

Mastering Concurrency
Programming with Java 9
Second Edition

Perfect the art of faster and more effective programming
with parallel and reactive streams

Javier Fernández González

BIRMINGHAM - MUMBAI

Mastering Concurrency Programming with
Java 9

Second Edition
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2016

Second edition: July 2017

Production reference: 1140717

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78588-794-9

www.packtpub.com

http://www.packtpub.com

Credits

Author
Javier Fernández González

Copy Editor
Safis Editing

Reviewer
Miro Wengner

Project Coordinator
Vaidehi Sawant

Commissioning Editor
Kunal Parikh

Proofreader
Safis Editing

Acquisition Editor
Nitin Dasan

Indexer
Rekha Nair

Content Development Editor
Nikhil Borkar

Graphics
Abhinash Sahu

Technical Editor
Subhalaxmi Nadar

Production Coordinator
Melwyn Dsa

About the Author
Javier Fernández González is a software architect with almost 15 years of experience
working with Java technologies. He has worked as a teacher, researcher, programmer,
analyst, writer, and he now works as an architect in all types of projects related to Java,
especially J2EE. As a teacher, has taken over 1,000 hours of training sessions in basic Java,
J2EE, and the Struts framework. As a researcher, has worked in the field of information
retrieval, developing applications for processing large amounts of data in Java, and he has
participated in several journal articles and conference presentations as a coauthor. In recent
years, has worked on developing J2EE web applications for various clients from different
sectors (public administration, insurance, healthcare, transportation, and , many more).
Currently, he works as a software architect. He is the author of Java 7 Concurrency Cookbook,
Mastering Concurrency Programming with Java 8, First Edition, and Java 9 Concurrency
Cookbook, Second Edition.

About the Reviewer
Miro Wengner has been a passionate JVM enthusiast since the moment he joined Sun
Microsystems in 2002. He truly believes in distributed system design, concurrency, and
parallel computing. One of Miro's biggest hobbies is the development of autonomous
systems. He is one of the coauthors of and main contributors to the Java open-source project
Robo4J. The Robo4J project's goal is to have a fun and outstanding experience in IoT
application development.

Miro earns his daily bread by working on distributed web applications in a senior position.

I would like to thank my family and my wife, Tanja, for thier support during the reviewing
of this book.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://w w w . a m a z o n . c o m /d p /1785887947.

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947
https://www.amazon.com/dp/1785887947

"To Nuria, Paula, and Pelayo, for you infinite love and patience"

Table of Contents
Preface 1

Chapter 1: The First Step - Concurrency Design Principles 7

Basic concurrency concepts 7
Concurrency versus parallelism 8
Synchronization 8
Immutable object 10
Atomic operations and variables 10
Shared memory versus message passing 10

Possible problems in concurrent applications 11
Data race 11
Deadlock 12
Livelock 13
Resource starvation 13
Priority inversion 13

A methodology to design concurrent algorithms 13
The starting point - a sequential version of the algorithm 14
Step 1 - analysis 14
Step 2 - design 14
Step 3 - implementation 15
Step 4 - testing 15
Step 5 - tuning 16
Conclusion 17

Java Concurrency API 18
Basic concurrency classes 18
Synchronization mechanisms 19
Executors 19
The fork/join framework 20
Parallel streams 20
Concurrent data structures 21

Concurrency design patterns 22
Signaling 22
Rendezvous 22
Mutex 23
Multiplex 24

[ii]

Barrier 24
Double-checked locking 24
Read-write lock 26
Thread pool 26
Thread local storage 27

Tips and tricks for designing concurrent algorithms 27
Identifying the correct independent tasks 27
Implementing concurrency at the highest possible level 28
Taking scalability into account 28
Using thread-safe APIs 29
Never assume an execution order 30
Preferring local thread variables over static and shared when possible 30
Finding the easier parallelizable version of the algorithm 31
Using immutable objects when possible 31
Avoiding deadlocks by ordering the locks 32
Using atomic variables instead of synchronization 33
Holding locks for as short a time as possible 34
Taking precautions using lazy initialization 35
Avoiding the use of blocking operations inside a critical section 35

Summary 36

Chapter 2: Working with Basic Elements - Threads and Runnables 37

Threads in Java 37
Threads in Java - characteristics and states 38
The Thread class and the Runnable interface 40

First example: matrix multiplication 42
Common classes 42
Serial version 43
Parallel versions 44

First concurrent version - a thread per element 44
Second concurrent version - a thread per row 47
Third concurrent version - the number of threads is determined by the processors 49

Comparing the solutions 51
Second example - file search 53

Common classes 53
Serial version 53
Concurrent version 54
Comparing the solutions 59

Summary 61

Chapter 3: Managing Lots of Threads - Executors 62

[iii]

An introduction to executors 62
Basic characteristics of executors 63
Basic components of the Executor framework 64

First example - the k-nearest neighbors algorithm 65
k-nearest neighbors - serial version 66
K-nearest neighbors - a fine-grained concurrent version 68
k-nearest neighbors - a coarse-grained concurrent version 71
Comparing the solutions 73

Second example - concurrency in a client/server environment 75
Client/server - serial version 76

The DAO part 76
The command part 77
The server part 78

Client/version - parallel version 79
The server part 80
The command part 84

Extra components of the concurrent server 84
The status command 85
The cache system 86
The log system 89
Comparing the two solutions 91

Other methods of interest 93
Summary 95

Chapter 4: Getting the Most from Executors 96

Advanced characteristics of executors 96
Cancellation of tasks 97
Scheduling the execution of tasks 97
Overriding the executor methods 98
Changing some initialization parameters 98

First example - an advanced server application 99
The ServerExecutor class 100

The statistics object 100
The rejected task controller 101
The executor tasks 102
The executor 103

The command classes 106
The ConcurrentCommand class 106
The concrete commands 108

The server part 110
The ConcurrentServer class 110
The RequestTask class 113

The client part 116

[iv]

Second example - executing periodic tasks 117
The common parts 118
The basic reader 120
The advanced reader 124

Additional information about executors 128
Summary 129

Chapter 5: Getting Data from Tasks - The Callable and Future
Interfaces 130

Introducing the Callable and Future interfaces 130
The Callable interface 131
The Future interface 131

First example - a best-matching algorithm for words 132
The common classes 133
A best-matching algorithm - the serial version 134

The BestMatchingSerialCalculation class 135
The BestMachingSerialMain class 136

A best-matching algorithm - the first concurrent version 136
The BestMatchingBasicTask class 137
The BestMatchingBasicConcurrentCalculation class 138

A best-matching algorithm - the second concurrent version 141
Word exists algorithm - a serial version 142

The ExistSerialCalculation class 143
The ExistSerialMain class 143

Word exists algorithm - the concurrent version 144
The ExistBasicTasks class 145
The ExistBasicConcurrentCalculation class 146
The ExistBasicConcurrentMain class 147

Comparing the solutions 148
Best-matching algorithms 148
Exist algorithms 149

The second example - creating an inverted index for a collection of
documents 151

Common classes 152
The Document class 152
The DocumentParser class 153

The serial version 154
The first concurrent version - a task per document 155

The IndexingTask class 156
The InvertedIndexTask class 157
The ConcurrentIndexing class 159

The second concurrent version - multiple documents per task 161
The MultipleIndexingTask class 162

[v]

The MultipleInvertedIndexTask class 162
The MultipleConcurrentIndexing class 163

Comparing the solutions 164
Other methods of interest 165

Summary 167

Chapter 6: Running Tasks Divided into Phases - The Phaser Class 168

An introduction to the Phaser class 169
Registration and deregistration of participants 169
Synchronizing phase change 170
Other functionalities 170

First example - a keyword extraction algorithm 172
Common classes 173

The Word class 174
The Keyword class 175
The Document class 175
The DocumentParser class 176

The serial version 177
The concurrent version 181

The KeywordExtractionTask class 181
The ConcurrentKeywordExtraction class 185

Comparing the two solutions 187
The second example - a genetic algorithm 188

Common classes 191
The Individual class 191
The GeneticOperators class 192

The serial version 193
The SerialGeneticAlgorithm class 194
The SerialMain class 195

The concurrent version 196
The SharedData class 197
The GeneticPhaser class 198
The ConcurrentGeneticTask class 199
The ConcurrentGeneticAlgorithm class 201
The ConcurrentMain class 203

Comparing the two solutions 203
Lau15 dataset 204
Kn57 dataset 205
Conclusions 205

Summary 206

Chapter 7: Optimizing Divide and Conquer Solutions - The Fork/Join
Framework 208

An introduction to the fork/join framework 209

[vi]

Basic characteristics of the fork/join framework 210
Limitations of the fork/join framework 211
Components of the fork/join framework 211

The first example - the k-means clustering algorithm 212
The common classes 214

The VocabularyLoader class 215
The word, document, and DocumentLoader classes 215
The DistanceMeasurer class 217
The DocumentCluster class 218

The serial version 219
The SerialKMeans class 219
The SerialMain class 221

The concurrent version 222
Two tasks for the fork/join framework - AssignmentTask and UpdateTask 223
The ConcurrentKMeans class 226
The ConcurrentMain class 228

Comparing the solutions 228
The second example - a data filtering algorithm 231

Common features 232
The serial version 232

The SerialSearch class 233
The SerialMain class 234

The concurrent version 235
The TaskManager class 236
The IndividualTask class 237
The ListTask class 239
The ConcurrentSearch class 241
The ConcurrentMain class 242

Comparing the two versions 242
The third example - the merge sort algorithm 245

Shared classes 245
The serial version 246

The SerialMergeSort class 246
The SerialMetaData class 248

The concurrent version 249
The MergeSortTask class 249
The ConcurrentMergeSort class 251
The ConcurrentMetaData class 252

Comparing the two versions 252
Other methods of the fork/join framework 253
Summary 254

Chapter 8: Processing Massive Datasets with Parallel Streams - The
Map and Reduce Model 256

[vii]

An introduction to streams 256
Basic characteristics of streams 257
Sections of a stream 258

Sources of a stream 258
Intermediate operations 260
Terminal operations 261

MapReduce versus MapCollect 261
The first example - a numerical summarization application 262

The concurrent version 263
The ConcurrentDataLoader class 263
The ConcurrentStatistics class 264

Customers from the United Kingdom 264
Quantity from the United Kingdom 265

Countries for product 266
Quantity for product 267
Multiple data filter 268
Highest invoice amounts 270
Products with a unit price between 1 and 10 271

The ConcurrentMain class 272
The serial version 273
Comparing the two versions 273

The second example - an information retrieval search tool 275
An introduction to the reduction operation 275
The first approach - full document query 277

The basicMapper() method 279
The Token class 280
The QueryResult class 280

The second approach - reduced document query 281
The limitedMapper() method 282

The third approach - generating an HTML file with the results 282
The ContentMapper class 284

The fourth approach - preloading the inverted index 286
The ConcurrentFileLoader class 287

The fifth approach - using our own executor 288
Getting data from the inverted index - the ConcurrentData class 289
Getting the number of words in a file 289
Getting the average tfxidf value in a file 290
Getting the maximum and minimum tfxidf values in the index 291
The ConcurrentMain class 292
The serial version 293
Comparing the solutions 293

Summary 298

[viii]

Chapter 9: Processing Massive Datasets with Parallel Streams - The
Map and Collect Model 299

Using streams to collect data 299
The collect() method 300

The first example - searching data without an index 302
Basic classes 303

The Product class 303
The Review class 304
The ProductLoader class 304

The first approach - basic search 305
The ConcurrentStringAccumulator class 307

The second approach - advanced search 308
The ConcurrentObjectAccumulator class 309

A serial implementation of the example 310
Comparing the implementations 311

The second example - a recommendation system 312
Common classes 313

The ProductReview class 313
The ProductRecommendation class 314

Recommendation system - the main class 314
The ConcurrentLoaderAccumulator class 318
The serial version 318
Comparing the two versions 319

The third example - common contacts in a social network 320
Base classes 322

The Person class 322
The PersonPair class 322
The DataLoader class 323

The concurrent version 323
The CommonPersonMapper class 323
The ConcurrentSocialNetwork class 324
The ConcurrentMain class 328

The serial version 329
Comparing the two versions 329

Summary 331

Chapter 10: Asynchronous Stream Processing - Reactive Streams 332

Introduction to reactive streams in Java 333
The Flow.Publisher interface 334
The Flow.Subscriber interface 334
The Flow.Subscription interface 335
The SubmissionPublisher class 335

[ix]

The first example - a centralized system for event notification 336
The Event class 336
The Producer class 336
The Consumer class 337
The Main class 340

The second example - a news system 342
The News class 342
The publisher classes 343
The Consumer class 347
The Main class 349

Summary 352

Chapter 11: Diving into Concurrent Data Structures and
Synchronization Utilities 353

Concurrent data structures 354
Blocking and non-blocking data structures 354
Concurrent data structures 355

Interfaces 355
BlockingQueue 355
BlockingDeque 356
ConcurrentMap 357
TransferQueue 358

Classes 358
LinkedBlockingQueue 358
ConcurrentLinkedQueue 358
LinkedBlockingDeque 358
ConcurrentLinkedDeque 359
ArrayBlockingQueue 359
DelayQueue 359
LinkedTransferQueue 359
PriorityBlockingQueue 359
ConcurrentHashMap 360

Using the new features 360
First example with ConcurrentHashMap 360

The forEach() method 361
The search() method 362
The reduce() method 363
The compute() method 365

Another example with ConcurrentHashMap 365
An example with the ConcurrentLinkedDeque class 367

The removeIf() method 367
The spliterator() method 367

Atomic variables 370
Variable handles 371

[x]

Synchronization mechanisms 374
The CommonTask class 376
The Lock interface 376
The Semaphore class 378
The CountDownLatch class 380
The CyclicBarrier class 381
The CompletableFuture class 383

Using the CompletableFuture class 386
Auxiliary tasks 387
The main() method 388

Summary 393

Chapter 12: Testing and Monitoring Concurrent Applications 394

Monitoring concurrency objects 395
Monitoring a thread 395
Monitoring a lock 397
Monitoring an executor 399
Monitoring the fork/join framework 401
Monitoring a Phaser 402
Monitoring the Stream API 403

Monitoring concurrency applications 404
The Overview tab 407
The Memory tab 409
The Threads tab 410
The Classes tab 411
The VM summary tab 412
The MBeans tab 415
The About tab 416

Testing concurrency applications 417
Testing concurrent applications with MultithreadedTC 417
Testing concurrent applications with Java Pathfinder 421

Installing Java Pathfinder 422
Running Java Pathfinder 425

Summary 429

Chapter 13: Concurrency in JVM - Clojure and Groovy with the Gpars
Library and Scala 430

Concurrency in Clojure 431
Using Java elements 431
Reference types 432

Atoms 433

[xi]

Agents 435
Refs 436
Delays 438
Futures 439
Promises 441

Concurrency in Groovy with the GPars library 442
Software transactional memory 443

Using Java elements 443
Data parallelism 444
The fork/join processing 449
Actors 451
Agent 459
Dataflow 461

Concurrency in Scala 469
Future objects in Scala 469
Promises 477

Summary 478

Index 479

Preface
Nowadays, computer systems (and other related systems, such as tablets or smartphones)
allow you to do several tasks at the same time. This is possible because they have
concurrent operating systems that control several tasks at the same time. You can also have
one application that executes several tasks (read a file, show a message, and read data over
a network) if you work with the concurrency API of your favorite programming language.
Java includes a very powerful concurrency API that allows you to implement any kind of
concurrency applications with very little effort. This API increases the features provided to
programmers in every version--now, in Java 8, it has included the Stream API and new
methods and classes to facilitate the implementation of concurrent applications. This book
covers the most important elements of the Java concurrency API, showing you how to use
them in real-world applications. These elements are as follows:

The Executor framework, to control the execution of a lot of tasks
The Phaser class, to execute tasks that can be divided into phases
The fork/join framework, to execute that tasks that solve a problem using the
divide and conquer technique
The Stream API, to process big sources of data, including the new reactive
streams
Concurrent data structures, to store the data in concurrent applications
Synchronization mechanisms, to organize concurrent tasks

However, the Java concurrency API includes much more--a methodology to design
concurrency applications, design patterns, tips and tricks to implement good concurrency
applications, the tools and techniques to test concurrency applications, and ways to
implement concurrency applications in other languages for the Java Virtual Machine, such
as Clojure, Groovy, and Scala.

What this book covers
Chapter 1, The First Step - Concurrency Design Principles, covers the design principles of
concurrency applications. You will also learn the possible problems of concurrency
applications and a methodology to design them, accompanied by some design patterns,
tips, and tricks.

Preface

[2]

Chapter 2, Working with Basic Elements - Threads and Runnables, explains how to work with
the most basic elements to implement concurrent applications in the Java language: the
Runnable interface and the Thread classes. With these elements, you can create a new
execution thread that will be executed in parallel with the actual one.

Chapter 3, Managing Lots of Threads - Executors, covers the basic principles of the Executor
framework. This framework allows you to work with lots of threads without creating or
managing them. We will implement the k-nearest neighbors algorithm and a basic
client/server application.

Chapter 4, Getting the Most from Executors, explores some advanced characteristics of
Executors, including the cancellation and scheduling of tasks to execute a task after a delay
or every certain period of time. We will implement an advanced client/server application
and a news reader.

Chapter 5, Getting Data from Tasks - The Callable and Future Interfaces, explains how to work
in an Executor with tasks that return a result using the Callable and Future interfaces. We
will implement a best-matching algorithm and an application to build an inverted index.

Chapter 6, Running Tasks Divided into Phases - The Phaser Class, explains how to use the
Phaser class to execute tasks that can be divided into phases in a concurrent way. We will
implement a keyword extraction algorithm and a genetic algorithm.

Chapter 7, Optimizing Divide and Conquer Solutions - The Fork/Join Framework, explores the
use of a special kind of Executor, optimized by those problems that can be resolved using
the divide and conquer technique: the fork/join framework and its work-stealing algorithm.
We will implement the k-means clustering algorithm, a data filtering algorithm, and the
merge-sort algorithm.

Chapter 8, Processing Massive Datasets with Parallel Streams - The Map and Reduce Model,
explains how to work with streams to process big datasets. In this chapter, you will learn
how to implement map and reduce applications using the Stream API, and you will learn
many more functions of streams. We will implement a numerical summarization algorithm
and an information retrieval search tool.

Chapter 9, Processing Massive Datasets with Parallel Streams - The Map and Collect Model,
explores how to use the collect method of the Stream API to perform a mutable reduction of
a stream of data into a different data structure, including the predefined collectors defined
in the Collectors class. We will implement a tool for searching data without indexing, a
recommendation system, and an algorithm to calculate the list of common contacts of two
persons on a social network.

Preface

[3]

Chapter 10, Asynchronous Stream Processing – Reactive Streams, explains how to implement a
concurrent application using reactive streams that defines a standard for asynchronous
stream processing with non-blocking back pressure. The basic principles of this kind of
streams are defined at h t t p ://w w w . r e a c t i v e - s t r e a m s . o r g /, and Java 9 provides the basic
interfaces necessary for its implementation.

Chapter 11, Diving into Concurrent Data Structures and Synchronization Utilities, covers how
to work with the most important concurrent data structures (data structures that can be
used in concurrent applications without causing data race conditions) and all the
synchronization mechanisms included in the Java concurrency API to organize the
execution of tasks.

Chapter 12, Testing and Monitoring Concurrent Applications, explains how to obtain
information about the status of some of the Java concurrency API elements (Thread, Lock,
Executor, and so on). You will also learn how to monitor a concurrent application using the
Java VisualVM application and how to test concurrent applications with the
MultithreadedTC library and the Java Pathfinder application.

Chapter 13, Concurrency in JVM – Clojure and Groovy with the Gpars Library and Scala,
explores how to implement concurrent applications in other languages for the Java Virtual
Machine. You will learn how to use the concurrent elements provided by the Clojure and
Scala programming languages and the GPars library with the Groovy programming
language.

What you need for this book
To follow this book, you need basic to medium-level knowledge of the Java programming
language. A basic knowledge of concurrency concepts is welcome too.

Who this book is for
If you are a Java developer who knows the basic principles of concurrent programming but
wants to become an expert user of the Java concurrency API in order to develop optimized
applications that take advantage of all the hardware resources of computers, this book is for
you.

http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/
http://www.reactive-streams.org/

Preface

[4]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The
modify() method is not atomic and the Account class is not thread-safe."

A block of code is set as follows:

public void task2() {
 section2_1();
 commonObject2.notify();
 commonObject1.wait();
 section2_2();
}

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "The Classes tab shows you
information about the class loading"

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-mail
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

http://www.packtpub.com/authors

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you. You can download the
code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /M a s t e r i n g - C o n c u r r e n c y - P r o g r a m m i n g - w i t h - J a v a - 9- S e c o n d - E d i t i o n . We also
have other code bundles from our rich catalog of books and videos available at h t t p s ://g i

t h u b . c o m /P a c k t P u b l i s h i n g /. Check them out!

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/Mastering-Concurrency-Programming-with-Java-9-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[6]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k

s /c o n t e n t /s u p p o r t and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1
The First Step - Concurrency

Design Principles
Users of computer systems are always looking for better performance of their systems. They
want to get higher quality videos, better video games, and faster network speeds. Some
years ago, processors gave better performance to users by increasing their speed. But now,
processors don't increase their speed. Instead of this, they add more cores so that the
operating system can execute more than one task at a time. This is called concurrency.
Concurrent programming includes all the tools and techniques to have multiple tasks or
processes running at the same time in a computer, communicating and synchronizing
between them without data loss or inconsistency. In this chapter, we will cover the
following topics:

Basic concurrency concepts
Possible problems in concurrent applications
A methodology to design concurrent algorithms
Java Concurrency API
Concurrency design patterns
Tips and tricks to design concurrency algorithms

Basic concurrency concepts
First of all, let's present the basic concepts of concurrency. You must understand these
concepts to follow the rest of the book.

The First Step - Concurrency Design Principles

[8]

Concurrency versus parallelism
Concurrency and parallelism are very similar concepts. Different authors give different
definitions for these concepts. The most accepted definition talks about concurrency as
being when you have more than one task in a single processor with a single core. In this
case, the operating system's task scheduler quickly switches from one task to another, so it
seems that all the tasks run simultaneously. The same definition talks about parallelism as
being when you have more than one task running simultaneously on different computers,
processors, or cores inside a processor.

Another definition talks about concurrency being when you have more than one task
(different tasks) that run simultaneously on your system. Yet another definition discusses
parallelism as being when you have different instances of the same task that run
simultaneously over different parts of a dataset.

The last definition talks about parallelism being when you have more than one task that
runs simultaneously in your system and talks about concurrency as a way to explain the
different techniques and mechanisms the programmer has to synchronize with the tasks
and their access to shared resources.

As you can see, both concepts are very similar, and this similarity has increased with the
development of multicore processors.

Synchronization
In concurrency, we can define synchronization as the coordination of two or more tasks to
get the desired results. We have two kinds of synchronization:

Control synchronization: When, for example, one task depends on the end of
another task, the second task can't start before the first has finished
Data access synchronization: When two or more tasks have access to a shared
variable and only one of the tasks can access the variable

A concept closely related to synchronization is critical section. A critical section is a piece of
code that can be only executed by one task at a time because of its access to a shared
resource. Mutual exclusion is the mechanism used to guarantee this requirement and can
be implemented in different ways.

The First Step - Concurrency Design Principles

[9]

Keep in mind that synchronization helps you avoid some errors you might have with
concurrent tasks (they will be described later in this chapter), but it introduces some
overhead to your algorithm. You have to calculate the number of tasks very carefully,
which can be performed independently without intercommunication you will have in your
parallel algorithm. It's the granularity of your concurrent algorithm. If you have a coarse-
grained granularity (big tasks with low intercommunication), the overhead due to
synchronization will be low. However, maybe you won't benefit from all the cores of your
system. If you have a fine-grained granularity (small tasks with high intercommunication),
the overhead due to synchronization will be high, and perhaps the throughput of your
algorithm won't be good.

There are different mechanisms to get synchronization in a concurrent system. The most
popular mechanisms from a theoretical point of view are:

Semaphore: A semaphore is a mechanism that can be used to control the access
to one or more units of a resource. It has a variable that stores the number of
resources that can be used and two atomic operations to manage the value of the
variable. A mutex (short for mutual exclusion) is a special kind of semaphore
that can take only two values (resource is free and resource is busy), and only the
process that sets the mutex to busy can release it. A mutex can help you to avoid
race conditions by protecting a critical section.
Monitor: A monitor is a mechanism to get mutual exclusion over a shared
resource. It has a mutex, a condition variable, and two operations to wait for the
condition and signal the condition. Once you signal the condition, only one of the
tasks that are waiting for it continues with its execution.

The last concept related to synchronization you're going to learn in this chapter is thread
safety. A piece of code (or a method or an object) is thread-safe if all the users of shared
data are protected by synchronization mechanisms. A non-blocking, compare-and-swap
(CAS) primitive of the data is immutable, so you can use that code in a concurrent
application without any problems.

The First Step - Concurrency Design Principles

[10]

Immutable object
An immutable object is an object with a very special characteristic. You can't modify its
visible state (the value of its attributes) after its initialization. If you want to modify an
immutable object, you have to create a new one.

Its main advantage is that it is thread-safe. You can use it in concurrent applications without
any problem.

An example of an immutable object is the String class in Java. When you assign a new
value to a String object, you are creating a new one.

Atomic operations and variables
An atomic operation is a kind of operation that appears to occur instantaneously to the rest
of the tasks of the program. In a concurrent application, you can implement an atomic
operation with a critical section to the whole operation using a synchronization mechanism.

An atomic variable is a kind of variable that has atomic operations to set and get its value.
You can implement an atomic variable using a synchronization mechanism or in a lock-free
manner using CAS that doesn't need synchronization.

Shared memory versus message passing
Tasks can use two different methods to communicate with each other. The first one is
shared memory and, normally, it is used when the tasks are running on the same computer.
The tasks use the same memory area where they write and read values. To avoid problems,
the access to this shared memory has to be in a critical section protected by a
synchronization mechanism.

The other synchronization mechanism is message passing and, normally, it is used when
the tasks are running on different computers. When tasks needs to communicate with
another, it sends a message that follows a predefined protocol. This communication can be
synchronous if the sender keeps it blocked waiting for a response or asynchronous if the
sender continues with their execution after sending the message.

The First Step - Concurrency Design Principles

[11]

Possible problems in concurrent
applications
Programming a concurrent application is not an easy job. Incorrect use of the
synchronization mechanisms can create different problems with the tasks in your
application. In this section, we describe some of these problems.

Data race
You can have a data race (also named race condition) in your application when you have
two or more tasks writing a shared variable outside a critical section, that's to say, without
using any synchronization mechanisms.

Under these circumstances, the final result of your application may depend on the order or
execution of the tasks. Look at the following example:

package com.packt.java.concurrency;

public class Account {

 private float balance;

 public void modify (float difference) {

 float value=this.balance;
 this.balance=value+difference;
 }

}

Imagine that two different tasks execute the modify() method in the same Account object.
Depending on the order of execution of the sentences in the tasks, the final result can vary.
Suppose that the initial balance is 1000 and the two tasks call the modify() method with
1000 as a parameter. The final result should be 3000, but if both tasks execute the first
sentence at the same time and then the second sentence at the same time, the final result
will be 2000. As you can see, the modify() method is not atomic and the Account class is
not thread-safe.

The First Step - Concurrency Design Principles

[12]

Deadlock
There is a deadlock in your concurrent application when there are two or more tasks
waiting for a shared resource that must be free from another thread that is waiting for
another shared resource that must be free by one of the first ones. It happens when four
conditions happen simultaneously in the system. They are the Coffman conditions, which
are as follows:

Mutual exclusion: The resources involved in the deadlock must be nonshareable.
Only one task can use the resource at a time.
Hold and wait condition: A task has the mutual exclusion for a resource and it's
requesting the mutual exclusion for another resource. While it's waiting, it
doesn't release any resources.
No pre-emption: The resources can only be released by the tasks that hold them.
Circular wait: There is a circular waiting where Task 1 is waiting for a resource
that is being held by Task 2, which is waiting for a resource being held by Task 3,
and so on until we have Task n that is waiting for a resource being held by Task 1.

Some mechanisms exist that you can use to avoid deadlocks:

Ignore them: This is the most commonly used mechanism. You suppose that a
deadlock will never occur on your system, and if it occurs, you can see the
consequences of stopping your application and having to re-execute it.
Detection: The system has a special task that analyzes the state of the system to
detect whether a deadlock has occurred. If it detects a deadlock, it can take action
to remedy the problem. For example, finishing one task or forcing the liberation
of a resource.
Prevention: If you want to prevent deadlocks in your system, you have to
prevent one or more of the Coffman conditions.
Avoidance: Deadlocks can be avoided if you have information about the
resources that are used by a task before it begins its execution. When a task wants
to start its execution, you can analyze the resources that are free in the system
and the resources that the task needs so it is able to decide whether it can start its
execution or not.

The First Step - Concurrency Design Principles

[13]

Livelock
A livelock occurs when you have two tasks in your system that are always changing their
states due to the actions of the other. Consequently, they are in a loop of state changes and
unable to continue.

For example, you have two tasks - Task 1 and Task 2, and both need two resources - Resource
1 and Resource 2. Suppose that Task 1 has a lock on Resource 1, and Task 2 has a lock on
Resource 2. As they are unable to gain access to the resource they need, they free their
resources and begin the cycle again. This situation can continue indefinitely, so the tasks
will never end their execution.

Resource starvation
Resource starvation occurs when you have a task in your system that never gets a resource
that it needs to continue with its execution. When there is more than one task waiting for a
resource and the resource is released, the system has to choose the next task that can use it.
If your system doesn't have a good algorithm, it can have threads that are waiting for a long
time for the resource.

Fairness is the solution to this problem. All the tasks that are waiting for a resource must
have the resource in a given period of time. An option is to implement an algorithm that
takes into account the time that a task has been waiting for a resource when it chooses the
next task that will hold a resource. However, fair implementation of locks requires
additional overhead, which may lower your program throughput.

Priority inversion
Priority inversion occurs when a low priority task holds a resource that is needed by a high
priority task, so the low priority task finishes its execution before the high priority task.

A methodology to design concurrent
algorithms
In this section, we're going to propose a five-step methodology to get a concurrent version
of a sequential algorithm. It's based on the one presented by Intel in their Threading
Methodology: Principles and Practices document.

The First Step - Concurrency Design Principles

[14]

The starting point - a sequential version of the
algorithm
Our starting point to implement a concurrent algorithm will be a sequential version of the
algorithm. Of course, we could design a concurrent algorithm from scratch, but I think that
a sequential version of the algorithm will give us two advantages:

We can use the sequential algorithm to test whether our concurrent algorithm
generates correct results. Both algorithms must generate the same output when
they receive the same input, so we can detect some problems in the concurrent
version, such as data races or similar conditions.
We can measure the throughput of both algorithms to see if the use of
concurrency gives us a real improvement in the response time or in the amount
of data the algorithm can process in a time.

