linear time.

The resulting memory footprint afterm insertions of n distinct objects is 100+28∗n
bytes (independently of m) because of the following contributions:

12 bytes for overhead of the MultiSet object
2 ∗ 4 bytes for the references to the two ArrayLists
2 ∗ 40 bytes for two barebone ArrayLists
4 ∗ n bytes to store references to each unique element (the first array)

Licensed to Abner Lopez <ihackn3wton@gmail.com>



108 CHAPTER 4 Precious memory: Space efficiency

(4+20) ∗n bytes to store a Long counter for each unique element (the second
array) (Each Long object takes 12 + 8 = 20 bytes.)

This two-array solution is the most memory-efficient if 100 + 28 ∗ n < 56 + 4 ∗ m,
that is, if on average each object is present at least seven times (m > 11 + 7 ∗ n).

4.7 Real-world use cases
In chapters 3 and 4, I discussed the two major factors that affect the efficiency of an
algorithm: time and space. We’ve seen that it’s possible to solve a problem using dif-
ferent approaches (for example, using an ArrayList instead of a HashSet to store a
group of containers). As it turns out, choosing one approach over another results in
a trade-off between time and space efficiency. The best choice depends on the con-
text of the problem you need to solve. Let’s look at a couple of use cases where space
efficiency is important.

In machine learning, everything revolves around datasets. Datasets are com-
monly represented as a densematrix of rows of historical instances that include
properties of interest, called features or variables. Consider a more complicated
dataset consisting of a directed graph where the nodes are web pages and
directed edges represent links between them. Theoretically, it’s entirely pos-
sible to represent this dataset using an adjacency matrix. An adjacency matrix
is a square matrix where rows and columns represent the nodes of the graph
(web pages) andmatrix values indicate whether an edge (link) exists from one
web page to another (value 1) or not (value 0). If the graph is sparse, most
of the matrix cells remain unused, leading to a waste of memory. In this case,
you may have to consider using a representation that’s memory-efficient but
sacrifices time efficiency.
Smartphones these days sport almost as much memory as a standard laptop,
but that wasn’t true when Google was designing the Android OS in the early
2000s. Android is also meant to run on other devices that have a lot less
memory than a modern phone. Therefore, you can find several traces of
memory-efficiency concerns throughout its API. For example:

– The android.utilpackage contains several classes providingmemory-efficient
alternatives to the standard Java collections. For example, SparseArray is a
memory-efficient implementation of a map (aka an associative array) from
integer keys to objects. (By the way, exercise 2 in this chapter asks you to
analyze this class.)

– All Android classes pertaining to graphics use single-precision float values
instead of doubles for coordinates, rotation angles, and so on. For example,
see the class android.graphics.Camera.

XML is widely used to exchange data between heterogeneous systems. It’s a
common pattern that an application parses the XML, stores the contents in a
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relational database, and finally stores the XML itself as a BLOB. Subsequent
business logic and queries are performed using the relational schema, and the
event of requesting to retrieve the original XML is rare. Therefore, it might
be more appropriate to design a space-efficient process that compresses the
XML documents before storing them in the database.

4.8 Applying what you learned

EXERCISE 1
Read the description of a multi-set in section 4.6. The Google Guava library (https://
github.com/google/guava) contains a Multiset interface, and various implementa-
tions thereof, in the package com.google.common.collect. The main methods
of Multiset<E> are the following:

public boolean add(E elem)—Inserts elem into themulti-set and returns true
(for compatibility with the Collection interface)
public int count(Object elem)—Returns the number of occurrences of elem
in the multi-set.

Check out the source code for the HashMultiset class and answer the following
questions.
1. What’s the time complexity of its add and count methods?
2. Would you say this class is optimized for space, time, or a compromise between
the two?

Hint: You’ll need to peek at the source code of both HashMultiset and its abstract
superclass AbstractMapBasedMultiSet.

EXERCISE 2
The Android class android.util.SparseArray is a memory-efficient implementation
of an array of objects, whose indices can be arbitrary integers instead of a contiguous
interval starting at 0. As such, it’s a replacement for Map<Integer,Object>. Internally,
it uses two arrays: one for the indices (aka the keys) and one for the objects (aka the
values).

Check out the source code for the android.util.SparseArray class (http://mng.bz
/DNZA) and answer the following questions:
1. How much memory does an empty SparseArray created with new SparseArray()

need?
2. How much memory does a SparseArray need that contains 100 objects with con-
tiguous indices 0–99 (not counting the memory occupied by the objects themselves)?
3. Howmuchmemory does a SparseArray need that contains 100 objects with random
integer indices?

EXERCISE 3
In section 3.3, you learned that in Speed3 only containers that are representatives for
their group use their amount and size fields. For the other containers, those fields
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are irrelevant. Refactor Speed3 to lessen this memory inefficiency, without changing its
public API.

Hint: Consider that container objects are created before they’re connected, that
clients can hold references to them, and that objects can’t dynamically change their
type in Java.

EXERCISE 4 (MINI-PROJECT)
The class UniqueList<E> represents a fixed-size indexed list without duplicates and
exposes the following public interface:

public UniqueList(int capacity)—Creates an empty UniqueList with the
specified capacity.
public boolean set(int index, E element)—Inserts the given element
at the given index and returns true, provided the index lies between 0 and
capacity - 1 and the element isn’t present at another index. Otherwise, it
doesn’t change the list and returns false.
public E get(int index)—Returns the element at the given index, or null
if the index is invalid or empty (unassigned).

With that interface in mind, do the following:
1. Implement the UniqueList class in a space-efficient way.
2. Implement the UniqueList class in a time-efficient way.

Summary
High-level collections like HashSet generally improve performance and code
readability but incur greater memory overhead than low-level alternatives.
When in desperate need of space, you may avoid object overhead by switching
to integer IDs.
Storing data in contiguous memory improves performance because of cache
locality.
Floating-point numbers have a wider range than integers but varying resolu-
tion.

Answers to quizzes and exercises

POP QUIZ 1
Only one copy of each string literal is actually stored inmemory, thanks to amechanism
known as string interning.

As to the memory taken by a single “Hello World” string, before Java 9 it would have
been represented as UTF-16: 2 bytes per character. Starting from Java 9, the compact
string functionality recognizes that this particular string contains only ASCII characters
and switches to a one-byte-per-character encoding. In both cases, the characters are
stored in a byte array. On top of the actual characters, you have to add
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12 bytes of String object overhead
4 bytes to cache the string hash code
4 bytes for the reference to the byte array
1 byte for the flag that specifies the encoding (traditional or compact)
16 bytes of overhead for the byte array

In sum, a single copy of “Hello World” (11 characters) takes

11 + 12 + 4 + 4 + 1 + 16 = 48 bytes.

POP QUIZ 2
Two contrasting language design choices limit the cooperation between arrays and
generics:

The compiler erases unbounded type parameters and replaces themwith Object.
Arrays store their static type (and use it to check every array write).

As a consequence, if new T[10] was legal, the newly created array would behave just
like new Object[10]. But that’s not what the programmer would expect—hence the
decision to declare the first expression illegal.

POP QUIZ 3
Yes, a call to set.contains(x) may have a slight positive impact on a subsequent call
to set.contains(y) because the first call loads into the cache a part of the array of
buckets of that HashSet. (See figure 2.7 to recall the internal structure of a HashSet.)
If objects x and y have similar hash codes, the second call may find the reference to
the bucket of y in the cache.

The same conclusion applies to a TreeSet, for a different reason. A TreeSet is an
entirely linked data structure, where searching for an element involves following a path
in a tree. The second call, set.contains(y), may benefit from finding in the cache
the first nodes in the path leading to y. (All paths start from the same root node, so at
least that node is likely to still be in the cache.)

POP QUIZ 4
Singleton classes are a common way to offer a single point of access to some low-level
service. You create a singleton class by declaring a private constructor as the only con-
structor and providing a public method that always returns the same instance. That
instance is normally stored in a private static field of the class.

If the single instance is created on demand upon the first method call (lazy initial-
ization), you have to be extra careful about thread-safety issues. This is known as the
safe initialization problem, and you can read more about it in the book Java Concurrency
in Practice, by Brian Goetz and others (see the Further reading list for chapter 8).

POP QUIZ 5
You can choose type float or double for variable x, and an initial value beyond the
uninterrupted integer range of that type; for example, float x = 1E8.
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This is one of the many fun quizzes in the book Java Puzzlers, by Joshua Bloch and
Neal Gafter.

EXERCISE 1
Start your exploration from the concrete class HashMultiset, which extends
AbstractMapBasedMultiset and uses the support class Count (in the super line),
representing an integer that can be modified in place—a mutable version of Integer.

public final class HashMultiset<E> extends AbstractMapBasedMultiset<E> {

public static <E> HashMultiset<E> create() { b Factory method
return new HashMultiset<E>();

}

private HashMultiset() { c Private constructor
super(new HashMap<E, Count>()); d Calls the superclass constructor

}

As you can see, a public factorymethod creates an empty HashMultiset (public static

line), which invokes a private constructor (private line), which in turn forwards a new
HashMap to a superclass constructor (super line). Next, take a look at the relevant por-
tion of the superclass AbstractMapBasedMultiSet, where you’ll find the actual instance
field (backingMap in the following snippet) that supports the whole implementation:

abstract class AbstractMapBasedMultiset<E> extends AbstractMultiset<E>
implements Serializable {

private transient Map<E, Count> backingMap;

These snippets are sufficient to infer that the internal structure of a HashMultiset is
a map from objects to integers, that a HashMap implements, storing the number of
occurrences of each element. Just like HashSet is a time-efficient implementation of
Set, so is HashMap with respect to Map.2 Both classes focus on time efficiency at the
expense of memory occupancy. You can now answer the two questions posed by the
exercise:
1. The methods add and count have constant time complexity because they make a
constant number of calls to the basic methods of HashMap, which in turn have constant
time complexity. The usual caveats of hashed data structures apply: the hash func-
tion the hashCode method provides must spread objects uniformly over the range of
integers.
2. The class HashMultiset is optimized for time efficiency.

EXERCISE 2
First, consider the instance fields of SparseArray, listed in the following code fragment.
The mGarbage field is a flag used to delay the actual removal of an element until its
absence is made visible (a form of laziness, as discussed in chapter 3).

2 Internally, a HashSet is in fact a HashMap where all keys share the same dummy value.
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public class SparseArray<E> implements Cloneable {
private boolean mGarbage = false;
private int[] mKeys;
private Object[] mValues;
private int mSize;

Next, the following are the two (abridged) constructors involved when you make a
call like new SparseArray(). The mValues line is an Android-specific way of efficiently
allocating an array.

public SparseArray() {
this(10); c Default initial capacity: 10 items

}
public SparseArray(int initialCapacity) {

...
mValues = ArrayUtils.newUnpaddedObjectArray(initialCapacity);
mKeys = new int[mValues.length];
mSize = 0;

}

The previous snippets are sufficient to answer the questions:
1. You have learned in this chapter and in chapter 2 about the size of objects and
arrays. You should be able to figure out the size of all fields of SparseArray, except
the mGarbage field because I haven’t specifically discussed the boolean primitive type.
Even if you can encode its value in a single bit, its memory footprint is dependent on
the VM. In the current version of HotSpot, each boolean takes one byte, which is the
smallest unit of memory the CPU can address. As usual in this book, I’m ignoring the
issue of padding, which inflates objects to align them to addresses that are multiples
of 8.

That said, an empty SparseArray requires

12 bytes for the SparseArray object overhead
12 bytes for the fields mKeys, mValues, and mSize

1 byte for the mGarbage field
16 bytes of array overhead for mKeys
10*4 bytes for the initial mKeys array of length 10
16 bytes of array overhead for mValues
10*4 bytes for the initial mValues array of length 10

for a grand total of 137 bytes.
2. A SparseArray with 100 objects indexed from 0 to 99 needs its two arrays mKeys and
mValues to have a length of (at least) 100. You can adapt the calculations for question 1
and obtain a result of 857 bytes.
3. The values of the indices have no effect on the structure of a SparseArray. That’s
exactly the meaning of “sparse” in its name. As a result, the memory footprint in this
scenario is the same as in question 2: 857 bytes.
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EXERCISE 3
To achieve maximal space efficiency, normal containers should only hold a parent

field, of type Container. For group representatives (that is, tree roots), that field points
to a special object holding the amount and size fields. The type of that support object
must be a subclass of Container, and you’ll need a downcast to convert it from its
apparent Container class to its effective subclass.

This solution shrinks the memory footprint of normal containers, but it increases
the size of group representatives because it adds an extra object that you didn’t need in
Speed3. It improves space efficiency only when most containers are connected to one
another, forming few groups.

You can find the source code for this exercise in the online repository (https://bit
bucket.org/mfaella/exercisesinstyle) as class eis.chapter4.exercises.Container.

EXERCISE 4
1. Container version Memory2 shows that the memory savings you obtain by a plain
array compared to an ArrayList are insignificant, so for the space-efficient version of
UniqueList, you should use an ArrayList. However, thatmeans that checking whether
an element belongs to the list will take linear time.

Two issues complicate the implementation:

You can only use methods set and get from the List interface with an index
that’s already occupied. The constructor needs to initially fill the list with the
required number of null values.
Methods set and get throw an exception if the index is out of range, whereas
the specifications for this exercise require special return values (false and
null, respectively). That’s why you need to manually check that the index is
in range.

The resulting code looks like this:

public class CompactUniqueList<E> {
private final ArrayList<E> data;

public CompactUniqueList(int capacity) {
data = new ArrayList<>(capacity);
for (int i=0; i<capacity; i++) { b Fills with nulls

data.add(null);
}
assert data.size() == capacity; c Sanity check

}

public boolean set(int index, E element) {
if (index<0 || index>=data.size() || data.contains(element))

return false;
data.set(index, element); d Would throw an exception on illegal index
return true;

}

public E get(int index) {
if (index<0 || index>=data.size())
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return null;
return data.get(index); e Would throw an exception on illegal index

}
}

2. In a time-efficient implementation, we’d like all operations to run as fast as possible,
ideally in constant time. In this case, you can cause that to happen by storing the
elements in two data structures at the same time: a list for fast indexed retrieval and a
set for fast rejection of duplicates. Here are the fields:

public class FastUniqueList<E> {
private final ArrayList<E> dataByIndex;
private final Set<E> dataSet;

The constructor and the getmethod are very similar to the previous case, and you can
find them in the online repository (https://bitbucket.org/mfaella/exercisesinstyle).
Only the set method shows the interplay of the two fields.

public boolean set(int index, E element) {
if (index<0 || index>=dataByIndex.size() || dataSet.contains(element))

return false;
E old = dataByIndex.set(index, element); b Returns the object

previously at this indexdataSet.remove(old);
dataSet.add(element);
return true;

}

Further reading
I don’t think you’ll find books entirely devoted to memory-saving techniques. Squeez-
ing more data into less space usually leads to cumbersome encodings and obscure pro-
grams, such as Memory4, and code clarity is much more precious than memory in most
circumstances.

What you can do to limit memory consumption while keeping the code readable
is choose more space-efficient data structures, as you did in Memory1 when switching
from HashSet to ArrayList. To learn more about the time and space complexity of
standard algorithms and data structures, check out the textbooks I mentioned at the
end of chapter 3.

You can find additional useful advice in the following books:

Scott Oaks. Java Performance: The Definitive Guide. O’Reilly Media, 2014.
Among a plethora of performance-enhancing techniques, this book allots a
chapter to memory best practices, including tools to ascertain which objects
are occupying the most memory and various memory-saving tips.
E. White. Making Embedded Systems. O’Reilly Media, 2011.
The aptly titled Doing More with Less chapter from this book contains useful
memory-saving advice for embedded programming, focused on shrinking both
the code segment and the data segment of a program.
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5Self-conscious code:
Reliability through

monitoring

This chapter covers
Writing method specifications in contract
form

Enforcing contracts at runtime

Using assertions

Checking class invariants as a lightweight
alternative to postconditions

Software reliability refers to the extent to which the system performs as expected, in
a variety of operating conditions. In this chapter, we’ll explore the main coding tech-
niques you can use to prevent or expose unexpected program behaviors. But first, let’s
discuss how you can define the expected behavior of a piece of software, aka its spec-
ification. In line with the structure of this book, I’ll focus on the behavior of a single
class, such as Container. A popular way to organize specifications of OO programs and
classes therein is through the design-by-contract methodology.

117
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5.1 Design by contract
In ordinary language, a contract is an agreement in which each party accepts obliga-
tions in exchange for some benefits. In fact, what’s an obligation for one party is the
benefit of another. For example, a phone plan is a contract between a carrier and the
phone owner. The carrier is obliged to render the phone service, and the owner is
obliged to pay for it, so each party benefits from the other party’s obligations.

The design-by-contract methodology suggests attaching contracts to software arti-
facts, particularly individual methods. A method contract comprises a precondition, a
postcondition, and possibly a penalty.

5.1.1 Pre- and postconditions

The precondition states the requirements for the method to correctly function. It talks
about the legal values for the parameters and about the current state of this object (for
an instance method). For example, the precondition of a square-root method might
state that its argument should be non-negative.

It’s the caller’s responsibility to respect the precondition of themethod being called.
In the analogy with an ordinary contract, the precondition is an obligation for the
caller and a benefit for the callee. The method itself can either passively assume that
the precondition holds or actively check whether it holds, and react accordingly.

The precondition should include only properties that are under the full control
of the caller. For example, a method that takes a file name as an argument and opens
that file can’t list among its preconditions that the file exists, because the caller can’t be
100% sure that it does. (Another process can erase that file at any time.) The method
can still throw an exception in that case, but that exception will be of the checked variety,
forcing the caller to handle it.

Conversely, the postcondition states the effect of themethod and describes its return
value and all the changes performed on the state of any object. In most well-designed
classes, changes should be limited to the current object, but this isn’t always the case.
For example, the connectTo method in our running example must modify multiple
containers to achieve its intended effect.

Pure methods and side effects
A method whose only effect is to return a value is called pure. Any other consequence,
be it printing on screen or updating an instance field, is called a side effect. When
called twice on the same arguments, a pure method returns the same result, a prop-
erty known as referential transparency. (Recall that the current object is an implicit
input to an instance method.) Functional languages, such as Haskell or Scheme, are
based on the notions of pure functions and referential transparency. However, any
useful program must eventually interact with its runtime environment, so functional
languages wrap those necessary side effects into specially identified modules.
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Instance method

Object 
state
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Side 
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condition
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Figure 5.1 The high-level structure of a contract for an instance method. All consequences of a
method besides its return value are called side effects.

The postcondition also should specify what happens when the caller violates a pre-
condition: this is referred to as a penalty. In Java, the typical penalty consists of throw-
ing an unchecked exception. Figure 5.1 is a graphical depiction of the contract for an
instance method.

POP QUIZ 1 What’s wrong with throwing a checked exception as a penalty?

For example, here’s the contract for the next method of the java.util.Iterator

interface:

1 Precondition—This iterator hasn’t reached the end. Equivalently, a call to has�

Next would return true.
2 Postcondition—It returns the next item in the iteration and advances the itera-
tor by one position.

3 Penalty—If the precondition is violated, the method throws NoSuchElement�
Exception (an unchecked exception).

Calling nextwhen the iterator has already reached the end violates the precondition
and is an error on the side of the client. (The error is outside the next method.)
Conversely, an implementation of next that doesn’t advance the iterator to the next
item is violating the postcondition. In this case, the error lies inside the method itself.

Figure 5.2 depicts the detailed data dependencies involving various parts of the con-
tract. The precondition dictates the legal values for the arguments and for the state of
this object before the call. That’s why two arrows are coming into the “precondition”

Licensed to Abner Lopez <ihackn3wton@gmail.com>



120 CHAPTER 5 Self-conscious code: Reliability through monitoring
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Figure 5.2 Detailed structure of a contract for an instance method. Solid arrows represent data
dependencies pertaining to the contract (what the contract talks about). Dashed arrows are standard
runtime interactions that occur regardless of the contract (what actually happens at runtime).

box. For example, the precondition of Iterator::nextmentions only the state of the
iterator because that method takes no arguments.

Because the postcondition describes all the changes that the method brings about,
it may refer to the following data:

The return value (as the main effect of the method)
Both the old and new state of this object: the old state as an input that can
influence the behavior of the method, and the new state as another effect of
the method
The value of the arguments, as inputs
Other side effects that globally available objects or static methods produce,
such as a call to System.out.println

Figure 5.2 omits the last case and depicts the others as incoming arrows into the “post-
condition” box. For example, the postcondition of Iterator::next refers explicitly to
the return value, and implicitly to both the old and new state of the iterator, when it
says that “it returns the next item and advances the iterator by one position.”

5.1.2 Invariants

Besidesmethod contracts, classes can have associated invariants. An invariant is a condi-
tion, regarding the class fields, that’s always true, except while an object is undergoing
change due to a method of the class.

Invariants are static consistency rules: they refer to the state of the objects at a single
instant in time. On the other hand, postconditions are dynamic consistency rules because
they compare the state of the object(s) before and after a method call.

As the name implies, invariants must hold both before and after a method is called.
Accordingly, in figure 5.2, invariants have incoming arrows from the old and new state
of the object.
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The initial state of each object, which a constructor establishes, must satisfy the
invariants, and all public methods are responsible for preserving their validity. Private
methods don’t have this obligation because their role is to support public methods. As
a result, when a private instance method runs, it’s typically within the context of some
ongoing public instance method that invoked it, either directly or indirectly. Because
the current object may be undergoing change, the private method may find it in an
intermediate state that violates an invariant, and may also leave it in an inconsistent
state. It’s only at the end of the public method that the state of the object must be
consistent again, and invariants must be restored.

5.1.3 Correctness and robustness

You can refine software reliability into two qualities: correctness and robustness. The
difference between them lies in the type of environment you assume for your sys-
tem. When evaluating correctness, you imagine your system in a nominal environment,
that is, an environment satisfying the system expectations. In such a friendly context,
method preconditions are honored, external inputs arrive in a timely manner and in
the right format, and all resources that the system needs are available. If the system is
correct, it will behave according to plan in all friendly environments.

In principle, correctness is a Boolean property: either it holds or it doesn’t. Partial
correctness doesn’t make a lot of sense. However, it’s usually impractical to devise per-
fectly formal and complete specifications, and as soon as specifications become blurry,
so does correctness. In the little controlled world of the container example, we’ll put
forward clear specifications and make sure the class is correct with respect to them.
Then, we’ll explore techniques that maximize our confidence in its correctness. Those
techniques will be useful in real-world scenarios when you don’t have months to spend
over a single class, as I had when writing this book.

On the other hand, robustness refers to system behavior under exceptional or unan-
ticipated environments. Typical cases include the host machine running out of mem-
ory or disk space, external inputs being in the wrong format or outside the legal range,
methods being called in breach of their preconditions, and so on. A robust system is
expected to react gracefully in such situations, where the appropriate definition of grace
is highly dependent on the context.

For example, if a crucial resource is unavailable, the program might try to wait a
little and request it again, a couple of times, before giving up and terminating. If the
problem persists, and, more generally, whenever termination is the only way out, the
program should clearly inform the user about the nature of the problem. In addition,
it should strive to minimize data loss so the user can later resume their task as smoothly
as possible.

POP QUIZ 2 If a program prints some output on paper, what’s a graceful reaction
to the printer being out of paper?
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Figure 5.3 Relationship between reliability attributes, contract-based specifications, and coding
techniques

Figure 5.3 summarizes the relationships between the two software qualities that con-
stitute reliability, the various types of specifications I discussed earlier, and the three
coding techniques you’ll use in this chapter and the next.

Correctness is defined with respect to a contract, comprising pre- and postcondi-
tions, and optionally to a set of class invariants. The penalty is not directly related to
correctness because it only springs into action when the caller violates a precondition.
As such, it’s a robustness issue.

Three coding techniques help implement and enforce contracts:

Plain if-based checks make sure the caller is invoking a method in the proper
way, obeying its preconditions, and issue a corresponding penalty otherwise.
Java assert statements are useful to keep postconditions and invariants in
check, particularly in safety-critical software.
Finally, tests increase your confidence in the reliability of your software, mostly
by checking postconditions and triggering penalties.

In this chapter and the next, I’ll delve into the best practices regarding each of these
techniques. For the moment, notice that the first two are monitoring techniques, active
during regular operation of your software. Testing instead is performed before opera-
tion and separately from it.

5.1.4 Checking contracts

Many programming errors have to do with violating method preconditions. To expose
these problems as early as possible, methods should check their preconditions at run-
time and throw a suitable exception if they’re notmet. This is sometimes called defensive
programming. Two standard exception classes are commonly used for this purpose:
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IllegalArgumentException—The value of an argument violates the precon-
dition.
IllegalStateException—The current state of this object is incompatible with
the instance method being called or with the value of the arguments. For
example, attempting to read from a file that already has been closed might
throw this exception.

Assertions represent a related but more specific checking mechanism. An assertion
is a statement of the following form:

assert condition : "Error message!";

When executed, the line evaluates the Boolean condition and throws an Assertion�

Error if the condition is false. The error message string is passed into the exception
being thrown and will be printed out if the exception isn’t caught. In other words, the
assertion is quite similar to the following statement:

if (!condition) {
throw new AssertionError("Error message!");

}

At this point, an assertion looks like a shorter version (aka syntactic sugar) of a regular
if-based check. However, one crucial feature distinguishes the two: by default, the
JVM does not execute assertions. You have to explicitly activate them with the “-ea”
command-line option or via the corresponding IDE setting. When you have assertions
turned off, the program doesn’t incur the performance overhead due to evaluating the
corresponding Boolean conditions.

C# assertions
C# assertions differ from Java’s in two
respects: you realize them by invok-
ing static methods Debug.Assert and
Trace.Assert, and their execution is
controlled at compile time, instead of
runtime. The compiler ignores calls
to Debug.Assert when it compiles the
program in release mode, whereas it
always compiles and executes calls to
Trace.Assert.

A standard if-based check is always
executed, but if an assertion performs
that check instead, you’ll be able to turn
it on or off at each execution. The
usual practice is to turn on assertions
during development and then revert to
the default “off” state for production.
It seems that assertions win all the way:
they’re more succinct, and you have
more control over them. Should you use
them for all runtime error checking? It
turns out that in some cases the flexibility
that comes with assertions becomes a liability. In those cases, you want some checks to
stay in place at all times, even during production.

Design by contract provides simple guidelines for identifying which checks should
always be on:

Precondition checks on public methods should always be on, so you should
use regular if-based checks for them.

Licensed to Abner Lopez <ihackn3wton@gmail.com>



124 CHAPTER 5 Self-conscious code: Reliability through monitoring

All other checks should be on only during development. These include post-
condition and invariant checks, and precondition checks on nonpublic meth-
ods. Use assertions there.

The rationale is the following. Precondition violations are due to the caller not respect-
ing the method contract. On the other hand, a postcondition or invariant violation is
due to an issue within the class itself. Consider the following key assumption:

Development and testing ensure that each single class is free from internal issues.

By an internal issue, I mean a bug that manifests itself even if the class clients respect
all the rules that the contracts put forward. For the moment, take this assumption at
face value; I’ll discuss its plausibility in a second. If the previous assumption holds, the
only way the program can misbehave is by a class misusing another class. In a prop-
erly encapsulated system, this can happen only via public methods. Hence, to expose
these bugs, precondition checks on public methods are sufficient, and you should leave
them on. Notice that checking preconditions at runtime doesn’t fix the problem, it
merely exposes it as early as possible during the execution so you can more accurately
characterize the root cause.

How reasonable is the no-internal-issue assumption? That ultimately depends on the
quality and intensity of the development process. The higher the quality and intensity,
the more likely the assumption is to hold. By quality of the development process, I
mean whether the developers follow the industry’s best practices. Intensity (or effort)
refers to the number of people and amount of time used to develop, and especially
test, each class. For example, you can only expect small classes to be entirely free from
internal issues. For good reason, writing small classes is one of the sacred best practices
in OOP.

5.1.5 The broader picture

Figure 5.4 puts the techniques presented in this chapter and the next into a wider
perspective. This book focuses on programming styles and techniques that even a sin-
gle programmer can employ in their daily activities. Beyond that, at least two more
types of intervention can contribute to software quality in general, and to reliability in
particular.

First, there’s human oversight: having a fellow developer look at your code and
evaluate it according to company standards. You can arrange this in periodic reviews
or sometimes as a continuous interaction between two colleagues, a practice known as
pair programming.

Then, some software tools can automatically check a variety of code properties,
enriching the scrutiny that the compiler already performs. You can divide such tools
roughly into three categories, from the most basic to the most advanced:
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Figure 5.4 A broad view on quality-enhancing techniques.

Style checkers—These tools only perform relatively superficial checks targeting
readability and uniformity (discussed in chapter 7). In turn, those qualities
also indirectly benefit reliability and maintainability.

Example feature: Check that the indentation is correct and uniform (same
number of extra spaces for each nesting level)

Example tool: CheckStyle1

Static analyzers—These tools are capable of performing a semantic analysis sim-
ilar to the compiler’s type-checking phase. Style checkers and static analyzers
are also known as linters.

Example feature: Checks whether an anonymous class contains an uncallable
method (amethod that doesn’t override anothermethod and that othermeth-
ods of that class don’t use)

Example tools: SpotBugs,2 SonarQube3

Formal verifiers—These tools, mostly born out of academic research, under-
stand a program at a deeper level than the typical compiler. That is, they
can simulate the execution of the program on entire sets of values, a process
known as symbolic execution.

Example feature: Check whether an integer variable can ever become
negative4

Example tool: KeY 5

It’s usually up to your organization to choose the set of quality practices and tools it
deems appropriate to the task at hand. What’s suitable for developing a videogame is

1 As of this writing, available at https://checkstyle.sourceforge.io.
2 As of this writing, available at https://spotbugs.github.io.
3 As of this writing, available at www.sonarqube.org.
4 Technically, this property is undecidable. A formal verifier will attempt to prove or disprove it, but it’s not
guaranteed to succeed.
5 As of this writing, available at www.key-project.org.
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vastly different from what a military or healthcare client demands. Now, let’s go back to
our usual perspective, focused on how to improve the reliability of a single unit of code,
even before your fellow programmers or tools of choice have a chance to look at it.

5.2 Designing containers by contract
You’re ready to apply the design-by-contract guidelines to water containers and their
Reference implementation. But first, let’s figure out the contracts for the containermeth-
ods, summarized in table 5.1. I didn’t include the constructor in the table because its
contract simply states that it creates an empty container.

Table 5.1 Contracts for the methods of Container

Method Precondition Postcondition Penalty

getAmount None. Returns the current amount in
this container

None

connectTo Argument is not null. Merges the two groups of
containers and redistributes
water

NPE†

addWater If argument is negative, there’s
enough water in the group.

Distributes water equally to all
containers in the group

IAE‡

† NPE = NullPointerException

‡ IAE = IllegalArgumentException

As you can see from table 5.1, the contracts are just a structured way to present
the expected behavior of a method, explicitly distinguishing the assumptions from
the guarantees. Compared to the method descriptions I provided in chapter 1, these
contracts add the description of the preconditions and the corresponding penalties:

connectTo requires its argument to be non-null and is expected to throw Null�

PointerException (NPE) otherwise
addWater, when used with a negative argument, say −x, requires the total
amount of water in the containers connected to this one to be at least x, or
else it will throw IllegalArgumentException (IAE).

Those are two standard classes of exceptions, both of which are unchecked and subclasses
of RuntimeException.

The precondition requiring an argument to be non-null is extremely common, as is
the confusion about which type of exception is the most appropriate in this case. The
sidebar sheds some light on the issue.

NullPointerException vs. IllegalArgumentException
Should you throw NPE or IAE when you receive a forbidden null argument? It’s perhaps
a tribute to programmers’ attention to detail that such a question spurred a sequence
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of StackOverflow questions and answers, as well as being covered by the well-known
Effective Java book.

Here are the main arguments in favor of the two options. In favor of NPE:

It makes immediately clear what actual value caused the issue.

In favor of IAE:

It makes immediately clear that the issue is a precondition violation.
It’s clearly distinguished from a JVM-generated NPE.

Although the arguments for IAE are arguably stronger, convention favors NPE, as wit-
nessed by the authoritative Effective Java book (see item 72 in the third edition) and
the following utility methods, from the Objects class:

public static Object requireNonNull(Object x)
public static Object requireNonNull(Object x, String message)

Those methods throw an NPE if x is null, and otherwise return x itself. They have
served as the suggested way to enforce non-null parameters since Java 7.

Next, consider class invariants. Ideally, invariants should exactly describe what object
states are consistent with the contracts. In more detail, they should tell us which values
for the fields we can obtain after a series of legal operations. For Reference, this leads to
the following invariants:

I1. For each container, the amount field is non-negative.
I2. Each container belongs to exactly one group.
I3. For each container, the group field is not null and points to a group containing

this.
I4. All containers belonging to the same group share the same amount value.

Consider how these invariants relate to the contracts in table 5.1. Invariant I1 is
intuitively obvious: a container can’t include a negative amount of water. The precon-
dition of addWater is in charge of defending this invariant against external attacks, that
is, attempts to decrease water levels below zero. Invariants I2 and I3 are a consequence
of our policy regarding groups of containers: they all start with a single container,
then they’re merged pairwise. The constructor establishes these invariants, and the
connectTo method must preserve them by correctly merging groups. Finally, invari-
ant I4 states the relationship between groups and amounts. It’s the responsibility of
addWater and connectTo to maintain it, as expressed by their postconditions.

It’s an interesting exercise to verify that the four invariants, I1–I4, are complete, in the
sense that you can build any pool of containers satisfying them from scratch by a legal
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sequence of constructor and method calls. Moreover, removing any one of the four
invariants voids this property.6

POP QUIZ 3 Is this a valid invariant for the Container class: “Passing zero to
addWater leaves all containers unchanged”?

Now that we’ve clearly laid out the contracts and invariants, you can use them to
harden Reference for correctness and robustness. The path for preconditions and post-
conditions is pretty clear: we’ll check them at the beginning and end of their method,
using if-based checks or assertions, according to the guidelines I presented earlier.
Regarding invariants, we need to address the issue of when to check them, that is,
how often and at which program points. Recall that invariants are supposed to hold at
the beginning and end of each (public) method. At one extreme, we might check all
invariants at all of those moments. At the other extreme, we might skip all invariant
checking because properly checking pre- and postcondition automatically ensures that invari-
ants hold. The weakness of the latter approach lays in the word properly. Indeed, in the
following section, we’ll implement a version of Container where eachmethod carefully
checks its pre- and postconditions, and you’ll witness how tricky and expensive it is to
perform these checks thoroughly. Then, in section 5.4, we’ll replace postconditions
with invariants, which are generally easier to check.

All versions of Container in this chapter are based on the same fields as Reference,
repeated here for convenience:
public class Container {

private Set<Container> group; b Containers connected to this one
private double amount; c Amount of water in this container

5.3 Containers that check their contracts [Contracts]
In this section, we’ll develop a version of Container whose methods check both their
precondition and their postcondition at each invocation.

5.3.1 Checking the contract of addWater

Let’s start with the addWater method. You’ve already seen its contract in table 5.1, but
I’ll repeat it here for convenience:

Precondition—If the argument is negative, there’s enough water in the group.
Postcondition—Distributes water equally to all containers in the group.
Penalty—Throws an IllegalArgumentException.

The method has a simple precondition that you can check using a standard if state-
ment, according to the guidelines I discussed earlier.

You should check the postcondition using assertions so that you can easily turn those
checks off in production. So far, I’ve expressed the postcondition of addWater in rather

6 For example, if you remove invariant I1, you admit an isolated container holding a negative amount of
water. You can’t obtain that scenario with a legal sequence of constructor and method calls.
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vague terms. What does it mean to equally distribute the added water? Clearly, at the
end of the method, all containers in the group must have the same amount of water.
However, that’s not the end of the story. The total amount in the whole group should
be equal to the old total amount, plus the newly added water. To check this property,
you have to store some information at the beginning of the method. Then you use it
at the end to compare the way the object state was supposed to change with the way it
actually changed.

This situation suggests structuring the method into the following four steps:

1 Check the precondition with a plain if.
2 Store the current group amount in some temporary variable so you can check
the postcondition later.

3 Perform the actual water-adding operation.
4 Check the postcondition using the data you stored in step 2.

Moreover, keep in mind the following design objective: when assertions are turned
off, you want all the time and space overhead of checking postconditions to go away.
Consistent with that objective, you should only perform steps 2 and 4 when assertions
are enabled. That’s easy for step 4: just invoke postAddWater as the condition of an
assertion. Step 2 is trickier because it’s not naturally expressed as an assertion. To
turn it into an assertion, you can wrap the assignment into a dummy comparison (see
listing 5.1) that’s always true. In this case, you can assert that the old group amount is
positive. With this trick, the only residual overhead, even when assertions are disabled,
is the allocation of the oldTotal variable on the stack.7

POP QUIZ 4 How do you set a Boolean flag to true only if assertions are enabled?

The following listing shows a possible implementation that delegates steps 2 and 4
to two novel support methods.

Listing 5.1 Contracts: Method addWater

public void addWater(double amount) {
double amountPerContainer = amount / group.size();
if (this.amount + amountPerContainer < 0) { b Checks the precondition

throw new IllegalArgumentException(
"Not enough water to match the addWater request.");

}
double oldTotal = 0; ca Saves the postcondition data
assert (oldTotal = groupAmount()) >= 0; cb Dummy assert

for (Container c: group) { d The actual update
c.amount += amountPerContainer;

}
assert postAddWater(oldTotal, amount) : e Checks the postcondition

"addWater failed its postcondition!";

7 If you don’t like the dummy assert trick, an alternative is to set a flag to true if assertions are enabled
(how? see pop quiz 4), and use regular ifs to skip certain operations when assertions are disabled.

.

.

.
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}

The implementation of addWater in listing 5.1 delegates two tasks to new support
methods: groupAmount computes the total amount of water in a group of containers;
postAddWater is responsible for checking the postcondition of addWater. The code for
groupAmount is trivial, simply adding up the values of all amount fields in the current
group, as shown in the following listing.

Listing 5.2 Contracts: Support method groupAmount

private double groupAmount() { b Returns the total amount in the group
double total = 0;
for (Container c: group) { total += c.amount; }
return total;

}

The method postAddWater, in turn, splits its task into two parts: first it checks that all
containers in the current group hold the same amount of water; then it verifies that the
total amount in the group is equal to the old amount plus the newly added amount.
(The following version of postAddWater is tentative—a better version follows.)

Listing 5.3 Contracts: Tentative version of support method postAddWater

private boolean postAddWater(double oldTotal, double addedAmount) {
return isGroupBalanced() &&

groupAmount() == oldTotal + addedAmount; b Exact comparison
of doubles}

private boolean isGroupBalanced() { c Checks that all the group
shares the same amountfor (Container x: group) {

if (x.amount != amount) return false;
}
return true;

}

As you can see, checking the postcondition requires more lines of code than the
original nonhardened method! The sheer number of lines may lead you to surmise
that you’re more likely to make a mistake in coding the postcondition check than in
writing the original method. Is there a point to this effort? If the check ends up simply
repeating the same calculations that the method performed, the effort is clearly point-
less. However, if you can find a different, and hopefully simpler, way to check that the
outcome is correct, then the two different algorithms are checking each other. Even
a mistake in the postcondition routine is an opportunity to refine your understanding
of the class at hand.

Now you run this version of addWater on a simple example, with assertions on, and. . .
it breaks! The VM reports failure in the postcondition of addWater. Here’s the code
fragment that generates the assertion failure—can you spot the problem?
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Container a = new Container(), b = new Container(), c = new Container();
a.connectTo(b);
b.connectTo(c);
a.addWater(0.9);

The problem lies with the comparison between two double values in postAddWater

(listing 5.3). If you don’t use floating-point numbers on a regular basis, it’s easy to
forget that they don’t behave like ideal real numbers. As a result, sometimes (a/b) ∗ b
comes out different from a.

For example, the number 0.9 is not exactly representable in base 2. Its binary expan-
sion is periodic, so it will be stored in an approximate way. When you divide it by 3
and add it to the three containers, more approximations are performed. In the end,
when you sum back the amounts from each container in the group, the total comes out
slightly different than expected. Summarizing, you’re computing the amount of water
in the group in two different ways, and then comparing them using ==. Because of
approximations, the two sides won’t be exactly equal. Detailed calculations are beyond
the scope of this book but within the reach of the resources listed in the Further reading
section at the end of this chapter. Suffice it to say, in the current situation you get the
following values after the call to addWater:

expected amount: 0.9

actual amount: 0.8999999999999999

This suggests that you should almost always do floating-point comparisons with some
tolerance for error. Howmuch tolerance depends on the range of numbers you expect
to handle. In this case, say the unit for liquids is liters (gallons would work just fine),
and our containers will handle tens or hundreds of liters. In this scenario, it’s safe
to assume you’re not interested in single drops of water, so it’s reasonable to employ a
tolerance of, say, 0.0001 = 10−4 liters—roughly equal to the amount of water in a drop.
You end up with the following improved version of postAddWater.

Listing 5.4 Contracts: support methods postAddWater and almostEqual

private boolean postAddWater(double oldTotal, double addedAmount) {
return isGroupBalanced() &&

almostEqual(groupAmount(), oldTotal + addedAmount);
}

private static boolean almostEqual(double x, double y) {
final double EPSILON = 1E-4; b Tolerance for rounding errors
return Math.abs(x-y) < EPSILON;

}

POP QUIZ 5 What happens if you pass “not-a-number” (Double.NAN) to addWater?
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5.3.2 Checking the contract of connectTo

Next, let’s examine the connectTo method and its contract:

Precondition—Argument is not null
Postcondition—Merges the two groups of containers and redistributes water
Penalty—Throws NullPointerException

This kind of precondition is so common that the JDK provides a standard way to handle
it with the Objects.requireNonNull(arg,msg) static method. As I explained earlier,
that method throws an NPE with a custom message if arg is null, otherwise returning
arg itself.

Properly checking the postcondition, in contrast, poses significant challenges. Start
by translating the postcondition into a list of practical checks to be performed on the
instance fields. Call G the set of containers that this.group points to at the end of
connectTo(other). The postcondition requires that the following properties hold:

1 G is not null, and its elements are all the containers that belonged to the two
old groups of this and other.

2 All containers in G must point back to G via their group reference.
3 All containers inGmust have the same amount value, equal to the total amount
in the two old groups divided by the number of containers in G.

