

2

By
Joe Booth

Foreword by Daniel Jebaraj

3

Copyright © 2013 by Syncfusion Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

mportant licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other liability arising

from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET ESSENTIALS are the

registered trademarks of Syncfusion, Inc.

Technical Reviewer: Jay Natarajan, senior product manager, Syncfusion, Inc.

Copy Editor: Courtney Wright

Acquisitions Coordinator: Jessica Rightmer, senior marketing strategist, Syncfusion, Inc.

Proofreader: Graham High, content producer, Syncfusion, Inc.

I

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

4

Table of Contents

The Story behind the Succinctly Series of Books.. 13

About the Author ... 15

Preface ... 16

Chapter 1 Microsoft Visual Studio ... 18

Visual Studio add-ins .. 18

IDTExtensibility2 Interface ... 18

IDTCommandTarget Interface ... 19

Assemblies .. 19

Wizard .. 19

Chapter 2 Add-in “Hello World” ... 20

Create the project ... 20

Select your language ... 21

Application hosts ... 21

Name and Description ... 21

Add-in options ... 22

About Information .. 23

Summary ... 23

Connection Code .. 23

Exec Code.. 25

Query Status code .. 25

Generated files ... 26

Chapter 3 Hooking into the IDE ... 27

OnConnection Method .. 27

5

Linking to menu items .. 27

Linking to other windows... 29

Adding to the code window .. 29

Other IDE windows .. 30

Adding a toolbar button .. 31

QueryStatus Method ... 31

Other methods.. 32

OnAddInsUpdate method .. 32

OnBeginShutdown method .. 32

OnDisconnection method... 32

On StartupComplete .. 32

A few caveats ... 32

Chapter 4 Application and Add-in Objects .. 34

Application Object... 34

ActiveDocument .. 34

ActiveWindow .. 34

Debugger .. 34

Documents .. 34

Edition ... 35

ItemOperations .. 35

LocaleID .. 35

MainWindow .. 35

Mode ... 35

Solution ... 35

ToolWindows ... 35

Windows ... 36

AddIn Object .. 36

6

Add-in properties ... 36

Collection .. 36

Connected ... 36

Description .. 36

GUID ... 37

Name .. 37

Object.. 37

ProgID ... 37

SatelliteDLLPath .. 37

Assemblies ... 37

Extensibility.dll ... 37

CommandBars.dll .. 37

EnvDTE.dll .. 38

VSLangProj.dll... 38

Chapter 5 Save Some Files Add-In .. 39

SaveSomeFiles add-in .. 39

Designing the selection form ... 39

Implementing the Exec() method .. 40

But not while debugging.. 41

Summary .. 42

Chapter 6 Testing Your Add-In .. 43

Configuration files ... 43

For Testing.AddIn .. 43

Add-in settings... 43

LoadBehavior .. 43

CommandPreload.. 44

Add-in life cycle .. 44

7

0: Call Manually ... 44

1: Load at Start-up ... 45

Debugging .. 45

Common mistakes .. 45

Add-in not enabled on menu .. 45

Add-in never invoked ... 46

Events not triggering .. 46

Not seeing code changes .. 46

Removing an add-in module ... 46

Pesky “Unable to delete” message ... 46

Chapter 7 Visual Studio Environment ... 47

VS Info Wizard ... 47

VS Info Form .. 47

Exec() method .. 48

Getting options .. 49

Getting add-ins installed .. 51

Environment information .. 51

Getting an OS-friendly name.. 52

Displaying the form ... 53

Final results .. 53

Chapter 8 Solution .. 55

Solution Info Wizard ... 55

Updating the menu icon .. 55

Exec() method .. 56

Solution info .. 56

Totaling project information .. 56

Properties .. 58

8

Displaying the results.. 58

Solution methods .. 59

Close ... 59

FindProjectItem ... 59

SaveAs.. 59

SolutionBuild .. 60

Build .. 60

Clean .. 60

Run ... 60

BuildState .. 60

Chapter 9 Projects .. 61

Project Info Wizard ... 61

Exec() method .. 61

Getting each project ... 62

Project type ... 62

VSProject type... 63

References ... 63

Project Items .. 63

ITEMS ... 64

Adding the JavaScript ... 65

Showing the Results ... 65

Styling the HTML .. 65

Chapter 10 IDE Windows .. 67

Windows .. 67

Tool windows... 67

Document windows ... 67

Window object .. 68

9

Properties .. 68

Methods .. 68

ActiveWindow ... 68

MainWindow ... 68

Windows .. 69

Window Kind constants ... 69

Tool windows.. 70

Document windows .. 70

Is AJAX being used? .. 71

Getting the active window .. 72

Making sure it is HTML code.. 72

Parsing the HTML code ... 72

Showing our findings ... 73

Summary .. 74

Chapter 11 Documents ... 75

Getting the document ... 75

Document object.. 75

Text document object .. 76

Converting C# to VB ... 77

Summary .. 77

Chapter 12 Code Window ... 78

Simple code manipulation ... 78

Attaching to the code window .. 78

Responding to the click .. 79

Getting selected code .. 79

Tweak the code fragment .. 80

Putting the code back .. 80

10

Moving the code around ... 81

Text Document .. 81

Edit point ... 82

More complex code manipulation.. 83

Chapter 13 Code Model .. 84

Using the code model ... 84

Get the code model of a source file .. 85

Code element properties.. 85

Putting it all together ... 86

Class documenter... 88

Attaching to the code editor window ... 88

Getting the code model .. 89

Finding the class elements .. 90

Building our header ... 91

Organizing the code elements ... 92

Variables ... 93

Enums ... 93

Properties .. 94

Methods .. 94

Writing the header back to the source window ... 95

Summary .. 95

Chapter 14 Tool Windows .. 96

Error List .. 96

Task List ... 97

Solution Explorer .. 98

Output Window ... 98

Searching for bad words ... 99

11

Bad words scan .. 99

Using a tool button... 100

Only if a solution is open .. 100

Getting tool windows.. 101

Looping through the project ... 101

Marking bad words .. 101

Adding a clean-up task .. 102

Summary .. 102

Chapter 15 Source Code Generation ... 103

Source code helper class.. 103

Standardized headers... 106

Wizard settings .. 106

Moving to File menu ... 107

Options screen ... 107

Generate the header... 108

Add sub/function call.. 109

Add standard variables .. 109

Open a new window ... 109

Item Operations object ... 110

Summary .. 110

Chapter 16 Deploying Your Add-In .. 111

Installing the add-in .. 111

Add-in Manager .. 112

Summary .. 112

Chapter 17 Object Reference ... 113

Application Object (DTE2) ... 113

Windows and documents .. 114

12

Document .. 114

Window ... 115

Solution and projects .. 115

Solution ... 116

Project ... 116

Project Item ... 117

Code manipulation.. 118

Text Document .. 118

Edit Point ... 118

Code Model ... 119

Code Element.. 120

Chapter 18 Add-in Helper Class ... 121

MakeEmptySolution .. 121

GetVSProjectsFolder .. 121

FindMenuIndex ... 122

Chapter 19 Third-Party Add-Ins ... 123

Microsoft add-ins .. 123

Community add-ins ... 123

Indent Guides .. 123

13

The Story behind the Succinctly Series
 of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about every other
week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just as everyone else who has a job to do and customers
to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the
authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

S

14

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click,” or “turn
the moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

 Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
http://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

15

About the Author

Joseph D. Booth has been programming since 1981 in a variety of languages, including BASIC,
Clipper, FoxPro, Delphi, Classic ASP, Visual Basic, and Visual C#. He has also worked in
various database platforms, including DBASE, Paradox, Oracle, and SQL-Server from version
6.5 up through SQL 2012.

He is the author of six computer books on Clipper and FoxPro programming, Network
Programming, and Client/Server development with Delphi. He also wrote several third-party
developer tools, including CLIPWKS, which allowed the ability to programmatically create and
read native Lotus and Excel spreadsheet files from Clipper applications.

Joe has worked for a number of companies including Sperry Univac, MCI-WorldCom, Ronin,
Harris Interactive, Thomas Jefferson University, People Metrics, and Investor Force. He is one
of the primary authors of Results for Research (market research software), PEPSys (industrial
distribution software) and a key contributor to AccuBuild (accounting software for the
construction industry).

He has a background in accounting as well, having worked as a controller for several years in
the industrial distribution field, although his real passion is computer programming.

In his spare time, Joe is an avid tennis player and a crazy soccer player (he plays goalie). He
also practices yoga and martial arts (holding a brown belt in Judo).

16

Preface

Target Audience

This book is for developers who are currently using Microsoft Visual Studio and want to add
their own custom features to that development environment. It assumes you are comfortable
programming in C# and are also comfortable writing classes and class methods to implement
interfaces. It is designed to provide a quick overview of how to create an add-in, how to test
your add-in, and how to install and share it. There are a number of add-in modules to provide
working examples to whet your appetite.

The focus of this book is the add-in ability in Visual Studio; it does not cover the more
powerful, but substantially more complex, package add-in feature of Visual Studio.

Tools Needed

In order to be able to follow along with all of the examples in this book, you will need Microsoft
Visual Studio 2010 or Visual Studio 2012.

Many of the examples may work in older versions of Visual Studio as well. The extensibility
features have been in the IDE since Visual Studio release in 1997. Note, however, that add-in
modules are not supported in Express editions of Visual Studio.

Formatting

Throughout the book, I have used several formatting conventions.

Note: Ideas and notes about the current topic.

Tip: Ideas, tips, and suggestions.

17

Code Blocks

Using Code Examples

All code samples in this book are available at https://bitbucket.org/syncfusion/visualstudio-add-
ins_succinctly/.

public void Exec(string commandName, vsCommandExecOption executeOption, ref object varIn,
ref object varOut, ref bool handled)
{ handled = false;
}

https://bitbucket.org/syncfusion/visualstudio-add-ins_succinctly/
https://bitbucket.org/syncfusion/visualstudio-add-ins_succinctly/

18

Chapter 1 Microsoft Visual Studio

Microsoft’s Visual Studio is one of the most popular integrated development environments (IDE)
available today. Yet as popular and powerful as Visual Studio is, there may be times when you
want to add your own quirks to the tool. And fortunately, Microsoft makes it pretty easy to do just
that. You can create add-ins to the various menus and toolbars to perform a variety of tasks,
pretty much anything you can program. The add-in can be written in Visual Basic, C#, or C++;
there are no arcane or additional languages to learn.

Visual Studio has been around in various incarnations since the late 1990s. Early Microsoft IDE
products were separate for the language you were working in; Visual Basic was one tool, Visual
C++ another, etc. However, with the release of Visual Studio 97, Microsoft began to bundle the
various programming languages into the same IDE. Visual Studio 97 included Visual Basic,
Visual C++, Visual J++, Visual FoxPro, and Visual Interdev.

When Microsoft created Visual Studio 97, it was built as an extensible core platform, making it
easier for Microsoft developers to integrate new features into the IDE. They also allowed outside
developers to write add-ins to enhance the product using the same extensible platform that the
Visual Studio engineers worked in.

As the Visual Studio platform continued to grow, third-party developers continually wrote add-ins
to integrate tools into Visual Studio. Shortly after the release of Visual Studio 2008, Microsoft
created a website called the Visual Studio Gallery. New tools and enhancements are added,
and as of this writing, there are more than 3,000 add-ins listed in the gallery.

The extensibility built into Visual Studio makes it an excellent environment to start and build
your own “improvements” to the IDE. Getting started down that path is what this book is all
about.

Visual Studio add-ins

To build a Visual Studio add-in, you will need to create a new class that will provide
implementation methods for two interfaces from the Extensibility and EnvDTE namespaces.
An interface is a module containing declarations of methods and events, but with no
implementation provided. This approach allows your add-in to plug and play into the Visual
Studio IDE.

You will also need to generate an XML configuration file, which tells Visual Studio how to load
your add-in and where your add-in’s assembly code file (DLL) can be found.

IDTExtensibility2 Interface

This interface from the Extensibility namespace is used to hook your add-in into the Visual
Studio IDE. Although you will need to create method implementations for each of the interface
events, only the OnConnection method is needed to get your add-in loaded into the IDE.

http://visualstudiogallery.msdn.microsoft.com/

19

IDTCommandTarget Interface

This interface from the EnvDTE namespace is used to process a request from the IDE to run
your add-in. The first parameter to both methods is the command name, so your add-in code
knows which (of possibly multiple) commands Visual Studio is asking about.

Assemblies

When implementing an add-in module, the following assemblies need to be included in the
project:

 Extensibility

 EnvDTE

There are later versions of the EnvDTE assembly, which add on additional classes, enums, and
interfaces. If you choose to implement an add-in that interacts with some of the later versions of
Visual Studio, you may need to include these assemblies in your project as well:

 EnvDTE: All versions of Visual Studio.

 EnvDTE80: VS 2005 and above, interfaces typically ending with 2, e.g., EnvDTE2.

 EnvDTE90: VS 2008 and above, interfaces ending with 3, e.g., HTMLWindow3.

 EnvDTE100: VS 2010 and above.

When you create an add-in module using the Add-in Wizard, EnvDTE and EnvDTE80 are
typically included for you.

Wizard

Visual Studio’s New Project menu includes a wizard that will generate most of the code you
need to integrate your add-in into the IDE. It will also generate the XML configuration file to
allow the IDE to find and load your add-in program. In the next chapter, we will use this wizard
to create the famous “Hello World” programming example.

20

Chapter 2 Add-in “Hello World”

Ever since the classic example in the book The C Programming Language, the Hello World
program has been the starting point for new example programs. In this chapter, we will use the
project wizard to create a Visual Studio add-in version of this classic example.

Create the project

To create a new add-in project, we will use the Add-in Wizard built into Visual Studio:

1. Open Visual Studio and select New Project on the File menu.

2. Choose Other Project Types from the Installed Templates list.

3. Choose Extensibility.

 Creating a new project

There are two types of add-ins you can create, one that can be loaded into Visual Studio (which
is the focus of this book), as well as a shared add-in that can be used across different Microsoft
products (such as Word, Excel, Outlook, etc.).

Note: All of the add-in modules we create in this book will start with the wizard screen, so

you will use it quite a bit. It is definitely a time-saver compared to creating the

implementation class code and XML files manually.

21

Select your language

After the wizard splash screen, you will be given the option to select the programming language
you want the code to be generated in. The options are:

 Visual C#

 Visual Basic

 Visual C++ /CLR

 Visual C++/ATL

For the examples in this book, we will work in Visual C#, but you may use whichever language
you are most comfortable programming in. This choice determines the language in which the
add-in project will be generated, but does not impact running or using the add-in.

Application hosts

The application hosts selection screen lets you indicate which host applications can run your
add-in. The options are:

 Visual Studio

 Visual Studio Macros

You can select either or both options. For the examples in this book, we only need to select
Visual Studio. The add-in XML file will contain a <HostApplication> entry for each option
selected. Most add-ins in this book will have a UI component, so you shouldn't need to select
Visual Studio Macros.

Note: When using Visual Studio macros, interactive commands such as LaunchWizard,

OpenFile, etc. are not available. Other commands, such as Quit, behave differently. For

example, the Quit command closes the Macros IDE and returns to Visual Studio, rather than

shutting down Visual Studio itself.

Name and Description

You can provide a name and description for your add-in. The name will be used as the menu
label as well as the internal name for the command your code implements. The description is
stored as tooltip text, which the IDE displays when the user selects the add-in from the Add-in
Manager window.

22

 Adding a name and description to the add-in

Note: The wizard will generate a unique, qualified command name consisting of

<filename>.Connect.<commandName> when referencing your add-in module’s commands.

Add-in options

The add-in options screen helps control the generated code for your add-in. In our examples,
we are going to hook our class into the Tools menu, so we select the first option to generate
code on the Connection method to load our add-in.

23

 Add-in options

For debugging purposes, do not select the Load Add-in check box when the host application
starts. Ignoring this option will make debugging easier. When you are ready to deploy your
application, it is an easy update to have your add-in load at start-up time.

Note: In some examples, we might connect to a different menu or toolbar, but it is still

beneficial to let the wizard generate the default method, even if we tweak its code.

About Information

The About Information option lets you specify text to display in the Visual Studio About box.
When you run the About Visual Studio menu option, the dialog box displays a list of all
installed products, including add-ins. When a user navigates to your add-in, any information you
provide will be displayed below the add-in list.

Summary

After you have filled in all of the information, a summary screen will be shown:

 Summary of add-in options

Double-check your selections, and if they all look okay, click Finish. The wizard will work for a
bit, and then produce a source file that provides implementation methods for the
IDTExtensibility2 and IDTCommandTarget interfaces. It will also generate the XML
configuration files with your add-in load instructions.

Connection Code

The code generated by the OnConnection method will look like the following code sample (it
may be different depending upon language and settings):

24

The code checks to see the connect mode, and only installs the add-in during the UI Setup

call. This event is called during the splash screen display when Visual Studio starts.
OnConnection will be called other times by Visual Studio, but there is no need to install the
command into the menu structure more than once.

The code will search the IDE’s command menu structure to find the Tools menu, and then add
your add-in to that menu. Most add-in modules are placed on the Tools menu, but you are free
to put them anywhere you’d like.

public void OnConnection(object application, ext_ConnectMode connectMode,
 object addInInst, ref Array custom)
{
 _applicationObject = (DTE2)application;
 _addInInstance = (AddIn)addInInst;
 if(connectMode == ext_ConnectMode.ext_cm_UISetup)
 {
 object []contextGUIDS = new object[] { };
 Commands2 commands = (Commands2)_applicationObject.Commands;
 string toolsMenuName = "Tools";
 //Place the command on the tools menu.
 //Find the MenuBar command bar,
 CommandBars.CommandBar menuBarCommandBar =
 ((CommandBars.CommandBars)_applicationObject.CommandBars)["MenuBar"];
 //Find the Tools command bar on the MenuBar command bar:
 CommandBarControl toolsControl = menuBarCommandBar.Controls[toolsMenuName];
 CommandBarPopup toolsPopup = (CommandBarPopup)toolsControl;
 try
 {
 //Add a command to the Commands collection:
 Command command = commands.AddNamedCommand2(_addInInstance,
 "HelloWorld", "HelloWorld",
 "Executes the command for HelloWorld", true,
 59, ref contextGUIDS,
 (int)vsCommandStatus.vsCommandStatusSupported+
 (int)vsCommandStatus.vsCommandStatusEnabled,
 (int)vsCommandStyle.vsCommandStylePictAndText,
 vsCommandControlType.vsCommandControlTypeButton);
 //Add a control for the command to the tools menu:
 if((command != null) && (toolsPopup != null))
 { command.AddControl(toolsPopup.CommandBar, 1);
 }
 }
 catch(System.ArgumentException)
 {
 // If here, the exception is probably because a command with that name
 // already exists. If so there is no need to re-create the command and we
 // can safely ignore the exception.
 }
 }
}

25

Notice that the Application parameter is assigned to _applicationObject, a private variable in
the class. This variable and the _addInInstance variable will allow your add-in code to interact
with various Visual Studio elements.