Step 1 - analysis
In this step, we are going to analyze the sequential version of the algorithm to look for the
parts of its code that can be executed in a parallel way. We should pay special attention to
those parts that are executed most of the time or that execute more code because, by
implementing a concurrent version of those parts, we're going to get a greater performance
improvement.

Good candidates for this process are loops, where one step is independent of the other
steps, or portions of code are independent of other parts of the code (for example, an
algorithm to initialize an application that opens the connections with the database, loads the
configuration files, and initializes some objects; all these tasks are independent of each
other).

Step 2 - design
Once you know what parts of the code you are going to parallelize, you have to decide how
to do that parallelization.

The changes in the code will affect two main parts of the application:

The structure of the code
The organization of the data structures

The First Step - Concurrency Design Principles

[15]

You can take two different approaches to accomplish this task:

Task decomposition: You do task decomposition when you split the code into
two or more independent tasks that can be executed at once. Maybe some of
these tasks have to be executed in a given order or have to wait at the same point.
You must use synchronization mechanisms to get this behavior.
Data decomposition: You do data decomposition when you have multiple
instances of the same task that work with a subset of the dataset. This dataset will
be a shared resource, so if the tasks need to modify the data, you have to protect
access to it, implementing a critical section.

Another important point to keep in mind is the granularity of your solution. The objective
of implementing a parallel version of an algorithm is to achieve improved performance, so
you should use all the available processors or cores. On the other hand, when you use a
synchronization mechanism, you introduce some extra instructions that must be executed.
If you split the algorithm into a lot of small tasks (fine-grained granularity), the extra code
introduced by the synchronization can provoke performance degradation. If you split the
algorithm into fewer tasks than cores (coarse-grained granularity), you are not taking
advantage of all resources. Also, you must take into account the work every thread must
do, especially if you implement a fine-grained granularity. If you have a task longer than
the rest, that task will determine the execution time of the application. You have to find the
equilibrium between these two points.

Step 3 - implementation
The next step is to implement the parallel algorithm using a programming language and, if
it's necessary, a thread library. In the examples of this book, you are going to use Java to
implement all the algorithms.

Step 4 - testing
After finishing the implementation, you should test the parallel algorithm. If you have a
sequential version of the algorithm, you can compare the results of both algorithms to
verify that your parallel implementation is correct.

Testing and debugging a parallel implementation are difficult tasks because the order of
execution of the different tasks of the application is not guaranteed. In Chapter 12, Testing
and Monitoring Concurrent Applications, you will learn tips, tricks, and tools to do these tasks
efficiently.

The First Step - Concurrency Design Principles

[16]

Step 5 - tuning
The last step is to compare the throughput of the parallel and the sequential algorithms. If
the results are not as expected, you must review the algorithm, looking for the cause of the
bad performance of the parallel algorithm.

You can also test different parameters of the algorithm (for example, granularity, or number
of tasks) to find the best configuration.

There are different metrics to measure the possible performance improvement you can
obtain parallelizing an algorithm. The three most popular metrics are:

Speedup: This is a metric for relative performance improvements between the
parallel and the sequential versions of the algorithm:

Here, Tsequential is the execution time of the sequential version of the algorithm and
Tconcurrent is the execution time of the parallel version.

Amdahl's law: Used to calculate the maximum expected improvement obtained
with the parallelization of an algorithm:

Here, P is the percentage of code that can be parallelized and N is the number of
cores of the computer where you're going to execute the algorithm.

For example, if you can parallelize 75% of the code and you have four cores, the
maximum speedup will be given by the following formula:

The First Step - Concurrency Design Principles

[17]

Gustafson-Barsis' law: Amdahl's law has a limitation. It supposes that you have
the same input dataset when you increase the number of cores, but normally,
when you have more cores, you want to process more data. Gustafson's law
proposes that when you have more cores available, bigger problems can be
solved at the same time using the following formula:

Here, N is the number of cores and P is the percentage of parallelizable code.

If we use the same example as before, the scaled speedup calculated by the
Gustafson law is:

Conclusion
In this section, you learned some important issues you have to take into account when you
want to parallelize a sequential algorithm.

First of all, not every algorithm can be parallelized. For example, if you have to execute a
loop where the result of iteration depends on the result of the previous iteration, you can't
parallelize that loop. Recurrent algorithms are another example of algorithms that can be
parallelized for a similar reason.

Another important thing you have to keep in mind is that the sequential version with better
performance of an algorithm can be a bad starting point to parallelize it. If you start
parallelizing an algorithm and you find yourself in trouble because you cannot easily find
independent portions of the code, you have to look for other versions of the algorithm and
verify that the version can be parallelized in an easier way.

Finally, when you implement a concurrent application (from scratch or based on a
sequential algorithm), you must take into account the following points:

Efficiency: The parallel algorithm must end in less time than the sequential
algorithm. The first goal of parallelizing an algorithm is that its running time is
less than the sequential one, or it can process more data in the same time.

The First Step - Concurrency Design Principles

[18]

Simplicity: When you implement an algorithm (parallel or not), you must keep it
as simple as possible. It will be easier to implement, test, debug, and maintain,
and it will have less errors.
Portability: Your parallel algorithm should be executed on different platforms
with minimum changes. As in this book you will use Java, this point will be very
easy. With Java, you can execute your programs on every operating system
without any changes (if you implement the program as you must).
Scalability: What happens to your algorithm if you increase the number of cores?
As mentioned before, you should use every available core so your algorithm is
ready to take advantage of all available resources.

Java Concurrency API
The Java programming language has a very rich concurrency API. It contains classes to
manage the basic elements of concurrency, such as Thread, Lock, and Semaphore, and
classes that implement very high-level synchronization mechanisms, such as the executor
framework or the new parallel Stream API.

In this section, we will cover the basic classes that form the concurrency API.

Basic concurrency classes
The basic classes of the Concurrency API are:

The Thread class: This class represents all the threads that execute a concurrent
Java application
The Runnable interface: This is another way to create concurrent applications in
Java
The ThreadLocal class: This is a class to store variables locally to a thread
The ThreadFactory interface: This is the base of the Factory design pattern, that
you can use to create customized threads

The First Step - Concurrency Design Principles

[19]

Synchronization mechanisms
The Java Concurrency API includes different synchronization mechanisms that allow you
to:

Define a critical section to access a shared resource
Synchronize different tasks at a common point

The following mechanisms are the most important synchronization mechanisms:

The synchronized keyword: The synchronized keyword allows you to define a
critical section in a block of code or in an entire method.
The Lock interface: Lock provides a more flexible synchronization operation
than the synchronized keyword. There are different kinds of Locks:
ReentrantLock, to implement a Lock that can be associated with a condition;
ReentrantReadWriteLock that separates the read and write operations; and
StampedLock, a new feature of Java 8 that includes three modes for controlling
read/write access.
The Semaphore class: The class that implements the classical semaphore to
implement the synchronization. Java supports binary and general semaphores.
The CountDownLatch class: A class that allows a task to wait for the finalization
of multiple operations.
The CyclicBarrier class: A class that allows the synchronization of multiple
threads at a common point.
The Phaser class: A class that allows you to control the execution of tasks divided
into phases. None of the tasks advance to the next phase until all of the tasks have
finished the current phase.

Executors
The executor framework is a mechanism that allows you to separate thread creation and
management for the implementation of concurrent tasks. You don't have to worry about the
creation and management of threads, only to create tasks and send them to the executor.
The main classes involved in this framework are:

The Executor and ExecutorService interface: This includes the execute()
method common to all executors
ThreadPoolExecutor: This is a class that allows you to get an executor with a pool
of threads and, optionally, define a maximum number of parallel tasks

The First Step - Concurrency Design Principles

[20]

ScheduledThreadPoolExecutor: This is a special kind of executor to allow you to
execute tasks after a delay or periodically
Executors: This is a class that facilitates the creation of executors
The Callable interface: This is an alternative to the Runnable interface - a
separate task that can return a value
The Future interface: This is an interface that includes the methods to obtain the
value returned by a Callable interface and to control its status

The fork/join framework
The fork/join framework defines a special kind of executor specialized in the resolution of
problems with the divide and conquer technique. It includes a mechanism to optimize the
execution of the concurrent tasks that solve these kinds of problems. Fork/Join is specially
tailored for fine-grained parallelism, as it has very low overhead in order to place the new
tasks into the queue and take queued tasks for execution. The main classes and interfaces
involved in this framework are:

ForkJoinPool: This is a class that implements the executor that is going to run
the tasks
ForkJoinTask: This is a task that can be executed in the ForkJoinPool class
ForkJoinWorkerThread: This is a thread that is going to execute tasks in the
ForkJoinPool class

Parallel streams
Streams and lambda expressions were the two most important new features of the Java 8
version. Streams have been added as a method in the Collection interface and other data
sources and allow the processing of all elements of a data structure generating new
structures, filtering data, and implementing algorithms using the map and reduce
technique.

A special kind of stream is a parallel stream that realizes its operations in a parallel way.
The most important elements involved in the use of parallel streams are:

The Stream interface: This is an interface that defines all the operations that you
can perform on a stream.
Optional: This is a container object that may or may not contain a non-null value.

The First Step - Concurrency Design Principles

[21]

Collectors: This is a class that implements reduction operations that can be used
as part of a stream sequence of operations.
Lambda expressions: Streams have been thought of to work with Lambda
expressions. Most of stream methods accept a lambda expression as a parameter.
This allows you to implement a more compact version of operations.

Concurrent data structures
Normal data structures of the Java API (ArrayList, Hashtable, and so on) are not ready
to work in a concurrent application unless you use an external synchronization mechanism.
If you use it, you will be adding a lot of extra computing time to your application. If you
don't use it, it's probable that you will add race conditions to your application. If you
modify them from several threads and race conditions occur, you may experience various
exceptions (such as, ConcurrentModificationException and
ArrayIndexOutOfBoundsException), silent data loss, or your program may even get
stuck in an endless loop.

The Java Concurrency API includes a lot of data structures that can be used in concurrent
applications without risk. We can classify them into two groups:

Blocking data structures: These include methods that block the calling task
when, for example, the data structure is empty and you want to get a value.
Non-blocking data structures: If the operation can be made immediately, it won't
block the calling tasks. It returns a null value or throws an exception.

These are some of the data structures:

ConcurrentLinkedDeque: This is a non-blocking list
ConcurrentLinkedQueue: This is a non-blocking queue
LinkedBlockingDeque: This is a blocking list
LinkedBlockingQueue: This is a blocking queue
PriorityBlockingQueue: This is a blocking queue that orders its elements
based on their priority
ConcurrentSkipListMap: This is a non-blocking navigable map
ConcurrentHashMap: This is a non-blocking hash map
AtomicBoolean, AtomicInteger, AtomicLong, and AtomicReference: These
are atomic implementations of the basic Java data types

The First Step - Concurrency Design Principles

[22]

Concurrency design patterns
In software engineering, a design pattern is a solution to a common problem. This solution
has been used many times, and it has proved to be an optimal solution to the problem. You
can use them to avoid 'reinventing the wheel' every time you have to solve one of these
problems. Singleton or Factory are examples of common design patterns used in almost
every application.

Concurrency also has its own design patterns. In this section, we describe some of the most
useful concurrency design patterns and their implementation in the Java language.

Signaling
This design pattern explains how to implement the situation where a task has to notify an
event to another task. The easiest way to implement this pattern is with a semaphore or a
mutex, using the ReentrantLock or Semaphore classes of the Java language or even the
wait() and notify() methods included in the Object class.

See the following example:

public void task1() {
 section1();
 commonObject.notify();
}

public void task2() {
 commonObject.wait();
 section2();
}

Under these circumstances, the section2() method will always be executed after the
section1() method.

Rendezvous
This design pattern is a generalization of the Signaling pattern. In this case, the first task
waits for an event of the second task and the second task waits for an event of the first task.
The solution is similar to that of Signaling, but in this case, you must use two objects instead
of one.

The First Step - Concurrency Design Principles

[23]

See the following example:

public void task1() {
 section1_1();
 commonObject1.notify();
 commonObject2.wait();
 section1_2();
}
public void task2() {
 section2_1();
 commonObject2.notify();
 commonObject1.wait();
 section2_2();
}

Under these circumstances, section2_2() will always be executed after section1_1()
and section1_2() after section2_1(). Take into account that if you put the call to the
wait() method before the call to the notify() method, you will have a deadlock.

Mutex
A mutex is a mechanism that you can use to implement a critical section, ensuring the
mutual exclusion. That is to say, only one task can execute the portion of code protected by
the mutex at once. In Java, you can implement a critical section using the synchronized
keyword (that allows you to protect a portion of code or a full method), the
ReentrantLock class, or the Semaphore class.

Look at the following example:

public void task() {
 preCriticalSection();
 try {
 lockObject.lock() // The critical section begins
 criticalSection();
 } catch (Exception e) {

 } finally {
 lockObject.unlock(); // The critical section ends
 postCriticalSection();
}

The First Step - Concurrency Design Principles

[24]

Multiplex
The Multiplex design pattern is a generalization of the Mutex. In this case, a determined
number of tasks can execute the critical section at once. It is useful, for example, when you
have multiple copies of a resource. The easiest way to implement this design pattern in Java
is using the Semaphore class initialized to the number of tasks that can execute the critical
section at once.

Look at the following example:

public void task() {
 preCriticalSection();
 semaphoreObject.acquire();
 criticalSection();
 semaphoreObject.release();
 postCriticalSection();
}

Barrier
This design pattern explains how to implement the situation where you need to
synchronize some tasks at a common point. None of the tasks can continue with their
execution until all the tasks have arrived at the synchronization point. Java Concurrency
API provides the CyclicBarrier class, which is an implementation of this design pattern.

Look at the following example:

public void task() {
 preSyncPoint();
 barrierObject.await();
 postSyncPoint();
}

Double-checked locking
This design pattern provides a solution to the problem that occurs when you acquire a lock
and then check for a condition. If the condition is false, you have the overhead of acquiring
the lock ideally. An example of this situation is the lazy initialization of objects. If you have
a class implementing the Singleton design pattern, you may have some code like this:

public class Singleton{
 private static Singleton reference;
 private static final Lock lock=new ReentrantLock();

The First Step - Concurrency Design Principles

[25]

 public static Singleton getReference() {
 try {
 lock.lock();
 if (reference==null) {
 reference=new Object();
 }
 } catch (Exception e) {
 System.out.println(e);
 } finally {
 lock.unlock();
 }
 return reference;
 }
}

A possible solution could be to include the lock inside the conditions:

public class Singleton{
 private Object reference;
 private Lock lock=new ReentrantLock();
 public Object getReference() {
 if (reference==null) {
 lock.lock();
 if (reference == null) {
 reference=new Object();
 }
 lock.unlock();
 }
 return reference;
 }
}

This solution still has problems. If two tasks check the condition at once, you will create two
objects. The best solution to this problem doesn't use any explicit synchronization
mechanisms:

public class Singleton {

 private static class LazySingleton {
 private static final Singleton INSTANCE = new Singleton();
 }

 public static Singleton getSingleton() {
 return LazySingleton.INSTANCE;
 }

}

The First Step - Concurrency Design Principles

[26]

Read-write lock
When you protect access to a shared variable with a lock, only one task can access that
variable, independently of the operation you are going to perform on it. Sometimes, you
will have variables that you modify a few times but you read many times. In this
circumstance, a lock provides poor performance because all the read operations can be
made concurrently without any problem. To solve this problem, we can use the read-write
lock design pattern. This pattern defines a special kind of lock with two internal locks: one
for read operations and another for write operations. The behavior of this lock is as follows:

If one task is doing a read operation and another task wants to do another read
operation, it can do it
If one task is doing a read operation and another task wants to do a write
operation, it's blocked until all the readers finish
If one task is doing a write operation and another task wants to do an operation
(read or write), it's blocked until the writer finishes

The Java Concurrency API includes the class ReentrantReadWriteLock that implements
this design pattern. If you want to implement this pattern from scratch, you have to be very
careful with the priority between read-tasks and write-tasks. If too many read-tasks exist,
write-tasks can be waiting too long.

Thread pool
This design pattern tries to remove the overhead introduced by creating a thread per task
you want to execute. It's formed by a set of threads and a queue of tasks you want to
execute. The set of threads usually has a fixed size. When a thread finishes the execution of
a task, it doesn't finish its execution. It looks for another task in the queue. If there is another
task, it executes it. If not, the thread waits until a task is inserted in the queue, but it's not
destroyed.

The Java Concurrency API includes some classes that implement the ExecutorService
interface that internally uses a pool of threads.

The First Step - Concurrency Design Principles

[27]

Thread local storage
This design pattern defines how to use global or static variables locally to tasks. When you
have a static attribute in a class, all the objects of a class access the same occurrences of the
attribute. If you use thread local storage, each thread accesses a different instance of the
variable.

The Java Concurrency API includes the ThreadLocal class to implement this design
pattern.

Tips and tricks for designing concurrent
algorithms
In this section, we have compiled some tips and tricks you have to keep in mind to design
good concurrent applications.

Identifying the correct independent tasks
You can only execute concurrent tasks that are independent of each other. If you have two
or more tasks with an order dependency between them, maybe it doesn't interest you to try
to execute them concurrently and include a synchronization mechanism to guarantee the
execution order. The tasks will execute in a sequential way, and you will have to overcome
the synchronization mechanism. A different situation is when you have a task with some
prerequisites, but these prerequisites are independent of each other. In this case, you can
execute the prerequisites concurrently and then use a synchronization class to control the
execution of the task after you finish all the prerequisites.

Another situation where you can't use concurrency is when you have a loop, and all the
steps use data generated in the step before, or there is some status information that goes
from one step to the next step.

The First Step - Concurrency Design Principles

[28]

Implementing concurrency at the highest
possible level
Rich threading APIs, such as the Java Concurrency API, offer you different classes to
implement concurrency in your applications. In the case of Java, you can control the
creation and synchronization of threads using the Thread or Lock classes, but it also offers
you high-level concurrency objects, such as executors or the fork/join framework, that allow
you to execute concurrent tasks. This high-level mechanism offers you the following
benefits:

You don't have to worry about the creation and management of threads. You
only create tasks and send it to execute. The Java Concurrency API controls the
creation and management of threads for you.
They are optimized to give better performance than using threads directly. For
example, they use a pool of threads to reuse and avoid thread creation for every
task. You can implement these mechanisms from scratch, but it will take you a lot
of time, and it will be a complex task.
They include advanced features that make the API more powerful. For example,
with executors in Java, you can execute tasks that return a result in the form of a
Future object. Again, you can implement these mechanisms from scratch, but it's
not advisable.
Your application will be migrated more easily from one operating system to
another, and it will be more scalable.
Your application might become faster in future Java versions. Java developers
constantly improve the internals, and JVM optimizations will be likely more
tailored for JDK APIs.

In summary, for performance and development time reasons, analyze the high-level
mechanisms your thread API offers you before implementing your concurrent algorithm.

Taking scalability into account
One of the main objectives, when you implement a concurrent algorithm, is to take
advantage of all the resources of your computer, especially the number of processors or
cores. But this number may change over time. Hardware is constantly evolving and its cost
becomes lower each year.

The First Step - Concurrency Design Principles

[29]

When you design a concurrent algorithm using data decomposition, don't presuppose the
number of cores or processors that your application will execute on. Get the information of
the system dynamically (for example, in Java, you can get it with the method
Runtime.getRuntime().availableProcessors()) and make your algorithm use that
information to calculate the number of tasks it's going to execute. This process will have an
overhead over the execution time of your algorithm, but your algorithm will be more
scalable.

If you design a concurrent algorithm using task decomposition, the situation can be more
difficult. You depend on the number of independent tasks you have in the algorithm and
forcing a greater number of tasks will increment the overhead introduced by
synchronization mechanisms and the global performance of the application can be even
worse. Analyze in detail the algorithm to determine whether you can have a dynamic
number of tasks or not.

Using thread-safe APIs
If you need to use a Java library in a concurrent application, read its documentation first to
know whether it's thread-safe or not. If it's thread-safe, you can use it in your application
without any problem. If it's not, you have the following two options:

If a thread-safe alternative exists, you should use it
If a thread-safe alternative doesn't exist, you should add the necessary
synchronization to avoid all possible problematic situations, especially data race
conditions

For example, if you need a List in a concurrent application, you should not use the
ArrayList class if you are going to update it from several threads, because it's not thread-
safe. In this case, you can use a thread-safe class such as
ConcurrentLinkedDeque,CopyOnWriteArrayList, or LinkedBlockingDeque. If the
class you want to use is not thread-safe, first you must look for the thread-safe alternative. It
will probably be more optimized to work with concurrency than any alternative that you
can implement.

The First Step - Concurrency Design Principles

[30]

Never assume an execution order
The execution of tasks in a concurrent application when you don't use any synchronization
mechanisms is nondeterministic. The order of execution of the tasks and the time each task
is in execution is determined by the scheduler of the operating system. It doesn't care if you
observe that the execution order is the same in a number of executions. The next one could
be different.

The result of this assumption used to be a data race problem. The final result of your
algorithm depends on the execution order of the tasks. Sometimes, the result can be correct,
but at other times, it can be incorrect. It can be very difficult to detect the cause of data race
conditions, so you must be careful not to forget all the necessary synchronization elements.

Preferring local thread variables over static and
shared when possible
Thread local variables are a special kind of variables. Every task will have an independent
value for this variable, so you don't need any synchronization mechanisms to protect the
access to this variable.

This can sound a little strange. Every object has its own copy of the attributes of the class, so
why do we need the thread local variables? Consider this situation. You create a Runnable
task and you want to execute multiple instances of that task. You can create a Runnable
object per thread you want to execute, but another option is to create a Runnable object and
use that object to create all the threads. In the last case, all the threads will have access to the
same copy of the attributes of the class, except if you use the ThreadLocal class. The
ThreadLocal class guarantees you that every thread will access its own instance of the
variable without the use of a Lock, a semaphore, or a similar class.

Another situation when you can take advantage of the Thread local variables is with static
attributes. All instances of a class share static attributes, except you declare them with the
ThreadLocal class. In this case, every thread will have access to its own copy.

Another option you have is to use something like ConcurrentHashMap<Thread,
MyType> and use it like var.get(Thread.currentThread()) or
var.put(Thread.currentThread(), newValue). Usually, this approach is significantly
slower than ThreadLocal because of possible contention (ThreadLocal has no contention
at all). It has an advantage though: you can clear the map completely and the value will
disappear for every thread, thus, sometimes it's useful to use such an approach.

The First Step - Concurrency Design Principles

[31]

Finding the easier parallelizable version of the
algorithm
We can define an algorithm as a sequence of steps to solve a problem. There are different
ways to solve the same problem. Some are faster, some use less resources, and others fit
better with special characteristics of the input data. For example, if you want to order a set
of numbers, you can use one of the multiple sorting algorithms that have been
implemented.

In a previous section of this chapter, we recommended you use a sequential algorithm as
the starting point to implement a concurrent algorithm. There are two main advantages to
this approach:

You can easily test the correctness of the results of your parallel algorithm
You can measure the improvement in performance obtained with the use of
concurrency

But not every algorithm can be parallelized, at least not so easily. You might think that the
best starting point would be the sequential algorithm with best performance solving the
problem you want to parallelize, but this can be an incorrect assumption. You should look
for an algorithm than can be easily parallelized. Then, you can compare the concurrent
algorithm with the sequential one with best performance to see which of those offers the
best throughput.

Using immutable objects when possible
One of the main problems you can have in a concurrent application is a data race condition.
As we explained before, this happens when two or more tasks can modify the data stored in
a shared variable and the access to that variable is not implemented inside a critical section.

For example, when you work with an object-oriented language such as Java, you implement
your application as a collection of objects. Each object has a number of attributes and some
methods to read and change the values of the attributes. If some tasks share an object and
call to a method to change a value of an attribute of that object and that method is not
protected by a synchronization mechanism, you will probably have data inconsistency
problems.

The First Step - Concurrency Design Principles

[32]

There are special kinds of objects, called immutable objects. Its main characteristic is that
you can't modify any of its attributes after its initialization. If you want to modify the value
of an attribute, you must create another object. The String class in Java is the best example
of immutable objects. When you use an operator (for example, = or +=) that we might think
changes the value of a String, you are really creating a new object.

The use of immutable objects in a concurrent application has two very important
advantages:

You don't need any synchronization mechanisms to protect the methods of these
classes. If two tasks want to modify the same object, they will create new objects,
so two tasks modifying the same object at a time will never occur.
You won't have any data inconsistency problems, as a conclusion of the first
point.

There is a drawback with immutable objects. You can create too many objects, and this may
affect the throughput and the use of memory of the application. If you have a simple object
without internal data structures, it's usually not a problem to make it immutable. However,
making complex objects, which incorporate collections of other objects, immutable usually
leads to serious performance problems.

Avoiding deadlocks by ordering the locks
One of the best mechanisms to avoid a deadlock situation in a concurrent application is to
force tasks to always, get shared resources in the same order. An easy way to do this is to
assign a number to every resource. When a task needs more than one resource, it has to
request them in order.

For example, if you have two tasks, T1 and T2, and both need two resources, R1 and R2,
you can force both to request the R1 resource first, and then the R2 resource. You will never
have a deadlock.

On the other hand, if T1 first requests R1 and then R2, and T2 first requests R2 and then R1,
you can have a deadlock.

The First Step - Concurrency Design Principles

[33]

For example, a bad use of this tip is as follows. You have two tasks that need to get two
Lock objects. They try to get the locks in a different order:

public void operation1() {
 lock1.lock();
 lock2.lock();
 .
}
public void operation2() {
 lock2.lock();
 lock1.lock();
}

It's possible that operation1() executes its first sentence and operation2() its first
sentence too, so they will be waiting for the other Lock and you will have a deadlock.

You can avoid this simply by getting the locks in the same order. If you change
operation2(), you will never have a deadlock, as follows:

public void operation2() {
 lock1.lock();
 lock2.lock();
}

Using atomic variables instead of
synchronization
When you have to share data between two or more tasks, you have to use a synchronization
mechanism to protect access to that data and avoid any data inconsistency problems.

Under some circumstances, you can use the volatile keyword and not use a
synchronization mechanism. If only one of the tasks modifies the data and the rest of the
tasks read it, you can use the volatile keyword without any synchronization or data
inconsistency problems. In other scenarios, you need to use a lock, the synchronized
keyword, or any other synchronization method.

In Java 5, the concurrency API included a new kind of variables, denominated atomic
variables. These variables are classes that support atomic operations on single variables.
They include a method, denominated by compareAndSet(oldValue, newValue) that
includes a mechanism to detect, if the assignment of the new value to the variable is done in
one step. If the value of the variable is equal to oldValue, it changes it to newValue and
returns true. Else, it returns false. There are more methods that work in a similar way,
such as getAndIncrement() or getAndDecrement(). These methods are also atomic.

The First Step - Concurrency Design Principles

[34]

This solution is lock-free; that is to say, it doesn't use locks or any synchronization
mechanisms, so its performance is better than any synchronized solution.

The most important atomic variables that you can use in Java are:

AtomicInteger
AtomicLong
AtomicReference
AtomicBoolean
LongAdder
DoubleAdder

Holding locks for as short a time as possible
Locks, like any other synchronization mechanism, allow you to define a critical section that
only one task can execute at a time. While a task is executing the critical section, the other
tasks that want to execute it are blocked and have to wait for the liberation of the critical
section. The application is working in a sequential way.

You have to pay special attention to the instructions you include in your critical sections
because you can degrade the performance of your application without realizing it. You
must make your critical section as small as possible, and it must include only the
instructions that work on shared data with other tasks, so the time that the application is
executing in a sequential way would be minimal.

Avoid executing the code you don't control inside the critical section. For example, you are
writing a library that accepts a user-defined Callable, which you need to launch sometimes.
You don't know exactly what will be in that Callable. Maybe it blocks input/output,
acquires some locks, calls other methods of your library, or just works for a very long time.
Thus, whenever possible, try to execute it when your library does not hold any locks. If it's
impossible for your algorithm, specify this behavior in your library documentation and
possibly specify the limitations to the user-supplied code (for example, it should not take
any locks). A good example of such documentation can be found in the compute() method
of the ConcurrentHashMap class.

The First Step - Concurrency Design Principles

[35]

Taking precautions using lazy initialization
Lazy initialization is a mechanism that delays object creation until they are used in the
application for the first time. It has the main advantage of minimizing the use of memory
because you only create the objects that are really needed, but it can be a problem in
concurrent applications.

If you have a method that initializes an object and this method is called by two different
tasks at once, you can initialize two different objects. This, for example, can be a problem
with singleton classes, because you only want to create one object of those classes.

An elegant solution to this problem has been an implemented by the initialization-on-
demand holder idiom
(https://en.wikipedia.org/wiki/Initialization-on-demand_holder_idiom).

Avoiding the use of blocking operations inside a
critical section
Blocking operations are those operations that block the tasks that call them until an event
occurs. For example, when you read data from a file or write data to the console, the task
that calls these operations must wait until they finish.

If you include one of these operations in a critical section, you are degrading the
performance of your application because none of the tasks that want to execute that critical
section can execute it. The one that is inside the critical section is waiting for the finalization
of an I/O operation, and the others are waiting for the critical section.

Unless it is imperative, don't include blocking operations inside a critical section.

https://en.wikipedia.org/wiki/Initialization-on-demand_holder_idiom

The First Step - Concurrency Design Principles

[36]

Summary
Concurrent programming includes all the tools and techniques to have multiple tasks or
processes running at the same time in a computer, communicating and synchronizing
between them without data loss or inconsistency.

We started this chapter by introducing the basic concepts of concurrency. You must know
and understand terms like concurrency, parallelism, and synchronization to fully
understand the examples in this book. However, concurrency can generate some problems,
such as data race conditions, deadlocks, livelocks, and others. You must also know the
potential problems of a concurrent application. It will help you identify and solve these
problems.

We also explained a simple methodology of five steps introduced by Intel to convert a
sequential algorithm into a concurrent one and showed you some concurrency design
patterns implemented in the Java language and some tips to take into account when you
implement a concurrent application.

Finally, we explained briefly the components of the Java Concurrency API. It's a very rich
API with low and very high-level mechanisms that allow you to implement powerful
concurrency applications easily. We also described the Java memory model, which
determines how concurrent applications manage the memory and the execution order of
instructions internally.

In the next chapter, you will learn how to use the basic elements of concurrent applications
in Java - the Thread class and the Runnable interface.