To check property 1, you need to store the old groups of this and other before the
merge, that is, at the beginning of connectTo. The method could modify those groups,
so you need to store a copy of those sets. Property 2 doesn’t need any information
beforehand; to verify it, it’s sufficient to iterate over all containers in G and check that
their group field points back to G. Finally, checking property 3 requires you to know
the value of the amount fields before the merge, or at least the sum of those values
over all containers connected to this or other. Summarizing, you need to store the
following information, as it stands before the merge:

A copy of the groups of this and other

The total amounts of water in those groups

Introduce a nested class ConnectPostData to keep this information together, as shown
in the following listing.

Listing 5.5 Contracts: Nested class ConnectPostData

private static class ConnectPostData { b Stores data needed to check
the postconditionSet<Container> group1, group2;

double amount1, amount2;
}

You can now draft the code for connectTo, following the same four-step structure
as addWater. As before, you should try to keep the overhead to a minimum when you
have assertions disabled. In listing 5.6, the only overhead that sticks even when you
have assertions disabled is the allocation of the postData local variable (in the fifth
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line). You achieve this effect by embedding the call to saveConnectPostData into a
dummy assert statement that always succeeds (in the sixth line).

The code that actually makes the connection is the same as for Reference, so I’ve
omitted it from the following listing for readability.

Listing 5.6 Contracts: Method connectTo (abridged)

public void connectTo(Container other) {
Objects.requireNonNull(other, b Checks the precondition

"Cannot connect to a null container.");
if (group==other.group) return;

ConnectPostData postData = null; c Prepares the postcondition data
assert (postData = saveConnectPostData(other)) != null; d Dummy assert

... e The actual operation goes here (same as Reference)

assert postConnect(postData) : f Checks the postcondition
"connectTo failed its postcondition!";

}

Methods saveConnectPostData and postConnect, respectively, store the needed
information and use that information to check whether the postcondition holds. They
are shown in the following listing.

Listing 5.7 Contracts: Methods saveConnectPostData and postConnect

private ConnectPostData saveConnectPostData(Container other) {
ConnectPostData data = new ConnectPostData();
data.group1 = new HashSet<>(group); b Shallow copy
data.group2 = new HashSet<>(other.group);
data.amount1 = amount;
data.amount2 = other.amount;
return data;

}
private boolean postConnect(ConnectPostData postData) {

return areGroupMembersCorrect(postData)
&& isGroupAmountCorrect(postData)
&& isGroupBalanced()
&& isGroupConsistent();

}

In the name of readability, the postConnectmethod delegates its task to four different
methods, whose roles I’ve summarized in table 5.2.

You’ve already seen the code for isGroupBalanced earlier (listing 5.3). Let’s have
a quick look at the code to check whether the old groups were properly merged (list-
ing 5.8). It first checks that the new group contains all the members from the two old
groups (second and third lines). To make sure that the new group doesn’t contain any
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Table 5.2 The four methods used to check the postcondition of connectTo

Method Property checked

areGroupMembersCorrect The new group is the union of the two old
groups.

isGroupConsistent Each container in the new group points
back to the group.

isGroupAmountCorrect The total amount in the new group is the
sum of the amounts in the old groups.

isGroupBalanced All containers in the new group have an
equal amount of water.

extra members,8 it checks that the size of the new group is equal to the sum of the sizes
of the two old groups (fourth line).

Listing 5.8 Contracts: Support method areGroupMembersCorrect

private boolean areGroupMembersCorrect(ConnectPostData postData) {
return group.containsAll(postData.group1)

&& group.containsAll(postData.group2)
&& group.size() == postData.group1.size() +

postData.group2.size();
}

Automatically checked contracts
In this book, I present contracts as a discipline for structuring your designs around
clearly defined APIs. Some programming languages and tools take this concept to
the next level by allowing you to formally define contracts with an ad-hoc language
and have a specialized tool automatically check them, either statically (at compilation
time) or dynamically (at runtime).

For example, the Eiffel programming language supports pre- and postconditions via
the require and ensure statements. Not surprisingly, Bertrand Meyer, who was
also responsible for the design-by-contract methodology, invented Eiffel. The language
even allows postconditions to access the old value of a field on entry to the current
method. Then, you can instruct the compiler to translate those contract annotations
into runtime checks.

Java doesn’t offer native support for contracts, but several tools try to fill this gap, such
as KeY (www.key-project.org) and Krakatoa (http://krakatoa.lri.fr). Both support spec-
ifications written in the Java Modeling Language and provide semi-automatic static
contract verification.

8 It may be argued that the size check is redundant. Indeed, if all containers respect the invariants before
the call to connectTo, there’s no way for connectTo to reach any other container that’s not in one of the two
groups being merged. Even a faulty implementation can produce a smaller new group but not a larger one.
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5.4 Containers that check their invariants [Invariants]
The previous section shows how complicated itmay be to properly check postconditions.
A handy alternative is to periodically verify invariants instead. Recall the invariants I
established for Reference earlier in this chapter:

I1. For each container, the amount field is non-negative.
I2. Each container belongs to exactly one group.
I3. For each container, the group field is not null and points to a group containing

this.
I4. All containers belonging to the same group share the same amount value.

If the class is correct and its clients use it in the right way (that is, while respecting the
preconditions of all methods), all postconditions and invariants will hold. A program-
ming error in a method may trigger a postcondition violation. In turn, a postcondition
violation may cause an invariant to fail. Assuming that preconditions are respected,
a postcondition violation precedes and causes any invariant violation. On the other
hand, a postcondition violation doesn’t necessarily show up as an invariant violation.

For example, assume that addWater contained the following error: when asked to
add x liters of water, it adds only x

2 liters instead. Because the method leaves all objects
in a legal state, this implementation would pass all invariant checks. That’s because
invariants are static consistency rules that only look at the current state of the object(s).
On the other hand, it would miserably fail the postcondition verification that Contracts
performs.

To summarize, checking postconditions, as we did in the previous section, is gener-
ally safer but more expensive. Conversely, checking invariants is easier but also some-
what riskier: some programming errors that a postcondition check may catch might
pass the invariant audit.

When are you supposed to check invariants? As I said, in principle you could check
them at the beginning and end of all methods, and at the end of all constructors.
This is a standard, albeit drastic, solution that you can apply in all contexts. On the
other hand, you may want to be a little more subtle, and avoid unnecessary checks, by
focusing on those methods that could actually break an invariant.

Assume that you trust the constructor to initially establish all invariants. The con-
structor from Reference is so simple that you can easily count on that. Which methods
can break invariants? Invariants are properties of objects’ states, so only methods that
modify the value of the fields can potentially break an invariant.

Let’s examine the three public methods of Reference:

getAmount is clearly a read-only method, and therefore it can’t break any
invariant.
addWatermodifies the amount field, so it could in principle break invariants I1
and I4 of all the containers it touches.
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Finally, connectTo is the most critical method, because it modifies both fields
of many containers. If improperly coded, it could break all invariants for many
containers.

Table 5.3 summarizes these observations.

Table 5.3 What each method modifies and which invariants it could break

Method Modified fields Invariants it could break

getAmount None None

connectTo amount and group I1, I2, I3, I4

addWater amount I1, I4

One way to avoid unnecessary work is to check an invariant only at the end of the
methods that could break it. We’ll implement these checks using assertions, essentially
treating invariants as postconditions of those methods. This simplification is safe, in
the sense that you’re still able to attribute an invariant violation to the method that
caused it. Indeed, since the state of our objects starts in an invariant-abiding condition
and is properly encapsulated (that is, private), only public methods can be responsible
for tarnishing it. As soon as one public method messes up, you’ll witness the error as
an assertion failure coming from that method.

According to table 5.3, we can focus on methods connectTo and addWater. Both of
these methods modify the state of multiple objects, so we should check the invariants
of all the objects they touch. This is particularly cumbersome for method connectTo:
according to its contract, an invocation like a.connectTo(b) is supposed to modify the
state of all containers that, at the start of the method, are connected to either a or b.
However, at the point when we plan to check the invariants, that is, at the end of the
method, we don’t know which containers were previously connected to either a or b,
unless we implicitly trust the correctness of the method itself.

5.4.1 Checking the invariants in connectTo

As I illustrated in the previous discussion, when it comes to checking the invariants at
the end of connectTo, you have two options:

1 At the beginning of the method, store (a copy of) the current groups of this
and other so that you can then properly check the invariants on all relevant
objects.

2 Only check the state of the objects belonging to the single group obtained at
the end of the method.

Option 1 is safer, but it resembles the heavy work you ended up doing in the previous
section to check the postcondition of connectTo. I advise you to pursue option 2,
instead, which is more practical and gives partial trust to the method. It assumes that
it correctly merges the two preexisting groups into a single one, and it checks all the
other properties that the invariants cover.
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You should end up with something akin to the following listing, where the invariant-
checking task is delegated to a private support method. I’m omitting the central part
of connectTo, as it’s exactly the same as in Reference.

Listing 5.9 Invariants: Method connectTo (abridged) and its support method

public void connectTo(Container other) {
Objects.requireNonNull(other, b Checks the precondition

"Cannot connect to a null container.");

... c The actual operation goes here (same as Reference)

assert invariantsArePreservedByConnectTo(other) :
"connectTo broke an invariant!"; d Checks the invariants

}

private boolean invariantsArePreservedByConnectTo(Container other) {
return group == other.group &&

isGroupNonNegative() &&
isGroupBalanced() &&
isGroupConsistent();

}

By choosing option 2, you don’t have to save the state of any object at the beginning
of connectTo. You can just check the precondition (in the second line), perform the
connection operation (same as Reference), and finally check the (simplified) invariants
(in the assert line).

Threemore supportmethods are involved in checking the invariants. You’ve already
seen an implementation of isGroupBalanced in the previous section. You can see now
that it’s checking invariant I4. The other two invariant-checking methods are detailed
in the following listing.

Listing 5.10 Invariants: Two invariant-checking support methods

private boolean isGroupNonNegative() { b Checks invariant I1
for (Container x: group) {

if (x.amount < 0) return false;
}
return true;

}
private boolean isGroupConsistent() { c Checks invariants I2, I3

for (Container x: group) {
if (x.group != group) return false;

}
return true;

}

To see that we aren’t catching all invariant violations, consider the scenario in fig-
ure 5.5. On the left side (Before), three containers are connected into two groups:
a is isolated, whereas b and c are connected. We don’t care about water amounts in
this example; assume they’re equal in all containers. This state of affairs satisfies all
invariants.
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Figure 5.5 The situation before and after a faulty a.connectTo(b) operation. The checks in
Invariants don’t catch this type of fault. Water amounts are omitted as unimportant.

Now, imagine that a faulty implementation of a.connectTo(b) brings about the situ-
ation on the right side (After). Instead of joining all of the containers in a single group,
that implementation updates the group of a to include a and b, and container b now
points to its new group. Meanwhile, container c and its group are left untouched. As
a consequence, container c still “believes” it belongs to a group including b and c.

This fault breaks invariant I2 because b belongs to two different groups, but Invari-
ants doesn’t detect the problem. Indeed, by choosing option 2 that I described earlier,
you’ll check only that the two containers being connected (a and b) point to the same
group and that the group field of all containers in that group actually points to that
group (method isGroupConsistent).

The fault in figure 5.5 would be detected if we chose option 1 instead of option 2.
Also, Contracts would detect it as a postcondition violation.

5.4.2 Checking the invariants in addWater

The implementation of addWater follows the same scheme as connectTo. As I discussed
earlier and summarized in table 5.3, it’s enough to check the validity of invariants I1
and I4 because they’re the only ones that addWater could possibly invalidate.

As you can see in the following listing, invariant verification is delegated to a private
support method that invokes two other methods that you’ve already encountered in
the previous sections.

Listing 5.11 Invariants: Method addWater and its support method

public void addWater(double amount) {
double amountPerContainer = amount / group.size();

if (this.amount + amountPerContainer < 0) { b Checks the precondition
throw new IllegalArgumentException(

"Not enough water to match the addWater request.");
}
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for (Container c: group) {
c.amount += amountPerContainer;

}
assert invariantsArePreservedByAddWater() : c Checks the invariants

"addWater broke an invariant!";
}

private boolean invariantsArePreservedByAddWater() {
return isGroupNonNegative() && isGroupBalanced();

}

5.5 And now for something completely different
Let’s apply the techniques from this chapter to a different, drier example (no water
involved). Consider a class BoundedSet<T>, representing a bounded-size set that keeps
track of the order of insertion of its elements. In detail, a BoundedSet has a fixed
maximum size, called its capacity, established at construction time. The class offers the
following methods:

void add(T elem)—Adds the specified element to this bounded set. If this
addition brings the set size beyond its capacity, this method removes from the
set the oldest element (the one that was inserted first). The addition of an
element that already belongs to the set renews it (that is, it makes the element
the newest one in the set).
boolean contains(T elem)—Returns true if this bounded set contains the
specified element.

This type of functionality is common when a program needs to remember a small num-
ber of frequently used items, as in a cache. Concrete examples include the Open
Recent menu entry of many programs or the Recently Used Programs feature of the
Windows Start menu.

5.5.1 The contracts

The first step toward a reliable implementation involves stating themethod contracts in
more detail, clearly distinguishing preconditions and postconditions. In this particular
case, there’s very little to add to the informal descriptions of the methods because
those two methods have no preconditions: you can invoke them at any time with any
argument (except null). You obtain the following contract for add:

Precondition—Argument is not null.
Postcondition—Adds the specified element to this bounded set. If this addition
brings the set size beyond its capacity, this method removes from the set the
oldest element (the one that was inserted first). The addition of an element that
already belongs to the set renews it (that is, it makes the element the newest one
in the set).
Penalty—Throws NullPointerException.
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For contains, you may want to explicitly say in the postcondition that this method
doesn’t modify its set:

Precondition—Argument is not null.
Postcondition—Returns true if this bounded set contains the specified element.
It doesn’t modify this bounded set.
Penalty—Throws NullPointerException.

5.5.2 A baseline implementation

Before actively checking these contracts, start with a plain implementation of Bounded�
Set. In this way, you’ll see more clearly the costs associated with those checks. First,
choose the internal representation for a bounded set. A linked list is a handy choice
because it allows you to keep the elements sorted by insertion time and efficiently
remove the oldest element with the dedicated method removeFirst. However, this
doesn’t mean that insertion in a bounded set will occur in constant time. To renew an
element that’s already present, you need to scan the list, remove the element from its
current position, and then add it to the front of the list, which takes linear time.

You get the following basic structure for the class:

public class BoundedSet<T> {
private final LinkedList<T> data;
private final int capacity;

public BoundedSet(int capacity) { b Constructor
this.data = new LinkedList<>();
this.capacity = capacity;

}

Next come the two methods. As you can see, the linked list allows you to write a
very simple implementation, in exchange for limited performance (one of the typical
trade-offs filling this book).

public void add(T elem) {
if (elem==null) {

throw new NullPointerException();
}
data.remove(elem); b Removes elem if it’s already there
if (data.size() == capacity) {

data.removeFirst(); c If full, removes the oldest
}
data.addLast(elem); d Adds elem as the newest

}
public boolean contains(T elem) {

return data.contains(elem);
}
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5.5.3 Checking the contracts

As we’ve donewith water containers, let’s design a hardened implementation of Bounded�
Set whose methods actively check their contracts.

Focus on the postcondition of add, which is the most interesting part of both con-
tracts. Since add is supposed to modify the state of the bounded set in a specific and
substantial way, the hardened add method needs to start by making a copy of the cur-
rent state of the bounded set. At the end of add, a private support method will compare
the current state of this bounded set with the copy made at the beginning of add and
check that it’s been modified according to the contract.

The modern suggested way to provide copy capability to a class is through a copy
constructor,9 that is, a constructor accepting another object of the same class. You can
easily achieve that for BoundedSet:

public BoundedSet(BoundedSet<T> other) { b Copy constructor
data = new LinkedList<>(other.data);
capacity = other.capacity;

}

As I’ve discussed with regard to water containers, you should make sure that you only
execute everything connected to the postcondition check, including the initial copy,
when assertions are enabled. As before, you can achieve this objective by wrapping the
initial copy in a dummy assert statement.

public void add(T elem) {
BoundedSet<T> copy = null;
assert (copy = new BoundedSet<>(this)) != null; b Dummy assert

... c The actual operation goes here.

assert postAdd(copy, elem) : d Checks the postcondition
"add failed its postcondition!";

}

Finally, the following code shows the private support method responsible for actually
checking the postcondition. It first checks that the newly added element sits at the front
of the current list. Then, it makes a copy of the current list so it can remove the newest
element from both the current and old lists. At that point, it compares the position of
all other elements before and after the call to add—they should be the same. You can
handily delegate this check to the equals method of the lists.

private boolean postAdd(BoundedSet<T> oldSet, T newElement) {
if (!data.getLast().equals(newElement)) { b newElement must be at the front.

return false;
}

c Removes newElement from both old and new
List<T> copyOfCurrent = new ArrayList<>(data);
copyOfCurrent.remove(newElement);
oldSet.data.remove(newElement);

9 Check out item 13 in Effective Java to learn why that’s preferred over the clone method for new classes.
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if (oldSet.data.size()==capacity) { d If it was full, drop the oldest.
oldSet.data.removeFirst();

}

e All remaining objects should be the same, in the same order.
return oldSet.data.equals(copyOfCurrent);

}

As with water containers, checking the postcondition takes more effort than the add

operation that you’re scrutinizing, both at coding time and at runtime. This confirms
that you should reserve such checks for special circumstances, such as in safety-critical
software or for particularly tricky routines.

5.5.4 Checking the invariants

Recall that an invariant is a static consistency property on the fields of a class that should
hold at all times, except when an object is undergoing change because of a method.
Given the chosen representation for bounded sets (the fields data and capacity), only
two consistency properties characterize a valid bounded set:

I1. The length of the list data should be at most equal to capacity.
I2. The list data shouldn’t contain duplicate elements.

Any list and any integer satisfying these two invariants are sound, and you could, in
fact, obtain them by a legal sequence of operations on an initially empty bounded set.
You should check these invariants in a private support method, like the following:

private boolean checkInvariants() {
if (data.size() > capacity) b Invariant I1

return false;

c Invariant I2 follows.
Set<T> elements = new HashSet<>();
for (T element: data) {

if (!elements.add(element)) d If add returns false, this element is a duplicate.
return false;

}
return true;

}

Once again, focus on the addmethod. The method contains is a trivial one-liner that
can’t spoil the state of the object.

A hardened add, instead, can check the invariants at the end of each call. As usual,
put such a check in an assert statement so you can easily turn on and off all reliability
enhancements together (but remember, they’ll be off by default).

public void add(T elem) {
... b The actual operation goes here.

assert checkInvariants() : "add broke an invariant!";
}

Some potential bugs in addmight pass unnoticed by the invariant check but be flagged
by the more thorough postcondition check from the previous section. For example,
imagine if add removed the oldest element even when the bounded set wasn’t full.
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The invariant check wouldn’t notice the problem because this defect doesn’t bring the
bounded set into an inconsistent state. More precisely, the state of affairs after add is
not inconsistent in itself. It’s just inconsistent with respect to the history of that object,
but invariants don’t care about history. The postcondition, on the other hand, would
catch this defect by comparing the state of the bounded set before and after the add

operation.

5.6 Real-world use cases
Refactoring addWater to enforce the design-by-contract principles was not an easy job.
In fact, it was necessary to write more code to implement precondition and postcondi-
tion checks than to perform the actual business logic. The key question is: Is it worth
the trouble? Here are some real-world use cases for you to consider:

Let’s say you’re working for a small startup that a bank has hired to develop
software for handling ATM transactions. Deadlines are pushing very hard, as
the bank has grown substantially and needs to replace its legacy transaction-
handling software, which can’t handle the expansion of the retail network. To
meet the deadlines, the software leader in your teammakes a catastrophic deci-
sion: focus on the business logic to be able to deliver a solution fast. Luckily,
banks don’t trust anyone. They have their own team of software testers who
put everything under the microscope before deploying to production. It turns
out that the elegantly crafted software your team has developed suffers from a
minor bug: it’s possible to withdraw more than you actually have in your bank
account—and all that embarrassment is because the software skipped a pre-
condition check. Software fails, and often it fails catastrophically. Paying the
cost of reliability during development will prevent future despair.
You might want to take a library you’ve developed in the past and refactor it
to take advantage of the features of the underlying programming language’s
latest release. Or you may want to refactor the existing code to add some new
features. The cost of poor designmay not be obvious at the first library releases,
but poor design accrues over time, and people have even come up with a term
for the eventual cost of poor design: technical debt. As it accrues, technical debt
might even impede future evolution of the library. Design by contract and the
related programming techniques help control technical debt by promoting
explicit specifications and reliability.
When creating new software, developers often face the following dilemma:
what programming language should we use? Obviously, the answer depends
onmany factors, and among them are the complexity of the underlying system
and its reliability. It turns out that themore complicated the system design, the
more difficult it is to make the system behave correctly and be robust under
unexpected events. When reliability is a primary concern, one consideration
is how much of a contract can your programming language express in a way
that you can check at compile time. You may end up switching your programming
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paradigm so you can catch more defects at compile time. For example, func-
tional programming is known to promote reliability but at the cost of a steeper
learning curve and occasionally lower performance.

Let’s not fool ourselves: failure is inevitable. That’s why I defined robustness as the
capability of a system to react gracefully in situations that may lead to failure, rather than a system
that’s designed to avoid all possible causes of failure. Modern distributed systems are prone
to failure because of their inherent nature and are thus created with this principle in
mind: partial failures, inconsistencies, and reordering of messages among the nodes
are impossible to control. Instead, they’re part of the design contract so you can handle
them gracefully.

5.7 Applying what you learned

EXERCISE 1
1. Write down the contract for the method add from the java.util.Collection inter-
face. (Yes, you can look at the Javadoc.)
2. Do the same for the method add from the java.util.HashSet class.
3. Compare the two contracts. How are they different?

EXERCISE 2
Implement the static method interleaveLists, defined by the following contract:

Precondition—Themethod receives as arguments two Lists of the same length.
Postcondition—The method returns a new List containing all the elements of
the two lists, in an alternating fashion.
Penalty—If at least one of the lists is null, the method throws NullPointer�
Exception. If the lists have different lengths, the method throws Illegal�

ArgumentException.

Make sure that the precondition is always checked, and the postcondition is checked
only if assertions are enabled. Try to minimize the overhead when you have assertions
disabled.

EXERCISE 3
An object of type java.math.BigInteger represents an integer of arbitrary size, inter-
nally encoded by an array of integers. Check out its source code in OpenJDK (http://
mng.bz/Ye6j) and locate the following private members:

private BigInteger(int[] val)
private int parseInt(char[] source, int start, int end)

1. Write down the contract of the private constructor. Make sure to include in the
precondition all assumptions that the constructor needs to terminate regularly. Does
the constructor actively check its precondition?
2. Do the same for the parseInt method.
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EXERCISE 4
The following method supposedly returns the greatest common divisor of two given
integers. (Don’t worry; you don’t need to understand it.) Modify it so it checks its
postcondition when assertions are enabled, and try it on 1000 pairs of integers. (You
can find the following code in the eis.chapter5.exercises.Gcd class in the online
repository at https://bitbucket.org/mfaella/exercisesinstyle.)

Hint: Try to check the postcondition in the simplest possible way. You shouldn’t
have doubts about the correctness of the check itself.
private static int greatestCommonDivisor(int u, int v) {

if (u == 0 || v == 0) {
if (u == Integer.MIN_VALUE || v == Integer.MIN_VALUE) {

throw new ArithmeticException("overflow: gcd is 2\^{}31");
}
return Math.abs(u) + Math.abs(v);

}
if (Math.abs(u) == 1 || Math.abs(v) == 1) {

return 1;
}
if (u > 0) { u = -u; }
if (v > 0) { v = -v; }
int k = 0;
while ((u & 1) == 0 && (v & 1) == 0 && k < 31) {

u /= 2;
v /= 2;
k++;

}
if (k == 31) {

throw new ArithmeticException("overflow: gcd is 2\^{}31");
}
int t = (u & 1) == 1 ? v : -(u / 2);
do {

while ((t & 1) == 0) { t /= 2; }
if (t > 0) { u = -t; }
else { v = t; }
t = (v - u) / 2;

} while (t != 0);
return -u * (1 <{}< k);

}

Summary
Software reliability starts with clear specifications.
A standard form of specifications is in terms of method contracts and class
invariants.
You should check preconditions for public methods during all phases of the
development process.
You should check other preconditions, postconditions, and invariants only as
needed, during development or in safety-critical software.
Assertions allow you to enable or disable certain checks at any program run.

Licensed to Abner Lopez <ihackn3wton@gmail.com>

https://bitbucket.org/mfaella/exercisesinstyle


146 CHAPTER 5 Self-conscious code: Reliability through monitoring

Answers to quizzes and exercises

POP QUIZ 1
Throwing a checked exception as a penalty forces the caller to deal with that exception,
either by catching it or by declaring it in its throws clause. This is cumbersome because
the penalty can simply be avoided by respecting the preconditions. Checked excep-
tions are intended for exceptional conditions that can’t be avoided because they’re
outside the direct control of the caller.

POP QUIZ 2
A graceful reaction to running out of paper is to alert the user to the problem and give
them the option to retry or abort the printing. In contrast, ungraceful reactions would
be to crash the program or to silently ignore the print request.

POP QUIZ 3
The proposed property compares the state of an object before and after a method call.
That’s the job of a postcondition, not an invariant. Invariants can only refer to the
current state of an object.

POP QUIZ 4
You initialize the flag with false and then set it to true using a dummy assertion:

boolean areAssertionsEnabled = false;
assert (areAssertionsEnabled = true) == true;

POP QUIZ 5
Recall that not-a-number (NaN) is one of the special values for floating point num-
bers, together with plus and minus infinities. NaN is subject to special arithmetic rules.
Those that concern this quiz are the following:

NaN / n gives NaN
NaN + n gives NaN
NaN < n gives false
NaN == NaN gives false (You read this right!)

Looking at the code of addWater in Contracts (listing 5.1), you can see that passing
NaN as the value of the amount parameter passes the precondition check because
this.amount + amountPerContainer < 0 evaluates to false. The subsequent lines
set the amount field of all containers in the group to the value NaN. Finally, assuming
you’ve enabled assertions, the method checks its postcondition through the method
postAddWater (listing 5.4). There, NaN will fail both the isGroupBalanced() and the
almostEqual() tests, and the invocation will terminate with an AssertionError.

If you have assertions disabled (as they are by default), the invocation to getAmount

silently sets all containers in the group to holding NaN. These observations suggest
that the contract of addWater should in fact be refined to tackle NaN and the other
special values in a more reasonable way, such as by declaring them invalid through the
precondition.
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EXERCISE 1
1. The contract of an abstract method tends to be more involved than that of a con-
crete method. An abstract method has no implementation, so it’s basically a pure con-
tract. Therefore, its contract needs to be clear and detailed. The situation is even more
sensitive in an interface like Collection, which, being the root of the collection hier-
archy, must accommodate a large variety of specializations (precisely 34, among classes
and interfaces).

The Javadoc for Collection.add contains a wealth of information. Start with the
qualifier “optional operation.” You can interpret it as specifying two alternative contracts
for this method. First, an implementation can choose not to support insertions, like
an immutable collection. In that case, it must respect the following contract:

Precondition—No invocation is legitimate.
Postcondition—None.
Penalty—Throws UnsupportedOperationException.

If the class implementing Collection supports insertions, it must obey a different
contract. Such a class can freely choose the precondition of add, to constrain the kind
of insertions that are legitimate, but it must issue specific penalties when rejecting an
insertion, as the following contract describes:

Precondition—Implementation-defined.
Postcondition—Ensures that this collection contains the specified element. Returns
true if this collection changed as a result of the call.
Penalty—Throws:

– ClassCastException if the argument is invalid because of its type
– NullPointerException if the argument is null and this collection rejects

null values
– IllegalArgumentException if the argument is invalid because of some other

property
– IllegalStateException if the argument can’t be inserted at this time

Note how this contract doesn’t specify under which conditions an insertion will change
the underlying collection. That burden lies with the subclasses.
2. The class HashSet specializes the contract for add as follows:

Precondition—None. (All arguments are legitimate.)
Postcondition—Inserts the specified element in this collection, unless an ele-
ment equal to it (according to equals) is already present. Returns true if this
collection didn’t contain the specified element before the call.
Penalty—None.

3. The contract in HashSet specifies that this collection doesn’t contain duplicate ele-
ments. Attempting to insert a duplicate is not an error: it doesn’t violate the precon-
dition and it doesn’t raise an exception. It just leaves the collection unchanged.
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EXERCISE 2
Here’s the code for the interleaveLists method. Note how regular if statements
check the precondition, whereas the postcondition is delegated to a separate method,
only invoked when assertions are enabled.

public static <T> List<T> interleaveLists(List<? extends T> a,
List<? extends T> b) {

if (a==null || b==null)
throw new NullPointerException("Both lists must be non-null.");

if (a.size() != b.size())
throw new IllegalArgumentException(

"The lists must have the same length.");

List<T> result = new ArrayList<>();
Iterator<? extends T> ia = a.iterator(), ib = b.iterator();
while (ia.hasNext()) {

result.add(ia.next());
result.add(ib.next());

}
assert interleaveCheckPost(a, b, result);
return result;

}

Here’s the code for the support method responsible for checking the postcondition:

private static boolean interleaveCheckPost(List<?> a, List<?> b,
List<?> result) {

if (result.size() != a.size() + b.size())
return false;

Iterator<?> ia = a.iterator(), ib = b.iterator();
boolean odd = true;
for (Object elem: result) {

if ( odd && elem != ia.next()) return false;
if (!odd && elem != ib.next()) return false;
odd = !odd;

}
return true;

}

EXERCISE 3
First, note a few details about how these private members are documented. The offi-
cial Javadoc page for BigInteger doesn’t mention any private member. That’s the
default behavior for Javadoc, and you can change it using the --show-members pri�

vate command-line option. Still, in the source code, the constructor is equipped with
a full comment in Javadoc style, whereas the method is preceded by a brief comment
in free format. Apparently, the constructor is deemed important enough to warrant
more detailed documentation. In chapter 7, you’ll learn more about Javadoc and doc-
umentation guidelines. Now, let’s extract the contracts from these comments and from
the code.

Licensed to Abner Lopez <ihackn3wton@gmail.com>



Answers to quizzes and exercises 149

1. Regarding the constructor, the Javadoc mentions that val should not be modified
during the execution of the constructor. This property refers to multithreaded con-
texts, where the program may be executing other code at the same time as this con-
structor. As such, this requirement doesn’t exactly fit in the classic form of contract
presented in this chapter, as that’s tailored to sequential programs.

On the other hand, a quick look at the constructor source code shows that the array
val is also implicitly assumed to be non-null and non-empty, leading to the following
contract:

Precondition—val is non-null and non-empty.
Postcondition—It creates the BigInteger corresponding to the integer encoded
in val in two’s-complement big-endian format.
Penalty—Throws:

– NullPointerException if val is null
– NumberFormatException if val is empty (length 0)

The constructor is actively checking whether the array val is empty. There’s no need
to check for val being null because that case induces an NPE automatically.10

2. The comment preceding parseInt declares “Assumes start < end.” That’s one
explicit precondition. Skimming through the method body, you’ll also notice that
the source argument must be non-null and that start and end must be valid indices
in source. Finally, every character in the specified interval of source must be a digit.
You can put these observations in contract form as follows:

Precondition—source is a non-null sequence of digit characters; start and end

are valid indices for source, and start < end.
Postcondition—Returns the integer that the digits between the two indices start
and end represent.
Penalty—Throws:

– NullPointerException if source is null
– NumberFormatException if any character in the specified interval is not a

digit
– ArrayIndexOutOfBoundsException if start or end is not a valid index in

source

The method actively checks that each character in the interval is a digit. It omits the
check for null as redundant. The only precondition explicitly stated in the documenta-
tion is not checked: invoking themethod with start≥ end doesn’t raise any exception,
but, rather, returns the integer corresponding to the single character source[start].

As a side remark, this method doesn’t use any instance field, so it should be static.

10 You may still prefer to check that explicitly to clarify your intent and equip the exception with a more
specific error message.
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EXERCISE 4
The code for this exercise is a slightly edited excerpt from the class Fraction11 from
the Apache Commons project. It employs a highly non-obvious algorithm by Donald
Knuth. Since the method modifies its arguments, and you need those arguments to
check the postcondition, you need to store their original values in two additional vari-
ables. Then, at the end of the method, you can check the postcondition using an
auxiliary method.

private static int greatestCommonDivisor(int u, int v) {
final int originalU = u, originalV = v;

b The original procedure goes here (modifies u and v).

int gcd = -u * (1 <{}< k);
assert isGcd(gcd, originalU, originalV) : "Wrong GCD!";
return gcd;

}

For the auxiliary isGcd method, I said the simplest solution is preferable. In this
case, you may simply apply the definition of “greatest common divisor,” and check that

gcd is indeed a common divisor of originalU and originalV

every larger number is not a common divisor

private static boolean isGcd(int gcd, int u, int v) {
if (u \% gcd != 0 || v \% gcd != 0) b Checks that gcd is a common divisor

return false;
for (int i=gcd+1; i<=u && i<=v; i++) c Checks any larger number,

up to the minimum of u and vif (u \% i == 0 && v \% i == 0)
return false;

return true;
}

This implementation of isGcd is very inefficient, being linear in the size of the
smallest number between u and v. A more reasonable course of action would be to
use Euclid’s classic algorithm (https://en.wikipedia.org/wiki/Euclidean_algorithm)
or invoke an already implemented GCD procedure, such as the BigInteger.gcd()

method from the JDK.

Further reading
Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.
This book formally introduced the design-by-contract methodology and the
programming language, Eiffel, designed to support it.
J.-M. Muller et al. Handbook of Floating-Point Arithmetic. Birkhäuser, 2010.
Want to impress friends and family with your mastery of everything floating-
point? Study this volume of over 500 pages. It comes with a free PhD in
computer science.

11 The fully qualified class name is org.apache.commons.lang3.math.Fraction.
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DavidGoldberg. “What Every Computer Scientist ShouldKnowAbout Floating-
Point Arithmetic.” ACM Computing Surveys, 23, 1991.
At 44 pages, this article delivers its promise, but it doesn’t grant a PhD.
Joshua Bloch. Effective Java. Addison-Wesley, 2017.
The third edition of a celebrated book on Java best practices. Written by one
of the designers of the Java platform.
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6Lie to me:
Reliability through testing

This chapter covers
Designing a suite of unit tests

Applying input coverage criteria

Measuring code coverage

Assessing and improving code testability

Even developers who’ve never heard of design by contract know what tests are: the
final phase of every software development project, when evil people called testers try
to expose your brilliant time-saving hacks and characterize them as “bugs.” Jokes aside,
tests have an increasingly central role in the modern software development process.
One well-known point of view, called test-driven development, even suggests that tests
should come before, rather than after, any production code. In that case, tests are
used as executable specifications, and the rest of the system is written to pass those
tests.1

The content of this chapter is independent of the specific view you hold on tests.
You’re just going to enrich Reference (or any implementation that conforms to its API)
with a set of tests that’s reasonable and tries to cover its functionalities as much as
possible. In line with the theme of this book, I’ll focus on unit testing, that is, testing

1 You can learn about TDD from the book Growing Object-Oriented Software, Guided by Tests, mentioned in the
Further reading section at the end of this chapter.

153

Licensed to Abner Lopez <ihackn3wton@gmail.com>



154 CHAPTER 6 Lie to me: Reliability through testing

of a single class. Later, I’ll critically analyze the water container API in the light of
testability and suggest some improvements based on common best practices.

6.1 Basic testing notions
Testing is the primary validation activity in the software industry. As such, you can find
a wealth of theories and techniques related to it. As with the other topics, in this book
I can touch on only the basics of testing, and that’s fine. Plenty of specialized resources
are available for digging a lot deeper into this topic, some of which are listed in the
Further reading section at the end of this chapter.

The objective of testing is to find and remove as many bugs as possible, thus increas-
ing your confidence in the correctness and robustness of your program. More pre-
cisely, you can’t really expect a complex program to ever become entirely bug-free, so
testing should aim at identifying all large defects—those that are likely to occur soon
and often during regular use. Testing seldom catches the subtler and more intricate
bugs. Only an extended period of heavy use creates the right conditions for those bugs
to emerge.

Like many aspects of software engineering, the ability to design good tests comes
from practice at least as much as it stems from solid principles. Because I can’t provide
you with instant practice, I’ll do the next best thing: present you with the principles
while applying them to a concrete example.

6.1.1 Coverage in testing

You can increase the likelihood of catching all large defects by adopting a systematic
approach to testing, guided by coverage considerations. Indeed, coverage is one of the
main themes in test design, and it comes with several meanings. In general, by cov-
erage I mean the extent to which the tests manage to stimulate different parts of the
system. Two broad ways to measure coverage have been developed: code-based and
input-based. Code-based coverage refers to the percentage of source code that a given
set of tests execute at least once. As you’ll learn in this chapter, you can measure that
percentage in different ways. Code-based coverage is traditionally tied to whitebox test-
ing, so called because it assumes we have inside knowledge of the software under test
(SUT) and its source code.

Input-based coverage, on the other hand, ignores the internals of the program being
tested and focuses only on its API. Roughly speaking, it suggests analyzing the set of
possible input values to identify a smaller set of representative inputs. Input-based
coverage is connected to blackbox testing, in the sense that it’s independent from the
source code of the SUT.

The two types of coverage complement each other, and in this chapter you’ll exploit
both of them. First, you’ll deal with input-based coverage by designing test suites that
try to provide a rich selection of input values. Then, you’ll use a tool to measure the
code coverage that those tests achieve. In other words, you’ll use input-based coverage
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as the design objective and code-based coverage as a form of validation of the test plan
itself.

6.1.2 Testing and design-by-contract

Before going into specifics, let’s compare the objective of testing with the objective of
the techniques I presented in the previous chapter, centered on the thorough verifica-
tion of a contract.

Checking preconditions of publicmethods and reacting with the appropriate penalty
is a basic form of defensive programming, and a generally accepted best practice. Test-
ing doesn’t replace it in any way, but, rather, reinforces it. Indeed, later in this chapter,
you’ll design some tests aimed at verifying that those defenses are in place.

Checking postconditions or invariants in-method is a completely different matter:
the objective there is to detect problemswithin the class itself, and that’s the same objec-
tive as for unit testing. Hence, those techniques can serve somewhat as an alternative
to testing.

Compared with those other techniques, testing has the two following advantages
that make it much more common in practice:

Testing moves the invariant and postcondition checks outside of the class itself.
That’s a very convenient choice that keeps classes small and simple and clearly
distinguishes responsibilities, among classes and among developers, allowing
the organization to assign development and testing to different teams.
Testing invites you to carefully design the set of input values that you’ll provide
to the SUT. This aspect is missing from the other techniques. In other words,
implementing in-method postcondition or invariant checks is only half the
story. Without a systematic strategy for calling specific methods with specific
input values (which amounts to a testing plan), those checks may or may not
reveal bugs at any stage of program development and production. Testing puts
you in charge of the process, with coveragemetrics supporting your confidence
in the correctness and robustness of the SUT.

Figure 6.1, repeated from the previous chapter, puts tests in relation with code quali-
ties and design by contract. Tests check that methods respect their postconditions, and
that they react to invalid inputs (as defined by the preconditions) with the advertised
penalties. In so doing, tests promote reliability by exposing defects and facilitating
their removal.

In particularly critical code, it may be useful to enrich testing with some of the tech-
niques from the previous chapter. For example, you can put invariant checks in place
to be able to run the system in robust mode at any time. In this way, if an anoma-
lous behavior survives testing and is discovered during production, you can more easily
diagnose and fix it.
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qualities

Correctness

Preconditions Postconditions InvariantsContracts

Coding
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checked
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issued by

Figure 6.1 The relationship between reliability attributes, contract-based specifications, and coding
techniques

POP QUIZ 1 Which parts of amethod contract are relevant for testing thatmethod?

Modern testing is based on the ability to quickly and repeatedly execute an evolving
collection of tests. This automation process is supported by libraries and frameworks,
the most popular of which is the xUnit family, including JUnit for Java and NUnit for
.NET languages. If you’re not familiar with JUnit, the next section provides a brief
introduction to it.

6.1.3 JUnit

JUnit is the standard unit testing framework for Java. It provides free and open source
facilities for writing and running a test suite. The following tests are based on JUnit
4.0, so I’ll start with a quick overview of this framework.

JUnit makes heavy use of Java annotations. If you’re not familiar with this Java con-
struct, check out the sidebar.

Java annotations
An annotation is a tag that starts with the “@” symbol and that you can attach to a
method right before its signature. The annotation most programmers are familiar with
is @Override, as in the following fragment:

public class Employee {
private String name, salary;
...
@Override
public String toString() {
return name + ", monthly salary " + salary;

}
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}

The @Override tag in the snippet signals to the compiler that the attached toString
method is intended to be an override. In other words, the programmer is instructing the
compiler to perform an extra check: if the target method is not overriding a superclass
method, compilation will fail. Whereas @Override is an annotation with no arguments,
other annotations may have any number of them. (You’ll see an example shortly.)

In reality, annotations are a general mechanism for attaching metadata to program
elements. Besides methods, you can also apply them to classes, fields, local vari-
ables, method parameters, and more. Annotations are passive elements that carry
extra information about a program element. They can be transferred to the bytecode
and read at runtime using reflection. Programmers can easily define their own custom
annotations and write tools that interpret them to alter or enrich the execution of the
program in various ways.

In JUnit, every test takes up a method, and a set of related tests form a class. Not all
methods in a class must represent a test. You specify that a method represents a test by
decorating it with the @Test annotation:

@Test
public void testSomething() { ... }

If a given test is supposed to raise an exception (this is common when testing for
robustness), you tell JUnit which class of exception you expect by setting the value of
the expected attribute of the @Test annotation:

@Test(expected = IllegalArgumentException.class)
public void testWrongInput() { ... }

C# attributes
Attributes are the C# way to attach meta-
data to program elements. They work
similarly to Java annotations, but you
distinguish them by brackets instead of
an at (@) symbol. For example, the ana-
log to Java’s @Deprecated annotation is
C#’s [Obsolete] attribute.