Note: The private class variables (_applicationObject and _AddInInstance) are populated

during the connection routine, so they can be referred to during your Exec() and Query

Status() method calls.

Exec Code

The generated code includes an Exec() method, which is where you’ll add the code you want
your add-in to execute. The Handled variable, passed by reference, should be set to true to
inform Visual Studio that the particular command was processed by the add-in method.

Note: You will need to add a reference to System.Windows.Forms to include the

MessageBox code in your add-in.

Query Status code

This method returns a status code to Visual Studio when it requests the current status of your
method.

public void Exec(string commandName, vsCommandExecOption executeOption, ref object varIn,
ref object varOut, ref bool handled)
{
 handled = false;
 if(executeOption == vsCommandExecOption.vsCommandExecOptionDoDefault)
 {
 if(commandName == "HelloWorld.Connect.HelloWorld")
 {
 MessageBox.Show("Hello World!", "Hello" ,MessageBoxButtons.OK);
 handled = true;
 return;
 }
 }
}

public void QueryStatus(string commandName, vsCommandStatusTextWanted neededText,
 ref vsCommandStatus status, ref object commandText)
{
 if(neededText == vsCommandStatusTextWanted.vsCommandStatusTextWantedNone)
 {

26

Although the generated code provides the basic query result, you may need to adjust the code
to return a Not Supported status if the add-in module should not be called during the debugging
process of Visual Studio.

If your code does not update the status variable, the default behavior is to disable the menu or
toolbar item.

Generated files

The wizard will generate the standard project files (Project and AssemblyInfo.cs), as well as the
source code files containing your add-in code:

 Connect.cs: Generated source code of the add-in.

 <YourName>.AddIn: XML Configuration file for your add-in.

 <YourName> - For Testing.AddIn: XML configuration file to test your add-in.

 if(commandName == "HelloWorld.Connect.HelloWorld")
 { status = (vsCommandStatus)vsCommandStatus.vsCommandStatusSupported
 |vsCommandStatus.vsCommandStatusEnabled;
 return;
 }
 }
}

27

Chapter 3 Hooking into the IDE

In this chapter, we will look at the code to hook your add-in module into Visual Studio, and see
how you can find the menus and tool windows to integrate with your add-in.

OnConnection Method

The OnConnection method is the method used to load your add-in to the Visual Studio IDE.
The wizard-generated code searches the GUI controls for the Tools menu item and adds your
add-in module as the first item in that drop-down menu.

Tip: The wizard will run the connection code when ConnectMode is ext_cm_UISetup. If you

want the add-in module to attach to Tool windows or other items, rather than the standard

bar or menu, you might want to wait to connect until ConnectMode is ext_cm_AfterStartup to

ensure the control you want to connect to is created.

Linking to menu items

Visual Studio contains a large collection of commands to perform the IDE functions and a set of
controls to provide the user with access to these commands. To link your add-in, you’ll need to
add your command to Visual Studio’s collection and you’ll need to add a control into the GUI
elements of Visual Studio. We can review how to do these steps by exploring the code in the
OnConnection method generated by the wizard.

These two lines put a reference to the command collection into a variable and define the menu
(from the top bar) that we want to hook into. You can easily replace the string with the File, Edit,
View, Help, or some other menu caption, whichever is the best spot for your add-in. In our
example program in Chapter 5, we are going to move our add-in module into the File menu,
rather than the Tools menu.

 Commands2 commands = (Commands2)_applicationObject.Commands;
 string toolsMenuName = "Tools";

VisualStudio.CommandBars.CommandBar
 menuBarCommandBar = ((VisualStudio.CommandBars.CommandBars)
 _applicationObject.CommandBars)["MenuBar"];

CommandBarControl toolsControl = menuBarCommandBar.Controls[toolsMenuName];
CommandBarPopup toolsPopup = (CommandBarPopup)toolsControl;

28

These next lines get the top menu bar and find the drop-down menu associated with the string
we specified previously. The menu control is placed in the toolsPopup variable.

At this point, we have both the commands collection and the toolsPopup GUI control. The
following two lines add our add-in to the command collection and the GUI control.

The AddNamedCommand2() method has a number of arguments which we can adjust to
control our new menu item. After the add-in instance and command name, the next two
parameters are the button text (“Hello World”) and the tooltip text (“Classic Hello World
example”).

The next parameter is the MSOButton flag, which indicates how the bitmap parameter is
interpreted. The default value of true means the bitmap parameter is an integer ID of a bitmap
installed in the application (Visual Studio in this case).

The hard-coded 59 is the bitmap parameter which is used to choose the icon to add next to the
menu; text.59 is the add-in default icon (a smiley face). However, there are a lot of other options
available. A few selected ones are shown in the following code and can be defined as constants
in your add-in code.

Command command = commands.AddNamedCommand2(_addInInstance, "HelloWorld", "Hello World",
 "Classic Hello World example", true, 59, ref contextGUIDS,
 (int)vsCommandStatus.vsCommandStatusSupported+
 (int)vsCommandStatus.vsCommandStatusEnabled,
 (int)vsCommandStyle.vsCommandStylePictAndText,
 vsCommandControlType.vsCommandControlTypeButton);
//Add a control for the command to the tools menu:
if((command != null) && (toolsPopup != null))
 {
 command.AddControl(toolsPopup.CommandBar, 1);
 }

 const int CLOCK_ICON = 33;
 const int DEFAULT_ICON = 59;
 const int EXCEL_ICON = 263;
 const int FOXPRO_ICON = 266;
 const int TOOLS_ICON = 642;
 const int PUSHPIN_ICON = 938;
 const int PRINTER_ICON = 986;
 const int LIGHTBULB_ICON = 1000;
 const int PAPERCLIP_ICON = 1079;
 const int DOCUMENTS_ICON = 1197;
 const int RED_STAR_ICON = 6743;

29

Tip: There are thousands of icon resources embedded within Visual Studio. You can use a

resource editor to preview some of the icons you might want to include on your add-in’s

menu.

The other parameters are:

 Optional list of GUIDs indicating when the command can be called (typically an empty
array is passed).

 Command Status: Typically Supported and Enabled.

 Command Style: How the button is presented (icon and text).

 Control Type: Usually a button control.

You can tweak the command line, for example, to have your add-in module initially disabled and
later have your code enable it during the Query Status event.

The AddControl() method attaches the newly created command object to the pop-up menu
you’ve chosen. The second parameter, the 1 in this example, refers to the menu position where
the new item should be placed.

Note: 1 puts the new object at the top of the menu. You can also get the count of controls

on the command bar pop-up menu and add 1, which will put the option at the end of the

menu.

Linking to other windows

In addition to the main menu structure, you can also attach your add-in to the various context
menus of various IDE windows, such as the Code window or the Solution Explorer. However,
if you do this, you should typically load your command during the AfterStartup connection mode,
rather than during UI setup, just to ensure the window you are attempting to attach to is created
already in Visual Studio.

Adding to the code window

The following code sample shows how to add a pop-up menu item to the Code Window tool
window of Visual Studio. Note we are using Code Window rather than Menu Bar.

if (connectMode == ext_ConnectMode.ext_cm_AfterStartup)

{

 …

}

30

Note that in this example, we are adding our module to the end of the context menu, not the first
item.

We will cover creating an add-in attached to the code window in Chapter 12.

Other IDE windows

There is a large number of other command bar windows you can interact with, including:

 Formatting

 Image Editor

 Debug

 Table Designer

You can find all the available Command Bar windows with the following code added to your
Exec() method.

// Create the command object.
object[] contextGUIDS = new object[] { };
Commands2 commands = (Commands2)_applicationObject.Commands;

Command cmd = commands.AddNamedCommand2(_addInInstance, "HelloWorld", "Hello World",
 "Hello from Code Window ", true, 59, ref contextGUIDS,
 (int)vsCommandStatus.vsCommandStatusSupported+
 (int)vsCommandStatus.vsCommandStatusEnabled,
 (int)vsCommandStyle.vsCommandStylePictAndText,
 vsCommandControlType.vsCommandControlTypeButton);

// Create a command bar on the code window.
 CommandBar CmdBar = ((CommandBars)_applicationObject.CommandBars)["Code Window"];

// Add a command to the Code window's shortcut menu.
CommandBarControl cmdBarCtl = (CommandBarControl)cmd.AddControl(CmdBar,
 CmdBar.Controls.Count + 1);
cmdBarCtl.Caption = "HelloWorld";

CommandBars commandBars = (CommandBars)_applicationObject.CommandBars;

StringBuilder sb = new StringBuilder();

foreach (CommandBar cb in commandBars)

{

 sb.AppendLine(cb.Name);

}

 MessageBox.Show(sb.ToString(), "Windows" ,MessageBoxButtons.OK);

31

The command bar object has both a Name and NameLocal property (holding localized menu
names for international versions of Visual Studio). However, when you search for menus and
windows, you can use the English name, which is how they are stored internally.

Adding a toolbar button

The following code sample shows how to add a toolbar button to the standard toolbar of Visual
Studio. Note we are using Standard instead of Menu Bar.

When adding to a toolbar, the MSOButton Style controls how the icon appears on the toolbar.
Some options are:

 msoButtonIcon: Only show button.

 msoButtonIconAndCaption: Show icon and caption text.

 msoButtonIconAndWrapCaption: Show icon and wrap caption text.

QueryStatus Method

The QueryStatus method is called by Visual Studio whenever the IDE wants to display your
menu item. The method returns a status code to the IDE, indicating whether the menu option is
currently supported or enabled. Visual Studio then uses this status to determine the menu’s
appearance and whether or not the user can activate it.

// Add the command.
Command cmd = (Command)_applicationObject.Commands.AddNamedCommand(_addInInstance,
 "HelloCommand", "HelloCommand", "Hello World", true, 59, null,
 (int)vsCommandStatus.vsCommandStatusSupported +
 (int)vsCommandStatus.vsCommandStatusEnabled);
CommandBar stdCmdBar = null;
// Reference the Visual Studio standard toolbar.
CommandBars commandBars = (CommandBars)_applicationObject.CommandBars;
foreach (CommandBar cb in commandBars)
 { if(cb.Name=="Standard")
 { stdCmdBar = cb;
 break;
 }
 }
// Add a button to the standard toolbar.
CommandBarControl stdCmdBarCtl = (CommandBarControl)cmd.AddControl(stdCmdBar,
 stdCmdBar.Controls.Count + 1);

stdCmdBarCtl.Caption = "Hello World”;
// Set the toolbar's button style to an icon button.
CommandBarButton cmdBarBtn = (CommandBarButton)stdCmdBarCtl;
 cmdBarBtn.Style = MsoButtonStyle.msoButtonIcon;

32

Note that there is no Command Status Disabled option. If you want your command to be
disabled, simply do not update the status variable, since the default status is disabled.

Other methods

There are other methods you can use to interact with Visual Studio. While these methods are
generated as empty modules by the wizard, you might need them depending on your add-in’s
behavior.

OnAddInsUpdate method

This method is called when add-ins are loaded into the Visual Studio environment (as well as
when the user clicks OK from the Add-in Manager window). If your add-in is dependent on
other add-ins, you can check those dependencies during this method.

OnBeginShutdown method

When the user begins to close Visual Studio, this method is called. This is the time to clean up
any resources your add-in has created, and save any user configuration information needed for
the next time the add-in is loaded.

OnDisconnection method

This method is called when Visual Studio unloads your add-in. If you created or locked any
resources when your add-in was connected, this is the method you can use to unlock or free
those resources.

On StartupComplete

This method is called once Visual Studio has completed the start-up process. If your add-in is
not loaded due to a component dependency, you could install your add-in during this method to
ensure all components within Visual Studio have been loaded.

A few caveats

Before we dig in and design some add-in modules, there are a couple of tips to keep in mind.

Tip: Avoid admin rights. When designing your add-in module, keep in mind that starting with

Windows Vista, Windows employs User Account Control (UAC), which means it is very likely

33

that Visual Studio will not have admin rights.

Tip: Be careful about storing setting information in non-writable folders or registry entries.

Use the APPDATA system variable to find a folder to store your settings.

By keeping the new security model in mind, you can prevent your add-in modules from requiring
Visual Studio to be run in admin mode or seeing the access denied error.

34

Chapter 4 Application and Add-in Objects

In this chapter, we will give a quick overview of the two main object classes that Visual Studio
provides to add-in authors to interact with the IDE and with other add-ins.

Application Object

The _applicationObject variable contains a DTE2 object reference, which provides properties
and methods to allow you to interact with the Visual Studio IDE. Many of these properties will be
explored in subsequent chapters and examples. Some of the more commonly used ones are:

ActiveDocument

This property returns a document object reference to the document that currently has focus. The
object contains information such as the file name, whether the document has been saved, the
selected text, the kind of document being edited, etc.

ActiveWindow

This property returns a window object reference to the currently active window. The window
object contains the caption, kind of window (tool or document window), the size (width and
height), and position (left and top). It also contains a reference to the document currently in the
window. You can do some basic manipulation of the window, such as hiding it, moving it,
closing it, etc.

Debugger

This property returns a reference to the debugger object, which allows you to find out the
current breakpoints, processes running on the machine, the current program and process, etc.
You can also move to various code points, evaluate expressions, etc.

Documents

The Documents property is a collection of all currently open documents within Visual Studio.
Each individual item refers to a document within the IDE. In Chapter 11, we will work with
document objects and their contents.

35

Edition

This property contains a string indicating the edition of Visual Studio, i.e. Professional,
Enterprise, etc. It can be useful if your add-in should not be run in certain editions, for example.

ItemOperations

This property provides an object class that allows you to add new or existing items to the current
project. You can also navigate to a URL and have the IDE open a browser window. We will use
this object in Chapter 15 when we generate source code files.

LocaleID

This property returns the locale in which the development IDE is running. You might use this to
customize your add-in for various countries and languages.

MainWindow

This property returns the main parent window for the IDE. It contains all of the various window
properties and you can explore its LinkedWindows collection to find the various other windows
linked to it.

Mode

The Mode property indicates whether the IDE is in design (vsIDEModeDesign) or debug mode
(vsIDEModeDebug). You might want to disable your add-in from running while the user is
debugging code.

Solution

This property returns a reference object to the currently open solution in the IDE. The solution
object contains a collection of all projects in the solution, the file name, the global settings for
the solution, whether it has been saved, etc. In addition, you can add and remove files from the
solution, iterate projects, save the solution as another name, etc. We will explore the solution
object in Chapter 8.

ToolWindows

This property returns an object that makes it easier to search for some of the common tool
windows, such as the Task List, the Solution Explorer, the Error list, etc. We explore tool
windows in Chapter 14.

36

Windows

This property is a collection of windows currently open within Visual Studio. Each item in the
collection is a window object, allowing you to resize and move windows, update captions,
change focus, etc. We explore the windows collection in detail in Chapter 10.

AddIn Object

The _addInInstance object is an instance of the AddIn class. The _addInInst parameter is
passed to your add-in during the onConnection method and it is assigned to the private class
variable _addInInstance. This variable provides details specific to this instance of your add-in.

Add-in properties

The following properties are available for your add-in.

Collection

The Collection property returns a reference to the collection of add-in objects currently installed
in Visual Studio. You can use this property to check for any dependencies your add-in may
have.

Connected

This is a Boolean value indicating whether your add-in is loaded and connected within Visual
Studio. You can connect your add-in programmatically by setting this property to True if not
already connected, i.e.:

Description

This string property contains the descriptive text that is displayed in the Add-in Manager and
sometimes as tooltip text. The property is read/write, so you can dynamically update the title in
your add-in.

if (_addinInstance.Connected)

{

 …
 }

37

GUID

This read-only string contains the CLSID of the add-in from the add-in registry entry.

Name

This read-only string property holds the command name associated with the add-in. It is the
name parameter passed to the AddNamedCommand method of the Visual Studio Commands
collection.

Object

The Object property is a reference to the instance of the actual object containing your add-in’s
implementation code. You can use this property to access any additional information you’ve
stored in your object class that is needed to implement your add-in module.

ProgID

This read-only string property contains the unique program name for your add-in’s command,
typically the file name, class name, and command name delimited by periods.

SatelliteDLLPath

This read-only string is the full path name where the DLL containing the code implementing the
add-in is located.

Assemblies

The following assemblies are used by the add-in modules and can be added into your code as
necessary. Keep in mind that some features are only available in later versions of Visual Studio,
so only use them if you know the minimum version your add-in will run in.

Extensibility.dll

This assembly contains all versions of Visual Studio-IDTExtensibility2 and enums for connection
purposes.

CommandBars.dll

Starting in VS 2005, Microsoft.VisualStudio.CommandBars.dll contains the command bar
model. Early versions used the command bar model from Office.dll.

38

EnvDTE.dll

This assembly contains the extensibility model of Visual Studio to manage the IDE, solutions,
projects, files, code, etc. Later versions are all additive to provide more version specific features:

 80 (VS 2005, 2008, 2010)

 90 (VS 2008, 2010)

 100 (VS 2010)

VSLangProj.dll

This assembly contains more detailed extensibility models, specifically for VB.NET and C#
projects.

39

Chapter 5 Save Some Files Add-In

Now that we have explored the various parts of an add-in module, we can put them all together
and write a simple add-in project. We can start by creating a basic add-in using the wizard. Be
sure to have the wizard generate our starting code and the code to hook it into the Tools menu.

Our add-in is going to look at all documents that have been edited, but not saved, and display
them in a check box list. Users can then mark the ones they want to save and click to save only
those files. Our add-in will be called SaveSomeFiles.

SaveSomeFiles add-in

We can start our add-in using the Add-in Wizard described in Chapter 2. Use the following
settings while running the wizard:

 Visual C# (or your preferred language).

 Application Host: Only Visual Studio.

 Name/Description:SaveSomeFiles and Selectively save open files.

 Create UI Menu and make sure load at start-up is not selected.

Verify the settings in the Summary screen, and if they look okay, generate the code.

Note: Add a reference to System.Windows.Form in your add-in project’s references. You’ll

need this for the GUI screen we will build. You will want to include this for most add-ins you

create.

Designing the selection form

The selection form will be a standard Windows form with a CheckedListBox control, Save, and
Cancel buttons. Our add-in will populate the list box and then display it to the user. Once the
user clicks Save, the code will save the selected files. If the user clicks Cancel, the dialog box
will close and no action will take place.

40

 Selection form

Create a Windows form as shown in Figure 5. Name the checked list box control on the form
CLB. Be sure to set the Modifiers property to Public, so we can access the checked list box
from within our add-in code. In general, any control on the form that will be populated by your
add-in will need to be set to public.

 Setting the Modifiers property to Public

Throughout this book, we will create several Windows forms for our add-ins. Feel free to indulge
your creative talents to make these screens look nice. The code samples will provide the name
and type of control the add-in will interact with. Other than that, we won’t spend too much time
detailing how to create forms.