2
Working with Basic Elements -

Threads and Runnables
Execution threads are the core of concurrent applications. When you implement a
concurrent application, no matter the language, you have to create different execution
threads that run in parallel in a non-deterministic order unless you use a synchronization
element (such as a semaphore). In Java you can create execution threads in two ways:

Extending the Thread class
Implementing the Runnable interface

In this chapter, you will learn how to use these elements to implement concurrent
applications in Java. We will cover the following topics:

Threads in Java: characteristics and states
The Thread class and the Runnable interface
First example: matrix multiplication
Second example: file search

Threads in Java
Nowadays, computer users (and mobile and tablet users too) use different applications at
the same time when they work with their computers. They can be writing a document with
a word processor while they're reading the news or posting in a social network and
listening to music. They can do all these things at the same time because modern operating
systems support multiprocessing.

Working with Basic Elements - Threads and Runnables

[38]

They can execute different tasks at the same time. But inside an application, you can also do
different things at the same time. For example, if you're working with your word processor,
you can save the file while you're adding text with bold style. You can do this because the
modern programming languages used to write those applications allow programmers to
create multiple execution threads inside an application. Each execution thread executes a
different task so you can do different things at the same time.

Java implements execution threads using the Thread class. You can create an execution
thread in your application using the following mechanisms:

You can extend the Thread class and override the run() method
You can implement the Runnable interface and pass an object of that class to the
constructor of a Thread object

In both cases, you will have a Thread object, but the second approach is recommended over
the first one. Its main advantages are:

Runnable is an interface: You can implement other interfaces and extend other
classes. With the Thread class you can only extend that class.
Runnable objects can be executed with threads, but also in other Java
concurrency objects as executors. This gives you more flexibility to change your
concurrent applications.
You can use the same Runnable object with different threads.

Once you have a Thread object, you must use the start() method to create a new
execution thread and execute the run() method of the Thread. If you call the run()
method directly, you will be calling a normal Java method and no new execution thread
will be created. Let's see the most important characteristics of threads in the Java
programming language.

Threads in Java - characteristics and states
The first thing we have to say about threads in Java is that all Java programs, concurrent or
not, have one Thread called the main thread. As you may know, a Java SE program starts
its execution with the main() method. When you execute that program, the Java Virtual
Machine (JVM) creates a new Thread and executes the main() method in that thread. This
is a unique thread in non-concurrent applications and the first one in the concurrent ones.

Working with Basic Elements - Threads and Runnables

[39]

In Java, as with other programming languages, threads share all the resources of the
application, including memory and open files. This is a powerful tool because they can
share information in a fast and easy way, but as we explain in Chapter 1, The First Step -
Concurrency Design Principles, it must be done using adequate synchronization elements to
avoid data race conditions.

All threads in Java have a priority, an integer value that can be between the values
Thread.MIN_PRIORITY and Thread.MAX_PRIORITY. (Actually, their values are 1 and 10.)
By default, all threads are created with the priority Thread.NORM_PRIORITY (actually, its
value is 5). You can use the method setPriority() to change the priority of a Thread (it
can throw a SecurityException exception if you are not allowed to do that operation)
and the getPriority() method to get the priority of a Thread. This priority is a hint to
the Java Virtual Machine and to the underlying operating system about which threads are
preferred, but it's not a contract. There's no guarantee about the order of execution of the
threads. Normally, threads with a higher priority will be executed before threads with a
lower priority but, as I told you before, there's no guarantee of this.

You can create two kinds of threads in Java:

Daemon threads
Non-daemon threads

The difference between them is in how they affect the end of a program. A Java program
ends its execution when one of the following circumstances occurs:

The program executes the exit() method of the Runtime class and the user has
authorization to execute that method
All the non-daemon threads of the application have ended its execution, no
matter if there are daemon threads running or not

With these characteristics, daemon threads are usually used to execute auxiliary tasks in the
applications as garbage collectors or cache managers. You can use the isDaemon() method
to check if a thread is a daemon thread or not and the setDaemon() method to establish a
thread as a daemon one. Take into account that you must call this method before the thread
starts its execution with the start() method.

Working with Basic Elements - Threads and Runnables

[40]

Finally, threads can pass through different states depending on the situation. All the
possible states are defined in the Thread.States class and you can use the getState()
method to get the status of a Thread. Obviously, you can change the status of the thread
directly. These are the possible statuses of a thread:

NEW: The Thread has been created but it hasn't started its execution yet
RUNNABLE: The Thread is running in the Java Virtual Machine
BLOCKED: The Thread is waiting for a lock
WAITING: The Thread is waiting for the action of another thread
TIME_WAITING: The Thread is waiting for the action of another thread but has a
time limit
THREAD: The Thread has finished its execution

Threads can only be in one state at a given time. These states do not map to OS thread
states, they are states used by the JVM. Now that we know the most important
characteristics of threads in the Java programming language, let's see the most important
methods of the Runnable interface and the Thread class.

The Thread class and the Runnable interface
As we mentioned before, you can create new execution threads using one of the following
two mechanisms:

Extending the Thread class and override its run() method
Implementing the Runnable interface and passing an instance of that object to
the constructor of a Thread object

Java good practices recommend using the second approach over the first one and that will
be the approach we will use in this chapter and in the whole book.

The Runnable interface only defines one method: the run() method. This is the main
method of every thread. When you start a new executing the start() method, it will call
the run() method (of the Thread class or of the Runnable object passed as parameter in
the constructor of the Thread class).

Working with Basic Elements - Threads and Runnables

[41]

The Thread class, in contrast, has a lot of different methods. It has a run() method that you
must override if you implement your thread, extending the Thread class and the start()
method that you must call to create a new execution thread. These are other interesting
methods of the Thread class:

Methods to get and set information for a Thread:
getId(): This method returns the identifier of the Thread. It is a
positive integer number assigned when it's created. It is unique
during its entire life and it can't be changed.
getName()/setName(): This method allows you to get or set the
name of the Thread. This name is a String that can also be
established in the constructor of the Thread class.
getPriority()/setPriority(): You can use these methods to
obtain and establish the priority of the Thread. We explained
before in this chapter how Java manages the priority of its threads.
isDaemon()/setDaemon(): This method allows you to obtain or
establish the condition of the daemon of the Thread. We explained
how this condition works before.
getState(): This method returns the state of the Thread. We
explained all the possible states of a Thread earlier.

interrupt()/interrupted()/isInterrupted(): The first method is used to
indicate to a Thread that you're requesting the end of its execution. The other
two methods can be used to check the interrupt status. The main difference
between those methods is that the interrupted() method clears the value of
the interrupted flag when it's called and the isInterrupted() method does not.
A call to the interrupt() method doesn't end the execution of a Thread. It is
the responsibility of the Thread to check the status of that flag and respond
accordingly.
sleep(): This method allows you to suspend the execution of the thread for a
period of time. It receives a long value that is the number of milliseconds for
which you want to suspend the execution of the Thread.
join(): This method suspends the execution of the thread that makes the call
until the end of the execution of the thread used to call the method. You can use
this method to wait for the finalization of another Thread.

Working with Basic Elements - Threads and Runnables

[42]

setUncaughtExceptionHandler(): This method is used to establish the
controller of unchecked exceptions that can occur while you're executing the
threads.
currentThread(): This is a static method of the Thread class that returns the
Thread object that is actually executing this code.

Throughout the following sections, you will learn how to use these methods to implement
two examples:

An application to multiply matrices
An application to search for a file in the operating system

First example: matrix multiplication
Matrix multiplication is one of the basic operations that you can do with matrices and a
classic problem used in concurrent and parallel programming courses. If you have a matrix
A with m rows and n columns and another matrix B with n columns and p columns, you can
multiply both matrices and obtain a matrix C with m rows and p columns. You can check
https://en.wikipedia.org/wiki/Matrix_multiplication to find a detailed description
about this operation.

In this section, we will implement a serial version of an algorithm to multiply two matrices
and three different concurrent versions. Then, we will compare the four solutions to see
when concurrency gives us a better performance.

Common classes
To implement this example we have used a class named MatrixGenerator. We use it to
generate random matrices to multiply. This class has a method named generate() that
receives the number of rows and columns you want in your matrix as parameters and
generates a matrix with those dimensions with random double numbers. This is the source
code of the class:

public class MatrixGenerator {

 public static double[][] generate (int rows, int columns) {
 double[][] ret=new double[rows][columns];
 Random random=new Random();
 for (int i=0; i<rows; i++) {
 for (int j=0; j<columns; j++) {

https://en.wikipedia.org/wiki/Matrix_multiplication

Working with Basic Elements - Threads and Runnables

[43]

 ret[i][j]=random.nextDouble()*10;
 }
 }
 return ret;
 }
}

Serial version
We have implemented the serial version of the algorithm in the SerialMultiplier class.
This class only has one static method named multiply() that receives three double
matrices as parameters: the two we're going to multiply and the one to store the result.

We don't check the dimensions of the matrices. We will guarantee that they are correct. We
use a triple nested loop to calculate the result matrix. This is the source code of the
SerialMultiplier class:

public class SerialMultiplier {

 public static void multiply (double[][] matrix1, double[][] matrix2,
 double[][] result) {
 int rows1=matrix1.length;
 int columns1=matrix1[0].length;

 int columns2=matrix2[0].length;

 for (int i=0; i<rows1; i++) {
 for (int j=0; j<columns2; j++) {
 result[i][j]=0;
 for (int k=0; k<columns1; k++) {
 result[i][j]+=matrix1[i][k]*matrix2[k][j];
 }
 }
 }
 }
}

Working with Basic Elements - Threads and Runnables

[44]

We have also implemented a main class to test the serial multiplier algorithm named
SerialMain class. In the main() method, we generate two random matrices with 2000
rows and 2000 columns and calculate the multiplication of both matrices using the
SerialMultiplier class. We measure the execution time of the algorithm in milliseconds,
as follows:

public class SerialMain {

 public static void main(String[] args) {

 double matrix1[][] = MatrixGenerator.generate(2000, 2000);
 double matrix2[][] = MatrixGenerator.generate(2000, 2000);
 double resultSerial[][]= new double[matrix1.length]
 [matrix2[0].length];

 Date start=new Date();
 SerialMultiplier.multiply(matrix1, matrix2, resultSerial);
 Date end=new Date();
 System.out.printf("Serial: %d%n",end.getTime()-start.getTime());
 }
}

Parallel versions
We have implemented three different concurrent algorithms to implement these examples
with different granularity:

One thread per element in the result matrix
One thread per row in the result matrix
As many threads as available processors or cores in the JVM

Let's see the source code of these three versions.

First concurrent version - a thread per element
In this version, we will create a new execution thread per element in the result matrix. For
example, if you multiply two matrices with 2,000 rows and 2,000 columns, the resulting
matrix will have 4,000,000 elements, so we will create 4,000,000 Thread objects. If we start
all the threads at the same time we will probably overload the system, so we will launch the
threads in groups of 10 threads.

Working with Basic Elements - Threads and Runnables

[45]

After we've started 10 threads, we wait for their finalization using the join() method, and
once they have finished, we start another 10. We follow this process until all the necessary
threads have been launched. There's no reason to select 10 as the number of threads. You
can opt to change that number and see the effects it has over the performance of the
algorithm.

We will implement the IndividualMultiplierTask and the
ParallelIndividualMultiplier classes. The IndividualMultiplierTask class will
implement each Thread. It implements the Runnable interface and will use five internal
attributes: the two matrices to multiply, the matrix with the result, and the row and the
column of the element we want to calculate. We will use the constructor of the class to
initialize all those attributes:

public class IndividualMultiplierTask implements Runnable {

 private final double[][] result;
 private final double[][] matrix1;
 private final double[][] matrix2;

 private final int row;
 private final int column;

 public IndividualMultiplierTask(double[][] result, double[][]
 matrix1, double[][] matrix2,
 int i, int j) {
 this.result = result;
 this.matrix1 = matrix1;
 this.matrix2 = matrix2;
 this.row = i;
 this.column = j;
 }

The run() method will calculate the value of the element determined by the row and
column attributes. The following piece of code shows you how to implement that behavior:

 @Override
 public void run() {
 result[row][column] = 0;
 for (int k = 0; k < matrix1[row].length; k++) {
 result[row][column] += matrix1[row][k] * matrix2[k][column];
 }

 }
}

Working with Basic Elements - Threads and Runnables

[46]

The ParallelIndividualMultiplier will create all the execution threads necessary to
calculate the result matrix. It has a method called multiply() that receives the two
matrices we're going to multiply and a third one to store the result as parameters. It will
process all the elements of the result matrix and creates an IndividualMultiplierTask
to calculate each one. As we mentioned before, we launch the threads in groups of 10. After
we have started 10 threads, we use the auxiliary method waitForThreads() to wait for
the finalization of those 10 threads using the join() method. The following block of code
shows you the implementation of this class:

public class ParallelIndividualMultiplier {

 public static void multiply(double[][] matrix1, double[][] matrix2,
 double[][] result) {

 List<Thread> threads=new ArrayList<>();

 int rows1=matrix1.length;

 int rows2=matrix2.length;

 for (int i=0; i<rows1; i++) {
 for (int j=0; j<columns2; j++) {
 IndividualMultiplierTask task=new IndividualMultiplierTask
 (result, matrix1, matrix2, i, j);
 Thread thread=new Thread(task);
 thread.start();
 threads.add(thread);

 if (threads.size() % 10 == 0) {
 waitForThreads(threads);
 }
 }
 }

 }

 private static void waitForThreads(List<Thread> threads){
 for (Thread thread: threads) {
 try {
 thread.join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 threads.clear();

Working with Basic Elements - Threads and Runnables

[47]

 }

}

As with other examples, we have created a main class to test this example. It's very similar
to the SerialMain class but in this case we have called it ParallelIndividualMain class.
We don't include the source code of this class here.

Second concurrent version - a thread per row
In this version, we're going to create a new executing thread per row in the result matrix.
For example, if we multiply two matrices with 2000 rows and 2000 columns, we're going to
create 2000 threads. As we did in the previous example, we will launch the threads in
groups of 10 threads and then we wait for their finalization before we start new threads.

We're going to implement the RowMultiplierTask and the ParallelRowMultiplier
classes to implement this version. The RowMultiplierTask will implement each Thread.
It implements the Runnable interface and will use five internal attributes: the two matrices
to multiply, the matrix with the result, and the row of the result matrix we want to
calculate. We will use the constructor of the class to initialize all those attributes, as follows:

public class RowMultiplierTask implements Runnable {

 private final double[][] result;
 private final double[][] matrix1;
 private final double[][] matrix2;

 private final int row;

 public RowMultiplierTask(double[][] result, double[][] matrix1,
 double[][] matrix2, int i) {
 this.result = result;
 this.matrix1 = matrix1;
 this.matrix2 = matrix2;
 this.row = i;
 }

The run() method will have two loops. The first one will process all the elements of the
row of the result matrix it will calculate and the second one will calculate the result value of
each element.

@Override
public void run() {
 for (int j = 0; j < matrix2[0].length; j++) {
 result[row][j] = 0;

Working with Basic Elements - Threads and Runnables

[48]

 for (int k = 0; k < matrix1[row].length; k++) {
 result[row][j] += matrix1[row][k] * matrix2[k][j];
 }
 }
 }
}

The ParallelRowMultiplier will create all the execution threads necessary to calculate
the result matrix. It has a method called multiply() that receives the two matrices we're
going to multiply and a third one to store the result as parameters. It will process all the
rows of the result matrix and create a RowMultiplierTask to process each one. As we
mentioned earlier, we launch the threads in groups of 10. After we have started 10 threads,
we use the auxiliary method waitForThreads() to wait for the finalization of those 10
threads using the join() method. The following block of code shows you how to
implement that class:

public class ParallelRowMultiplier {

 public static void multiply(double[][] matrix1, double[][]
 matrix2, double[][] result) {

 List<Thread> threads = new ArrayList<>();

 int rows1 = matrix1.length;

 for (int i = 0; i < rows1; i++) {
 RowMultiplierTask task = new RowMultiplierTask(result,
 matrix1, matrix2, i);
 Thread thread = new Thread(task);
 thread.start();
 threads.add(thread);

 if (threads.size() % 10 == 0) {
 waitForThreads(threads);
 }
 }
 }

 private static void waitForThreads(List<Thread> threads){
 for (Thread thread : threads) {
 try {
 thread.join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

Working with Basic Elements - Threads and Runnables

[49]

 threads.clear();
 }

}

As with other examples, we have created a main class to test this example. It's very similar
to the SerialMain class, but in this case, we have called it the ParallelRowMain class. We
don't include the source code of this class here.

Third concurrent version - the number of threads is
determined by the processors
Finally, in the last version, we only create as many threads as there are cores or processors
available to the JVM. We use the availableProcessors() method of the Runtime class to
calculate that number.

We implement this version in the GroupMultiplierTask and
ParallelGroupMultiplier classes. The GroupMultiplierTask implements the threads
we're going to create. It implements the Runnable interface and uses five internal
attributes: the two matrices to multiply, the matrix with the result, and the initial and final
rows of the result matrix this task is going to calculate. We will use the constructor of the
class to initialize all those attributes. The following block of code shows you how to
implement the first part of the class:

public class GroupMultiplierTask implements Runnable {

 private final double[][] result;
 private final double[][] matrix1;
 private final double[][] matrix2;

 private final int startIndex;
 private final int endIndex;

 public GroupMultiplierTask(double[][] result, double[][]
 matrix1, double[][] matrix2,
 int startIndex, int endIndex) {
 this.result = result;
 this.matrix1 = matrix1;
 this.matrix2 = matrix2;
 this.startIndex = startIndex;
 this.endIndex = endIndex;
 }

Working with Basic Elements - Threads and Runnables

[50]

The run() method will use three loops to implement their calculations. The first one will go
over the rows of the result matrix this task is going to calculate, the second one will process
all the elements of each row, and the last one will calculate the value of each element:

 @Override
 public void run() {
 for (int i = startIndex; i < endIndex; i++) {
 for (int j = 0; j < matrix2[0].length; j++) {
 result[i][j] = 0;
 for (int k = 0; k < matrix1[i].length; k++) {
 result[i][j] += matrix1[i][k] * matrix2[k][j];
 }
 }
 }
 }
}

The ParallelGroupMutiplier class is going to create the threads to calculate the result
matrix. It has a method called multiply() that receives the two matrices we're going to
multiply and a third one to store the result as parameters. First, it gets the number of
available processors using the availableProcessors() method of the Runtime class.
Then, it calculates the rows that each task has to process and creates and starts those
threads. Finally, we wait for the finalization of the threads using the join() method:

public class ParallelGroupMultiplier {

 public static void multiply(double[][] matrix1, double[][] matrix2,
 double[][] result) {
 List<Thread> threads=new ArrayList<>();

 int rows1=matrix1.length;

 int numThreads=Runtime.getRuntime().availableProcessors();
 int startIndex, endIndex, step;
 step=rows1 / numThreads;
 startIndex=0;
 endIndex=step;

 for (int i=0; i<numThreads; i++) {
 GroupMultiplierTask task=new GroupMultiplierTask
 (result, matrix1, matrix2, startIndex, endIndex);
 Thread thread=new Thread(task);
 thread.start();
 threads.add(thread);
 startIndex=endIndex;
 endIndex= i==numThreads-2?rows1:endIndex+step;
 }

Working with Basic Elements - Threads and Runnables

[51]

 for (Thread thread: threads) {
 try {
 thread.join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 }

}

As with other examples, we have created a main class to test this example. It's very similar
to the SerialMain class but in this case we have called it the ParallelGroupMain class.
We don't include the source code of this class here.

Comparing the solutions
Let's compare the different solutions (serial and concurrent) of the four versions of the
multiplier algorithm we have implemented in this section. To test the algorithm, we have
executed the examples using the JMH framework
(http://openjdk.java.net/projects/code-tools/jmh/), which allows you to implement
micro benchmarks in Java. Using a framework for benchmarking is a better solution that
simply measures time using methods such as currentTimeMillis() or nanoTime(). We
have executed them 10 times in two different architectures:

A computer with an Intel Core i5-5300 CPU with Windows 7 and 16 GB of RAM.
This processor has two cores and each core can execute two threads, so we will
have four parallel threads.
A computer with an AMD A8-640 APU with Windows 10 and 8 GB of RAM. This
processor has four cores.

We have tested our algorithms with three different sizes of random matrices:

500x500
1000x1000
2000x2000

http://openjdk.java.net/projects/code-tools/jmh/

Working with Basic Elements - Threads and Runnables

[52]

The medium execution times and their standard deviation in milliseconds are discussed in
the following table:

We can draw the following conclusions:

There's a big difference between both architectures, but you have to take into
account that they have different processors, operating systems, memory, and
hard disks.
But the results are equivalent in both architectures. We get the best results with
the Parallel Group and Parallel Row architectures. The Parallel Individual
architecture gets the worst results.

This example shows us that we have to be careful when we develop a concurrent
application. If we don't choose a good solution, we will obtain poor performance.

Working with Basic Elements - Threads and Runnables

[53]

We can compare the best concurrent version method with the serial version using the
speed-up for the 500x500 matrix to see how concurrency improves the performance of our
algorithm:

Second example - file search
All operating systems include the option to search for files that verify some conditions in
your file system (for example, the name or part of the name, the date of modification, and so
on). In our case, we're going to implement an algorithm that looks for a file with a
predetermined name. Our algorithms will take the initial path to start the search and the file
we're going to look for as input. The JDK provides the ability to walk a directory tree
structure, so there should be no need to implement your own in the real world.

Common classes
Both versions of the algorithm will share a common class to store the results of our search.
We will call this class Result and it will have two attributes: a Boolean value named
found that determines if we have found the file we were looking for and a String value
named path with the full path of the file if we have found it.

The code for this class is very simple so it won't be included here.

Serial version
The serial version of this algorithm is very simple. We take the initial path of the search, get
the files and the directories' contents, and process them. For files, we compare their name
with the name we're looking for. If both names are equal, we fill the Result object and
finish the execution of the algorithm. For directories, we made a recursive call to the
operation to search the file inside those directories.

Working with Basic Elements - Threads and Runnables

[54]

We are going to implement this operation in the searchFiles() method of the
SerialFileSearch class. This is the source code of the SerialFileSearch class:

 public class SerialFileSearch {

 public static void searchFiles(File file, String fileName,
 Result result) {

 File[] contents;
 contents=file.listFiles();

 if ((contents==null) || (contents.length==0)) {
 return;
 }

 for (File content : contents) {
 if (content.isDirectory()) {
 searchFiles(content,fileName, result);
 } else {
 if (content.getName().equals(fileName)) {
 result.setPath(content.getAbsolutePath());
 result.setFound(true);
 System.out.printf("Serial Search: Path: %s%n",
 result.getPath());
 return;
 }
 }
 if (result.isFound()) {
 return;
 }
 }
 }
}

Concurrent version
There are different ways to parallelize this algorithm. For example:

You can create an execution thread per directory we want to process.
You can divide the directory tree into groups and create an execution thread per
group. The number of groups you create will determine the number of execution
threads your application will use.
You can use as many threads as cores that are available to the JVM.

Working with Basic Elements - Threads and Runnables

[55]

In this case, we have to take into account that our algorithm will use intensive I/O
operations. Only one thread can read the disk at a time, so not all solutions will increase the
performance of the serial version of the algorithm.

We will use the last option to implement our concurrent version. We will store the
directories included in the initial path in a ConcurrentLinkedQueue (an implementation
of a Queue interface that can be used in concurrent applications) and create as many threads
as processors that are available to the JVM. Each thread will take a path from the queue and
process this directory and all its subdirectories and files. When it has processed all the files
and directories in that directory, it takes another from the queue.

If one of the threads finds the file we were looking for, it ends its execution immediately. In
that case, we finish the execution of the other threads using the interrupt() method.

We have implemented this version of the algorithm in the ParallelGroupFileTask and
ParallelGroupFileSearch classes. The ParallelGroupFileTask class implements all
the threads we're going to use to find the file. It implements the Runnable interface and
uses four internal attributes: a String attribute named fileName that stores the name of
the file we're looking for, the ConcurrentLinkedQueue of File objects named
directories that stores the list of directories we're going to process, a Result object
named parallelResult to store the result of our search, and a Boolean attribute named
found to mark if we find the file we were looking for. We're going to use the constructor of
the class to initialize all the attributes:

public class ParallelGroupFileTask implements Runnable {

 private final String fileName;
 private final ConcurrentLinkedQueue<File> directories;
 private final Result parallelResult;
 private boolean found;

 public ParallelGroupFileTask(String fileName, Result parallelResult,
 ConcurrentLinkedQueue<File>directories) {
 this.fileName = fileName;
 this.parallelResult = parallelResult;
 this.directories = directories;
 this.found = false;
 }

Working with Basic Elements - Threads and Runnables

[56]

The run() method has a loop that will be executed while there are elements in the queue
and we haven't found the file. It takes the next directory to process using the poll()
method of the ConcurrentLinkedQueue class and calls to the auxiliary method
processDirectory(). If we have found the file (the found attribute is true), we end the
execution of the thread with the return instruction:

@Override
public void run() {
 while (directories.size() > 0) {
 File file = directories.poll();
 try {
 processDirectory(file, fileName, parallelResult);
 if (found) {
 System.out.printf("%s has found the file%n",
 Thread.currentThread().getName());
 System.out.printf("Parallel Search: Path: %s%n",
 parallelResult.getPath());
 return;
 }
 } catch (InterruptedException e) {
 System.out.printf("%s has been interrupted%n",
 Thread.currentThread().getName());
 }
 }
}

The processDirectory() method will receive the File object that stores the directory to
process, the name of the file we're looking for, and the Result object to store the result if
we found it as parameters. It obtains the contents of the File using the listFiles()
method that returns an array of File objects and processes that array. For directories, it
makes a recursive call to this method with the new object. For files, it calls the auxiliary
processFile() method:

private void processDirectory(File file, String fileName,
 Result parallelResult) throws
 InterruptedException {
 File[] contents;
 contents = file.listFiles();

 if ((contents == null) || (contents.length == 0)) {
 return;
 }

 for (File content : contents) {
 if (content.isDirectory()) {
 processDirectory(content, fileName, parallelResult);

Working with Basic Elements - Threads and Runnables

[57]

 if (Thread.currentThread().isInterrupted()) {
 throw new InterruptedException();
 }
 if (found) {
 return;
 }
 } else {
 processFile(content, fileName, parallelResult);
 if (Thread.currentThread().isInterrupted()) {
 throw new InterruptedException();
 }
 if (found) {
 return;
 }
 }
 }
}

We also check, after we have processed every directory and every file, if the thread has been
interrupted. We use the currentThread() method of the Thread class to get the Thread
object that is executing this task and then the isInterrupted() method to verify if the
thread has been interrupted or not. If the thread has been interrupted, we throw a new
InterruptedExeption exception that we catch in the run() method to end the execution
of the thread. This mechanism allows us to finish our search when we have found the file.

We also check if the found attribute is true or not. If is true, we return immediately to finish
the execution of the thread.

The processFile() method receives the File object that stores the file we have to
process, the name of the file we're looking for, and a Result object to store the result of the
operation if we have found the file as parameters. We compare the name of the File we're
processing with the name of the file we're looking for. If both names are equal, we fill the
Result object and establish the found attribute as true:

 private void processFile(File content, String fileName,
 Result parallelResult) {
 if (content.getName().equals(fileName)) {
 parallelResult.setPath(content.getAbsolutePath());
 this.found = true;
 }
 }

 public boolean getFound() {
 return found;
 }
}

Working with Basic Elements - Threads and Runnables

[58]

The ParallelGroupFileSearch class implements the whole algorithm using the auxiliary
tasks. It's going to implement the static searchFiles() method. It receives a File object
that points to the base path of the search, a String named fileName that stores the name
of the file we're looking for, and a Result object to store the result of the operation as
parameters.

First, it creates the ConcurrentLinkedQueue object and stores in it all the directories
included in the base path:

public class ParallelGroupFileSearch {

 public static void searchFiles(File file, String fileName,
 Result parallelResult) {

 ConcurrentLinkedQueue<File> directories = new
 ConcurrentLinkedQueue<>();
 File[] contents = file.listFiles();

 for (File content : contents) {
 if (content.isDirectory()) {
 directories.add(content);
 }
 }

Then, we obtain the number of threads available to the JVM using the
availableProcessors() method of the Runtime class and create a
ParallelFileGroupTask and a Thread per processor.

int numThreads = Runtime.getRuntime().availableProcessors();
Thread[] threads = new Thread[numThreads];
ParallelGroupFileTask[] tasks = new ParallelGroupFileTask
 [numThreads];

for (int i = 0; i < numThreads; i++) {
 tasks[i] = new ParallelGroupFileTask(fileName, parallelResult,
 directories);
 threads[i] = new Thread(tasks[i]);
 threads[i].start();
}

Working with Basic Elements - Threads and Runnables

[59]

Finally, we wait until one thread finds the file or all the threads have finished their
execution. In the first case, we cancel the execution of the other threads using the
interrupt() method and the mechanism explained before. We use the getState()
method of the Thread class to check if the threads have finished their execution:

 boolean finish = false;
 int numFinished = 0;

 while (!finish) {
 numFinished = 0;
 for (int i = 0; i < threads.length; i++) {
 if (threads[i].getState() == State.TERMINATED) {
 numFinished++;
 if (tasks[i].getFound()) {
 finish = true;
 }
 }
 }
 if (numFinished == threads.length) {
 finish = true;
 }
 }
 if (numFinished != threads.length) {
 for (Thread thread : threads) {
 thread.interrupt();
 }
 }
}

Comparing the solutions
Let's compare the different solutions (serial and concurrent) of the four versions of the
multiplier algorithm we have implemented in this section. To test the algorithm, we have
executed the examples using the JMH framework
(http://openjdk.java.net/projects/code-tools/jmh/), which allows you to implement
micro benchmarks in Java. Using a framework for benchmarking is a better solution and
simply measures time using methods such as currentTimeMillis() or nanoTime(). We
have executed them 10 times in two different architectures:

A computer with an Intel Core i5-5300 CPU with Windows 7 and 16 GB of RAM.
This processor has two cores and each core can execute two threads, so we will
have four parallel threads.
A computer with an AMD A8-640 APU with Windows 10 and 8 GB of RAM. This
processor has four cores.

http://openjdk.java.net/projects/code-tools/jmh/

Working with Basic Elements - Threads and Runnables

[60]

We have tested our algorithms with two different file names in the Windows directory:

hosts

yyy.yyy

We have tested our algorithm on a Windows operating system. The first file exists and the
second one doesn't. If you use another operating system, change the names of the files
accordingly. The median execution times and their standard deviation in milliseconds are
discussed in the following table:

We can draw the following conclusions:

There's a difference between the performance in both architectures, but you have
to take into account that they have different processors, operating systems,
memory and hard disks.
But the results are equivalent in both architectures. The parallel algorithm has a
better performance than the serial one. The difference is larger with the hosts file
than with the file that doesn't exist.