As these examples indicate, test meth-
ods don’t return a value. Test success
or failure is determined by an appropri-
ate JUnit assertion, not to be confused
with the Java assert instruction. A JUnit
assertion is one of a number of static
methods that the framework offers to
compare the expected result of an oper-
ation with the effective result. Whenever
an assertion fails, it throws the Assertion�
Error exception, just like a Java assert instruction. JUnit will catch those exceptions,
keep running all the other tests in the suite, and present a final report summarizing
the outcome of each test.

The most common assertions are the following public static voidmethods from
the org.junit.Assert class:

assertTrue(String message, boolean condition)—The test succeeds if the
condition is true. This is the most general JUnit assertion, allowing you to plug
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in any custom check returning a Boolean. The message string in this and the
following methods will be attached to the exception thrown if the assertion
fails, and later will be included in the final report.
assertFalse(String message, boolean condition)—The opposite of the
previous case: the test succeeds if the condition is false.
assertEquals(String message, Object expected, Object actual)—The
test succeeds if expected and equals are both null, or if they’re equal to each
other (according to their equalsmethod). Similar assertions accept primitive
types long, float, and double, instead of Object. However, the floating-point
versions are deprecated2 in favor of the following assertion.
assertEquals(String message, double expected, double actual, double

delta)—The test succeeds if the values expected and actual are within delta

from each other; delta is the tolerance for the comparison. As I discussed in
section 5.3, you shouldn’t compare floating-point numbers exactly, but, rather,
with some room for rounding errors. I’ll come back to that point in a minute.

You can run JUnit from the command line, but it’s much more common to launch
it as part of an IDE so you can easily run and visually analyze tests.

6.2 Testing containers [UnitTests]
It’s time to go back to our containers. This section is a little different from most of the
others because you won’t be developing another version of the Container class, but,
rather, a set of tests for its functionalities. Which version of Container are we testing,
you may ask? Because we’re using the blackbox approach, we’re not targeting any
specific implementation of Container. Instead, we’re targeting its API, as established
in chapter 1. A nice consequence is that you’ll be able to run the tests against all
implementations from this book that comply with that API, and that’s exactly what
you’ll do in section 6.2.4. If you feel the need to have a concrete implementation in
mind, just think of Reference.

You can find the code for the following tests in the eis.chapter6.UnitTests class
in the online repository (https://bitbucket.org/mfaella/exercisesinstyle).

6.2.1 Initializing the tests

The following tests use the same API that normal clients use. As a consequence, we
won’t be able to directly check the internal state of the objects. The getAmountmethod
is essentially the only feedback we have access to (and the only method that returns a
value, by the way). We’ll come back to this limitation later in this chapter.

All of our tests need to operate on one or more Container objects. Rather than
creating these containers at the beginning of each test, you can avoid some code rep-
etition by adding some Container fields to the class and initializing them in a method

2 Not only are they formally deprecated, they always fail.
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you tag with the JUnit annotation @Before. When you tag a method with @Before, it
will be executed before each test. We call such objects that multiple tests share test
fixtures. Accordingly, our test class starts as follows:

public class UnitTests {
private Container a, b; b Test fixtures

@Before c Instructs JUnit to execute this method before every test
public void setUp() {

a = new Container();
b = new Container();

}

For the sake of completeness, you can use the dual annotation @After to tag a
method that you want executed after each test. This is useful if test fixtures need to
release some resources upon dismissal. Moreover, you can attach annotations @Before�
Class and @AfterClass to static methods that you want executed once, before or after
the whole sequence of tests in the current class. Youmay want to use them to set up and
tear down computationally expensive fixtures that several tests share, such as database
connections and network channels in general.

Now, you’ll design your first Container test, checking that the constructor works as
expected. Because the constructor has no inputs, invoke it just once and check the
only property that the API allows you to verify: that a newly minted container is empty.

@Test
public void testNewContainerIsEmpty() {

assertTrue("new container is not empty", a.getAmount() == 0);
}

In this case, it’s OK to compare two floating-point numbers exactly because there’s
no reason for the class to approximate this value. In the previous snippet, I’m using
assertTrue because I think it’smore readable than the equivalent assertEquals, which
looks like this:

assertEquals("new container is not empty", 0, a.getAmount(), 0);

Readable asserts with Hamcrest matchers
In the examples so far, I’ve been using the basic way to write JUnit assertions. A better
alternative is to use the library Hamcrest, shipped with JUnit. This library allows you
to express the condition being checked in a more readable way, by building a matcher
object and passing it to the assertThat assertion.

For example, the basic assertion

assertEquals("new container is not empty", 0, a.getAmount(), 0);

you can rewrite as the following Hamcrest assertion:

assertThat("new container is not empty", a.getAmount(), closer(0, 0));
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Besides being more readable, Hamcrest conditions lead to clearer diagnostic mes-
sages in case of failure. To witness this difference, assume that an empty con-
tainer mistakenly started with 0.1 units of water. The first assertion, based on
assertEquals, fails with the following message:

new container is not empty
expected:<0.0> but was:<0.1>

whereas the assertion using Hamcrest provides more details:

new container is not empty
Expected: a numeric value within <0.0> of <0.0>

but: <0.1> differed by <0.0> more than delta <0.0>

I’ll use Hamcrest matchers in this chapter’s second example in section 6.4.

6.2.2 Testing addWater

Next, we’ll test the behavior of the addWater method. Its inputs include its parameter
and the current state of this container. Because these inputs can take a huge number
of values, it’s time to introduce a systematic way to choose the input values you’ll send
to the method under test. The standard blackbox technique is called input domain
modeling.

INPUT DOMAIN MODELING
The input domain model approach helps you identify a restricted set of interesting
values to subject your method to. It proceeds in the following three steps:

1 Identify a small number of relevant input characteristics. A characteristic is a
feature that partitions the set of possible values into a finite (hopefully small)
number of categories, called blocks. Relevant characteristics can be suggested
by the type of an input or by the method contract. For example, a com-
mon characteristic for an integer input is to divide its values into three blocks:
negative numbers, zero, and positive numbers.

2 Combine characteristics into a finite set of combinations. For example, fig-
ure 6.2 shows two characteristics for an input of type int. Together, they define
six possible combinations, except that one of them is empty because zero is
conventionally treated as an even number.

3 Pick an input value from each combination. Each of those values defines a
test. The test consists of invoking the method with the chosen input value
and comparing its output with the expected output according to the contract.
(Note that the correct output may be an exception.)

You’ll apply this technique now to addWater, and later to connectTo.

CHOOSING THE CHARACTERISTICS
The first way to identify relevant characteristics for your inputs is to simply observe their
data type. Primitive data types come with standard characteristics:
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Characteristic 1: Sign
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Figure 6.2 Two characteristics for an input of type int: sign and parity. Together, they partition
integers into five sets, because the combination “sign zero, odd parity” is contradictory.

For a numeric type, it’s natural to distinguish zero from the other values because
it exhibits special arithmetic properties.
Similarly, an API often treats positive and negative numbers differently, with
negative numbers frequently being unwelcome.
You should single out the null value for every reference type, as it requires
special treatment.
Finally, a special case for strings, arrays, and collections is for them to be empty.

These observations about type-based characteristics are summarized in table 6.1 and
only scratch the surface on the subject. Expert testers commonly use many more inter-
esting standard characteristics. For example, strings can span the whole space of Uni-
code characters (technically, code points), and characters and alphabets that are less
well known are often sources of errors.

Table 6.1 Standard characteristics for common types of inputs, aka type-based characteristics

Type Characteristic Blocks

int/long Sign {negative, zero, positive}

float/double Sign and special values {negative, zero, positive, infinity, NaN}

String Length {null, empty string, nonempty string}

array or collection Size {null, empty array/collection, nonempty
array/collection}
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POP QUIZ 2 What characteristic would you choose for a data type representing a
date?

Amore interesting and fruitful source for characteristics is the contract of themethod
under test. You can mine both its pre- and postcondition for relevant properties of the
inputs. For example, let’s take the contract of addWater. The postcondition tells us
that addWater distributes the added water among all containers connected to this one.
This applies only if a container is connected to this one, so as the first characteristic,
let’s distinguish isolated containers from connected ones. This characteristic—call it
C1—is binary, partitioning the input values into two blocks: the values where the cur-
rent state of this container is to be isolated, and the values where the current state is to
be connected.

Additionally, the precondition prescribes that when the method argument is nega-
tive, there should be enough liquid in the group to satisfy the request. This suggests a
characteristic—call it C2—that distinguishes four cases (hence, four blocks):

1 The argument is positive.
2 The argument is zero; because the number zero has special arithmetic prop-
erties, it’s customary to single it out in tests.

3 The argument is negative, and there’s enough water in the group (a valid
negative).

4 The argument is negative, and there’s not enough water in the group (an
invalid negative).

Table 6.2 summarizes these two characteristics.

Table 6.2 The two characteristics chosen for testing addWater

Name Characteristic Blocks

C1 This container is connected to at
least another.

{true, false}

C2 Relation between the argument and
the amount in the current group

{positive, zero, valid negative, invalid
negative}

CHOOSING THE BLOCK COMBINATIONS
Each characteristic partitions the input values into a small set of blocks. To find asmany
defects as possible, it’s useful to test some or all combinations of blocks from different
characteristics. In our case, the number of characteristics and the number of blocks
within are so small that you can exhaustively test all eight combinations of blocks:

1. (C1=false, C2=positive) 5. (true, positive)

2. (false, zero) 6. (true, zero)

3. (false, valid negative) 7. (true, valid negative)

4. (false, invalid negative) 8. (true, invalid negative)
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Unsurprisingly, this strategy is called All Combinations Coverage. Note that the two
characteristics C1 and C2 are independent, so all eight combinations make sense. In
other cases, this strategy gives rise to too many combinations. I’ve presented some
alternative strategies that pick a more limited number of combinations in the sidebar.

Input coverage criteria
Researchers and practicioners have come up with many more input coverage criteria
that in one way or another limit the total number of tests to be performed. The following
are two that they commonly use:

Each Choice Coverage—This criterion suggests that you include each block
from each characteristic in at least one test.
In the case of addWater, here’s a selection fulfilling this criterion:

1. (true, zero)

2. (true, positive)

3. (true, valid negative)

4. (false, invalid negative)

Many alternative solutions are possible, all with at least four tests, because
the second characteristic C2 features four blocks.
Base Choice Coverage—According to this criterion, you’re supposed to choose
a base combination of blocks and then vary one characteristic at a time,
covering all possible values for that characteristic. In our case, you can
choose

1. (true, positive)

as the base combination because it’s in some sense the most typical. Alter-
ing the value of the first characteristic leads to the combination

2. (false, positive)

Whereas altering the second characteristic from the basic combination gen-
erates the following three combinations, which complete the selection:

3. (true, zero)

4. (true, valid negative)

5. (true, invalid negative)

POP QUIZ 3 If you identify three independent characteristics, with n1, n2, and n3

blocks, how many tests do you need to achieve All Combinations Coverage? What
about Each Choice Coverage and Base Choice Coverage?

CHOOSING THE ACTUAL VALUES
The last step in the input domain model approach consists of choosing one set of
concrete values for each combination of characteristics. Continuing the process for
addWater, consider combination 7 from the following list:
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1. (C1=false, C2=positive) 5. (true, positive)

2. (false, zero) 6. (true, zero)

3. (false, valid negative) 7. (true, valid negative)

4. (false, invalid negative) 8. (true, invalid negative)

Your objective in the final step is to devise a container c and a double value amount
such that the following call,

c.addWater(amount);

falls in the number 7 combination of blocks, that is, C1=true and C2=valid negative.
In plain words, the container c should be connected to at least another container,
amount should be a negative number, and there should be enough water in c’s group
to fulfill the request. It’s pretty straightforward to prepare this scenario using the API
for containers. You should end up with a test method similar to the following:

@Test
public void testAddValidNegativeToConnected() {

a.connectTo(b); b Sets up the desired scenario
a.addWater(10);
a.addWater(-4); c This is the line under test.
assertTrue("should be 3", a.getAmount() == 3);

}

WHAT ARE WE ACTUALLY TESTING?
Because addWater returns no value, how do you know whether it actually worked?
Easy—you call getAmount and compare the expected value with the actual value. But
how do you know that getAmount correctly reports the current amount value? You
don’t. Even worse, how do you know that the following two lines set up the testing
scenario correctly?

a.connectTo(b);
a.addWater(10);

Again, you can’t be sure.
Although the previous test is directed at addWater, it’s jointly testing connectTo,

getAmount, and addWater! If something goes wrong, you have no way of knowing which
of the three methods is at fault. In most cases, you can expect getAmount to be a simple
getter, so it’s much more likely for addWater or connectTo to be wrong. However, this
is not always the case: in Speed3 from chapter 3, the implementation of getAmount is
about as complex as that of addWater. Both need to traverse a parent-pointer tree up
to its root, as recalled in the following listing.

Listing 6.1 Speed3: Methods getAmount and addWater

public double getAmount() {
Container root = findRootAndCompress(); b Obtains the root

and flattens the path
return root.amount; c Reads the amount

from the root}
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public void addWater(double amount) {
Container root = findRootAndCompress(); d Obtains the root

and flattens the path
root.amount += amount / root.size; e Adds water to the root

}

There’s noway out of this conundrum, unless you adopt a radically different approach
and let the tests access the state of the containers directly (by opening up the visibility
of the fields or by putting the tests inside the Container class). That would be a big
step toward whitebox testing, rendering the tests implementation-specific and hence
less useful. I’ll expand on these observations in section 6.3, devoted to testability.

Listing 6.2 shows the code for the four addWater tests on an isolated container
(C1=false). Note that for simplicity I’m comparing doubles exactly (no tolerance for
rounding errors) because the water we’re putting in stays in this container, so there’s
no reason for addWater to perform any rounding. The last of these tests is supposed to
raise an exception because we’re intentionally violating the precondition. You can tell
JUnit which kind of exception to expect using the expected parameter of the @Test

annotation.

Listing 6.2 UnitTests: Four tests for addWater on an isolated container

@Test
public void testAddPositiveToIsolated() { b C1=false, C2=positive

a.addWater(1);
assertTrue("should be 1.0", a.getAmount() == 1);

}
@Test
public void testAddZeroToIsolated() { c C1=false, C2=zero

a.addWater(0);
assertTrue("should be 0", a.getAmount() == 0);

}
@Test
public void testAddValidNegativeToIsolated() { d C1=false, C2=valid negative

a.addWater(10.5);
a.addWater(-2.5);
assertTrue("should be 8", a.getAmount() == 8);

}
@Test(expected = IllegalArgumentException.class)
public void testAddInvalidNegativeToIsolated() { e C1=false, C2=invalid negative

a.addWater(-1);
}

The two characteristics from table 6.2, namely container isolation and the relation
between the current group water amount and the amount passed as argument, are a
good starting point for a test suite, but you could certainly add others if more testing
was deemed necessary. For example, every time a floating point value is provided as
input, you should take into account the special values that such types support: positive
and negative infinity, and not-a-number (NaN). First, you should enrich the contract of
addWater by specifying the reaction to those special values (presumably, an exception).
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Then, you might proceed to add a characteristic that takes those values into account,
leading to more block combinations and more tests.

6.2.3 Testing connectTo

Let’s move on to testing the connectTo method. The inputs to this method are its
parameter and the current state of the two containers being connected. The only pre-
condition is for the argument not to be null, so that’s a property you should include
in your analysis, as characteristic C3. You can overload C3 to also take into account
another special value for the parameter: this. It turns out we hadn’t really taken into
account this case when laying out the contract of connectTo. Now we’ll refine the con-
tract and stipulate that attempting to connect a container with itself should result in a
NOP.3

The effect of the connectTo method is to merge two groups of containers. Hence,
it seems natural to distinguish different scenarios based on the size of the two groups
before the merge operation. Groups can’t be empty: by definition, an isolated con-
tainer forms its own group, so we’ll distinguish groups of size 1 from larger groups.
We’ll denote groups of a size greater than 1 with 2+. Characteristics C4 and C5 cap-
ture these sizes. Notice that C5 (“size of the other group”) includes the extra value
“none,” which applies when the method argument is null and says no other group
exists.

Finally, another characteristic (C6) checks whether those two groups were the same
(that is, the containers were already connected). Table 6.3 summarizes the identified
characteristics.

Table 6.3 Characteristics chosen for testing connectTo

Name Characteristic Blocks

C3 Value of argument {null, this, other}

C4 Size of this group {1, 2+}

C5 Size of the other group {none, 1, 2+ }

C6 The two groups coincide. {true, false}

This time, the characteristics are not entirely independent of one another, in that
not all combinations are feasible. The following constraints apply:

When the argument of connectTo is null (C3=null), there’s no other group,
so C5=none and C6=false.
If you try to connect a container with itself (C3=this), the other characteristic-
sre have only two possibilities: they’re equal to either (1, 1, true) or (2+, 2+,
true).

3 NOP stands for No Operation. It started as a mnemonic for the machine code instruction that does
nothing. It then spilled over to more generally signify a null operation.
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If you’re connecting two distinct containers (C3=other), and they happen to
be already connected (C6=true), the size of their common group can’t be 1.

Luckily for us, these constraints bring the number of legal combinations from 36 down
to the following nine:

1. (other, 1, 1, false) 6. (this, 1, 1, true) 8. (null, 1, none, false)
2. (other, 2+, 1, false) 7. (this, 2+, 2+, true) 9. (null, 2+, none, false)
3. (other, 1, 2+, false)
4. (other, 2+, 2+, false)
5. (other, 2+, 2+, true)

We’ll perform one test for each of these combinations, except the last, as there
really is no point in distinguishing combination 9 from 8. In both cases, the expected
behavior consists of simply throwing an NPE. You can generalize this observation: if
a value for a characteristic violates the precondition and hence leads to an exception,
it’s usually sufficient to test it just once, rather than in all possible combinations.

Unsurprisingly, you run into the same observability problem that I discussed earlier.
The main effect of connectTo is to merge two groups, but the API doesn’t provide any
means to directly inspect groups. There’s no public method for checking whether two
containers are connected. In fact, the only method returning any information on the
state of the containers is getAmount. You can check that the information that getAmount
returns is consistent with the two groups having been merged, but the tests have no way
to ascertain whether the groups have actually been merged.

The following listing provides the code for the tests corresponding to connectTo

combinations 1 to 3. Recall that all tests can use the fixtures I defined earlier: two
empty and isolated containers called a and b.

Listing 6.3 UnitTests: Three tests for connectTo

@Test
public void testConnectOtherOneOne() { b C1=other, C2=1, C3=1, C4=false

a.connectTo(b); c Line under test
a.addWater(2);
assertTrue("should be 1.0", a.getAmount() == 1);

}
@Test
public void testConnectOtherTwoOne() { d C1=other, C2=2+, C3=1, C4=false

Container c = new Container();
a.connectTo(b);
a.connectTo(c); e Line under test
a.addWater(3);
assertTrue("should be 1.0", a.getAmount() == 1);

}
@Test
public void testConnectOtherOneTwo() { f C1=other, C2=1, C3=2+, C4=false

Container c = new Container();
b.connectTo(c);
a.connectTo(b); g Line under test
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a.addWater(3);
assertTrue("should be 1.0", a.getAmount() == 1);

}

6.2.4 Running the tests

Table 6.4 summarizes the outcome of the 17 tests we devised, when run against four
different implementations: Reference from chapter 2; the “fast” implementation, Speed3
from chapter 3; and the two “robust” implementations I presented in chapter 5, nick-
named Contracts and Invariants.

Table 6.4 Number of passed tests for different implementations. Results don’t depend on
having assertions enabled or disabled.

Reference Speed3 Contracts Invariants

constructor 1/1 1/1 1/1 1/1

addWater 6/8 6/8 8/8 8/8

connectTo 8/8 8/8 8/8 8/8

Failed tests C2 = invalid negative C2 = invalid negative — —

The first two implementations fail the two addWater tests, where we try to remove
more water than is actually available (C2 = invalid negative). Indeed, those implemen-
tations don’t check this condition and will happily support negative amounts of water
in a container.

We intentionally engineered the other two implementations to faithfully respect
their contract, so they pass all tests with flying colors. It may be worth noticing that
passing these tests doesn’t depend on enabling the assertions because standard if-
statements that are always on check the preconditions.

6.2.5 Measuring code coverage

You can check the code coverage that these tests achieve using the JaCoCo tool, an
open-source Java code coverage framework. It collects runtime information using a
Java agent, that is, a piece of code that runs in the background on a JVM to inspect or
modify the execution of a program. After the tool collects the information, it can pro-
duce reports in various formats, including rich and navigable HTML pages. Similarly
to JUnit, JaCoCo is well integrated in the most popular IDEs, but you also can run it
from the command line.

JaCoCo measures various types of code coverage criteria:

Instruction coverage—Percentage of bytecode instructions executed.
Line coverage—Percentage of Java source code lines executed. The compiler
may compile a line into several bytecode instructions. A line is considered
executed if at least one of those instructions is executed. Hence, line coverage
always appears larger than instruction coverage.
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Branch coverage—Percentage of conditional branches executed. This refers to
if and switch statements.

You can find instructions on how to run JaCoCo from the command line in the file
UnitTests.java,4 which also contains the tests developed in this chapter. After run-
ning the tests with JaCoCo, you get a coverage report whose content is summarized in
table 6.5. It informs you that you managed to execute all bytecode instructions from
the Reference and Speed3 implementations—not a bad result!

Table 6.5 Code coverage measures for various implementations. Here, “assert on/off”
refers to the Java assert statement, not to JUnit assertions.

Version Instruction Line Branch

Reference 100% 100% 100%

Speed3 100% 100% 100%

Contracts (assert off) 38% 50% 25%

Contracts (assert on) 92% 100% 63%

Invariants (assert off) 51% 56% 29%

Invariants (assert on) 92% 100% 68%

By the way, having executed all bytecode instructions and having found no bugs
doesn’t mean that no bug exists. It may very well be that the inputs you provided
weren’t the right ones to expose an error. For example, a malicious coder could write
addWater so that it crashes when π (that is, Math.PI) liters of water are added. It’s very
unlikely that any amount of blackbox testing would find that out. However, a detailed
code coverage analysis would flag that case as unexplored, possibly exposing the trap.

For Contracts and Invariants, coverage depends heavily on whether you’ve enabled
Java assert statements (via the -ea command-line option). When you haven’t, the
tests explore only about 50% of the source code lines and even less of the bytecode
instructions because you aren’t running the code pertaining to the postconditions and
invariant checks. On the other hand, with asserts enabled, you reach 100% line cov-
erage. You don’t reach full instruction and branch coverage because all checks are
passing, so the “failed check” branches aren’t being executed. No amount of testing
would improve that because the SUT is actually correct, so the testing can’t reach those
branches.

POP QUIZ 4 If your program contains assert instructions, should you test it with
assertions enabled or disabled?

4 You can find this file in the package eis.chapter6 from the online repository (https://bitbucket.org
/mfaella/exercisesinstyle).
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6.3 Testability [Testable]
To test a program unit, you need to be able to provide inputs to it (controllability) and
observe the effect of those inputs (observability). Moreover, if the unit under test (UUT)
depends on other units (such as a method invoking a method of another class), and
your tests reveal a defect, you don’t know whether that defect belongs to the UUT or
to one of its dependencies. That’s why proper unit testing requires you to isolate the
UUT from its original dependencies.

The following subsections expand on these three aspects of testing and improve the
testability of our running example. The improved version shares the same structure as
Reference, whose fields I’ll repeat here for convenience:

public class Container {
private Set<Container> group; b Containers connected to this one
private double amount; c Amount of water in this container

However, testability is a property of an API, so the improved version will have a slightly
different (richer, actually) public interface.

6.3.1 Controllability

Controllability refers to the ease of providing arbitrary inputs to the UUT. The Con�

tainer class is highly controllable because it receives inputs directly from its clients via
its API.

Poorly controllable units receive their inputs from files, databases, network connec-
tions, or, even worse, GUIs. In those cases, testing requires an infrastructure that simu-
lates the other end of the communication channel. I won’t go into the details because
they’d lead us astray from the running example, and entire books are devoted to the
topic. As usual, you can find some suggestions in the Further reading section at the end
of this chapter.

POP QUIZ 5 Suppose you add to the Container class a static method that recon-
structs a set of container objects from a file (aka a deserialization method). How
would adding this method affect testability?

6.3.2 Observability

The water container API I established in chapter 1 aims at simplicity and scores quite
poorly on observability.

First, the methods connectTo and addWater don’t return any value. Testability urges
all methods to return some value, to get some form of immediate feedback from any
invocation. For example, connectTo might return at least a Boolean value, indicating
whether the two containers being connected were already connected or not (as shown
in the following listing), similarly to the way the add method of Collection reports
whether the insertion was successful.
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Listing 6.4 Testable: Method connectTo (abridged)

public boolean connectTo(Container other) {
if (group==other.group) return false;

... b The actual operation here (same as Reference)

return true;
}

More interestingly, addWater might return the amount of water in this container
after the present addition, as shown in the following listing.

Listing 6.5 Testable: Method addWater

public double addWater(double amount) {
double amountPerContainer = amount / group.size();
for (Container c: group) { c.amount += amountPerContainer; }
return this.amount;

}

As to observing the current state of a water container, getAmount is the only method
providing any feedback on the state of a container. This is a very limited perspective,
like looking at a room through a keyhole. The connections are completely hidden, and
you can infer them only by the way water is distributed among different containers. It
would be straightforward to add further methods to the API, exposing more informa-
tion and improving testability. For example, a natural addition would be a method
that checks whether two containers are currently connected, as shown in the following
listing. This check is very easy to perform in Reference because connected containers
point to the same group object, leading to the following implementation.

Listing 6.6 Testable: Additional method isConnectedTo

public boolean isConnectedTo(Container other) {
return group == other.group;

}

In fact, in chapter 7, you’ll end up adding a number of such methods, albeit for a
different reason: readability.

POP QUIZ 6 Suppose you add to the Container class a public method returning
the number of containers connected (directly or indirectly) to this one. How does
the new method affect testability?

6.3.3 Isolation: Severing dependencies

The idea of unit testing is to check the behavior of a single unit (such as a class) in
isolation. In this way, a failed test is sure to lead to a defect in that unit, with no need
to go hunting for the bug in various classes. In this respect, the container example is
an ideal test “unit,” because it’s perfectly isolated, not depending on any other class,
except for the standard JDK.
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Conversely, inmost real-world scenarios, classes are interconnected in complex ways,
making testing and the subsequent fault diagnosismore complicated. Tomitigate these
issues, you can use techniques such as mocking and stubbing, which involve replacing
the actual dependencies with fake ones that are hopefully simple enough to be above
suspicion. Libraries like Mockito and Powermock help automate such tasks.

A common way to improve testability in the presence of dependencies is to employ
dependency injection. Simply put, if the class under test creates objects of another type
(such as a Container creating a HashSet), the dependency injection scheme suggests
having the client pass such objects from the outside.

In our scenario, instead of the current constructor from Reference:

public Container() {
group = new HashSet<Container>();
group.add(this);

}

you might have the following:

public Container(Set<Container> emptySet) {
group = emptySet;
group.add(this);

}

This new version is more testable because the testing suite can replace HashSet with a
simple, perhaps fake implementation of the Set interface, ensuring that any defect the
tests reveal is coming from the code in Container and not from HashSet. That course
of action would be absurd in this specific context because HashSet is a trusted keystone
of the JDK. Still, bear with me while we use our running example to explore the pros
and cons of this technique.

The injected version of the constructor comes with two serious drawbacks:

It exposes an implementation detail of the Container class, violating encap-
sulation. Not only does it show the client that new containers need a set, it
even lets the client choose what kind of set to use! If you later decide to switch
from the set-based representation of Reference to the tree-based representation
of Speed3, you need to modify the public API of containers. This is a general
issue with dependency injection: youmust balance improved testability against
decreased encapsulation.
It puts a heavy burden on the caller: passing a new empty Set for every new
container it wishes to create. The client has many ways it can mess up—for
example, by passing a set that’s not empty or the same set to more than one
container.

You can easily improve on the second of these issues. For starters, you can check that
the client-provided set is indeed empty, and abort otherwise. Moreover, to prevent the
same empty set from being used to initialize multiple containers, you may copy the set
argument, provided the implementation that the client chooses supports cloning.
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public Container(Set<Container> emptySet) {
if (!emptySet.isEmpty())

throw new IllegalArgumentException("The set is supposed to be empty!");
group = (Set<Container>) emptySet.clone();
group.add(this);

}

Finally, reflection allows you to write a variant that both guarantees emptiness by con-
struction and avoids cloning; you accept a Class object and use it to instantiate a new
empty set, as you can see in listing 6.7. Notice how you can use generics tomake sure the
client-provided Class object refers to an implementation of Set<Container>. There’s
still a small catch: the set implementation the client chooses must provide a construc-
tor with no arguments; otherwise, the method getDeclaredConstructor will throw an
exception.

Listing 6.7 Testable: Constructor supporting dependency injection

public Container(Class<? extends Set<Container>{}> setType)
throws ReflectiveOperationException {

group = setType.getDeclaredConstructor()
.newInstance();

group.add(this);
}

In practice, rather than implementing dependency injection from scratch, you’re bet-
ter off employing one of the frameworks built for this purpose. The sidebar gives you
some pointers.

Dependency injection frameworks
Java Enterprise Edition (now known as Jakarta EE) and a number of Java frameworks,
such as Google Guice, a small library, and Spring, a large framework for enterprise
applications, support dependency injection (DI). In all cases, the framework offers the
following functionalities:

1 You label a method or constructor as requiring dependency injection. You usu-
ally achieve this with an annotation. For example, Spring uses @Autowired,
whereas Guice and JEE use @Inject. This type of interaction, when you
instruct a framework to invoke your code, is also known as inversion of control.

2 You bind concrete classes to the parameters that will be injected.
3 At runtime, the framework takes care of instantiating the appropriate concrete
classes and transferring them to the corresponding method or constructor.

6.4 And now for something completely different
As usual, in this section I’ll apply the techniques I’ve presented in this chapter to a
different example. This time, it’ll be the same as the example from chapter 5—the
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bounded set data structure—because this chapter is an ideal continuation of the pre-
vious one, and establishing clear contracts, as we did in the previous chapter, should
precede any testing effort.

For water containers, I helped you design test cases and then I introduced testability
issues and discussed related improvements to the API. For bounded sets, I’ll do the
opposite, which is closer to what you would (or should) do in practice:

First, design (or improve) the API with testability in mind.
Then, design a test suite.

Recall from chapter 5 that a BoundedSet is a set with a fixed capacity established at
construction time, and the following functionalities:

void add(T elem)—Adds the specified element to this bounded set. If this
addition brings the set size beyond its capacity, this method removes from the
set the oldest element (the one that was inserted first).

The addition of an element that already belongs to the set renews it (that is,
it makes the element the newest one in the set).
boolean contains(T elem)—Returns true if this bounded set contains the
specified element.

In chapter 5, we decided to represent a bounded set using a linked list and a capacity:

public class BoundedSet<T> {
private final LinkedList<T> data;
private final int capacity;

Now, let’s analyze and enhance the testability of BoundedSet.

6.4.1 Improving testability

You can see that the bounded set API is poorly observable because the only method
providing any information on its state is contains. You have no way of knowing the
insertion order of its elements, or at least which element is the oldest and therefore
the next one to be removed. In fact, not even the current size of the set is available.

As I explained in the section about observability, the first improvement involves
adding a return value to the methods that lack it. For example, you may equip add

with a return value of type T, representing the object that’s been evicted from the set
(if any). This kind of return value is similar to the way Map.put(key, val) returns the
value previously associated with that key.

Check out the following updated contract for add. Besides describing its return
value, it states that a null argument is not accepted; otherwise, the null return value
would be ambiguous:

T add(T elem)—Adds the specified element to this bounded set. If this addi-
tion brings the set size beyond its capacity, this method removes and returns
the oldest element from the set (the one that was inserted first). Otherwise, it
returns null.
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The addition of an element that already belongs to the set renews it (that
is, it makes the element the newest one in the set).

This method doesn’t accept a null argument.

Getting a value back from add is a good start, but it allows you to query the state of the
bounded set only when you’re modifying it. To further improve testability, a class should
give access to all the information that’s relevant to its external behavior (that is, all
information that affects the behavior, as perceived by the client). In this case, besides
a standard size method, you should have a way to check the current order of the
elements, because that order affects future calls to add and contains. Let’s compare
some ways to expose the order of the elements:

1 Give the client direct access to the internal list of objects, with the following
extra method:

public List<T> content() {
return data;

}

I probably don’t need to tell you, that’s very bad—you don’t want the client to
mess with your internal representation!

2 Give the client a copy of the internal list of objects:

public List<T> content() {
return new ArrayList<>(data);

}

That’s better than option 1, but it’s inefficient (the copy requires linear time)
and allows the caller to modify this list, which is pointless and possibly error-
prone. (The caller may mistakenly believe they’re modifying the bounded set
itself.)

3 Give the client an unmodifiable view of the internal list of objects. An unmodi-
fiable view is an object that wraps the original list while disabling all methods
that can modify it (like add and remove). A couple of static methods from the
class Collections provide unmodifiable views of standard collections. In this
case, the following one-liner does the job:

public List<T> content() {
return Collections.unmodifiableList(data);

}

Compared to the previous solutions, this one is better on all counts: it’s effi-
cient because it doesn’t need to copy the list, and it doesn’t pose any risks
because the returned object is read-only.

The only drawback, shared by all three solutions so far, is that you’re com-
mitting to a very expressive return type—a List. Right now, this commit-
ment is easy to realize because your internal representation is itself a list. If
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in the future you change your mind about the internal representation, per-
haps switching to an array, the implementation of contentmay become signif-
icantly more complex. The following solution avoids this issue by exposing a
more limited view of the content: an iterator instead of a list.

4 Offer to the clients a read-only iterator over the content. Recall that an iterator
may change the underlying collection through its removemethod. You have to
make sure that you’ve disabled the remove method in the iterator you return.
Once again, you can achieve this objective using an unmodifiable view:

public class BoundedSet<T> implements Iterable<T> {
...
public Iterator<T> iterator() {

return Collections.unmodifiableList(data).iterator();
}

In the next section, I’ll assume you went with solution 3 (the method returning the
unmodifiable list view) because that maximizes testability.

6.4.2 A test suite

Let’s focus on testing the add method, which is the only method that modifies the
bounded set. Analyzing the contract of add, you can identify three characteristics that
are relevant to its behavior:

C1. Whether the argument of add is null or not. If it is, we expect an NPE as a
penalty.

C2. The size of the bounded set before this insertion. In particular, the behavior of
add changes if the bounded set is full—that is, its size is equal to its capacity. It’s
convenient to also single out the case when the bounded set is empty, because
that may be error prone, like all corner cases.

C3. Whether the argument of add is already present in the bounded set before this
insertion. This is relevant because the insertion of an already-present element
doesn’t evict any element, even if the set is full.

Table 6.6 summarizes these characteristics and their possible values (aka blocks).

Table 6.6 Characteristics chosen for testing the method add of bounded sets

Name Characteristic Blocks

C1 Value of argument {null, other}

C2 Size of set before insertion {empty, full, other}

C3 Presence of argument before insertion {absent, present}

Two constraints between these characteristics limit the number of meaningful com-
binations of blocks:

If the element is null (C1=null), the element couldn’t be present (C3 ̸=present).
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If the bounded set is empty before this insertion (C2=empty), the element
couldn’t be present (C3 ̸=present).

Because of these constraints, you’re left with the following eight combinations:

1. (C1=null, C2=empty, C3=absent) 4. (other, empty, absent) 7. (other, full, present)

2. (null, full, absent) 5. (other, full, absent) 8. (other, other, present)

3. (null, other, absent) 6. (other, other, absent)

As discussed earlier in the chapter, you can collapse the first three combinations
into one because those cases violate the precondition for the same reason—a null

argument. As a result, you end up with six test cases.
To implement the test cases in JUnit, start by initializing a bounded set of capacity

three as the test fixture. That’s a very limited capacity but large enough to support all
the interesting behaviors of bounded sets.

public class BoundedSetTests {
private BoundedSet<Integer> set; b Test fixture

@Before c Executed before each test
public void setUp() {

set = new BoundedSet<>(3);
}

Next, I’ll provide the code for the first three tests. This time, I’ll use the following
Hamcrest matchers to write more readable assert conditions:

is—A pass-through matcher. It doesn’t check anything, you just put it there
to make the condition more English-friendly.
nullValue—This is Hamcrest-speak for null.
contains—Compares an Iterable with an explicit sequence of values. They
match if they contain the same elements (according to equals) in the same
order.

Each matcher is a static method from the class org.hamcrest.Matchers. You need to
statically import them to use their unqualified names.

In the following tests, notice how the contentmethod—added for testability—works
hand in hand with the contains matcher. By returning a list (but an Iterable would
have worked just as fine), it allows you to compare in a single shot the whole sequence
of elements with its expected state.

@Test(expected = NullPointerException.class) b C1=null
public void testAddNull() {

set.add(null);
}
@Test
public void testAddOnEmpty() { c C1=other, C2=empty

Integer result = set.add(1);
assertThat("Wrong return value",

result, is(nullValue())); d Hamcrest way to check for null
assertThat("Wrong set content",
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set.content(), contains(1)); e Hamcrest matcher for Iterables
}
@Test
public void testAddAbsentOnNonFull() { f C1=other, C2=other, C3=absent

set.add(1);
Integer result = set.add(2); g Line under test
assertThat("Wrong return value", result, is(nullValue()));
assertThat("Wrong set content", set.content(), contains(1, 2));

}

Two of the previous tests violate a commonly repeated guideline for tests: the one assert
per test rule. The idea behind this rule is that unit tests should be focused, or, in other
words, each test should have to fail for a single reason. As usual in software engineering,
you should take such guidelines with a grain of salt. It’s OK to split each of those tests
in two: one checking the return value from add, and the other checking the state of the
set after the insertion. However, the original tests are so simple that it’s probably not
worth the extra lines of code. The error message in the assertion clarifies the reason
for the failure anyway.

6.5 Real-world use cases
If you’ve worked for a few years as a software engineer it’s entirely possible that you’ve
heard “I know unit tests are useful, but there’s not enough time to write them,” or,
“finish writing the library first, and then if you have time go on and write unit tests.”
In the first scenario, it might be a matter of time before you pay the price. The second
scenario reflects how things were done in the past: most tests were created after the
original software was written (the so-called waterfall model). Let’s examine some use
cases where testing could be useful.

You’re part of a development team working on a successful middleware plat-
form, andmanagement has requested that your team expose some of the func-
tionality of an application running in the financial department to calculate
payroll via RESTful services. Although you trust your colleagues, you’d like to
avoid giving unauthorized salary raises. To ensure the correctness of your ser-
vice, you decide to create some tests. Testing RESTFul services can be cumber-
some, but fortunately libraries exist that can help you create clean, decoupled
tests for your API.
Putting a machine-learning (ML) model into production usually means that
it becomes part of a workflow. It may be that an automated job runs early in
the morning on a daily basis, querying a database and exporting data to feed
the trained ML models so they can produce predictions for tomorrow’s sales.
An enthusiastic, newly-hired database engineer decides to take the initiative to
optimize some of the queries. It turns out, though, that these changes affect
the format of the query results, and the workflow breaks after data export.
After that incident, the database development team decides to write some unit
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tests to ensure that data exported fromqueries conform to what theMLmodels
expect to receive to make predictions.
You’re a computer science PhD student and have realized that it’s time to turn
your research into a product. You invite your most trusted fellow students, and
after many rounds of conversations, you decide to establish a startup. After a
couple of years, you’re not Bill Gates yet, but things are looking good; your
company has grown and so has your code base. You were clever enough to
anticipate that this was going to happen, and the automated tests you wrote are
your development team’s safety net. The tests evolve in parallel with the rest of
the code base. In fact, you write your tests before adding new functionality. This
is the foundational idea of Test-Driven Development (TDD): code a scenario
based on what you expect to achieve, run the tests to fail, then go back to apply
the fixes to make unit tests pass.

6.6 Applying what you learned

EXERCISE 1
Devise and execute a testing plan for the method getDivisors, defined by the follow-
ing contract:

Precondition—The method accepts an integer n as the only parameter.
Postcondition—The method returns a List of Integers, containing all the divi-
sors of n. For n==0, it returns the empty list. For a negative n, it returns the
same list as its opposite.
For example, for both 12 and −12, it returns [1, 2, 3, 4, 6, 12].
Penalty—None (All integers are valid arguments.)

EXERCISE 2
Devise and execute a testing plan for the method

public int indexOf(int ch, int fromIndex)

from the class String, using the input domain model approach.

EXERCISE 3
1. Using the input domain model approach, devise and execute a testing plan for the
method interleaveLists, defined by the following contract (same as exercise 2 from
chapter 5):

Precondition—Themethod receives as arguments two Lists of the same length.
Postcondition—The method returns a new List containing all the elements of
the two lists, in an alternating fashion.
Penalty—If at least one of the lists is null, the method throws a NullPointer�

Exception. If the lists have different lengths, the method throws an Illegal�

ArgumentException.
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2. Estimate the code coverage that your plan achieves, either manually or using a code
coverage tool.

EXERCISE 4
Improve the testability of the generic interface PopularityContest<T>, representing
a popularity contest among a (dynamically enlarging) set of objects of type T. The
interface contains the following methods:

void addContestant(T contestant)—Adds a new contestant. Addition of a
duplicate contestant is ignored.
void voteFor(T contestant)—Votes for the specified contestant. If that con-
testant doesn’t belong to this contest, it throws an IllegalArgumentException.
T getMostVoted()—Returns the contestant who has received the maximum
number of votes so far. If this contest is empty (no contestants), it throws an
IllegalStateException.

Summary
The input domain model approach helps you identify relevant test inputs.
You can combine input values for different parameters in different ways, lead-
ing to more or fewer tests and to different coverage levels.
You can evaluate a test suite according to its input coverage and code coverage.
You can enhance testability by providing more feedback from methods.
Dependency injection helps to isolate the class under test by replacing depen-
dencies with simpler substitutes.