Implementing the Exec() method

The code in the Exec() method first needs to find out which files need to be saved. It does this
by iterating through the documents collection of the _applicationObject variable, as shown in
the following code sample. Any file that has been modified but has not been saved is added to
the check box on the form we created.

41

After the user closes the dialog box, we need to step through the checked items, and call the
Save method on the corresponding document object.

Once we’ve completed the Save operation for the requested files, we can dispose of the form
we created earlier in the code.

But not while debugging

We want to adapt our code so that the Save Some Files option is not available if the IDE is in
debug mode. To implement this action, we need to update the Query Status method.

if(commandName == "SaveSomeFiles.Connect.SaveSomeFiles")
{
 SaveFiles theForm = new SaveFiles(); // Create the form.
 theForm.CLB.Items.Clear(); // Clear out the items stack.

 // Iterate through each document currently open in the IDE.
 foreach (Document theDoc in _applicationObject.Documents)
 {
 if (theDoc.Saved==false)
 {
 theForm.CLB.Items.Add(theDoc.FullName.ToString());
 }
 }
 // Show the form with “files to be saved”.
 theForm.ShowDialog();

if (theForm.DialogResult == DialogResult.OK)
 {
 foreach (int xx in theForm.CLB.CheckedIndices)
 {
 foreach (Document theDoc in _applicationObject.Documents)
 {
 if (theDoc.FullName.ToString() == theForm.CLB.Items[xx].ToString())
 {
 theDoc.Save();
 }
 }
 }
 }
 theForm.Dispose();

public void QueryStatus(string commandName, vsCommandStatusTextWanted neededText,
 ref vsCommandStatus status, ref object commandText)
{
 if(neededText == vsCommandStatusTextWanted.vsCommandStatusTextWantedNone)
 {

42

After we’ve identified our command (SaveSomeFiles.Connect.SaveSomeFiles), we need to add
an additional IF test to determine which status code to return. If we are in debug mode, then we
return the default status; otherwise, we return the standard enabled and supported result. The
following code can be added into the Query Status method.

When the IDE attempts to build the File menu, it will ask any add-ins whether they are enabled.
If we are in debug mode at the time, the menu option will be disabled.

Summary

In this chapter, we designed a simple add-in module to show how to interact with Windows
forms and to extract information from the _applicationObject variable. Many add-in modules
will have similar approaches, collecting and displaying information to the user, and then
interacting through the variable directly with Visual Studio.

 if(commandName == "SaveSomeFiles.Connect.SaveSomeFiles")
 {
 status = (vsCommandStatus)vsCommandStatus.vsCommandStatusSupported |
 vsCommandStatus.vsCommandStatusEnabled;
 }
 }
 return;
}

if (commandName == "SaveSomeFiles.Connect.SaveSomeFiles")
 {
 if (_applicationObject.Mode == vsIDEMode.vsIDEModeDebug)
 {
 status = (vsCommandStatus)vsCommandStatus.vsCommandStatusSupported;
 }
 else
 {
 status = (vsCommandStatus)vsCommandStatus.vsCommandStatusSupported |
vsCommandStatus.vsCommandStatusEnabled;
 }
 return;
 }
 else
 {
 status = (vsCommandStatus)vsCommandStatus.vsCommandStatusSupported |
vsCommandStatus.vsCommandStatusEnabled;
 }
 return;
 }

43

Chapter 6 Testing Your Add-In

Once you’ve coded your add-in, you can easily test it using the Visual Studio debugger.
However, debugging can be a bit easier once you review the XML configuration files and
understand the add-in life cycle.

Configuration files

When you first create an add-in using the wizard, the wizard generates your class code, and
also two XML configuration files that control your add-in’s behavior. These are:

 <Add-in Name> - For Testing.Addin

 <Add-in Name>.AddIn

For Testing.AddIn

When you generate an add-in using the wizard, it creates the XML file and places it into the
add-in folder. This file allows Visual Studio to load your add-in, but refers to the assembly DLL in
your project folder. Other than the assembly location, this file has the same content as your
actual AddIn file you’ll use to install the add-in.

Of course, this can create a catch-22 for future debugging sessions. When Visual Studio loads
the add-in, the DLL containing the add-in code is locked by the IDE. Hence, you might see this
message when you attempt to tweak and build your add-in:

Unable to delete file ".\bin\CodeWindow.dll".

Access to the path 'C:\Users\..\documents\visual studio
2010\Projects\CodeWindow\CodeWindow\bin\CodeWindow.dll' is denied.

Add-in settings

The add-in configuration file contains some settings that control how and when the add-in is
loaded. These settings can be found in the <Addin> element in the XML file.

LoadBehavior

This value indicates when the add-in is loaded. The available values are:

 0: Add-in must be loaded manually.

 1: Add-in automatically loads when IDE starts.

 4: Add-in loads when started from command prompt.

44

You will rarely see option 4, since most add-ins provide a UI and would not make sense when
run from the command line. Option 0 is good for debugging, because the add-in’s DLL is only
loaded when you open the add-in, not every time you open the IDE.

CommandPreload

This value determines if the add-in is loaded via the Add-in Manager or automatically when
Visual Studio starts (the first time after the add-in file is installed):

 0: Add-in must be manually started by Add-in Manager.

 1: Add-in is loaded first time when Visual Studio starts after install.

Sometimes, when you are debugging an add-in, you might need to set Command Preload to 0
in the add-in files to allow you to update the DLL when you compile your add-in. If you set it to 1,
you might get the “Unable to delete” error when you attempt to rebuild your add-in file.

I recommend generating the Add-in Wizard without the add-in being loaded at start-up to make
it easier for testing and debugging. Once you are ready to deploy your add-in, you can manually
change the Load Behavior flag to 1 if you want your add-in loaded at start-up time.

Add-in life cycle

The Load Behavior setting controls which events from your connect class are called and when.
Regardless of the setting, the first two events are always:

 OnConnect with the cm_UISetup connect mode.

 Disconnect with the dm_UISetup disconnect mode.

This is why when you attach your add-in module to Visual Studio during the CM_UISetup mode,
it is always called.

0: Call Manually

When set to Call Manually, the add-in does not get called again until you actually request it from
the menu. The command has been added to the IDE, and the menu updated, but the code is
not loaded. Once you select the item from the menu or toolbar, Connect with cm_AfterStartup is
called.

At this point, the add-in is loaded to memory. You can manually unload it using the Add-in
Manager, in which case Disconnect with dm_userShutdown is called. If you don’t close it
manually, the events OnShutdown and Disconnect – with dm_HostShutdown are called. If
you’ve closed it manually, these events will not be called since the add-in is no longer in
memory.

45

If you plan on loading the add-in manually, be sure to set any configuration information you want
to save during the Disconnect method.

1: Load at Start-up

When set to load at start-up, additional events are triggered since the IDE is loading your add-in
as part of the start-up code:

 Connect with cm_Startup.

 Adds-in update event.

 Start-up complete event.

This means that once the IDE makes its appearance, your add-in module is loaded in memory.
Unless you unload it manually using the Add-in Manager, the following events will be triggered
when the user shuts down Visual Studio:

 Begin Shutdown.

 Disconnect with dm_HostShutdown.

The events that your add-in will respond to are handled differently. During debugging sessions, I
generally only load the add-in when called from the menu. However, once the code is ready for
deployment, I typically set the flag to 1, load at start-up.

Debugging

When you debug your add-in by pressing F5, a second instance of Visual Studio will be loaded.
When this instance loads, it will see the newly added XML file and load the add-in module into
Visual Studio. At this point, you can step through the add-in and debug the code or you can run
it and test its behavior.

Common mistakes

Here are some common mistakes that might pop up while using your add-in.

Add-in not enabled on menu

If your add-in is not available on the menu, check the QueryStatus method and ensure that the
return status variable contains both Command Supported and Command Enabled.

46

Add-in never invoked

If the command name in the Exec command does not match the add-in class name and friendly
name in the add-in XML file, your exec method will never reach your code.

Events not triggering

Be sure the events you are expecting to be called are compatible with the Load Behavior mode
set in the XML file.

Not seeing code changes

Sometimes, your add-in code appears not to recognize recent code changes. If this is the case,
the most likely culprit is that the wrong DLL version was loaded. I would recommend making
sure the Load Behavior flag is set to 0, restarting the IDE, and running the add-in from the
menu. This should load the most recent version of the DLL.

Removing an add-in module

There are times you might need to remove an add-in module entirely. The easiest way to do this
is to find and delete (or rename) the Addin XML file in any of the paths specified in the Add-in
and Macros properties. In the Tools menu, select Options, and then Environment.

Pesky “Unable to delete” message

Occasionally, you might not be able to shake that “Unable to Delete” message, no matter how
many times you restart the IDE and tweak settings. If your add-in is not marked as load on start-
up, the DLL should not be loaded. However, in the event you cannot unload it, you can start the
IDE with the /SafeMode switch, which loads Visual Studio without any add-in modules at all.

Even if you start the IDE in Safe Mode, you can still debug since the second instance of the IDE
will start in regular mode without the /SafeMode switch being applied. If you are having trouble
working with an add-in, consider making an add-in free shortcut on your desktop to run the IDE
with add-ins.

47

Chapter 7 Visual Studio Environment

In this chapter we will create an add-in module to provide some details about the Visual Studio
installed version and the computer that the IDE is currently running on. Although the collected
information will be displayed in a Windows form, you could also add logic to create a text file of
the information, allowing a user to duplicate the Visual Studio environment on another computer
if desired.

VS Info Wizard

Start your VS info add-in by using the wizard and the following settings:

 Visual C# (or your preferred language).

 Application Host: Only Visual Studio, because we wouldn’t use this in a macro.

 Name/Description: VS_Info and Info about Visual Studio and Dev Environment.

 Create UI Menu and load at start-up is not selected.

Verify the settings at the Summary screen, and if they look okay, generate the code.

VS Info Form

We need to create a form to hold our Visual Studio information, so we will need to add a
Windows form to the project. In addition, we will be using the String Builder object to assemble
our information, so add the following line to your connect.cs file:

Create a form similar to the following figure, but feel free to add your own artistic touches.

using System.Text;

48

 Form for Visual Studio information

However, be sure the two text boxes have PUBLIC modifiers. I’ve named the Visual Studio text
box VSINFO and the Environment text box ENVINFO. If you use different names, you’ll need to
tweak the code in your Exec() method.

Name the form that you create VSInfoForm; I recommend using a monospace font so the
generated text will line up nicely.

Exec() method

In our Exec() method, we are going to gather information and build lines of text to transfer to the
form’s windows. We will start simply by grabbing some simple string properties from the
_applicationObject variable, as seen in the following code:

if(commandName == "VS_Info.Connect.VS_Info")
{
 VSInfoForm theForm = new VSInfoForm(); // Create the form.
 StringBuilder sb = new StringBuilder();

 // Get information specifically about Visual Studio.
 sb.AppendLine("Visual Studio " + _applicationObject.Edition + " edition");
 sb.AppendLine(" Version " + _applicationObject.Version.ToString());
 sb.AppendLine("");
 sb.AppendLine("Full EXE Name " + _applicationObject.FullName);
 sb.AppendLine(" Parameters " + _applicationObject.CommandLineArguments.ToString());
 sb.AppendLine("");
 sb.AppendLine("Registry Root " + _applicationObject.RegistryRoot.ToString());
 sb.AppendLine("");

49

Getting options

Visual Studio has an options menu to allow you to tweak the settings and behavior of the IDE. It
can be found in the Tools menu under Options.

 Visual Studio options

You can access any of the Visual Studio options by using the get_Properties method of the
_applicationObject variable. The method takes two parameters, the category name and the
page name. The example code that follows shows how to get a collection of the options from
the Environment category, General page.

This method will return a properties collection object with the options from the indicated section.
We can then iterate through the properties collection to find the individual options.

Note: You need to know the exact names of the categories and pages; otherwise, you’ll

encounter an error message.

// Gives you access to various IDE options (see Tools | Options menu).
Properties theSection = _applicationObject.get_Properties("Environment", "General");

50

 Error result of mismatched option categories and pages

If you plan on using the options, you can go to the following registry key to get the actual
category names:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\VisualStudio\<ver>\AutomationPropertie
s.

This registry location will show you the actual text fields to use with the get_Properties method.

 Text fields to use with Get_properties method

For our code, we are going to get the list of folders that Visual Studio looks in when loading add-
ins.

// Gives you access to various IDE options (see Tools | Options menu).
 Properties theSection = _applicationObject.get_Properties("Environment",
 "AddinMacrosSecurity");
 foreach (Property theProp in theSection)
 { // Add-in locations are handled specially.

51

To access the properties, we assign the results of get_Properties to a variable of type
Properties. We then iterate through this collection, getting an individual property object for
every entry within the category and page. The property contents will vary a bit, from simple
name and value pairs to the slightly more complex code in the previous code sample to iterate
the path list for add-ins.

Getting add-ins installed

Once we have gathered the settings and paths, we also want to report on the currently installed
add-ins. The following code sample shows how to accomplish that:

And the final step is to put the string we’ve just assembled into the form’s Edit box.

Environment information

We can take a similar approach to provide users some information about the development
environment Visual Studio is running in.

 if (theProp.Name == "AddinFileLocations")
 {
 object[] theArr = (object[])theProp.Value;
 for (int i = 0; i < theProp.Collection.Count;i++)
 {
 string s = (string)theArr[i];
 sb.AppendLine(s);
 }
 }
 }

sb.AppendLine("");
foreach (AddIn theItem in _applicationObject.AddIns)
 {
 sb.AppendLine(theItem.Name.ToString()+" (" + theItem.Description.ToString() + ") ");
 sb.AppendLine(" "+theItem.SatelliteDllPath.ToString());
 sb.AppendLine("");
 }
 // And put the results into the form’s edit box.
 theForm.VSINFO.Text = sb.ToString();

sb.Clear();
// Get information about development machine.
 sb.AppendLine(" Machine Name: "+Environment.MachineName.ToString());
 sb.AppendLine(" User: "+Environment.UserDomainName + "/" +
 Environment.UserName.ToString());
 sb.AppendLine("Operating System: "+
 OSVersionToFriendlyName(Environment.OSVersion.Version.Major,
 Environment.OSVersion.Version.Minor));

52

Getting an OS-friendly name

You can use the version information supplied in the environment class to convert the version
into a friendlier name (such as Windows XP, Windows Vista, etc.) The
OSVersionToFriendlyName() function handles that task.

 sb.AppendLine(" "+Environment.OSVersion.ToString() +
 " with " + Environment.ProcessorCount.ToString() +
 " processors");
 if (Environment.OSVersion.Platform == PlatformID.Win32Windows ||
 Environment.OSVersion.Platform == PlatformID.Win32Windows)
 {
 sb.AppendLine("You are using an older, unsupported OS,
you should consider upgrading to a later version");
 }
 if (System.Windows.Forms.SystemInformation.MonitorCount > 1)
 {
 sb.AppendLine("Multiple monitors setup");
 }

 theForm.ENVINFO.Text = sb.ToString();

public string OSVersionToFriendlyName(int MajorVer,int MinorVer)
{
 string OsName = "Unknown";
 switch (MajorVer)
 {
 case 1 : { OsName="Windows 1.0"; break; }
 case 2 : { OsName ="Windows 2.0"; break; }
 case 3:
 {
 switch (MinorVer)
 {
 case 10: { OsName = "Windows NT 3.1"; break; }
 case 11: { OsName = "Windows for Workgroups 3.11"; break; }
 case 5: { OsName = "Windows NT Workstation 3.5"; break; }
 case 51: { OsName = "Windows NT Workstation 3.51"; break; }
 }
 }
 break;
 case 4:
 {
 switch (MinorVer)
 {
 case 0: { OsName = "Windows 95"; break; }
 case 1: { OsName = "Windows 98"; break; }
 case 90: { OsName = "Windows Me"; break; }
 }
 }
 break;
 case 5:

53

Displaying the form

Once the information has been gathered and transferred to the form, we now simply display the
form.

Final results

Once you build and run the add-in, your screen should look something like this:

 {
 switch (MinorVer)
 {
 case 0: { OsName = "Windows 2000 Professional"; break; }
 case 1: { OsName = "Windows XP"; break; }
 case 2: { OsName = "Windows XP Professional x64"; break; }
 }
 }
 break;
 case 6:
 {
 switch (MinorVer)
 {
 case 0: { OsName = "Windows Vista"; break; }
 case 1: { OsName = "Windows 7"; break; }
 }
 }
 break;
 default:
 break;
 }
 return OsName;
}

 theForm.ShowDialog();
 handled = true;
 return;

54

 Completed information form

You can adjust the code to include different button options, and even add a print button to print
the contents of the Visual Studio setup to a printer or to a text file.

55

Chapter 8 Solution

In this chapter, we are going to create an add-in module to explore the current solution open in
the IDE, and present a summary screen of some key statistics about the solution. It provides a
basic example of how to programmatically access various aspects of the solution.

Solution Info Wizard

Start your Solution Info add-in using the wizard and the following settings:

 Visual C# (or your preferred language).

 Application Host: Only Visual Studio, since it wouldn’t make sense in a macro.

 Name/Description: SolutionInfo, Info, and Statistics about solution.

 Create UI Menu and do not load at start-up.

Verify the settings at the Summary screen, and if they look okay, generate the code.

Updating the menu icon

To help distinguish our add-in a bit, we are going to change the default icon to the lightbulb
symbol. You can add the constant to the top of your connect.cs class file:

And revise the OnConnection method to use this constant, rather than the hard-code 59 the
wizard generates.

const int LIGHTBULB_ICON = 1000;

 Command command = commands.AddNamedCommand2(_addInInstance, "SolutionInfo",
 "Solution Info", "Info & Statistics about solution", true,
 LIGHTBULB_ICON,
 ref contextGUIDS,
 (int)vsCommandStatus.vsCommandStatusSupported +
 (int)vsCommandStatus.vsCommandStatusEnabled,
 (int)vsCommandStyle.vsCommandStylePictAndText,
 VsCommandControlType.vsCommandControlTypeButton);

56

Exec() method

The Exec() method will collect a variety of solution information and present it to the user. But
first, we need to make sure a solution is open.

Note: Be sure to add a reference to System.Windows.Forms to your project.

Solution info

We can now use the Solution object to explore some aspects of the currently open solution.
We will use a similar approach of building the information in a string builder variable and then
transferring the text to our GUI form. In the following code sample, we are taking some of the
simple properties of the solution object and displaying them:

Totaling project information

We also want to report on the number of projects and code files the solution contains. To do so,
we need to iterate through the projects associated with the solution.