We can compare the best concurrent version method with the serial version using the
speed-up for the hosts file to see how concurrency improves the performance of our
algorithm:

Working with Basic Elements - Threads and Runnables

[61]

Summary
In this chapter, we have presented the most basic elements to create execution threads in
Java: the Runnable interface and the Thread class. We can create threads in Java in two
different ways:

Extending the Thread class and overriding the run() method
Implementing the Runnable interface and passing an object of that class to the
constructor of the Thread class

The second mechanism is preferred over the first one because they give us more flexibility.

We also learned how the Thread class has different methods that allow us to get
information about the thread, change its priority, or wait for its finalization. We have used
all these methods in two examples, one to multiply matrices and the other to search files in
a directory. In both cases, concurrency gives us better performance but we also have
learned that we have to be careful when implementing a concurrent version of an
algorithm. A bad selection for how we use concurrency can give us bad performance.

In the next chapter, we will introduce the Executor framework, which will allow us to create
concurrency applications without worrying about thread creation and management.

3
Managing Lots of Threads -

Executors
When you implement a simple concurrent application, you create and execute a thread per
concurrent task. This approach can have some important issues. Since Java version 5, the
Java concurrency API has included the Executor framework to improve the performance of
concurrent applications with a lot of concurrent tasks. In this chapter, we will cover the
following:

An introduction to executors
The first example - the k-nearest neighbors algorithm
The second example - concurrency in a client/server environment

An introduction to executors
As we explain in Chapter 2, Working with Basic Elements - Threads and Runnables, the basic
mechanism to implement a concurrent application in Java is:

A class that implements the Runnable interface: This is the code you want to
implement in a concurrent way
An instance of the Thread class: This is the thread that is going to execute the
code in a concurrent way

Managing Lots of Threads - Executors

[63]

With this approach, you're responsible for creating and manning the thread objects and
implementing the mechanisms of synchronization between the threads. However, it can
create some problems, especially with those applications with a lot of concurrent tasks. If
you create too many threads, you can degrade the performance of your application or even
hang the entire system.

Java version 5 included the Executor framework to solve these problems and provide an
efficient solution that is easier to use for programmers than the traditional concurrency
mechanisms.

In this chapter, we will introduce the basic characteristics of the Executor framework by
implementing the following two examples using that framework:

The k-nearest neighbors algorithm: This is a basic machine learning algorithm
used in classification. It determines the tag of a test example based on the tag of
the k most similar examples in the train dataset.
Concurrency in a client/server environment: Applications that serve information
to thousands or millions of clients are critical nowadays. It is essential to
implement the server side of the system in an optimal way.

In Chapter 4, Getting the Most from Executors, and Chapter 5, Getting Data from Tasks - The
Callable and Future Interfaces, we will introduce more advanced aspects of executors.

Basic characteristics of executors
The main characteristics of executors are:

You don't need to create any Thread objects. If you want to execute a concurrent
task, you only create an instance of the task (for example, a class that implements
the Runnable interface) and send it to the executor. It will manage the thread
that will execute the task.
Executors reduce the overhead introduced by thread creation reusing the threads.
Internally, it manages a pool of threads named worker-threads. If you send a task
to the executor and a worker-thread is idle, the executor uses that thread to
execute the task.

Managing Lots of Threads - Executors

[64]

It's easy to control the resources used by the executor. You can limit the
maximum number of worker-threads of your executor. If you send more tasks
than worker-threads, the executor stores them in a queue. When a worker-thread
finishes the execution of a task, they take another from the queue.
You have to finish the execution of an executor explicitly. You have to indicate to
the executor that it has to finish its execution and kill the created threads. If you
don't do this, it won't finish its execution and your application won't end.

Executors have more interesting characteristics that make them very powerful and flexible.

Basic components of the Executor framework
The Executor framework has various interfaces and classes that implement all the
functionality provided by executors. The basic components of the framework are:

The Executor interface: This is the basic interface of the Executor framework. It
only defines a method that allows the programmer to send a Runnable object to
an executor.
The ExecutorService interface: This interface extends the Executor interface and
includes more methods to increase the functionality of the framework, such as
the following:

Execute tasks that return a result: The run() method provided by
the Runnable interface doesn't return a result, but with executors,
you can have tasks that return a result
Execute a list of tasks with a single method call
Finish the execution of an executor and wait for its termination

The ThreadPoolExecutor class: This class implements the Executor and
ExecutorService interfaces. In addition, it includes some additional methods
to get the status of the executor (the number of worker-threads, number of
executed tasks, and so on), methods to establish the parameters of the executor
(minimum and maximum number of worker-threads, time that idle threads will
wait for new tasks, and so on), and methods that allow programmers to extend
and adapt functionality.
The Executors class: This class provides utility methods to create Executor
objects and other related classes.

Managing Lots of Threads - Executors

[65]

First example - the k-nearest neighbors
algorithm
The k-nearest neighbors algorithm is a simple machine learning algorithm used for
supervised classification. The main components of this algorithm are:

A train dataset: This dataset is formed by instances with one or more attributes
that define every instance and a special attribute that determines the label of the
instance
A distance metric: This metric is used to determine the distance (or similarity)
between the instances of the train dataset and the new instances you want to
classify
A test dataset: This dataset is used to measure the behavior of the algorithm

When it has to classify an instance, it calculates the distance against this instance and all the
instances of the train dataset. Then, it takes the k-nearest instances and looks at the tag of
those instances. The tag with most instances is the tag assigned to the input instance.

In this chapter, we are going to work with the Bank Marketing dataset of the UCI Machine
Learning Repository, which you can download from
http://archive.ics.uci.edu/ml/datasets/Bank+Marketing. To measure the distance
between instances, we are going to use the Euclidean distance. With this metric, all the
attributes of instances must have numerical values. Some of the attributes of the Bank
Marketing dataset are categorical (that is to say, they can take one or more predefined
values), so we can't use the Euclidean distance directly with this dataset. It's possible to
assign ordinal numbers to each categorical value, for example, for marital status, 0 would be
single, 1 would be married, and 2 would be divorced. However, this would imply that the
divorced person is closer to married than to single, which is disputable. To make all the
categorical values equally distant, we create separate attributes such as married, single, and
divorced, which have only two values: 0 (no) and 1 (yes).

Our dataset has 66 attributes and two possible tags: yes and no. We also divided the data
into two subsets:

The train dataset: With 39,129 instances
The test dataset: With 2,059 instances

http://archive.ics.uci.edu/ml/datasets/Bank+Marketing

Managing Lots of Threads - Executors

[66]

As we explained in Chapter 1, The First Step - Concurrency Design Principles, we first
implemented a serial version of the algorithm. Then, we looked for the parts of the
algorithm that could be parallelized, and we used the Executor framework to execute the
concurrent tasks. In the following sections, we explain the serial implementation of the k-
nearest neighbors algorithm and two different concurrent versions. The first one has a
concurrency with very fine-grained granularity, whereas the second one has coarse-grained
granularity.

k-nearest neighbors - serial version
We have implemented the serial version of the algorithm in the KnnClassifier class.
Internally, this class stores the train dataset and the number k (the number of examples that
we will use to determine the tag of an instance):

public class KnnClassifier {

 private final List <? extends Sample>dataSet;
 private int k;

 public KnnClassifier(List <? extends Sample>dataSet, int k) {
 this.dataSet=dataSet;
 this.k=k;
 }

The KnnClassifier class only implements a method named classify that receives a
Sample object with the instance we want to classify, and it returns a string with the tag
assigned to that instance:

public String classify (Sample example) {

This method has three main parts; first, we calculate the distances between the input
example and all the examples of the train dataset:

Distance[] distances=new Distance[dataSet.size()];
int index=0;

for (Sample localExample : dataSet) {
 distances[index]=new Distance();
 distances[index].setIndex(index);
 distances[index].setDistance(EuclideanDistanceCalculator
 .calculate(localExample, example));
 index++;
}

Managing Lots of Threads - Executors

[67]

Then, we sort the examples from the lower to the higher distance, using the
Arrays.sort() method:

Arrays.sort(distances);

Finally, we count the tag with most instances in the k-nearest examples:

 Map<String, Integer> results = new HashMap<>();
 for (int i = 0; i < k; i++) {
 Sample localExample = dataSet.get(distances[i].getIndex());
 String tag = localExample.getTag();
 results.merge(tag, 1, (a, b) ->a+b);
 }
 return Collections.max(results.entrySet(),
 Map.Entry.comparingByValue()).getKey();
}

To calculate the distance between two examples, we can use the Euclidean distance
implemented in an auxiliary class. This is the code of that class:

public class EuclideanDistanceCalculator {
 public static double calculate (Sample example1, Sample example2) {
 double ret=0.0d;

 double[] data1=example1.getExample();
 double[] data2=example2.getExample();

 if (data1.length!=data2.length) {
 throw new IllegalArgumentException ("Vector doesn't have
 the same length");
 }

 for (int i=0; i<data1.length; i++) {
 ret+=Math.pow(data1[i]-data2[i], 2);
 }
 return Math.sqrt(ret);
 }

}

We have also used the Distance class to store the distance between the Sample input and
an instance of the train dataset. It only has two attributes: the index of the example of the
train dataset and the distance to the input example. In addition, it implements the
Comparable interface to use the Arrays.sort() method. Finally, the Sample class stores
an instance. It only has an array of doubles and a string with the tag of that instance.

Managing Lots of Threads - Executors

[68]

K-nearest neighbors - a fine-grained concurrent
version
If you analyze the serial version of the k-nearest neighbors algorithm, you can find the
following two points where you can parallelize the algorithm:

The computation of the distances: Every loop iteration that calculates the
distance between the input example and one of the examples of the train dataset
is independent of the others
The sort of the distances: Java 8 included the parallelSort() method in the
Array class to sort arrays in a concurrent way

In the first concurrent version of the algorithm, we are going to create a task per distance
between examples that we're going to calculate. We are also going to give the possibility to
make a concurrent sort of arrays of distances. We have implemented this version of the
algorithm in a class named KnnClassifierParrallelIndividual. It stores the train
dataset, the k parameter, the ThreadPoolExecutor object to execute the parallel tasks, an
attribute to store the number of worker-threads we want to have in the executor, and an
attribute to store if we want to make a parallel sort.

We are going to create an executor with a fixed number of threads so that we can control the
resources of the system that this executor is going to use. This number will be the number of
processors available in the system that we obtain with the availableProcessors()
method of the Runtime class multiplied by the value of a parameter of the constructor
named factor. Its value will be the number of threads you will have from the processor.
We will always use the value 1, but you can test with other values and compare the results.
This is the constructor of the classification:

public class KnnClassifierParallelIndividual {

 private final List<? extends Sample>dataSet;
 private final int k;
 private final ThreadPoolExecutor executor;
 private final int numThreads;
 private final boolean parallelSort;

 public KnnClassifierParallelIndividual(List<? extends Sample>dataSet,
 int k, int factor,
 booleanparallelSort) {
 this.dataSet=dataSet;
 this.k=k;
 numThreads=factor* (Runtime.getRuntime().availableProcessors());
 executor=(ThreadPoolExecutor)Executors

Managing Lots of Threads - Executors

[69]

 .newFixedThreadPool(numThreads);
 this.parallelSort=parallelSort;
 }

To create the executor, we have used the Executors utility class and its
newFixedThreadPool() method. This method receives the number of worker-threads you
want to have in the executor. The executor will never have more worker-threads than the
number you specified in the constructor. This method returns an ExecutorService object,
but we cast it to a ThreadPoolExecutor object to have access to methods provided by the
class and not included in the interface.

This class also implements the classify() method that receives an example and returns a
string.

First, we create a task for every distance we need to calculate and send them to the executor.
Then, the main thread has to wait for the end of the execution of those tasks. To control that
finalization, we used a synchronization mechanism provided by the Java concurrency API:
the CountDownLatch class. This class allows a thread to wait until other threads have
arrived at a determined point in their code. It's initialized with the number of threads you
want to wait for. It implements two methods:

getDown(): This method decreases the number of threads you have to wait for
await(): This method suspends the thread that calls it until the counter reaches
zero

In this case, we initialize the CountDownLatch class with the number of tasks we are going
to execute in the executor. The main thread calls the await() method and every task, when
it finishes its calculation, calls the getDown() method:

public String classify (Sample example) throws Exception {

 Distance[] distances=new Distance[dataSet.size()];
 CountDownLatchendController=new CountDownLatch(dataSet.size());

 int index=0;
 for (Sample localExample : dataSet) {
 IndividualDistanceTask task=new IndividualDistanceTask(distances,
 index, localExample, example, endController);
 executor.execute(task);
 index++;
 }
 endController.await();

Managing Lots of Threads - Executors

[70]

Then, depending on the value of the parallelSort attribute, we call the Arrays.sort()
or Arrays.parallelSort() method.

if (parallelSort) {
 Arrays.parallelSort(distances);
} else {
 Arrays.sort(distances);
}

Finally, we calculate the tag assigned to the input examples. This code is the same as in the
serial version.

The KnnClassifierParallelIndividual class also includes a method to shut down the
executor calling its shutdown() method. It you don't call this method, your application will
never end because threads created by the executor are still alive and waiting for new tasks
to do. Previously submitted tasks are executed, and newly submitted tasks are rejected. The
method doesn't wait for the finalization of the executor and returns immediately:

public void destroy() {
 executor.shutdown();
}

A critical part of this example is the IndividualDistanceTask class. This is the class that
calculates the distance between the input example and an example of the train dataset as a
concurrent task. It stores the full array of distances (we are going to establish the value of
one of its positions only), the index of the example of the train dataset, both examples, and
the CountDownLatch object used to control the end of the tasks. It implements the
Runnable interface, so it can be executed in the executor. This is the constructor of the class:

public class IndividualDistanceTask implements Runnable {

 private final Distance[] distances;
 private final int index;
 private final Sample localExample;
 private final Sample example;
 private final CountDownLatchendController;

 public IndividualDistanceTask(Distance[] distances, int index, Sample
 localExample,Sample example,
 CountDownLatchendController) {
 this.distances=distances;
 this.index=index;
 this.localExample=localExample;
 this.example=example;
 this.endController=endController;
 }

Managing Lots of Threads - Executors

[71]

The run() method calculates the distance between the two examples using the
EuclideanDistanceCalculator class explained before and stores the result in the
corresponding position of the distances:

@Override
public void run() {
 distances[index] = new Distance();
 distances[index].setIndex(index);
 distances[index].setDistance(EuclideanDistanceCalculator
 .calculate(localExample, example));
 endController.countDown();
}

Note that although all the tasks share the array of distances, we don't need
to use any synchronization mechanisms because each task will modify a
different position of the array.

k-nearest neighbors - a coarse-grained
concurrent version
The concurrent solution presented in the previous section may have a problem. You are
executing too many tasks. If you stop to think, in this case, we have more than 29,000 train
examples, so you're going to launch 29,000 tasks per example you want to classify. On the
other hand, we have created an executor with a maximum of numThreads worker-threads,
so another option is to launch only numThreads tasks and split the train dataset in
numThreads groups. For example, if we execute the examples with a quad-core processor,
each task will calculate the distances between the input example and approximately 7,000
train examples.

We have implemented this solution in the KnnClassifierParallelGroup class. It's very
similar to the KnnClassifierParallelIndividual class with two main differences:
firstly, the initial part of the classify() method. Now, we will only have numThreads
tasks and we have to split the train dataset into numThreads subsets:

public String classify(Sample example) throws Exception {

 Distance distances[] = new Distance[dataSet.size()];
 CountDownLatchendController = new CountDownLatch(numThreads);

 int length = dataSet.size() / numThreads;
 intstartIndex = 0, endIndex = length;

Managing Lots of Threads - Executors

[72]

 for (int i = 0; i <numThreads; i++) {
 GroupDistanceTask task = new GroupDistanceTask(distances, startIndex,
 endIndex, dataSet, example, endController);
 startIndex = endIndex;
 if (i <numThreads - 2) {
 endIndex = endIndex + length;
 } else {
 endIndex = dataSet.size();
 }
 executor.execute(task);

 }
 endController.await();

We calculate the number of samples per task in the length variable. Then, we assign to each
thread the start and end indexes of the samples they have to process. For all the threads
except the last one, we add the length value to the start index to calculate the end index. For
the last one, the last index is the size of the dataset.

Second, this class uses GroupDistanceTask instead of IndividualDistanceTask. The
main difference between those classes is that the first one processes a subset of the train
dataset, so it stores the full train dataset and the first and last positions of the dataset it has
to process:

public class GroupDistanceTask implements Runnable {
 private final Distance[] distances;
 private final intstartIndex, endIndex;
 private final Example example;
 private final List<? extends Example>dataSet;
 private final CountDownLatchendController;

 public GroupDistanceTask(Distance[] distances, intstartIndex,
 intendIndex, List<? extends Example>dataSet,
 Example example, CountDownLatchendController) {
 this.distances = distances;
 this.startIndex = startIndex;
 this.endIndex = endIndex;
 this.example = example;
 this.dataSet = dataSet;
 this.endController = endController;
 }

Managing Lots of Threads - Executors

[73]

The run() method processes a set of examples instead of only one example:

public void run() {
 for (int index = startIndex; index <endIndex; index++) {
 Sample localExample=dataSet.get(index);
 distances[index] = new Distance();
 distances[index].setIndex(index);
 distances[index].setDistance(EuclideanDistanceCalculator
 .calculate(localExample, example));
 }
 endController.countDown();
}

Comparing the solutions
Let's compare the different versions of the k-nearest neighbors algorithms we have
implemented. We have the following five different versions:

The serial version
The fine-grained concurrent version with serial sorting
The fine-grained concurrent version with concurrent sorting
The coarse-grained concurrent version with serial sorting
The coarse-grained concurrent version with concurrent sorting

To test the algorithm, we have used 2,059 test instances that we take from the Bank
Marketing dataset. We have classified all those examples using the five versions of the
algorithm using the values of k as 10, 30, and 50 and measuring their execution time.

We have executed the examples using the JMH framework
(http://openjdk.java.net/projects/code-tools/jmh/), which allows you to implement
micro benchmarks in Java. Using a framework for benchmarking is a better solution that
simply measures time using methods such as currentTimeMillis() or nanoTime(). We
have executed them 10 times in two different architectures

A computer with an Intel Core i5-5300 CPU with Windows 7 and 16 GB of RAM.
This processor has two cores and each core can execute two threads, so we will
have four parallel threads.
A computer with an AMD A8-640 APU with Windows 10 and 8 GB of RAM. This
processor has four cores.

http://openjdk.java.net/projects/code-tools/jmh/

Managing Lots of Threads - Executors

[74]

These are the executions times in seconds:

We can draw the following conclusions:

The selected values of the K parameter (10, 30, and 50) don't affect the execution
time of the algorithm. The five versions present similar results for the three
values in both architectures.
As was expected, the use of the concurrent sort with the
Arrays.parallelSort() method gives a great improvement in performance in
the fine-grained and the coarse-grained concurrent versions of the algorithms.
Both concurrent versions increment the performance of the application, but the
coarse-grained version offers a great improvement in performance, with serial or
parallel sorting.

Managing Lots of Threads - Executors

[75]

So, the best version of the algorithm is the coarse-grained solution using parallel sorting, if
we compare it with the serial version calculating the speedup.

This example shows how a good selection of a concurrent solution can give us a great
improvement and a bad selection can give us a bad performance.

Second example - concurrency in a
client/server environment
The client/server model is a software architecture where applications are split into two
parts: the server part that provides resources (data, operations, printer, storage, and so on)
and the client part that uses the resources provided by the server. Traditionally, this
architecture was used in the enterprise world but, with the boom in the internet, is still an
actual topic. You can see a web application as a client/server application where the server
part is the backend part of the application that is executed on a web server and the web
navigator executes the client part of the application. SOA (short for Service-Oriented
Architecture) is another example of a client/server architecture where the web services
exposed are the server part and the different clients that consume them are the client part.

In a client/server environment, we usually have one server and a lot of clients that use the
services provided by the server, so the performance of the server is a critical aspect when
you have to design one of these systems.

In this section, we will implement a simple client/server application. It will make a search of
data over the World Development Indicators of the World Bank that you can download
from here: http://data.worldbank.org/data-catalog/world-development-indicators.
This data contains the values of different indicators over all the countries in the world from
1960 to 2014.

The main characteristics of our server will be:

The client and the server will connect using sockets
The client will send its queries in a string, and the server will respond with
results in another string

http://data.worldbank.org/data-catalog/world-development-indicators

Managing Lots of Threads - Executors

[76]

The server can respond to three different queries:
Query: The format of this query is
q;codCountry;codIndicator;year where codCountry is the
code of the country, codIndicator is the code of the indicator,
and year is an optional parameter with the year you want to
query. The server will respond with the information in a single
string.
Report: The format of this query is r;codIndicator where
codIndicator is the code of the indicator you want to report. The
server will respond with the mean value of that indicator for all
countries over the years in a single string.
Stop: The format of this query is z;. The server stops its execution
when it receives this command.

In other cases, the server returns an error message.

As in the previous example, we will show you how to implement a serial version of this
client/server application. Then, we will show you how to implement a concurrent version
using an executor. Finally, we will compare the two solutions to view the advantages of the
use of concurrency in this case.

Client/server - serial version
The serial version of our server application has three main parts:

The DAO (short for Data Access Object) part, responsible for access to the data
and obtaining the results of the query
The command part, formed by a command for each kind of query
The server part, which receives the queries, calls the corresponding command,
and returns the results to the client

Let's see each of these parts in detail.

The DAO part
As we mentioned before, the server will make a search of data over the world development
indicators of the World Bank. This data is in a CSV file. The DAO component in the
application loads the entire file into a List object in memory. It implements a method per
query it will attend that goes over the list looking for the data.

Managing Lots of Threads - Executors

[77]

We don't include the code of this class here because it's simple to implement and it's not the
main purpose of this book.

The command part
The command part is an intermediary between the DAO and the server parts. We have
implemented a base abstract Command class to be the base class of all the commands:

public abstract class Command {

 protected final String[] command;

 public Command (String [] command) {
 this.command=command;
 }

 public abstract String execute ();

}

Then, we have implemented a command for each query. The query is implemented in the
QueryCommand class. The execute() method is as follows:

 public String execute() {
 WDIDAOdao=WDIDAO.getDAO();

 if (command.length==3) {
 return dao.query(command[1], command[2]);
 } else if (command.length==4) {
 try {
 return dao.query(command[1], command[2],
 Short.parseShort(command[3]));
 } catch (Exception e) {
 return "ERROR;Bad Command";
 }
 } else {
 return "ERROR;Bad Command";
 }
}

The report is implemented in ReportCommand. The execute() method is as follows:

@Override
public String execute() {

 WDIDAOdao=WDIDAO.getDAO();

Managing Lots of Threads - Executors

[78]

 return dao.report(command[1]);
}

The stop query is implemented in the StopCommand class. Its execute() method is as
follows:

@Override
public String execute() {
 return "Server stopped";
}

Finally, the error situations are processed by the ErrorCommand class. Its
execute()method is as follows:

@Override
public String execute() {
 return "Unknown command: "+command[0];
}

The server part
Finally, the server part is implemented in the SerialServer class. First of all, it initializes
the DAO calling the getDAO() method. The main objective is that the DAO loads all the
data:

public class SerialServer {

 public static void main(String[] args) throws IOException {
 WDIDAOdao = WDIDAO.getDAO();
 booleanstopServer = false;
 System.out.println("Initialization completed.");

 try (ServerSocketserverSocket = new ServerSocket(Constants
 .SERIAL_PORT)) {

After this, we have a loop that will be executed until the server receives a stop query. This
loop performs the following four steps:

Receives a query for a client
Parses and splits the elements of the query
Calls the corresponding command
Returns the results to the client

Managing Lots of Threads - Executors

[79]

These four steps are shown in the following code snippet:

do {
 try (Socket clientSocket = serverSocket.accept();
 PrintWriter out = new PrintWriter(clientSocket.getOutputStream(),
 true);
 BufferedReader in = new BufferedReader(new InputStreamReader
 (clientSocket.getInputStream()));) {
 String line = in.readLine();
 Command command;

 String[] commandData = line.split(";");
 System.out.println("Command: " + commandData[0]);
 switch (commandData[0]) {
 case "q":
 System.out.println("Query");
 command = new QueryCommand(commandData);
 break;
 case "r":
 System.out.println("Report");
 command = new ReportCommand(commandData);
 break;
 case "z":
 System.out.println("Stop");
 command = new StopCommand(commandData);
 stopServer = true;
 break;
 default:
 System.out.println("Error");
 command = new ErrorCommand(commandData);
 }
 String response = command.execute();
 System.out.println(response);
 } catch (IOException e) {
 e.printStackTrace();
 }
} while (!stopServer);

Client/version - parallel version
The serial version of the server has a very important limitation. While it is processing one
query, it can't attend to other queries. If the server needs an important amount of time to
respond to every request, or to certain requests, the performance of the server will be very
low.

Managing Lots of Threads - Executors

[80]

We can obtain a better performance using concurrency. If the server creates a thread when it
receives a request, it can delegate all the processes of the query to the thread and it can
attend new requests. This approach can also have some problems. If we receive a high
number of queries, we can saturate the system, creating too many threads. But if we use an
executor with a fixed number of threads, we can control the resources used by our server
and obtain a better performance than the serial version.

To convert our serial server to a concurrent one using an executor, we have to modify the
server part. The DAO part is the same, and we have changed the names of the classes that
implement the command part, but their implementation is almost the same. Only the stop
query changes because now it has more responsibilities. Let's see the details of the
implementation of the concurrent server part.

The server part
The concurrent server part is implemented in the ConcurrentServer part. We have added
two elements not included in the serial server: a cache system, implemented in the
ParallelCache class, and a log system, implemented in the Logger class. First of all, it
initializes the DAO part calling the getDAO() method. The main objective is that the DAO
loads all the data and creates a ThreadPoolExecutor object using the
newFixedThreadPool() method of the Executors class. This method receives the
maximum number of worker-threads we want in our server. The executor will never have
more than those worker-threads. To get the number of worker-threads, we get the number
of cores of our system using the availableProcessors() method of the Runtime class:

public class ConcurrentServer {

 private static ThreadPoolExecutor executor;
 private static ParallelCache cache;
 private static ServerSocketserverSocket;
 private static volatileboolean stopped=false;
 public static void main(String[] args) {
 serverSocket=null;
 WDIDAOdao=WDIDAO.getDAO();
 executor=(ThreadPoolExecutor) Executors.newFixedThreadPool
 (Runtime.getRuntime().availableProcessors());
 cache=new ParallelCache();
 Logger.initializeLog();

 System.out.println("Initialization completed.");

Managing Lots of Threads - Executors

[81]

The stopped Boolean variable is declared as volatile because it will be changed from
another thread. The volatile keyword ensures that when the stopped variable is set to
true by another thread, this change will be visible in the main method. Without the
volatile keyword, the change cannot be visible due to CPU caching or compiler
optimizations. Then, we initialize ServerSocket to listen for the requests:

serverSocket = new ServerSocket(Constants.CONCURRENT_PORT);

We can't use a try-with-resources statement to manage the server socket. When we receive a
stop command, we need to shut down the server, but the server is waiting in the accept()
method of the serverSocket object. To force the server to leave that method, we need to
explicitly close the server (we'll do that in the shutdown() method), so we can't let the try-
with-resources statement close the socket for us.

After this, we have a loop that will be executed until the server receives a stop query. This
loop performs three steps as follows:

Receives a query for a client
Creates a task to process that query
Sends the task to the executor

These three steps are shown in the following code snippet:

do {
 try {
 Socket clientSocket = serverSocket.accept();
 RequestTask task = new RequestTask(clientSocket);
 executor.execute(task);
 } catch (IOException e) {
 e.printStackTrace();
 }
} while (!stopped);

Finally, once the server has finished its execution (leaving the loop), we have to wait for the
finalization of the executor using the awaitTermination() method. This method will
block the main thread until the executor has finished its execution() method. Then, we
shut down the cache system and wait for a message to indicate the end of the execution of
the server as follows:

executor.awaitTermination(1, TimeUnit.DAYS);
System.out.println("Shutting down cache");
cache.shutdown();
System.out.println("Cache ok");

System.out.println("Main server thread ended");

Managing Lots of Threads - Executors

[82]

We have added two additional methods: the getExecutor() method , which returns the
ThreadPoolExecutor object that is used to execute the concurrent tasks and the
shutdown() method, which is used to finish the executor of the server in an ordered way.
It calls the shutdown() method of the executor and closes ServerSocket:

public static void shutdown() {
 stopped = true;
 System.out.println("Shutting down the server...");
 System.out.println("Shutting down executor");
 executor.shutdown();
 System.out.println("Executor ok");
 System.out.println("Closing socket");
 try {
 serverSocket.close();
 System.out.println("Socket ok");
 } catch (IOException e) {
 e.printStackTrace();
 }
 System.out.println("Shutting down logger");
 Logger.sendMessage("Shutting down the logger");
 Logger.shutdown();
 System.out.println("Logger ok");
}

In the concurrent server, there is an essential part: the RequestTask class that processes
every request of the client. This class implements the Runnable interface, so it can be
executed in an executor in a concurrent way. Its constructor receives the Socket parameter
that will be used to communicate to the client:

public class RequestTask implements Runnable {

 private final Socket clientSocket;

 public RequestTask(Socket clientSocket) {
 this.clientSocket = clientSocket;
 }

The run() method does everything the serial server does to respond to every request:

Receives a query for a client
Parses and splits the elements of the query
Calls the corresponding command
Returns the results to the client

Managing Lots of Threads - Executors

[83]

The following is its code snippet:

public void run() {

 try (PrintWriter out = new PrintWriter(clientSocket
 .getOutputStream(), true);
 BufferedReader in = new BufferedReader(new InputStreamReader
 (clientSocket.getInputStream()));) {

 String line = in.readLine();
 Logger.sendMessage(line);
 ParallelCache cache = ConcurrentServer.getCache();
 String ret = cache.get(line);

 if (ret == null) {
 Command command;
 String[] commandData = line.split(";");
 System.out.println("Command: " + commandData[0]);
 switch (commandData[0]) {
 case "q":
 System.err.println("Query");
 command = new ConcurrentQueryCommand(commandData);
 break;
 case "r":
 System.err.println("Report");
 command = new ConcurrentReportCommand(commandData);
 break;
 case "s":
 System.err.println("Status");
 command = new ConcurrentStatusCommand(commandData);
 break;
 case "z":
 System.err.println("Stop");
 command = new ConcurrentStopCommand(commandData);
 break;
 default:
 System.err.println("Error");
 command = new ConcurrentErrorCommand(commandData);
 break;
 }
 ret = command.execute();
 if (command.isCacheable()) {
 cache.put(line, ret);
 }
 } else {
 Logger.sendMessage("Command "+line+" was found in the cache");
 }

Managing Lots of Threads - Executors

[84]

 System.out.println(ret);
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 try {
 clientSocket.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

The command part
In the command part, we have renamed all the classes as you can see in the previous
fragment of code. The implementation is the same except in the ConcurrentStopCommand
class. Now, it calls the shutdown() method of the ConcurrentServer class to terminate
the execution of the server in an ordered way. The following is the source code of the
execute() method:

@Override
public String execute() {
 ConcurrentServer.shutdown();
 return "Server stopped";
}

Also, now the Command class contains a new isCacheable() Boolean method that returns
true if the command result is stored in the cache and false otherwise.