Answers to quizzes and exercises

POP QUIZ 1
All parts of the contract are relevant for testing. As the postcondition describes the
intended effect of the method, it dictates the assertions that the tests will be checking.
Most unit tests you write send legal inputs to the method under test and check that the
outputs conform to the postcondition. The precondition describes what the range of
legal inputs is. Finally, as explained in the chapter, other tests will send illegal inputs
and check that the method reacts in the way that’s advertised in the penalty section of
the contract.

POP QUIZ 2
Dates are a source of terrible headaches for programmers and testers alike. Even ignor-
ing international differences and sticking to the Gregorian calendar, programs, and
hence tests, need to deal with a wealth of irregularities. For starters, months are 28, 29,
30, or 31 days long, with February being particularly capricious. Table 6.7 summarizes
three possible characteristics.
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Table 6.7 Three possible characteristics for a “date” data type

Name Characteristic Blocks

C1 Leap year {true, false}

C2 Length of month {28, 29, 30, 31}

C3 Day of month {first, intermediate, last}

POP QUIZ 3

All Combinations Coverage: n1 ∗ n2 ∗ n3

Each Choice Coverage: max{n1, n2, n3}
Base Choice Coverage: 1 + (n1 − 1) + (n2 − 1) + (n3 − 1) = n1 + n2 + n3 − 2

POP QUIZ 4
Why not both? First, test with assertions off, as that’s how the software will run in
production. If any test fails, run it again with assertions on. They might help pinpoint
the defect.

POP QUIZ 5
Adding a deserialization method would decrease testability because the new method
accepts a complicated input from a file.

POP QUIZ 6
In general, read-only methods help testability because they’re quite safe (hard to get
wrong) and provide onemore way to observe the state of the objects. As a result, adding
a groupSize method improves testability.

EXERCISE 1
You can take the first characteristic, C1, to be the sign of the input n, as the list of stan-
dard type-based features suggests. (Refer to table 6.1.) The second characteristic, C2,
may come from the postcondition and count the number of divisors that the method
returns. This gives you the following four blocks:

No divisors—This case applies only to n = 0. The contract specifies that the
output must be an empty list.
One divisor—This only happens for n = 1 and n = −1.
Two divisors—This happens for all prime numbers and their opposites.
More than two divisors—This applies to all other inputs.

Table 6.8 summarizes these characteristics.

Table 6.8 Characteristics for the input n of getDivisors

Name Characteristic Blocks

C1 Sign {negative, zero, positive}

C2 Number of divisors {zero, one, two, more than two }
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You can see that the two characteristics are not independent, because C1 = zero can
only be paired with C2 = zero. As a result, instead of 3∗4 = 12 combinations, we only get
seven meaningful ones, and we can apply All Combinations Coverage with little effort.
These are the first two tests; you can find the other five in the accompanying repository
(https://bitbucket.org/mfaella/exercisesinstyle) in the class eis.chapter6.exercises
.DivisorTests:

@Test
public void testZero() { b C1 = C2 = zero

List<Integer> divisors = getDivisors(0);
assertTrue("Divisors of zero should be the empty list",

divisors.isEmpty());
}

@Test
public void testMinusOne() { c C1 = negative, C2 = one

List<Integer> divisors = getDivisors(-1);
List<Integer> expected = List.of(1);
assertEquals("Wrong divisors of -1", expected, divisors);

}

EXERCISE 2
You can summarize the Javadoc for indexOf and put it into contract form as follows:

Precondition—None (All invocations are legitimate.)
Postcondition—Returns the index within this string of the first occurrence of
the specified character, starting the search at the specified index. Returns −1
if the character doesn’t occur.
A negative fromIndex is treated as zero. A negative ch returns −1.
Penalty—None

In choosing good characteristics, you have only the postcondition to guide you, in
addition to the standard type-based characteristics. (You can go back to table 6.1 if
you don’t remember them.) You can take the first characteristic, C1, right out of the
standard type-based ones: the emptiness of this string. The first parameter, ch, is an
integer representing a (Unicode) character. You can apply the standard sign charac-
teristic to it and baptize it C2. The second parameter, fromIndex, is also an integer,
which should be less than the length, n, of this string. To partition its values, you need
to introduce a characteristic, C3, that combines the standard sign characteristic with
the relationship between fromIndex and n, obtaining five cases:

fromIndex is negative.
fromIndex is zero, and the string is empty (an invalid zero).
fromIndex is zero, and the string is not empty (a valid zero).
fromIndex is positive and at least as large as n (an invalid positive).
fromIndex is positive and smaller than n (a valid positive).

Finally, characteristic C4 encodes the presence of the character in the specified sub-
string. Table 6.9 summarizes these characteristics.
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Table 6.9 Characteristics chosen for testing indexOf

Name Characteristic Blocks

C1 Emptiness of this string {empty, nonempty}

C2 Sign of ch {negative, zero, positive}

C3 Sign of fromIndex and relation
with the length of this string

{negative, valid zero, invalid zero,
valid positive, invalid positive}

C4 Presence of character in the
substring

{present, absent}

Of the 60 possible combinations, the following 27 are consistent (I’m using “*” as a
wildcard):

(empty, *, {negative, invalid zero, invalid positive}, absent) (9 combinations)
(nonempty, *, {negative, valid zero, invalid positive, valid positive}, absent) (12
combinations)
(nonempty, {zero, positive}, {negative, valid zero, valid positive}, present) (6
combinations)

Assuming you don’t want to write 27 tests, you can switch from All Combinations
Coverage to one of the more restricted strategies I presented in the chapter. Here, I’ll
go with Each Choice Coverage and look for a small selection of combinations featuring
each block from each characteristic at least once. Note that any solution includes at
least five combinations because C3 supports five blocks. This is a possible solution:

1. (nonempty, positive, valid positive, present)

2. (nonempty, positive, negative, present)

3. (nonempty, zero, invalid positive, absent)

4. (nonempty, negative, valid zero, absent)

5. (empty, positive, invalid zero, absent)

Here’s the JUnit implementation of the first test:

public class IndexOfTests {
private final static String TESTME = "test me";

@Test
public void testNominal() {

int result = TESTME.indexOf((int)'t', 2);
assertEquals("test with nominal arguments", 3, result);

}

You can find the others in the accompanying repository (https://bitbucket.org/mfaella
/exercisesinstyle).

EXERCISE 3
1. The precondition suggests two properties you can include in the characteristics: the
lists being non-null and having the same length. In addition, a special case for any
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collection is being empty. You can fit these observations into the three characteristics
in table 6.10.

Table 6.10 Characteristics chosen for testing interleaveLists

Name Characteristic Blocks

C1 Type of the first list {null, empty, non-empty}

C2 Type of the second list {null, empty, non-empty}

C3 Lists have the same length {true, false}

C3 is not independent from C1 and C2; some combinations don’t make sense. I’ll
list the combinations that do make sense:

1. (null, nonempty, false)

2. (nonempty, null, false)

3. (empty, empty, true)

4. (empty, nonempty, false)

5. (nonempty, empty, false)

6. (nonempty, nonempty, false)

7. (nonempty, nonempty, true)

If you’re wondering why I skipped “(null, null, false),” it’s because when a char-
acteristic violates the precondition, it’s sufficient to combine it with nominal (that is,
normal) values of the others. By the way, including that combination is somewhat
overcautious, but definitely not wrong. Note how only combinations 3 and 7 satisfy the
precondition.

Because we have only seven combinations, we can test all of them with little effort.
Here’s the code for the first three.

public class InterleaveTests {
private List<Integer> a, b, result; b Fixtures

@Before
public void setUp() { c Initializing fixtures

a = List.of(1, 2, 3);
b = List.of(4, 5, 6);
result = List.of(1, 4, 2, 5, 3, 6);

}

@Test(expected = NullPointerException.class)
public void testFirstNull() { d Test 1: (null, nonempty, false)

InterleaveLists.interleaveLists(null, b);
}

@Test(expected = NullPointerException.class)
public void testSecondNull() { e Test 2: (nonempty, null, false)

InterleaveLists.interleaveLists(a, null);
}
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@Test
public void testBothEmpty() { f Test 3: (empty, empty, true)

a = List.of();
b = List.of();
List<Integer> c = InterleaveLists.interleaveLists(a, b);
assertTrue("should be empty", c.isEmpty());

}

You can find the rest in the accompanying repository (https://bitbucket.org/mfaella
/exercisesinstyle).
2. First, notice that it doesn’t make much sense to measure coverage of the support
method that checks the postcondition. It’s not a useful objective to execute every line
in that method because we hope the postcondition will hold, which means that the
tests will always skip some lines from interleaveCheckPost.

Limiting our analysis to the body of interleaveLists, the seven tests I described
earlier achieve 100% coverage.

EXERCISE 4
The given interface is easily controllable, but you can enhance its observability. As it
stands, getMostVoted is the only point of access to the internal state of the object, and
a limited one. You get to know only the top voted item, and no vote count is available
for any contestant. To improve the situation, you can start by equipping the other two
methods with return values. For example:

boolean addContestant(T contestant)—Adds a contestant and returns true
if the contestant wasn’t already a member of this contest. Otherwise, it leaves
the contest unchanged and returns false.
int voteFor(T contestant)—Votes for the specified contestant and returns
the updated number of votes. If that contestant doesn’t belong to this contest,
it throws an IllegalArgumentException.

The new version of voteFor is a powerful testing tool, but it conflates voting and read-
ing the number of votes. It may be useful for testing to also have a read-only method
for votes:

int getVotes(T contestant)—Returns the current number of votes for the
specified contestant. If the contestant doesn’t belong to this contest, it throws
an IllegalArgumentException.

Additionally, themethod getVotesprovides a way to check whether a contestant belongs
to the contest, without altering it.

Further reading
G. J. Myers, C. Sandler, and T. Badgett. The Art of Software Testing. John Wiley
& Sons, 2012.
An all-around introduction to testing and other validation techniques, like
code reviews and inspections. It combines a time-tested introduction to the
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principles (the first edition was published in 1979) with an up-to-date discus-
sion of the agile approach to testing.
L. Koskela. Effective Unit Testing. Manning Publications, 2013.
A book full of hands-on advice on designing effective tests, including a catalog
of common test deficiencies (aka test smells).
S. Freeman and N. Pryce. Growing Object-Oriented Software, Guided by Tests. Ad-
dison-Wesley, 2009.
A process-oriented book illustrating Test-Driven Development (TDD) and
mocking on a realistic example—from the creators of the popular mocking
library jMock.
P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge University
Press, 2010.
A modern, compact treatment of testing techniques, featuring a unified view
of the various flavors of coverage criteria.
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7Coding aloud:
Readability

This chapter covers
Writing readable code

Documenting contracts using Javadoc
comments

Replacing implementation comments
with self-documenting code

Source code serves two very different kinds of users: programmers and computers.
Computers are as happy with messy code as they are with clean, well-structured systems.
On the other hand, we programmers are utterly sensitive to the shape of the program.
Even white space and indentation—completely irrelevant to the computer—make the
difference between understandable and obscure code. (See appendix A for an extreme
example.) In turn, easy-to-understand code boosts reliability, because it tends to hide
fewer bugs, and maintainability, because it’s easier to modify.

In this chapter, I’ll show you some of the modern guidelines for writing readable
code. As with the other chapters, my objective isn’t to provide a comprehensive survey
of readability tips and tricks. I’ll focus on the main techniques that make sense on a
small code unit and put them in practice on our usual running example.

187
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7.1 Points of view on readability
Writing readable code is an undervalued art that schools seldom teach, but whose
impact on software reliability, maintenance, and evolution is paramount. Program-
mers learn to express a set of desired functionalities in machine-friendly code. This
encoding process takes time and inserts layer upon layer of abstraction to decompose
those functionalities into smaller units. In Java parlance, these abstractions are pack-
ages, classes, andmethods. If the overall system is large enough, no single programmer
will dominate the entire codebase. Some developers will have a vertical view of a func-
tionality: from its requirements to its implementation through all abstraction layers.
Others may be in charge of one layer and supervise its API. From time to time, all of
them will need to read and understand code their colleagues have written.

Promoting readability means minimizing the time that a reasonably knowledgable
programmer needs to understand a given piece of code. A more concrete character-
ization would be the time that someone who isn’t familiar with the code needs to feel confident
enough to modify it without breaking it. Other names for this quality are learnability and
understandability.

POP QUIZ 1 Which other code quality attributes are affected by readability?

How do you write readable programs? As early as 1974, when C was two years old,
this problem was deemed significant enough to deserve systematic treatment, lead-
ing to the influential book The Elements of Programming Style. In it, Kernighan (of C
fame) and Plauger take apart a number of small programs, all drawn from published
textbooks, summing up their lucid and surprisingly modern observations in a list of
programming-style aphorisms. The first aphorism on expressions summarizes well the
whole readability issue:

Say what you mean, simply and directly.

Indeed, readability is about clearly expressing the intent of the code. Grady Booch, one
of the architects of UML, puts forward a natural analogy:

Clean code reads like well-written prose.

Now, creating well-written prose isn’t something you can achieve by following a fixed set
of rules. It takes years of practice, not only in writing, but also in reading well-written
prose by established authors. The expressive capabilities of computer code are defi-
nitely limited compared with natural languages, so the process of creating clean code is
luckily somewhat simpler, or at least more structured, than producing a beautiful essay.
Still, mastering this process requires years of practice that no book (or book chapter!)
can replace. In this chapter, we’ll explore some basic ways to improve the readability of
your code, focusing on those techniques that you can apply to our recurring example.
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In the last two decades, readability has been put on the front burner by the Agile
movement, thanks to the focus on refactoring and clean code. Refactoring is the idea of
restructuring a working system to improve its design so that future change is easier and
safer. It’s one of the main ingredients in those lightweight development processes that
favor fast development phases and iterative refinement of software.

Even if you or your company doesn’t subscribe to the whole Agile philosophy, you
can’t miss the literature that comes with it, which is full of brilliant ideas about the
bad (code smells), the good (clean code), and how to turn the first into the latter
(refactoring). See the Further reading section at the end of this chapter for specific
suggestions.

It would be nice to supplement the readability tips that well-known experts have
developed with hard data on the effectiveness of those tips. Unfortunately, readabil-
ity is inherently subjective, and it’s extremely hard to come up with objective means to
measure it. This hasn’t stopped researchers from proposing a variety of formal models,
all attempting to estimate readability with a combination of simple numericalmeasures,
like the length of the identifiers, the number of parentheses occurring in an expres-
sion, and so on. This ongoing effort is still far from reaching a stable consensus, so I’ll
focus on some established industry best practices, starting with a quick look at the style
policies of the biggest IT players.

7.1.1 Corporate coding style guides

Some of the largest software companies publish coding style guides online, including
the following:

Sun used to provide an “official” Java style guide, which hasn’t been updated
since 1999. A frozen archival copy is available at http://mng.bz/adVx.
Google has a company-wide style guide: https://google.github.io/styleguide
/javaguide.html.
Twitter provides a library of common Java utilities, accompanied by a style
guide: http://mng.bz/gVAZ. The guide explicitly refers to Google’s and Ora-
cle’s guides as inspirations.
Facebook also provides a style guide with its library of Java utility classes: http://
mng.bz/eDyw.

These guides mostly agree on the general principles I set forth in this chapter and
only differ on the level of detail they reach and on small cosmetic issues. For example,
consider the sequence of import statements at the beginning of a source file. Here’s
one such sequence in Google’s format:

import static com.google.common.base.Strings.isNullOrEmpty;
import static java.lang.Math.PI;

import java.util.LinkedList;
import javax.crypto.Cypher;
import javax.crypto.SealedObject;
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Here’s Twitter’s recommended style for the same imports:

import java.util.LinkedList;

import javax.crypto.Cypher;
import javax.crypto.SealedObject;

import static com.google.common.base.Strings.isNullOrEmpty;

import static java.lang.Math.PI;

Both the order and the use of empty lines are different. Oracle and Facebook, on the
other hand, are fine with any layout of imports.

Style guides ensure some uniformity across a company’s code base and are a nice
addition to the welcome package for new employees, giving them something easy to
sink their teeth into, before the real troubles begin. (Besides, when those troubles start
biting back, they can say, “At least I’m following the style guide!”) For your long-term
professional growth, though, it’ll be much more useful for you to peruse this chapter
and then spend some time with the articulated style books I’ve listed at the end of the
chapter, particularly Clean Code and Code Complete.

7.1.2 Readability ingredients

You can distinguish the ingredients contributing to readability into two categories:

Structural—Features that may affect the execution of the program; for exam-
ple, its architecture, the choice of the API, the choice of control flow state-
ments, and so on. You can further distinguish these features into three levels:

– Architecture-level—Features involving more than one class
– Class-level—Features involving a single class but transcending the bound-

aries of a single method
– Method-level—Features that involve a single method

Exterior—Features that don’t affect execution; for example, comments, white
space, and choice of variables names

In the following sections, I’ll briefly recall themain guidelines regarding each category.
Then, I’ll guide you through applying those guidelines to the water container running
example.

7.2 Structural readability features
Architectural-level features refer to the high-level structure of the program: how it’s split
into classes and the relationships occurring between them. Generally speaking, an
architecture that’s easy to understand should be composed of small classes with coher-
ent responsibilities (aka high cohesion), tied together by an uncomplicated network of
dependencies (aka low coupling). Another readability-enhancing technique is to use
standard design patterns whenever possible. Becausemost developers know them, they
spark familiarity and convey a complement of contextual information to the reader.
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Table 7.1 Summary of structural code features affecting readability

Structural Understandability

Level Features Ways to improve

Architectural

Class
responsibilities

Relationships
between classes

Decrease coupling

Increase cohesion

Arch. patterns (MVC, MVP, etc.)

Design patterns

Refactorings (Extract Class, etc.)

Class

Control-flow Use the most specific loop type

Expressions Show order of evaluation

Local variables Split complex expressions

Method length Refactorings (Extract Method, etc.)

Each of these quick tips is tied to a large body of commentary and caveats. In the
spirit of this book, which focuses on small-scale properties, I won’t delve into these
architectural features, but you can find more information in the Further reading section
at the end of this chapter. Table 7.1 summarizes the most relevant structural features
and the corresponding best practices.

Class-level features pertain to the API of a given class and its organization in methods.
For example, a golden rule is that long methods are harder to understand. At some
point, certainly higher than 200 lines, you lose track of what was at the beginning of
the method and end up going back and forth in your editor, trying to keep in your
head what doesn’t fit on a single screen. I’m listing this principle among the class-
level features because, even though the problem lies in a single method, its solution
affects more than one method: you shorten a long method by splitting it into multiple
methods, and the suggested way to do this is through the Extract Method refactoring
rule, which I’ll present later in this chapter.

Now, let’s zoom in on some method-level features that affect readability. They include
the choice of control flow statements, the way you write expressions, and the use of
local variables.

7.2.1 Control flow statements

An interesting small-scale readability issue is the choice of the most appropriate loop
construct for a given scenario. Java offers four basic types of loops: standard for, while,
do-while, and enhanced for. It’s easy to see that the first three are equivalent, in the
sense that you can convert any of them into any of the others with little effort. For
example, you can convert the exit-checked loop

do {
body

} while (condition);

into the following falsely entry-checked loop:
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while (true) {
body
if (!condition) break;

}

Which of these two snippets is more readable? I’m sure you’ll agree the first is definitely
better. The second is an ugly gimmick that will only puzzle the reader, because they’ll
be acutely aware that there was a more natural way to accomplish that task. Your job
when optimizing readability is to avoid that feeling and make the reading experience
as smooth and uneventful as possible. That’s the meaning of clearly expressing intent.

If you must implement a loop whose condition must be checked after each iteration
as a do-while loop, what about an entry-checked loop? Because there are three options,
let’s compare their expressivity:

A while loop is like a for loop whose initialization and update bits have been
chopped off. If your loop needs those features, and they’re reasonably com-
pact, use a for loop—it’ll help the reader recognize the role of each compo-
nent. For example, the familiar

for (int i=0; i<n; i++) {
...

}

is more readable than the equivalent

int i=0;
while (i<n) {

...
i++;

}

An enhanced-for is a more specific form of a standard for loop because it
applies to only arrays and objects implementing the Iterable interface. More-
over, it doesn’t provide the loop body with an index or an iterator object.

To decide on a loop construct, you should apply a general rule known as the principle
of least privilege and choose the most specific statement that fits your purposes. Is your
loop over an array or a collection implementing Iterable? Use the enhanced for.
Besides its readability value, it’ll guarantee that the iteration won’t go out of bounds.

Does your loop feature a compact initialization step and a similarly compact update
step? Use a standard for loop. Otherwise, use a while loop.

Speaking of loops, starting from Java 8, you also have the option of using the stream
library to produce functional-style looping constructs. For example, here’s how you
print every object in a set:

Set<T> set = ...
set.stream().forEach(obj -> System.out.println(obj));

Is it more readable than the following old-fashioned enhanced for?
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for (T obj: set) {
System.out.println(obj);

}

Probably not. A good rule of thumb is to use the functional-style API when you have
some other reason besides just looping, such as filtering or transforming the content of
the stream in some way. One particularly good reason to use data streams is when you
want to split the job among multiple threads. In that case, the library will take care of
a lot of nasty details for you.

READABILITY TIP Choose the most natural and specific type of loop for the job.

POP QUIZ 2 What kind of loop would you use to initialize an array of n integers
with the integers from 0 to n− 1?

7.2.2 Expressions and local variables

Expressions are the basic building blocks of any programming language and can grow
extremely complicated, essentially without limits. To improve readability, you should
consider splitting complex expressions into simpler subexpressions and assigning their
values to extra local variables that you introduce for this purpose. Naturally, you should
give those new local variables descriptive names illustrating the meaning of the corre-
sponding subexpression. (I’ll return to variable names shortly.)

Reference already employs this readability-enhancing strategy when the method
connectTo computes the amount of water that should be present in each container
after the new connection is made. The shortest way to describe this calculation would
be something like the following:

public void connectTo(Container other) {
...
double newAmount = (amount * group.size() +

other.amount * other.group.size()) /
(group.size() + other.group.size());

...
}

As you can see, even split among three lines and aligned, the resulting expression is
long and somewhat hard to parse. The reader is likely to struggle, or at least pause,
to find the matching parentheses, because the closing parenthesis is far away from its
opening. The clumsy repetitions of group.size() and other.group.size() don’t help
either.

That’s why Reference introduces as many as four extra variables, just to improve
readability:

public void connectTo(Container other) {
...
int size1 = group.size(),

size2 = other.group.size();
double tot1 = amount * size1,

tot2 = other.amount * size2,
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Table 7.2 Summary of exterior code features affecting readability

Exterior Understandability

Features Ways to improve

Comments
Detailed documentation comments,scarce
implementation comments

Names Descriptive names

White space White space as punctuation

Indentation Consistent indentation

newAmount = (tot1 + tot2) / (size1 + size2);
...

}

You shouldn’t worry about the second, more readable version being less efficient. In
general, the performance cost of using a few extra local variables is negligible, espe-
cially if you compare it with the readability benefit. In this particular case, the extra
variables save two method invocations and may even lead to faster execution.1

Martin Fowler has formalized this idea as one of the refactoring rules he has assembled.
(See the Further reading section for more information.) Similar to how design patterns
work, each refactoring rule is given a standard name to ease communication. The
name of this rule is Extract Variable.

READABILITY TIP Refactoring rule Extract Variable: Replace a subexpression with
a new local variable with a descriptive name.

7.3 Exterior readability features
You can use three exterior traits to improve readability: comments, names, and white
space. Table 7.2 summarizes the corresponding best practices, presented in the follow-
ing subsections.

7.3.1 Comments

Code alone can’t satisfactorily document itself. Sometimes you have to use natural
language to provide further insight or convey a more global perspective on some func-
tionality. It’s useful to distinguish two kinds of comments:

Documentation or specification comments describe the contract of a method or
of an entire class. They’re meant to explain the rules of a class to its potential
clients. You can think of them as the public comments. You usually extract these
comments from the class and put them into a convenient form (like HTML)
for easy consultation. The Java tool that performs such extraction is Javadoc
(explained later in this chapter).

1 As a matter of fact, the bytecode for the readable version is three bytes shorter than the other version.
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Implementation comments provide insight about the internals of a class. They
may explain the role of a field or the intent of a code fragment belonging to a
tricky algorithm. You can think of them as the private comments.

To a certain extent, when and how often to insert comments is open for debate, but
the modern trend is to be generous with documentation comments and stingy with
implementation ones.

The motivations stem from the following reasoning: the API precedes the imple-
mentation, is generally more stable than it, and is the only part of a class that clients
should know so they can correctly employ its services. Therefore, it’s particularly impor-
tant for the health of the overall system that the responsibilities and contracts of each
class and method be perfectly clear to its clients. As you saw in chapter 5, you can
express contracts in code only up to a certain point, whose exact extent depends on
the programming language of choice. Beyond that, natural language comments and
other forms of documentation take over.

POP QUIZ 3 Is a comment describing the behavior of a private method a specifi-
cation comment or an implementation comment?

Conversely, method bodies change often and are hidden from the clients. Because
they change often, you need to update any comment inside them equally often, and
programmers are known to forget to update a comment (or any other action having
no immediate repercussions on the program behavior). You’ve probably been there:
tasked with updating a piece of code, for a bug fix or a new feature, probably under
a tight deadline. You’re likely to focus on functionality, on writing code that works
and passes the tests. Unless your company adopts serious forms of code inspection, no
downstream filter on the quality of the comments is in place. As such, it’s just natural
to ignore the comments and deal with the active code lines.

If word spreads that some comments in a given codebase are unreliable because they
may be stale, all of the comments immediately become pure noise, even if most of them
are in fact good and up-to-date.

READABILITY TIP Cut back implementation comments in favor of documentation
comments, and make sure that all comments are up-to-date. (Code reviews can
help.)

7.3.2 Naming things

According to a well-known quote by Phil Karlton, there are only two hard things in com-
puter science: cache invalidation and naming things. Having touched on cache-related
issues in chapter 4, it’s time to face the second hard problem. High-level programming
allows you to assign arbitrary names to program elements. In Java, these are packages,
classes, methods, and all kind of variables, including fields. The language imposes
some restrictions on these names (like no spaces), and practicality suggests that they
should be relatively short.
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I assume you’re already familiar with the basic lexical convention of Java (shared by
many languages, including C# and C++) based on so-called camel case. Here are some
general guidelines about the types of names suggested for different circumstances:

Names should be descriptive so that a reader unfamiliar with your code can
surmise at least a general idea of the role of the element named. This doesn’t
necessarily mean that names must be long. For instance, in several cases single-
letter names are fine:

– i is a good name for an array index because it’s a customary, and therefore
clear, choice.

– For the same reason, x is a good name for the horizontal coordinate in a
Cartesian plane.

– a and b are good names for the two parameters of a simple comparator:

Comparator<String> stringComparatorByLength =
(a,b) -> Integer.compare(a.length(), b.length());

In this context, the reader doesn’t need more descriptive names to figure
out your intent. (On the other hand, notice the long name for the com-
parator itself.)

– T is a good name for a type parameter (as in class LinkedList<T>) because
of conventions, and because most type parameters would be called “type-
OfElements” anyway.

Class names should be nouns, and method names should be verbs.
Names shouldn’t use nonstandard abbreviations.

READABILITY TIP Use descriptive names, avoid abbreviations, and follow estab-
lished conventions.

POP QUIZ 4 What name is the most appropriate for the field holding the monthly
salary in an Employee class: salary, s, monthlySalary, or employeeMonthlySalary?

7.3.3 White space and indentation

Finally, most languages, including Java, allow ample freedom regarding the visual lay-
out of code. You can split lines at (almost) every point, freely insert white space around
symbols, and insert empty lines everywhere. You should use this freedom not to express
your artistic creativity (there’s ASCII art for that), but to lessen the cognitive burden
on the fellow programmer who’s going to read your code later on.

Correct indentation is absolutely essential, but I trust you already know and practice
it. One step beyond basic indentation, you can use white space to align two parts of a
split line. A common case is methods with many parameters, like this String instance
method:

Licensed to Abner Lopez <ihackn3wton@gmail.com>



Readable containers 197

public boolean  regionMatches(int toffset,
String other,
int ooffset,
int len)

Regarding empty lines in code, think of them as punctuation. If a method is akin to
a paragraph of text, both in length and in internal coherence, an empty code line is
comparable to a period. Don’t use it when a simple comma would do. You should
use empty lines to visually separate code sections that are conceptually diverse, includ-
ing separating different methods or disparate parts of the same method. You can see
an example of the latter in the connectTo method, in both Reference (listing 7.3) and
Readable (listing 7.4).

READABILITY TIP Use an empty line like a sentence-ending period in a paragraph
of text.

In the next section, we’ll develop a readability-optimized version of the container
class, nicknamed Readable.

7.4 Readable containers [Readable]
Let’s start from Reference and use the following techniques to improve its readability:

Add comments to the class as a whole and to its public methods, in a standard
format that can be easily converted into HTML documentation. This step will
be the only change we make to addWater and getAmount because their body is
simple enough to be straightforward.
Apply refactoring rules to the body of connectTo to improve its structural
features.

First, it’s important to familiarize yourself with the standard format for Java docu-
mentation comments: Javadoc.

7.4.1 Documenting the class header with Javadoc

Javadoc is the Java tool that extracts specially composed comments (using the sort of
tags shown in tables 7.3 and 7.4) from source files and lays them out in nicely format-
ted HTML, thus producing easily navigable documentation. Javadoc originally gener-
ates the familiar online documentation for the Java API, as well as the documentation
snippets that common IDEs provide on request.

Comments intended for Javadoc consumption must start with /**. Most HTML tags
are allowed, such as

<p>, to start a new paragraph
<i>...</i>, to typeset text in italics
<code>...</code>, to typeset code snippets
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Table 7.3 Summary of common Javadoc tags

Tag Meaning

@author Class author (mandatory)

@version Class version (mandatory)

@return Description of a method return value

@param Description of a method parameter

@throws or @exception Description of the conditions for a given
exception to be thrown

{@link ...} Generates a link to another program ele-
ment (class, method, etc.)

{@code ...} Typesets a code snippet

Table 7.4 Summary of common Javadoc-compatible HTML tags

Tag Meaning

<code>...</code> Typesets a code snippet

<p> Starts a new paragraph

<i>...</i> Italics

<b>...</b> Bold

Moreover, Javadoc recognizes various additional tags, all starting with the “@” symbol
(not to be confused with Java annotations). For example, in the comment describ-
ing the whole class, you’re supposed to insert the self-explanatory tags @author and
@version. Both tags are supposedly mandatory for the class description, but Javadoc
won’t complain if they’re missing.

C# documentation comments
In C#, documentation comments should start with “///” (a triple slash) and can
include a variety of XML tags. The compiler itself lifts those comments from the
source files and stores them in a separate XML file. Visual Studio then uses the infor-
mation in that file to enrich its contextual help functionalities, and the programmer
can summon an external tool to arrange the comments into a readable layout, such
as HTML. A popular open-source solution is the DocFX tool, which supports multiple
languages besides C#, including Java.

Rather than presenting each Javadoc tag individually, let’s apply them right away to
obtain a readability-optimized version of Container. At the very top of the Container

source file, add the introductory comment shown in listing 7.1, providing a general
description for the class. Such a comment is also the right place to introduce class-
specific terminology, such as the word group to indicate the set of containers connected
to this one.
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By using the <code> HTML tag or the Javadoc {@code ...} tag, you can typeset
code snippets. Tables 7.3 and 7.4 summarize the Javadoc and HTML tags you’re most
likely to use in a comment.

Listing 7.1 Readable: The class header

/** b Beginning of a Javadoc comment
* A <code>Container</code> represents a water container
* with virtually unlimited capacity.
* <p> c Most HTML tags are allowed.
* Water can be added or removed.
* Two containers can be connected with a permanent pipe.
* When two containers are connected, directly or indirectly,
* they become communicating vessels, and water will distribute
* equally among all of them.
* <p>
* The set of all containers connected to this one is called the
* <i>group</i> of this container.
*
* @author Marco Faella d Javadoc tag
* @version 1.0 e Another Javadoc tag
*/
public class Container {

private Set<Container> group;
private double amount;

Figure 7.1 shows the HTML page that Javadoc generates from the comment in
listing 7.1.

Next, the constructor and the getAmount method are so simple that they need no
readability enhancements, except for short documentation comments. Use the @return
tag to describe the return value for a method.

Listing 7.2 Readable: Constructor and getAmount

/** Creates an empty container. */
public Container() {

group = new HashSet<Container>();
group.add(this);

}

/** Returns the amount of water currently held in this container.
*
* @return the amount of water currently held in this container
*/

public double getAmount() {
return amount;

}

The redundancy in the comment for getAmount is justified by the way Javadoc displays
the information. Every method is presented twice in the HTML page for the class: first,
in a brief summary of all methods (see figure 7.2); then, in a more extensive section,
describing each method in detail (see figure 7.3). The first sentence of the comment is

Licensed to Abner Lopez <ihackn3wton@gmail.com>



200 CHAPTER 7 Coding aloud: Readability

included in the summary of all methods, so you can’t omit it. The @return line is only
included in the detailed description of the method.

Figure 7.1 A snapshot of Javadoc-generated HTML documentation for Readable, including a class
description and a list of constructors

Figure 7.2 A snapshot of Javadoc-generated HTML documentation: the summary of the public
methods of Readable
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Figure 7.3 A snapshot of Javadoc-generated HTML documentation: a detailed description of the
getAmount method

7.4.2 Cleaning connectTo

We now turn our attention to the connectTo method, which can use some refactoring
to improve its readability. First, recall the implementation of this method in Reference,
reproduced here for convenience:

Listing 7.3 Reference: The connectTo method

public void connectTo(Container other) {

// If they are already connected, do nothing
if (group==other.group) return;

int size1 = group.size(),
size2 = other.group.size();

double tot1 = amount * size1,
tot2 = other.amount * size2,
newAmount = (tot1 + tot2) / (size1 + size2);

// Merge the two groups
group.addAll(other.group);
// Update group of containers connected with other

b You can replace comments like this with a properly named support method

for (Container c: other.group) { c.group = group; }
// Update amount of all newly connected containers
for (Container c: group) { c.amount = newAmount; }

}

I already pointed out one of the defects of the reference implementation in chap-
ter 3: an abundance of in-method comments, trying to explain every single line. Adding
such comments is the natural course of action for programmers who care aboutmaking
their code understandable by fellow humans. However, it’s not the most efficient way
to achieve this excellent objective. A better alternative is the Extract Method refactoring
technique.
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READABILITY TIP Refactoring rule Extract Method: Move a coherent block of code
into a new method with a descriptive name.

Method connectTo offers ample opportunities to apply this technique. In fact, you
can apply it five times and obtain as many new support methods, as well as a new, much
more readable version of connectTo, as shown in the following listing.

Listing 7.4 Readable: The connectTo method

/** Connects this container with another.
*
* @param other The container that will be connected to this one
*/

public void connectTo(Container other) {
if (this.isConnectedTo(other))

return;

double newAmount = (groupAmount() + other.groupAmount()) /
(groupSize() + other.groupSize());

mergeGroupWith(other.group);
setAllAmountsTo(newAmount);

}

The @param Javadoc tag documents a method parameter. It’s followed by the param-
eter name and by its description. Compared to Reference, the method is much shorter
and more readable. If you’re not convinced, try reading the body aloud and notice
how it almost makes sense as a short paragraph of text.

You achieve this effect by introducing five aptly named support methods. Indeed,
long method is one of the code smells that Fowler identifies, and extract method is the
refactoring technique aimed at getting rid of that smell. In agile parlance, the new
version of connectTo in listing 7.4 is five extract-methods away from its old version in
Reference.

Whereas adding a comment only explains some code, Extract Method both explains
and hides the code, pushing it away in a separate method. In this way, it keeps the
abstraction level in the original method at a higher andmore uniform height, avoiding
the cumbersome swing between high-level explanations and low-level implementations
in listing 7.3.

Replace Temp with Query is another refactoring technique that you can use on
connectTo.

READABILITY TIP Refactoring rule Replace Temp with Query: Replace a local
variable with the invocation to a new method that computes its value.

You could apply this technique to the local variable newAmount, which is assigned
only once and then used as the argument of setAllAmountsTo. A straightforward appli-
cation of the technique would lead to removing the variable newAmount and replacing
the last two lines of connectTo with the following:
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mergeGroupWith(other.group);
setAllAmountsTo(amountAfterMerge(other));

Here, amountAfterMerge is a newmethod responsible for computing the correct amount
of water in each container after the merge. However, a little thought reveals that
amountAfterMerge needs to jump through hoops to fulfill its task because the groups
already have been merged when the method is invoked. In particular, the set that this
.group already points to contains all the elements from other.group.

A good compromise would be to encapsulate the expression for the new amount
into a new method, but keep the local variable as well, so that we can compute the new
amount before merging the groups:

final double newAmount = amountAfterMerge(other);
mergeGroupWith(other.group);
setAllAmountsTo(newAmount);

All in all, I wouldn’t recommend this refactoring because the expression assigned to
newAmount in listing 7.4 is quite readable and doesn’t need to be hidden away in a
separate method. The Replace Temp with Query rule tends to be more useful when
the expression it replaces is more complicated or occurs multiple times throughout
the class.

Now, let’s have a look at the five new methods that support the readable version of
connectTo. Of these five, two are better declared private because they may leave the
object in an inconsistent state, so you shouldn’t call them from outside the class. They
are mergeGroupWith and setAllAmountsTo.

Method mergeGroupWith merges two groups of containers without updating their
water amount. If someone were to invoke it in isolation, it would most likely leave a
wrong amount of water in some or all containers. This method only makes sense in
the exact context where it’s used: at the end of connectTo, immediately followed by a
call to setAllAmountsTo. In fact, it’s debatable whether it should really be a separate
method. On the one hand, having it separate allows us to document its intent with
its name, instead of using a comment like we did in Reference. On the other hand, a
separate method runs the risk of being called in the wrong context. Because we’re
optimizing for clarity in this chapter, we’ll leave it separate. A similar argument holds
for setAllAmountsTo.

The code for these two methods is shown in the following listing.

Listing 7.5 Readable: Two new private methods supporting connectTo

private void mergeGroupWith(Set<Container> otherGroup) {
group.addAll(otherGroup);
for (Container x: otherGroup) {

x.group = group;
}

}

private void setAllAmountsTo(double amount) {
for (Container x: group) {
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x.amount = amount;
}

}

Private methods aren’t deemed worthy of Javadoc comments. They’re only used
inside the class, so few people should ever feel the need to understand them in detail.
Hence, the potential benefit of a comment doesn’t repay its cost.

The cost of a comment isn’t limited to the time spent writing it. Just like any other
source line, it needs to be maintained, or it may become stale—that is to say, out of
sync with the code it’s supposed to clarify. Remember: a stale comment is worse than
no comment!

Replacing comments with descriptive names doesn’t rule out this particular risk.
Without the proper coding discipline and processes, you may still end up with stale
names, which are just as bad as stale comments.

The other three new support methods are innocuous read-only functionalities that
may as well be declared public. This is not to say that you should take lightly the decision
to make them public. The future maintainability cost of adding any public member to
a class is much greater than the cost of adding the same member with private visibility.
Additional costs for a public method include

appropriate documentation describing its contract
precondition checks to withstand interactions with possibly incorrect clients
a set of tests providing confidence in its correctness

In this particular case, these costs are arguably quite limited because the three meth-
ods under consideration are simple read-only functionalities with no preconditions to
speak of.2 Besides, these three methods provide information to the clients that isn’t
otherwise available. As such, they significantly improve the class testability, as discussed
in chapter 5.

Listing 7.6 Readable: Three new public methods supporting connectTo

/** Checks whether this container is connected to another one.
*
* @param other the container whose connection with this will be checked
* @return <code>true</code> if this container is connected
* to <code>other</code>
*/
public boolean isConnectedTo(Container other) {

return group == other.group;
}

/** Returns the number of containers in the group of this container.
*
* @return the size of the group
*/

2 To be precise, isConnectedTo requires its argument to be non-null. This is such a trivial precondition
that you don’t need to document or actively check it. Violating it will raise an NPE just as expected.
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public int groupSize() {
return group.size();

}

/** Returns the total amount of water in the group of this container.
*
* @return the amount of water in the group
*/
public double groupAmount() {

return amount * group.size();
}

Incidentally, the isConnectedTo method also improves the testability of our class
by making directly observable something that we could only surmise in all previous
implementations.

All six methods that make up the connectTo functionality are very short, the longest
being connectTo itself, at six lines. Brevity is one of the main tenets of clean code.

7.4.3 Cleaning addWater

Finally, there’s addWater. Its body doesn’t change compared to Reference. We just
improve its documentation to better reflect its contract, using Javadoc syntax.

Listing 7.7 Readable: The addWater method

/** Adds water to this container.
* A negative <code>amount</code> indicates removal of water.
* In that case, there should be enough water in the group
* to satisfy the request.
*
* @param amount the amount of water to be added
*/
public void addWater(double amount) {

double amountPerContainer = amount / group.size();
for (Container c: group) {

c.amount += amountPerContainer;
}

}

Compare this Javadoc method description with the contract for addWater I pre-
sented in chapter 5:

Precondition—If the argument is negative, there’s enough water in the group.
Postcondition—Distributes water equally to all containers in the group.
Penalty—Throws IllegalArgumentException.

Notice how the comments in the listing don’t mention the reaction to the client violat-
ing the precondition by removing more water than is actually present. That’s because
this implementation (just like Reference) doesn’t check that condition and allows con-
tainers to hold a negative amount of water. Looking back at figure 7.2, you can witness
the HTML page that Javadoc generates from those comments.
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What if the implementation checked that condition and actually implemented the
penalty that the contract established by throwing IllegalArgumentException? Both
the Javadoc style guide and the Effective Java book suggest to document unchecked
exceptions using the @throws or @exception tags (which are equivalent).3 A line like
the following, added inside the method comment, would work:

@throws IllegalArgumentException
if an attempt is made to remove more water than actually present

Aquick look at the official Java API documentation shows that this is indeed standard
practice. As an example, the documentation for the get(int index) method from
ArrayList, returning the element at position index in the list, reports that the method
will throw the unchecked exception IndexOutOfBoundsException if the index is out of
the proper range.

POP QUIZ 5 Suppose a public method may throw an AssertionError if it detects
a violation of a class invariant. Would you document this circumstance in the
Javadoc for this method?