// Only makes sense if a solution is open.
if (_applicationObject.Solution.IsOpen==false)
 {
 MessageBox.Show("No solution is open","ERROR");
 handled = true;
 return;
 }

StringBuilder sb = new StringBuilder();
Solution theSol = _applicationObject.Solution;

sb.AppendLine(" Solution: " + Path.GetFileName(theSol.FullName.ToString()));
sb.AppendLine(" Full Path: " + theSol.FullName.ToString());
sb.AppendLine("Start-up projects: ");
foreach (String s in (Array)theSol.SolutionBuild.StartupProjects)
 {
 sb.AppendLine(" " + s);
 }

Project theProj; // Generic project item.
int NumVBprojects = 0;
int NumVBmodules = 0;
int NumCSprojects = 0;

57

The Kind property of the project object is a GUID string, so we need a little help in determining
the project type. To this end, we need to add a reference to VSLangProj into our add-in project.

You might see a compiler error stating that prjKind cannot be embedded when you attempt to
reference the project kinds. To solve this error, right-click on the VSLangProj reference and
bring up the Properties dialog. Set the Embed Interop Types to false to prevent the types
from being embedded in the assembly.

Now that we’ve collected the information, we need to format it for display to our user, which the
following code sample shows:

int NumCSmodules = 0;
int NumOtherProjects = 0;

// Iterate through the projects to determine number of each kind.
for (int x = 1; x <= theSol.Count; x++)
{
 theProj = theSol.Item(x);
 switch (theProj.Kind)
 {
 case PrjKind.prjKindVBProject :
 {
 NumVBprojects++; // Increment number of VB projects.
 NumVBmodules += theProj.ProjectItems.Count;
 break;
 }
 case PrjKind.prjKindCSharpProject :
 {
 NumCSprojects++; // Increment number of C# projects.
 NumCSmodules += theProj.ProjectItems.Count;
 break;
 }
 default:
 {
 NumOtherProjects++;
 break;
 }
 }
}

sb.AppendLine("Visual Basic code");
sb.AppendLine(" " + NumVBprojects.ToString() + " projects containing " +
 NumVBmodules.ToString() + " modules");
sb.AppendLine("");
sb.AppendLine("Visual C# code");
sb.AppendLine(" " + NumCSprojects.ToString() + " projects containing " +
 NumCSmodules.ToString() + " modules");
sb.AppendLine("");
sb.AppendLine("Miscellaneous projects");
sb.AppendLine(" " + NumOtherProjects.ToString() + " other projects");
sb.AppendLine("");

58

Project GUIDS are stored in a registry key, HKLM\Software\Microsoft\VisualStudio\<vers>
Projects. You can copy the GUID to additional constants if you need to report on other project
types during the Solution add-in. The following are some sample constants for VS projects:

// Constants for additional project types.
 const string WEB_APPLICATION_PROJECT = "{E24C65DC-7377-472b-9ABA-BC803B73C61A}";
 const string DEPLOYMENT_PROJECT = "{54435603-DBB4-11D2-8724-00A0C9A8B90C}";

Properties

After we’ve gathered some of the solution info, we can iterate through the properties associated
with the solution, and append them to our string builder variable.

Displaying the results

After we’ve built our string builder variables, we need to create a form to display them to the end
user.

// Get properties.
sb.AppendLine("Solutuion Properties");
Properties props = theSol.Properties;
foreach (Property prop in props)
 {
 sb.Append(" " + prop.Name + " = ");
 try
 {
 sb.AppendLine(prop.Value.ToString());
 }
 catch
 {
 sb.AppendLine("(Nothing)");
 }
 }

 // Put built string onto form.
 SolInfoForm theForm = new SolInfoForm();
 theForm.SOLINFO.Text = sb.ToString();
 theForm.ShowDialog();

 handled = true;
 return;

59

 Solution Information form

You can download the project code or create your own form similar to the one in Figure 12. The
add-in code assumes the text box control is named SOLINFO. Be sure to name it the same and
mark its modifier as PUBLIC so the add-in can place the solution information on the form.

Solution methods

In addition to displaying information about the solution, you can also perform certain operations
on the solution, much like the IDE does. Some of these include:

Close

This method closes the solution, with an optional Boolean parameter to save the solution first.

FindProjectItem

This method searches the project space, looking for an item by file name. If the item is found,
the method returns a ProjectItem reference to the file you were searching for.

SaveAs

This method allows you to save the solution under a different file name.

60

SolutionBuild

The solution object also provides information about the active configuration and the last build
state. You can use the Solution Build object of the solution to perform solution-level
operations, such as:

Build

Build the solution with an optional parameter to wait for the build to complete. You might decide
to do automated solution builds in the background as part of your testing cycle.

Clean

This method cleans up extra files used by the solution, and features an option to wait for
completion before continuing.

Run

This option runs the start-up project associated with the solution.

BuildState

This property reports the current state of the build and is an enumerated type from the following
list:

 vsBuildStateDone: Build is complete.

 vsBuildStateInProgress: Solution currently being built.

 vsBuldStateNotStarted: Solution has not been built.

61

Chapter 9 Projects

In this chapter, we are going to create an add-in module which will generate an HTML document
providing technical details about the project. It will save the HTML file to disk and open it in a
browser window to be viewed from within Visual Studio.

Project Info Wizard

Start your Project Info add-in using the wizard and the following settings:

 Visual C# (or your preferred language).

 Application Host: Only Visual Studio.

 Name/Description: ProjectInfo and Generate HTML project documentation.

 Create UI Menu and do not load at start-up.

Verify the settings at the Summary screen, and if they look okay, generate the code.

Exec() method

The Exec() method will collect the projects associated with the solution and present them to the
user, but first, we need to make sure a solution is open.

Note: Be sure to add a reference to System.Windows.Forms to your project. You will also

need to add VSLangProj and disable the Embed Interop types property.

Once we know we have an open solution, we can start to build HTML documentation.

// Only makes sense if a solution is open.
if (_applicationObject.Solution.IsOpen==false)
 {
 MessageBox.Show("No solution is open","ERROR");
 handled = true;
 return;
 }

// Find all project information.
 Solution theSol = _applicationObject.Solution;
 StringBuilder sb = new StringBuilder();
 string shortName = Path.GetFileNameWithoutExtension(theSol.FullName);

 sb.AppendLine("<html>");
 sb.AppendLine("<head>");

62

Notice the AddJavaScript() function in the middle, which we will use to write some simple
JavaScript functionality in our webpage. We will add this function toward the end of the chapter.

Tip: If you want to learn JavaScript quickly, be sure to download JavaScript Succinctly from

the Syncfusion website. jQuery Succinctly is another excellent reference book.

Getting each project

Using the solution object as a starting point, we can write code that will loop through all projects
and output some basic project information to the HTML file we are building.

We get the Item() project and create two project variables from it. The first, the Project object
type, is a generic project reference, providing us with basic information such as name, path
name, unique name, etc. The second variable, the VSProject object type, is a Visual Studio
project, and contains additional properties and methods unique to Visual Studio.

Project type

The project type has general properties we can use to display the project info:

 sb.AppendLine("<title>" + shortName + "</title>");
 AddJavaScript(sb);
 sb.AppendLine("</head>");
 sb.AppendLine("<body>");
 sb.AppendLine("<h1>" + shortName + " solution</h1>");

VSProject theVSProj = null;
Project theProj;
for (int xx=1;xx<=theSol.Projects.Count;xx++)
{
 theProj = theSol.Projects.Item(xx);
 theVSProj = (VSProject)theSol.Projects.Item(xx).Object;
 sb.AppendLine("<h2 onclick='ToggleDiv(\"proj"+xx.ToString()+"\");'>" +
 theProj.Name+"</h2>");
 sb.AppendLine("<div id='proj" + xx.ToString() + "' style='display:none;'>");
 sb.AppendLine("<h3 onclick='ToggleDiv(\"info" + xx.ToString() + "\");'>INFO</h3>");
 sb.AppendLine("<div id='info" + xx.ToString() + "'>");
 sb.AppendLine("<p>Unique Name: " + theProj.UniqueName + "</br>");
 sb.AppendLine("Full Path: " + theProj.FullName + "</br>");
 // Report language
 if (theProj.Kind==VSLangProj.PrjKind.prjKindCSharpProject)
 { sb.AppendLine(" Language: C#</p>"); }
 if (theProj.Kind == VSLangProj.PrjKind.prjKindVBProject)
 { sb.AppendLine(" Language: Visual Basic</p>"); }
 sb.AppendLine("</div>");

http://www.syncfusion.com/resources/techportal/ebooks/javascript
http://www.syncfusion.com/resources/techportal/ebooks/jquery

63

 Name: Short name of project.

 FullName: Full name and path of project.

 Unique Name: Namespace and unique project name.

VSProject type

The VSProject type has more detailed information, specifically in Visual Studio. We can access
this information to display all the references that the project uses. The following code sample
places the references into a list structure in our HTML documentation.

References

This example code includes the reference name and description, version number, and whether
the reference is an ActiveX control or an assembly.

Project Items

Each project contains a list of all of the items that make up that project. These can be accessed
via the Project Items property. The project items consist of the various source code files that
make up the project. These can include source files, XML files, etc. If the file is a source code
file, Visual Studio provides a code model which allows our code to access the namespace,
classes, etc. within that file. We will use the code model to show the classes with a source file in
this chapter, but cover the code model in more depth in Chapter 13.

sb.AppendLine("<h3 onclick='ToggleDiv(\"ref" + xx.ToString() + "\");'>REFERENCES</h3>");
sb.AppendLine("<div id='ref" + xx.ToString() + "'>");
sb.AppendLine("");

foreach (Reference theRef in theVSProj.References)
{
 string theVer = theRef.BuildNumber.ToString();
 if (theVer == "0")
 {theVer = theRef.MajorVersion.ToString() + "." + theRef.MinorVersion.ToString(); }

 sb.Append("" + theRef.Name + " (" + theVer + ")");
 if (theRef.Description.Length > 0)
 { sb.Append(" -" + theRef.Description); }

 if (theRef.Type == prjReferenceType.prjReferenceTypeActiveX)
 { sb.Append(" [ActiveX] "); }
 sb.AppendLine("");
}
sb.AppendLine("");
sb.AppendLine("</div>");

64

For every project item, we first include the name in the list we are building. We also check to
see if a code model exists for the current file (which one should for C# and VB modules). If we
find a code model, we iterate through the code elements, looking for either class entities or
classes within namespaces. For each class we encounter, we include the class name and
optionally the namespace.

This allows our project HTML display to drill down to the class level for a given project. A
sample list of items that will be generated is shown in the following list. This is a C# project that
has assembly information and two source files. One file has a single class called
ComputePayrollAmount and the other source file has a class called Connect within a
namespace called CodeModelSample:

ITEMS

 AssemblyInfo.cs

sb.AppendLine("<h3 onclick='ToggleDiv(\"items" + xx.ToString() + "\");'>ITEMS</h3>");
sb.AppendLine("<div id='items" + xx.ToString() + "' style='display:none;'>");
sb.AppendLine("");
FileCodeModel theCM = null;

foreach (ProjectItem theItem in theProj.ProjectItems)
{
 sb.AppendLine("" + theItem.Name);
 theCM = theItem.FileCodeModel;
 if (theCM != null)
 {
 sb.AppendLine("");
 foreach (CodeElement theElt in theCM.CodeElements)
 { // List all the classes we find within the code file.
 if (theElt.Kind == vsCMElement.vsCMElementClass)
 { sb.AppendLine(""+theElt.Name+""); }
 // If we find a namespace, there may be a class in there as well.
 if (theElt.Kind == vsCMElement.vsCMElementNamespace)
 {
 foreach (CodeElement theInnerElt in theElt.Children)
 {
 string theNameSpace = theElt.Name;
 if (theInnerElt.Kind == vsCMElement.vsCMElementClass)
 { sb.AppendLine("" + theNameSpace+"/"+
 theInnerElt.Name + ""); }
 }
 }
 }
 sb.AppendLine("");
 }
 sb.AppendLine("");
}
sb.AppendLine("");
sb.AppendLine("</div>");

65

 Class1.cs

o ComputePayrollAmount

 Connect.cs

o CodeModelSample/Connect

If your add-in is going to do any type of source code manipulation, be sure to explore the code
model object described in Chapter 13.

Adding the JavaScript

The following function adds the JavaScript to the HTML header to allow us to toggle various
project elements.

Showing the Results

Once the HTML file is generated, the following code saves it and then displays it.

Styling the HTML

The generated HTML is rather plain looking, but you can add some style sheet commands to
improve the look and feel of the document. The following code is a function to add style
commands to the HTML document.

private void AddJavaScript(StringBuilder sb)
 {
 sb.AppendLine("<script type='text/javascript'>");
 sb.AppendLine("function ToggleDiv(theID) ");
 sb.AppendLine("{");
 sb.AppendLine("var e = document.getElementById(theID);");
 sb.AppendLine("if(e.style.display == 'block')");
 sb.AppendLine(" e.style.display = 'none';");
 sb.AppendLine("else");
 sb.AppendLine(" e.style.display = 'block';");
 sb.AppendLine("}");
 sb.AppendLine("</script>");
 }

string theFile = Path.ChangeExtension(theSol.FullName, "html");
System.IO.File.WriteAllText(theFile, sb.ToString());
System.Diagnostics.Process.Start("file://"+theFile);

66

In you want to use such a function, insert the function call immediately after the
AddJavaScript() function call.

private void AddStyles(StringBuilder sb)
{
 sb.AppendLine("h2 {");
 sb.AppendLine("font: bold italic 2em/1em \"Times New Roman\",
 \"MS Serif\", \"New York\", serif;");
 sb.AppendLine("margin: 0;");
 sb.AppendLine("padding: 0;");
 sb.AppendLine("border-top: solid #e7ce00 medium;");
 sb.AppendLine("border-bottom: dotted #e7ce00 thin;");
 sb.AppendLine("width: 600px;");
 sb.AppendLine("color: #e7ce00;");
 sb.AppendLine("}");
}

67

Chapter 10 IDE Windows

In the prior chapters, we’ve looked at the Visual Studio environment and the solution and
projects that a user can edit. In this chapter, we are going to explore the open windows and files
that a user can be working with in Visual Studio at any given time.

Windows

When you open Visual Studio, even without a solution open, a number of windows are created
by the application for helping with the development tasks. These are referred to as your tool
windows. When you edit a source code file or a form, these are open in an editor window, and
referred to as document windows. You can do some interaction with these windows, such as
resizing them, moving them, activating and closing them, etc.

Tool windows

When you open Visual Studio, the following tool windows are generally open even before you
open a solution.

 Solution Explorer

 Start Page

 Properties

 Find and Replace

 Object Browser

 Class View

You can find the associated window by stepping through the Windows Collection property on
the application object. The window object will have basic window manipulation properties, but
you can cast it to a specific window type, such as the Solution Explorer, the Error List, etc. We
will cover some of the tool windows in more detail in Chapter 14.

Document windows

Once you open a solution in Visual Studio, every open source-file will be placed into a
document window. The type of window varies depending on the type of file being edited. The
Code Window holds source code files, such as VB or C# code. HTML or ASPX files have
another editor, visual design tools, etc.

68

Window object

The Window object contains properties and methods to do basic manipulation of the window
itself, not its contents.

Properties

You can manipulate the window’s location and behavior using the coordinates and some
Boolean options:

 AutoHides(Boolean): Sets whether or not the window can be hidden.

 Caption(string): Caption on window title bar.

 Document(object): Associated document object if “document” window.

 Height and Width (integer): Window size in pixels.

 Left and Top (integer): Window location from edge of container.

 Visible (Boolean): Sets whether or not the window is currently displayed to the user.

Methods

You can manipulate the window using a few methods:

 Activate: Give the window focus.

 Close: Close the document with the option to save it.

ActiveWindow

The ActiveWindow property returns a reference to the window object that currently has focus in
Visual Studio. Typically, this will be a document window containing the code currently being
edited, but can be any window the user clicked on. If no solution is open, the ActiveWindow will
return the main window. You can test the Kind property to see if a “document” or “tool” window
is currently active.

MainWindow

The main window is a special window distinct from other windows in the environment. It is
typically maximized and the docking window for all the other tool and document windows the
user might have open. The Boolean properties of AutoHides and IsFloating are not defined for
the main window.

69

The main window’s Kind property will be Tool and its Type property will be
vsWindowTypeMainWindow.

Windows

The windows collection contains a list of all windows in the IDE (some of which may not be
visible). You can iterate through this list or search for a particular toll window using the
vsWindowsKind constants. For example, the following code sample gets a few selected
windows and saves them to variables for easier reference:

You can also walk through the windows collection, or search for all document windows as the
following code sample illustrates:

This can be useful if you want your add-in to provide an option to scan all open documents
rather than the entire project.

Window Kind constants

The following WindowKind constants are available to find particular windows in the collection:

 vsWindowKindCallStack: The Call Stack window.

 vsWindowKindClassView: The Class View window.

 vsWindowKindCommandWindow: The Command window.

 vsWindowKindFindReplace: The Find Replace dialog.

 vsWindowKindFindResults1: The Find Results 1 window.

 vsWindowKindMainWindow: The Visual Studio IDE window.

 vsWindowKindObjectBrowser: The Object Browser window.

 vsWindowKindOutput: The Output window.

DTE2 theApp = _applicationObject;
Window theSolExploer = theApp.Windows.Item(Constants.vsWindowKindSolutionExplorer);
Window theProperties = theApp.Windows.Item(Constants.vsWindowKindProperties);
Window theCallStack = theApp.Windows.Item(Constants.vsWindowKindCallStack);

foreach (Window theWind in _applicationObject.Windows)
 {
 if (theWind.Kind == "Document")
 {
 MessageBox.Show(theWind.Caption);
 }
 }

70

 vsWindowKindProperties: The Properties window.

 vsWindowKindResourceView: The Resource Editor.

 vsWindowKindServerExplorer: The Server Explorer.

 vsWindowKindSolutionExplorer: The Solution Explorer.

 vsWindowKindTaskList: The Task List window.

 vsWindowKindToolbox: The Toolbox.

 vsWindowKindWatch: The Watch window.

You can use these constants to find a particular window, or test the ObjectKind property of a
window against the constant to know the window you are interacting with, as follows:

Tool windows

Several of the various tool windows can be cast to object types to allow properties and methods
specific to that particular tool. These include:

The tool window types are explored in more detail in Chapter 14.

Document windows

In addition to the supporting tool windows, there are a number of different editors that might be
used when a source file is open. The most common is the code window (which we discuss in
Chapter 12 and Chapter 13); however, you can use the window object to gather some
information about the source code being edited.

if (theWind.ObjectKind == EnvDTE.Constants.vsWindowKindCallStack)
 { // Do something with call stack. }

CommandWindow theCMD = _applicationObject.ToolWindows.CommandWindow;
ErrorList theErrs = _applicationObject.ToolWindows.ErrorList;
UIHierarchy theSolExplore = _applicationObject.ToolWindows.SolutionExplorer;
OutputWindow theOutput = _applicationObject.ToolWindows.OutputWindow;
TaskList theTaskList = _applicationObject.ToolWindows.TaskList;
ToolBox theToolBox = _applicationObject.ToolWindows.ToolBox;

71

When you obtain a window’s object, either through the ActiveWindow property or by searching
the Windows collection, you can use the Kind property of “document” to know it is a source file
being editing in the IDE. The window will also have an Object property associated with it, and
you can test the type of this property to determine what kind of source window is being looked
at. For example, the following code can test whether Visual Studio is looking at some sort of
HTML code:

You can use the Visual Basic Assemblies, which are automatically included in VB projects but
need to be added manually to C# projects, to determine the type of a window. The following
code shows the type of window, which you can then cast the object to:

Microsoft.VisualBasic.Information.TypeName(ActiveWin.Object)

If you want to have your add-in manipulate different kinds of windows, this can help you find the
window type to cast the object property to.