Extra components of the concurrent server
We have implemented some extra components in the concurrent server: a new command to
return information about the status of the server, a cache system to store the results of the
commands, time-saving when a request is repeated, and a log system to write error and
debug information. The following sections describe each of these components.

Managing Lots of Threads - Executors

[85]

The status command
First of all, we have a new possible query. It has the formats and is processed by the
ConcurrentStatusCommand class. It gets ThreadPoolExecutor used by the server and
obtains information about the status of the executor:

public class ConcurrentStatusCommand extends Command {
 public ConcurrentStatusCommand (String[] command) {
 super(command);
 setCacheable(false);
 }
 @Override
 public String execute() {
 StringBuildersb=new StringBuilder();
 ThreadPoolExecutor executor=ConcurrentServer.getExecutor();
 Logger.sendMessage(sb.toString());
 return sb.toString();
 }
}

The information we can obtain from the server is:

getActiveCount(): This returns the approximate number of tasks that execute
our concurrent tasks. There could be more threads in the pool, but they could be
idle.
getMaximumPoolSize(): This returns the maximum number of worker-threads
the executor can have.
getCorePoolSize(): This returns the core number of worker-threads the
executor will have. This number determines the minimum number of threads the
pool will have.
getPoolSize(): This returns the current number of threads in the pool.
getLargestPoolSize(): This returns the maximum number of threads of the
pool during its execution.
getCompletedTaskCount(): This returns the number of tasks the executor has
executed.
getTaskCount(): This returns the approximate number of tasks that have ever
been scheduled for execution.
getQueue().size(): This returns the number of tasks that are waiting in the
queue of tasks.

Managing Lots of Threads - Executors

[86]

As we have created our executor using the newFixedThreadPool() method of the
Executor class, our executor will have the same maximum and core worker-threads.

The cache system
We have included a cache system in our parallel server to avoid the search of data that have
been recently been made. Our cache system has three elements:

The CacheItem class: This class represents every element stored in the cache. It
has four attributes:

The command stored in the cache. We will store the query and
report commands in the cache.
The response generated by that command.
The creation date of the item in the cache.
The last time this item was accessed in the cache.

The CleanCacheTask class: If we store all the commands in the cache but never
delete the elements stored in it, the cache will increase its size indefinitely. To
avoid this situation, we can have a task that deletes elements in the cache. We are
going to implement this task as a Thread object. There are two options:

You can have the maximum size in the cache. If the cache has more
elements than the maximum size, you can delete the elements that
have been accessed less recently.
You can delete the elements that haven't been accessed for a
predefined period of time from the cache. We are going to use this
approach.

The ParallelCache class: This class implements the operations to store and
retrieve elements in the cache. To store the data in the cache, we have used a
ConcurrentHashMap data structure. As the cache will be shared between all the
tasks of the server, we have to use a synchronization mechanism to protect the
access to the cache, avoiding data race conditions. We have three options:

We can use a non-synchronized data structure (for example, a
HashMap) and add the necessary code to synchronize accesses to
this data structure, for example, with a lock. You can also convert a
HashMap into a synchronized structure using the
synchronizedMap() method of the Collections class.
Use a synchronized data structure, for example, Hashtable. In this
case, we don't have data race conditions, but the performance can
be better.

Managing Lots of Threads - Executors

[87]

Use a concurrent data structure, for example, a
ConcurrentHashMap class, which eliminates the possibility of data
race conditions and it's optimized to work in a high concurrent
environment. This is the option we're going to implement using an
object of the ConcurrentHashMap class.

The code of the CleanCacheTask class is as follows:

 public class CleanCacheTask implements Runnable {

 private final ParallelCache cache;

 public CleanCacheTask(ParallelCache cache) {
 this.cache = cache;
 }

 @Override
 public void run() {
 try {
 while (!Thread.currentThread().interrupted()) {
 TimeUnit.SECONDS.sleep(10);
 cache.cleanCache();
 }
 } catch (InterruptedException e) {

 }
 }

}

The class has a ParallelCache object. Every 10 seconds, it executes the cleanCache()
method of the ParallelCache instance.

The ParallelCache class has five different methods. First, the constructor of the class that
initializes the elements of the cache. It creates the ConcurrentHashMap object and starts a
thread that will execute the CleanCacheTask class:

public class ParallelCache {

 private final ConcurrentHashMap<String, CacheItem> cache;
 private final CleanCacheTask task;
 private final Thread thread;
 public static intMAX_LIVING_TIME_MILLIS = 600_000;

Managing Lots of Threads - Executors

[88]

 public ParallelCache() {
 cache=new ConcurrentHashMap<>();
 task=new CleanCacheTask(this);
 thread=new Thread(task);
 thread.start();
 }

Then, there are two methods to store and retrieve an element in the cache. We use the
put() method to insert the element in the HashMap and the get() method to retrieve the
element from the HashMap:

public void put(String command, String response) {
 CacheItem item = new CacheItem(command, response);
 cache.put(command, item);
}

public String get (String command) {
 CacheItem item=cache.get(command);
 if (item==null) {
 return null;
 }
 item.setAccessDate(new Date());
 return item.getResponse();
}

Then, the method to clean the cache used by the CleanCacheTask class is:

public void cleanCache() {
 Date revisionDate = new Date();
 Iterator<CacheItem> iterator = cache.values().iterator();

 while (iterator.hasNext()) {
 CacheItem item = iterator.next();
 if (revisionDate.getTime() - item.getAccessDate().getTime()
 >MAX_LIVING_TIME_MILLIS) {
 iterator.remove();
 }
 }
}

Finally, the method to shut down the cache that interrupts the thread executing the
CleanCacheTask class and the method that returns the number of elements stored in the
cache are:

public void shutdown() {
 thread.interrupt();
}

Managing Lots of Threads - Executors

[89]

public intgetItemCount() {
 return cache.size();
}

The log system
In all the examples in this chapter, we write information in the console using the
System.out.println() method. When you implement an enterprise application that is
going to execute in a production environment, it's a better idea to use a log system to write
debug and error information. In Java, log4j is the most popular log system. In this
example, we are going to implement our own log system implementing the
producer/consumer concurrency design pattern. The tasks that will use our log system will
be the producers and a special task (executed as a thread), which will write the log
information into a file, will be the consumer. The components of this log system are:

LogTask: This class implements the log consumer that after every 10 seconds
reads the log messages stored in the queue and writes them to a file. It will be
executed by a Thread object.
Logger: This is the main class of our log system. It has a queue where the
producers will store the information and the consumer will read it. It also
includes the methods to add a message into the queue and a method to get all the
messages stored in the queue and writes them to disk.

To implement the queue, as happens with the cache system, we need a concurrent data
structure to avoid any data inconsistency errors. We have two options:

Use a blocking data structure, which blocks the thread when the queue is full (in
our case, it will never be full) or empty.
Use a non-blocking data structure, which returns a special value if the queue is
full or empty.

We have chosen a non-blocking data structure, the ConcurrentLinkedQueue class, which
implements the Queue interface. We use the offer() method to insert elements in the
queue and the poll() method to get elements from it.

The LogTask class code is very simple:

 public class LogTask implements Runnable {

 @Override
 public void run() {
 try {

Managing Lots of Threads - Executors

[90]

 while (Thread.currentThread().interrupted()) {
 TimeUnit.SECONDS.sleep(10);
 Logger.writeLogs();
 }
 } catch (InterruptedException e) {
 }
 Logger.writeLogs();
 }
}

The class implements the Runnable interface and, in the run() method, calls the
writeLogs() method of the Logger class every 10 seconds.

The Logger class has five different static methods. First of all is a static block of code that
initializes and starts a thread that executes the LogTask and creates the
ConcurrentLinkedQueue class used to store the log data:

public class Logger {

 private static ConcurrentLinkedQueue<String>logQueue = new
 ConcurrentLinkedQueue<String>();

 private static Thread thread;

 private static final String LOG_FILE = Paths.get("output",
 "server.log").toString();

 static {
 LogTask task = new LogTask();
 thread = new Thread(task);
 }

Then, there is a sendMessage() method that receives a string as parameter and stores that
message in the queue. To store the message, it uses the offer() method:

public static void sendMessage(String message) {
 logQueue.offer(new Date()+": "+message);
}

A critical method of this class is the writeLogs() class. It obtains and deletes all the log
messages stored in the queue using the poll() method of the ConcurrentLinkedQueue
class and writes them to a file:

public static void writeLogs() {
 String message;
 Path path = Paths.get(LOG_FILE);
 try (BufferedWriterfileWriter = Files.newBufferedWriter(path,

Managing Lots of Threads - Executors

[91]

 StandardOpenOption.CREATE,
 StandardOpenOption.APPEND)) {
 while ((message = logQueue.poll()) != null) {
 fileWriter.write(new Date()+": "+message);
 fileWriter.newLine();
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
}

Finally, two methods: one to truncate the log file and the other to finish the executor of the
log system, which interrupts the thread that is executing LogTask:

public static void initializeLog() {
 Path path = Paths.get(LOG_FILE);
 if (Files.exists(path)) {
 try (OutputStream out = Files.newOutputStream(path,
 StandardOpenOption.TRUNCATE_EXISTING)) {

 } catch (IOException e) {
 e.printStackTrace();
 }
 }
 thread.start();
 }
 public static void shutdown() {
 thread.interrupt();
 }

Comparing the two solutions
Now it's time to test the serial and concurrent server and see which has a better
performance. We have automated the tests by implementing four classes that make queries
to the servers. These classes are:

SerialClient: This implements a possible client of the serial server. It makes
nine requests using the query message and a query using the report message. It
repeats the process 10 times, so it requests 90 queries and 10 reports.
MultipleSerialClients: This class simulates the existence of several clients at
the same time. For this, we create a thread for each SerialClient and execute
them at the same time to see the performance of the server. We have tested from
one to five concurrent clients.

Managing Lots of Threads - Executors

[92]

ConcurrentClient: This is analogous to the SerialClient class, but it calls
the concurrent server instead of the serial one.
MultipleConcurrentClients: This is analogous to the
MultipleSerialClients class, but it calls the concurrent server instead of the
serial one.

To test the serial server, you can follow these steps:

Launch the serial server and wait for its initialization.1.
Launch the MultipleSerialClients class, which launches one, then two,2.
three, four, and, finally, five SerialClient classes.

You can follow a similar process with the concurrent server:

Launch the concurrent server and wait for its initialization.1.
Launch the MultipleConcurrentClients class, which launches one, two,2.
three, four, and, finally, five ConcurrentClient classes.

To compare the execution times of both versions, we have implemented a microbenchmark
using the JMH framework (http://openjdk.java.net/projects/code-tools/jmh/) that
allows you to implement microbenchmarks in Java. Using a framework for benchmarking is
a better solution that simply measures time using methods such as currentTimeMillis()
or nanoTime(). We have executed them 10 times in two different architectures:

A computer with an Intel Core i5-5300 CPU with Windows 7 and 16 GB of RAM.
This processor has two cores and each core can execute two threads, so we will
have four parallel threads.
A computer with an AMD A8-640 APU with Windows 10 and 8 GB of RAM. This
processor has four cores.

These are the results of all these executions:

http://openjdk.java.net/projects/code-tools/jmh/

Managing Lots of Threads - Executors

[93]

The contents of the cells are the mean time of each client in seconds. We can draw the
following conclusions:

Execution times in both architectures are very different. Take into account that
there are more elements, such as the hard disk, the memory, or the operating
system, that can affect the performance. In both cases, speedup is very similar.
The performance of both kinds of servers is affected by the number of concurrent
clients that send requests to our server.
In all cases, the execution times of the concurrent version are much lower than
the execution times of the serial one.

Other methods of interest
Throughout the pages of this chapter, we have used some classes of the Java concurrency
API to implement basic functionalities of the Executor framework. These classes also have
other interesting methods. In this section, we explain some of them.

The Executors class provides other methods to create ThreadPoolExecutor objects.
These methods are:

newCachedThreadPool(): This method creates a ThreadPoolExecutor object
that reuses a worker-thread if it's idle, but it creates a new one if it's necessary.
There is no maximum number of worker-threads.
newSingleThreadExecutor(): This method creates a ThreadPoolExecutor
object that uses only a single worker-thread. The tasks you send to the executor
are stored in a queue until the worker-thread can execute them.
The CountDownLatch class provides the following additional methods:

await(long timeout, TimeUnit unit): It waits till the
internal counter arrives at zero to pass the time specified in the
parameters. If the time passes, the method returns the false value.
getCount(): This method returns the actual value of the internal
counter.

Managing Lots of Threads - Executors

[94]

There are two types of concurrent data structures in Java:

Blocking data structures: When you call a method and the library can't do that
operation (for example, you try to obtain an element, and the data structure is
empty), they block the thread until the operation can be done.
Non-blocking data structures: When you call a method and the library can't do
that operation (because the structure is empty or full), the method returns a
special value or throws an exception.

There are data structures that implement both behaviors and data structures that
implement only one. Usually, blocking data structures also implement the methods with
non-blocking behavior, and non-blocking data structures don't implement the blocking
methods.

The methods that implement the blocking operations are:

put(), putFirst(), putLast(): These insert an element in the data structure. If
it's full, it blocks the thread until there is space.
take(), takeFirst(), takeLast(): These return and remove an element of the
data structure. If it's empty, it blocks the thread until there is an element in it.

The methods that implement the non-blocking operations are:

add(), addFirst(), addLast(): These insert an element in the data structure. If
it's full, the method throws an IllegalStateException exception.
remove(), removeFirst(), removeLast(): These return and remove an
element from the data structure. If it's empty, the method throws an
IllegalStateException exception.
element(), getFirst(), getLast(): These return but don't remove an element
from the data structure. If it's empty, the method throws an
IllegalStateException exception.
offer(), offerFirst(), offerLast(): These insert an element value in the
data structure. If it's full, they return the false Boolean value.
poll(), pollFirst(), pollLast(): These return and remove an element from
the data structure. If it's empty, they return the null value.
peek(), peekFirst(), peekLast(): These return but don't remove an element
from the data structure. If it's empty, they return the null value.

In Chapter 11, Diving into Concurrent Data Structures and Synchronization Utilities, we will
describe concurrent data structures in more detail.

Managing Lots of Threads - Executors

[95]

Summary
In simple concurrent applications, we execute concurrent tasks using the Runnable
interface and the Thread class. We create and manage the threads and control their
execution. We can't follow this approach in big concurrent applications because it can create
many problems. For these cases, the Java concurrency API has introduced the Executor
framework. In this chapter, we presented the basic characteristics and components that
form this framework. First of all, we explored the Executor interface, which defines the
basic method to send a Runnable task to an executor. This interface has a subinterface, the
ExecutorService interface, which includes methods to send to the executor tasks that
return a result (these tasks implement the Callable interface, as we will see in Chapter 5,
Getting Data from Tasks - Callable and Future Interfaces), and a list of tasks.

The ThreadPoolExecutor class is the basic implementation of both interfaces: adding
additional methods to get information about the status of the executor and the number of
threads or tasks that it is executing. The easiest way to create an object of this class is using
the Executors utility class, which includes methods to create different kinds of executors.

We showed you how to use executors and convert serial algorithms to concurrent ones
using executors implementing two real-world examples. The first example is the k-nearest
neighbors algorithm, which we applied to the Bank Marketing dataset of the UCI machine
learning repository. The second example is a client/server application to make queries over
the World Development Indicators of the World Bank.

In both cases, the use of executors gave us a great improvement in performance.

In the next chapter, we will describe how to implement advanced techniques with
executors. We are going to complete our client/server application by adding the possibility
to cancel and execute tasks with a higher priority that will be executed before the tasks with
a lower priority. We also will show you how to implement tasks that will execute
periodically, implementing an RSS news reader.

4
Getting the Most from

Executors
In Chapter 3, Managing Lots of Threads - Executors, we introduced the basic characteristics of
executors as a way to improve the performance of concurrent applications that execute lots
of concurrent tasks. In this chapter, we go a step further and explain advanced
characteristics of executors that make them a powerful tool for your concurrent application.
In this chapter, we will cover the following:

Advanced characteristics of executors
First example - an advanced server application
Second example - executing periodic tasks
Additional information about executors

Advanced characteristics of executors
An executor is a class that allows programmers to execute concurrent tasks without being
worried about the creation and management of threads. Programmers create Runnable
objects and send them to the executor that creates and manages the necessary threads to
execute those tasks. In Chapter 3, Managing Lots of Threads - Executors, we introduced the
basic characteristics of the executor framework:

How to create an executor and the different options we have when we create one
How to send a concurrent task to an executor
How to control the resources used by the executor
How the executor, internally, uses a pool of threads to optimize the performance
of the application

Getting the Most from Executors

[97]

However, executors can give you many more options to make them a powerful mechanism
for your concurrent application.

Cancellation of tasks
You can cancel the execution of a task after you send it to an executor. When you send a
Runnable object to an executor using the submit() method, it returns an implementation
of the Future interface. This class allows you to control the execution of the task. It has the
cancel() method that attempts to cancel the execution of the task. It receives a Boolean
value as a parameter. If it takes the true value and the executor is executing this task, the
thread executing the task will be interrupted.

These are the situations when the task you want to cancel can't be canceled:

The task has already been canceled
The task has finished its execution
The task is running and you supplied false as a parameter to the cancel()
method
Other reasons not specified in the API documentation

The cancel() method returns a Boolean value to indicate whether the task has been
canceled or not.

Scheduling the execution of tasks
The ThreadPoolExecutor class is a basic implementation of the Executor and
ExecutorService interfaces. But the Java concurrency API provides an extension of this
class to allow the execution of scheduled tasks. This is the
ScheduledThreadPoolExeuctor class, and you can:

Execute a task after a delay
Execute a task periodically; this includes the execution of tasks at a fixed rate or
with a fixed delay

Getting the Most from Executors

[98]

Overriding the executor methods
The executor framework is a very flexible mechanism. You can implement your own
executor extending one of the existing classes (ThreadPoolExecutor or
ScheduledThreadPoolExecutor) to get the desired behavior. These classes include
methods that make it easy to change how the executor works. If you override
ThreadPoolExecutor, you can override the following methods:

beforeExecute(): This method is invoked before the execution of concurrent
tasks in an executor. It receives the Runnable object that is going to be executed
and the Thread object that will execute it. The Runnable object that this method
receives is an instance of the FutureTask class and not the Runnable object you
sent to the executor using the submit() method.
afterExecute(): This method is invoked after the execution of a concurrent
task in the executor. It receives the Runnable object that has been executed and a
Throwable object that stores a possible exception thrown inside the task. As in
the beforeExecute() method, the Runnable object is an instance of the
FutureTask class.
newTaskFor(): This method creates the task that is going to execute the
Runnable object you sent using the submit() method. It must return an
implementation of the RunnableFuture interface. By default, Open JDK 9 and
Oracle JDK 9 returns an instance of the FutureTask class, but this might change
in future implementations.

If you extend the ScheduledThreadPoolExecutor class, you can override the
decorateTask() method. This method is like the newTaskFor() method for scheduled
tasks. It allows you to override the tasks executed by the executor.

Changing some initialization parameters
You can also change the behavior of an executor by changing some parameters when it's
created. The most useful ones are as follows:

BlockingQueue<Runnable>: Every executor uses an internal BlockingQueue
to store the tasks that are waiting for its execution. You can pass any
implementation of this interface as a parameter. For example, you can change the
default order used by the executor to execute the tasks.

Getting the Most from Executors

[99]

ThreadFactory: You can specify an implementation of the ThreadFactory
interface, and the executor will use that factory to create the threads that will
execute the tasks. For example, you can use a ThreadFactory interface to create
an extension of the Thread class that saves log information about the execution
times of the tasks.
RejectedExecutionHandler: After you call the shutdown() or the
shutdownNow() method, all the tasks that are sent to the executor will be
rejected. You can specify an implementation of the
RejectedExecutionHandler interface to manage this situation.

First example - an advanced server
application
In Chapter 3, Managing Lots of Threads - Executors, we present an example of a client/server
application. We implemented a server to search data over the World Development
Indicators of the World Bank and a client that makes multiple calls to that server to test the
performance of the executor.

In this section, we will extend that example to add to it the following characteristics:

You can cancel the execution of queries in the server, using a new cancellation
query.
You can control the order of execution of queries using a priority parameter.
Tasks with a higher priority will be executed first.
The server will calculate the number of tasks and the total execution time used by
the different users that use the server.

To implement these new characteristics, we have made the following changes to the server:

We have added two parameters to every query. The first one is the name of the
user that sends the query, and the other is the priority of the query. The new
format of the queries is:

Query:
q;username;priority;codCountry;codIndicator;year

where username is the name of the user, priority is the priority
of the query, codCountry is the code of the country,
codIndicator is the code of the indicator, and year is an optional
parameter with the year you want to query.

Getting the Most from Executors

[100]

Report: r;username;priority;codIndicator where username
is the name of the user, priority is the priority of the query, and
codIndicator is the code of the indicator you want to report.
Status: s;username;priority where username is the name of
the user and priority is the priority of the query.
Stop: z;username;priority where username is the name of the
user, and priority is the priority of the query.

We have implemented a new query:
Cancel: c;username;priority where username is the name of
the user, and priority is the priority of the query.

We have implemented our own executor to:
Calculate the server use per user.
Execute the tasks by priority
Control the rejection of tasks
We have adapted ConcurrentServer and RequestTask to take
into account the new elements of the server

The other elements of the server (the cache system, the log system, and the DAO class) are
the same, so they won't be described again.

The ServerExecutor class
As we mentioned earlier, we have implemented our own executor to execute the tasks of
the server. We also have implemented some additional but necessary classes to provide all
the functionality. Let's describe these classes.

The statistics object
Our server will calculate the number of tasks that every user executes on it and the total
execution time these tasks use. To store this data, we have implemented the
ExecutorStatistics class. It has two attributes to store the information:

public class ExecutorStatistics {
 private AtomicLong executionTime = new AtomicLong(0L);
 private AtomicInteger numTasks = new AtomicInteger(0);

Getting the Most from Executors

[101]

These attributes are AtomicVariables that support atomic operations on single variables.
This allows you to use those variables in different threads without using any
synchronization mechanisms. Then, it has two methods to increment the number of tasks
and the execution time:

public void addExecutionTime(long time) {
 executionTime.addAndGet(time);
}
public void addTask() {
 numTasks.incrementAndGet();
}

Finally, we have added methods to get the value of both attributes, and we have overridden
the toString() method to get the information in a readable way:

@Override
public String toString() {
 return "Executed Tasks: "+ getNumTasks()+". Execution Time: "+
 getExecutionTime();
}

The rejected task controller
When you create an executor, you can specify a class to manage its rejected tasks. A task is
rejected by the executor when you submit it after the shutdown() or shutdownNow()
method has been invoked in the executor.

To control this circumstance, we have implemented the RejectedTaskController class.
This class implements the RejectedExecutionHandler interface and implements the
rejectedExecution() method:

public class RejectedTaskController implements
 RejectedExecutionHandler {

 @Override
 public void rejectedExecution(Runnable task, ThreadPoolExecutor
 executor) {
 ConcurrentCommand command=(ConcurrentCommand)task;

 try (Socket clientSocket=command.getSocket();
 PrintWriter out = new PrintWriter(clientSocket
 .getOutputStream(),true);
) {
 String message="The server is shutting down."+
 " Your request can not be served."+

Getting the Most from Executors

[102]

 " Shutting Down: "+
 String.valueOf(executor.isShutdown()) + ". Terminated: "+
 String.valueOf(executor.isTerminated())+ ". Terminating: "+
 String.valueOf(executor.isTerminating());
 System.out.println(message);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

The rejectedExecution() method is called once per task that is rejected and receives the
task that has been rejected, and the executor that has rejected the task, as parameters.

The executor tasks
When you submit a Runnable object to an executor, it doesn't execute that Runnable object
directly. It creates a new object, an instance of the FutureTask class, and it's this task that is
executed by the worker thread of the executor.

In our case, to measure the execution time of the tasks, we have implemented our own
FutureTask implementation in the ServerTask class. It extends the FutureTask class
and implements the Comparable interface as follows:

public class ServerTask<V> extends FutureTask<V> implements
 Comparable<ServerTask<V>>{

Internally, it stores the query that is going to execute as a ConcurrentCommand object:

private ConcurrentCommand command;

In the constructor, it uses the constructor of the FutureTask class and stores the
ConcurrentCommand object:

public ServerTask(ConcurrentCommand command) {
 super(command, null);
 this.command=command;
}

public ConcurrentCommand getCommand() {
 return command;
}

public void setCommand(ConcurrentCommand command) {
 this.command = command;
}

Getting the Most from Executors

[103]

Finally, it implements the compareTo() operation comparing the commands stored by the
two ServerTask instances:

@Override
 public int compareTo(ServerTask<V> other) {
 return command.compareTo(other.getCommand());
 }

The executor
Now that we have the auxiliary classes of the executor, we have to implement the executor
itself. We have implemented the ServerExecutor class for this purpose. It extends the
ThreadPoolExecutor class and has some internal attributes, as follows:

startTimes: This is a ConcurrentHashMap to store the start date of every task.
The key of the class will be the ServerTask object (a Runnable object), and the
value will be a Date object.
executionStatistics: This is a ConcurrentHashMap to store the statistics of
use per user. The key will be the username and the value will be an
ExecutorStatistics object.
CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, and KEEP_ALIVE_TIME: These are
constants to define the characteristics of the executor.
REJECTED_TASK_CONTROLLER: This is a RejectedTaskController class
attribute to control tasks rejected by the executor.

This can be explained from the following code:

public class ServerExecutor extends ThreadPoolExecutor {
 private ConcurrentHashMap<Runnable, Date> startTimes;
 private ConcurrentHashMap<String, ExecutorStatistics>
 executionStatistics;
 private static int CORE_POOL_SIZE = Runtime.getRuntime()
 .availableProcessors();
 private static int MAXIMUM_POOL_SIZE = Runtime.getRuntime()
 .availableProcessors();
 private static long KEEP_ALIVE_TIME = 10;

 private static RejectedTaskController REJECTED_TASK_CONTROLLER
 = new RejectedTaskController();

 public ServerExecutor() {
 super(CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, KEEP_ALIVE_TIME,
 TimeUnit.SECONDS, new PriorityBlockingQueue<>(),

Getting the Most from Executors

[104]

 REJECTED_TASK_CONTROLLER);

 startTimes = new ConcurrentHashMap<>();
 executionStatistics = new ConcurrentHashMap<>();
 }

The constructor of the class calls to the parent constructor, creating a
PriorityBlockingQueue class to store the tasks that will be executed in the executor. This
class orders the elements according to the result of the execution of the compareTo()
method (so the elements stored in it have to implement the Comparable interface). The
utilization of this class will allow us to execute our tasks by priority.

Then, we have overridden some methods of the ThreadPoolExecutor class. First is the
beforeExecute() method. This method is executed before the execution of every task. It
receives the ServerTask object and the thread that is going to execute the task as
parameters. In our case, we store the actual date in the ConcurrentHashMap with the start
dates of every task as follows:

protected void beforeExecute(Thread t, Runnable r) {
 super.beforeExecute(t, r);
 startTimes.put(r, new Date());
}

The next method is the afterExecute() method. This method is executed after the
execution of every task in the executor and receives the ServerTask object that has been
executed as parameter and a Throwable object. This last parameter will have a value only
when an exception is thrown during the execution of the task. In our case, we will use this
method to:

Calculate the execution time of the task.1.
Update the statistics of the user in the following manner:2.

 @Override
 protected void afterExecute(Runnable r, Throwable t) {
 super.afterExecute(r, t);
 ServerTask<?> task=(ServerTask<?>)r;
 ConcurrentCommand command=task.getCommand();

 if (t==null) {
 if (!task.isCancelled()) {
 Date startDate = startTimes.remove(r);
 Date endDate=new Date();
 long executionTime= endDate.getTime() -
 startDate.getTime();
 ExecutorStatistics statistics = executionStatistics

Getting the Most from Executors

[105]

 .computeIfAbsent (command.getUsername(),
 n -> new ExecutorStatistics());
 statistics.addExecutionTime(executionTime);
 statistics.addTask();
 ConcurrentServer.finishTask (command.getUsername(),
 command);
 }
 else {
 String message="The task" + command.hashCode() + "of
 user" + command.getUsername() + "has
 been cancelled.";
 Logger.sendMessage(message);
 }

 } else {
 String message="The exception "+t.getMessage()+" has
 been thrown.";
 Logger.sendMessage(message);
 }
 }

Finally, we have overridden the newTaskFor() method. This method will be executed to
convert the Runnable object we send to the executor using the submit() method in the
instance of FutureTask that will be executed by the executor. In our case, we replace the
default FutureTask by our ServerTask object:

@Override
protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T
 value) {
 return new ServerTask<T>(runnable);
}

We have included an additional method in the executor to write all the statistics stored in
the executor in the log system. This method will be called at the end of the execution of the
server, as you will see later. We have the following code:

public void writeStatistics() {

 for(Entry<String, ExecutorStatistics> entry: executionStatistics
 .entrySet()) {
 String user = entry.getKey();
 ExecutorStatistics stats = entry.getValue();
 Logger.sendMessage(user+":"+stats);
 }
}

Getting the Most from Executors

[106]

The command classes
The command classes execute the different queries you can send to the server. You can send
five different queries to your server:

Query: This is to get information about a country, an indicator, and optionally a
year. It's implemented by the ConcurrentQueryCommand class.
Report: This is to get information about an indicator. It's implemented by the
ConcurrentReportCommand class.
Status: This is to get information about the status of a server. It's implemented by
the ConcurrentStatusCommand class.
Cancel: This is to cancel a user's tasks of a user. It's implemented by the
ConcurrentCancelCommand class.
Stop: To stop the execution of the server. It's implemented by the
ConcurrentStopCommand class.

We also have the ConcurrentErrorCommand class, which manages the situation when an
unknown command arrives at the server, and the ConcurrentCommand class, which is the
base class of all the commands.