7.5 Final thoughts on readability
This chapter is somewhat different from the previous ones in that you can readily apply
its advice to most, if not all practical scenarios. Even though I said in chapter 1 that
readability may contrast with other quality objectives, such as time or space efficiency,
in most of these conflicts it’s readability that should prevail. Human readability is a
huge benefit when a given piece of sofware will inevitably need to evolve, because of
bugs being found or new features being requested.

Still, we shouldn’t confuse code clarity with algorithmic simplicity. I’m not suggest-
ing to shun an efficient algorithm in favor of a naive one in the name of readabil-
ity. Rather, you should pick the best algorithm for the job and then strive to code it
in the cleanest possible way. Clarity rightfully defies performance hacks, not proper
engineering.

For the sake of completeness, I should mention a couple of scenarios in which read-
ability is either a luxury or something to be actively avoided. Examples of the first are
tightly timed programming challenges like hackathons or coding competitions. Those
scenarios require contestants to quickly write throwaway code that just works. Any delay
is a cost, and style considerations go out the window.

Another special scenario arises when companies don’t want their source code to be
analyzed by others, including the legitimate users of their software. By hiding or obfus-
cating their source code, such companies hope to hide their algorithms or data. In such
cases, it may seem natural to abandon code readability and go for the most cryptic lines
that get the job done. In fact, there’s a specific type of software, called an obfuscator ,
whose job is precisely to translate a program into another program that is functionally

3 See Item 74 in Effective Java, 3rd ed.
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equivalent to the first, but extremely hard to understand for a human reader. You can
obfuscate all programming languages,4 from machine code to Java bytecode or source
code. Just googling “Java obfuscator” provides a rich selection of open source and com-
mercial tools for this task. Given the availability of such tools, even the most secretive
company can benefit from internally handling clean, self-explanatory code, which is
then rendered obscure before being publicly released.

7.6 And now for something completely different
In this section, you’ll apply the guidelines for readable code to a different example. It’s
a singlemethod that accepts a two-dimensional array of doubles and . . . does something
to it. I’ve written themethod’s body in an intentionally sloppy style; not exactly obscure,
but not very readable either. As an exercise, try to understand what it does before
reading ahead.

public static void f(double[][] a) {
int i = 0, j = 0;
while (i<a.length) {

if (a[i].length != a.length)
throw new IllegalArgumentException();

i++;
}
i = 0;
while (i<a.length) {

j = 0;
while (j<i) {

double temp = a[i][j];
a[i][j] = a[j][i];
a[j][i] = temp;
j++;

}
i++;

}
}

Did you feel the pain? Those while loops and meaningless variable names really put a
strain on your brain. Imagine a whole program written in the same style!

As you might have guessed, the mystery method transposes a square matrix, a stan-
dard operation that swaps rows with columns. The first while loop checks whether the
provided matrix is square-shaped—has as many rows as columns. Since Java matrices
can be irregular, this entails checking that each row has the same length as the number
of rows. Here’s an annotated version of the same method, to help you recognize the
various parts:

public static void f(double[][] a) {
int i = 0, j = 0;
while (i<a.length) { b For each row

if (a[i].length != a.length) c If the row length is “wrong”

4 Some languages are designed to be unreadable and hardly need any obfuscation. Do you know any?
Hint: Brain____
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throw new IllegalArgumentException();
i++;

}
i = 0;
while (i<a.length) { d For each row

j = 0;
while (j<i) { e For each column less than i

double temp = a[i][j]; f Swap a[i][j] and a[j][i]
a[i][j] = a[j][i];
a[j][i] = temp;
j++;

}
i++;

}
}

It’s time to improve the readability of this method using this chapter’s guidelines. First,
the initial squareness check is the ideal occasion for the Extract Method refactoring
rule: it’s a coherent operation with a clearly specified contract. Once you put it in a
separate method, it might also be useful in other contexts. That’s why I’m declaring it
public and equipping it with a full Javadoc comment.

Since the squareness check doesn’t modify the matrix, you can use an enhanced for

as its main loop:

/** Checks whether a matrix is square-shaped
*
* @param matrix a matrix
* @return {@code true} if the given matrix is square
*/
public static boolean isSquare(double[][] matrix) {

for (double[] row: matrix) {
if (row.length != matrix.length) {

return false;
}

}
return true;

}

Then, the transpose method itself invokes isSquare and then performs its job with two
straightforward for loops. An enhanced for would be useless here, because you need
row and column indices to perform the swap.

Along the way, improve the names of the variables, and of the method itself, by
making them more descriptive. You can keep names i and j for the row and column
indices because those are standard names for array indices.

/** Transposes a square matrix
*
* @param matrix a matrix
* @throws IllegalArgumentException if the given matrix is not square
*/
public static void transpose(double[][] matrix) {

if (!isSquare(matrix)) {
throw new IllegalArgumentException(
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"Can't transpose a nonsquare matrix.");
}
for (int i=0; i<matrix.length; i++) { b For each row

for (int j=0; j<i; j++) { c For each column less than i
double temp = matrix[i][j]; d Swap a[i][j] and a[j][i]
matrix[i][j] = matrix[j][i];
matrix[j][i] = temp;

}
}

}

7.7 Real-world use cases
You’ve seen and applied some very important principles to improve the readability of
this code. Here are a couple use cases to help you understand the practical importance
of this trait.

Imagine being one of the cofounders of a small startup and having managed
to win a bid to develop software for the company that manages gas infrastruc-
ture, and the objective of the project is to implement regulatory law. Things
look good: you’ve been assigned a prestigious project and, because legislation
doesn’t change easily, you realize that after delivering you’ll be able to enjoy
the fruit of your labor for the duration of the maintenance contract. You and
your colleagues make a strategic decision to deliver your solution as fast as
possible to impress your client. To achieve that, you decide to cut back on
luxuries such as readability, documentation, unit tests, and so on. After a cou-
ple of years, your company has grown, but half of the original team has left
the company, and you still have the contract with the gas operator. Then one
day, the impossible happens: legislation changes, and you’re asked to modify
your software to implement the new requirements. You learn the hard way that
figuring out how your existing code works is harder than implementing new
requirements. Code readability is so important that it’s a determining factor
for how teams operate in software companies (http://mng.bz/pyKE).
You’re an enthusiastic, talented developer eager to contribute to the open
source community. You have a great idea (or at least, so you think), and your
goal is to share your code on github, hoping that it will attract contributors
and eventually be used by people for real projects. You realize that readability
is the key to attracting contributors, who will initially be unfamiliar with your
code base and probably reluctant to ask questions about it.

The following examples show how seriously the programming world has taken the
idea of readability.

Working hard to make your code readable is something you have to do regard-
less of the programming language you’re using. However, for some program-
ming languages, readability is a design characteristic. Python is among the
most popular languages, and one of the reasons for this popularity is arguably
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its inherent readability. In fact, readability is considered so important that
the language designer introduced the famous PEP8 (Python Enhancement
Proposal), a coding style guide whose basic goal is (surprise!) to improve
readability.
Let’s talk about Python again. (Yes, this book features Java, but these princi-
ples are universal.) Python is a dynamically typed language, so you don’t have
to specify the type of function parameters and return values. However, PEP
484 introduced optional type hints in Python 3.5, providing a standard way to
declare those types. These hints have absolutely no effect on performance,
nor do they provide runtime type inference. Their purpose is to enhance
readability and support more static type checks, thus also improving reliability.

7.8 Applying what you learned

EXERCISE 1
Given the following data:

List<String> names;
double[] lengths;

What kind of loop would you use to accomplish the following tasks?

1 Print all names in the list.
2 Remove from the list all names longer than 20 characters.
3 Compute the sum of all lengths.
4 Set a Boolean flag to true if the array contains a zero length.

EXERCISE 2
As you might know, the method charAt from the class String returns the character of
this string at a given index:

public char charAt(int index)

Write a Javadoc comment describing the contract of this method and then compare it
to the official documentation.

EXERCISE 3
Examine the following method. Guess what it does and make it more readable.
(Don’t forget to add a Javadoc method comment.) You can find the source code for
this exercise and the next one in the online repository (https://bitbucket.org/mfaella
/exercisesinstyle).

public static int f(String s, char c) {
int i = 0, n = 0;
boolean flag = true;
while (flag) {

if (s.charAt(i) == c)
n++;
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if (i == s.length() -1)
flag = false;

else
i++;

}
return n;

}

EXERCISE 4
The following method comes from a collection of algorithms hosted in a github repos-
itory (starred by 10k people and forked 4k times). The method performs a breadth-first
visit of a graph, represented as an adjacency matrix of type byte. You don’t have to
know this algorithm to complete this exercise. Just know that the a[i][j] cell contains
1 if there’s an edge from node i to node j, and 0 otherwise.

Improve the method readability in two steps. First, make only exterior changes to
variable names and comments. Then, make structural changes. All changes must
preserve both the API (types of parameters) and the visible behavior (the on-screen
output).

/**
* The BFS implemented in code to use.
*
* @param a Structure to perform the search on a graph, adjacency matrix etc.
* @param vertices The vertices to use
* @param source The Source
*/
public static void bfsImplement(byte [][] a,int vertices,int source){

//passing adjacency matrix and number of vertices
byte []b=new byte[vertices]; //flag container containing status

//of each vertices
Arrays.fill(b,(byte)-1); //status initialization
/* code status

-1 = ready
0 = waiting
1 = processed */

Stack<Integer> st = new Stack<>(); //operational stack
st.push(source); //assigning source
while(!st.isEmpty()){

b[st.peek()]=(byte)0; //assigning waiting status
System.out.println(st.peek());
int pop=st.peek();
b[pop]=(byte)1; //assigning processed status
st.pop(); //removing head of the queue
for(int i=0;i<vertices;i++){

if(a[pop][i]!=0 && b[i]!=(byte)0 && b[i]!=(byte)1 ){
st.push(i);
b[i]=(byte)0; //assigning waiting status

}}}
}
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Summary
Readability is amajor factor contributing toward reliability andmaintainability.
You can promote readability through both structural and exterior means.
One of the objectives of common refactorings is to improve readability.
Self-documenting code is preferable to implementation comments.
You should detail and format documentation comments in standard ways to
make them easily browsable.

Answers to quizzes and exercises

POP QUIZ 1
Readability positively affects maintainability and reliability because readable code is
easier to understand and modify in a safe manner.

POP QUIZ 2
You can’t use an enhanced for because you need to modify the array’s entries, and
you need an index for that. The best choice for iterating over a whole array using an
explicit index is a standard for loop.

POP QUIZ 3
You should consider a comment describing the behavior of a private method an imple-
mentation comment. Private methods are not exposed to the clients.

POP QUIZ 4
The most appropriate name is probably monthlySalary. Alternatives s and salary

contain too little information, whereas employeeMonthlySalary needlessly repeats the
class name.

POP QUIZ 5
You shouldn’t document an AssertionError because that kind of exception is only
thrown if an internal error occurs.

EXERCISE 1

1 An enhanced for is the ideal loop for the first task:

for (String name: names) {
System.out.println(name);

}

2 This is the job for an iterator:

Iterator<String> iterator = names.iterator();
while (iterator.hasNext()) {

if (iterator.next().length() > 20) {
iterator.remove();

}
}

3 Once again, use an enhanced for:
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double totalLength = 0;
for (double length: lengths) {

totalLength += length;
}

or the following stream-based one-liner:

double totalLength = Arrays.stream(lengths).sum();

4 Common wisdom suggests using a while loop when the data (the content of
the array) determines the exit condition. I think an enhanced for plus a break
statement is at least as appropriate, as it automatically takes care of the case
when the whole array needs to be scanned.

boolean containsZero = false;
for (double length: lengths) {

if (length == 0) {
containsZero = true;
break;

}
}

The stream library provides a handy alternative:

boolean containsZero = Arrays.stream(lengths).anyMatch(
length -> length == 0);

EXERCISE 2
Here’s a slightly simplified version of the Javadoc from OpenJDK 12:

/**
* Returns the {@code char} value at the
* specified index. An index ranges from {@code 0} to
* {@code length() - 1}. The first {@code char} value of the sequence
* is at index {@code 0}, the next at index {@code 1},
* and so on, as for array indexing.
*
* @param index the index of the {@code char} value.
* @return the {@code char} value at the specified index of this string.
* The first {@code char} value is at index {@code 0}.
* @exception IndexOutOfBoundsException if the {@code index}
* argument is negative or not less than the length of this
* string.
*/

EXERCISE 3
It’s easy to see that the method simply counts the occurrences of a character inside a
string. The while loop and the flag are useless detours, replaced by a simple for loop
in the following solution:

/** Counts the number of occurrences of a character in a string.
*
* @param s a string
* @param c a character
* @return The number of occurrences of {@code c} in {@code s}
*/
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public static int countOccurrences(String s, char c) {
int count = 0;
for (int i=0; i<s.length(); i++) {

if (s.charAt(i) == c) {
count++;

}
}
return count;

}

The stream library also allows an alternative implementation, where the method body
consists of the following one liner:

return (int) s.chars().filter(character -> character == c).count();

The cast to int is due to the fact that the terminal operation count returns a value of
type long. A more robust implementation would take precautions against overflow.

EXERCISE 4
Let’s jump to the final version, including both exterior and structural improvements.
First, notice that the algorithm maintains a status for each node, which can take one
of three values: fresh (not encountered yet), enqueued (put in the stack but not vis-
ited yet), and processed (visited). In the original implementation, this information is
encoded in the array of bytes b. The first structural improvement is to use an enumer-
ation for this purpose. Unfortunately, enumerations can’t be local to a method, so you
have to put the following declaration in class scope (outside the method):

private enum Status { FRESH, ENQUEUED, PROCESSED };

Now you can refactor the main method, taking advantage of this enumeration, improv-
ing variable names, removing implementation comments, and fixing white space and
indentation. You should end up with something like this:

/** Visits the node in a directed graph in breadth first order,
* printing the index of each visited node.
*
* @param adjacent the adjacency matrix
* @param vertexCount the number of vertices
* @param sourceVertex the source vertex
*/
public static void breadthFirst(

byte[][] adjacent, int vertexCount, int sourceVertex) {
Status[] status = new Status[vertexCount];
Arrays.fill(status, Status.FRESH);

Stack<Integer> stack = new Stack<>();
stack.push(sourceVertex);

while (!stack.isEmpty()) {
int currentVertex = stack.pop();
System.out.println(currentVertex);
status[currentVertex] = Status.PROCESSED;
for (int i=0; i<vertexCount; i++) {

if (adjacent[currentVertex][i] != 0 && status[i] == Status.FRESH)
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{
stack.push(i);
status[i] = Status.ENQUEUED;

}
}

}
}

In the previous method, I left the use of the Stack class because it doesn’t affect read-
ability, but you should know that the Stack class has been superseded by LinkedList
and ArrayDeque.

Further reading
R. C. Martin. Clean Code. Prentice Hall, 2009.
A detailed and comprehensive style guide written by one of the authors of the
“Manifesto for Agile Software Development.” You can find related higher level
design recommendations in the follow-up book, Clean Architecture (Prentice
Hall, 2017).
S. McConnell. Code Complete. Microsoft Press, 2004.
A wide-ranging, well-researched, nicely typeset handbook on coding practices,
from the fine points of proper variable naming all the way to project scheduling
and team management.
BrianW. Kernighan and P. J. Plauger. The Elements of Programming Style. McGraw-
Hill, Inc., 1974.
Arguably the first book to systematically tackle the code readability problem.
Examples are in Fortran and PL/I. An updated second edition followed in
1978. Kernighan returned to the same topic 20 years later with R. Pike in the
first chapter of The Practice of Programming (Addison-Wesley, 1999).
Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
2018.
The second edition of the classic book that popularized and standardized the
notion of refactoring. You can take a look at the catalogue of refactoring rules
from the book on the author’s website at https://martinfowler.com. The most
popular IDEs let you apply many of these rules with a simple click or two.
Donald E. Knuth. Literate Programming. Center for the Study of Language and
Information, 1995.
A collection of essays promoting programming as an art form akin to literature.
How to Write Doc Comments for the Javadoc Tool.
The official Javadoc style guide, as of this writing, available at http://mng.bz
/YeDe.
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8Many cooks in the kitchen:
Thread safety

This chapter covers
Recognizing and avoiding deadlocks and
race conditions

Using explicit locks

Using lock-free synchronization

Designing immutable classes

The plan for this chapter is to make your implementation thread-safe. For a class to be
thread-safe, multiple threads should be able to interact with the objects of that class
with no explicit synchronization. In other words, a thread-safe class takes care of the
synchronization issues. The clients can just freely invoke any class method, even simul-
taneously on the same object, with no adverse effects. The design-by-contract method-
ology I presented in chapter 5 allows you to precisely characterize what an adverse effect
would be: the violation of a postcondition or an invariant.

Admittedly, thread safety is not as general a property as efficiency or readability.
However, its importance is on the rise because of the ubiquity of parallel hardware.
Compared with other functional defects, lack of thread safety can go unnoticed for
much longer. Some synchronization defects become apparent only in special circum-
stances, when the timing and the scheduling are just right (or wrong) for a race condi-
tion to mess up the state of an object or for a deadlock to freeze your program. That’s
one more reason to read this chapter carefully!

217
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This chapter assumes you’re familiar with basic multithreading in Java, such as creat-
ing threads and using synchronized blocks to achieve mutual exclusion. As a self-test,
consider working through exercise 1 at the end of this chapter. It’ll remind you of the
main properties of the synchronized keyword.

8.1 Challenges to thread safety
The twomain enemies of thread safety are race conditions and deadlocks. Generally speak-
ing, the first arises from too little synchronization and the latter from too much of it. A
race condition occurs when two operations requested concurrently by different threads
may lead to at least one operation violating its postcondition. It’s easy to obtain a race
condition by manipulating shared objects with no synchronization.

Say that multiple threads share an instance of the following class:

public class Counter {
private int n;
public void increment() { n++; }
...

}

If two threads invoke increment at about the same time, it’s possible for the counter to
be incremented once, instead of twice.1 That’s because n++ is not an atomic operation.
It’s roughly equivalent to the following sequence of three atomic operations:

1 Copy the current value of n on a register (for a register machine) or on the
stack (for the JVM).

2 Increment it by one.
3 Store the updated value of n back into the Counter object to which it belongs.

If two threads execute the first step at the same time (or, in any case, before either
of them has had the opportunity to store the updated value in the third step), both
threads will read the same old value for n, increment it, and then store the same n+1

value. That is, the same value n+1 will be stored twice.
You can check this by yourself if you run the class eis.chapter8.threads.Counter

from the online repository (https://bitbucket.org/mfaella/exercisesinstyle). It launches
five threads that call the incrementmethod on the same object 1,000 times each. At the
end, the program prints the value of the counter. On my laptop, on three executions
I got the following outputs:

4831
4933
3699

As you can see, race conditions are extremely common under these conditions. In the
last execution, over 26% of the increments were lost due to a race condition. As you

1 It’s also possible that the two threads will see different values for the counter because of visibility issues
that are unrelated to the race condition.
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Java Memory Model

synchronized
Implicit 

monitors volatile
wait

notify(All)
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locks
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Thread
class

J5

J1
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J7
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Concurrent 
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Figure 8.1 The main layers of multithreading support in Java, labeled with the Java version in which
they were initially introduced (or fixed, in the case of the JMM). This chapter only deals with the three
lowest levels.

might know, you solve race conditions by introducing synchronization primitives, such
as mutexes or monitors, that render all calls to increment mutually exclusive: if one such
call is executing on a given Counter object, any other call to the same object must wait
for the current one to finish before it can enter the method. In Java, the synchronized
keyword constitutes the basic form of synchronization.

At the other extreme, unregulated synchronization may lead to a deadlock, a situa-
tion when two or more threads become permanently stuck, waiting for each other in a
cyclic fashion. An example of this phenomenon arises in section 8.2.

In the rest of this chapter, you’ll learn how to recognize and avoid both race con-
ditions and deadlocks, using low-level synchronization primitives like synchronized

blocks and explicit locks. In the spirit of this book, I’ll stick to a practical and to-the-
point presentation tailored to the water container running example, which turns out
to require an interesting and nonstandard form of synchronization.

To get a more comprehensive understanding of multithreading issues and solutions,
you should review the fundamental memory model rules of your language of choice. In
Java, the best reference is still the book Java Concurrency in Practice, mentioned in the
Further reading section. Moreover, you should become familiar with the higher level
concurrency facilities that your language offers.

Since the beginning, Java has been at the forefront ofmultithreading support, thanks
to its native support for threads. In recent years, such support has been steadily increas-
ing, with three progressively higher levels of abstraction, illustrated in figure 8.1:

Executor services (Java 5). A small set of classes and interfaces that take care
of creating the appropriate number of threads to perform user-defined tasks.
Check out the interface ExecutorService and the class Executors from the
package java.util.concurrent.
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The fork-join framework (Java 7). A smart way to split a complex computation
among multiple threads (fork) and merge their results into a single value
(join). For starters, check out the ForkJoinPool class.
Parallel streams (Java 8). A powerful library for applying uniform operations to
sequential data providers. You can start from the Stream class, but you’d be
better off picking up a book from the Further reading section to appreciate the
many subtleties of this library.

8.1.1 Levels of concurrency

If thread safety was truly our only objective, we could apply a simple technique that
works in all circumstances and with all self-contained classes: use a global lock to syn-
chronize all methods. In Java, locks are implicitly provided with each object,
so as a global lock for all containers, we can use the one attached to the object
Container.class.2 Then, we can wrap the body of all methods in the Container class
in a synchronized block, like this:

synchronized (Container.class) {
... b Method body

}

In this way, all access to the class is fully serialized. That is, even if method calls arrive
from different threads to different objects, only one method at a time can enter its
body. This coarse-grained approach is extremely harsh and voids any performance
gain that might have come from concurrency. Worse, the lock acquire and release
operations may actually slow down even a single-threaded program.3 We can call this
technique class-level concurrency and put it at one end of a spectrum, whose notable cases
are summarized in table 8.1.

Table 8.1 Common concurrency policies for a class, ordered by increasing amount
of concurrency allowed. The second column describes the operations that are allowed
to proceed simultaneously. The third column identifies the locks that are needed to
implement that policy.

Name What is concurrent? How many locks?

Class-level Access to different classes One lock per class

Object-level Access to different objects One lock per object

Method-level Access to different methods One lock per method of each object

Anarchy Everything No locks

Ideally, we’d like to ensure thread safety while maintaining as much concurrency as
possible. To this aim, proceed in two steps:

2 That’s the same lock that any synchronized static method of the class would use.
3 Optimized runtime environments may employ techniques to avoid those overheads. For example,
HotSpot’s biased locking recognizes when a single thread mostly owns a lock and optimizes that case.
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1 Specification step—Figure out how much concurrency your class(es) can sup-
port, that is, what methods or code fragments can run simultaneously with no
race conditions arising. In practice, those are the code fragments that operate
on different data.

2 Implementation step—Add synchronization primitives that allow the legal cases
of concurrency while serializing the illegal ones.

Whenever the objects of a class are isolated (that is, they don’t contain references to
each other or to shared objects of other types), multiple methods can run in parallel, as
long as they operate on different objects, and the proper thread-safe implementation
involves simply slapping synchronized on all instance methods. This is the common
case of object-level concurrency, illustrated by plain old classes like the following:

public class Employee {
private String name;
private Date hireDate;
private int monthlySalary;
...
public synchronized increaseSalary(int bonus) {

monthlySalary += bonus;
}

}

By the way, you can improve even such a simple case: best practices dictate not declaring
entire methods synchronized because that may come into conflict with an Employee

being used as amonitor by a client. It’smore robust, but slightlymore cumbersome and
space-inefficient, to use a private field as the monitor. In this way, being synchronized
becomes a private implementation matter, as it should be:

public class Employee {
private String name;
private Date hireDate;
private int monthlySalary;
private Object monitor = new Object();
...
public increaseSalary(int bonus) {

synchronized (monitor) {
monthlySalary += bonus;

}
}

}

Moving on to the third row of table 8.1, method-level concurrency is quite uncommon,
and for good reasons. It makes sense only when all methods are independent of one
another. For two methods of the same object to be independent, they need to operate
on different parts of the object state. If all methods in a class aremutually independent,
that’s a sign of poor cohesion; you’ve put together information that belongs to different
classes. Before mulling over the concurrency policy, you’d better split that class into
multiple classes.
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C# monitors
Just like in Java, C# objects have associated monitors that you can acquire and release
using the following syntax:

lock (object) {
...

}

You can declare an entire method synchronized by tagging it with the following method
attribute, analogous to a Java annotation:

[MethodImpl(
MethodImplOptions.Synchronized)]

Differently from Java, you also can manually lock and unlock the implicit monitor of an
object using calls Monitor.Enter(object) and Monitor.Exit(object).

POP QUIZ 1 Who cares about the concurrency policy of a class—its users or its
implementors?

Finally, the anarchy level generally applies to classes that are either stateless or immutable.
In both cases, concurrent usage by multiple threads is innocuous. For example, com-
parators (that is, objects implementing the Comparator interface) are usually stateless.
They can be freely shared among threads with no special precautions. I’ll talk about
immutability in section 8.4.

Our water containers sport a custom concurrency level, halfway between class-level
and object-level, requiring a little more effort for us to both describe and implement
them, as demonstrated in the following sections.

8.1.2 A concurrency policy for water containers

No matter the implementation, containers need to reference each other in some way;
otherwise, they can’t fulfill their contractual obligations. Specifically, the methods con�
nectTo and addWater must be able to change the state of multiple containers. As a
result, it’s not enough to lock the current object to obtain thread safety.

The connectTomethod is the trickiest because it modifies two groups of containers,
eventually merging them into a single one. To avoid race conditions, no other thread
should access any container that belongs to either of the two groups being merged.
More precisely, reading the state of such a container with getAmount may be allowed,
but changing it with addWater or connectTo should definitely be forbidden, that is,
delayed until the first connectTo terminates.

Summarizing, we obtain the following concurrency policy for the Container class:

1 The class must be thread-safe.
2 If containers a and b don’t belong to the same group, any method invocation
on a can run concurrently with any method invocation on b.

3 All other pairs of invocations require synchronization.
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Only property 1 is intended for the users of the Container class. It tells clients that
they can use the class from different threads simultaneously, without worrying about
synchronization issues.

Properties 2 and 3, instead, are destined for the Container class developers and
set out the target level of supported concurrency. Relative to table 8.1, this level lies
between class-level and object-level concurrency because it allows concurrency between
different groups of objects. In the rest of this chapter, we’ll examine different ways
to achieve this objective using Java synchronization primitives, namely synchronized,
volatile, and the ReentrantLock class.

8.2 Dealing with deadlocks
Rather than modifying Reference, we’ll work with Speed1 from chapter 3, which is more
efficient and more suited to thread safety. Recall the basic structure of Speed1: each
container holds a reference to a group object, which in turn knows the amount of water
in each container and the set of all members of that group, as shown in the following
snippet:

public class Container {
private Group group = new Group(this);

private static class Group {
double amountPerContainer;
Set<Container> members;

Group(Container c) {
members = new HashSet<>();
members.add(c);

}
}

It’s quite clear from the policy specification that groups are the synchronization units of
our class. In practice, connectTo should acquire the monitors of the two groups being
merged. Anytime amethod needsmore than onemonitor, the risk of a deadlock arises.
A deadlock is a condition where two or more threads are stuck, each one waiting for
a monitor that another one holds. They’re waiting for each other in a cyclic pattern,
forever.

The simplest deadlock scenario occurs when thread 1 attempts to acquire monitor
A and then monitor B, whereas thread 2 requests them in the opposite order. An
unlucky scheduling may cause thread 1 to successfully acquire A and then thread 2
to successfully acquire B before thread 1 does. At that point, the threads are stuck
in a deadlock. This scenario can easily play out with the following natural but faulty
implementation of connectTo:

public void connectTo(Container other) {
synchronized (group) {

synchronized (other.group) {
... b The actual operation here

}
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}
}

If one thread invokes a.connectTo(b) and another thread simultaneously invokes
b.connectTo(a), they risk the textbook case of deadlock. Generally speaking, you have
two ways to avoid such deadlocks without restricting the class clients in any way: atomic
lock sequences or ordered lock sequences.

POP QUIZ 2 Can you get into a deadlock if each thread is guaranteed to hold one
lock at a time?

8.2.1 Atomic lock sequences

First, you can render atomic the sequence of lock acquisitions that generates that dead-
lock risk. This entails using an extra lock—let’s call it globalLock—to make sure that
no two such sequences can run concurrently. In this way, a sequence of lock requests
can start only when no other sequence is in progress. If a sequence blocks because
one of the required locks is busy, it’ll block while holding the global lock, so no other
sequence can start and risk going into a deadlock. Notice that even sequences that
require a completely different set of locks must stall until the current sequence com-
pletes. This is a very cautious approach that avoids deadlocks by limiting the amount
of concurrency allowed.

In Java, the global lock can’t be an implicit lock because by design implicit locks
must be released in the opposite order in which they were acquired. So, if globalLock
is acquired before monitor A, it can’t be released before the latter. In other words, the
following fragment is faulty:

synchronized (globalLock) {
synchronized (group) {

synchronized (other.group) {
} b We’d like to release globalLock here.

... c The actual operation here
}

}

Despite the misleading indentation, the first right brace is releasing other.group, not
globalLock as intended. Explicit locks provided in the Java API by the ReentrantLock
class overcome this limitation. A ReentrantLock is more flexible than an implicit lock:
in particular, it can be freely acquired and released at any time using its lock and unlock
methods. In this approach, we’d add an explicit lock to the class:

private static final ReentrantLock globalLock = new ReentrantLock();

Then, we’d use that global lock to guard the beginning of connectTo, until the two
implicit locks are acquired, as you can see in the following listing.

Listing 8.1 AtomicSequence: Preventing deadlocks by an atomic lock sequence

public void connectTo(Container other) {
globalLock.lock();
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synchronized (group) {
synchronized (other.group) {

globalLock.unlock();
... b Compute new amount
group.members.addAll(other.group.members);
group.amountPerContainer = newAmount;
for (Container x: other.group.members)

x.group = group;
}

}
}

Because only one thread can hold globalLock at any given time, only one thread
can be in the middle of the sequence of two synchronized lines, and no deadlock can
arise.

POP QUIZ 3 What happens if an exception is thrown from inside a synchronized
block? What if instead the thread throwing the exception owns a ReentrantLock?

8.2.2 Ordered lock sequences

The second and more efficient way to avoid deadlocks is to order monitors in a global
sequence known to all threads, and make sure that all threads request them in that
order. You can establish such a global sequence by assigning a unique integral ID to
each group. In turn, you obtain unique IDs by introducing a global (that is, static)
counter that’s incremented for each new instance and provides the ID for every new
object.

You need to properly synchronize access to such a shared counter; otherwise, a race
condition affecting two simultaneous increments may result in two groups having the
same ID. The easiest solution is to employ the class AtomicInteger, one of the atomic
variable types in figure 8.1. Objects of that class are thread-safe mutable integers. As its
name suggests, the instancemethod incrementAndGet is perfect for generating unique
sequential IDs in a thread-safe manner.

The following listing shows the beginning of the Container class, including its fields
and the nested class. It’s very similar to Speed1, except for the addition of unique group
IDs.

Listing 8.2 OrderedSequence: Preventing deadlocks by ordered locking

public class Container {
private Group group = new Group(this);

private static class Group {
static final AtomicInteger nGroups =

new AtomicInteger(); b Total number of groups so far
double amount;
Set<Container> elems = new HashSet<>();
int id = nGroups.incrementAndGet(); c Automatically assigned progressive ID

Group(Container c) {
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elems.add(c);
}

}

Each new Group object now receives a unique progressive ID, starting from1, just like an
auto-increment field in a database. As you can see in listing 8.3, the method connectTo

will request the two monitors in the order of their IDs, thus avoiding deadlocks.

Identity hash code
A similar technique involves ordering lock acquisitions based on the identity hash-
code of the corresponding object (in our case, group), that is, the hashcode that
the hashCode method in Object returns. If that method has been overridden, you
can still recover the original hash code for an object by invoking the static method
System.identityHashCode().

That approach saves some memory and a few lines of code because the identity hash-
code is a built-in identifier for any object. On the other hand, it isn’t a unique identifier,
as it’s possible—though unlikely—for two objects to have the same hashcode. Pro-
gressive IDs, instead, are unique by design, as long as the number of objects of that
type is less than 232. Even then, you may switch to a AtomicLong id.

Listing 8.3 OrderedSequence: Method connectTo.

public void connectTo(Container other) {
if (group == other.group) return;
Object firstMonitor, secondMonitor;
if (group.id < other.group.id) {

firstMonitor = group;
secondMonitor = other.group;

} else {
firstMonitor = other.group;
secondMonitor = group;

}
synchronized (firstMonitor) {

synchronized (secondMonitor) {
... b Computes new amount
group.members.addAll(other.group.members);
group.amountPerContainer = newAmount;
for (Container x: other.group.members)

x.group = group;
}

}
}

If you have some way to assign unique IDs to the objects that you need to lock, this
is the way to go to avoid deadlocks. If instead those objects don’t come with unique
IDs and you can’t modify their class, the global locking technique from the previous
section may be your only option.
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POP QUIZ 4 Why does the ordered locking technique prevent deadlocks?

8.2.3 A hidden race condition

The two techniques from sections 8.2.1 and 8.2.2 are general ways to avoid deadlocks,
but in the case of water containers, they’re affected by subtle race conditions. The
problem is that the group objects that double as monitors can be replaced by a simul-
taneous connection operation. As a result, an invocation to connectTo may end up
acquiring the lock of an obsolete group that’s no longer associated with any container.
In that case, the operations that connectTo performs won’t be mutually exclusive with
other operations on the new group of this container.

It’s quite straightforward to recognize this problem in the ordered lock technique
from section 8.2.2. The first lines of connectTo, comparing group IDs and establishing
the order between monitors, aren’t guarded by any synchronization. Hence, it may
happen that either of the two groups changes before the current thread has a chance
to acquire the corresponding monitor. The natural solution is to add a global lock
that protects that first phase, from the beginning of the method to just after the two
monitors have been acquired. This would bring the code close to our other solution,
the atomic lock sequence. But globally locking the first phase renders useless the whole
lock ordering machinery because the global lock is enough to prevent deadlocks! At
the end of the day, you’d end up with exactly the atomic lock sequence version. But is
the latter free from race conditions?

Close scrutiny or focused testing reveal that it’s not. It’s still possible for connectTo
to acquire the wrong monitor and break the stated concurrency policy, as shown in
figure 8.2. Indeed, suppose thread 1 starts a.connectTo(b) but is preempted4 before
updating the group of b, that is, before the assignment b.group = a.group. This may
happen for a number of reasons, the simplest being that some other thread is sched-
uled to run on the same hardware core. After all, your JVM doesn’t run in isolation. It
shares your hardware with an OS and plenty of other processes.

At this point, suppose that thread 2 runs b.connectTo(c). The second thread gets
stuck on synchronized (b.group), because the first thread holds that monitor. When
the first thread releases it, the second thread will acquire it, even though that monitor
doesn’t correspond to any group anymore because it’s themonitor of an obsolete group
object that’s ready forGC. The second thread is under the “illusion” that it’s holding the
monitor for the group of b, whereas it’s actually holding a stale monitor. Its subsequent
operations won’t be mutually exclusive with other operations on the current group of b.

This scenario is depicted in figure 8.2, and solved in the next section, which finally
presents a truly thread-safe water container implementation.

4 That is, its execution is suspended by the OS scheduler.

Licensed to Abner Lopez <ihackn3wton@gmail.com>



228 CHAPTER 8 Many cooks in the kitchen: Thread safety

Thread 1: a.connectTo(b) Thread 2: b.connectTo(c)
globalLock.lock()
synchronized (a.group) {
  synchronized (b.group) {
    globalLock.unlock()
    ...

Paused / preempted

    b.group = a.group;
  } Releases old b.group
} Releases a.group

globalLock.lock()
synchronized (b.group) {

Waiting for old b.group

Resumes while holding the 
obsolete b.group!

Figure 8.2 A race condition affecting the atomic lock sequence connectTo implementation

8.3 Thread-safe containers [ThreadSafe]
To get a truly thread-safe implementation, we start with OrderedSequence (listings 8.2
and 8.3), which is free from deadlocks and allows full parallelism between method
calls involving different groups of containers, and we set out to solve the race condi-
tions described in the previous section. The new implementation, denoted by Thread-
Safe, has the same fields and the same nested Group class as OrderedSequence, and, like
OrderedSequence, it doesn’t need any global locking when connecting two containers.
However, it may try to acquire the right monitors multiple times, as explained in the
following section.

8.3.1 Synchronizing connectTo

To remove the race condition, you must make sure that connectTo acquires the mon-
itors of the current groups of the two containers being connected. To do this without
sacrificing too much concurrency, you need to shift your mindset from classic lock-
based synchronization to a form of lock-free synchronization. Unless you use a global lock
and lose all parallelism, you can never be sure to acquire the right monitors on your
first attempt. You need to try multiple times, as shown in the following listing, until
you recognize that the acquired monitors are the current ones. That’s why you should
wrap the ordered lock sequence code borrowed from OrderedSequence into a potentially
infinite loop.

Listing 8.4 ThreadSafe: Method connectTo

public void connectTo(Container other) {
while (true) {

Licensed to Abner Lopez <ihackn3wton@gmail.com>



Thread-safe containers 229

if (group == other.group) return;
Object firstMonitor, secondMonitor;
if (group.id < other.group.id) {

firstMonitor = group;
secondMonitor = other.group;

} else {
firstMonitor = other.group;
secondMonitor = group;

}
synchronized (firstMonitor) { b Tentatively acquires monitors

synchronized (secondMonitor) {
if ((firstMonitor == group && secondMonitor == other.group) ||

(secondMonitor == group && firstMonitor == other.group)) {
... c The actual operation here
return;

}
}

}

d At least one of the two monitors was stale—retry.
}

}

In every iteration, you tentatively acquire the two chosenmonitors, only to immediately
check whether they’re current, that is, whether their respective containers still point
to them as their groups. If the check is positive, you perform the usual group merg-
ing operations (omitted in the listing). Otherwise, you release the two monitors and
try again by rereading the group fields of the two containers being merged. You can
call this an optimistic approach to synchronization: you assume that no other thread is
messing with these two containers. If your assumption is violated, you try again.

Lock-free synchronization
The pattern of repeatedly attempting an operation on a shared object until no con-
tention is detected is reminiscent of the common compare-and-swap (CAS) loop in
lock-free synchronization. CAS is a CPU instruction with three arguments—src, dst,
and old—whose effect is to swap the content of memory locations src and dst, only
if the current content of dst is equal to old. You can use it to safely update a shared
variable without using a mutex.

Toward this end, you first read the shared variable (dst) and put its value in a local
variable (old). Then, you compute the new value for the shared variable, usually
based on its old value, and store it in another local variable (src). Finally, you call
CAS with the above arguments to update the shared variable only if another thread
hasn’t modified it in the meantime. If CAS reports failure, the whole operation is
restarted, ad infinitum, as you can see in the following pseudo-code:

do {
old = dst
src = some new value, usually based on old

} while (cas(src, dst, old) == failed)
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Ours is a hybrid scenario where we ensure that we get the right monitors using a
lock-free technique, whereas the remaining merging operations are performed under
classic lock protection.

8.3.2 Synchronizing addWater and getAmount

Let’s move on to the remaining two methods: addWater and getAmount. addWater

exhibits a structure similar to the one of connectTo. Indeed, even when acquiring the
monitor of a single group, it’s possible that another thread will replace the group of
this container in the meantime.

The reason is that entering even the simplest synchronized block isn’t an atomic
operation. For a detailed analysis we need to go behind the scenes of the Java code
and take a look at the corresponding bytecode.

The JVM architecture
Contrary to most actual microprocessors, which are based on registers, the JVM is
an abstract machine providing each method invocation (that is, each call frame) with
an operand stack and a sequence of local variables. When entering a method, the
operand stack is empty and the local variables contain the arguments of the current
method. When executing an instance method, the first local variable contains this.
Arithmetic and logical operations take their arguments from and return their result to
the operand stack. Moreover, the JVM is object-aware, in the sense that field access,
method invocations, and other OO operations correspond directly to specific bytecode
instructions.

You can use the javap command-line tool included in the JDK to visualize the content
of a class file in human-readable form. You can view the bytecode of all methods in a
class by running javap -c classname.

For example, suppose addWater started as follows:

public void addWater(double amount) {
synchronized (group) { b

...
}

}

The second line translates to the following bytecode:
1: aload_0 Push the first local variable (this) on the stack

2: getfield #5 Pop top of stack and push its group field

3: dup Duplicate top of stack

4: astore_2 Store top of stack into local variable #2

5: monitorenter Pop top of stack and acquire its monitor

As you can see, what appears like an atomic lock acquisition is in fact translated
into a short sequence of bytecode instructions whose last instruction actually requests
the monitor. If another thread changes the group of this container between bytecode
lines 2 and 5, the current thread will acquire the monitor of an obsolete group, and its
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subsequent operations won’t be mutually exclusive with other operations on the new
group of this container. In that case, the culprit must be a concurrent invocation to
connectTo because that’s the only method modifying the group references.

We must try multiple times, as shown in the following listing, until we’re certain that
the acquired monitor is current.

Listing 8.5 ThreadSafe: Method addWater

public void addWater(double amount) {
while (true) {

Object monitor = group;
synchronized (monitor) { b Tentatively acquires the monitor

if (monitor == group) { c The monitor is up-to-date.
double amountPerContainer = amount / group.elems.size();
group.amount += amountPerContainer;
return;

}
}

d The monitor was stale—retry.
}

}

Finally, as you can see in listing 8.6, getAmount is a simple getter, so you may be
wondering whether it’s really necessary to apply any synchronization to it. After all, it
only reads a primitive value. In the worst case, it may read a slightly stale value that’s just
being modified. Right? Wrong. The Java memory model specifies that even a single
read of a double value isn’t an atomic operation. That is to say that the 64-bit read
operation may be divided into two 32-bit reads, and those two reads may be interleaved
with a write operation by another thread. Without the synchronized block, you might
end up reading an absurd value, whose higher 32 bits are new and whose lower 32 bits
are stale, or vice versa. By the way, adding the volatile modifier to the amount field
also would solve this problem by rendering the read operation atomic.