Is AJAX being used?

For a simple example of how to use the window object, we are going to write an add-in that will
determine whether the HTML or ASPX code currently open in the active window appears to be
using AJAX. AJAX requires a script manager object and at least one Update Panel. This wizard
will look at the HTML code in the designer window and see if both elements are found.

We are still going to use the wizard to create our basic add-in, so fire up the wizard with the
following:

 Visual C# (or your preferred language).

 Application Host: Only Visual Studio.

 Name/Description: IsAjaxEnabled and Check for HTML and AJAX.

 Create UI Menu and do not load at start-up.

Although this is a simple wizard, it will show the basics of how to parse HTML code being edited
in Visual Studio.

Window ActiveWin = _applicationObject.ActiveWindow; // Grab the active window.
if (ActiveWin.Object is HTMLWindow)
{
 HTMLWindow theHTML = (HTMLWindow)ActiveWin.Object; // Cast as an HTML window.
}

72

Getting the active window

In our Exec() method of the code, we need to get the active window and make sure it is not a
tool window. The following code does that:

Note: Don’t forget to add the reference to System.Windows.Forms for the MesageBox() .

Making sure it is HTML code

Once we know it is a document window, we want to confirm it is a HTML window and if so,
typecast the window object to HTML Window.

We are also setting up our flags to check the AJAX code samples we are searching for.

Parsing the HTML code

We can write our own HTML code parser if we are feeling particularly ambitious, but to keep
things simple, we will use Microsoft’s parser instead.

The HTML Window object we created previously has a property called CurrentTab, which can
be:

 vsHTMLTabsDesign

 vsHTMLTabsSource

if(commandName == "IsAjaxEnabled.Connect.IsAjaxEnabled")
{
 handled = true;
 Window ActiveWin = _applicationObject.ActiveWindow; // Grab the active window.

 if (ActiveWin.Kind != "Document")
 { // Tell user only wants on document windows.
 MessageBox.Show("Please select an HTML or ASPX page to check....");
 return;
 }

// And only for HTML modules (ASPX, HTML, etc.).
if (ActiveWin.Object is HTMLWindow)
{
 HTMLWindow theHTML = (HTMLWindow)ActiveWin.Object; // Cast as an HTML window.
 Boolean FoundSM = false;
 Boolean FoundUP = false;

73

If the HTML window is on the design page, the CurrentTabObject property will contain a
reference to the HTML document object from the page. So we are going to save the user's
current mode, and if need be, switch to the design tab so we can grab that HTML document for
our parsing purposes.

Note: You’ll need to add a reference to Microsoft.mshtml to create the HTML document

object.

Once you have the HTML document object, you can use the object to walk through the entire
document model. For our code, we are simply searching each element to see if we find a script
manager and an update panel.

There is a lot of functionality built into the HTML document object. You could simply set the
BGColor property and the IDE will add the appropriate element to the document and mark the
source HTML file as edited. The scope of the HTML document is beyond this book, but can be a
very useful starting point if you want to manipulate HTML or ASPX code opened in Visual
Studio.

Showing our findings

Once we’ve made our loop through the HTML elements, we want to return the designer back to
its original mode, and then report our findings.

vsHTMLTabs PriorMode = theHTML.CurrentTab;
// See if in Design mode, and if not, switch to it.
if (theHTML.CurrentTab != vsHTMLTabs.vsHTMLTabsDesign)
 {
 theHTML.CurrentTab = vsHTMLTabs.vsHTMLTabsDesign;
 }
if (theHTML.CurrentTab == vsHTMLTabs.vsHTMLTabsDesign)
 {
 // Get an HTML document from the current object in the design window.
 IHTMLDocument2 theHTMLDoc = (IHTMLDocument2)theHTML.CurrentTabObject;

foreach (IHTMLElement element in theHTMLDoc.all)
{
 try
 {
 if (element.outerHTML.ToUpper().Contains("ASP:SCRIPTMANAGER"))
 { FoundSM = true; }
 if (element.outerHTML.ToUpper().Contains("ASP:UPDATEPANEL"))
 { FoundUP = true; }
 }
 catch
 {
 }
 }

74

Summary

While this add-in module performs a very simple task, it does provide an example of how to
easily parse HTML code. Microsoft .NET provides a nice collection of tools to manipulate HTML,
and plugging that into the windows of the add-in code should give you a good starting point to
develop tools for your HTML code.

if (theHTML.CurrentTab != PriorMode)
 { theHTML.CurrentTab = PriorMode; }
 // Evaluate flags to see if we are using AJAX.
 if (FoundSM && FoundUP)
 { MessageBox.Show("AJAX appears to be in use on this form"); }
 else
 {
 if (FoundSM)
 { MessageBox.Show("Script Manager found, but no update panels..."); }
 if (FoundUP)
 { MessageBox.Show("Update Panel(s) found, but missing Script Manager..."); }
 }
 if (FoundSM == false && FoundUP == false)
 {
 MessageBox.Show("AJAX does not appears to be used on this form");
 }

75

Chapter 11 Documents

Each source file being edited is represented in Visual Studio as a document object, which has
the necessary properties to access the file content, save it, etc. In this chapter, we will look at
how to use the document object.

Getting the document

The document object can be obtained from any source window or by asking Visual Studio for
the active document. Any “Document” type window will include a reference to the document
object associated with it. The following code sample illustrates a few ways to get the document
object.

Document object

The document object has some basic properties to allow you to determine the file and path
name, which windows the document is loaded in, which project item it is associated with, etc.:

 ActiveWindow: Window the document object is actively displayed in.

 FullName: Path and file name of document.

 Language: String containing language, e.g., CSHARP, CSS, XML, VB, etc.

 Path: Folder document is located in.

 ProjectItem: Associated project item the document is from.

 Saved: Has the document been changed since last opened?

 Selection: Selected text object associated with the document.

 Windows: All windows the document is displayed in.

Document ActiveDoc = _applicationObject.ActiveDocument;

foreach (Document CurrentDoc in _applicationObject.Documents)
{
}

foreach(Window CurWindow in _applicationObject.Windows)
{
 if (CurWindow.Kind == "Document")
 {
 Document CurDoc = CurWindow.Document;
 }
}

76

With these basic properties, you can navigate from the document to windows or to the project
item within the solution. You could back up a copy of the document before you make any
changes, etc.

In addition, there are a few methods you can use with the document object to save the file,
activate its window, close the document, etc.:

 Activate(): Move focus to this document.

 Close(): Close with the option to save.

 Redo(): Redo the last operation.

 Save(): Save the document with an optional "Save As" file name.

 Undo(): Undo the last operation.

You can use the basic properties and methods to perform operations on the document as a
whole. In later chapters, we will explore getting the code and text from the document and
manipulating it as well.

Text document object

Each document object has an object method which provides access to the text content of the
document and allows you to do some basic edit operations in the document. You can get the
associated text document with the following code sample.

The text document object has two properties of interest to help editing the text in the document
window. The start and end points are objects representing the first and last points in the file.
You can create an edit point from either of these objects if you want to do some basic editing.
We cover how to edit with edit points in the next chapter. An edit point is the programmatic
equivalent of the user’s cursor location while editing. Edit operations take place from the edit
point in the document.

The text document has some basic manipulation methods for the document. These include:

 ClearBookMarks(): Clear any bookmarks from the document’s margin.

 CreateEditPoint(): Position the “programmatic” cursor for editing.

 MarkText(): Search for a pattern and mark lines containing the pattern.

 ReplacePattern(): Search and replace text in the document.

These methods allow you to easily manipulate the text content.

Document theDoc = _applicationObject.ActiveDocument;
TextDocument theTextDoc = (TextDocument)theDoc.Object("TextDocument");

77

Converting C# to VB

There is a great number of websites that will convert your C# code to VB.NET, but let’s assume
we wanted to tackle such a beast ourselves (which is way beyond the scope of this book). The
following code sample shows how we could use the MarkText and ReplacePattern methods to
get started.

In this simple example, we’ve searched for all C# void methods and converted them to sub calls
(the VB equivalent). We’ve also marked the line we’ve changed so the user can navigate to the
bookmarked lines to review the code changes.

Summary

The document and text document objects can perform some basic file manipulations and global
text updates, but in the next two chapters we explore code modification in more detail, including
the built-in Visual Studio code-parser class, the code model.

Document ActiveDoc = _applicationObject.ActiveDocument;
TextDocument TextDoc = (TextDocument)ActiveDoc.Object("TextDocument");
if (TextDoc != null)
 {
 TextDoc.MarkText("public void"); // Bookmark all the lines we are going to tweak.
 TextDoc.ReplacePattern("public void", "sub");
 }

78

Chapter 12 Code Window

One of the common features that add-in modules offer is the ability to manipulate the code in
windows. In this chapter, we will create an add-in to interact with the code in an open document
window. We will explore how to pull code from the window, manipulate it, and write it back.

Simple code manipulation

We are still going to use the wizard to create our basic add-in, but rather than attach our code to
the Tools menu, this time we will attach it to the context menu of the code window. So let’s start
up the wizard with the following:

 Visual C# (or your preferred language).

 Application Host: Only Visual Studio.

 Name/Description: CodeHelp and Send sample of code to a guru…

 Create UI Menu and do not load at start-up.

What this add-in will do is allow you to send an email with a sample of code to your local guru
(hopefully you have one) and ask him or her what the code is doing. The add-in will then leave a
[TODO] comment indicating that the code was sent to a guru and we need to document what is
being accomplished by this code when the guru replies.

Attaching to the code window

Since our add-in module is going to attach to the code window instead of the main menu, we
need to code our connection logic slightly differently.

object []contextGUIDS = new object[] { };
Commands2 commands = (Commands2)_applicationObject.Commands;
// Create the command object.
Command cmd = commands.AddNamedCommand2(_addInInstance, "CodeHelp", "CodeHelp,
 "Send sample to Guru..", true, 59, ref contextGUIDS,
 (int)vsCommandStatus.vsCommandStatusSupported +
 (int)vsCommandStatus.vsCommandStatusEnabled,
 (int)vsCommandStyle.vsCommandStylePictAndText,
 vsCommandControlType.vsCommandControlTypeButton);
// Create a command bar on the code window.
CommandBar CmdBar = ((CommandBars)_applicationObject.CommandBars)["Code Window"];

// Add a command to the Code Window's shortcut menu.
 CommandBarControl cmdBarCtl = (CommandBarControl)cmd.AddControl(CmdBar,
 CmdBar.Controls.Count + 1);
 cmdBarCtl.Caption = "Send sample to Guru...";

79

We are searching for the “Code Window” (precise spelling is important) and adding a pop-up
menu control to it, rather than to the usual menu.

Responding to the click

When the user selects the menu item, the Exec() method will be called to process the Send
code to the Guru… menu option.

Since the code will only be called from a code window (since our menu item is attached to the
context menu), we can assume an active document will always be available.

Getting selected code

Once we have the selected text and confirmed some text was selected:

We can build a mail message and send it to our guru.

 // See if any selected text.
 Document theDoc = _applicationObject.ActiveDocument;
 TextSelection sel = (TextSelection)theDoc.Selection;
 if (sel.Text == "")
 {
 MessageBox.Show("Please select some text...", "Error");
 handled = true;
 return;
 }

// Let's make an e-mail for the guru.
string subjectLine = "Having trouble understanding this code";
string msgbody = "<p>Can you review it and tell me what the #$@* it is doing<p>" +
 Environment.NewLine + Environment.NewLine +
 "<pre>"+sel.Text +"</pre>"+
 Environment.NewLine + "<p>Thanks...";

 MailMessage mail = new MailMessage();
 mail.To.Add(GuruEmail);
 mail.From = new MailAddress("xxxx@"+fromDomain);
 mail.Subject = subjectLine;
 mail.Body = msgbody;
 mail.IsBodyHtml = true;
 SmtpClient smtp = new SmtpClient();
 smtp.Host = "smtp.gmail.com"; //Or your SMTP server address.
 smtp.Credentials = new System.Net.NetworkCredential
 ("xxxxxxxx @gmail.com", "password ");
 smtp.EnableSsl = true;
 bool MailSent = false;
 try
 {
 Cursor.Current = Cursors.WaitCursor;

80

Note: You will need to add a reference to System.net.mail and define a string constant

GuruEmail and a string constant fromDomain with your e-mail domain.

Tweak the code fragment

Now that we’ve sent our code to the guru for his or her comments and review, we want to mark
the code with a to-do comment so we can add documentation when the guru replies to our
email.

In this example, we are adding the comment and the to-do token that the IDE currently uses for
tasks. This will allow our comment to be found easily using the task list window within Visual
Studio.

Putting the code back

And now that we’ve assembled our revised code string, we need to update the editor with the
revision. This is accomplished by copying the revised text to the Windows clipboard as text, and
then pasting that text back to the editor.

 smtp.Send(mail);
 MailSent = true;
 }
 catch
 {
 MessageBox.Show("Error sending mail", "ERROR",
 MessageBoxButtons.OK, MessageBoxIcon.Error);
 }
 Cursor.Current = Cursors.Default;

// Now we add the comment back to the code.
 string commentChar = "//";
 string theTodoText =
 _applicationObject.ToolWindows.TaskList.DefaultCommentToken.ToString();
 string revisedCode = commentChar + " " + theTodoText + " GURU - sent to guru on " +
 DateTime.Now.ToString() + Environment.NewLine +
 commentChar + " < Guru answer here >" + Environment.NewLine +
 sel.Text +
 commentChar + " ********" + Environment.NewLine;
 if (MailSent == false)
 {
 revisedCode = commentChar + " " + theTodoText + " Ask guru about this"+
 Environment.NewLine+
 sel.Text + Environment.NewLine+
 commentChar + " ********" + Environment.NewLine;
 }

81

This is just a simple example of basic interaction with the contents of the code window. We don’t
perform any analysis of the content. We simply grab the code, tweak it somehow, and then put it
back. However, this is only part of the capabilities built into Visual Studio.

Moving the code around

You do not have to put the samples or code revisions back where they came from. You can add
code to the top or beginning of the file, or even at a random spot in the middle (although users
are not likely to appreciate that).

Text Document

In order to manipulate the document, you need access to the TextDocument object associated
with the current document. This is accomplished with the following command:

The TextDocument object provides two point objects (StartPoint and EndPoint) referring to the
expected locations in the body of text. In addition, there are some simple methods to mark and
replace text within the document that matches a particular pattern.

For example, the following code sample will replace all occurrences of double with float in the
document associated with the text document.

DataObject theObj = new System.Windows.Forms.DataObject();
try
 {
 theObj.SetData(System.Windows.Forms.DataFormats.Text, revisedCode);
 System.Windows.Forms.Clipboard.SetDataObject(theObj);
 sel.Paste();
 }
catch
 {
 MessageBox.Show("couldn't paste comment, sorry");
 }

Document theDoc = _applicationObject.ActiveDocument;

TextDocument theText = (TextDocument)theDoc.Object();

theText.ReplacePattern("double", "float");

82

You can also add FindOptions as the third parameter to control case matching, where to start
searching the document, whether to match the whole word, etc. If you need to perform simple
replacements on the entire document, the Text Document object provides the methods to do
just that.

Edit point

The Text Document object also allows you to create an EditPoint object, which can be used to
position your code anywhere within the document and make edits, deletions, insertions, etc. To
create the edit point variable, use the following command:

This allows a much finer degree of control over text manipulation. An edit point is the location in
the file where you want to manipulate text. If you create an EditPoint object with no parameters,
it is the same as the starting point from the text document. You can also specify a point as a
parameter, so you could create an edit point based on the last location in the document by using
EndPoint.

Once you have the EditPoint object, you have a variety of navigation functions to move through
the text, such as:

 CharLeft(n): Move to the left n characters.

 CharRight(n): Move to the right n characters.

 EndOfLine(): Move to the end of the current line.

 LineDown(n): Move down n lines.

 LineUp(n): Move up n lines.

 WordLeft(n): Move to the left n words.

 WordRight(n): Move to the right n words.

When the point is positioned, you can insert text into the document. You can also use the Get
methods to extract text from the document. For example, the following sample looks for lines
beginning with using and adds a comment indicating the line needs to be converted to imports
when converting from C# to Visual Basic.

EditPoint thePoint = theText.CreateEditPoint();

 EditPoint thePoint = theText.CreateEditPoint();
 for (int x = 1; x < theText.EndPoint.Line; x++)
 {
 if (thePoint.GetText(5).ToString() == "using")
 {
 thePoint.EndOfLine();
 thePoint.Insert(" // convert to imports statement");
 }
 thePoint.LineDown(1);

83

More complex code manipulation

While the methods and examples in this chapter allow simple text manipulations, they do not
provide much in the way of parsing your source code. Fortunately, Visual Studio has a built-in
class system that allows us to analyze code windows much more efficiently, without writing our
own code parsers or worrying about VB.NET or C#. This system is the code model, and is
described in the next chapter.

 }

84

Chapter 13 Code Model

The code model is a language-independent view of a source code file. You can use this view to
extract code elements from the classes found within a namespace down to the variables and
methods within a class.

Using the code model

In order to illustrate how the code model system works, let’s build a very simple class source
file.

You can access the code model for the active document using the following code sample:

Once you have the code model available, one of the properties is a variable called code
elements, which contains the code pieces at the current level. In our previous example, two
code elements are returned:

 Import element.

 Class element.

The import element occurs once for each import or using statement in the file. Whether you
are using VB, C++, or C#, each statement to import a module is included.

using System;

public class ComputePayrollAmount
{
 public string PersonName;
 public double payRate;
 private double TaxRate = 0.28F; // Internally used in class.

 public void GetWeeklyPay()
 {
 double TotalPay = 40.0 * payRate;
 string checkLine = WriteCheck(PersonName, TotalPay);
 }
 private string WriteCheck(string forWhom,double Amount)
 {
 string result = "Pay to the order of " + forWhom + " $" + Amount.ToString();
 return result;
 }
}

FileCodeModel fileCM = dte.ActiveDocument.ProjectItem.FileCodeModel;

85

The second code element is the class statement and will contain the full name of the class, as
well as an object property called Children. This object contains the code elements within the
class structure. In this case, there will be five elements. The three variables and two methods
are included in the Children object.