The ConcurrentCommand class
This is the base class of every command. It includes all the common behaviors of all the
commands, including the following:

Calling the method that implements the specific logic of every command
Writing the results to the client
Closing all the resources used in the communication

The class extends the Command class and implements the Comparable and Runnable
interfaces. In the example in Chapter 3, Managing Lots of Threads - Executors, the commands
were simple classes, but in this example, the concurrent commands are Runnable objects
that will be sent to the executor.

public abstract class ConcurrentCommand extends Command implements
 Comparable<ConcurrentCommand>, Runnable{

Getting the Most from Executors

[107]

It has three attributes:

username: This is to store the name of the user that sends the query.
priority: This is to store the priority of the query. It will determine the order of
execution of the query.
socket: This is the socket used in the communication to the client.

The constructor of the class initializes these attributes:

private String username;
private byte priority;
private Socket socket;

public ConcurrentCommand(Socket socket, String[] command) {
 super(command);
 username=command[1];
 priority=Byte.parseByte(command[2]);
 this.socket=socket;

}

The main functionality of this class is in the abstract execute() method, which will be
implemented by every concrete command to calculate and return the results of the query,
and in the run() method. The run() method calls the execute() method, stores the result
in the cache, writes the result in the socket, and closes all the resources used in the
communication. We have the following:

@Override
public abstract String execute();

@Override
public void run() {

 String message="Running a Task: Username: "+username+";
 Priority: "+priority;
 Logger.sendMessage(message);

 String ret=execute();

 ParallelCache cache = ConcurrentServer.getCache();

 if (isCacheable()) {
 cache.put(String.join(";",command), ret);
 }

 try (PrintWriter out = new PrintWriter(socket.getOutputStream(),

Getting the Most from Executors

[108]

 true);) {

 System.out.println(ret);

 } catch (IOException e) {
 e.printStackTrace();
 }
 System.out.println(ret);
}

Finally, the compareTo() method uses the priority attribute to determine the order of the
tasks. This will be used by the PriorityBlockingQueue class to order the tasks, so the
tasks with a higher priority will be executed before. Take into account that a task has a
higher priority depending on whether the getPriority() method returns a lower value. If
the getPriority() of a task returns 1, that task will have a higher priority than a task
where the getPriority() method returns 2:

@Override
public int compareTo(ConcurrentCommand o) {
 return Byte.compare(o.getPriority(), this.getPriority());
}

The concrete commands
We have made minor changes in the classes that implement the different commands, and
we added a new one implemented by the ConcurrentCancelCommand class. The main
logic of these classes is included in the execute() method that calculates the response to
the query and returns it as a string.

The execute() method of the new ConcurrentCancelCommand makes a call to the
cancelTasks() method of the ConcurrentServer class. This method will stop the
execution of all the pending tasks associated with the user passed as a parameter:

@Override
public String execute() {
 ConcurrentServer.cancelTasks(getUsername());

 String message = "Tasks of user "+getUsername()+
 " has been cancelled.";
 Logger.sendMessage(message);
 return message;
}

Getting the Most from Executors

[109]

The execute() method of the ConcurrentQueryCommand uses the query() method of
the WDIDAO class to get the data requested by the user. In Chapter 3, Managing Lots of
Threads - Executor, you can find the implementation of this method. The implementation is
almost the same. The only difference is the command array indices as follows:

@Override
public String execute() {

 WDIDAO dao=WDIDAO.getDAO();

 if (command.length==5) {
 return dao.query(command[3], command[4]);
 } else if (command.length==6) {
 try {
 return dao.query(command[3], command[4],
 Short.parseShort(command[5]));
 } catch (NumberFormatException e) {
 return "ERROR;Bad Command";
 }
 } else {
 return "ERROR;Bad Command";
 }
}

The execute() method of the ConcurrentReportCommand uses the report() method of
the WDIDAO class to get the data. In Chapter 3, Managing Lots of Threads - Executors, you also
can find the implementation of this method. The implementation here is almost the same.
The only difference is the command array index:

@Override
public String execute() {

 WDIDAO dao=WDIDAO.getDAO();
 return dao.report(command[3]);
}

The ConcurrentStatusCommand has an additional parameter in its constructor: the
Executor object that will execute the commands. This command uses this object to obtain
information about the executor and send it as a response to the user. The implementation is
almost the same as in Chapter 3, Managing Lots of Threads - Executors. We have used the
same methods to get the status of the Executor object.

ConcurrentStopCommand and ConcurrentErrorCommand are also the same as in Chapter
3, Managing Lots of Threads - Executors, so we don't include their source code.

Getting the Most from Executors

[110]

The server part
The server part receives the queries from the clients of the server, creates the command
classes that execute those queries, and sends them to the executor. It is implemented by two
classes:

The ConcurrentServer class: It includes the main() method of the server and
additional methods to cancel tasks and finish the execution of the system
The RequestTask class: This class creates the commands and sends them to the
executor

The main difference from the example in Chapter 3, Managing Lots of Threads - Executors is
the role of the RequestTask class. In the SimpleServer example, the ConcurrentServer
class creates a RequestTask object per query and sends them to the executor. In this
example, we will only have an instance of the RequestTask that will be executed as a
thread. When the ConcurrentSever receives a connection, it stores the socket to
communicate with the client in a concurrent list of pending connections. The RequestTask
thread reads that socket, processes the data sent by the client, creates the corresponding
command, and sends the command to the executor.

The main reason for this change is to leave only the code for the queries in the tasks
executed by the executor and leave the preprocessed code outside the executor.

The ConcurrentServer class
The ConcurrentServer class needs some internal attributes to work properly:

A ParallelCache instance to use the cache system.
A ServerSocket instance to get connections from the clients.
A Boolean value to know when it has to stop its execution.
A LinkedBlockingQueue instance to store the sockets of the clients that send a
message to the server. These sockets will be processed by the RequestTask class.
A ConcurrentHashMap to store the Future objects associated with every task
executed in the executor. The key will be the username of the users that sends the
queries, and the values will be another Map whose key will be the
ConcurrenCommand objects and the value will be the Future instance associated
with that task. We use these Future instances to cancel the execution of tasks.
A RequestTask instance to create the commands and send them to the executor.
A Thread object to execute the RequestTask object.

Getting the Most from Executors

[111]

The code for this is as follows:

public class ConcurrentServer {
 private static ParallelCache cache;
 private static volatile boolean stopped=false;
 private static LinkedBlockingQueue<Socket> pendingConnections;
 private static ConcurrentMap<String, ConcurrentMap
 <ConcurrentCommand, ServerTask<?>>>
 taskController;
 private static Thread requestThread;
 private static RequestTask task;

The main() method of this class initializes these objects and opens the ServerSocket
instance to listen to the connections from the clients. In addition, it creates the
RequestTask object and executes it as a thread. It will be in a loop until the shutdown()
method changes the value of the stopped attribute. After this, it waits for the finalization of
the Executor object, using the endTermination() method of the RequestTask object,
and shuts down the Logger system and the RequestTask object with the
finishServer() method:

public static void main(String[] args) {

 WDIDAO dao=WDIDAO.getDAO();
 cache=new ParallelCache();
 Logger.initializeLog();
 pendingConnections = new LinkedBlockingQueue<Socket>();
 taskController = new ConcurrentHashMap<String,
 ConcurrentHashMap<Integer, Future<?>>>();
 task=new RequestTask(pendingConnections, taskController);
 requestThread=new Thread(task);
 requestThread.start();

 System.out.println("Initialization completed.");

 serverSocket= new ServerSocket(Constants.CONCURRENT_PORT);
 do {
 try {
 Socket clientSocket = serverSocket.accept();
 pendingConnections.put(clientSocket);
 } catch (Exception e) {
 e.printStackTrace();
 }
 } while (!stopped);
 finishServer();
 System.out.println("Shutting down cache");

Getting the Most from Executors

[112]

 cache.shutdown();
 System.out.println("Cache ok" + new Date());

}

It includes two methods to shut down the executor of the server. The shutdown() method
changes the value of the stopped variable and closes the serverSocket instance. The
finishServer() method stops the executor, interrupts the thread that executes the
RequestTask object, and shuts downs the Logger system. We divided this process into
two parts to use the Logger system until the last instruction of the server:

public static void shutdown() {
 stopped=true;
 try {
 serverSocket.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
}

private static void finishServer() {
 System.out.println("Shutting down the server...");
 task.shutdown();
 System.out.println("Shutting down Request task");
 requestThread.interrupt();
 System.out.println("Request task ok");
 System.out.println("Closing socket");
 System.out.println("Shutting down logger");
 Logger.sendMessage("Shutting down the logger");
 Logger.shutdown();
 System.out.println("Logger ok");
 System.out.println("Main server thread ended");
}

The server includes the method that cancels the tasks associated with a user. As we
mentioned before, the Server class uses a nested ConcurrentHashMap to store all the tasks
associated with a user. First, we obtain the Map with all the tasks of a user and then we
process all the Future objects of those tasks calling to the cancel() method of the Future
objects. We pass the value true as a parameter, so if the executor is running a task from
that user, it will be interrupted. We have included the necessary code to avoid the
cancellation of the one ConcurrentCancelCommand:

public static void cancelTasks(String username) {

 ConcurrentMap<ConcurrentCommand, ServerTask<?>> userTasks =
 taskController.get(username);

Getting the Most from Executors

[113]

 if (userTasks == null) {
 return;
 }
 int taskNumber = 0;

 Iterator<ServerTask<?>> it = userTasks.values().iterator();
 while(it.hasNext()) {
 ServerTask<?> task = it.next();
 ConcurrentCommand command = task.getCommand();
 if(!(command instanceof ConcurrentCancelCommand) &&
 task.cancel(true)) {
 taskNumber++;
 Logger.sendMessage("Task with code "+command.hashCode()+
 "cancelled: "+ command.getClass()
 .getSimpleName());
 it.remove();
 }
 }
 String message=taskNumber+" tasks has been cancelled.";
 Logger.sendMessage(message);
}

Finally, we have included a method to eliminate the Future object associated with tasks
from our nested map of ServerTask objects when that task finishes its execution normally.
It's the finishTask() method:

public static void finishTask(String username, ConcurrentCommand
 command) {

 ConcurrentMap<ConcurrentCommand, ServerTask<?>> userTasks =
 taskController.get(username);
 userTasks.remove(command);
 String message = "Task with code "+command.hashCode()+
 " has finished";
 Logger.sendMessage(message);

}

The RequestTask class
The RequestTask class is the intermediary between the ConcurrentServer class, which
connects to the clients, and the Executor class, which executes concurrent tasks. It opens
the socket with the client, reads the query data, creates the adequate command, and sends it
to the executor.

Getting the Most from Executors

[114]

It uses some internal attributes:

A LinkedBlockingQueue where the ConcurrentServer class stores the client
sockets
A ServerExecutor to execute the commands as concurrent tasks
A ConcurrentHashMap to store the Future objects associated with the tasks

The constructor of the class initializes all these objects.

public class RequestTask implements Runnable {
 private LinkedBlockingQueue<Socket> pendingConnections;
 private ServerExecutor executor = new ServerExecutor();
 private ConcurrentMap<String, ConcurrentMap<ConcurrentCommand,
 ServerTask<?>>> taskController;
 public RequestTask(LinkedBlockingQueue<Socket>
 pendingConnections, ConcurrentHashMap<String,
 ConcurrentHashMap<Integer, Future<?>>>
 taskController) {
 this.pendingConnections = pendingConnections;
 this.taskController = taskController;
 }

The main method of this class is the run() method. It executes a loop until the thread is
interrupted processing the sockets stored in the pendingConnections object. In this object,
the ConcurrentServer class stores sockets to communicate with the different clients that
sends a query to the server. It opens the socket, reads the data, and creates the
corresponding command. This also sends the command to the executor and stores the
Future object in the double ConcurrentHashMap associated with the hashCode of the task
and with the user that sent the query:

public void run() {
 try {
 while (!Thread.currentThread().interrupted()) {
 try {
 Socket clientSocket = pendingConnections.take();
 BufferedReader in = new BufferedReader(new
 InputStreamReader (clientSocket.getInputStream()));
 String line = in.readLine();

 Logger.sendMessage(line);
 ConcurrentCommand command;

 ParallelCache cache = ConcurrentServer.getCache();
 String ret = cache.get(line);
 if (ret == null) {
 String[] commandData = line.split(";");

Getting the Most from Executors

[115]

 System.out.println("Command: " + commandData[0]);
 switch (commandData[0]) {
 case "q":
 System.out.println("Query");
 command = new ConcurrentQueryCommand(clientSocket,
 commandData);
 break;
 case "r":
 System.out.println("Report");
 command = new ConcurrentReportCommand (clientSocket,
 commandData);
 break;
 case "s":
 System.out.println("Status");
 command = new ConcurrentStatusCommand(executor,
 clientSocket,
 commandData);
 break;
 case "z":
 System.out.println("Stop");
 command = new ConcurrentStopCommand(clientSocket,
 commandData);
 break;
 case "c":
 System.out.println("Cancel");
 command = new ConcurrentCancelCommand (clientSocket,
 commandData);
 break;
 default:
 System.out.println("Error");
 command = new ConcurrentErrorCommand(clientSocket,
 commandData);
 break;
 }

 ServerTask<?> controller = (ServerTask<?>)executor
 .submit(command);
 storeContoller(command.getUsername(), controller, command);
 } else {
 PrintWriter out = new PrintWriter (clientSocket
 .getOutputStream(), true);
 System.out.println(ret);
 clientSocket.close();
 }

 } catch (IOException e) {
 e.printStackTrace();
 }

Getting the Most from Executors

[116]

 }
 } catch (InterruptedException e) {
 // No Action Required
 }
}

The storeController() method is the one that stores the Future object in the double
ConcurrentHashMap:

private void storeContoller(String userName, ServerTask<?>
 controller, ConcurrentCommand command) {
taskController.computeIfAbsent(userName, k -> new
 ConcurrentHashMap<>()).put(command,
controller);taskController.computeIfAbsent(userName, k -> new
 ConcurrentHashMap<>()).put(command, controller);
}

Finally, we have included two methods to manage the execution of the Executor class: one
to call the shutdown() method for the executor and another to wait for its finalization.
Remember that you must explicitly call the shutdown() or the shutdownNow() methods to
end the execution of an executor. If not, the program won't terminate. Look at the following:

public void shutdown() {

 String message="Request Task: "+pendingConnections.size()+"
 pending connections.";
 Logger.sendMessage(message);
 executor.shutdown();
}

public void terminate() {
 try {
 executor.awaitTermination(1,TimeUnit.DAYS);
 executor.writeStatistics();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

}

The client part
Now it's time to test our server. In this case, we don't worry much about the execution time.
The main objective of our test is to check whether the new features work well.

Getting the Most from Executors

[117]

We have split the client part into the following two classes:

The ConcurrentClient class: This implements an individual client of the server.
Each instance of this class has a different username. It makes 100 queries, 90 of
type query, and 10 of type report. The query queries have a priority of 5, and the
report queries have a lower priority (10).
The MultipleConcurrentClient class: This measures the behavior of multiple
concurrent clients in parallel. We have tested the server with one to five
concurrent clients. This class also tests the cancellation and stop commands.

We have included an executor to execute concurrent requests to the server to increase the
level of concurrency of the client.

In the following screenshot, you can see the results of the cancellation of tasks:

In this case, four tasks of the USER_2 user have been canceled.

The following screenshot shows the final statistics about the number of tasks and execution
time of every user:

Second example - executing periodic tasks
In the previous examples with executors, the tasks were executed once, and they were
executed as soon as possible. The executor framework includes another executor
implementation that gives us more flexibility about the execution time of the tasks. It's the
ScheduledThreadPoolExecutor class that allows us to execute tasks periodically and to
execute tasks after a delay.

Getting the Most from Executors

[118]

In this section, you will learn how to execute periodic tasks implementing an RSS feed
reader. This is a simple case where you need to make the same task (reading the news of an
RSS feed) at a certain time. Our example will have the following characteristics:

Store the RSS sources in a file. We have chosen news about the world from some
important newspapers such as The New York Times, the Daily News, or The
Guardian.
We sent a Runnable object to the executor per RSS source. Every time the
executor runs each one, it parses the RSS source and converts them to a list of
CommonInformationItem objects with the content of the RSS.
We use the Producer/Consumer design pattern to write the RSS news onto disk.
The producers will be the tasks of the executor that write every
CommonInformationItem into a buffer. Only the new items will be stored in the
buffer. The consumer will be an independent thread that reads the news from the
buffer and writes it to a disk.

The time between the finalization of the execution of a task and its next execution will be
one minute.

We also have implemented an advanced version of the example where the time between
two executions of a task can vary.

The common parts
As we mentioned earlier, we read an RSS feed and convert it to a list of objects. To parse the
RSS file, we treat it as an XML file, and we have implemented a SAX (short for Simple API
for XML) parser in the RSSDataCapturer class. It parses the file and creates a list of
CommonInformationItem. This class stores the following information about every RSS
item:

Title: Title of the RSS item
Date: Date of the RSS item
Link: Link to the RSS item
Description: The text of the RSS item
ID: The ID of the RSS item. If the item doesn't include an ID, we calculate it
Source: The name of the RSS source

We store the news onto a disk using the Producer/Consumer design pattern, so we need a
buffer to store the news and a Consumer class that, in this case, reads the news from the
buffer and stores it onto the disk.

Getting the Most from Executors

[119]

We implemented the buffer in the NewsBuffer class. It has two internal attributes:

A LinkedBlockingQueue: This is a concurrent data structure with blocking
operations. If we want to obtain an item from the list and it's empty, the thread of
the calling method will be blocked until there are elements in the list. We will use
this structure to store CommonInformationItems.
A ConcurrentHashMap: This is a concurrent implementation of a HashMap. We
will use it to store the IDs of the news item stored in the buffer before.

We will only insert the news that wasn't inserted before in the buffer:

public class NewsBuffer {
 private LinkedBlockingQueue<CommonInformationItem> buffer;
 private ConcurrentHashMap<String, String> storedItems;

 public NewsBuffer() {
 buffer=new LinkedBlockingQueue<>();
 storedItems=new ConcurrentHashMap<String, String>();
 }

We have two methods in the NewsBuffer class, one to store an item into the buffer that
previously checks in the item that has been inserted before and another to obtain the next
item from the buffer. We use the compute() method to insert elements in the
ConcurrentHashMap. This method receives a lambda expression as a parameter with the
key and the actual value associated with this key (null if the key has no associated value). In
our case, we add the item to the buffer it has not processed before. We use the add() and
take() methods to insert and to obtain and delete elements from the queue.

public void add (CommonInformationItem item) {
 storedItems.compute(item.getId(), (id, oldSource) -> {
 if(oldSource == null) {
 buffer.add(item);
 return item.getSource();
 } else {
 System.out.println("Item "+item.getId()+" has been processed
 before");
 return oldSource;
 }
 });
}

public CommonInformationItem get() throws InterruptedException {
 return buffer.take();
}

Getting the Most from Executors

[120]

The items of the buffer will be written onto disk by the NewsWriter class that will be
executed as an independent thread. It only has an internal attribute that points to the
NewsBuffer class used in the application:

public class NewsWriter implements Runnable {
 private NewsBuffer buffer;
 public NewsWriter(NewsBuffer buffer) {
 this.buffer=buffer;
 }

The run() method of this Runnable object takes CommonInformationItem instances from
the buffer and saves them to a disk. As we use the blocking method, if the buffer is empty,
this thread will be blocked until there are elements in the buffer:

public void run() {
 try {
 while (!Thread.currentThread().interrupted()) {
 CommonInformationItem item=buffer.get();
 Path path=Paths.get ("output\\"+item.getFileName());

 try (BufferedWriter fileWriter = Files.newBufferedWriter
 (path, StandardOpenOption.CREATE)) {
 fileWriter.write(item.toString());
 } catch (IOException e) {
 e.printStackTrace();
 }

 }
 } catch (InterruptedException e) {
 //Normal execution
 }
}

The basic reader
The basic reader will use a standard ScheduledThreadPoolExecutor class to execute the
tasks periodically. We will execute a task per RSS source, and there will be one minute
between the termination of one execution of a task and the commencement of the next
execution. These concurrent tasks are implemented in the NewsTask class. It has three
internal attributes to store the name of the RSS feed, its URL, and the NewsBuffer class to
store the news:

public class NewsTask implements Runnable {
 private String name;
 private String url;

Getting the Most from Executors

[121]

 private NewsBuffer buffer;

 public NewsTask (String name, String url, NewsBuffer buffer) {
 this.name=name;
 this.url=url;
 this.buffer=buffer;
 }

The run() method of this Runnable object simply parses the RSS feed, getting a list of
CommonItemInterface instances and storing them into the buffer. This method will be
executed in a periodic way. In every execution, the run() method will be executed from the
beginning to the end:

@Override
public void run() {
 System.out.println(name + " : Running. " + new Date());
 RSSDataCapturer capturer = new RSSDataCapturer(name);
 List<CommonInformationItem> items=capturer.load(url);

 for (CommonInformationItem item: items) {
 buffer.add(item);
 }
}

In this example, we have also implemented another thread to implement the initialization of
the executor and the tasks and then wait for the finalization of the execution. We have
named this class NewsSystem. It has three internal attributes to store the path to the file
with the RSS sources, the buffer to store the news, and a CountDownLatch object to control
the end of its execution. The CountDownLatch class is a synchronization mechanism that
allows you have a thread wait for an event. We will detail the utilization of this class in
Chapter 11, Diving into Concurrent Data Structures and Synchronization Utilities. We have the
following:

public class NewsSystem implements Runnable {
 private String route;
 private ScheduledThreadPoolExecutor executor;
 private NewsBuffer buffer;
 private CountDownLatch latch=new CountDownLatch(1);

 public NewsSystem(String route) {
 this.route = route;
 executor = new ScheduledThreadPoolExecutor
 (Runtime.getRuntime().availableProcessors());
 buffer=new NewsBuffer();
 }

Getting the Most from Executors

[122]

In the run() method, we read all the RSS sources, create a NewsTask class for each one, and
send them to our ScheduledThreadPool executor. We have created the executor using the
newScheduledThreadPool() method of the Executors class, and we send the tasks to it
using the scheduleAtFixedDelay() method. We also start the NewsWriter instance as a
thread. The run() method waits for someone to tell it to finish its execution using the
await() method of the CountDownLatch class and ends the execution of the NewsWriter
task and ScheduledExecutor.

@Override
public void run() {
 Path file = Paths.get(route);
 NewsWriter newsWriter=new NewsWriter(buffer);
 Thread t=new Thread(newsWriter);
 t.start();

 try (InputStream in = Files.newInputStream(file);
 BufferedReader reader = new BufferedReader(new
 InputStreamReader(in))) {
 String line = null;
 while ((line = reader.readLine()) != null) {
 String data[] = line.split(";");

 NewsTask task = new NewsTask(data[0], data[1], buffer);
 System.out.println("Task "+task.getName());
 executor.scheduleWithFixedDelay(task,0, 1,
 TimeUnit.MINUTES);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }

 synchronized (this) {
 try {
 latch.await();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 System.out.println("Shutting down the executor.");
 executor.shutdown();
 t.interrupt();
 System.out.println("The system has finished.");

 }

Getting the Most from Executors

[123]

We have also implemented the shutdown() method. This method will notify the
NewsSystem class that it must end its execution using the countDown() method of the
CountDownLatch class. This method will wake up the run() method, so it will shut down
the executor that is running the NewsTask objects.

public void shutdown() {
 latch.countDown();
}

The last class of this example is the Main class, which implements the main() method of the
example. It starts a NewsSystem instance as a thread, waits 10 minutes, notifies its
finalization to the thread, and consequently finishes the execution of the system as follows:

public class Main {

 public static void main(String[] args) {

 // Creates the System an execute it as a Thread
 NewsSystem system=new NewsSystem("data\\sources.txt");

 Thread t=new Thread(system);

 t.start();

 // Waits 10 minutes
 try {
 TimeUnit.MINUTES.sleep(10);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 // Notifies the finalization of the System

 system.shutdown();
 }

When you execute this example, you see how the different tasks are executed in a periodic
way and how the news items are written to disk, as shown in the following screenshot:

Getting the Most from Executors

[124]

The advanced reader
The basic news reader is an example of the utilization of a
ScheduledThreadPoolExecutor class, but we can go a step further. As occurs with
ThreadPoolExecutor, we can implement our own ScheduledThreadPoolExecutor to
obtain a particular behavior. In our case, we want the delay time of our periodic task
changes to depend on the moment of the day. In this part, you will learn how to implement
this behavior.

The first step is to implement a class that tells us the delay between two executions of a
periodic task. We named this the Timer class. It only has a static method named
getPeriod() that returns the number of milliseconds between the end of one execution
and the start of the next one. This is our implementation, but you can make your own:

public class Timer {
 public static long getPeriod() {
 Calendar calendar = Calendar.getInstance();
 int hour = calendar.get(Calendar.HOUR_OF_DAY);

 if ((hour >= 6) && (hour <= 8)) {
 return TimeUnit.MILLISECONDS.convert(1, TimeUnit.MINUTES);
 }

 if ((hour >= 13) && (hour <= 14)) {

Getting the Most from Executors

[125]

 return TimeUnit.MILLISECONDS.convert(1, TimeUnit.MINUTES);
 }

 if ((hour >= 20) && (hour <= 22)) {
 return TimeUnit.MILLISECONDS.convert(1, TimeUnit.MINUTES);
 }
 return TimeUnit.MILLISECONDS.convert(2, TimeUnit.MINUTES);
 }
}

Next, we have to implement the internal tasks of our executor. When you send a Runnable
object to an executor, externally, you see that object as the concurrent task but the executor
converts this object into another task, an instance of the FutureTask class, that includes the
run() method to execute the task, and the methods of the Future interface to manage the
execution of the task. To implement this example, we have to implement a class that
extends the FutureTask class, and, as we will execute these tasks into a scheduled
executor, it has to implement the RunnableScheduledFuture interface. This interface
provides the getDelay() method that returns the time remaining till the next execution of
a task. We have implemented these internal tasks in the ExecutorTask class. It has four
internal attributes:

The original RunnableScheduledFuture internal task created by the
ScheduledThreadPoolExecutor class
The scheduled executor that will execute the task
The start date of the next execution of the task
The name of the RSS feed

The code for this is as follows:

public class ExecutorTask<V> extends FutureTask<V> implements
 RunnableScheduledFuture<V> {
 private RunnableScheduledFuture<V> task;

 private NewsExecutor executor;

 private long startDate;

 private String name;

 public ExecutorTask(Runnable runnable, V result,
 RunnableScheduledFuture<V> task,
 NewsExecutor executor) {
 super(runnable, result);
 this.task = task;
 this.executor = executor;

Getting the Most from Executors

[126]

 this.name=((NewsTask)runnable).getName();
 this.startDate=new Date().getTime();
 }

We have overridden or implemented different methods in this class. The first one is the
getDelay() method, which as we told you before, returns the time remaining till the next
execution of a task in the given unit of time:

@Override
public long getDelay(TimeUnit unit) {
 long delay;
 if (!isPeriodic()) {
 delay = task.getDelay(unit);
 } else {
 if (startDate == 0) {
 delay = task.getDelay(unit);
 } else {
 Date now = new Date();
 delay = startDate - now.getTime();
 delay = unit.convert(delay, TimeUnit.MILLISECONDS);
 }

 }

 return delay;
}

The next one is the compareTo() method that compares two tasks taking into account the
start date of the next execution of the tasks:

@Override
public int compareTo(Delayed object) {
 return Long.compare(this.getStartDate(),
 ((ExecutorTask<V>)object).getStartDate());
}

Then the isPeriodic() method returns true if the task is periodic or false if not:

@Override
public boolean isPeriodic() {
 return task.isPeriodic();
}

Getting the Most from Executors

[127]

Finally, the run() method implements the most important part of this example. First, we
call the runAndReset() method of the FutureTask class. This method executes the task
and resets its status, so it can be executed again. Then, we calculate the start date of the next
execution using the Timer class, and finally, we have to insert the task again in the queue of
the ScheduledThreadPoolExecutor class. If we don't do this final step, the task won't be
executed again as follows:

@Override
public void run() {
 if (isPeriodic() && (!executor.isShutdown())) {
 super.runAndReset();
 Date now=new Date();
 startDate=now.getTime()+Timer.getPeriod();
 executor.getQueue().add(this);
 System.out.println("Start Date: "+new Date(startDate));
 }
}

Once we have the tasks for the executor, we have to implement the executor. We have
implemented the NewsExecutor class that extends the ScheduledThreadPoolExecutor
class. We have overridden the decorateTask() method. With this method, you can
replace the internal task used by the scheduled executor. By default, it returns a default
implementation of the RunnableScheduledFuture interface, but in our case, it will return
an instance of the ExecutorClass instance:

public class NewsExecutor extends ScheduledThreadPoolExecutor {

 public NewsExecutor(int corePoolSize) {
 super(corePoolSize);
 }

 @Override
 protected <V> RunnableScheduledFuture<V> decorateTask(Runnable
 runnable, RunnableScheduledFuture<V> task) {
 ExecutorTask<V> myTask = new ExecutorTask<>(runnable, null,
 task, this);
 return myTask;
 }
}

Getting the Most from Executors

[128]

We have to implement other versions of the NewsSystem and the Main classes to use the
NewsExecutor. We have implemented NewsAdvancedSystem and AdvancedMain for this
purpose.

Now you can run the advanced news system to see how the delay time between executions
changes.

Additional information about executors
In this chapter, we have extended ThreadPoolExecutor and the
ScheduledThreadPoolExecutor class, and overridden some of their methods. But you
can override more methods if you want a more specific behavior. These are some methods
you can override:

shutdown(): You must explicitly call this method to end the execution of the
executor. You can override it to add some code to free additional resources used
by your own executor.
shutdownNow(): The difference between shutdown() and shutdownNow() is
that the shutdown() method waits for the finalization of all the tasks that are
waiting in the executor.
submit(), invokeall(), or invokeany(): You call these methods to send
concurrent tasks to the executor. You can override them if you need to do some
actions before or after a task is inserted in the task queue of the executor. Note
that adding a custom action before or after the task is enqueued is different from
adding a custom action before or after it's executed, which we did when
overriding beforeExecute() and afterExecute() methods.

In the news reader example, we use the scheduleWithFixedDelay() method to send
tasks to the executor. But the ScheduledThreadPoolExecutor class has other methods to
execute periodic tasks or tasks after a delay:

schedule(): This method executes a task after the given delay. The task is
executed only once.
scheduleAtFixedRate(): This method executes a periodic task with the given
period. The difference with the ScheduleWithFixedDelay() method is that in
the last one, the delay between two executions goes from the end of the first one
to the start of the second one, and in the first one, the delay between two
executions goes between the start of both.