Listing 8.6 ThreadSafe: Method getAmount

public double getAmount() {
synchronized (group) {

return group.amount;
}

}

For getAmount, you don’t need to worry about the accessed group being stale because
that would only give us a slightly out-of-date value, but not a wrong one. In a multi-
threaded environment, even the now-current value can be updated and become stale
at any time. Given that fact, it’s pointless to spend extra effort to ensure that we’re
reading the amount from the current group.

Compare this situation with addWater. If you update a stale group with addWater,
you get an inconsistency because you’d be adding water to a group that that no con-
tainer points to. The added water would vanish, and the method would have violated
its postcondition.
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8.4 Immutability [Immutable]

Immutability in C#
In C#, you create an immutable class
by declaring all of its fields as read�

only and making sure that all refer-
enced objects also belong to immutable
classes.

C# strings are immutable just like
Java’s, except that C# offers the option
to bypass immutability by using the
unsafe keyword. Another example of an
immutable class is System.DateTime.

Thread unsafety ultimately arises from
one thread writing to shared memory
while other threads are reading from or
writing to the same memory location.
An entirely diffent approach to obtain-
ing thread safety is to ensure that all the
shared objects are immutable, so the pre-
vious situation can’t occur, because no
thread can modify an object after it has
been initialized and shared. Unfortu-
nately, this approach doesn’t play well
with the API we established in chapter 1.
The simple fact that you can invoke getA�
mount twice on the same container and get two different values back implies that
containers have mutable state. Mutable objects are the default in Java, even though
the language features a couple of immutable classes in pretty prominent places, like
String and Integer. In fact, those standard classes make sure that all Java program-
mers have some experience with immutable objects and know that it’s possible to base
their programs on them.

As a refresher, a class is immutable if all its fields are final, and all the references
it holds point to other immutable classes.5 Whereas a method of a mutable class can
change the state of the current object, the analogous method of an immutable class
creates and returns a new object of the same type, with the desired content.

Let’s quickly review this principle in action in the standard String and Integer

classes. Those classes offer nomethod that modifies their content. To aid the program-
mer, however, this immutability is cleverly disguised by compile-time mechanisms that
allow you to write, for a String s and an Integer n:

s += " and others";
n++;

As you probably know, despite appearances, the previous two lines don’t modify the
objects that s and n point to, but rather create new objects that replace the old ones.
For example, the compiler turns the innocent-looking string concatenation into the
following eyesore, which even involves an entirely different class:

StringBuilder temp = StringBuilder();
temp.append(s);
temp.append(" and others");
s = temp.toString();

5 To be precise, a class can be immutable even if no field is final, but the final keyword ensures that it’s so.
This is the same distinction between a final and an effectively final variable, the latter property being relevant
to inner class visibility issues.
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Similarly, for an Integer increment, the compiler generates bytecode that unboxes the
value, increments it, and then wraps it again via a static factory method.6 That process
looks similar to the following Java snippet:

int value = n.intValue(); b Unwrapping
n = Integer.valueOf(value + 1); c Rewrapping

Back to our actual purposes, we’re discussing immutable classes in this chapter because
they’re automatically thread-safe. Multiple threads can invoke methods on the same
object, and those invocations can’t step on each other’s toes, simply because they can’t
write to the same memory. In particular, if one of those methods is supposed to return
a complex value, it’ll do so by creating a new object that other threads can’t possibly
see until the method actually returns it.

POP QUIZ 5 Why are immutable classes automatically thread-safe?

Immutability and functional languages
In other programming paradigms, such as the functional paradigm, immutability is
the default and sometimes the only option. For example, in OCaml, all variables are
immutable, except when specified by the mutable modifier. That works because the
program is one huge (or small) expression, and iteration is replaced by recursion.
Notice that recursion provides an appearance of mutability, in the sense that the
parameters of a recursive function are bound to different values in different steps
of the recursion.

JVM languages Scala and Kotlin also favor functional-style programming and immutabil-
ity: variables are immutable by default, but you can create mutable ones using the
var keyword.

8.4.1 The API

Let’s break the confines of the API I established in chapter 1 and sketch the public inter-
face for an immutable version of our containers, offering the same services as themuta-
ble one. Assuming that containers are immutable, the addWater method must return
a new container with the updated water amount, but this isn’t enough. If the current
container is connected to other ones, new objects with an updated water amount must
replace all those other containers. Imagine how cumbersome it would be to invoke
addWater and receive as a result the set of all updated containers that are connected
to the current one. We need to put the API through a more extensive refactoring.

The idea is to base the API design on a larger perspective, in which the main object
we manipulate is a system of containers. Each system is created with a fixed number n
of containers, indexed from 0 to n−1, and is itself immutable. Operations that change
the state of even a single container must appear to return a new system of containers.

6 Compared to a constructor, a factory method is not forced to return a new object. In fact, valueOf caches
all integers in the range −128 to 127.
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Whether the new object internally shares data with the old one is an implementation
issue that I’ll discuss later.

As a first attempt, let’s draft an API supporting a ContainerSystem class and a Con�

tainer class. The following snippet shows how you might go about creating a system
of 10 containers and then adding 42 units of water to the sixth one. Since these objects
are immutable, adding water returns a new system of containers.

ContainerSystem s1 = new ContainerSystem(10); b A new system of 10 containers
Container c = s1.getContainer(5); c The sixth container
ContainerSystem s2 = s1.addWater(c, 42); d A new system where c holds 42 units of water

This type of behavior, when a mutating operation returns a new object, is called a per-
sistent data structure. The name expresses the fact that such data structures make avail-
able to the clients their entire history. For example, in the previous snippet, system s1

is still available after you’ve obtained system s2 from it. The opposite situation, when
a data structure is modified in-place and doesn’t keep its past state, is called ephemeral,
and it’s the default behavior of classical imperative data structures. Because persistent
data structures offer more functionality, it’s not surprising that they’re generally less
efficient, in terms of time and space, than ephemeral ones.

Going back to the new API, notice that the container c is immutable and belongs
to system s1. This raises an important design choice: is c also a valid container for s2?
That is, can we invoke something like s2.addWater(c, 7)? If we can’t, the API is very
cumbersome to use. Every modification to any container generates a new system and
invalidates all current container objects. If we can, then we can expect c to represent
the “container of index 5” in any system of containers. In other words, c becomes a
thinly disguised alias for the index 5. Neither scenario is particularly satisfying. Instead,
let’s get rid of Container altogether (as in Memory3 and Memory4 from chapter 4) and
identify containers using bare integer IDs.

The first snippet, which creates a 10-container system and adds water to the sixth
container, becomes the following:

ContainerSystem s1 = new ContainerSystem(10);
ContainerSystem s2 = s1.addWater(5, 42); b Adds 42 liters to container 5

What if we realize we need an eleventh container, but we don’t want to start a new system
from scratch? An instance method of ContainerSystem can return a new system with
an extra container:

ContainerSystem s3 = s2.addContainer(); c Adds 11th container

Naturally, the connectTomethod (renamed connect for the occasion) must accept two
container IDs and return an entirely new system of containers:

s3 = s3.connect(5, 6); d Connects containers 5 and 6
double amount = s3.getAmount(5); e Holds the value 21.0

Summarizing, you end up with the following methods:
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public class ContainerSystem {
public ContainerSystem(int containerCount)
public ContainerSystem addContainer()
public int containerCount() f The number of containers in this system

public ContainerSystem connect(int containerID1, int containerID2)
public double getAmount(int containerID)
public ContainerSystem addWater(int containerID, double amount)

}

8.4.2 The implementation

To convert a given mutable implementation to immutability, you can apply the follow-
ing copy-on-write technique:

1 A system of containers holds the same data that was spread among all contain-
ers in the mutable implementation.

2 Eachmutating operation (addWater and connectTo) creates and returns a new
system holding a modified copy of the entire data structure.

This is the simplest way to turn a mutable class into an immutable one, but generally
not the most efficient. A more sophisticated approach would try to reuse as much as
possible of the old object, when you apply a mutating operation to it, instead of making
a full duplicate. In the case of water containers, you can imagine a smart immutable
implementation duplicating containers on-demand, that is, copying only the group of
containers that a givenmutating operation (say, a call to addWater) affects, and reusing
all other containers until they also become involved in a call to addWater or connectTo.

Persistent data structures
Designing efficient immutable data structures is an active area of research. The objec-
tive is to approach the efficiency of mutable data structures while enjoying the benefits
of immutability, especially in conjunction with functional languages.

Several third-party libraries provide “smart” Java persistent collections, where the
modified copy shares some data with the original one, saving both time and space
compared to a plain copy-on-write approach. Examples include PCollections (https
://github.com/hrldcpr/pcollections) and Cyclops (https://github.com/aol/cyclops).

In principle, you could apply the simple copy-on-write approach to any of the solu-
tions we explored in the previous chapters, producing as many different implementa-
tions of the immutable API as we developed in the previous section. In practice, most
of the mutable implementations you’ve seen so far make little sense once they become
immutable copy-on-write classes. Consider the most efficient mutable implementation
from chapter 3: the parent-pointer trees from Speed3. The value of that implementa-
tion is tied to its mutability: it’s efficient to update and to query. If every connectTo
operation were to copy the entire forest of trees (yes, that’s what a set of trees is called),
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you’d completely lose the update efficiency because each connectTo takes linear time.
At that point, you might as well use a simpler data structure to begin with.

Indeed, let’s sketch an immutable version of Memory3 instead. That implementation
is based on two arrays, which are easy and efficient to copy. The method connectTo

will still require linear time, but at least you’ll be able to copy all of the data with two
simple lines. Also, copying two chunks of contiguous memory is faster than copying a
linked forest of trees, despite having the same asymptotic complexity.

First, recall the data structures that Memory3 uses:

The group array maps a container ID to its group ID.
The amount array maps a group ID to the amount of water found in each
container of that group.

Each instance of ContainerSystem will hold these two arrays. It may be a good idea to
declare them as final, as a hint to their immutability. Of course, a final array reference
doesn’t prevent the content of the array from being modified. That’s why the final
modifier in this case is just a reminder that you’re aiming at a much stronger form of
immutability.

In Memory3, you keep the amount array as short as possible: when two containers
are connected and their groups are merged, one cell is removed from amount because
there’s one less group around. Here, we’re not particularly concerned with memory
occupancy, so you can take the simpler approach and keep the two arrays at the same
length, equal to the total number of containers.

The only public constructor for ContainerSystem creates a system with a given num-
ber of empty and isolated containers. To accomplish this aim, the constructor gives
each container its own group, and the ID of the i-th group is just i.

Given a container ID, the getAmount method will access the group array to obtain
the group ID for that container, then the amount array to obtain the water amount in
that group, as you can see in the following listing:

Listing 8.7 Immutable: Fields, constructor, and method getAmount

public class ContainerSystem {
private final int group[]; b From containerID to its groupID
private final double amount[]; c From groupID to

the per-container amount
public ContainerSystem(int containerCount) {

group = new int[containerCount];
amount = new double[containerCount];
for (int i=0; i<containerCount; i++) {

group[i] = i; d The groupID of the i-th container is i.
}

}

public double getAmount(int containerID) {
final int groupID = group[containerID];
return amount[groupID];

}
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The getAmount method is straightforward (and very similar to the one in Memory3)
because it provides a read-only functionality. Next, let’s consider the first mutating
method: addContainer, themethod that returns a new systemwith one extra container.
Because the two arrays are declared final, you must initialize them in a constructor.
Later, you’ll use the same constructor for the other mutating methods, addWater and
connect, so it’s convenient to pass two parameters to it:

The existing system to be copied.
The new number of containers. Method addContainer uses this parameter
to increase the number of containers by one, whereas the other mutating
methods leave this number unchanged.

Listing 8.8 shows both addContainer and its support constructor.

Listing 8.8 Immutable: Method addContainer and support constructor

public ContainerSystem addContainer() {
final int containerCount = group.length;
ContainerSystem result =

new ContainerSystem(this, containerCount + 1); b Call to private constructor
result.group[containerCount] = containerCount;
return result;

}
private ContainerSystem(ContainerSystem old, int length) {

group = Arrays.copyOf(old.group, length); c An efficient way to copy an array
amount = Arrays.copyOf(old.amount, length);

}

Next, addWater also needs to create an entirely new systemof containers, with updated
water amounts. Unless there’s no water to be added, it invokes the private constructor
from the previous listing and then updates the amount in the appropriate group, as
shown in the following listing.

Listing 8.9 Immutable: Method addWater

public ContainerSystem addWater(int containerID, double amount) {
if (amount == 0) b No need for a new system!

return this;

ContainerSystem result =
new ContainerSystem(this, group.length); c Call to private constructor

int groupID = group[containerID],
groupSize = groupSize(groupID);

result.amount[groupID] += amount / groupSize;
return result;

}

Finally, the connect method also creates a new system of containers using the pri-
vate constructor and then connects two containers by merging their groups. You can
find its source code in the accompanying repository(https://bitbucket.org/mfaella
/exercisesinstyle).
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8.5 And now for something completely different
In this section, you’ll face a different application requiring the same techniques I intro-
duced earlier in the chapter in the context of water containers. You’ll design a class
Repository<T>, representing a fixed-size container that stores its elements in indexed
cells, like an array. Repositories come with a built-in operation that switches the con-
tent of two cells. Naturally for this chapter, your users want this class to be thread-safe
so that multiple threads can easily share and manipulate repositories.

In detail, the class must offer the following constructor and methods:

public Repository(int n)—Creates a repository with n cells, initially hold-
ing null

public T set(int i, T elem)—Inserts object elem into the i-th cell and returns
the object previously located there (or null)
public void swap(int i, int j)—Swaps the contents of cells i and j

As discussed earlier, before implementing the class itself, you need to clarify its con-
currency policy. Recall that such a policy specifies which operations will be able to
proceed in parallel and which need to be mutually exclusive instead.

Because different repositories don’t share any data, the simplest concurrency policy
that guarantees thread safety is the object-level policy: one lock per repository and all
methods synchronized on that lock. If many threads use a repository concurrently, this
policy may give bad performance because all operations on the same repository—even
those involving different indices—must acquire the same lock.

A more permissive and efficient concurrency policy forbids concurrent access to the
same index and allows all other operations to proceed concurrently. You can state it as
follows:

Two calls to set on the same index must be serialized.
Two calls to swap that share at least an index must be serialized.
A call to swap(i, j) and a call to set on index i or j must be serialized.
All other operations are allowed to proceed concurrently.

This policy requires a lock for each cell in the repository, including empty cells (those
holding null). Hence, the class needs one extra object for each cell, used as a monitor
for that cell. You can store the elements and the monitors in two ArrayLists:

public class Repository<T> {
private final List<T> elements;
private final List<Object> monitors;

public Repository(int size) {
elements = new ArrayList<>(size);
monitors = new ArrayList<>(size);
for (int i=0; i<size; i++) {

elements.add(null); b Lists must be filled before you can call get and set.
monitors.add(new Object());

}
}
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The set method simply acquires the monitor of the cell being written:

public T set(int i, T elem) {
synchronized (monitors.get(i)) {

return elements.set(i, elem);
}

}

The swap method acquires the monitors of the two cells being swapped, in increasing
index order, to avoid deadlocks:

public void swap(int i, int j) {
if (i == j) return;
if (i > j) { c Makes sure that i is the smaller index

int temp = i;
i = j;
j = temp;

}
synchronized (monitors.get(i)) { { d Acquires monitors in index order

synchronized (monitors.get(j)) {
elements.set(i, elements.set(j, elements.get(i)));

e This one-liner uses the fact that List.set
returns the value previously at that position.}

}
}

Notice that in this way you’re allowing different threads to read and even modify an
ArrayList at the same time, provided they use different indices. However, ArrayList
is not a thread-safe class. Is this code wrong? If you read the ArrayList documentation
carefully, you’ll realize that the caller only needs to serialize structural modifications (such
as calling add); concurrent calls to get and set on different indices are fine.

8.6 Real-world use cases
In this chapter, we’ve discussed how to make water containers thread-safe so that mul-
tiple threads can interact with them without requiring the client code to handle syn-
chronization explicitly. But why did we decide to get into trouble refactoring the code
to make it thread-safe? The single-threaded version works just fine. To answer this
question, let’s look at some use cases where concurrency is not only beneficial but
crucial.

You love chess, and at the same time you’re a gifted programmer. For fun
and practice, you decide to create a chess program in Java to play against your
computer. After a few games of chess, you realize that your program is great
(modesty is not one of your traits), and you want to share it with the world. You
decide to turn your program into a service, where the computer will be able to
compete against multiple users. You can handle multiple games in two ways:
either you put users in a queue and handle them serially, or you can exploit
concurrency and handle many players simultaneously. The second approach
can take advantage of parallel hardware, such as a multi-core machine.
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Applications, operating systems, network devices, databases—in other words,
virtually all ongoing services in a computational system—create logs. They
don’t generate such log files for fun: well-managed organizations analyze their
contents in batches or in real time to mitigate risks. A basic analysis work-
flow involves parsing log files; identifying important patterns or anomalies;
and generating aggregate statistics, reports, and alerts. A common pattern
for dealing efficiently with large log files is the Map-Reduce paradigm. As you
might have guessed, this pattern consists of two steps: map and reduce. The
map step enables the log analysis system to process independent chunks of log
data concurrently, often on a distributed network of machines, and generate
intermediate results. The reduce step collects the results and computes the
final aggregates. The fork-join framework I mentioned at the beginning of
this chapter is a variant of this idea, tailored to single multicore architectures.
If you’ve ever lived in the United Kingdom, you’ve probably realized that foot-
ball is extremely popular. In fact, during a Sunday afternoon, you can catego-
rize people into those who drink beer and those who don’t. Football players
and minors are those who don’t (hopefully). Having noticed this passion for
sports, you decide to create a platform that will send live sports news feeds and
distribute them to your subscribers. The live feeds will produce streams of data
and put them in a container data structure, and subscriber clients will request
data from the container to inform your subscribers. A thread-safe news con-
tainer will enable data producers and consumers to run in multiple threads,
giving your clients the satisfaction of raising a pint to their team before their
neighbors.
A program isolated from the rest of the world is rarely very useful. On the con-
trary, real programs will frequently wait for some input/output operation from
an external resource, such as a file or a network connection. Multithreading
allows a user-facing program to remain responsive while waiting on such slow
peripherals. For example, think of a single-threaded web browser that stops
being interactive while downloading a file from the network. Can you guess
how many users this web browser would have? At most one: its creator.

8.7 Applying what you learned

EXERCISE 1
The following subclass of Thread increments all elements of an array of integers by one.
As you can see, all instances of this class share the array.

class MyThread extends Thread {
private static int[] array = ... b Some initial value

public void run() {
_____1_____ c A placeholder
for (int i=0; i<array.length; i++) {
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_____2_____
array[i]++;
_____3_____

}
_____4_____

}
}

A program creates two instances of MyThread and launches them as two concurrent
threads, with the intention of incrementing each array element by two. Which of
the following insertions make the program correct by removing all race conditions?
(Multiple options may be correct.)

(a) 1 = “synchronized (this) {” 4 = “}”

(b) 1 = “synchronized {” 4 = “}”

(c) 1 = “synchronized (array) {” 4 = “}”

(d) 2 = “synchronized (this) {” 3 = “}”

(e) 2 = “synchronized (array) {” 3 = “}”

(f) 2 = “synchronized (array[i]) {” 3 = “}”

EXERCISE 2
Design the thread-safe class AtomicPair, which holds two objects and offers the follow-
ing methods:

public class AtomicPair<S,T> {
public void setBoth(S first, T second);
public S getFirst();
public T getSecond();

}

Respect the following concurrency policy: Calling setBoth is an atomic operation.
That is, if a thread calls setBoth(a,b), any subsequent call to getFirst and getSecond

will view both updated values.

EXERCISE 3
In a simple social network, each user holds a set of friends, and friendship is symmet-
rical. The implementation is based on the following class:

public class SocialUser {
private final String name;
private final Set<SocialUser> friends = new HashSet<>();

public SocialUser(String name) {
this.name = name;

}
public synchronized void befriend(SocialUser other) {

friends.add(other);
synchronized (other) {

other.friends.add(this);
}

}
public synchronized boolean isFriend(SocialUser other) {
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return friends.contains(other);
}

}

Unfortunately, when multiple threads establish friendships at the same time, some-
times the system hangs and needs to be restarted. Do you know why? Can you fix the
problem by refactoring SocialUser?

EXERCISE 4
Consider the following mutable class, Time, representing a time of the day in hours,
minutes, and seconds:

public void addNoWrapping(Time delta)—Adds a delay to this time, max-
ing out at one second before midnight (23:59:59)
public void addAndWrapAround(Time delta)—Adds a delay to this time,
wrapping around at midnight
public void subtractNoWrapping(Time delta)—Subtracts a delay from this
time, stopping at 00:00:00
public void subtractAndWrapAround(Time delta)—Subtracts a delay from
this time, wrapping around if needed

Convert this API into an immutable version and implement it.

Summary
A reasoned concurrency policy is a crucial prerequisite for thread safety.
The main enemies of thread safety are race conditions and deadlocks.
You can avoid deadlocks by using a global lock or an ordered lock policy.
Differently from implicit locks, you can acquire and release explicit locks in
any order.
Immutability is an alternative path to thread safety.

Answers to quizzes and exercises

POP QUIZ 1
Users of a class should know only that the class is thread-safe. The rest of the concur-
rency policy is intended for the class implementors. In practice, however, users may be
interested in the concurrency policy for appraising the class performance.

POP QUIZ 2
You can’t get into a deadlock if the locks are reentrant, that is, if a thread can reacquire
a lock that it already owns. In Java, both implicit and explicit locks are reentrant. In
other frameworks, such as Posix mutexes, locks can be non-reentrant, and a single
thread can deadlock if it tries to reacquire a lock it already owns.
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POP QUIZ 3
If an exception is thrown from inside a synchronized block, the monitor is automat-
ically released. On the other hand, you need to explicitly release a ReentrantLock.
That’s why its unlock operation is usually put in the finally part of a try...catch

block, to make sure it’s executed under all circumstances.

POP QUIZ 4
The ordered locking technique prevents deadlocks because requesting locks in a fixed
global order prevents cycles from being formed.

POP QUIZ 5
Immutable classes are automatically thread-safe because you can only read their objects,
and concurrent reads by multiple threads pose no safety concerns. Methods creating
new objects may employ mutable local variables because they live on the stack and
aren’t shared with other threads.

EXERCISE 1
The correct options are (c) and (e). Both ensure that if a thread is performing array[i]++,
the other thread can’t be performing the same instruction, even on a different i.
What’s more, (c) completely serializes the threads: one for loop is executed entirely
before the other loop can start.

Options (a) and (d) don’t provide any mutual exclusion because the two threads
would be synchronizing on two different monitors. Options (b) and (f) cause compi-
lation errors because a synchronized block needs to specify the object providing the
monitor (and array[i] is not an object).

EXERCISE 2
To obey the concurrency policy, you just use synchronized blocks in all three methods,
locking the same monitor. As explained in this chapter, it’s better to synchronize on
a private object rather than synchronize on this, even if the latter would allow you to
replace the synchronized blocks with a sleeker method modifier.
public class AtomicPair<S,T> {

private S first;
private T second;
private final Object lock = new Object(); b Provides a private monitor

public void setBoth(S first, T second) {
synchronized (lock) {

this.first = first;
this.second = second;

}
}
public S getFirst() {

synchronized (lock) {
return first;

}
}
... c getSecond is analogous.

}
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It may look odd to put a single return statement in a synchronized block, but it’s
essential for both mutual exclusion and visibility reasons. First, you don’t want getFirst
and getSecond to occur when setBoth is halfway through its body. Second, without a
synchronized block, threads calling getFirst would have no guarantee of seeing the
updated value of first. By the way, declaring both first and second as volatile
would solve the second issue (visibility) but not the first one (mutual exclusion).

EXERCISE 3
The class SocialUser may cause a deadlock if a thread invokes a.befriend(b) and
another thread simultaneously invokes b.befriend(a), for two SocialUser objects a
and b. To avoid this risk, you can adopt the ordered locking technique, which starts
with equipping each object with a unique id:

public class SocialUserNoDeadlock {
private final String name;
private final Set<SocialUserNoDeadlock> friends = new HashSet<>();
private final int id;
private static final AtomicInteger instanceCounter = new AtomicInteger();

public SocialUserNoDeadlock(String name) {
this.name = name;
this.id = instanceCounter.incrementAndGet();

}

The befriend method then avoids deadlocks by requesting the two locks in the order
of increasing id:

public void befriend(SocialUserNoDeadlock other) {
Object firstMonitor, secondMonitor;
if (id < other.id) {

firstMonitor = this;
secondMonitor = other;

} else {
firstMonitor = other;
secondMonitor = this;

}
synchronized (firstMonitor) {

synchronized (secondMonitor) {
friends.add(other);
other.friends.add(this);

}
}

}

EXERCISE 4
To convert the API from mutable to immutable, you make every mutating method
return a new object of the class. It’s also a good idea to declare all fields final. The
rest is simple arithmetic, needed to carry the overflows from seconds to minutes and
from minutes to hours.
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public class Time {
private final int hours, minutes, seconds;

public Time addNoWrapping(Time delta) {
int s = seconds, m = minutes, h = hours;
s += delta.seconds;
if (s > 59) { b Second overflow: carries over to minutes

s -= 60;
m++;

}
m += delta.minutes;
if (m > 59) { c Minute overflow: carries over to hours

m -= 60;
h++;

}
h += delta.hours;
if (h > 23) { d Hour overflow: set to max

h = 23;
m = 59;
s = 59;

}
return new Time(h, m, s); e Returns new object

}

You can find the rest of this class in the accompanying repository (https://bitbucket
.org/mfaella/exercisesinstyle). Notice that the standard Java class java.time.LocalTime
provides functionality similar to that which this Time class provides.

Further reading
B. Goetz, T. Peierls, Joshua Bloch, J. Bowbeer, D. Holmes, and D. Lea. Java
Concurrency in Practice. Addison-Wesley, 2006.
Themust-read on Java concurrency. It discusses all kinds of concurrency issues
in a fortunate combination of technical rigor and captivating style. Unfortu-
nately, as of this writing it hasn’t been updated with the high-level concurrency
facilities added to the JDK starting from version 7. (See the next book for that.)
R.-G. Urma, M. Fusco, and A. Mycroft. Modern Java in Action. Manning Publi-
cations, 2019.
A comprehensive introduction to data streams, with a chapter dedicated to
parallel computation using streams and the fork-join framework.
Joshua Bloch. Effective Java. Addison-Wesley, 2017.
As a rule, I’m trying to suggest different books for each chapter, but I’mmaking
an exception for this book because it contains somuch good advice on somany
different topics. Chapter 11 is entirely devoted to concurrency, and item 17 to
immutability in particular.
R. J. Anderson and H. Woll. “Wait-Free Parallel Algorithms for the Union-Find
Problem.” 1991.
The thread-safe water container class developed in this chapter is based on
Speed1, which is not a particularly efficient representation. This research paper
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shows how to create a thread-safe implementation of the much faster parent-
pointer trees of Speed3 which in addition is wait-free. It achieves thread safety
using the compare-and-swap instruction instead of locks.
Chris Okasaki. Purely Functional Data Structures. Cambridge University Press,
1998.
The author of this book expanded his PhD thesis into an in-depth treatise on
persistent data structures, with examples in ML and Haskell.
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9Please recycle:
Reusability

This chapter covers
Generalizing a piece of software to a
wider context

Using generics to write reusable classes

Using and customizing mutable collectors
on data streams

In the previous chapters, you developed concrete classes that solved a specific problem.
Now, assume you need to generalize your solution to a broader variety of problems.
Ideally, you should discern the essential features of the problem, separate them from
what’s merely incidental, and develop a solution for all the problems that share the
same essential structure. Unfortunately, discerning the essential from the incidental is
far from obvious. Roughly speaking, you should try to keep the key structure—that is,
the part that may be useful in other contexts.

This final chapter assumes you’re familiar with generics, including bounded type
parameters.

9.1 Establishing boundaries
In the first decades of OOP, reusability was considered one of the selling points of
the paradigm. The promise was that all you ever had to do was write small, reusable
components and combine themwith existing reusable components pulled off the shelf.

247
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After some 50 years of practice (the first OO language was 1967’s Simula), some of this
promise has been confirmed, and some has proven to be off target.

Programmers pull reusable components off the shelf all the time: they’re libraries
and frameworks. A large part of today’s development focuses on web applications that
benefit greatly from a set of standard services packaged as a framework. On the other
hand, once you cross the boundaries of your framework into application-specific code,
reusability quickly fades into the background, pushed aside by more pressing func-
tional and nonfunctional concerns, such as correctness, performance, and time to
market.

In this chapter, you’ll develop a library of objects that behave somewhat like water
containers, with generality in mind. As is often the case with libraries, the question is:
How general should it be? Should it extend from water containers to oil containers,
or all the way to an intergalactic network of connectable planets with trade routes and
population levels? To guide you in this choice, let’s consider a couple of scenarios that
you probably want to capture with the generalized framework, and another scenario
that you may not want to capture because it would stretch the generalization too far.

SCENARIO 1 Themunicipal water company using your Container library is report-
ing that total water amounts show discrepancies of up to 0.0000001 liters of water
a year.

You track these unfortunate inconsistencies to floating-point rounding errors. Fix-
ing them requires representing water amounts with rational numbers with arbitrarily
large numerators and denominators (say, two BigInteger objects).

Supporting this change is relatively straightforward: the business logic remains the
same, whereas you replace the type of the amount field by a type variable T, and you
require T to implement an interface providing the appropriate arithmetic operations.

SCENARIO 2 A social network wants to track the total number of likes that all sets
of related posts receive. Two posts are considered related if both of them have
attracted a comment coming from the same user.

At first glance, scenario 2 seems to have little to do with water containers, until you
realize that you can treat each post as a container. When two posts receive a comment
by the same person, they become connected. Instead of addWater, the scenario calls
for a method adding one or more likes to this post. Finally, instead of getAmount, you
need a method that returns the total number of likes that all posts connected to this
one collected.

The scenario is not too different from water containers after all: in both cases, the
objects can be permanently connected with each other, and what really counts is the
set of directly or indirectly connected objects. Moreover, in both cases, objects have a
property that you can read or update locally, but the effect of an update depends on
the group of connected items.
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On the other hand, the specific ways you update the local property and the ways it
influences the global property are a little different. In the following sections, you’ll see
how you can reconcile them under a single contract. But first, here’s a third extension
scenario.

SCENARIO 3 A mobile phone carrier needs to manage its network of antennas.
The company can permanently connect antennas to each other, and it wants to
know how many direct connections you need to traverse from each given antenna
to each other antenna (aka the length of the shortest path).

In this scenario, you still have items that you can permanently connect with each
other. But the main property of interest—connection distance between antennas—
concerns two given items, and its value depends on which direct connections exist. In
particular, the value of this property is not shared among a group of connected anten-
nas. Hence, this scenario needs radically different connection representations and
management. Supporting it would make your code so generic that customizing it for
a concrete scenario would require more effort than writing a specific solution from
scratch.

Based on these descriptions, you’ll develop a generic implementation of water con-
tainers that can accommodate scenarios 1 and 2, but not scenario 3.

9.2 The general framework
First, you’ll formalize with an interface the essential features of a generic container:

1 A generic container possesses an attribute of some type V (for value). Clients
can read the attribute or update it locally on a container, but the actual effect
of an update depends on the group of connected containers. For concrete
water containers, it will be V = Double.

2 Clients can permanently connect generic containers to each other.

Conceptually, these two features are independent, so you might represent them with
two different interfaces (say, Attribute and Connectable). However, because you’d
end up using them together all the time, let’s put both features in a single interface
called ContainerLike.

Having an attribute of type V (feature 1) simply translates to equipping the interface
with two methods like the following:

public interface ContainerLike<V> {
V get() b Generalization of getAmount
void update(V value) c Generalization of addWater
...

}

The fact that the effect of an update depends on the group of connected containers
doesn’t show in the API. As for connecting one generic container to another (feature
2), choosing the right method signature is trickier. Ideally, we’d like generic containers
to be connectable to other generic containers of the same type, but we can’t exactly ask
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that in a Java interface. In the theory of programming languages, this is the well-known
binary method problem.

Binary methods
A binary method is a method of a class that accepts as an argument another object of
the same class, like the connectTo method of water containers. Common examples
include the methods for object equality and for comparing two objects for order. In
Java, these correspond to the equals method from the class Object and the com�

pareTo method from the Comparable interface. The type system of common OO
languages like Java and C# can’t express the constraint that all subclasses of a given
class or interface must have a binary method of a specified form. That is, you can’t
write something like:

public interface Comparable {
int compareTo(thisType other);

}

where thisType is an imaginary keyword representing the class implementing this
interface.

As a consequence, Java adopts two different solutions for the above-mentioned
methods:

The parameter of equals is simply declared as Object. Subclasses need to
check at runtime whether the argument is of the appropriate type.
The language designers solved the Comparable case via generics. The inter-
face is equipped with a type parameter T, and the parameter of compareTo
is declared as being of type T. This solution increases type safety but allows
unintended uses like the proverbial

class Apple implements Comparable<Orange> { ... }

In C#, the situation is similar, and solved in a similar manner, except that equality is
supported in two ways: both an Equalsmethod from the class Object with parameter
Object and the IEquatable<T> interface.

Let’s examine a couple of different solutions for the signature of connectTo:

void connectTo(Object other)—Similar to the signature of Object::equals.
With this signature, you’re just giving up on type safety, not enlisting the com-
piler into helping you in any way. The body of connectTo would need to check
the dynamic type of its argument and then perform a downcast before it could
do anything with it.
void connectTo(ContainerLike<V> other)—You’re getting some help from
the compiler, but not quite enough. With this signature, connectTo accepts
any other generic container that happens to have an attribute of the same
type as this generic container. To perform its job, connectTo still needs to cast

Licensed to Abner Lopez <ihackn3wton@gmail.com>



The general framework 251

its argument to something more specific that exposes its representation for
container connections.

POP QUIZ 1 Is it a good idea to insert a public boolean equals(Employee e)

method into an Employee class? Why or why not?

A better alternative mimics the solution that Java chose for Comparable: introduce
an extra type parameter T, representing the type of objects that generic containers can
be connected to, and hope that the parameter will be used in the proper way. We can’t
ask that T be the same class that’s implementing the interface, but we can ask that it be
a (possibly different) class implementing the same interface.

Listing 9.1 ContainerLike: The generic interface for containers

public interface ContainerLike<V, T extends ContainerLike<V,T>{}> {
V get();
void update(V val);
void connectTo(T other);

}

The intended use of ContainerLike is to be implemented as follows:

class MyContainer implements ContainerLike<Something, MyContainer> { ... }

just like the intended use of Comparable is:

class Employee implements Comparable<Employee> { ... }

If a class adheres to that scheme (that is, it sets T to be itself), its connectTo method
won’t need to perform a downcast because it will receive as argument an object that’s
already of the same type as “this,” which is exactly what the method needs to do its
group-merging job.

Implementing generics in Java
In Java, generics are implemented via erasure, meaning that the compiler uses type
parameters to perform a more expressive type checking and then throws them away.
Type parameters are not included in the bytecode, nor does the JVM support them.

This implementation strategy restricts what you can do with generics. For example, you
can’t instantiate a type parameter with new T(), and you can’t compare the runtime
type of an expression with a type parameter using exp instanceof T.

Implementing generics in C# and C++
Contrary to Java, C++ and C# implement generics via reification, meaning that each
specific version of a generic class, like List<String> is converted into a concrete
class, either at compile time (C++) or at runtime (C#). Different versions of the same
class may or may not share code, depending on the type arguments and the smartness
of the compiler and runtime environment.
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This implementation choice allows you to use type parameters in most places where
a regular type would work, but it may introduce overhead, either in terms of (object)
code duplication or in terms of the resources needed to maintain the runtime type
information.

POP QUIZ 2 If T is a type parameter, can you allocate an array of type T in Java?
What about C#?

9.2.1 The attribute API

Next, we need to introduce an interface that represents the behavior of the attribute
when we update its value with update and especially when we connect generic contain-
ers with connectTo.

To delimit the level of generality that we want to support, we make the following
assumptions:

1 When locally updating the property, you can compute the new group value
based only on the current group value and the new local value. In other words,
the group value must contain enough information to perform the required
update.

2 When merging two groups, you can obtain the new group value based only on
the two old group values.

Compare assumptions 1 and 2 with the two generalized scenarios presented at the
beginning of the chapter. Scenario 1 poses no problem because it’s a simple variation
of the basic water container setting. In scenario 2, the property of interest is the total
number of likes accrued by all connected posts—that’s their “group value.” Locally
updating the property means adding likes to a particular post. As a result, the group
value increases by the same amount, in accordance with assumption 1.

Let’s check whether assumption 2 holds. When two groups of posts are connected
(that is, when a user who commented on the first group of posts comments on a
post from the second group), you can merge their group values by adding them up.
You need no further information to compute the new group value, so that confirms
assumption 2.

Equipped with the above assumptions, let’s sketch the API defining the behavior
of the attribute that all containers hold. To avoid confusion between the local value
and the group value, let’s call the latter the group summary. First of all, you should
distinguish the type V of the local value from the type S of the group summary. In some
cases, they will be the same; for example, in scenario 2, both types would be Integer

because they represent like counts. In the case of water containers instead, they’ll turn
out to be different types, as I explain in section 9.5.

Now, introduce an interface Attribute<V,S> providing the operations that con-
tainers need to perform their contractual obligations, described earlier as features
1 and 2:
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A new generic container needs to initialize its group summary (method seed).
The getmethod of a generic container needs amethod to unwrap its summary
into a local value of type V (method report).
The updatemethod of generic containers needs to update its summary (method
update).
The connectTomethod needs a method that merges two summaries (method
merge).

You end up with an interface similar to the following listing, whereas table 9.1 sum-
marizes the dependencies between the methods of generic containers and those of the
Attribute interface.

Listing 9.2 Attribute: The generic interface for the property of containers

public interface Attribute<V,S> {
S seed(); b Provides the initial summary
void update(S summary, V value); c Updates a summary with a value
S merge(S summary1, S summary2); d Merges two summaries
V report(S summary); e Unwraps a summary

}

Table 9.1 Relationships between the methods of generic containers
and the methods of the Attribute interface

Method of generic container Method of property

constructor seed

get report

update update

connectTo merge

Notice how an Attribute object itself is stateless: it doesn’t contain the value of the
attribute. That’s for the generic container to hold in a separate object of type S (for a
group summary) or V (for a cached local value).

The Attribute interface bears a definite resemblance to the interface introduced in
Java 8 to collect the outcome of a stream operation in a single result. The next section
takes the opportunity to briefly present streams and mutable collectors.

9.2.2 Mutable collectors

Streams complement collections by providing a handy composable framework for sequen-
tial operations. Here, I’ll quickly introduce the framework and then focus on a specific
feature that’s relevant to the water container example: mutable collectors. For a more
comprehensive account of the framework, check out the resources at the end of this
chapter.

You can turn standard collections into streams using the stream method. In turn,
stream objects support a variety of intermediate and terminal operations. Intermediate
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operations turn a stream into another stream of the same type or a different type.
Terminal operations produce some output that’s not a stream. One of the simplest
terminal operations is forEach, which executes a code snippet on every element of the
stream. Let listOfStrings be. . . what it says; the following fragment prints all strings
in the list:

listOfStrings.stream().forEach(s -> System.out.println(s));

The argument of forEach is an object of type Consumer. Because the latter is a func-
tional interface, you can instantiate it using the convenient Lambda-expression syntax.
Let’s add an intermediate operation to print only the strings that are longer than 10
characters:

listOfStrings.stream().filter(s -> s.length() > 10)
.forEach(s -> System.out.println(s));

Sometimes you want to collect the result of a sequence of stream operations into a new
collection. You can do that with the collect terminal operation, accepting a muta-
ble collector as an object of type Collector. Static factory methods from the Collec�

tors class provide common collectors. For example, the following snippet gathers the
filtered strings into a list:

List<String> longStrings =
listOfStrings.stream().filter(s -> s.length() > 10)

.collect(Collectors.toList());

Other standard collectors allow you to put the result into a set or a map. You can
create your own collectors by implementing the Collector interface. To understand
the various parts of the Collector interface, consider what you’d do with a plain old
collection if you wanted to summarize it into a single mutable result. You’d have some
sort of summary object, initialized with some default value and then updated on every
element in the collection. After scanning all the elements, you might want to convert
the summary into a different type—let’s call it the result type.

Collection<V> collection = ...
Summary summary = new Summary(); b Initial summary
for (V value: collection) {

summary.update(value); c Updates summary with value
}
Result result = summary.toResult(); d Converts summary to result

The Collector interface abstracts these three steps, plus another step you need for
parallel collectors. If the loop over all the values is assigned to multiple threads (that is,
each thread takes care of a subset of the values), each thread builds its own summary,
and you eventually need to merge these summaries before they can produce a final
result. This merge operation is the fourth and final ingredient in a collector.

Calling S the type of the summary and R the type of the final result, youmight expect
the Collector interface to contain methods like the following:
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S supply(); b Initial summary
void accumulate(S summary, V value); c Updates summary with value
S combine(S summary1, S summary2); d Merges two summaries
R finish(S summary); e Converts summary to result

Notice the close similarity between this imaginary collector and the Attribute inter-
face introduced earlier for abstracting the water level value of containers. However,
the actual Collector interface introduces onemore level of indirection by having each
method return an object that performs the corresponding function. This is in line with
the rest of the stream framework and with the functional programming style by which
it’s inspired. The return types for all four methods are functional interfaces, that is, inter-
faces that each have a single abstract method. Table 9.2 outlines the characteristics of
these four interfaces.

Table 9.2 Functional interfaces mutable collectors use. They’re among the more than
40 functional interfaces in the java.util.function package.

Interface Type of abstract method Role

Supplier<S> void → S Provides the initial summary

BiConsumer<S,V> (S, V) → void Updates a summary with a value

BinaryOperator<S> (S, S) → S Merges two summaries

Function<S,R> S → R Converts a summary into a result

You use a fifth method to state whether this collector possesses two standard charac-
teristics:

Concurrency—Does this collector support concurrent execution by multiple
threads?
Order—Does this collector preserve the order of the elements?