The fifth child of the class element refers to the WriteCheck() method, and it has two children
elements, representing the parameters in the function.

Through recursive calls, you can easily trace a source file from its namespace, to classes within
the file, to methods within the classes, to parameters of the methods.

The code element object can represent variables, methods, parameters, namespaces, etc. It
has a kind property to know what you are working with, and point properties to keep track of
location with the source file.

Get the code model of a source file

The code model is associated with a project item (see Chapter 9). Every document object that is
part of a project has a ProjecItem property associated with it. Once you have a reference to the
document, you can get the code model by using the following code. In this sample, we are
getting the CodeModel property of the currently active document:

The FileCodeModel class has two properties of interest; one is the language property that
contains a GUID string indicating the type of language, C#, C++, or VB. You can use the
following constants to determine what language the module is written in:

 vsCMLanguageCSharp

 vsCMLanguageVC

 vsCMLanguageVB

The other property is the collection of code elements. Each code element in this list can have a
child collection of additional associated code elements, and can contain children elements as
deep as the source code structure goes. Each item in the collection represents a single code
element from the source file.

Code element properties

The key properties for working with individual code elements are listed in the following table:

Property Data Type Description

Children Collection Collection of nested code elements, if any.

FullName String Fully qualified (class and variable name) name of element.

FileCodeModel fileCM = dte.ActiveDocument.ProjectItem.FileCodeModel;

86

Property Data Type Description

Kind Enumerated The type of element, such as:

vsCMElementVariable, vsCMElementClass, etc.

Name String Name of the code element.

StartPoint TextPoint An object pointing to the beginning of the element.

EndPoint TextPoint An object referring to the end of the code element.

With these key properties, you can determine the type of code element you are working with,
and you can extract it or write it back to the source code window using the point properties.

In addition to providing code elements, the file code model also allows you to add variable
elements (classes, variables, namespaces, etc.), get a code element at a particular point in the
code, and remove a code element from the source file.

Putting it all together

For our example project, we are going to create an add-in that will read a source code file and
document the class details, as well as all the public variables and methods within the class.

To look at what the code will do, consider the following class example, before and after:

using System;

public class ComputePayrollAmount
{
 public string PersonName;
 public double payRate;

 enum Payclass
 {
 FullTime = 1,
 PartTime = 2,
 Consultants = 4
};

 private string _firstName;
 public string FirstName
 {
 get { return _firstName; }
 set { _firstName = value; }
 }

 private double TaxRate = 0.28F; // Internally used in class.

 private string _LastName;
 public string LastName
 {

87

This is often how classes built over time and by multiple developers end up: public variables,
methods, properties, etc., all intermixed in the source code file. After running our add-in, the
following comment code is generated and added to the top of the class definition:

You can see in this example that the code model distinguished between public and private
variables and methods, and also discerned enough to not include the constructor in the list of
public methods.

For simplicity's sake, our code assumes a single class in a source file, and will only process the
first class it finds. However, you can use this concept as a starting point for enforcing coding
standards, making code more readable, etc.

 get { return _LastName; }
 set { _LastName = value; }
 }

 enum MaritalStatus
 {
 Single = 1,
 Married = 2,
 Seperated = 4
 };

 public void GetWeeklyPay()
 {
 double TotalPay = 40.0 * payRate;
 string checkLine = WriteCheck(PersonName, TotalPay);
 }
 public ComputePayrollAmount()
 {
 }

 private string WriteCheck(string forWhom,double Amount)
 {
 string result = "Pay to the order of " + forWhom + " $" + Amount.ToString();
 return result;
 }
}

// [==
// Class: ComputePayrollAmount
// Author: jbooth
// Date: 10/4/2012
//
// Class Information:
// Inherits: Object
//
// Public Interface:
//
// Variables: PersonName (string)
// payRate (double) [40.0F]
// Properties: FirstName (string)
// LastName (string)
// Methods: GetWeeklyPay
// WriteCheck(forWhom:string,Amount:double) ==> string
// ===]

88

Note: The code will overwrite the existing comment if you run it multiple times.

Class documenter

We are still going to use the wizard to create our basic add-in, and then attach our module to
the context menu of the code window. So let’s start up the wizard with the following:

 Visual C# (or your preferred language).

 Application Host: Only Visual Studio.

 Name/Description: DocumentClass and Document a class file

 Create UI Menu and do not load at start-up.

Attaching to the code editor window

The first change we want to make is to move the menu option to appear on the Code window
context menu rather than the Tools menu. Our connect code should be changed to the
following:

if(connectMode == ext_ConnectMode.ext_cm_UISetup)
 {
 // Create the command object.
 object[] contextGUIDS = new object[] { };
 Commands2 commands = (Commands2)_applicationObject.Commands;
 try
 {
 Command cmd = commands.AddNamedCommand2(_addInInstance, "DocumentClass",
 "Class Documentator","Document your class module ", true, 59, ref contextGUIDS,
 (int)vsCommandStatus.vsCommandStatusSupported +
 (int)vsCommandStatus.vsCommandStatusEnabled,
 (int)vsCommandStyle.vsCommandStylePictAndText,
 vsCommandControlType.vsCommandControlTypeButton);
 // Create a command bar on the code window.
 CommandBar CmdBar = ((CommandBars)_applicationObject.CommandBars)["Code Window"];
 // Add a command to the Code Window's shortcut menu.
 CommandBarControl cmdBarCtl = (CommandBarControl)cmd.AddControl(CmdBar,
 CmdBar.Controls.Count + 1);
 cmdBarCtl.Caption = "Class Doc";
 }
 catch (System.ArgumentException)
 {
 }
}

89

Getting the code model

We now need to add our code to the Exec() function to get the code model and use its parsing
ability to create a documentation header.

Assuming we’ve gotten a code mode (valid source file), we need to make sure it is a language
we can work with, in this case, either VB or C#.

if(commandName == "DocumentClass.Connect.DocumentClass)
{
 FileCodeModel2 fileCM = null;
 // Make sure there is an open source-code file.
 try
 {
 fileCM = (FileCodeModel2)_applicationObject.ActiveDocument.
 ProjectItem.FileCodeModel;
 }
 catch
 {
 MessageBox.Show("No active source file is open...");
 handled = true;
 return;
 }
 // Some files (such as XML) will not have an associated code model.
 if (fileCM == null)
 {
 MessageBox.Show("Not a valid programming language source file...");
 handled = true;
 return;
 }

string CommentChar = "";
switch (fileCM.Language)
 {
 case CodeModelLanguageConstants.vsCMLanguageCSharp:
 {
 CommentChar = "//";
 break;
 }
 case CodeModelLanguageConstants.vsCMLanguageVB:
 {
 CommentChar = "'";
 break;
 }
 }

if (CommentChar == "")
 {
 MessageBox.Show("Only works with VB or C# class modules");
 handled = true;
 return;
 }

90

Finding the class elements

Once we know we’ve got a valid code module, we need to find the code element to locate the
first class. Typically, a class declaration is either in the first level, or one level down (child level
of the Namespace level). The following code will search two levels deep for a class code
element:

Once we’ve found a class element, we grab the child elements (i.e. the variables, methods, etc.
that we want to document.)

// Scan the file, looking for a class construct may require two passes.
CodeElements elts = fileCM.CodeElements;
CodeElement elt = null;
int xClassElt = 0;
int xNameSpace = 0;
int nLevels = 0;
while (xClassElt == 0)
{
 nLevels++;
 for (int i = 1; i <= elts.Count; i++)
 {
 elt = elts.Item(i);
 if (elt.Kind == vsCMElement.vsCMElementClass)
 {
 xClassElt = i;
 break;
 }
 if (elt.Kind == vsCMElement.vsCMElementNamespace)
 {
 xNameSpace = i;
 break;
 }
 }
 // Found namespace and no class, let's work through the namespace looking for a class.
 if (xNameSpace != 0 && xClassElt == 0)
 {
 elts = elts.Item(xNameSpace).Children;
 }
 // Don't search deeper than three levels.
 if (nLevels > 2) { break; }
}
// If no class found, exit.
if (xClassElt == 0)
 {
 MessageBox.Show("No class module found in source file...");
 handled = true;
 return;
 }

// Now we are ready to document our class.
 CodeClass theclass = (CodeClass)elts.Item(xClassElt);

91

Notice that we’ve cast the generic CodeElement to the more specific CodeClass object, which
gives us access to the particular class details. This type casting is necessary to pull additional
information from the various code elements, rather than just relying on the properties in the
generic CodeElement class.

Building our header

We now create a string builder object and extract some information from our class variable to
display in the documentation header text.

 object[] interfaces = {};
 object[] bases = {};

// Some initial header info.
StringBuilder sb = new StringBuilder();
sb.AppendLine(CommentChar+"[===");
if (theclass.Namespace != null)
 {
 sb.AppendLine(CommentChar + " Namespace: " +
 theclass.Namespace.Name.ToString());
 }
 if (theclass.IsAbstract)
 {
 sb.Append(CommentChar+" Abstract ");
 }
 else
 {
 sb.Append(CommentChar+" ");
 }
 sb.AppendLine("Class: "+theclass.Name);
 sb.AppendLine(CommentChar+" Author: "+Environment.UserName);
 sb.AppendLine(CommentChar+" Date: "+DateTime.Now.ToShortDateString());
 sb.AppendLine(CommentChar+" ");
 sb.AppendLine(CommentChar+" Class Information:");
 // Information about the class.
 string docCategory = " Inherits:";
 foreach (CodeElement theBase in theclass.Bases)
 {
 sb.AppendLine(CommentChar + docCategory + " " + theBase.Name);
 docCategory = " ";
 }
 docCategory = " Implements:";
 foreach (CodeElement theImpl in theclass.ImplementedInterfaces)
 {
 sb.AppendLine(CommentChar + docCategory + " " + theImpl.Name);
 docCategory = " ";
 }
 sb.AppendLine(CommentChar+" ");
 sb.AppendLine(CommentChar+" Public Interface:");
 sb.AppendLine(CommentChar+" ");

92

You can look to the CodeClass object for more information you might want to display. Our next
step is to collect the code elements making up the class and store them in a collection so that
we can display them grouped by element type later in the module.

Organizing the code elements

This next section of the code loops through the class elements and organizes them by type into
queue structures. Note that we are testing the generic code element’s type and then storing the
appropriate typed element type (i.e. CodeVariable, CodeEnum, etc.) into the queue structure for
the particular element kind.

Once we’ve collected and built our queue collections, we can now write them back to the
documentation comment text organized by code element type.

elts = theclass.Children;
// Build queues to hold various elements.
Queue<CodeEnum> EnumStack = new Queue<CodeEnum>();
Queue<CodeVariable> VarStack = new Queue<CodeVariable>();
Queue<CodeProperty> PropStack = new Queue<CodeProperty>();
Queue<CodeFunction> FuncStack = new Queue<CodeFunction>();

foreach (CodeElement oneElt in elts)
 {
 // Get the code element, and determine its type.
 switch (oneElt.Kind)
 {
 case vsCMElement.vsCMElementEnum :
 {
 EnumStack.Enqueue((CodeEnum)oneElt);
 break;
 }
 case vsCMElement.vsCMElementVariable:
 {
 VarStack.Enqueue((CodeVariable)oneElt);
 break;
 }
 case vsCMElement.vsCMElementProperty:
 {
 PropStack.Enqueue((CodeProperty)oneElt);
 break;
 }
 case vsCMElement.vsCMElementFunction:
 {
 FuncStack.Enqueue((CodeFunction)oneElt);
 break;
 }
 default : { break; };
 }
 }

93

Variables

For each public variable, we want to report the variable name and data type, as well as any
initial value it might be set to. Note that the variables (and all code elements) are documented in
the order they are encountered; they are not sorted in the queue.

Enums

For the enumerated types, we want to report the name of the enumeration and all of the
elements (stored as children variables to the enum itself). The following code illustrates how to
walk through the enum and its children elements.

// Iterate through the variables looking for public variables.
foreach (CodeVariable theVar in VarStack)
 {
 if (theVar.Access == vsCMAccess.vsCMAccessPublic)
 {
 sb.Append(CommentChar + docCategory + " " + theVar.Name +
 " (" + theVar.Type.AsString + ")");
 docCategory = " ";
 if (!(theVar.InitExpression == null))
 {
 sb.Append(" ["+theVar.InitExpression.ToString()+"]");
 }
 sb.AppendLine("");
 }
 }

docCategory = " Enums:";
foreach (CodeEnum theEnum in EnumStack)
 {
 if (theEnum.Access == vsCMAccess.vsCMAccessPublic)
 {
 sb.Append(CommentChar + docCategory + " " + theEnum.Name + " ");
 docCategory = " ";
 if (theEnum.Children.Count > 0)
 {
 sb.Append("(");
 for (int xx = 1; xx <= theEnum.Children.Count; xx++)
 {
 int yy = theEnum.Children.Count - xx + 1;
 CodeVariable theVar = (CodeVariable)theEnum.Children.Item(yy);
 sb.Append(theVar.Name);
 if (yy > 1) { sb.Append(","); }
 }
 sb.Append(")");
 }
 sb.AppendLine("");
 }
 }

94

Properties

For each public property, we want to display the property name and the property’s data type.
The following code loops through the collected CodeProperty elements and does just that.

Methods

As we process the class methods, we want to only report on public methods and exclude the
constructor from the documentation. We need to handle parameters and the return type (if not
VOID).

docCategory = " Properties:";
foreach (CodeProperty theProp in PropStack)
 {
 if (theProp.Access == vsCMAccess.vsCMAccessPublic)
 {
 sb.Append(CommentChar + docCategory + " " + theProp.Name +
 " (" + theProp.Type.AsString + ")");
 sb.AppendLine("");
 docCategory = " ";
 }
 }

docCategory = " Methods:";
foreach (CodeFunction theFunc in FuncStack)
{
 if (theFunc.FunctionKind != vsCMFunction.vsCMFunctionConstructor &&
 theFunc.Access==vsCMAccess.vsCMAccessPublic)
 {
 sb.Append(CommentChar + docCategory + " " + theFunc.Name);
 docCategory = " ";
 if (theFunc.Parameters.Count > 0)
 {
 int yy = theFunc.Parameters.Count;
 sb.Append("(");
 foreach (CodeParameter theParam in theFunc.Parameters)
 {
 sb.Append(theParam.Name+":"+theParam.Type.AsString);
 yy--;
 if (yy > 0) { sb.Append(","); }
 }
 sb.Append(")");
 }
 if (theFunc.Type.AsString.ToUpper().EndsWith("VOID")==false)
 {
 sb.Append(" ==> " + theFunc.Type.AsString);
 }
 sb.AppendLine("");
 }
}

95

Writing the header back to the source window

By this point, we have a nicely formatted documentation block of text, showing all the public
elements of the class. We are going to use our text document and edit point objects to either
write the text to the top of the file, or update the prior version of the documentation. This allows
you to run the add-in as often as you want after you’ve added new public code elements to the
class.

Summary

The code model features of Visual Studio allow you to determine code elements without the
need to write your own parsing routines. Although not all elements are returned in the code
collection (such as compiler directives), the model gives you a great starting point for writing
add-in modules to work with the code in a source file.

TextDocument theText = (TextDocument)_applicationObject.ActiveDocument.Object();
EditPoint thePoint = theText.CreateEditPoint();
// Check and see if a comment already exists.
string theLine = thePoint.GetText(thePoint.LineLength);
bool FoundOldComment = false;
string OldComment = theLine+Environment.NewLine;

if (theLine.StartsWith(CommentChar + " [===")) // Start of delimiter.
 {
 while (thePoint.AtEndOfDocument == false && FoundOldComment==false)
 {
 thePoint.LineDown(1);
 theLine = thePoint.GetText(thePoint.LineLength);
 OldComment+= theLine+Environment.NewLine;
 FoundOldComment = theLine.StartsWith(CommentChar) &&
 theLine.EndsWith("==]");
 }
 }
 if (FoundOldComment)
 {
 thePoint = theText.CreateEditPoint(theText.StartPoint);
 thePoint.ReplacePattern(theText.EndPoint, OldComment, sb.ToString());
 }
 else
 {
 thePoint.Insert(sb.ToString());
 }

96

Chapter 14 Tool Windows

The Visual Studio IDE consists of a number of different tool windows to manage the solution.
You can access these windows through the ToolWindows property of your _applicationObject
variable. A few of the commonly used windows have classes written specifically for those
windows, but every window is accessible, either through one of the common classes or through
the GetToolWindow() method.

Error List

The Error List window contains all errors, warnings, and messages that the most recent compile
or build step encountered.

 Error List

You can programmatically access the error messages using the Error List window.

The Error List object contains three Boolean properties, indicating which messages are included
in the error list:

 ShowErrors

 ShowMessages

 ShowWarnings

EnvDTE80.ErrorList errList = _applicationObject.ToolWindows.ErrorList;

97

You can toggle these properties to control the content of the error items list.

Task List

Visual Studio provides a Task List Manager which allows developers to build a task list by
entering tasks or by adding TODO comments in the source code.

 Task List Manager

You can programmatically access the Task List window and all tasks with your add-in using the
following code:

The task list object allows you to read or set the Default Comment Token (which is usually
“TODO”) via the DefaultCommentToken string property.

The primary interface with the task list is the TaskItems object. You can find the number of
items in the list using the integer Count property. You can also get details about any single task
by using the Item() indexed property. This will return an individual task item entry, with the
following properties:

Property Data Type Description

Category String Comment or User Task

Checked Boolean Is the task item checked?

Description String Descriptive text of the task

Displayed Boolean Is the task item currently displayed?

FileName String If a file is associated with the task, its fully qualified path

name is provided

EnvDTE.TaskList TaskList = _applicationObject.ToolWindows.TaskList;

98

Property Data Type Description

Line Integer Line number in file where TODO comment is found

Priority Enum vsTaskPriorityLow, PriorityMedium, PriorityHigh

Solution Explorer

The Solution Explorer window shows a tree view UI element displaying the currently open
solution, as the following figure illustrates:

 Solution Explorer

You can access the Solution Explorer using the following code:

You can traverse the tree of the Solution Explorer using the UIHierarchyItems property to
provide you access to each level of the tree display. Each item represents a single element in
the view. In our previous example, the first hierarchy item would be the SaveSomeFiles level.
That item would have a UIHierarchyItems collection as well, which would contain the My
Project item, the AssemblyInfo.vb item, Connect.vb, etc.