Getting the Most from Executors

[129]

Summary
In this chapter, we presented two examples that explored the advanced characteristics of
executors. In the first example, we continued with the client/server example of Chapter 3,
Managing Lots of Threads - Executors. We have implemented our own executor extending the
ThreadPoolExecutor class to execute tasks by priority and to measure the executing time
of tasks per user. We also included a new command to allow the cancellation of tasks.

In the second example, we explained how to use the ScheduledThreadPoolExecutor
class to execute periodic tasks. We implemented two versions of a news reader. The first
one showed how to use the basic functionality of the ScheduledExecutorService, and
the second one showed how to override the behavior of the ScheduledExecutorService
class to, for example, change the delay time between the two executions of a task.

In the next chapter, you will learn how to execute Executor tasks that return a result. If
you extend the Thread class or implement the Runnable interface, the run() method
doesn't return any results, but the executor framework includes the Callable interface
allows you to implement tasks that return a result.

5
Getting Data from Tasks - The
Callable and Future Interfaces

In Chapter 3, Managing Lots of Threads - Executors, and Chapter 4, Getting the Most from
Executors, we introduced the Executor framework to improve the performance of
concurrent applications and showed you how to implement advanced characteristics to
adapt this framework to your needs. In these chapters, all the tasks executed by the executor
were based on the Runnable interface and its run() method that doesn't return a value.
However, the Executor framework allows us to execute other kinds of tasks that return a
result based on the Callable and Future interfaces. Callable is a functional interface
which defines the method call(). The method call() may throw a checked Exception
which is different to the Runnable interface. The result of a Callable interface process is
wrapped by the Future interface. The Future represents the result of asynchronous
computation. In this chapter, we will cover the following topics:

An introduction to the Callable and Future interfaces
First example - a best-matching algorithm for words
Second example - building an inverted index of a collection of documents

Introducing the Callable and Future
interfaces
The Executor framework allows programmers to execute concurrent tasks without creating
and managing threads. You create tasks and send them to the executor. It creates and
manages the necessary threads.

Getting Data from Tasks - The Callable and Future Interfaces

[131]

In an executor, you can execute two kinds of tasks:

Tasks based on the Runnable interface: These tasks implement the run()
method that doesn't return any results.
Tasks based on the Callable interface: These tasks implement the call()
interface that returns an object as a result. The concrete type that will be returned
by the call() method is specified by a generic type parameter of the Callable
interface. To get the result returned by the task, the executor will return an
implementation of the Future interface for every task.

In previous chapters, you learned how to create executors, send tasks based on the
Runnable interface to it, and personalize the executor to adapt it to your needs. In this
chapter, you will learn how to work with tasks based on the Callable and Future
interfaces.

The Callable interface
The Callable interface is very similar to the Runnable interface. The main characteristics
of this interface are:

It's a generic interface. It has a single type parameter that corresponds to the
return type of the call() method.
It declares the call() method. This method will be executed by the executor
when it runs the task. It must return an object of the type specified in the
declaration.
The call() method can throw any checked exception. You can process the
exceptions implementing your own executor and overriding the
afterExecute() method.

The Future interface
When you send a Callable task to an executor, it will return an implementation of the
Future interface that allows you to control the execution and the status of the task and to
get the result. The main characteristics of this interface are:

You can cancel the execution of the task using the cancel() method. This
method has a Boolean parameter to specify whether you want to interrupt the
task whether it's running or not.

Getting Data from Tasks - The Callable and Future Interfaces

[132]

You can check whether the task has been cancelled (with the isCancelled()
method) or has finished (with the isDone() method).
You can get the value returned by the task using the get() method. There are
two variants of this method. The first one doesn't have parameters and returns
the value returned by the task if it has finished its execution. If the task hasn't
finished its execution, it suspends the execution thread until the tasks finish. The
second variant admits two parameters: a period of time and TimeUnit of that
period. The main difference with the first one is that the thread waits for the
period of time passed as a parameter. If the period ends and the task hasn't
finished its execution, the method throws a TimeoutException exception.

First example - a best-matching algorithm
for words
The main objective of a best-matching algorithm for words is to find the words most
similar to a string passed as a parameter. To implement one of these algorithms, you need
the following:

A list of words: In our case, we have used the UK Advanced Cryptics Dictionary
(UKACD), which is a word list compiled for the crossword community. It has
250,353 words and idioms. It can be downloaded for free from
http://www.crosswordman.com/wordlist.html.
A metric to measure the similarity between two words: We have used the
Levenshtein distance that is used to measure the difference between two
sequences of characters. The Levenshtein distance is the minimal number of
insertions, deletions, or substitutions that is necessary to transform the first string
into the second string. You can find a brief description of this metric at
https://en.wikipedia.org/wiki/Levenshtein_distance.

In our example, you will implement two operations:

The first operation returns a list of the most similar words to a character sequence
using the Levenshtein distance.
The second operation determines whether a character sequence exists in our
dictionary using the Levenshtein distance. It would be faster if we used the
equals() method, but our version is a more interesting option for the objectives
of the book.

http://www.crosswordman.com/wordlist.html
https://en.wikipedia.org/wiki/Levenshtein_distance

Getting Data from Tasks - The Callable and Future Interfaces

[133]

You will implement serial and concurrent versions of these operations to verify that
concurrency can help us in this case.

The common classes
In all the tasks implemented in this example, you will use the following three basic classes:

The WordsLoader class that loads the list of words into a list of string objects.
The LevenshteinDistance class that calculates the Levenshtein distance
between two strings.
The BestMatchingData class that stores the results of the best-matching
algorithms. It stores a list of words and the distance of these words with the input
string.

The UKACD is in a file with a word per line, so the WordsLoader class implements the
load() static method that receives the path of the file that contains the list of words and
returns a list of string objects with the 250,353 words.

The LevenshteinDistance class implements the calculate() method that receives two
string objects as parameters and returns an int value with the distance between these two
words. This is the code for this classification:

public class LevenshteinDistance {

 public static int calculate (String string1, String string2) {
 int[][] distances=new
 int[string1.length()+1][string2.length()+1];

 for (int i=1; i<=string1.length();i++) {
 distances[i][0]=i;
 }

 for (int j=1; j<=string2.length(); j++) {
 distances[0][j]=j;
 }

 for(int i=1; i<=string1.length(); i++) {
 for (int j=1; j<=string2.length(); j++) {
 if (string1.charAt(i-1)==string2.charAt(j-1)) {
 distances[i][j]=distances[i-1][j-1];
 } else {
 distances[i][j]=minimum(distances[i-1][j],
 distances[i][j-1],distances[i-1][j-1])+1;
 }

Getting Data from Tasks - The Callable and Future Interfaces

[134]

 }
 }

 return distances[string1.length()][string2.length()];
 }

 private static int minimum(int i, int j, int k) {
 return Math.min(i,Math.min(j, k));
 }
}

The BestMatchingData class has only two attributes: a list of strings to store a list of
words, and an integer attribute named distance to store the distance of these words with
the input string.

A best-matching algorithm - the serial version
First, we are going to implement the serial version of the best-matching algorithm. We are
going to use this version as the starting point for the concurrent one and then we will
compare the execution times of both versions to verify that concurrency helps us to achieve
better performance.

We have implemented the serial version of the best-matching algorithm in the following
two classes:

The BestMatchingSerialCalculation class that calculates the list of the most
similar words to the input string
The BestMatchingSerialMain that includes the main() method, which
executes the algorithm, measures the execution time, and shows the results in the
console

Let's analyze the source code of both classes.

Getting Data from Tasks - The Callable and Future Interfaces

[135]

The BestMatchingSerialCalculation class
This class has only one method, named getBestMatchingWords() that receives two
parameters: a string with the sequence we take as reference and the list of strings with all
the words of the dictionary. It returns a BestMatchingData object with the results of the
algorithm:

public class BestMatchingSerialCalculation {

 public static BestMatchingData getBestMatchingWords(String
 word, List<String> dictionary) {
 List<String> results=new ArrayList<String>();
 int minDistance=Integer.MAX_VALUE;
 int distance;

After the initialization of the internal variables, the algorithm processes all the words in the
dictionary, calculating the Levenshtein distance between these words and the string of
reference. If the calculated distance for a word is less than the actual minimum distance, we
clear the list of results and store the actual word in the list. If the calculated distance for a
word is equal to the actual minimum distance, we add that word to the list of results:

for (String str: dictionary) {
 distance=LevenshteinDistance.calculate(word,str);
 if (distance<minDistance) {
 results.clear();
 minDistance=distance;
 results.add(str);
 } else if (distance==minDistance) {
 results.add(str);
 }
}

Finally, we create the BestMatchingData object to return the results of the algorithm:

 BestMatchingData result=new BestMatchingData();
 result.setWords(results);
 result.setDistance(minDistance);
 return result;
 }

}

Getting Data from Tasks - The Callable and Future Interfaces

[136]

The BestMachingSerialMain class
This is the main class of the example. It loads the UKACD file, calls
getBestMatchingWords() with the string received as a parameter, and shows the results
in the console, including the execution time of the algorithm. Refer to the following code:

public class BestMatchingSerialMain {

 public static void main(String[] args) {

 Date startTime, endTime;
 List<String> dictionary=WordsLoader.load("data/UK Advanced
 Cryptics Dictionary.txt");

 System.out.println("Dictionary Size: "+dictionary.size());

 startTime=new Date();
 BestMatchingData result= BestMatchingSerialCalculation
 .getBestMatchingWords
 (args[0], dictionary);
 List<String> results=result.getWords();
 endTime=new Date();
 System.out.println("Word: "+args[0]);
 System.out.println("Minimum distance: " +result.getDistance());
 System.out.println("List of best matching words: "
 +results.size());
 results.forEach(System.out::println);
 System.out.println("Execution Time: "+(endTime.getTime()-
 startTime.getTime()));
 }

}

Here, we used a new Java 8 language construct, named method reference, and a new
List.forEach() method to output the result. The forEach() method is a terminal
operation which performs a side effect on all elements.

A best-matching algorithm - the first concurrent
version
We have implemented two different concurrent versions of the best-matching algorithm.
The first one is based on the Callable interface and the submit() method defined in the
AbstractExecutorService interface.

Getting Data from Tasks - The Callable and Future Interfaces

[137]

We have implemented this version of the algorithm using the following three classes:

The BestMatchingBasicTask class that implements the tasks that implement
the Callable interface and will be executed in the executor
The BestMatchingBasicConcurrentCalculation class that creates the
executor and necessary tasks and sends them to the executor
The BestMatchingConcurrentMain class that implements the main() method
to execute the algorithm and show the results in the console

Let's see the source code of these classes.

The BestMatchingBasicTask class
As we mentioned before, this class will implement the tasks that will obtain the list of best-
matching words. This task will implement the Callable interface parameterized with the
BestMatchingData class. This means that this class will implement the call() method,
and this method will return a BestMatchingData object.

Each task will process a part of the dictionary and will return the results obtained for that
part. We have used four internal attributes, as follows:

The first position (inclusive) of the dictionary it will analyze
The last position (exclusive) of the dictionary it will analyze
The dictionary as a list of strings
The reference input string

The code for this is the following:

public class BestMatchingBasicTask implements Callable
 <BestMatchingData > {

 private int startIndex;
 private int endIndex;
 private List < String > dictionary;
 private String word;

 public BestMatchingBasicTask(int startIndex, int endIndex,
 List < String > dictionary, String word) {
 this.startIndex = startIndex;
 this.endIndex = endIndex;
 this.dictionary = dictionary;
 this.word = word;
 }

Getting Data from Tasks - The Callable and Future Interfaces

[138]

The call() method processes all the words between the startIndex and endIndex
attributes and calculates the Levenshtein distance between those words and the input
string. It will return only the nearest words to the input string. If during the process, it finds
a word nearer than the previous ones, it clears the result list and adds the new word to that
list. If it finds a word that is at the same distance than the results found up until then, it
adds the word to the result list as follows:

@Override
 public BestMatchingData call() throws Exception {
 List<String> results=new ArrayList<String>();
 int minDistance=Integer.MAX_VALUE;
 int distance;
 for (int i=startIndex; i<endIndex; i++) {
 distance = LevenshteinDistance.calculate(word,dictionary.get(i));
 if (distance<minDistance) {
 results.clear();
 minDistance=distance;
 results.add(dictionary.get(i));
 } else if (distance==minDistance) {
 results.add(dictionary.get(i));
 }
 }

At the end, we create a BestMatchingData object with the list of words we have found
and their distance to the input string, and return that object as follows:

 BestMatchingData result=new BestMatchingData();
 result.setWords(results);
 result.setDistance(minDistance);
 return result;
 }
}

The main difference between the tasks based on the Runnable interface is the return
sentence included in the last line of the method. The run() method doesn't return a value,
so those tasks cannot return a result. The call() method, on the other hand, returns an
object (the class of that object is defined in the implements sentence), so this kind of task can
return a result.

The BestMatchingBasicConcurrentCalculation class
This class is responsible for the creation of the necessary tasks to process the complete
dictionary, the executor to execute those tasks, and to control the execution of the tasks in
the executor.

Getting Data from Tasks - The Callable and Future Interfaces

[139]

It only has one method, getBestMatchingWords(), that receives two input parameters--
the dictionary with the complete list of words and the reference string. It returns a
BestMatchingData object with the results of the algorithm. First, we have created and
initialized the executor. We have used the number of cores of the machine as the maximum
number of threads we want to use on it. Take a look at the following code block:

public class BestMatchingBasicConcurrentCalculation {

 public static BestMatchingData getBestMatchingWords(String
 word, List<String> dictionary) throws InterruptedException,
 ExecutionException {

 int numCores = Runtime.getRuntime().availableProcessors();
 ThreadPoolExecutor executor = (ThreadPoolExecutor)
 Executors.newFixedThreadPool(numCores);

Then, we calculate the size of the parts of the dictionary each task will process and create a
list of Future objects to store the results of the tasks. When you send a task based on the
Callable interface to an executor, you will get an implementation of the Future interface.
You can use that object to:

Know whether the task has been executed
Get the result of the execution of the task (the object returned by the call()
method)
Cancel the execution of the tasks

The code for this is as follows:

int size = dictionary.size();
int step = size / numCores;
int startIndex, endIndex;
List<Future<BestMatchingData>> results = new ArrayList<>();

Then, we create the tasks, send them to the executor using the submit() method, and add
the Future object that method returns to the list of Future objects. The submit() method
returns immediately. It doesn't wait until the task is executed. We have the following code:

for (int i = 0; i < numCores; i++) {
 startIndex = i * step;
 if (i == numCores - 1) {
 endIndex = dictionary.size();
 } else {
 endIndex = (i + 1) * step;
 }
 BestMatchingBasicTask task = new BestMatchingBasicTask(startIndex,

Getting Data from Tasks - The Callable and Future Interfaces

[140]

 endIndex, dictionary, word);
 Future<BestMatchingData> future = executor.submit(task);
 results.add(future);
}

Once we have sent the tasks to the executor, we call the shutdown() method of the
executor to finish its execution and iterate over the list of Future objects to get the results of
each task. We have used the get() method without any parameters. This method returns
the object returned by the call() method if the task has finished its execution. If the task is
not finished, the method puts the calling thread to sleep until the task has finished and the
results are available.

We compose a results list with the results of the tasks, so we will only return the list with
the words nearest to the reference string, as follows:

 executor.shutdown();
 List<String> words=new ArrayList<String>();
 int minDistance=Integer.MAX_VALUE;
 for (Future<BestMatchingData> future: results) {
 BestMatchingData data=future.get();
 if (data.getDistance()<minDistance) {
 words.clear();
 minDistance=data.getDistance();
 words.addAll(data.getWords());
 } else if (data.getDistance()==minDistance) {
 words.addAll(data.getWords());
 }

}

Finally, we create and return a BestMatchingData object with the results of the algorithm:

 BestMatchingData result=new BestMatchingData();
 result.setDistance(minDistance);
 result.setWords(words);
 return result;
 }
}

Getting Data from Tasks - The Callable and Future Interfaces

[141]

The BestMatchingConcurrentMain class is very similar to
BestMatchingSerialMain presented before. The only difference is the
class used (BestMatchingBasicConcurrentCalculation instead of
BestMatchingSerialCalculation), so we don't include the source
code here. Note that we used neither thread-safe data structures nor
synchronization, as our concurrent tasks worked on independent pieces of
data, and the final results were merged in a sequential manner after the
concurrent tasks were terminated.

A best-matching algorithm - the second
concurrent version
We have implemented the second version of the best-matching algorithm using the
invokeAll() method of the AbstractExecutorService (implemented in the
ThreadPoolExecutorClass). In the previous version, we used the submit() method that
receives a Callable object and returns a Future object. The invokeAll() method
receives a List of Callable objects as a parameter and returns a List of Future ones. The
first Future is associated with the first Callable, and so on. There is another important
difference between these two methods. Although the submit() method returns
immediately, the invokeAll() method returns when all the Callable tasks have ended
their execution. This means that all the Future objects returned will return true if you call
their isDone() method.

To implement this version, we have used the BestMatchingBasicTask class implemented
in the previous example and have implemented the
BestMatchingAdvancedConcurrentCalculation class. The differences with the
BestMatchingBasicConcurrentTask class are in the creation of the tasks and in the
process of the results. In the creation of tasks, now we create a list and store it on the tasks
we want to execute:

for (int i = 0; i < numCores; i++) {
 startIndex = i * step;
 if (i == numCores - 1) {
 endIndex = dictionary.size();
 } else {
 endIndex = (i + 1) * step;
 }
 BestMatchingBasicTask task = new BestMatchingBasicTask(startIndex,
 endIndex, dictionary, word);
 tasks.add(task);
}

Getting Data from Tasks - The Callable and Future Interfaces

[142]

To process the results, we call the invokeAll() method and then go over the list of
Future objects returned:

 results = executor.invokeAll(tasks);
 executor.shutdown();
 List<String> words = new ArrayList<String>();
 int minDistance = Integer.MAX_VALUE;
 for (Future<BestMatchingData> future : results) {
 BestMatchingData data = future.get();
 if (data.getDistance() < minDistance) {
 words.clear();
 minDistance = data.getDistance();
 words.addAll(data.getWords());
 } else if (data.getDistance()== minDistance) {
 words.addAll(data.getWords());
 }
 }
 BestMatchingData result = new BestMatchingData();
 result.setDistance(minDistance);
 result.setWords(words);
 return result;
}

To execute this version, we have implemented BestMatchingConcurrentAdvancedMain.
Its source code is very similar to the previous ones, so it's not included.

Word exists algorithm - a serial version
As part of this example, we have implemented another operation to check whether a
String exists in our lists of words. To check whether the word exists or not, we use the
Levenshtein distance again. We consider that a word exists if it has a distance of 0 with a
word of the list. It would be faster if we make the comparison using the equals() or
equalsIgnoreCase() methods or reading the input words into a HashSet and using the
contains() method (much more efficient than our version), but we consider that our
version will be more useful for the purposes of the book.

As in previous examples, first, we have implemented the serial version of the operation to
use it as a base to implement the concurrent one and compare the execution times of both
versions.

Getting Data from Tasks - The Callable and Future Interfaces

[143]

To implement the serial version, we have used two classes:

The ExistSerialCalculation class, which implements the existWord()
method that compares the input string with all the words in the dictionary until it
finds it
The ExistSerialMain class, which launches the examples and measures the
execution time

Let's analyze the source code of both classes.

The ExistSerialCalculation class
This class has only one method, that is, the existWord() method. It receives two
parameters--the word we are looking for and the complete list of words. It goes over the full
list, which calculates the Levenshtein distance between the input word and the words in the
list until it finds the word (the distance is 0), in which case it returns the true value, or it
finishes the list of words without finding the word, in which case it returns the false value.
Refer to the following code block:

public class ExistSerialCalculation {

 public static boolean existWord(String word, List<String>
 dictionary) {
 for (String str: dictionary) {
 if (LevenshteinDistance.calculate(word, str) == 0) {
 return true;
 }
 }
 return false;
 }
}

The ExistSerialMain class
This class implements the main() method to call the exist() method. It gets the first
parameter of the main method as the word we want to look for and calls that method. It
measures its execution time and shows the results in the console. We have the following
code:

public class ExistSerialMain {

 public static void main(String[] args) {

Getting Data from Tasks - The Callable and Future Interfaces

[144]

 Date startTime, endTime;
 List<String> dictionary=WordsLoader.load("data/UK Advanced
 Cryptics Dictionary.txt");

 System.out.println("Dictionary Size: "+dictionary.size());

 startTime=new Date();
 boolean result=ExistSerialCalculation.existWord(args[0],
 dictionary);
 endTime=new Date();

 System.out.println("Word: "+args[0]);
 System.out.println("Exists: "+result);
 System.out.println("Execution Time: "+(endTime.getTime()-
 startTime.getTime()));
 }
}

Word exists algorithm - the concurrent version
To implement the concurrent version of this operation, we have to take into account its
most important characteristic. We don't need to process the whole list of words. When we
find the word, we can finish the process of the list and return the result. This operation,
which does not process the whole input data and stops when a condition is fulfilled, is
called short-circuit operation.

The AbstractExecutorService interface defines an operation (implemented in the
ThreadPoolExecutor class) that fits perfectly with this idea. It's the invokeAny()
method. This method sends the list of Callable tasks that it receives as a parameter to the
executor and returns the result of the first task that has finished its execution without
throwing an exception. If all the tasks throw an exception, this method throws an
ExecutionException exception.

As in previous examples, we have implemented different classes to implement this version
of the algorithm:

The ExistBasicTask class that implements the tasks we are going to execute in
the executor
The ExistBasicConcurrentCalculation class that creates the executor and
the tasks, and sends the tasks to the executor
The ExistBasicConcurrentMain class that executes the examples, measuring
their running time

Getting Data from Tasks - The Callable and Future Interfaces

[145]

The ExistBasicTasks class
This class implements the tasks that are going to search for the word. It implements the
Callable interface parameterized with the Boolean class. The call() method will return
the true value if the task finds the word. It uses four internal attributes:

The complete list of words
The first word (included) in the list the task will process
The last word (excluded) in the list the task will process
The word the task will look for

We have the following code:

public class ExistBasicTask implements Callable<Boolean> {

 private int startIndex;
 private int endIndex;
 private List<String> dictionary;
 private String word;

 public ExistBasicTask(int startIndex, int endIndex,
 List<String> dictionary, String word) {
 this.startIndex=startIndex;
 this.endIndex=endIndex;
 this.dictionary=dictionary;
 this.word=word;
 }

The call method will traverse the part of the list assigned to this task. It calculates the
Levenshtein distance between the input word and the words of the list. If it finds the word,
it will return the true value.

If the task processes all of its words and it doesn't find the word, it will throw an exception
to adapt to the behavior of the invokeAny() method. If the task returns the false value in
this case, the invokeAny() method will return the false value without waiting for the rest
of the tasks. Maybe other tasks will find the word.

Getting Data from Tasks - The Callable and Future Interfaces

[146]

We have the following code:

 @Override
 public Boolean call() throws Exception {
 for (int i=startIndex; i<endIndex; i++) {
 if (LevenshteinDistance.calculate(word, dictionary.get(i))==0) {
 return true;
 }
 }
 if (Thread.interrupted()) {
 return false;
 }
 throw new NoSuchElementException("The word "+word+"
 doesn't exists.");
}

The ExistBasicConcurrentCalculation class
This class will execute the search of the input word in the full list of words, creating and
executing the necessary tasks. It only implements one method, named existWord(). It
receives two parameters, the input string and the complete list of words, and returns a
Boolean value indicating whether the word exists or not.

First, we create the executor to execute the tasks. We use the Executor class and create a
ThreadPoolExecutor class with a maximum of threads determined by the number of
available hardware threads of the machine, as follows:

public class ExistBasicConcurrentCalculation {

 public static boolean existWord(String word, List<String> dictionary)
 throws InterruptedException, ExecutionException{
 int numCores = Runtime.getRuntime().availableProcessors();
 ThreadPoolExecutor executor = (ThreadPoolExecutor)
 Executors.newFixedThreadPool(numCores);

Then, we create the same number of tasks as the threads are running in the executor. Each
task will process an equal part of the list of words. We create the tasks and store them in a
list:

int size = dictionary.size();
int step = size / numCores;
int startIndex, endIndex;
List<ExistBasicTask> tasks = new ArrayList<>();

for (int i = 0; i < numCores; i++) {
 startIndex = i * step;

Getting Data from Tasks - The Callable and Future Interfaces

[147]

 if (i == numCores - 1) {
 endIndex = dictionary.size();
 } else {
 endIndex = (i + 1) * step;
 }
 ExistBasicTask task = new ExistBasicTask(startIndex, endIndex,
 dictionary, word);
 tasks.add(task);
}

Then, we use the invokeAny() method to execute the tasks in the executor. If the methods
return a Boolean value, the word exists. We return that value. If the method throws an
exception, the word doesn't exist. We print the exception in the console and return the
false value. In both cases, we call the shutdown() method of the executor to terminate its
execution, as follows:

 try {
 Boolean result=executor.invokeAny(tasks);
 return result;
 } catch (ExecutionException e) {
 if (e.getCause() instanceof NoSuchElementException)
 return false;
 throw e;
 } finally {
 executor.shutdown();
 }
 }
}

Instead of using the shutdown() method, we can use the shutdownNow() method. The
main difference between the methods is that the shutdown() method executes all pending
tasks before terminating the execution of the Executor, while the shutdownNow() method
doesn't execute pending tasks.

The ExistBasicConcurrentMain class
This class implements the main() method of this example. It's equal to the
ExistSerialMain class with one difference, it uses the
ExistBasicConcurrentCalculation class instead of the ExistSerialCalculation, so
its source code is not included.

Getting Data from Tasks - The Callable and Future Interfaces

[148]

Comparing the solutions
Let's compare the different solutions (serial and concurrent) of the two operations we have
implemented in this section. We have executed the examples using the JMH framework
(http://openjdk.java.net/projects/code-tools/jmh/) that allows you to implement
micro benchmarks in Java. Using a framework for benchmarking is a better solution which
simply measures time using such methods as currentTimeMillis() or nanoTime(). We
have executed them 10 times in two different architectures:

A computer with an Intel Core i5-5300 CPU with Windows 7 and 16 GB of RAM.
This processor has two cores and each core can execute two threads, so we will
have four parallel threads.
A computer with an AMD A8-640 APU with Windows 10 and 8 GB of RAM. This
processor has four cores.

Best-matching algorithms
In this case, we have implemented three versions of the algorithm:

The serial version
The concurrent version, sending a task one at a time
The concurrent version, using the invokeAll() method

To test the algorithms, we have used three different strings that don't exist in the list of
words:

Stitter

Abicus

Lonx

These are the words returned by the best-matching algorithm for each word:

Stitter: sitter, skitter, slitter, spitter, stilter, stinter, stotter,
stutter, and titter
Abicus: abacus and amicus
Lonx: lanx, lone, long, lox, and lynx

http://openjdk.java.net/projects/code-tools/jmh/

Getting Data from Tasks - The Callable and Future Interfaces

[149]

The median execution times in milliseconds are discussed in the following table:

We can draw the following conclusions:

The concurrent versions of the algorithm achieve a better performance than the
serial one in both architectures.
The concurrent versions of the algorithm obtain similar results between them. We
can compare the concurrent version method with the serial version using the
speed-up for the word Lonx to see how concurrency improves the performance
of our algorithm:

Exist algorithms
In this case, we have implemented two versions of the algorithms:

The serial version
The concurrent version, using the invokeAny() method

Getting Data from Tasks - The Callable and Future Interfaces

[150]

To test the algorithm, we have used some strings:

The string xyzt that doesn't exist in the list of words
The string stutter that exists in the list of words near the end of the list
The string abacus that exists in the list of words very close to the start of the list
The string lynx that exists in the list of words just after the second half of the list

The median execution times in milliseconds are shown in the following diagram:

We can draw the following conclusions:

In general, the concurrent version of the algorithm provides better performance
than the serial one.
The position of a word in the list is a critical factor. With the word abacus, which
appears at the beginning of the list, both algorithms give a similar execution time;
but with the word stutter, the difference is very large.

Getting Data from Tasks - The Callable and Future Interfaces

[151]

If we compare the concurrent version with the serial one for the word lynx using the
speed-up, the result is:

The second example - creating an inverted
index for a collection of documents
In the information retrieval world, an inverted index is a common data structure used to speed
up the searches of text in a collection of documents. It stores all the words of the document
collection and a list of the documents that contain that word.

To construct the index, we have to parse all the documents of the collection and construct
the index in an incremental way. For every document, we extract the significant words of
that document (deleting the most common words, also called stop words, and maybe
applying a stemming algorithm) and then add those words to the index. If a word exists in
the index, we add the document to the list of documents associated with that word. If a
word doesn't exist, add the word to the list of words of the index and associate the
document to that word. You can add parameters to the association as the term frequency of
the word in the document that provides you more information.

When you make a search of a word or a list of words in the document collection, you use
the inverted index to obtain the list of documents associated with each word and create a
unique list with the results of the search.

In this section, you will learn how to use Java concurrency utilities to construct an inverted
index file for a collection of documents. As document collection, we have taken the
Wikipedia pages with information about movies to construct a set of 100,673 documents.
We have converted each Wikipedia page into a text file. You can download this document
collection with the code of this book.

Getting Data from Tasks - The Callable and Future Interfaces

[152]

To construct the inverted index, we don't delete any words and don't use any stemming
algorithms either. We want to keep the algorithm as simple as possible to focus attention on
the concurrency utilities.

The same principles explained here can be used to obtain other information about a
document collection, for example, a vector representation of every document that can be
used as an input for a clustering algorithm, as you will learn in Chapter 7, Optimizing
Divide and Conquer Solutions - The Fork/Join Framework.

As with other examples, you will implement serial and concurrent versions of these
operations to verify that concurrency can help us in this case.

Common classes
Both versions, serial and concurrent, have in common the classes to load the document
collection into a Java object. We have used the following two classes:

The Document class that stores the list of words contained in the document
The DocumentParse class that converts a document stored in a file in a
document object

Let's analyze the source code of both classes.

The Document class
The Document class is very simple. It has only two attributes and the methods to get and set
the values of those attributes. These attributes are:

The name of the file, as a string.
The vocabulary (that is, the list of words used in the document) as a HashMap.
The key is the words, and the values are the number of times the word appears in
the document.