An internal enumeration called Characteristics provides the flags corresponding to
these features. Summarizing, you get the following methods:

public interface Collector<V,S,R> {
Supplier<S> supplier(); b Initial summary
BiConsumer<S,V> accumulator(); c Updates summary with value
BinaryOperator<S> combiner(); d Merges two summaries
Function<S,R> finisher(); e Converts summary to result
Set<Characteristics> characteristics(); f Whether it’s concurrent, ordered, etc.

}

This use of functional interfaces makes collectors easily interoperable with Lambda
expressions and method references, two handy ways to implement functional inter-
faces. In the next section, I’ll introduce method references and guide you through the
implementation of a concrete collector of strings.
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POP QUIZ 3 What’s the role of the combiner method of a collector? When will
you use it?

AN EXAMPLE: STRING CONCATENATION
Let’s wrap up with an example: a custom collector that concatenates a sequence of
strings into a single string, using a StringBuilder as a temporary summary. As String�
Builder isn’t thread-safe, the collector won’t be concurrent.1 On the other hand, it
preserves the order of the strings because it concatenates them in order. This arrange-
ment is convenient because those are exactly the default characteristics for a collector,
so you can return an empty set from the method characteristics.

Now, if it wasn’t for Lambda expressions and method references, you’d have to
put up with a lot of anonymous classes to define your collector. In fact, you’d need
five anonymous classes: an outer class for the collector itself and four inner classes to
instantiate the corresponding functional interfaces. Just consider the first method:

Collector<String,StringBuilder,String> concatenator =
new Collector<>() { b Outer anonymous class

@Override
public Supplier<StringBuilder> supplier() { c Provides the initial summary

return new Supplier<>() { d First inner anonymous class
@Override
public StringBuilder get() {

return new StringBuilder();
}

};
}
... e Overriding the other four methods of Collector

};

Method references. . .
. . .were added to Java 8 as a new type of expression that turns an existing method or
constructor into an instance of a functional interface, using the double colon notation
“::”. In its simplest form, a method reference adapts an instance method to a suitable
interface. For example

ToIntFunction<Object> hasher = Object::hashCode;

where ToIntFunction<T> is a functional interface whose only method is

int applyAsInt(T item)

A method reference also can refer to a method of a specific object:

Consumer<String> printer = System.out::println;

You also can apply method references to static methods and constructors.

1 To make a concurrent collector, you could use StringBuffer instead of StringBuilder, or add explicit
synchronization.
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With method references, the previous snippet becomes much simpler. You can pro-
vide the supplier by a reference to the constructor of StringBuilder. The compiler
takes care of wrapping the constructor into an object of type Supplier<StringBuilder>.

Collector<String,StringBuilder,String> concatenator = new Collector<>() {
@Override
public Supplier<StringBuilder> supplier() {

return StringBuilder::new; b Reference to the constructor
}
... c Overriding the other four methods of Collector

};

Even better, the class Collector provides a static method of that dispenses with even
providing the outer anonymous class, leading to the following handy solution. Here,
I’ve provided all four main methods of the interface as method references:

Collector<String,StringBuilder,String> concatenator =
Collector.of(StringBuilder::new, b The supplier (reference to a constructor)

StringBuilder::append, c The update function
StringBuilder::append, d The merge function (another append method)

StringBuilder::toString); e The finisher

Method references don’t allow you to specify the signature of the method you’re refer-
ring to, just its name. The compiler infers the signature from the context where the
method reference occurs. Such context must identify a specific functional interface.
For example, in the previous snippet, the update function reference resolves to the
following method from StringBuilder:

public StringBuilder append(String s)

because the context calls for a BiConsumer<StringBuilder,String>. You may have
noticed a mismatch here: append returns a value, whereas a BiConsumer returns void.
The compiler happily lets you get away with it, just like you’re allowed to invoke a
method returning a value and ignore that value. Table 9.3 summarizes this compatibil-
ity rule.

Table 9.3 Comparing the signatures and types of the method StringBuilder::append
and the functional interface BiConsumer. SB is short for StringBuilder.

Method Target functional interface

Signature SB append(String s) BiConsumer<SB,String>

Type (SB,String) → SB (SB,String) → void

TIP You can assign a reference to a non-voidmethod to a void functional interface.

Moving to the merge function method reference in the snippet, its context requires
a BinaryOperator<StringBuilder>, that is, a method accepting two StringBuilders
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(including this) and returning another StringBuilder. A different append method
from the StringBuilder class can fill this role:

public StringBuilder append(CharSequence seq)

This case also requires a conversion because themethod append accepts a CharSequence,
whereas the target functional interface expects a StringBuilder. This conversion is
permitted because CharSequence is a super-type of StringBuilder. Table 9.4 summa-
rizes the situation.

Table 9.4 Comparing the signatures and types of the method StringBuilder::append
and the functional interface BinaryOperator. SB is short for StringBuilder.

Method Target functional interface

Signature SB append(CharSequence seq) BinaryOperator<SB>

Type (SB,CharSequence) → SB (SB,SB) → SB

TIP You can assign a reference to a method accepting an argument of type T to a
functional interface whose method expects a subtype of T.

By the way, a collector very similar to this concatenator is included in the JDK as
the object returned by the static method Collectors.joining().

POP QUIZ 4 Can you assign a method reference to a variable of type Object?

9.2.3 Adapting Attribute to functional interfaces

You can equip Attribute with the same type of adapter that you find in Collector:
a static method that takes four functional interfaces and turns them into an object
of type Attribute. With this method, clients can create concrete implementations of
Attribute using four Lambda expressions or method references, like you just did with
the string concatenator.

This adapter method takes the following form:

public static <V,S> Attribute<V,S> of(Supplier<S> supplier,
BiConsumer<S,V> updater,
BinaryOperator<S> combiner,
Function<S,V> finisher) {

return new Attribute<>() { b Anonymous class
@Override
public S seed() {

return supplier.get();
}
@Override
public void update(S summary, V value) {

updater.accept(summary, value);
}
@Override
public S merge(S summary1, S summary2) {

return combiner.apply(summary1, summary2);
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}
@Override
public V report(S summary) {

return finisher.apply(summary);
}

}; c End anonymous class
}

9.3 A generic container implementation
You can now devise a generic implementation of ContainerLike that manages connec-
tions and groups, while delegating the behavior of the property to an object of type
Attribute. A good choice and a nice exercise would be to base this implementation
on Speed3 from chapter 3 because it exhibits the best overall performance.

First, recall the basic structure of Speed3, based on parent-pointer trees. Each con-
tainer is a node in a tree, and only the root containers know the amount of water and
the size of their group. Containers hold three fields, two of which are relevant only to
root containers:

The amount of water that the group holds (if this container is a root)
The size of this group (if this container is a root)
The parent container (or a self-loop, if this container is a root)

In fact, this is the beginning of Speed3:

public class Container {
private Container parent = this; b Initially, each container is the root of its tree.
private double amount;
private int size = 1;

The generic version, called UnionFindNode, replaces the amount field with an object
of type S, holding the group summary, and an object of type Attribute, holding the
methods for manipulating summaries and values. The fields and constructor of Union�
FindNode are shown in the following listing.

Listing 9.3 UnionFindNode: Fields and constructor

public class UnionFindNode<V,S>
implements ContainerLike<V,UnionFindNode<V,S>{}> {

private UnionFindNode<V,S> parent = this; b Initially, each node is a root.
private int groupSize = 1;

private final Attribute<V,S> attribute; c Contains the methods for
manipulating the attributeprivate S summary;

public UnionFindNode(Attribute<V,S> dom) {
attribute = dom;
summary = dom.seed();

}
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The methods get and update identify the root of their tree (as in Speed3) and then
invoke the appropriate attribute method to unwrap the summary or update the sum-
mary based on a new value, as shown in listing 9.4. The private support method find�

RootAndCompress is responsible for finding the root and flattening the path leading to
the root to speed up future calls.

Listing 9.4 UnionFindNode: Methods get and update

public V get() { b Returns current value of attribute
UnionFindNode<V,S> root = findRootAndCompress();
return attribute.report(root.summary);

}
public void update(V value) { c Updates attribute

UnionFindNode<V,S> root = findRootAndCompress();
attribute.update(root.summary, value);

}

Finally, themethod connectTo enforces the link-by-size policy I explained in chapter
3 and invokes the merge method of the Attribute to merge the summaries of the two
groups being connected. As promised, connectTo doesn’t need to perform any cast on
its argument, thanks to the expressive signature you chose earlier.

Listing 9.5 UnionFindNode: Method connectTo

public void connectTo(UnionFindNode<V,S> other) {
UnionFindNode<V,S> root1 = findRootAndCompress(),

root2 = other.findRootAndCompress();
if (root1 == root2) return;
int size1 = root1.groupSize, size2 = root2.groupSize;

b Merges the two summaries
S newSummary = attribute.merge(root1.summary, root2.summary);

if (size1 <= size2) { c The link-by-size policy
root1.parent = root2;
root2.summary = newSummary;
root2.groupSize += size1;

} else {
root2.parent = root1;
root1.summary = newSummary;
root1.groupSize += size2;

}
}

Figure 9.1 summarizes the three classes I’ve presented so far. Together, they form a
generic framework to generate container-like behaviors.

9.4 General considerations
Let’s stop this flurry of code for a second and think about the general process of gener-
alizing a given set of functionalities to a wider context. Before this process starts, you
need a clear motivation to generalize your code or specifications. It may be tempting
to generalize a solution just because you envision it becoming an elegant framework,
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has a field of this type

implements with
T = UnionFindNode<V,S>

≪interface≫
ContainerLike<V,T>

≪interface≫
Attribute<V,S>

+ get(): V
+ update(V): void
+ connectTo(T): void

+ seed(): S
+ update(S, V): void
+ merge(S, S): S
+ report(S): V

Each node has a 
single parent
(possibly itself).

UnionFindNode<V,S>

- parent: UnionFindNode
- groupSize: int
- attribute: Attribute
- summary: S

1..*

1
parent

A node can 
have many 
children.

Figure 9.1 A UML class diagram for the generic water container framework

or perhaps just for the challenge! If you’re programming for fun or to learn a new lan-
guage, those reasons are good enough. On the job, though, you better have a business-
related motivation to turn a fine yet specific solution into a general framework that’s
likely to be slower, more complicated, and harder to maintain. Good business-oriented
motivations boil down to one of the following:

The general solution can be a product in itself. You and your colleagues/
managers deem that your organization can release the general solution inde-
pendently as a library or framework that other organizations can use.
The general solution can cater to different functions in your product. Perhaps
the general solution can replace and unify separate specific solutions that are
part of your product.
The general solution can support future evolutions of your product. You should
handle this motivation with care. As Imentioned before, programmers and de-
signers are inclined to overengineer and overgeneralize software. The extreme-
programming YAGNI motto—You aren’t gonna need it—recognizes and chal-
lenges this tendency.

Once you identify a clear motivation, it’s time to establish one or more extra applica-
tion scenarios (aka use cases) that the current implementation or specification doesn’t
cover but should cover, according to your motivation. That’s what I did at the begin-
ning of this chapter, presenting two target scenarios and one scenario that’s beyond
the scope of the generalization.
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These use cases guide you toward a general API, often in the form of one or more
interfaces. In the case of water containers, this analysis led to the two interfaces
ContainerLike and Attribute.

If you started with a concrete implementation, it’s time to adapt it to the general
interfaces you designed in the previous step. That’s what you did when you started
with the concrete Container class from version Speed3 (from chapter 3) and converted
it to the generic class UnionFindNode. Now you’ll need some extra code—hopefully
not too much—to recover the original functionality using the new generic framework.
That’s the aim of the next section.

9.5 Recovering water containers [Generic]
In this section, I’ll show you how to recover a concrete implementation of water con-
tainers, with their concrete water-level attribute, using the generic implementation you
developed in the previous section. The result is a class that behaves pretty much like
Speed3, except with a couple of abstraction levels added. That’s the cost for a generic
implementation that you can easily adapt to a range of conditions.

9.5.1 Updated use case

The use case for the concrete implementation will be similar, but not identical, to the
one I’ve been using in the rest of the book. The only difference is in the names of two
methods: instead of the specific getAmount and addWater, you get the generic names
get and update that the ContainerLike interface provides. As a result, the first lines
of the standard use case become the following:

Container a = new Container();
Container b = new Container();
Container c = new Container();
Container d = new Container();

a.update(12.0); b update is analogous to addWater.
d.update(8.0);
a.connectTo(b);

c get is analogous to getAmount.
System.out.println(a.get()+" "+b.get()+" "+c.get()+" "+d.get());

The desired output from the previous fragment is the same as in the original use case:

6.0 6.0 0.0 8.0

9.5.2 Designing the concrete attribute

Every concrete class based on UnionFindNode needs to fix types V and S and supply
an object of type Attribute<V,S>. For water containers, V = Double because that’s
the natural type for water amounts. At first glance, it may seem that a summary of
type S = Double also would work. After all, shouldn’t the group summary just be the
total amount of water in the group? You might argue that you can then compute the
amount per container by dividing the group amount by the size of the group, and the
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latter would be stored in the groupSize field of the root node. However, the Attribute
object doesn’t have access to the UnionFindNode object it belongs to! As a result, it can’t
access its groupSize field. You’re forced to replicate the group size information and
store a separate copy inside the summary. That’s another cost due to the generality of
the solution.

Instead of a simple S = Double, you need a custom class to play the role of the
group summary. Let’s call it ContainerSummary. Every summary holds the total group
amount and the size of the group. Besides a natural two-parameter constructor, I’ll add
a default constructor, as shown in listing 9.6. In that way, I can later refer to it with a
method reference (OK, “constructor reference” would be more precise) and fill in the
“seed” operation of the Attribute interface.

Listing 9.6 ContainerSummary: Fields and constructors

class ContainerSummary {
private double amount;
private int groupSize;

public ContainerSummary(double amount, int groupSize) {
this.amount = amount;
this.groupSize = groupSize;

}
public ContainerSummary() { b Default constructor

this(0, 1); c Calls the other constructor with 0 water and 1 container in the group
}

Next, the following listing contains the three methods that provide the remaining
attribute operations.

Listing 9.7 ContainerSummary: Summary manipulation methods

b Analogous to addWater
public void update(double increment) {

this.amount += increment;
}

c Used when connecting two containers

public ContainerSummary merge(ContainerSummary other) {
return new ContainerSummary(amount + other.amount,

groupSize + other.groupSize);
}

d Returns amount per container
public double getAmount() {

return amount / groupSize;
}

Finally, you can use the staticmethod of from the Attribute interface and fourmethod
references to instantiate the Attribute object that UnionFindNode needs. There’s a
slight mismatch between the primitive type double that the methods in Container�

Summary use and the wrapper type Double that Attribute expects. But not to worry:
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auto(un)boxing makes sure that you can use method references involving primitive
types even when the context calls for wrapper types.

You can then expose this Attribute object to the clients as a class constant, that is,
a final static field, as in the following listing.

Listing 9.8 ContainerSummary: The Attribute field

public static final Attribute<Double,ContainerSummary> ops =
Attribute.of(ContainerSummary::new, b Reference to default constructor

ContainerSummary::update,
ContainerSummary::merge,
ContainerSummary::getAmount);

Figure 9.2 features a UML class diagram for ContainerSummary and its relationship to
Attribute. Notice how the constructor and the three methods of ContainerSummary
correspond to the four methods of the interface.

has a field of this typeStatic
field

- amount: double
- groupSize: int
+ ops: Attribute<Double, ContainerSummary>

+ ContainerSummary()
+ update(double): void
+ merge(ContainerSummary): ContainerSummary
+ getAmount(): double

ContainerSummary

≪interface≫
Attribute<V,S>

+ seed(): S
+ update(S, V): void
+ merge(S, S): S
+ report(S): V

Figure 9.2 A UML class diagram for ContainerSummary and its relationship to Attribute. The
first parameter of methods update, merge, and report is bound to this in the corresponding
methods of ContainerSummary.

9.5.3 Defining the concrete water container class

Once you’ve defined the concrete summary and its support methods, you can recover
the usual behavior of water containers with just three lines, by extending UnionFind�

Node and passing the appropriate Attribute object to its constructor, as shown in the
following listing.

Listing 9.9 Generic: Water containers in three lines

public class Container extends UnionFindNode<Double,ContainerSummary> {
public Container() {

super(ContainerSummary.ops);
}

}

That was pretty neat, but we did run into some limitations of Java generics. If you think
about it, it’s a waste of space that all UnionFindNodes must carry a reference to the
same Attribute object. If generics were reified instead of erased, that reference could
have been a static field of UnionFindNode<Double,ContainerSummary>. In that way, all
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nodes of that type would have shared a single reference to the object responsible for
manipulating summaries.

Incidentally, listing 9.9 is the shortest definition of a functioning water container
class in the book. It’s even shorter than the one in the appendix, which is explicitly
optimized for brevity! Of course, the version in this section is cheating; we’ve moved
all the functionality to the generic framework. If you count all that code (classes Union�
FindNode and ContainerSummary, and interfaces ContainerLike and Attribute) the
generic version is actually the longest in the book!

9.6 Social network posts
To witness the generality of your solution, let’s design another concrete container ver-
sion, this time addressing the second scenario I presented at the beginning of this
chapter: posts in a social network, connected by common commenters and counting
total likes. In fact, this scenario turns out to be simpler than water containers. This
time, it’s enough for the group summary to hold the total number of likes that the
posts in the group accrue; there’s no need to know the size of the group. As a result,
the summary is just a wrapper around an integer.

Listing 9.10 PostSummary: Field and constructors

class PostSummary {
private int likeCount;

public PostSummary(int likeCount) {
this.likeCount = likeCount;

}
public PostSummary() {} b Allows for a method reference later

The default constructor fulfills the “seed” operation of Attribute. The methods
shown in the following listing provide the other three operations. Once again, you can
use the static method of to pack those four operations into an object of type Attribute.

Listing 9.11 PostSummary: Methods and static field

public void update(int likes) {
likeCount += likes;

}
public PostSummary merge(PostSummary summary) {

return new PostSummary(likeCount + summary.likeCount);
}
public int getCount() {

return likeCount;
}
public static final Attribute<Integer,PostSummary> ops =

Attribute.of(PostSummary::new, b Reference to default constructor
PostSummary::update,
PostSummary::merge,
PostSummary::getCount);

}
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Just like you did with water containers in the previous section, you can instantiate
the class representing social network posts with the three lines in the following listing:

Listing 9.12 Post: Counting likes with the generic framework

public class Post extends UnionFindNode<Integer,PostSummary> {
public Post() {

super(PostSummary.ops);
}

}

9.7 And now for something completely different
Rather than a single class, this last example features a stand-alone application with a
GUI. It’s an opportunity to apply the principles outlined in this book on a larger scale.
In the online repository,2 you can find a simple GUI application that plots a parabola,
that is, a curve whose equation is in the form

y = ax2 + bx+ c .

You can see a screenshot in figure 9.3. The top panel plots the function for a fixed
range of x values. The middle panel lists the value of the function for five fixed values
of x. The bottom panel allows the user to interactively change the value of the three
parameters, a, b, and c.

PlotPanel

TablePanel

ParamPanel

Figure 9.3 A screenshot of the plotting program

2 The baseline version of the plotting app is in the package eis.chapter9.plot, whereas the generalized
version sits in eis.chapter9.generic.plot.
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Controller
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updates
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Shared data

➍  Views read data
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Figure 9.4 The communication scheme for the baseline plotting program. Parameters are stored in a
plain array of doubles, shared among all components. In this scheme, each controller must know all
views.

The baseline implementation is composed of four classes—one for each panel and
one Main class that ties them together. It can plot only parabolas, and it contains a
couple of defects:

Code duplication—Both TablePanel and PlotPanel contain code that evaluates
a parabola at a given point. It would be better to have that code in a single
place.
An ad-hoc communication scheme—When you change a parameter by moving a
slider, the code responding to the event (aka the controller) asks all panels to
repaint. This is not so bad, but imagine a full-blown version of this application,
with tons of widgets that can change the visualization in different ways. If you
keep this communication scheme, you need to make all widgets aware of all
panels that visualize the function (aka views). Figure 9.4 depicts a typical flow
of events in this architecture.

Let’s generalize this app so that it can plot arbitrary parametric functions with any
number of parameters, that is, curves of equation

y = f(a1, . . . , an, x) ,

where a1, . . . , an are parameters. To be clear, I’m not talking about accepting the func-
tion definition from text, which would require a parser. The generalized app should
just be able to switch to a different type of function with as little programmer effort as
possible. The program should automatically adapt the GUI to the type of function that
it’s displaying. For example, the number of sliders in the bottom panel must equal the
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number of parameters. Along the way, we’ll also address the two design shortcomings
I listed earlier.

9.7.1 An interface for parametric functions

The first step in the generalization process is to identify an interface—call it Parametric�
Function—representing a parametric function. To allow the application to fully adapt
to a specific parametric function, the interface must include the following services:

Providing the number of parameters.
Providing the names of each parameter. This allows you to customize the labels
“a,” “b,” and “c” in the parameter panel.
Getting and setting the value of each parameter.
Evaluating the function on a given value, for the current value of its parame-
ters. This functionality solves the code duplication issue discussed earlier. The
parametric function will be the only place responsible for computing the value
of the function.

To translate these functionalities into Java, you have to index parameters from 0 to
n− 1, and obtain an interface like the following:
public interface ParametricFunction {

int getNParams(); b Returns the number of parameters

String getParamName(int i); c Returns the name of parameter i

double getParam(int i); d Returns the value of parameter i

void setParam(int i, double val); e Sets the value of parameter i

double eval(double x); f Returns the value of this function at x
}

At this point, you recover the old concrete behavior with a Parabola class that imple-
ments this interface. (I’m skipping precondition checks for simplicity.)
public class Parabola implements ParametricFunction {

private final static int N = 3; b Three parameters
private final static String[] name = { "a", "b", "c" };
private double[] a = new double[N];

public int getNParams() { return N; }
public String getParamName(int i) { return name[i]; }
public double getParam(int i) { return a[i]; }
public void setParam(int i, double val) { a[i] = val; }
public double eval(double x) { return a[0]*x*x + a[1]*x + a[2]; }

}

You can imagine how easy it is to define a different parametric function. For example,
suppose you want to plot the hyperbola with equation

y =
a

x
= f(a, x).

The following class does the trick:
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public class Hyperbola implements ParametricFunction {
private final static int N = 1; b One parameter
private final static String[] name = { "a" };
private double[] a = new double[1];

public int getNParams() { return N; }
public String getParamName(int i) { return name[i]; }
public double getParam(int i) { return a[i]; }
public void setParam(int i, double val) { a[i] = val; }
public double eval(double x) { return a[0] / x; }

}

If you compare Parabola and Hyperbola, you’ll notice immediately that they share a
lot of code. The only substantial difference lies in their implementation of eval, which
is where the specific function is actually defined. This suggests that an abstract class,
inserted between the interface and the concrete classes, might carry most of the weight
of these classes.

The abstract class—call it AbstractFunction—can be responsible for storing and
managing parameters, and even for providing standard parameter names (the letters
“a”, “b”, and so on). Basically, the abstract class takes care of everything, except com-
puting the value of the function with eval, which is left abstract. Here’s a possible
implementation for the abstract class (once again, omitting some checks for simplicity):

public abstract class AbstractFunction implements ParametricFunction {
private final int n;
protected final double[] a; b Accessible to subclasses for efficiency

public AbstractFunction(int n) { c Constructor for the subclasses
this.n = n;
this.a = new double[n];

}

public int getNParams() { return n; }
public String getParamName(int i) {

final int firstLetter = 97; d ASCII code for ’a’
return Character.toString(firstLetter + i);

}
public double getParam(int i) { return a[i]; }
public void setParam(int i, double val) { a[i] = val; }

}

The abstract class streamlines the definition of concrete functions. For example, here’s
what Hyperbola looks like when taking advantage of AbstractFunction:

public class Hyperbola extends AbstractFunction {
public Hyperbola() { super(1); }
public double eval(double x) { return a[0] / x; }

}
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9.7.2 A communication discipline

You can take the opportunity of this refactoring to also improve the communication
scheme of the program. Now you have a central object, the parametric function, which
holds the relevant data (the parameters) and provides the information to be displayed
(the function values). It’s the ideal situation for applying the well-known model-view-
controller (MVC) architectural pattern.

Model-View-Controller. . .
. . .is an architectural pattern proposed in the 1970s for desktop programs with GUIs.
It suggests to assign software components to three categories:

Models—Components holding the data relevant to the application
Views—Components presenting the data to the user
Controllers—Components responding to user inputs

In the original pattern, controllers aren’t supposed to interact directly with views. Upon
receiving a user command—such as a button click—the controller informs or modifies
the model. In turn, the model is reponsible for notifying those views that need to be
updated.

Since its inception, the MVC pattern has been adopted by and adapted to different
scenarios, particularly web application frameworks. It also has given rise to variants
such as model-view-adapter and model-view-presenter.

In the context of the plotting app, the parametric function is the model class, the
three panels are views, and the event handlers responding to the sliders are controllers.
Design the refactored app to adhere to the communication scheme thatMVCoriginally
intended:

When the program starts, the three views register themselves as observers of the
model. The model (the parametric function) holds references to them.

To avoid cluttering the ParametricFunction interface with unrelated fea-
tures, you can assign the responsibility for holding these references and send-
ing notifications to a separate class—ObservableFunction in the repository—
that wraps a parametric function and adds these functionalities.3

When the user moves a slider in the parameter panel of the GUI, the con-
troller updates the value of the corresponding parameter in the model. The
controller doesn’t take any other action.
Whenever themodel receives a call to setParam to update the value of a param-
eter, it notifies all registered views that something in the model has changed.

Here are themain bits of the ObservableFunction class. First, it wraps a Parametric�
Function object, and at the same time it implements that interface. It also keeps track

3 This mechanism is an example of the Decorator design pattern.
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of its observers as a list of ActionListeners. The latter is a standard interface from the
Java AWT windowing kit, whose only method is void actionPerformed(ActionEvent

e). The ActionEvent parameter is meant to carry information about the event that’s
being notified. You’ll support a single type of event: the user changing the value of
one of the function’s parameters. That’s why you can use a single dummy event object
for all notifications. Here’s the beginning of the ObservableFunction class:

public class ObservableFunction implements ParametricFunction {
private final ParametricFunction f; b Inner parametric function
private final List<ActionListener> listeners = new ArrayList<>();
private final ActionEvent dummyEvent =

new ActionEvent(this, ActionEvent.ACTION_FIRST, "update");

public ObservableFunction(ParametricFunction f) { this.f = f; }

The core responsibility of ObservableFunction is to notify all observers when a call to
setParam is made:

public void setParam(int i, double val) {
f.setParam(i, val);
for (ActionListener listener: listeners) { b Notifies observers

listener.actionPerformed(dummyEvent); c A dummy event carrying no actual info
}

}

All other methods are passed through to the inner ParametricFunction object. For
example, here’s the implementation of getParam:

public double getParam(int i) { b Passed through to inner function
return f.getParam(i);

}

Figure 9.5 depicts the new communication scheme. Because a single object—the
model—is responsible for notifying all views, you can afford to split the three views
of the previous version into a higher number of views. For example, instead of consid-
ering the whole TablePanel as a view, you can treat as views the five labels in the “y”
column. After all, they’re the only part of that panel that the program needs to redraw
when the user updates one of the parameters.

This communication scheme is more robust than the custom solution that the base-
line plotting app used. It’s easier to add new views or controllers. To activate a new view,
it’s sufficient to pass themodel to it and register it as anothermodel observer. You don’t
need to modify any controllers. Symmetrically, it’s possible to add new controllers to
the GUI (that is, new interactive widgets) without changing the view components.

9.8 Real-world use cases
As you’ve seen in this chapter, generics are a very powerful feature that enables defin-
ing type-safe data structures that can work with different data types. Types become
parameters (generics are also known as parametric polymorphism) whose specification
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Figure 9.5 The communication scheme for the refactored plotting program. According to MVC, the
controller interacts with the views only through the model. The arrows between
ObservableFunction and ParametricFunction indicate that the former implements the latter,
and in addition contains a reference to an inner ParametricFunction.

you defer until the time of declaration. Type parameterization promotes code resua-
bility because it’s possible to avoid repeating the same algorithm over and over for
different data types. To make this more concrete, I’ll present some further use cases:

Probably one of the most important use cases of generics is a data container:
vectors, lists, sets, trees, queues, stacks, and so on. Can you identify an impor-
tant principle all these containers have in common? They’re agnostic to the
type of the object they’re handling. They only take care of the organization of
the objects: if you pop an item off the stack, the container doesn’t care about
the type of the object that you popped.
As you’ve seen in the previous chapter, multithreading has always been one
of the major features of the Java language, and one that has evolved with new
releases. What stands out in this evolution, though, is the concurrency utilities
that the language designers added in Java 1.5, when they introduced generics
to the language. Since the early days, it was possible to represent a threaded
task by implementing the Runnable interface. That interface has a single run

method that doesn’t accept any parameter or return any value. Hence, it’s lim-
ited to those cases where no result value is expected from the thread. On the
other hand, the newer Callable interface is a generic interface that returns a
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parameterized type. To execute a task, you must submit an object implement-
ing Callable to an ExecutorService to launch it. Can you guess what type
the executor service returns? Another parameterized type: Future. The type
Future<T> bears the semantics of an expectation, that you’re expecting some
result of type T once the computation is complete.
In the first use case I discussed how data structures use generics to organize
data. It’s often the case, however, that you use generics for containers holding
a single element of a parametric type. AtomicReference<T> is an example of
a single-element container that you can use in a setting where it’s required to
perform an atomic, thread-safe operation. Thus it’s possible to share the object
among different threads without having to use synchronization. Another exam-
ple is the recent Optional<T> class, which replaces the need to return null

values and is featured in exercise 3 in this chapter.
In a production codebase, it’s common to use a data access object (DAO) that
provides an interface for accessing a persistence mechanism (such as a rela-
tional database). The purpose of the DAO is to provide operations on the per-
sistence mechanism without exposing its internals to the client. Imagine writ-
ing a DAO to perform some CRUD operations on a database: create, delete,
update, findAll, and so on. You might want to use this DAO to persist differ-
ent entity types defined in your domain model. Using generics, it’s possible to
parameterize the DAO and use these common operations for different entity
types.

9.9 Applying what you learned

EXERCISE 1
Recall that Java generics are implemented via erasure and C# generics via reification. As
a consequence, table 9.5 shows three instructions involving a type parameter T that are
valid in C# but invalid in Java. What’s a Java workaround in each of those three cases?
In other words, what’s an alternative way to obtain a similar effect?

Table 9.5 Some limitations of Java generics, compared to C#, of what
you can do with a type parameter T. Note that the first example
requires the type constraint “where T: new()” to be correct C#.

Instruction type Incorrect in Java Correct in C#

New object new T() new T()

New array new T[10] new T[10]

Runtime type checking exp instanceof T exp is T
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EXERCISE 2
Using the generic UnionFindNode infrastructure, design a solution to the first scenario
discussed at the beginning of this chapter: water containers with arbitrary precision
rational water levels (in the mathematical sense of rational numbers).

Hint: Don’t reinvent the wheel. Start from an existing class for arbitrary precision
rational numbers. There are a couple online.

EXERCISE 3
Design a Schedule<E> class handling generic events of type E, where Emust be a subtype
of the following interface:

public interface Event {
void start();
void stop();

}

The class Schedule<E> must provide the following methods:

public void addEvent(E event, LocalTime startTime, LocalTime stop

Time)—Adds an event to this schedule, with specified start and stop times.
If the event overlaps with another event from this schedule, this method throws
an IllegalArgumentException. If this schedule has already been launched
(method launch), this method throws an IllegalStateException.
public void launch()—From the moment you call this method, this sched-
ule is responsible for invoking the start and stopmethods of its events at the
right time. You can’t add any more events to the schedule after launch.
public Optional<E> currentEvent()—Returns the currently active event, if
any. In case you missed it, Optional is the modern alternative to returning a
null value. An Optional<E> can contain an object of type E or be empty. If
the client has already launched this schedule, but there’s no active event at this
time, thismethod returns an empty Optional. If the client hasn’t launched this
schedule, this method throws an IllegalStateException.

In addition, implement a concrete class of events—say, HTTPEvent—whose start and
stop actions spawn HTTP GET messags to specified URLs.

EXERCISE 4
Write a method that accepts a collection of objects and partitions them according to
an equivalence predicate.

public static <T> Set<Set<T>{}> partition(
Collection<? extends T> c,
BiPredicate<? super T, ? super T> equivalence)

BiPredicate<U,V> is a standard functional interface whose only method is boolean
test(U u, V v). You can assume that the equivalence predicate satisfies the rules of
an equivalence relation—reflexivity, symmetry, and transitivity—just like the equals

method from Object.
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For example, say you want to group strings according to their length. You can define
the corresponding equivalence as the following BiPredicate:

BiPredicate<String,String> sameLength = (a, b) -> a.length() == b.length();

You may then call the partition method on a set of strings:

Set<String> names = Set.of("Walter", "Skyler", "Hank", "Mike", "Saul");
Set<Set<String>{}> groups = partition(names, sameLength);
System.out.println(groups);

As a result, you should get those five strings gathered in two groups according to their
length:

[[Walter, Skyler], [Saul, Mike, Hank]]

Hint: This exercise is closer to water containers than you may think.

Summary
Modern programming combines powerful reusable frameworks with application-
specific code.
Generics help write reusable components.
Reusable components may incur extra costs compared to an ad-hoc solution.
Java 8 streams make heavy use of generics to offer a highly configurable data-
processing framework.
Generalizing a piece of software starts by defining a set of target scenarios.
Reusable software components often revolve around a set of key interfaces.
The original model-view-controller architecture prescribes responsibilities and
communication protocols for desktop applications with GUIs.

Answers to quizzes and exercises

POP QUIZ 1
It’s not a good idea to insert a public boolean equals(Employee e) method into
an Employee class. First, note that you’re overloading and not overriding the equals

method from Object. As a consequence, employees end up with two different equality
methods: an identity-based one inherited from Object, and a presumably content-
based one with a more specific parameter type. When comparing two employees,
you might end up calling either method, depending on the static type of the second
employee:

Employee alex = ..., beth = ...;
alex.equals(beth); b Content-based comparison
alex.equals((Object) beth); c Identity-based comparison

This situation is prone to errors and likely not what the programmer intended.
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POP QUIZ 2
No, in Java you can’t allocate an array of type T (new T[...]), where T is a type parame-
ter. That’s because arrays store their type and use that information to check at runtime
that every write or cast operation is legal. Due to erasure, the bytecode doesn’t store
the actual value of T at runtime, so that mechanism can’t work. You shouldn’t confuse
this limitation with the ability to declare a variable of type T[], which is perfectly legal.

In C#, you can allocate an array of type T because the type parameters are reified—
their actual value is known at runtime.

POP QUIZ 3
Only parallel collectors use the combiner method of a collector. It returns an object
that you can use to merge the partial results that different threads obtain as they’re
cooperating to execute a stream operation.

POP QUIZ 4
You can’t directly assign a method reference to a variable of type Object, as in:

Object x = String::length; b Compile-time error

because the context doesn’t contain enough information to identify a specific func-
tional interface. If you must do something like that, a cast might come in handy:

Object x = (ToIntFunction<String>) String::length; c Valid Java

EXERCISE 1
When you need runtime type information, and generics aren’t enough, reflection is
usually the solution. For example, instead of “new T(),” you can carry around an object
t of type Class<T> and then dynamically invoke a constructor using the following
fragment:

Constructor<T> constructor = t.getConstructor(); b Returns the default constructor
T object = constructor.newInstance();

Depending on the context, an alternative solution is to have the client provide a
Supplier<T>, a functional interface that can wrap a constructor or any other way to
produce objects of type T.

The recommended workaround to “new T[10]” involves using a collection instead
of an array:

List<T> list = new ArrayList<T>();

As you saw in chapter 4, with a List you get a variety of extra services, and you pay very
little overhead (but you can’t write list[i]; life’s hard).

Finally, you can again emulate a runtime check similar to “exp instanceof T” via
reflection. If you have an object t of type Class, you can check whether a given
expression is a subtype of t via

t.isInstance(exp);
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EXERCISE 2
As the class for arbitrary precision rational numbers, I picked BigRational by Robert
Sedgewick and Kevin Wayne.4 It’s an intuitive implementation of immutable rationals
that you can use like this:
BigRational a = new BigRational(1, 3); b One-third
BigRational b = new BigRational(1, 2); c One-half
BigRational c = a.plus(b);
System.out.println(c); d Prints 5/6

You can equip water containers with amounts of type BigRational bymodifying the Con�
tainer class presented in section 9.5. First, you redefine the group summary class, with
an amount field of type BigRational and the same integral group size field. Whenever
you need to perform arithmetics on water amounts, you need to use the methods of
BigRational, like plus or divides. I’ll provide here a fragment of the group summary
class, called RationalSummary. You can find the rest in the online repository.
class RationalSummary {

private BigRational amount;
private int groupSize;
...
public void update(BigRational increment) {

amount = amount.plus(increment); b BigRationals are immutable
}
...
public static final Attribute<BigRational,RationalSummary> ops =

Attribute.of(RationalSummary::new,
RationalSummary::update,
RationalSummary::merge,
RationalSummary::getAmount);

}

Once you have the group summary class, you get the container class by extending
UnionFindNode and passing the Attribute object to its constructor:
public class Container extends UnionFindNode<BigRational,RationalSummary> {

public Container() {
super(RationalSummary.ops);

}
}

EXERCISE 3
The class Schedule must store a sorted sequence of non-overlapping events. To allow
it to do so, define a support class—say TimedEvent—to keep together the event and its
start and stop times. This can be a private internal class of Schedule.

A TreeSet<TimedEvent> with a custom order between elements can efficiently keep
timed events sorted and detect overlaps at the same time. Recall that all implemen-
tations of the Set interface reject duplicate elements. TreeSet implements Set and
bases all its operations on the order between its elements, including detecting dupli-
cates (that is, it doesn’t invoke equals). To reject a timed event that overlaps with

4 You can find a copy in the online repository at https://bitbucket.org/mfaella/exercisesinstyle.
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a previously inserted one, define the order so that overlapping events are equivalent
(compareTo returns zero). In other words, use the following order:

If event a comes entirely before event b, a is “smaller” than b, and vice versa.
If two events overlap, they’re “equivalent” (compareTo returns zero).

Here is the gist of the TimedEvent class:

public class Schedule<E> {

private class TimedEvent implements Comparable<TimedEvent> {
E event; b This class is private—no need to hide its fields.
LocalTime startTime, stopTime;
@Override
public int compareTo(TimedEvent other) {

if (stopTime.isBefore(other.startTime)) return -1;
if (other.stopTime.isBefore(startTime)) return 1;
return 0; c Overlapping events appear “equivalent.”

}
... d Trivial constructor omitted

}

Each Schedule object holds the following fields:

private volatile boolean active;—Set by launch and reset at the end of
the helper thread that executes the schedule. The volatilemodifier ensures
visibility across threads.
private volatile Optional<E> currentEvent = Optional.empty();—
Maintained by the helper thread that executes the schedule. The currentEvent
method returns its value.
private final SortedSet<TimedEvent> events = new TreeSet<>();—
The sequence of timed events.

Method addEvent adds a new timed event to the TreeSet and checks three illegal cases.

public void addEvent(E event, LocalTime startTime, LocalTime stopTime)
{

if (active)
throw new IllegalStateException(

"Cannot add event while active.");
if (startTime.isAfter(stopTime))

throw new IllegalArgumentException(
"Stop time is earlier than start time.");

TimedEvent timedEvent = new TimedEvent(event, startTime, stopTime);
if (!events.add(timedEvent)) b Insertion fails in case of overlap

throw new IllegalArgumentException("Overlapping event.");
}

The actual execution of the schedule is forked out to another thread, so as not to block
the launch method. You can find the code for launch and two examples of concrete
event classes (PrintEvent and HTTPEvent) in the online repository.
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EXERCISE 4
You can solve this exercise using an implementation of the generic container frame-
work, such as UnionFindNode. The idea is to create a node for each element of the given
collection and connect two nodes whenever their elements are equivalent according to
the given predicate. After you’ve laid out all the connections, the groups of connected
nodes form the desired output.

To eventually get the desired output, each node must know the set of nodes con-
nected to it. Let’s put that information into the group summary. You need an imple-
mentation of Attribute<V,S> with both V and S equal to Set<T>. Once again, the
adapter method Attribute.of comes in handy:

public static <T> Set<Set<T>{}>
partition(Collection<? extends T> collection,

BiPredicate<? super T, ? super T> equivalent) {

Attribute<Set<T>,Set<T>{}> groupProperty = Attribute.of(
HashSet::new, b Reference to constructor
Set::addAll, c Reference to method of interface

(set1, set2) -> { d Merges two sets
Set<T> union = new HashSet<>(set1);
union.addAll(set2);
return union;

},
set -> set); e No need to unwrap anything

The first actual operation involves creating a node for each element in the collection.
You also need to keep track of which node belongs to which element. You can use a
map for that:

Map<T,UnionFindNode<Set<T>,Set<T>{}>{}> nodeMap = new HashMap<>();
for (T item: collection) {

UnionFindNode<Set<T>,Set<T>{}> node =
new UnionFindNode<>(groupProperty);

node.update(Set.of(item)); b Initializes the group
nodeMap.put(item, node); c Assigns the node to the current item

}

Then, you turn each equivalence into a connection between two nodes:

for (T item1: collection) {
for (T item2: collection) {

if (equivalent.test(item1, item2))
nodeMap.get(item1).connectTo(nodeMap.get(item2));

}
}

Finally, you collect all groups into a set, which is the desired partition of elements:

Set<Set<T>{}> result = new HashSet<>();
for (T item: collection) {

result.add(nodeMap.get(item).get());
}
return result;

}
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Further reading
M. Naftalin, P. Wadler. Java Generics and Collections. O’Reilly, 2006.
You won’t find the latest gimmicks in this Java 5 book, but a solid coverage of
generics and their subtleties.
J. Tulach. Practical API Design: Confessions of a Java Framework Architect. Apress,
2008.
Writing effectively reusable code is closely tied to defining proper APIs. This
is one of the few books devoted entirely to that topic.
R.-G. Urma, M. Fusco, and A. Mycroft. Modern Java in Action. Manning Publi-
cations, 2019.
As mentioned in chapter 8, this book includes one of the best accounts of the
stream library.
J. Skeet. C# in Depth. Manning Publications, 2019.
An up-to-date presentation of the evolution of C# across versions, including
a reasoned comparison between the implementation of generics in C#, C++,
and Java.
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Code golf:

Succinctness

Just like the objective of golf is to complete the course in the fewest number of strokes,
code golf is a game that involves writing the shortest possible program to accomplish a
given task. Several websites host code-golf tournaments, propose new tasks, and main-
tain player rankings. When the deadline for a given challenge expires, all submissions
become public, and you can peek at the tricks that the best golfers used.