Output Window

The Output Window is a text window showing the output of various IDE tools, such as the build
process, the debug process, etc. You can use the ToolWindow object to gain access to the
Output Window, as shown in the following example:

EnvDTE.UIHierarchy SolExplore = _applicationObject.ToolWindows.SolutionExplorer

OutputWindow outWnd = _applicationObject.ToolWindows.OutputWindow;

99

Each tool has its own pane, which is selected by the user via a drop-down menu. You can add
your own pane if you want a place to collect and display messages from your own tool. For
example, the following code adds a pane to keep track of user interface issues your tool might
discover:

Searching for bad words

Another useful add-in module we could write would search a solution’s source projects looking
for a list of “forbidden words." A famous CAD design software application once contained a
message (probably left over by a programmer) that said, “this is a message, you idiot.” While
the programmer might have thought it was humorous, the company that had to write an apology
letter and send out a patched version of the software probably didn’t see the humor. In order to
prevent a similar incident, we can write an add-in to search all files within a project and add to
the error list any occurrences of the forbidden words. I’ll define that as a regular expression
constant so you can create your own list of words.

For this add-in, we will add a button to the standard toolbar. If a solution is open, we will scan all
the projects and add the bad words and locations to our own pane in the output window. We will
also add an entry into the task list with a high priority to clean the words up.

Bad words scan

We are still going to use the wizard to create our basic add-in, and then attach our module to
the standard toolbar of the IDE. So let’s start up the wizard with the following:

 Visual C# (or your preferred language).

 Application Host: Only Visual Studio.

 Name/Description: Bad Words and Scan files for bad words.

 Create UI Menu and do not load at start-up.

After the wizard generates your class source file, add the following variables to the class
definition. You can customize your list of words by adding them to the BAD_WORD_LIST string.

OutputWindowPane OutputPane = outWnd.OutputWindowPanes.Add("UI issue ");

const int RED_STAR_ICON = 6743;

const string BAD_WORD_LIST = "(stupid|idiot|fool)";

bool AddedToTaskList = false;

100

Using a tool button

For this example, we are going to call our add-in module from the toolbar rather than a menu
item. We will also disable the item if a solution is not open in Visual Studio, since this add-in
searches all project items with a solution in order to mark the occurrences of your bad word list.
Change your OnConnection method code to add an icon to the standard toolbar instead, as
shown in the following code sample:

Only if a solution is open

Since we only want to display the icon if a solution is open, we need to add code to check that
condition during our QueryStatus method call.

// Add the command.
Command cmd = (Command)_applicationObject.Commands.AddNamedCommand(_addInInstance,
 "BadWords", "BadWords",
 "Search for bad words", true, RED_STAR_ICON, null,
 (int)vsCommandStatus.vsCommandStatusSupported +
 (int)vsCommandStatus.vsCommandStatusEnabled);
CommandBar stdCmdBar = null;
// Reference the Visual Studio standard toolbar.
CommandBars commandBars = (CommandBars)_applicationObject.CommandBars;
foreach (CommandBar cb in commandBars)
 {
 if(cb.Name=="Standard")
 { stdCmdBar = cb;
 break; }
 }
// Add a button to the standard toolbar.
CommandBarControl stdCmdBarCtl = (CommandBarControl)cmd.AddControl(stdCmdBar,
 stdCmdBar.Controls.Count + 1);
// Set a caption for the toolbar button.
stdCmdBarCtl.Caption = "Search for bad words";
// Set the toolbar's button style to an icon button.
CommandBarButton cmdBarBtn = (CommandBarButton)stdCmdBarCtl;
cmdBarBtn.Style = MsoButtonStyle.msoButtonIcon;

if(commandName == "BadWords.Connect.BadWords")
{
 if (_applicationObject.Solution.Count > 0)
 {
 status = (vsCommandStatus)vsCommandStatus.vsCommandStatusSupported |
 vsCommandStatus.vsCommandStatusEnabled;
 }
 return;
}

101

Getting tool windows

In our Exec() method, we want to make sure a solution is open and if so, get references to the
Output window and the task list. We also want to add our custom pane called “Bad Words” and
activate the Output window, as shown in the following code sample:

Looping through the project

We are now ready to loop through the solution and all projects within. Within each project, we
search through the project items. If the project item has a document object attached to it, and
the document item contains a text document object, we’ve found a file with text (source, XML
configuration file, etc.) that we should scan for entries. Some files, such as the Assembly file,
will not have a text document object, so we will skip scanning those files.

Marking bad words

Using the Mark Text method of the Text Document object, we apply a regular expression
search to see if the file contains any words from the list. The lines are bookmarked and the file
name is added to our Output window. The following code performs the search task:

handled = true;
if (_applicationObject.Solution.Count <1)
 { MessageBox.Show("Please open a solution to scan...");
 return; }
// Need to get all project items and search for "bad words".
OutputWindow outWnd = _applicationObject.ToolWindows.OutputWindow;
TaskList theTasks = _applicationObject.ToolWindows.TaskList;
OutputWindowPane OutputPane = outWnd.OutputWindowPanes.Add("Bad words");
OutputPane.Clear();
bool FoundBadWords = false;
// Activate the output window.
Window win = _applicationObject.Windows.Item(EnvDTE.Constants.vsWindowKindOutput);
win.Activate();

foreach (Project CurProject in _applicationObject.Solution)
{
 foreach (ProjectItem CurItem in CurProject.ProjectItems)
 {
 Document theDoc = null;
 Try
 { theDoc = CurItem.Document; }
 catch
 { }
 if (theDoc != null)
 { TextDocument theText = (TextDocument)theDoc.Object("TextDocument");
 if (theText != null)
 {

102

Adding a clean-up task

Our final step in the process is to add an entry to the task list, reminding the programmer to
clean up the code that contains the bad words. We only do this if the add-in found bad words
and we’ve not yet added the task. The task priority and task icon control the appearance of the
task in the task, with red being a high priority item.

When the add-in completes, it will have marked all lines with words from your bad word list and
added the list of files to the output window with the drop-down pane of bad words.

Summary

While the Tool windows have a more narrow focus than the general source editing windows,
the object types available provide your add-in with the ability to integrate easily with the
toolbars, so you can add your custom output, save to-do items, etc.

if (theText.MarkText(BAD_WORD_LIST,(int)vsFindOptions.vsFindOptionsRegularExpression))
 {
 OutputPane.OutputString(CurItem.Name + " contains bad words"+Environment.NewLine);
 FoundBadWords = true;
 }

if (FoundBadWords && AddedToTaskList==false)
 {
 TaskItems2 TLItems = (TaskItems2)theTasks.TaskItems;
 TLItems.Add("Bad Words", "Bad Words", "Remove bad words " + BAD_WORD_LIST +
 " from source files",
 vsTaskPriority.vsTaskPriorityHigh, vsTaskIcon.vsTaskIconNone,
 true, null, 10, true, true);
 AddedToTaskList = true;
 }

103

Chapter 15 Source Code Generation

One time-saving option you can add to the Visual Studio IDE is the ability to generate source
code. As developers, there are often common code-writing tasks we need to perform, and by
designing an input screen and code generator, we can create an add-in module to save time
with the development cycle.

Source code helper class

To assist in the generation of source code, it can be beneficial to create a helper class, which is
basically a collection of routines to perform some common tasks that are likely to occur in
generating code. We start our class definition by defining the different programming languages
we want to support and providing a property to allow users to decide which language they want
to generate code in.

Once the basic class is created, we can add some methods to generate the appropriate
comment text. The simplest method is SingleLineComment() which generates the appropriate
syntax and comment text for a comment in a line of code.

// <summary>
// Code Gen class: Helper class to generate code for add-ins.
// </summary>
public class CodeGen
{
 // <summary>
 // List of programming languages generator works with.
 // </summary>
 public enum ProgrammingLanguages
 {
 VisualBasic = 1,
 CSharp = 2
 }

 private ProgrammingLanguages theLang = ProgrammingLanguages.VisualBasic;
 private bool inComment = false;

 // <summary>
 // Programming language to generate code for.
 // </summary>
 public ProgrammingLanguages Programming_Language {
 get { return theLang; }
 set { theLang = value; }
 }
}

public string SingleLineComment(string theComment)

104

The code determines the appropriate delimiter based on the chosen programming language,
and then returns a string of the delimiter and the comment text. We can also add a method
called StartComment(), which writes a multi-line comment starting delimiter and sets a flag to
indicate we are in commented code.

The StopComment() method writes the appropriate ending comment delimiter and turns off the
commenting flag.

{
 string res = string.Empty;
 switch (theLang) {
 case ProgrammingLanguages.CSharp:
 res = "// " + theComment;
 break;
 case ProgrammingLanguages.VisualBasic:
 res = "' " + theComment;
 break;
 }
 return res;
 }

public string StartComment()
{
 return StartComment("");
}

public string StartComment(string theComment)
{
 string res = string.Empty;
 switch (theLang) {
 case ProgrammingLanguages.CSharp:
 res = "/* " + theComment;
 break;
 case ProgrammingLanguages.VisualBasic:
 res = "’ " + theComment;
 break;
 }
 inComment = true;
 return res;
}

public string StopComment()
{
 string res = string.Empty;
 switch (theLang) {
 case ProgrammingLanguages.CSharp:
 res = "*/ ";
 break;
 case ProgrammingLanguages.VisualBasic:
 break;

105

There are a couple of additional methods to round out our helper class. These include
MakeFileName(), which is used to append the appropriate extension to a file name.

We can also use DeclareVariable() to create a variable in any of the languages.

Our final function, StartRoutine(), returns a function declaration and delimiter shell.

 }
 inComment = false;
 return res;
 }

public string MakeFileName(string theName)
{
 string res = theName;
 switch (theLang)
 {
 case ProgrammingLanguages.CSharp:
 res += ".cs";
 break;
 case ProgrammingLanguages.VisualBasic:
 res += ".vb";
 break;
 }
 return res;
}

public string DeclareVariable(string varName, string DataType, string DefaultValue)
{
 string res = string.Empty;
 switch (theLang)
 {
 case ProgrammingLanguages.CSharp:
 res = DataType + " " + varName;
 if (DefaultValue.Length > 0)
 { res += " = " + DefaultValue; }
 res += ";";
 break;
 case ProgrammingLanguages.VisualBasic:
 res = "DIM " + varName + " AS " + DataType;
 if (DefaultValue.Length > 0)
 { res += " = " + DefaultValue; }
 break;
 }
 return res;
}

public string StartRoutine(string typeOfCall, string RoutineName,string ReturnType)
{

106

With this simple class library available to help out code generation, we can now begin our add-in
code.

Standardized headers

Imagine your company has a set of standard headers that every code module must include.
These headers include the date and time the program was created, as well as the version of
Visual Studio used to create the file.

Wizard settings

Start your standard headers add-in using the wizard and the following settings:

 Visual C# (or your preferred language).

 Application Host: Only Visual Studio.

 Name/Description: StdHeaders and Generate a standard heading module.

 Create UI Menu and do not load at start-up.

Verify the settings at the Summary screen, and if they look okay, generate the code.

 string res = string.Empty;
 switch (theLang)
 {
 case ProgrammingLanguages.CSharp:
 if (typeOfCall.StartsWith("P"))
 { res = "public void "; }
 else
 { res = "public "+ReturnType+" "; }
 res += RoutineName+"()"+Environment.NewLine;
 res += "{";
 break;
 case ProgrammingLanguages.VisualBasic:
 if (typeOfCall.StartsWith("P"))
 { res = "sub " + RoutineName; }
 else
 { res = "function " + RoutineName + "() as " + ReturnType; }
 res += Environment.NewLine;
 break;
 }
 return res;
}

107

Moving to File menu

For our standard headers add-in, we would rather have the menu item attached to the File
menu using an icon instead of the Tools menu. We need to change a couple of lines in our
onConnection method:

In this case, we are changing the toolsMenuName variable from Tools to File.

We will also add the constant for the documents icon, and use that value rather than the hard-
coded 59 in the AddNamedCommand2() call.

Options screen

The options screen is a Windows form that asks users a few questions about the type of code
header they want to generate. As a starting point, we will need to know the file to save, the
programming language to use, and whether to generate a function or subroutine call.

public void OnConnection(object application, ext_ConnectMode connectMode,
 object addInInst, ref Array custom)
{
 _applicationObject = (DTE2)application;
 _addInInstance = (AddIn)addInInst;
 if(connectMode == ext_ConnectMode.ext_cm_UISetup)
 {
 object []contextGUIDS = new object[] { };
 Commands2 commands = (Commands2)_applicationObject.Commands;
 string toolsMenuName = "File";

 const int DOCUMENTS_ICON = 1197;

//Add a command to the Commands collection:
Command command = commands.AddNamedCommand2(_addInInstance, "StdHeaders",
 "StdHeaders", "Standardized headers", true,
 DOCUMENTS_ICON,
 ref contextGUIDS,
 (int)vsCommandStatus.vsCommandStatusSupported+
 (int)vsCommandStatus.vsCommandStatusEnabled,
 (int)vsCommandStyle.vsCommandStylePictAndText,
 vsCommandControlType.vsCommandControlTypeButton);

108

 Options screen for standard header add-in

Generate the header

If the user clicks OK to generate the header code, we will pull the selected options from the
Windows form and use them to set our generated header and code template.

StringBuilder sb = new StringBuilder(); // String to hold header.
CodeGen Gen = new CodeGen(); // Code generation helper.
StdHeaderForm theForm = new StdHeaderForm();
theForm.ShowDialog();
if (theForm.DialogResult == DialogResult.OK)
 {
 string cFile = theForm.CODEFILE.Text;
 // Get programming language choice.
 switch (theForm.LANGCOMBO.SelectedIndex)
 {
 case 0:
 { Gen.Programming_Language = CodeGen.ProgrammingLanguages.CSharp;
 break;
 }
 case 1:
 { Gen.Programming_Language = CodeGen.ProgrammingLanguages.VisualBasic
 break;
 }
 }

 sb.AppendLine(Gen.StartComment());
 sb.AppendLine(Gen.WriteCode("=="));
 sb.AppendLine(Gen.WriteCode(" Program: " + cFile));
 sb.AppendLine(Gen.WriteCode(" Author: " + Environment.UserName));
 sb.AppendLine(Gen.WriteCode(" Date/Time: " + DateTime.Now.ToShortDateString() +
 "/" + DateTime.Now.ToShortTimeString()));
 sb.AppendLine(Gen.WriteCode(" Environment: Visual Studio " +
 _applicationObject.Edition));

109

Add sub/function call

The following code sample adds a call to the routine TBD (hopefully the developer will update
the name of the routine):

Add standard variables

In some applications, standard variables are used so that every programmer uses the same
variable names and meanings. In our example here, we use variables called SourceModified
and StartTime to track modifications and monitor performance.

Open a new window

Once the string builder variable is created with the headers, we need to save it to a file and then
open it within the IDE.

 sb.AppendLine(Gen.WriteCode("=="));
 sb.AppendLine(Gen.StopComment());
 sb.AppendLine(Gen.WriteCode(""));

//Write the function prototype.
sb.AppendLine(Gen.StartRoutine(theForm.TYPECOMBO.Text.ToUpper(), "TBD", "string"));

// Optionally, write standard variables.
if (theForm.INCLUDECHECK.Checked)
{
 sb.AppendLine(Gen.DeclareVariable("SourceModified","string"));
 sb.AppendLine(Gen.DeclareVariable("StartTime","DateTime","DateTime.Now()"));
}
sb.AppendLine(Gen.EndRoutine(theForm.TYPECOMBO.Text.ToUpper()));

cFile = Gen.MakeFileName(cFile);
StreamWriter objWriter = new System.IO.StreamWriter(cfile);
 objWriter.Write(sb.ToString());
 objWriter.Close();

ItemOperations itemOp;
 itemOp = _applicationObject.ItemOperations;
 itemOp.OpenFile(cfile, Constants.vsViewKindCode);

110

After the add-in completes, a new window will be open with code similar to the following
example:

Item Operations object

The ItemOperations object of the _applicationObject provides methods to open and add files
in the Visual Studio IDE. In the previous example, we’ve created the file, and using the ItemOp
variable, instructed Visual Studio to open the file in a code editor window. The object allows you
to programmatically perform some of the options from the File menu.

Other methods of the Item Operations object include:

 AddExistingItem(): Add an existing file to the project.

 AddNewItem(): Add a new item to the project. You can pass two parameters: the
category name/item name (such as General/XML File), and the display name in the
project window.

 IsFileOpen(): Is the file name passed as a parameter open in an IDE window?

 Navigate(): Open a browser window to a specified URL.

 NewFile(): Create a new file using the virtual path indicating the type of file. You can
optionally specify the file name for the item and the view kind to open the file in.

 OpenFile(): Open an existing file in the editor using a specified view kind. In our
example code, we created a file and opened it in a code view.

Summary

This chapter demonstrated how to build a source code file by pulling information from Visual
Studio and the environment to create a standardized header. It also showed how to open the
source file in a Visual Studio document window to allow the user to start programming
immediately.

’
' ==
' Program: Sample
' Author: Joe
' Date/Time: 10/13/2012/9:24 AM
' Environment: Visual Studio Professional
' ==
'
Function TBD() As String
 Dim SourceModified As String
 Dim StartTime As DateTime = DateTime.Now()
End Function

111

Chapter 16 Deploying Your Add-In

Once the add-in module you have developed is completed, debugged, and ready to go, you
probably will want to share it with your fellow developers. In this chapter, we will cover what
needs to be done to install your add-in and to interact with it through the Add-in Manager.

Installing the add-in

To install your add-in, you’ll need to copy two files to one of the folders where Visual Studio
looks for add-in modules. This is usually \Documents\Visual Studio 2010\Addins\ in Visual
Studio 2010, or \Documents\Visual Studio 2012\Addins\ in Visual Studio 2012. You can also
look in Visual Studio’s Options dialog, under the Environment node's Add-in/Macro Security
page for the Add-in File Paths list.

 Installing add-ins

Tip: You might need to select Show All Settings if the Add-in/Macros Security page does not

appear.

If you copy the Assembly DLL file and the .AddIn XML files to this folder, Visual Studio will
discover it and possibly load it the next time Visual Studio is started. (The .AddIn XML files have
options to control when the add-in is loaded. See Chapter 6 for details.)

112

Add-in Manager

The Add-in Manager is a tool window under the Tools menu that lets you interact with all IDE-
installed add-ins. You can change when the add-in is loaded, and you can disable the add-in as
well. The descriptive text you’ve been entering in various add-in modules in this book will
appear in the Add-in Manager tool window.

 Add-in Manager

Whether the add-in module is enabled, whether it loads at start-up, and whether it can run from
the command line is stored in the XML file. You can manipulate the XML file using the Add-in
Manager window shown in the previous figure.

Tip: Clearing the add-in name does not immediately unload it from memory. You will most

likely need to exit and restart Visual Studio to remove the DLL from memory.

If you install an add-in that does not behave and causes problems, you can start the IDE with
the /SafeMode switch, which loads Visual Studio without any add-in modules at all.

Summary

Add-in module installation in Visual Studio versions 2008 and newer is very simple using the
XML configuration option. You can make an install program or script if need be, but with an
audience of primarily programmers, you can probably simply ask them to copy the two files to
the appropriate folder.

113

Chapter 17 Object Reference

This chapter contains a summary of some of the basic object classes you can use to interact
with Visual Studio.

Application Object (DTE2)

The application object (typically stored in the variable _applicationObject) is an encapsulation
of everything within the Visual Studio IDE.

Property Data Type Description

ActiveDocument Document Currently active document.

ActiveSolutionProjects
Collection of

projects
Collection of all projects in current solution.

ActiveWindow Window Currently active or topmost window.

Addins Collection Collection of all available add-ins.

CommandBars Command Bar Access to Visual Studio commands and menus.

CommandLineArgument String
Command-line arguments passed to Visual Studio

when it was started.

Debugger Debugger Access to Visual Studio debugger object.

DisplayMode Enum DisplayMDI or DisplayMDITabs.

Documents Collection Collection of open documents in the IDE.

Edition String Ultimate, Premium, Professional, or Express.

FullName String Full path and file name.

ItemOperations Object Allows file manipulation within Visual Studio.

LocaleID Integer Geographic region, 1033-United States, etc.

MainWindow Window Main window of the development environment.

Mode Enum IDE Mode Design or IDE Mode Debug.

RegistryRoot String Root key in registry where settings are stored.

Solution Solution Current solution object.

ToolWindows Tool Window Shortcut access object to IDE tool windows.

114

Property Data Type Description

Version String 10.0, 12.0, etc.

Windows Collection Collection of all open IDE windows.

Windows and documents

Windows represent tool windows or editing forms used by Visual Studio. Tool windows include
the Solution Explorer, Properties, the Tool Box, etc. Document windows are editing windows
containing document objects that represent the source code being edited by the user. See
Chapters 9 and 10 for examples and more details.

Document

Property Data Type Description

ActiveWindow Window Window the document is open in.

FullName String Full path and file name of file in the document.

Kind String GUID string indicating type of document.

Name String Name of the document.

Path String Full path, without the file name.

ProjectItem ProjectItem Item within the project associated with the document.

Saved Boolean
True if the document has not been modified since last

open.

Selection Selection Current selection text in document.

Methods

Activate Move focus to the document.

Close Close, and optionally save the document.

NewWindow Create a new window to view the document.

Object Run-time object associated with the document.

Redo Re-execute last action that was undone.

Save Save the document to disk.

Undo Reverse last action performed on document.

115

Window

The window represents either a tool window or a document window that contains text being
edited.

Property Data Type Description

AutoHides Boolean Can the tool window be hidden?

Caption String The window title.

Document Document The document in the window (if one exists).

Height Integer Height of the window in pixels.

Kind String Either “Tool” or “Document”.

Left Integer Distance from left edge of the container in pixels.

Object Object
Allow run-time access to contents in the window,

most of Object(“TextDocument”).

ObjectKind String
A GUID representing the tool contained in the

window.

Project Project The project associated with the window.

ProjectItem ProjectItem The project element associated with the window.

Selection Selection object The currently selected text in the window.

Top Integer Distance from the top edge of the container in pixels.

Visible Boolean Is the window currently visible?

Width Integer Width of window, in pixels.

WindowState Enum
vsWindowStateNormal, StateMinimize, or

StateMaximize.

Methods

Activate Move focus to the window.

Close Close and optionally save the document.

SetTabPicture Set a picture to display for a tool window.

Solution and projects

The solution object represents a solution and its component projects, which you can manipulate
easily. See Chapters 8 and 9 for more information.

116

Solution

The following table lists the solution properties of _applicationObject.

Property Data Type Description

AddIns Collection
Collection of add-in objects associated with the

solution.

FullName String Path and file name of the solution.

Globals Collection Global variables saved with solution.

IsOpen Boolean Is the solution open?

Projects Collection Collection of all projects in the solution.

Properties Collection Names and values of all solution properties.

Saved Boolean Has the solution been saved?

SolutionBuild SolutionBuild An object with build information of the solution.

TemplatePath String object Template path for type of project, i.e. C#, VB.

Methods

AddFromFile Add an existing file to the project.

AddFromTemplate Copy a template file and add it to the solution.

Close Close the solution.

Create Create an empty solution.

FindProjectItem Find an item in a project.

Item Get a project in the solution.

Open Open the solution.

ProjectItemsTemplatePath Return location of project item templates for specific project types.

Remove Remove specified project from solution.

SaveAs Save solution under another name.

Project

You can iterate through the solution's Projects collection to get details on any given project in
the solution space.

117

Property Data Type Description

CodeModel Object Code Model (access to source elements).

FullName String Full path and file name of the project.

Globals Collection Global add-in values associated with the project.

Kind GUID String Type of solution, VB or C#, for example.

Name String Short project name.

ProjectItems Collection Collection of items making up the project.

Properties Collection Properties associated with the project.

Saved Boolean Has the project been saved?

UniqueName String Unique name for the project.

Methods

Save Save the project or project item.

SaveAs Save as a new file name.

Project Item

Project items are the files (source, XML files, etc.) that make up the project.

Property Data Type Description

ContainingProject Project The project hosting the project item or file.

Document Object A document object (if any exist) for the file.

FileCodeModel Code Model
Allows you to access high-level code elements within

the source file.

FileCount Integer Number of files associated with the project item.

FileNames Collection File names associated with the item.

IsOpen Boolean Is the project item open?

Kind GUID Type of the item.

Name String Name of the project item.

Object Object Run-time object associated with the project item.

Properties Collection Properties associated with the item.

Saved Boolean Has project item been modified since last open?

118

Methods

Delete Remove project from solution and storage.

ExpandView Expand solution explorer view to show project.

Open Open the project item.

Remove Remove item from project and delete from disk.

Save Save project item.

SaveAs Save project item under another file name.

Code manipulation

These objects are the basic tools to manipulate text in source windows, both using simple string
manipulations and the more complex code model parser. See Chapters 12 and 13 for some
example usage.

Text Document

Property Data Type Description

EndPoint Text point A point referring to the end of the document.

Selection Object The currently selected text.

StartPoint Text point A point referring to the start of the document.

Methods

ClearBookmarks Remove all unnamed bookmarks from the text document.

CreateEditPoint Create a point object to edit text within the document.

MarkText Create unnamed bookmarks for all found text in document.

ReplacePattern Replace patterns within entire document or range.

ReplaceText Simple text replacement with document.

Edit Point

Property Data Type Description

AtEndOfDocument Boolean Is the point positioned at the document’s end?

119

Property Data Type Description

AtEndOfLine Boolean Is the object at the end of the line?

AtStartOfDocument Boolean Is the point positioned at the start of the document?

AtStartOfLine Boolean Is the object at the start of a line?

CodeElement Object Return the code element at the current position.

DisplayColumn Integer The current column containing the point.

Line Integer The current line number in the document.

LineLength Integer Number of characters in the current line.

Methods

ChangeCase Change case of selected text.

CharLeft Move edit point specified number of characters to the left.

CharRight Move edit point specified number of characters to the right.

ClearBookmark Clear any unnamed bookmark on the current line.

Copy Copy range of text to clipboard.

Cut Copy text to clipboard and delete from document.

Delete Delete text from document.

GetLines Get lines of text between two lines.

GetText Get string of text.

Insert Insert text into document.

LineDown Move down one line.

LineUp Move up one line.

MoveToLineAndOffset Move to a line and character offset.

Paste Paste contents of clipboard at current point.

ReplaceText Replace selected text with given text.

WordLeft Move specified number of words to the left.

WordRight Move specified number of words to the right.

Code Model

Using the code model is discussed in Chapter 13.

120

Property Data Type Description

CodeElements Collection All the code element objects at this level.

IsCaseSenstive Boolean Is the current language case sensitive?

Language String Language the file is coded in.

Methods

AddClass Create a code class construct.

AddEnum Create an enum construct in the code.

AddFunction Create new function code.

AddInterface Create new interface code.

AddNamespace Create a new namespace in the module.

AddVariable Create new variable code.

IsValidID Is the specified identifier valid in the current language?

Remove Remove code element from file.

Code Element

Property Data Type Description

Children Collection Collection of child code elements.

EndPoint Text Point Ending location for this element in file.

FullName String Fully qualified code element name.

InfoLocation Enum Is code element in project or external.

IsCodeType Boolean
Can a code type object be obtained from the

element?

Kind Enum Type of code element, i.e. class, function, etc.

Language String Language the code element is written in.

Name String Short name of the code element.

ProjectItem ProjectItem The project item associated with the code element.

StartPoint Text Point Starting location of the code element within the file.

121

Chapter 18 Add-in Helper Class

As you begin to work with add-ins, you might find yourself writing your own library of helper
routines. Here is a sample class library to get you started.

We begin by declaring a variable in the helper class to hold a reference to the DTE2 object
(_applicationObject), so we do not have to pass it around as a parameter.

MakeEmptySolution

While the solution object allows you to create an empty solution, it has a couple of changes to
be aware of. The directory will not be made if it does not exist, and you need to save the new
solution file. To isolate these behaviors, we can create our own method call to make an empty
solution.

GetVSProjectsFolder

Another useful function is a wrapper to the get_properties method to return a path where
Visual Studio stores new projects.

using System;
using EnvDTE80;
using Microsoft.VisualStudio.CommandBars;
using System.Windows.Forms;

public class AddInsHelper
{
 public DTE2 app { get; set; }

public void MakeEmptySolution(string folder, string SolName)
{
 string FullFolder;
 // Close solution if open.
 if (app.Solution.IsOpen)
 { app.Solution.Close(true); }
 // Get or make the folder for the solution.
 FullFolder = System.IO.Path.Combine(GetVSProjectsFolder(), folder);
 if (!System.IO.Directory.Exists(FullFolder))
 {
 System.IO.Directory.CreateDirectory(FullFolder); }
 string tempFile = System.IO.Path.Combine(FullFolder, "TempSolution.sln");
 app.Solution.Create(FullFolder, tempFile);
 tempFile = System.IO.Path.Combine(FullFolder, SolName);
 app.Solution.SaveAs(tempFile);
}

122

FindMenuIndex

The FindMenuIndex method finds the index of a particular menu item on one of the main
menu’s menu bars. This allows you to control where to palce your add-in module if you don’t
want it as the first or last item on the menu.

Hopefully a few of these functions will help you get started writing your own tools and help
support your add-in development projects.

public string GetVSProjectsFolder()
{
 EnvDTE.Properties theProp = app.get_Properties("Environment", "ProjectsAndSolution");
 return theProp.Item("ProjectsLocation").Value.ToString();
 }

public int FindMenuIndex(string MainMenu, string subMenu)
{
 int res = 1;
 try
 {
 CommandBar menuBar = ((CommandBars)app.CommandBars)["MenuBar"];
 {
 foreach (CommandBarControl cb in menuBar.Controls)
 {
 if (MainMenu.ToString().ToUpper() ==
 cb.Caption.ToString().ToUpper().Replace("&", ""))
 {
 CommandBarPopup toolsPopup = (CommandBarPopup)cb;
 for (int xx = 1; xx <= toolsPopup.Controls.Count; xx++)
 {
 if (toolsPopup.Controls[xx].Caption.ToString().ToUpper().Replace("&", "")
 == subMenu.ToUpper())
 {
 res = toolsPopup.Controls[xx].Index;
 break;
 }
 }
 break;
 }
 }
 }
 }
 catch
 {
 }
 return res;
 }

123

Chapter 19 Third-Party Add-Ins

Ever since Microsoft provided outside parties the ability to create add-ins, thousands of third-
party add-ins have been written and shared among developers. Many of the add-in modules are
available for free or little cost. A good starting point is the Microsoft Visual Studio Gallery at
http://visualstudiogallery.msdn.microsoft.com/.

Microsoft add-ins

Microsoft developers have provided a number of add-ins to the gallery. A few sample add-in
programs available include:

 Color Printing: Allows code files to be printed in color.

 Regex Editor: IntelliSense, syntax color, and testing regular expressions. If you work
with regular expressions, this add-in is a great addition to the IDE.

 PowerCommands: Useful extensions to the Visual Studio IDE. Adds commands such as
Undo close, Insert GUID, Extract Constant, etc. to the IDE.

 Productivity Power Tools: Developer productivity extensions.

 Enhancements to the IDE, such as organize Visual Basic imports (similar to organize
Usings in C#), align assignment statements, customize document tabs, etc.

It is not unusual to see the functionality of add-in modules developed internally by Microsoft
make it into future releases of Visual Studio.

Community add-ins

There is a large community of programmers who are writing and sharing their add-ins to the
website. Some useful add-ins from the community includes:

Indent Guides

The Indent Guides add-in displays vertical lines to show indentation levels. It provides a useful
visual guide for aligning statements.

http://visualstudiogallery.msdn.microsoft.com/
http://visualstudiogallery.msdn.microsoft.com/00ec88c2-1553-47d2-8170-3c5baa0c6e44
http://visualstudiogallery.msdn.microsoft.com/55c24bf1-2636-4f94-831d-28db8505ce00
http://visualstudiogallery.msdn.microsoft.com/e5f41ad9-4edc-4912-bca3-91147db95b99
http://visualstudiogallery.msdn.microsoft.com/3a96a4dc-ba9c-4589-92c5-640e07332afd
http://visualstudiogallery.msdn.microsoft.com/e792686d-542b-474a-8c55-630980e72c30

124

 Indent Guide Add-in

Routing Assistant

The Routing Assistant add-in enables users to browse, define, match, and filter ASP.NET MVC
routes for ASP.NET applications and websites with ease, directly from within Visual Studio. With
the popularity of the MVC framework, this add-in module is a great time-saver and way to
understand MVC routing behavior.

devColor

The devColor add-in underlines the colors in style sheets and includes a color picker dialog.

 devColor Add-in

The Visual Studio Gallery is a worthwhile site to visit and bookmark. You can also contribute
your own add-ins if you create one that could be useful to other programmers.

Fame and glory await you!

http://visualstudiogallery.msdn.microsoft.com/f0589156-a8e6-47db-8bac-90f01ca6b8a3
http://visualstudiogallery.msdn.microsoft.com/7dbae8b3-5812-490e-913e-7bfe17f47f1d

	Table of Contents
	The Story behind the Succinctly Series of Books
	Information is plentiful but harder to digest
	The Succinctly series
	The best authors, the best content
	Free forever
	Free? What is the catch?
	Let us know what you think

	About the Author
	Preface
	Target Audience
	Tools Needed
	Formatting
	Code Blocks

	Using Code Examples

	Chapter 1 Microsoft Visual Studio
	Visual Studio add-ins
	IDTExtensibility2 Interface
	IDTCommandTarget Interface
	Assemblies

	Wizard

	Chapter 2 Add-in “Hello World”
	Create the project
	Select your language
	Application hosts
	Name and Description
	Add-in options
	About Information
	Summary

	Connection Code
	Exec Code
	Query Status code
	Generated files

	Chapter 3 Hooking into the IDE
	OnConnection Method
	Linking to menu items

	Linking to other windows
	Adding to the code window
	Other IDE windows
	Adding a toolbar button

	QueryStatus Method
	Other methods
	OnAddInsUpdate method
	OnBeginShutdown method
	OnDisconnection method
	On StartupComplete

	A few caveats

	Chapter 4 Application and Add-in Objects
	Application Object
	ActiveDocument
	ActiveWindow
	Debugger
	Documents
	Edition
	ItemOperations
	LocaleID
	MainWindow
	Mode
	Solution
	ToolWindows
	Windows

	AddIn Object
	Add-in properties
	Collection
	Connected
	Description
	GUID
	Name
	Object
	ProgID
	SatelliteDLLPath

	Assemblies
	Extensibility.dll
	CommandBars.dll
	EnvDTE.dll
	VSLangProj.dll

	Chapter 5 Save Some Files Add-In
	SaveSomeFiles add-in
	Designing the selection form
	Implementing the Exec() method
	But not while debugging
	Summary

	Chapter 6 Testing Your Add-In
	Configuration files
	For Testing.AddIn
	Add-in settings
	LoadBehavior
	CommandPreload

	Add-in life cycle
	0: Call Manually
	1: Load at Start-up

	Debugging
	Common mistakes
	Add-in not enabled on menu
	Add-in never invoked
	Events not triggering
	Not seeing code changes

	Removing an add-in module
	Pesky “Unable to delete” message

	Chapter 7 Visual Studio Environment
	VS Info Wizard
	VS Info Form
	Exec() method
	Getting options
	Getting add-ins installed
	Environment information
	Getting an OS-friendly name

	Displaying the form
	Final results

	Chapter 8 Solution
	Solution Info Wizard
	Updating the menu icon
	Exec() method
	Solution info
	Totaling project information
	Properties

	Displaying the results
	Solution methods
	Close
	FindProjectItem
	SaveAs

	SolutionBuild
	Build
	Clean
	Run
	BuildState

	Chapter 9 Projects
	Project Info Wizard
	Exec() method
	Getting each project
	Project type
	VSProject type

	References
	Project Items
	ITEMS

	Adding the JavaScript
	Showing the Results
	Styling the HTML

	Chapter 10 IDE Windows
	Windows
	Tool windows
	Document windows

	Window object
	Properties
	Methods

	ActiveWindow
	MainWindow
	Windows
	Window Kind constants

	Tool windows
	Document windows
	Is AJAX being used?
	Getting the active window
	Making sure it is HTML code
	Parsing the HTML code
	Showing our findings

	Summary

	Chapter 11 Documents
	Getting the document
	Document object
	Text document object

	Converting C# to VB
	Summary

	Chapter 12 Code Window
	Simple code manipulation
	Attaching to the code window
	Responding to the click
	Getting selected code
	Tweak the code fragment
	Putting the code back

	Moving the code around
	Text Document
	Edit point

	More complex code manipulation

	Chapter 13 Code Model
	Using the code model
	Get the code model of a source file
	Code element properties

	Putting it all together
	Class documenter
	Attaching to the code editor window
	Getting the code model
	Finding the class elements
	Building our header
	Organizing the code elements
	Variables
	Enums
	Properties
	Methods
	Writing the header back to the source window

	Summary

	Chapter 14 Tool Windows
	Error List
	Task List
	Solution Explorer
	Output Window
	Searching for bad words
	Bad words scan
	Using a tool button
	Only if a solution is open
	Getting tool windows
	Looping through the project
	Marking bad words
	Adding a clean-up task

	Summary

	Chapter 15 Source Code Generation
	Source code helper class
	Standardized headers
	Wizard settings

	Moving to File menu
	Options screen
	Generate the header
	Add sub/function call
	Add standard variables

	Open a new window
	Item Operations object

	Summary

	Chapter 16 Deploying Your Add-In
	Installing the add-in
	Add-in Manager
	Summary

	Chapter 17 Object Reference
	Application Object (DTE2)
	Windows and documents
	Document
	Window

	Solution and projects
	Solution
	Project
	Project Item

	Code manipulation
	Text Document
	Edit Point
	Code Model
	Code Element

	Chapter 18 Add-in Helper Class
	MakeEmptySolution
	GetVSProjectsFolder
	FindMenuIndex

	Chapter 19 Third-Party Add-Ins
	Microsoft add-ins
	Community add-ins