This appendix is almost the opposite of chapter 7 in that it will present the most
obscure code in the book while breaking all style rules ever conceived. You’ve been
warned.

Besides the fun factor, code golf can be a way to explore the dark corners of a
language and learn a few tricks that may come in handy in normal programming
circumstances.

A.1 The shortest I came up with [Golfing]
When code golfing, it’s important to establish the constraints you’re supposed to respect.
A looser interpretation of the rules may lead to a shorter solution, but you don’t want
to end up with a class that works only with a specific use case. Let’s establish the
boundaries of this exercise:

We want a Container class that fulfills the standard use case established in
chapter 1 and repeated throughout the book.
This class must also respect the functional specifications laid out in chapter 1.
We don’t require anything else: no robustness, no performance constraints,
and especially no readability.

In my solution, I represent a group of connected containers using a circular list, just
like Speed2. Instance field n (for next) is a pointer to the next container in the group.
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Also like Speed2, when you add water with addWater, the amount is stored locally
in the instance field, a, and is never actually distributed among the other connected
containers. As a consequence, every call to getAmount needs to scan the whole group,
sum up the amounts that every container holds, and finally return the total amount
divided by the size of the group.

Before I present the actual code, here’s a legend for the five instance fields:

a—Total amount ever added to this container.
s,t—Temporary variables that getAmountneeds; under normal circumstances,
they’d be local variables of that method; moreover, s should really be an inte-
ger. I’m declaring them as fields because doing so saves a few characters.
n—Pointer to the next container within the list representing the group of this
container.
c—Temporary variable that both connectTo and getAmount use; when not
executing those methods, c equals n.

Take a look at the following code for the compact Container implementation. I
left some basic white space and indentation for readability. If I remove all unnecessary
white space, the class measures 223 bytes and still works as intended. For a comparison,
Reference takes 1322 bytes, including white space.

Listing A.1 Golfing: Water containers in 223 bytes

public class Container {
float a,s,t; b s,t are used like local variables
Container n=this,c=n;
public float getAmount() {

for(s=t=0;s<1||c!=n;c=c.n,s++) c Notice the comma
t+=c.a;

return t/s;
}
public void connectTo(Container o) {

c=o.n; o.n=o.c=n; n=c; d Swaps next pointers
}
public void addWater(float w) {

a+=w; e Just accumulates locally
}

}

To understand this obscure implementation, start by reading the addWatermethod,
which is the easiest. The newly added water is summed to the a (for amount) field, and
no other line modifies that field. Hence, the a field of a given container indicates the
amount of water ever added to that container.

Then, move to the method connectTo. Recall from chapter 3 that merging two
circular lists starting from arbitrary nodes is particularly easy: it suffices to swap their
“next” pointers. The method connectTo does exactly that. Moreover, it updates the
value of the support variables c and o.c to be equal to the new (that is, swapped) value
of n and o.n, respectively.
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NESTED ASSIGNMENTS As in C, you can concatenate multiple assignments in
Java. Such a sequence is evaluated right to left, so all variables in the sequence
are assigned the value of the rightmost expression.

Finally, there’s the rather daunting loop in getAmount. Its purpose is to compute
the total amount in all containers in this group, while at the same time measuring the
size of the group. After the loop, you can find the total amount in the variable t and
the size of the group in s, which explains why the method returns t/s.

COMMAS IN FOR LOOPS In C, the expression exp1,exp2 evaluates both expressions
in order and then returns the value of the second one. In Java, a similar syntax is
allowed only inside the first and third clause of a for loop. It’s meant to gracefully
support loops with multiple indices:

for (i=0, j=n; i<n; i++, j-{}-) ...

With this in mind, the loop initialization and update parts should be quite clear.
Both the size and the total amount start at zero. For each iteration, the size is incre-
mented by one, and the container pointer cmoves to the next container in the group.

The staying condition requires some explanation. The loop must stop when it has
visited the whole circular list, that is, when the container pointer goes back to its origi-
nal value. In our case, the container pointer c starts with the value of the next pointer
n. As a result, the loop must continue as long as c!=n. But there’s a catch: the for loop
checks its staying condition before each iteration. To force the loop to perform at least
one iteration, I had to add the staying condition s<1.

It’s very likely that shorter solutions exist. Can you find one? If you do, drop me a
line, I’d be glad to hear about it!

Further reading
Code golf is not a topic that has attracted a lot of literature. Until the International
Olympic Committee accepts it as a proper sport, the best way to learn more about it is
to browse the websites dedicated to it:

Anarchy Golf, http://golf.shinh.org—On this website, you can witness the
author’s modest achievements in the AWK language; search for marcof.
Code Golf on StackExchange, https://codegolf.stackexchange.com—Another
website hosting code golf contests.
The International Obfuscated C Code Contest, http://www.de.ioccc.org/—This is a
competition about writing the most obscure and surprising C code. It shares
with code golf the tendency to explore the dark corners of programming lan-
guages in a fun way.

A nice example of large-scale code golf and extreme encodings is the 2004 game
.kkrieger. It’s a Doom-quality 3D first-person shooter packed in a 96KB executable file—
you read that right.
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The ultimate water

container class

After enduring 17 different versions of water containers, you may be wondering what’s
the best one, what’s the ultimate water container class? The answer is not simple. In
some sense, any of those versions (exceptNovice) can be the best one, given the right cir-
cumstances. For example, Speed1 is the best if you absolutely need constant-time addWa�
ter and getAmount. Similarly, Memory4 is the best if you absolutely need to squeeze as
many containers as possible in a given amount of memory. In both cases, those versions
are optimal only if you don’t care about any other software quality, which is admittedly
a very unrealistic assumption.

In fact, treating software qualities separately, as I’ve done in this book, is purely a
pedagogic device. In practice, you may want to think about those different properties
separately, but you need to deliver code that fulfills all of them simultaneously. When
two qualities contrast with each other, the context (aka your boss) will tell you which
quality should prevail in your specific business situation.

Generally speaking, most projects call for the following software qualities: readabil-
ity, reliability, and time efficiency. Only a relatively small subset care about memory
efficiency, reusability, or thread safety. Given that situation, let’s sketch a version of
Container that optimizes the first three qualities. It’ll be a blend of the fastest imple-
mentation (Speed3 from chapter 3) and the most readable implementation (Readable
from chapter 7), with reliability enhancements I presented in chapters 5 and 6.

More precisely, you can start with Speed3 and perform the following improvements:

(Readability) Add Javadoc comments to all public methods
(Readability) Apply readability best practices, such as the ExtractMethod refac-
toring rule
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(Reliability) Add precondition checks to all public methods
(Reliability) Include the test suite developed in chapter 6 (section 6.2)

I’ll present themain parts of the resulting class in the following sections, whereas you
can find the full source code in the online repository (https://bitbucket.org/mfaella
/exercisesinstyle)

B.1 Readability enhancements
Recall that Speed3 achieves its performance by representing groups of connected con-
tainers as parent-pointer trees. The root of each tree knows the size of its group and
the per-container amount of water. Connecting two containers entails attaching the
smaller of the two trees to the larger one—the so-called link-by-size policy.

Let’s focus on the connectTo operation because it benefits the most from a read-
ability overhaul. Besides adding a proper documentation comment in Javadoc format,
you can apply Extract Method and delegate the actual tree merging operation to a new
support method, linkTo. In this way, connectTo becomes extremely simple: it finds
the two group roots, checks whether they’re the same (in that case, no operation is
performed), and finally merges the two trees according to the link-by-size policy.

This method also gets a small reliability enhancement: if you call it with a null

argument, it throws an NPE with a custom error message, as shown in the following
listing.

Listing B.1 Ultimate: Ultimate connectTo

/** Connects this container with another. b Javadoc comment
*
* @param other the container that will be connected to this one
*/
public void connectTo(Container other) {
Objects.requireNonNull(other,

"Cannot connect to a null container."); c Precondition check
Container root1 = findRootAndCompress(), d This support method is the same

as in chapter 3.root2 = other.findRootAndCompress();
if (root1==root2) return; e Checks if they’re already connected

if (root1.size <= root2.size) { f Link-by-size policy
root1.linkTo(root2);

} else {
root2.linkTo(root1);

}
}

The support method linkTo performs the rest of the job. In turn, linkTo gives rise to
another extracted support method called combinedAmount, which computes the per-
container amount after merging two groups.
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Listing B.2 Ultimate: Private methods supporting connectTo

private void linkTo(Container otherRoot) {
parent = otherRoot;
otherRoot.amount = combinedAmount(otherRoot);
otherRoot.size += size;

}
private double combinedAmount(Container otherRoot) {
return ((amount * size) + (otherRoot.amount * otherRoot.size)) /

(size + otherRoot.size);
}

B.2 Reliability enhancements
Adding water to a container is the only operation with a nontrivial precondition: you
can’t remove more water than is available. The following listing shows the revised
version of addWater, checking its precondition and documenting its behavior with
Javadoc.

Listing B.3 Ultimate: Ultimate addWater

/** Adds water to this container. b Javadoc comment
* A negative <code>amount</code> indicates removal of water.
* In that case, there should be enough water in the group
* to satisfy the request.
*
* @param amount the amount of water to be added
* @throws IllegalArgumentException if <code>amount</code>
* is negative and there's not enough water to satisfy the request
*/
public void addWater(double amount) {

Container root = findRootAndCompress();

double amountPerContainer = amount / root.size;
if (root.amount + amountPerContainer < 0) { c Precondition check

throw new IllegalArgumentException(
"Not enough water to match the addWater request.");

}
root.amount += amountPerContainer;

}

Finally, you can run the unit tests we developed in chapter 6 on this version of Con�
tainer with no changes, and they all succeed.

Summarizing, this final version is strong on time performance and readability, and
moderately hardened for reliability. The precondition checks defend against external
misuse, whereas the test suite provides some confidence in the internal reliability of
the class. If this class was part of a safety-critical system, you could easily increase its
sensitivity to internal defects using one or more of the following techniques:

Adding precondition checks to the private methods, as assert statements—For exam-
ple, linkTo could check whether this and otherRoot are indeed two roots.
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Adding invariant checks, as explained in section 5.4—For example, addWater and
connectTo could check that the amount of water held in a container is always
non-negative.
Adding implementation-specific (that is, whitebox) tests—The tests we developed in
chapter 6 are based on the method contracts only, not on their implementa-
tion. That’s a perfectly fine blackbox approach. However, the parent-pointer
tree implementation used here and in Speed3 is quite tricky. It may be worth
adding tests that specifically target this implementation to ensure that you got
the various cases right. For example, you may test the link-by-size policy by
connecting containers having varying group sizes.
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SYMBOLS & SPECIAL CHARACTERS

/// (triple slash), 198
@ symbol
Java annotations, 156
Javadoc, 198

== operator, 131
>> operator, 67
, (commas), in for loops, 283

A

abstract, declaring classes as, 95
AbstractFunction class, 269
Ackermann, Wilhelm, 66
Ackermann function, 66
ActionEvent parameter, 271
add method
constant time, 90, 107
hardened, 141–142
linear time, 108
serializing structural modifications, 239
testing, 176, 178

addAll method, 87
addContainer method, 237
addWater method
checking contract of, 128–131
checking invariants in, 135–136

comparing implementations, 69
concrete implementation, 262
concurrency policy, 222
constant time, 49–50
delaying updates, 55–56
design-by-contract methodology, 126–127
group representative, 61
immutability, 233
invariants, 138–139
observability, 170–171
plain arrays, 88
readability, 197, 205–206
reliability, 287
reusability, 248
source code, 20, 32
space efficiency, 82–83
succinctness, 282
synchronizing, 230–231
testing, 160–165
choosing actual values, 163–164
choosing block combinations, 162–163
choosing characteristics, 160–162
conundrum involving, 164–165
input domain modeling, 160

time complexity, 39, 51, 64–65, 99–100, 104
ad-hoc communication scheme, 267
adjacency matrix, 108
@After annotation, 159
@AfterClass annotation, 159
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age field, 34
All Combinations Coverage, 162–163
AMD Zen architecture, 93
amortized time complexity, 64–66
amortized analysis of resizable arrays, 66–68
worst-case analysis vs., 69–72

amount array, 94–97, 99, 236
amount field, 34, 49, 61, 85, 132, 231
amount values, 101
amountAfterMerge method, 203
analyzability, 8. See also readability
anarchy level, 222
android.graphics.Camera class, 108
android.graphics.Rect class, 35
android.util package, 108
annotations, Java, 156–157
architectural-level features, 190–191
areGroupMembersCorrect method, 133–134
ArrayIndexOutOfBoundsException exception, 22
ArrayList class
amortized analysis, 66–68
cache locality, 93
multi-sets, 107–108
repositories, 239
space efficiency, 82
time complexity, 84–86, 89–90

arrays
plain, 87–91
resizable, 66–68
single static, 100–104

Arrays.copyOf method, 67, 95, 100
ArrayStoreException exception, 33
assert statements, Java, 122–123, 142, 169, 287
AssertionError message, 123, 157, 206
assertions
C#, 123
JUnit
assertEquals, 158–159
assertFalse, 158
assertTrue, 157, 159

associations, 29–30
asymptotic behavior, 37
asymptotic notation, 71
atomic lock sequences, 224–225
atomic operations, 218
AtomicInteger class, 225
AtomicLong class, 226
AtomicReference class, 273
Attribute interface, 249, 252, 255
adapting to functional interfaces, 258–259

dependencies, 253
recovering water containers, 262–265

@author tag, 198
Automatic Generation Control, 75
@Autowired annotation, 173
average-case analysis, 71

B

<b>...</b> tags, 198
Base Choice Coverage, 163
basic steps, counting, 36
@Before annotation, 158
@BeforeClass annotation, 159
benchmarking, 70
bias, 101–102
biased locking, 220
BiConsumer interface, 255, 257
big-O notation, 38–39, 71
binary methods, 250
BinaryOperator interface, 255, 257
blackbox testing, 154
BLOBs, 108
blocks, 160, 176
BoundedSet class, 139, 141, 174
bounded-size set for tracking order of insertion,

139–143
baseline implementation, 140
checking contracts, 141–142
checking invariants, 142–143
contracts, 139–140
testing, 173–178
improving testability, 174–176
test suite, 176–178

branch coverage, 169
buckets, 34–35

C

C#
assertions, 123
attributes, 157
collections, 27
documentation comments, 198
immutability in, 232
monitors, 222
object size, 34

cache locality, 92
Callable interface, 272
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camel case, 196
capacity field, 141–142
CAS (compare-and-swap) loop, 229–230
Characteristics enumeration, 255
characteristics method, 256
CharSequence argument, 258
checked exceptions, 118–119
circular lists, representing groups as, 51–54
class invariants, 96–97
Class object, 173
class-level features, 190–191, 220
clean code, 189. See also readability
clone method, 141
@code ... tag, 198
code duplication, 267
code golf, 281–283
code points, 161
<code>...</code> tags, 197–199
code-based coverage, 154
Collector interface, 254–255
Collectors.joining() method, 258
combinedAmount method, 286
combiner method, 256
commas (,), in for loops, 283
comments, 194–195
communication scheme improvement, 270–271
Comparable interface, 250
Comparator interface, 222
compare-and-swap (CAS) loop, 229–230
complete invariants, 127–128
compressed ordinary object pointers (OOPs), 33
computer science trees, 58
concatenation, 53
concurrency
levels of, 220–222
policy for containers, 222–223

confidence, in class correctness, 121
connect method, 97–98, 104, 237
Connectable interface, 249
connected components, 13
ConnectPostData class, 132
connectTo method, 13, 17
checking contract of, 132–134
checking invariants in, 136–138
concurrency policy, 222
connecting trees of containers, 61–62
deadlocks, 223
delaying updates, 54, 56
design-by-contract methodology, 118, 126–127
observability, 170–171

plain arrays, 87
race conditions, 227
readability, 193, 197, 201–205, 286
reusability, 250–251, 253, 260
source code, 21–22, 31
space efficiency, 83
succinctness, 282
synchronizing, 228–229
testing, 164, 166–168
time complexity, 36–39, 51–52, 64–65, 69, 90

constant time, 38
adding connections in, 51–56
delaying updates, 54–56
representing groups as circular lists, 51–54

adding water in, 49–51
Container class, 12, 15, 27, 30. See also containers
concurrency policy, 222–223
constant time, 49
deadlocks, 223, 225
memory requirements, 34
reusability, 262
space efficiency, 82, 94
thread safety, 234

Container library, 248
ContainerLike interface, 251, 262
containers, 18–23
checking contracts, 128–134
of addWater method, 128–131
of connectTo method, 132–134

checking invariants, 135–139
in addWater method, 138–139
in connectTo method, 136–138

connecting trees of, 61–62
connectTo method, 21–22
design-by-contract methodology, 126–128
fields and constructor, 19–20
generic implementation, 259–261
getAmount and addWater methods, 20
readability, 197–206
cleaning addWater method, 205–206
cleaning connectTo method, 201–205
documenting class header with Javadoc,

197–201
recovering, 262–265
defining concrete container class, 264–265
designing concrete attribute, 262–264
updated use case, 262

testing, 158–169
addWater method, 160–165
initializing tests, 158–160
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measuring code coverage, 168–169
running tests, 168

thread safety, 228–231
synchronizing addWater method, 230–231
synchronizing connectTo method, 228–229
synchronizing getAmount method, 230–231

ContainerSummary class, 263–264
ContainerSystem class, 234, 236
contains method, 90, 142
contains(T elem) method, 139, 174
content method, 177
contract checking, 6, 122–124, 128–134
of addWater method, 128–131
bounded-size set for tracking order of insertion,

141–142
of connectTo method, 132–134

control flow statements, 191–193
controllability, 170
copy constructor, 141
copy-on-write technique, 235
corporate coding style guides, 189–190
correctness, 6–7, 11, 121–122
count method, 107–108
count(T elem) method, 106
CPU cache, 92
CRUD operations, 273
Cyclops, 235

D

DAGs (directed acyclic graphs), 57
data access objects (DAOs), 273
data streams, 98
data structures, persistent, 234–235
deadlocks, 218, 223–228
atomic lock sequences, 224–225
ordered lock sequences, 225–226

Debug.Assert method, 123
Decorator design pattern, 270
defensive programming, 122
defragmentation, 98
delaying updates, 54–56
dependency injection (DI), 172–173
depth of recursion, 63
deserialization method, 170
design-by-contract methodology, 117–126
bounded-size set for tracking order of insertion,

139–143
baseline implementation, 140

checking contracts, 141–142
checking invariants, 142–143
contracts, 139–140

broader picture, 124–126
checking contracts, 122–124, 128–134
of addWater method, 128–131
of connectTo method, 132–134

correctness and robustness, 121–122
designing containers, 126–128
invariants, 120–121, 135–139
checking invariants in addWater method,

138–139
checking invariants in connectTo method,

136–138
pre- and postconditions, 118–120
testing and, 155–156

DI (dependency injection), 172–173
direct connections, 16–17, 22, 28, 50, 84, 249
directed acyclic graphs (DAGs), 57
disconnectFrom operation, 17
DocFX tool, 198
documentation comments, 194, 198
double parameter, 82, 84, 88
double type, 34
do-while loops, 191–192
dry runs, 70
dst argument, 229
dynamic consistency rules, 120
dynamic graph connectivity problem, 13

E

Each Choice Coverage, 163
efficiency, 7–8
Employee class, 251
encapsulation, 19
ensure statement, 134
entry-checked loops, 191–192
EnumSet class, 94–95
ephemeral data structure, 234
equals method, 141–142, 250
erasure, 251
@exception tag, 198, 206
Executor services, 219
Executors class, 219
ExecutorService interface, 219, 273
exit-checked loops, 191
expected attribute, 157, 165
explicit input, 36
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explicit locks, 224
expressions, structural readability, 193–194
Extensible Markup Language (XML), 108
exterior readability features, 190, 194–197
comments, 194–195
indentation, 196–197
naming conventions, 195–196
white space, 196–197

external software qualities, 5–8
correctness, 6
efficiency, 7–8
internal vs., 4–5
robustness, 7
usability, 7

Extract Method refactoring technique, 191,
201–202, 208

Extract Variable rule, 194

F

f function, 39
Facebook, 189–190
factory method
creating containers with, 94–97
FACTORY METHOD vs., 94–95

final keyword, 232
final variable, 20
find operation, 57
findRootAndCompress method, 58–61, 63, 65, 260
fixed-size arrays, 21
float array, 101
float parameter, 82, 84, 88
FloatMath class, 82
for loops, 36, 191–192, 208, 283
forEach method, 254
foreach statement, 21
forEachOrdered method, 55
fork-join framework, 220
ForkJoinPool class, 220
formal verifiers, 125
Function interface, 255
functional interfaces, 255
functional languages, and immutability, 233
functional software qualities, nonfunctional vs.,

5–6
FURPS (Functionality, Usability, Reliability,

Performance, and Supportability) model,
9

G

garbage collection, 34
generations, 34
generics, 251–252
get method, 253, 260
getAmount method, 12, 16, 31, 39, 61
checking invariants in, 135
concurrency policy, 222
constant time, 50
delaying updates, 54–56
design-by-contract methodology, 126
fields and, 93–94
readability, 197, 199, 201
reusability, 248, 262
source code, 20
space efficiency, 82, 91, 101–102
succinctness, 282
synchronizing, 230–231
testing, 158, 164, 171
thread safety, 236–237
time complexity, 64–65, 69–70

getAverage method, 72–73
getClass method, 33
getDeclaredConstructor method, 173
get(int index) method, 206
getMedian method, 72, 73–74
globalLock lock, 224–225
GNU Trove, 86
Google Guice, 173
Google Java style guide, 189
graceful reaction, 121, 144
granularity, 37
group array, 94, 96, 100, 236
Group class, 49, 228
group field, 82, 132
group representatives
finding, 58–61
representing groups as circular lists, 51–54

group summary, 252
groupAmount method, 129–130
groups, 13
defined, 25
merging, 53, 203

groupSize method, 97–98, 193, 263
GUI application, 266–271
communication scheme improvement, 270–271
interface for parametric functions, 268–269
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H

Hamcrest, 159–160, 177
hash tables, 37
hashCode method, 37, 226
HashMap class, 34, 107
HashSet class, 26–31, 34–35, 86, 89, 93, 108, 172
Haskell, 118
high cohesion, 190
HotSpot, 32–33
HTML tags, 197–198
Hyperbola class, 269

I

<i>...</i> tags, 197–198
IAE (IllegalArgumentException), 123, 126–128,

205–206
identity hashcode, 226
IDEs (integrated development environments), 10
IDs, connecting containers by, 97–99
IEC (International Electrotechnical Commission),

4
IEquatable interface, 250
if statements, 99, 128, 168
if-based checks, 122–123, 128
IllegalArgumentException (IAE), 123, 126–128,

205–206
IllegalStateException exception, 123
immutability, 232–237
API, 233–235
in C#, 232
functional languages and, 233
implementation of, 235–237

implementation comments, 195
implicit parameter, 36
implicit representation, 18
import statements, 189–190
increment method, 218
incrementAndGet method, 225
indentation, 196–197
indirect connections, 16–17, 25
information hiding, 19
@Inject annotation, 173
input characteristics, 160
input coverage criteria, 163
input domain model approach, 160
insert method, 72–74
instanceof operator, 33

instruction coverage, 168
int array, 101
int type, 160–161
Integer class, 232–233
integer ID, 91
Integer objects, 93
Integer.valueOf method, 95
integrated development environments (IDEs), 10
intermediate operations, 253–254
internal issues, 124
internal software qualities, 8–9
external vs., 4–5
maintainability, 9
readability, 8
reusability, 8
testability, 9

International Electrotechnical Commission (IEC),
4

International Organization for Standardization
(ISO), 4

IntPredicate interface, 98
IntStats class, 72, 74
IntStream interface, 98
IntSummaryStatistics class, 72
invariants, 120–121
checking, 135–139, 288
in addWater method, 138–139
bounded-size set for tracking order of

insertion, 142–143
in connectTo method, 136–138

inverse Ackermann function, 65–66
inversion of control, 173
isConnectedTo method, 204–205
isGroupAmountCorrect method, 133
isGroupBalanced method, 133, 137
isGroupConsistent method, 133, 137
ISO (International Organization for

Standardization), 4
isolation, 171–173
isSquare method, 208
Iterable interface, 192
iterator method, 95

J

JaCoCo tool, 168–169
Jakarta EE (Java Enterprise Edition), 173
Java agents, 168
Java annotations, 156–157
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Java Collections Framework (JCF), 25–26
Java Development Kit (JDK), 54
Java Enterprise Edition (Jakarta EE), 173
Java microbenchmarking harness (JMH), 70
Java Modeling Language (JML), 134
Java Native Interface, 10
Java Object Layout (JOL), 35
Java Virtual Machine (JVM), 32–33, 227, 230
Javadoc, documenting class header with, 197–201
javap -c classname, 230
javap command-line tool, 230
java.util.Iterator interface, 119
JCF (Java Collections Framework), 25–26
JDK (Java Development Kit), 54
JMH (Java microbenchmarking harness), 70
JML (Java Modeling Language), 134
JOL (Java Object Layout), 35
JUnit, 156–158, 168, 177
just-in-time compilation, 70
JVM (Java Virtual Machine), 32–33, 227, 230

K

KeY, 134
Kotlin, 233
Krakatoa, 134

L

Lambda expressions, 98
laziness, 54
lazy evaluation, 54
lazy initialization, 83
leaves, 57
levels of abstraction, 219–220
line coverage, 168
linear time, 38, 108
lines of code (LOC), 10
@link ... tag, 198
link-by-size policy, 58, 61–63
LinkedList class, 68, 196
linkTo method, 286
linters, 125
List class, 66
LOC (lines of code), 10
local variables, 193–194, 229
lock-free synchronization, 228–230
logarithmic time, 38
Long counter, 108

long method, 202
low coupling, 190

M

machine-learning (ML), 178–179
magic numbers, 20
Main class, 267
maintainability, 4, 9
Map-Reduce paradigm, 240
maximal connected components. See groups
measuring object size, 35
memory efficiency. See space efficiency
memory hierarchy, 92
memory hunger, 8
memory layout diagrams, 28–31
UML class diagram, 29–30
UML object diagram, 30–31

memory model rules, 219
merge method, 253, 260
mergeGroupWith method, 203
merging
groups, 53, 203
summaries, 254
trees, 61

method bodies, 195
method calls, 60
method references, 256
method-level concurrency, 220–221
method-level features, 191–194
ML (machine-learning), 178–179
mocking, 172
Mockito, 172
model-view-controller (MVC), 270, 272
monitoring, reliability through, 117–150
bounded-size set for tracking order of insertion,

139–143
baseline implementation, 140
checking contracts, 141–142
checking invariants, 142–143
contracts, 139–140

checking contracts, 128–134
of addWater method, 128–131
of connectTo method, 132–134

checking invariants, 135–139
in addWater method, 138–139
in connectTo method, 136–138

design-by-contract methodology, 118–126
broader picture, 124–126
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checking contracts, 122–124
correctness and robustness, 121–122
designing containers, 126–128
invariants, 120–121
pre- and postconditions, 118–120

real-world use cases, 143–144
multi-criteria optimization, 9
multi-sets, 106–108
high duplicate count, 107–108
low duplicate count, 106–107

multithreading, 33
mutable collectors, 253–258
mutable modifier, 233
mutexes, 219
MVC (model-view-controller), 270, 272

N

n parameter, 38
naming conventions, 195–196
NaN (not-a-number), 131, 165
newAmount variable, 202
newContainer method, 94–95, 100, 103
next method, 52–53, 119
next values, 101
No Operation (NOP), 166
nominal environment, 121
nonfunctional software qualities, functional vs., 5
non-instantiable classes, 95–96
NOP (No Operation), 166
not-a-number (NaN), 131, 165
Novice, 28, 32
NPE (NullPointerException), 21, 126–127,

131–132, 139–140, 167, 176, 286
null argument, 126–127, 175, 177
null pointer, 83
null reference, 21
NullPointerException (NPE), 21, 126–127,

131–132, 139–140, 167, 176, 286
nullValue matcher, 177
NUnit, 156

O

obfuscators, 206–207
Object class, 33
object oriented (OO) paradigm, 8, 18, 91, 117
Object requireNonNull(Object x) method, 127

Object requireNonNull(Object x, String message)
method, 127

object-level policy, 220–221, 238
Objects class, 127
Objects.requireNonNull(arg,msg) method, 131
observability, 170–171
ObservableFunction class, 270–272
OCaml, 233
of method, 257
oldTotal variable, 129
one assert per test rule, 178
OO (object oriented) paradigm, 8, 18, 91, 117
OOPs (compressed ordinary object pointers), 33
OpenJDK, 34, 67
Optional<T> class, 273
Oracle, 190
order of growth, 37
ordered lock sequences, 224–226, 228
org.hamcrest.Matchers class, 177
org.junit.Assert class, 157
OS scheduler, 227
other.group.size() method, 193
@Override tag, 156–157

P

<p> tag, 197–198
padding, 34
pair programming, 124
Parabola class, 268–269
parabolas, 266–268
parallel collectors, 254
Parallel streams, 220
@param tag, 198, 202
parametric functions, interface for, 268–269
parametric polymorphism, 272
ParametricFunction interface, 268–272
parent pointer tree, 57
Pareto front, 48
Pareto optimal, 48
partial orders, 48
path compression technique, 58
PCollections, 235
penalties, 118–119, 128, 131, 139–140, 205
PEP (Python Enhancement Proposal), 210
performance-critical applications, 8
persistent data structures, 234–235
Pipe class, 18
pointers, 57
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postAddWater method, 129–130
postconditions, 118–120, 128, 131, 139–140, 205
postConnect method, 133
Powermock, 172
preconditions, 118–120, 128, 131, 139–140, 205
primitive recursive, 66
principle of least privilege, 192
println method, 15
private classes, 49
private comments, 195
private fields, 19
private methods, 287
public comments, 194
public void add(T elem) method, 106
public void addWater(double amount) method, 12
public void connectTo(Container other) method,

12
public void insert(int n) method, 72
public void swap(int i, int j) method, 238
pure methods, 118
Python Enhancement Proposal (PEP), 210

Q

quadratic time, 38
quasilinear time, 38

R

race conditions, 218, 227–228
read only fields, 232
readability, 187–215
containers, 197–206
cleaning addWater method, 205–206
cleaning connectTo method, 201–205
documenting class header with Javadoc,

197–201
corporate coding style guides, 189–190
enhancements to water container class, 286–287
exterior readability features, 194–197
comments, 194–195
indentation, 196–197
naming conventions, 195–196
white space, 196–197

importance of, 188–190
ingredients of, 190
overview, 8
real-world use cases, 209–210

square matrix transposition method, 207–209
structural readability features, 190–194
control flow statements, 191–193
expressions, 193–194
local variables, 193–194

realloc function, 66
Recently Used Programs feature, Windows, 139
recursive methods, 59, 63
reduced-size data types, 82
ReentrantLock class, 223–225
refactoring, 189, 194
reference count, 34
reference implementation, 25–44
code for, 27–32
memory layout diagrams, 28–31
methods, 31–32

memory requirements, 32–36
time complexity, 36–39

referential transparency, 118
reflection, 33
reification, 251
reliability through monitoring, 117–150
bounded-size set for tracking order of insertion,

139–143
baseline implementation, 140
checking contracts, 141–142
checking invariants, 142–143
contracts, 139–140

checking contracts, 128–134
of addWater method, 128–131
of connectTo method, 132–134

checking invariants, 135–139
in addWater method, 138–139
in connectTo method, 136–138

design-by-contract methodology, 118–126
broader picture, 124–126
checking contracts, 122–124
correctness and robustness, 121–122
designing containers, 126–128
invariants, 120–121
pre- and postconditions, 118–120

real-world use cases, 143–144
reliability through testing, 153–186
bounded-size set for tracking order of insertion,

173–178
improving testability, 174–176
test suite, 176–178

coverage in testing, 154–155
design-by-contract and testing, 155–156
JUnit, 156–158
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real-world use cases, 178–179
testability, 170–173
controllability, 170
isolation, 171–173
observability, 170–171

testing containers, 158–169
addWater method, 160–165
initializing tests, 158–160
measuring code coverage, 168–169
running tests, 168

remove method, 90, 176
removeFirst method, 140
removeGroupAndDefrag method, 97–100
Replace Temp with Query technique, 202
report method, 253
Repository(int n) method, 238
repositories, 238–239
Repository<T> class, 238
require statement, 134
Requirements Analysis, 4
resizable arrays, amortized analysis of, 66–68
resolution, 102
RESTful services, 178
result type, 254
@return tag, 198–199
reusability, 247–280
establishing boundaries, 247–249
general framework, 249–259
adapting Attribute interface to functional

interfaces, 258–259
attribute API, 252–253
mutable collectors, 253–258

generalizing functionalities, 260–262
generic container implementation, 259–261
GUI application, 266–271
communication scheme improvement,

270–271
interface for parametric functions, 268–269

overview, 8
real-world use cases, 271–273
recovering water containers, 262–265
defining concrete container class, 264–265
designing concrete attribute, 262–264
updated use case, 262

social network posts, 265–266
robustness, 4, 7, 11, 121–122
roots, 57, 59–60
run method, 272
Runnable interface, 272
RuntimeException exception, 126

S

saveConnectPostData method, 132–133
Scala, 233
Scheme, 118
seed method, 253
sequence diagrams, 29, 60
sequences of runs, 64
serialized access, 220
Set interface, 26–27
set method, 57, 238–239
Set type, 82
setAllAmountsTo method, 202–203
setParam method, 270
side effects, 118
single-element containers, 273
singletons, 96
size1 parameter, 37–39
size2 parameter, 37–39
social network posts, 265–266
software metrics, 10
software qualities, 3–12
external software qualities, 5–8
correctness, 6
efficiency, 7–8
internal vs., 4–5
robustness, 7
usability, 7

functional vs. nonfunctional, 5
interactions between, 9–11
internal software qualities, 8–9
external vs., 4–5
maintainability, 9
readability, 8
reusability, 8
testability, 9

special qualities, 11–12
succinctness, 11–12
thread safety, 11

software under test (SUT), 154–155, 169
sorted method, 54
space (memory) efficiency, 81–116
forgoing objects, 90–100
connecting containers by ID, 97–99
creating containers with factory method,

94–97
fields and getAmount method, 93–94
object-less API, 91–93
space and time complexity, 99–100
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multi-sets, 105–108
high duplicate count, 107–108
low duplicate count, 106–107

plain arrays, 87–91
real-world use cases, 108–109
simple space-saving tricks, 82–87
single static array, 100–104
trade-offs, 104–106

space efficiency, 10
SparseArray class, 86, 108
specification comments, 194
Spring, 173
square matrices, 108, 207–209
square matrix transposition method, 207–209
square-root method, 118
src argument, 229
stateless object, 33
static analyzers, 125
static classes, 49
static consistency rules, 120, 135
static fields, 15, 265
Stream class, 220
stream method, 254
String class, 232
string concatenation, 256–258
String method, 196–197
StringBuilder class, 257–258
structural modifications, 239
structural readability features, 190–194
control flow statements, 191–193
expressions, 193–194
local variables, 193–194

stubbing, 172
style checkers, 125
style guides, 189–190
subclass relation, 58
succinctness, 11–12, 281–283
summary object, 254
summary statistics computation, 72–74
Sun Java style guide, 189
Supplier interface, 255
SUT (software under test), 154–155, 169
swap method, 238–239
switch statements, 168
symbolic execution, 125
synchronized blocks, 218
synchronized keyword, 33, 219
syntactic sugar, 123
system of containers, 233
System.DateTime class, 232

System.identityHashCode() method, 226
System.out.println method, 120

T

T add(T elem) method, 174–175
T set(int i, T elem) method, 238
TablePanel, 271
TDD (Test-Driven Development), 153, 179
technical debt, 143
terminal operations, 54, 253–254
@Test annotation, 157, 165
test fixtures, 158
testability, 170–173, 204
controllability, 170
improving, 174–176
isolation, 171–173
observability, 170–171
overview, 9

Test-Driven Development (TDD), 153, 179
testing, reliability through, 153–186
bounded-size set for tracking order of insertion,

173–178
improving testability, 174–176
test suite, 176–178

coverage in testing, 154–155
design-by-contract and testing, 155–156
JUnit, 156–158
real-world use cases, 178–179
testability, 170–173
controllability, 170
isolation, 171–173
observability, 170–171

testing containers, 158–169
addWater method, 160–165
initializing tests, 158–160
measuring code coverage, 168–169
running tests, 168

this variable, 165, 230
thisType keyword, 250
thread safety, 217–246
challenges to, 218–223
concurrency levels, 220–222
concurrency policy, 222–223

containers, 228–231
synchronizing addWater method, 230–231
synchronizing connectTo method, 228–229
synchronizing getAmount method, 230–231

deadlocks, 223–228
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atomic lock sequences, 224–225
ordered lock sequences, 225–226

immutability, 232–237
API, 233–235
implementation of, 235–237

overview, 11
race conditions, hidden, 227–228
real-world use cases, 239–240
repositories, 238–239

@throws tag, 198, 206
tight arrays, 89
time complexity, 36–39
adding water in constant time, 51
amortized, 64–66
space and
forgoing objects, 99–100
plain arrays, 88–91
simple space-saving tricks, 84–86
single static array, 104–105

worst-case, 63–64
time efficiency, 10, 47–80
adding connections in constant time, 51–56
delaying updates, 54–56
representing groups as circular lists, 51–54

adding water in constant time, 49–51
comparing implementations, 69–72
experiments, 69–70
theory vs. practice, 70–72

real-world use cases, 74–75
summary statistics computation, 72–74
union-find algorithms, 57–68
amortized analysis of resizable arrays, 66–68
amortized time complexity, 64–66
connecting trees of containers, 61–62
finding group representative, 58–61
worst-case time complexity, 63–64

TIntArrayList class, 93
ToIntFunction interface, 256
toString method, 157
Trace.Assert method, 123
transitive closure, 17
tree height, 58
TreeMap class, 107
trees, connecting trees of containers, 61–62
triple slash (///), 198
Twitter, 189
type hints, 210

U

UML (Unified Modeling Language), 28–31, 60
unchecked classes, 126
undirected graphs, 13
Unicode characters, 161
uninterrupted integer range, 103
union-find algorithms, 57–68
amortized analysis of resizable arrays, 66–68
amortized time complexity, 64–66
connecting trees of containers, 61–62
finding group representative, 58–61
worst-case time complexity, 63–64

UnionFindNode class, 259–260, 262–265
unit testing, 153
unit under test (UUT), 170
unmodifiable view, 175–176
unsafe keyword, 232
update method, 253, 260
updated flag, 56
updateGroup method, 55–56
usability, 7
usage profile, 48
UseCase class, 14, 28, 31, 49, 53, 62, 83, 91,

101–102
utility classes, 96
UUT (unit under test), 170

V

valueOf method, 233
Vector class, 66
@version tag, 198
virtual machines (VMs), 32, 34, 70, 130
void actionPerformed(ActionEvent e) method,

271
void add(T elem) method, 139, 174
void connectTo(ContainerLike<V> other)

method, 250
void connectTo(Object other) method, 250
void method, 9
volatile modifier, 231

W

water container system example, 12–23
API, 12–13
containers, 18–23
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connectTo method, 21–22
fields and constructor, 19–20
getAmount and addWater methods, 20

data model and representations, 15–23
choosing connections to store, 17–18
choosing representation, 18
storing connections, 16–18
storing water amounts, 16

use case, 13–15
water container class, 285–288
readability enhancements, 286–287
reliability enhancements, 287–288

while loops, 191–192, 207
white space, 196–197
whitebox testing, 154, 288

worst-case asymptotic complexity, 38

X

x.findRootAndCompress() method, 59–60, 64
XML (Extensible Markup Language), 108
-Xms option, 33
-Xmx option, 33
xUnit, 156

Y

YAGNI (you aren’t gonna need it), 18, 261
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A list of the main classes from each chapter

 

Chapter Nickname Class Description

1 UseCase

Novice

eis.chapter1.UseCase

eis.chapter1.novice.Container

Use case

Naive implementation

2 Reference eis.chapter2.reference.Container Baseline implementation

3 Speed1

Speed2

Speed3

eis.chapter3.speed1.Container

eis.chapter3.speed2.Container

eis.chapter3.speed3.Container

First addWater with centralized set

Fast connectTo with circular list

Best balance with parent-pointer tree

4 Memory1

Memory2

Memory3

Memory4

eis.chapter4.memory1.Container

eis.chapter4.memory2.Container

eis.chapter4.memory3.Container

eis.chapter4.memory4.Container

Based on ArrayList

Based on plain array

Object-less API

Object-less API, 4 bytes per container

5 Contracts

Invariants

eis.chapter5.contracts.Container

eis.chapter5.invariants.Container

Methods check their contract

Methods check class invariants

6 UnitTests

Testable

eis.chapter6.UnitTests

eis.chapter6.testable.Container

Test suite for Reference

Optimized for testability

7 Readable eis.chapter7.readable.Container Optimized for readability

8 ThreadSave

Immutable

eis.chapter8.threadsafe.Container

eis.chapter8.threadsafe.ContainerSystem

Thread-safe

Immutable and object-less

9 —

—

—

Generic

eis.chapter9.generic.ContainerLike

eis.chapter9.generic.Attribute

eis.chapter9.generic.UnionFindNode

eis.chapter9.generic.Container

Container interface

Container attribute interface

Implementation of ContainerLike

Concrete container based on 
UnionFindNode

App A Golfing

—

eis.appendixa.golfing.Container

eis.appendixa.nowhitespace.Container

Succinct

Really succinct

App B Ultimate eis.appendixb.ultimate.Container Fast, readable, reliable
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