Getting Data from Tasks - The Callable and Future Interfaces

[153]

The DocumentParser class
As we mentioned earlier, this class converts a document stored in a file in a document into a
Document object. It splits this word into three methods. The first one is the parse()
method that receives the path to the file as a parameter and returns a HashMap with the
vocabulary of that document. This method reads all the lines of the file using the
readAllLines() method of the Files class and uses the parseLine() method to convert
each line into a list of words and add them to the vocabulary, as follows:

public class DocumentParser {

 public Map<String, Integer> parse(String route) {
 Map<String, Integer> ret=new HashMap<String,Integer>();
 Path file=Paths.get(route);
 try {
 List<String> lines = Files.readAllLines(file);
 for (String line : lines) {
 parseLine(line,ret);
 }
 } catch (IOException e) {
 e.printStackTrace();
 }
 return ret;

 }

The parseLine() method processes the line, extracting its words. We consider that a word
is a sequence of alphabetical characters to continue with the simplicity of this example. We
have used the Pattern class to extract the words and the Normalizer class to convert the
words to lowercase and delete the accents of the vowel, as follows:

private static final Pattern PATTERN = Pattern.compile
 ("\\P{IsAlphabetic}+");

 private void parseLine(String line, Map<String, Integer> ret) {
 for(String word: PATTERN.split(line)) {
 if(!word.isEmpty())
 ret.merge(Normalizer.normalize(word, Normalizer.Form.NFKD)
 .toLowerCase(), 1, (a, b) -> a+b);
 }
}

Getting Data from Tasks - The Callable and Future Interfaces

[154]

The serial version
The serial version of this example is implemented in the SerialIndexing class. This class
has the main() method that reads all the documents, gets their vocabulary, and constructs
the inverted index in an incremental way.

First, we initialize the necessary variables. The collection of documents is stored in the data
directory, so we store all the documents in an array of File objects. We also initialize the
invertedIndex object. We use a HashMap, where the keys are the words and the values
are a list of strings with the name of the files that contain the word, as follows:

public class SerialIndexing {

 public static void main(String[] args) {

 Date start, end;
 File source = new File("data");
 File[] files = source.listFiles();
 Map<String, List<String>> invertedIndex=new
 HashMap<String,List<String>> ();

Then, we parse all the documents using the DocumentParse class and use the
updateInvertedIndex() method to add the vocabulary obtained from each document
into the inverted index. We measure the execution time of all the processes. We have the
following code:

start=new Date();
for (File file : files) {

 DocumentParser parser = new DocumentParser();

 if (file.getName().endsWith(".txt")) {
 Map<String, Integer> voc = parser.parse(file.getAbsolutePath());
 updateInvertedIndex(voc,invertedIndex, file.getName());
 }
}
end=new Date();

Finally, we show the results of the execution in the console:

 System.out.println("Execution Time: "+(end.getTime()-
 start.getTime()));
 System.out.println("invertedIndex: "+invertedIndex.size());
}

Getting Data from Tasks - The Callable and Future Interfaces

[155]

The updateInvertedIndex() method adds the vocabulary of a document into the
inverted index structure. It processes all the words that form the vocabulary. If the word
exists in the inverted index, we add the name of the document to the list of documents
associated with that word. If the word doesn't exist, we add the word and associate the
document with that word, as follows:

private static void updateInvertedIndex(Map<String, Integer> voc,
 Map<String, List<String>> invertedIndex, String fileName) {
 for (String word : voc.keySet()) {
 if (word.length() >= 3) {
 invertedIndex.computeIfAbsent(word, k -> new
 ArrayList<>()).add(fileName);
 }
 }
}

The first concurrent version - a task per
document
Now it's time to implement the concurrent version of the text indexing algorithm. Clearly,
we can parallelize the process of every document. This includes reading the document from
the file and processing every line to get the vocabulary of the document. The tasks can
return that vocabulary as their result, so we can implement tasks based in the Callable
interface.

In the previous example, we used three methods to send Callable tasks to the executor:

submit()

invokeAll()

invokeAny()

We have to process all the documents, so we have to discard the invokeAny() method. The
other two methods are inconvenient. If we use the submit() method, we have to decide
when we process the results of the task. If we send a task per document, we can process the
results:

After sending every task, this is nonviable
After the finalization of all the tasks, we have to store a lot of Future objects
After sending a group of tasks, we have to include code to synchronize both
operations

Getting Data from Tasks - The Callable and Future Interfaces

[156]

All these approaches have a problem--we process the results of the tasks in a sequential
way. If we use the invokeAll() method, we are in a situation similar to point 2. We have
to wait for the finalization of all the tasks.

One possible option is to create other tasks to process the Future objects associated with
every task, and the Java concurrency API provides us with an elegant mechanism to
implement this solution with the CompletionService interface and its implementation,
the ExecutorCompletionService class.

A CompletionService object is a mechanism that has an executor and allows you to
decouple the production of tasks and the consumption of the results of those tasks. You can
send tasks to the executor using the submit() method and get the results of the tasks when
they finish using the poll() or take() methods. So, for our solution, we are going to
implement the following elements:

A CompletionService object to execute the tasks.
A task per document to parse the document and generate its vocabulary. This
task will be executed by the CompletionService object. These tasks are
implemented in the IndexingTask class.
Two threads to process the results of the tasks and construct the inverted index.
These threads are implemented in the InvertedIndexTask class.
A main() method to create and execute all the elements. This main() method is
implemented in the ConcurrentIndexingMain class.

Let's analyze the source code of these classes.

The IndexingTask class
This class implements the tasks that will parse a document to obtain its vocabulary. It
implements the Callable interface parameterized with the Document class. It has an
internal attribute to store the File object that represents the document it has to parse. Take
a look at the following code:

public class IndexingTask implements Callable<Document> {
 private File file;
 public IndexingTask(File file) {
 this.file=file;
 }

Getting Data from Tasks - The Callable and Future Interfaces

[157]

In the call() method, it simply uses the parse() method of the DocumentParser class to
parse the document and obtain the vocabulary and create and return the Document object
with the data obtained:

 @Override
 public Document call() throws Exception {
 DocumentParser parser = new DocumentParser();

 Map<String, Integer> voc = parser.parse(file.getAbsolutePath());

 Document document=new Document();
 document.setFileName(file.getName());
 document.setVoc(voc);
 return document;
 }
}

The InvertedIndexTask class
This class implements the tasks that get the Document objects generated by the
IndexingTask objects and construct the inverted index. These tasks will be executed as
Thread objects (we don't use an executor in this case), so they are based in the Runnable
interface.

The InvertedIndexTask class uses three internal attributes:

A CompletionService object parameterized with the Document class to get
access to the objects returned by the IndexingTask objects.
A ConcurrentHashMap to store the inverted index. The keys are the words and
the values are ConcurrentLinkedDeque of String with the names of the files.
In this case, we have to use concurrent data structures, and the ones used in the
serial version are not synchronized.
A Boolean value to indicate to the task that it can finish its work.

The code for this is as follows:

public class InvertedIndexTask implements Runnable {

 private CompletionService<Document> completionService;
 private ConcurrentHashMap<String,
 ConcurrentLinkedDeque<String>> invertedIndex;
 public InvertedIndexTask(CompletionService<Document>
 completionService, ConcurrentHashMap<String,
 ConcurrentLinkedDeque<String>> invertedIndex) {

Getting Data from Tasks - The Callable and Future Interfaces

[158]

 this.completionService = completionService;
 this.invertedIndex = invertedIndex;

 }

The run() method uses the method take() from CompletionService to obtain the
Future object associated with a task. We implement a loop that will be running until the
thread is interrupted. Once the thread has been interrupted, it processes all the pending
Future objects using the poll() method. We update the inverted index using the
updateInvertedIndex() method with the object returned by the take() method. We
have the following method:

public void run() {
 try {
 while (!Thread.interrupted()) {
 try {
 Document document = completionService.take().get();
 updateInvertedIndex(document.getVoc(), invertedIndex,
 document.getFileName());
 } catch (InterruptedException e) {
 break;
 }
 }
 while (true) {
 Future<Document> future = completionService.poll();
 if (future == null)
 break;
 Document document = future.get();
 updateInvertedIndex(document.getVoc(), invertedIndex,
 document.getFileName());
 }
 } catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
 }
 }

Finally, the updateInvertedIndex method receives the vocabulary obtained from a
document, the inverted index, and the name of the file that has been processed as
parameters. It processes all the words from the vocabulary. We use the
computeIfAbsent() method to add the word to invertedIndex if it's not present:

private void updateInvertedIndex(Map<String, Integer> voc,
 ConcurrentHashMap<String, ConcurrentLinkedDeque<String>>
 invertedIndex, String fileName) {
 for (String word : voc.keySet()) {
 if (word.length() >= 3) {
 invertedIndex.computeIfAbsent(word, k -> new

Getting Data from Tasks - The Callable and Future Interfaces

[159]

 ConcurrentLinkedDeque<>()).add(fileName);
 }
 }
}

The ConcurrentIndexing class
This is the main class in the example. It creates and launches all the components, waits for
its finalization, and prints the final execution time in the console.

First, it creates and initializes all the variables needed for its execution:

An executor to run the InvertedTask tasks. As with the previous examples, we
use the number of cores of the machine as the maximum number of work threads
in the executor, but in this case, we leave one core to execute the independent
threads.
A CompletionService object to run the tasks. We use the executor created
before to initialize this object.
A ConcurrentHashMap to store the inverted index.
An array of File objects with all the documents we have to process.

We have the following method:

public class ConcurrentIndexing {

 public static void main(String[] args) {

 int numCores=Runtime.getRuntime().availableProcessors();
 ThreadPoolExecutor executor=(ThreadPoolExecutor)
 Executors.newFixedThreadPool(Math.max(numCores-1, 1));
 ExecutorCompletionService<Document> completionService=new
 ExecutorCompletionService<>(executor);
 ConcurrentHashMap<String, ConcurrentLinkedDeque<String>>
 invertedIndex=new ConcurrentHashMap
 <String,ConcurrentLinkedDeque<String>> ();

 Date start, end;

 File source = new File("data");
 File[] files = source.listFiles();

Getting Data from Tasks - The Callable and Future Interfaces

[160]

Then, we process all the files of the array. For every file, we create an InvertedTask object
and send it to the CompletionService class using the submit() method. We have
introduced a mechanism to avoid the overload of the Executor. We check the size of the
queue of pending tasks and if it has a size bigger than 1000, we sleep the thread so we don't
send more tasks while that size isn't decreasing:

start=new Date();
for (File file : files) {
 IndexingTask task=new IndexingTask(file);
 completionService.submit(task);
 if (executor.getQueue().size()>1000) {
 do {
 try {
 TimeUnit.MILLISECONDS.sleep(50);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 } while (executor.getQueue().size()>1000);
 }
}

Then, we create two InvertedIndexTask objects to process the results returned by the
InvertedTask tasks and execute them as normal Thread objects:

InvertedIndexTask invertedIndexTask=new InvertedIndexTask
 (completionService,invertedIndex);
Thread thread1=new Thread(invertedIndexTask);
thread1.start();
InvertedIndexTask invertedIndexTask2=new InvertedIndexTask
 (completionService,invertedIndex);
Thread thread2=new Thread(invertedIndexTask2);
thread2.start();

Once we have launched all the elements, we wait for the finalization of the executor using
the shutdown() and the awaitTermination() methods. The awaitTermination()
method will return when all the InvertedTask tasks have finished its execution, so we can
finish the threads that execute the InvertedIndexTask tasks. To do this, we interrupt
these threads (see my comment about InvertedIndexTask), as shown in the following
code snippet:

executor.shutdown();
try {
 executor.awaitTermination(1, TimeUnit.DAYS);
 thread1.interrupt();
 thread2.interrupt();
 thread1.join();

Getting Data from Tasks - The Callable and Future Interfaces

[161]

 thread2.join();
} catch (InterruptedException e) {
 e.printStackTrace();
}

Finally, we write the size of the inverted index and the execution time of all the processes in
the console:

 end=new Date();
 System.out.println("Execution Time: "+(end.getTime()-
 start.getTime()));
 System.out.println("invertedIndex: "+invertedIndex.size());
 }

}

The second concurrent version - multiple
documents per task
We have implemented a second concurrent version of this example. The basic principles are
the same as the first version, but in this case, each task will process more than one
document instead of only one. The number of documents processed by each task will be an
input parameter of the main method. We have tested the results with 100, 1000, and 5000
documents per task.

To implement this new approach, we are going to implement three new classes:

The MultipleIndexingTask class, which is equivalent to the IndexingTask
class, but it will process a list of documents instead of only one
The MultipleInvertedIndexTask class, which is equivalent to the
InvertedIndexTask class, but now the tasks will retrieve a list of Document
objects instead of only one
The MultipleConcurrentIndexing class, which is equivalent to the
ConcurrentIndexing class but using the new classes

As much of the source code is similar to the previous version, we only show the differences.

Getting Data from Tasks - The Callable and Future Interfaces

[162]

The MultipleIndexingTask class
As we mentioned earlier, this class is similar to the IndexingTask class presented before.
The main difference is that it uses a list of File objects instead of only one file:

public class MultipleIndexingTask implements Callable<List<Document>> {

 private List<File> files;

 public MultipleIndexingTask(List<File> files) {
 this.files = files;
 }

The call() method returns a list of Document objects instead of only one:

 @Override
 public List<Document> call() throws Exception {
 List<Document> documents = new ArrayList<Document>();
 for (File file : files) {
 DocumentParser parser = new DocumentParser();

 Hashtable<String, Integer> voc = parser.parse
 (file.getAbsolutePath());

 Document document = new Document();
 document.setFileName(file.getName());
 document.setVoc(voc);

 documents.add(document);
 }

 return documents;
 }
}

The MultipleInvertedIndexTask class
As we mentioned before, this class is similar to InvertedIndexClass presented earlier.
The main difference is in the run() method. The Future object returned by the poll()
method returns a list of Document objects, so we have to process the whole list. Take a look
at the following code snippet:

@Override
 public void run() {
 try {
 while (!Thread.interrupted()) {

Getting Data from Tasks - The Callable and Future Interfaces

[163]

 try {
 List<Document> documents = completionService.take().get();
 for (Document document : documents) {
 updateInvertedIndex(document.getVoc(), invertedIndex,
 document.getFileName());
 }
 } catch (InterruptedException e) {
 break;
 }
 }
 while (true) {
 Future<List<Document>> future = completionService.poll();
 if (future == null)
 break;
 List<Document> documents = future.get();
 for (Document document : documents) {
 updateInvertedIndex(document.getVoc(), invertedIndex,
 document.getFileName());
 }
 }
 } catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
 }
 }

The MultipleConcurrentIndexing class
As we mentioned earlier, this class is similar to the ConcurrentIndexing class. The only
difference is the utilization of the new classes and the use of the first parameter to
determine the number of documents processed per task. We have the following method:

start=new Date();
List<File> taskFiles=new ArrayList<>();
for (File file : files) {
 taskFiles.add(file);
 if (taskFiles.size()==NUMBER_OF_TASKS) {
 MultipleIndexingTask task=new MultipleIndexingTask(taskFiles);
 completionService.submit(task);
 taskFiles=new ArrayList<>();
 if (executor.getQueue().size()>10) {
 do {
 try {
 TimeUnit.MILLISECONDS.sleep(50);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 } while (executor.getQueue().size()>10);

Getting Data from Tasks - The Callable and Future Interfaces

[164]

 }
 }
}
if (taskFiles.size()>0) {
 MultipleIndexingTask task=new MultipleIndexingTask(taskFiles);
 completionService.submit(task);
}

MultipleInvertedIndexTask invertedIndexTask=new
 MultipleInvertedIndexTask(completionService,invertedIndex);
Thread thread1=new Thread(invertedIndexTask);
thread1.start();
MultipleInvertedIndexTask invertedIndexTask2=new
 MultipleInvertedIndexTask (completionService,invertedIndex);
Thread thread2=new Thread(invertedIndexTask2);
thread2.start();

Comparing the solutions
Let's compare the solutions of the three versions of the example we have implemented. As
we mentioned earlier, as document collection, we have taken the Wikipedia pages with
information about movies to construct a set of 100,673 documents. We have converted each
Wikipedia page into a text file. You can download this document collection with all the
information about the book.

We have executed five different versions of the solutions:

The serial version
The concurrent version with one task per document
The concurrent version with multiple tasks per document, with 100, 1,000, and
5,000 documents per task

We have executed the examples using the JMH framework
(http://openjdk.java.net/projects/code-tools/jmh/) that allows you to implement
micro benchmarks in Java. Using a framework for benchmarking is a better solution that
simply measures time using methods such as currentTimeMillis() or nanoTime(). We
have executed them 10 times in two different architectures:

A computer with an Intel Core i5-5300 CPU with Windows 7 and 16 GB of RAM.
This processor has two cores and each core can execute two threads, so we will
have four parallel threads.
A computer with an AMD A8-640 APU with Windows 10 and 8 GB of RAM. This
processor has four cores.

http://openjdk.java.net/projects/code-tools/jmh/

Getting Data from Tasks - The Callable and Future Interfaces

[165]

The following table shows the execution time of the five versions:

We can draw the following conclusions:

Concurrent versions almost always obtain better performance than the serial one
For the concurrent versions, if we increase the number of documents per task, we
obtain better results

In this example, there's a big difference between the two architectures, but take into account
the fact that other factors, such as the hard disk, the memory space, and speed have a very
big influence on the results of this example, as it reads more than 100,000 files and uses
memory intensively.

If we compare the concurrent version with the serial one using the speed-up, the results are:

Getting Data from Tasks - The Callable and Future Interfaces

[166]

Other methods of interest
In this chapter, we have used some methods of the AbstractExecutorService interface
(implemented in the ThreadPoolExecutor class) and CompletionService interfaces
(implemented in the ExecutorCompletionService) to manage the results of Callable
tasks. However, there are other versions of the methods we have used and other methods
we want to mention here.

Let's discuss the following methods about the AbstractExecutorService interface:

invokeAll (Collection<? extends Callable<T>> tasks, long

timeout, TimeUnit unit): This method returns a list of Future objects
associated with the list of Callable tasks passed as parameters when all the
tasks have finished their execution or the timeout specified by the second and
third parameters expires.
invokeAny (Collection<? Extends Callable<T>> tasks, long

timeout, TimeUnit unit): This method returns the result of the first task of
the list of Callable tasks passed as a parameter that finishes their execution
without throwing an exception if they finish before the timeout specified by the
second and third parameters expires. If the timeout expires, the method throws a
TimeoutException exception.

Let's discuss the following methods about the Compl0065tionService interface:

The poll() method: We have used a version of this method with two
parameters, but there is also a version without parameters. From the internal data
structures, this version retrieves and removes the Future object of the next task
that has finished since the last call to the poll() or take() methods. If no tasks
have finished, its execution returns a null value.
The take() method: This method is similar to the previous one, but if no tasks
have finished, it sleeps the thread until one task finishes its execution.

Getting Data from Tasks - The Callable and Future Interfaces

[167]

Summary
In this chapter, you learned the different mechanisms that you can use to work with tasks
that return a result. These tasks are based on the Callable interface, which declares the
call() method. This is a parameterized interface with the class returned by the call
method.

When you execute a Callable task in an executor, you will always obtain an
implementation of the Future interface. You can use this object to cancel the execution of
the task, know if the task has finished its execution, or get the result returned by the call()
method.

You send Callable tasks to the executor using three different methods. With the
submit() method, you send one task, and you will immediately get a Future object
associated with this task. With the invokeAll() method, you send a list of tasks and will
get a list of Future objects when all the tasks have finished their execution. With the
invokeAny() method, you send a list of tasks, and you will receive the result (not a
Future object) of the first task that finishes without throwing an exception. The rest of the
tasks are canceled.

The Java concurrency API provides another mechanism to work with these kinds of tasks.
This mechanism is defined in the CompletionService interface and implemented in the
ExecutorCompletionService class. This mechanism allows you to decouple the
execution of tasks and the processing of their results. The CompletionService interface
works internally with an executor and provides the submit() method to send tasks to the
CompletionService interface, and the poll() and take() methods to get the results of
the tasks. These results are provided in the same order in which tasks finish their execution.

You also learned to implement these concepts with two real-world examples. First, a best-
matching algorithm using the UKACD dataset and, second, an inverted index constructor
using a dataset with more than 100,000 documents with information about movies extracted
from Wikipedia.

In the next chapter, you will learn how to execute algorithms in a concurrent way that can
be divided into phases. The main characteristic of these phases is that you must finish one
completely before you can start the next one. Java concurrency API provides the Phaser
class to facilitate the concurrent implementation of these algorithms. It allows you to
synchronize all the tasks involved in it at the end of a phase, so none of them will start the
next one until all have finished the current one.

6
Running Tasks Divided into
Phases - The Phaser Class

The most important element in a concurrent API is the synchronization mechanism it offers
to the programmer. Synchronization is the coordination of two or more tasks to get the
desired result. You can synchronize the execution of two or more tasks, when they have to
be executed in a predefined order, or synchronize the access to a shared resource, when
only one thread at a time can execute a fragment of code or modify a block of memory. The
Java 9 concurrency API provides a lot of synchronization mechanisms, from the basic
synchronized keyword and the Lock interface and their implementations, to protect a
critical section, to the more advanced CyclicBarrier or CountDownLatch classes, which
allow you to synchronize the order of execution of different tasks. In Java 7, the concurrency
API introduces the Phaser class. This class provides a powerful mechanism (phaser) to
execute tasks divided into phases. The task can ask the Phaser class to wait until all other
participants finish the phase. In this chapter, we will cover the following topics:

An introduction to the Phaser class
First example - a keyword extraction algorithm
Second example - a genetic algorithm

Running Tasks Divided into Phases - The Phaser Class

[169]

An introduction to the Phaser class
The Phaser class is a synchronization mechanism designed to control the execution of
algorithms that can be divided into phases in a concurrent way. If you have a process with
clearly defined steps, so you have to finish the first one before you can start the second one,
and so on, you can use this class to make a concurrent version of your process. The main
characteristics of the Phaser class are:

The phaser must know the number of tasks it has to control. Java refers to this as
the registration of the participants. A participant can register in a phaser any
time.
The tasks must inform the phaser when they finish a phase. The phaser will make
that task sleep until all the participants have finished that phase.
Internally, the phaser saves an integer number that stores the number of phase
changes the phase has made.
A participant can leave the control of the phaser any time. Java refers to this as
deregistering the participants.
You can execute custom code when the phaser makes a phase change.
You can control the termination of the phaser. If a phaser is terminated, no new
participants will be accepted and no synchronization between tasks will be made.
You can use some methods to know the status and the number of participants of
a phaser.

Registration and deregistration of participants
As we mentioned before, a phaser must know the number of tasks it has to control. It has to
know how many different threads are executing the phase-divided algorithm to control the
simultaneous phase change in a correct way.

Java refers to this process as the registration of participants. The normal situation is that
participants are registered at the beginning of the execution, but a participant can be
registered any time.

Running Tasks Divided into Phases - The Phaser Class

[170]

You can register a participant using different methods:

When you create the Phaser object: The Phaser class provides four different
constructors. Two of them are commonly used:

phaser(): This constructor creates a phaser with zero participants
phaser(int parties): This constructor creates a phaser with the
given number of participants

Explicitly, using one of these methods:
bulkRegister(int parties): Register the given number of new
participants at the same time
register(): Register one new participant

When one of the tasks controlled by the phaser finishes its execution, it must deregister
from the phaser. If you don't do this, the phaser will wait endlessly for it in the next phase
change. To deregister a participant, you can use this arriveAndDeregister()method.
You use this method to indicate to the phaser that this task has finished the current phase
and it won't participate in the next phases.

Synchronizing phase change
The main purpose of the phaser is to allow the implementation of algorithms that are
clearly divided into phases in a concurrent way. None of the tasks can advance to the next
phase until all the tasks have finished the previous phase. The Phaser class provides three
methods to signal that the task has finished the phase: arrive(),
arriveAndDeregister(), and arriveAndAwaitAdvance(). If one of the tasks doesn't
call one of these methods, the rest of the participant tasks will be blocked by the phaser
indefinitely. To advance to the next phase, the following methods are used:

arriveAndAwaitAdvance(): A task uses this method to indicate to the phaser
that it has finished the current phase and wants to continue with the next one.
The phaser will block the tasks until all the participant tasks have called one of
the synchronization methods.
awaitAdvance(int phase): A task uses this method to indicate to the phaser
that it wants to wait for the finalization of the current phase if the number we
pass as a parameter and the actual phase of the phaser are equal. If they aren't
equal, this method returns immediately.

Running Tasks Divided into Phases - The Phaser Class

[171]

Other functionalities
When all the participant tasks have finished the execution of a phase and before they
continue with the next one, the Phaser class executes the onAdvance() method. This
method receives the following two parameters:

phase: This is the number of the phase that has finished. The first phase is the
number zero.
registeredParties: This indicates the number of participant tasks.

If you want to execute some code between two phases, for example, to sort or to transform
some data, you can implement your own phaser, extending the Phaser class and
overriding this method.

A phaser can be in two states:

Active: The phaser enters into this state when it's created and new participants
are registered and continues on it until its termination. When it's in this state, it
accepts new participants and works as explained before.
Termination: The phaser enters into this state when the onAdvance() method
returns the true value. By default, it returns the true value when all the
participants have been deregistered.

When a phaser is in the termination state, the registration of new
participants has no effect and synchronization methods return
immediately.

Finally, the Phaser class provides some methods to get information about the status and
participants in the phaser:

getRegisteredParties(): This method returns the number of participants in
the phaser
getPhase(): This method returns the number of the current phase
getArrivedParties(): This method returns the number of participants that
have finished the current phase
getUnarrivedParties(): This method returns the number of participants that
haven't finished the current phase
isTerminated(): This method returns the true value if the phaser is in the
Termination state and false otherwise

Running Tasks Divided into Phases - The Phaser Class

[172]

First example - a keyword extraction
algorithm
In this section, you are going to use a phaser to implement a keyword extraction algorithm.
The main purpose of these kinds of algorithms is to extract the words from a text document
or a collection of documents, which define the document or the document inside the
collection, better. These terms can be used to summarize the documents, cluster them, or to
improve the information search process.

The most basic algorithm to extract the keywords of the documents in a collection (but it's
still commonly used nowadays) is based on the TF-IDF measure where:

Term Frequency (TF) is the number of times that a d appears in a document.
Document Frequency (DF) is the number of documents that contain a word. The
Inverse Document Frequency (IDF) measures the information that word
provides to distinguish a document from others. If a word is very common, its
IDF will be low, but if the word appears in only a few documents, its IDF will be
high.

The TF-IDF of the word t in the document d can be calculated using the following formula:

The attributes used in the preceding formula can be explained as follows:

Ft,d is the number of appearances of the word t in the document d
N is the number of documents in the collection
nt is the number of documents that contain the word t

To obtain the keywords of a document, you can select the words with higher values for its
TF-IDF.

Running Tasks Divided into Phases - The Phaser Class

[173]

The algorithm you are going to implement will calculate the best keywords in a document
collection executing the following phases:

Phase 1: Parse all the documents and extract the DF of all the words. Note that
you will only have the exact values once you have parsed all the documents.
Phase 2: Calculate the TF-IDF for all the words in all the documents. Select 10
keywords per document (the 10 words with a higher value of the TF-IDF
measure).
Phase 3: Obtain a list of the best keywords. We consider that those are the words,
which are a keyword in a higher number of documents.

To test the algorithm, we will use the Wikipedia pages with information about movies as
our document collection. We used the same collection in Chapter 5, Getting Data from Tasks
- The Callable and Future Interfaces. This collection is formed of 100,673 documents. We have
converted each Wikipedia page into a text file. You can download this document collection
with all the information about the book.

You are going to implement two different versions of the algorithm: a basic serial one and a
concurrent one using the Phaser class. After this, we will compare the execution time of
both versions to verify that concurrency provides us with better performance.

Common classes
Both versions of the algorithm share some common functionality to parse the documents
and to store information about documents, keywords, and words. The common classes are:

The Document class, which stores the name of the file that contains the document
and the words that form it
The Word class, which stores the string with the word and the measures of that
word (TF, DF, and TF-IDF)
The Keyword class, which stores the string with the word and the number of
documents in which the word is a keyword
The DocumentParser class, which extracts the words for a document

Let's look at these classes in more detail.

Running Tasks Divided into Phases - The Phaser Class

[174]

The Word class
The Word class stores information about a word. This information includes the whole word
and the measures that affect it, that is to say, its TF in a document, its global DF, and the
resultant TF-IDF.

This class implements the Comparable interface because we're going to sort an array of
words in order to obtain the ones with a higher TF-IDF. Refer to the following code:

public class Word implements Comparable<Word> {

Then, we declare the attributes of the class and implement the getters and setters (these
ones are not included):

private String word;
private int tf;
private int df;
private double tfIdf;

We have implemented other methods of interest, as follows:

The constructor of the class, which initializes the word (with the word received as
parameter) and the df attribute (with a value of 1).
The addTf() method, which increments the tf attribute.
The merge() method, which receives a Word object and merges the same word
from two different documents. It sums the tf and df attributes of both objects.

Then, we implement a special version of the setDf() method. It receives the value of the
df attribute as a parameter and the total number of documents in the collection, and it
calculates the tfIdf attribute:

public void setDf(int df, int N) {
 this.df = df;
 tfIdf = tf * Math.log(Double.valueOf(N) / df);
}

Finally, we implement the compareTo() method. We want the words ordered from higher
to lower tfIdf attribute:

@Override
 public int compareTo(Word o) {
 return Double.compare(o.getTfIdf(), this.getTfIdf());
 }
}

Running Tasks Divided into Phases - The Phaser Class

[175]

The Keyword class
The Keyword class stores information about a keyword. This information includes the
whole word and the number of documents in which this word is a keyword.

As with the word class, it implements the Comparable interface because we're going to sort
an array of keywords to obtain the best keywords:

public class Keyword implements Comparable<Keyword> {

Then, we declare the attributes of the class and implement the methods to establish and
return its values (these ones are not included here):

private String word;
private int df;

Finally, we implement the compareTo() method. We want the keywords ordered from
higher to lower number of documents:

 @Override
 public int compareTo(Keyword o) {

 return Integer.compare(o.getDf(), this.getDf());
 }
}

The Document class
The Document class stores the information about a document in the collection (remember
that our collection has 100,673 documents), which includes the name of the file and the set
of words that forms the document. That set of words, usually named the vocabulary of the
document, is implemented as a HashMap using the whole word as a string as the key and a
Word object as the value:

public class Document {
 private String fileName;
 private HashMap <String, Word> voc;

We have implemented a constructor that creates the HashMap and methods to get and set
the name of the file and to return the vocabulary of the document (these methods are not
included). We have also implemented a method to add a word in the vocabulary. If the
word doesn't exist in it, we add it.

Running Tasks Divided into Phases - The Phaser Class

[176]

If the word exists in the vocabulary, we increment the tf attribute of the word. We have
used the computeIfAbsent() method of the voc object. This method inserts the word in
the HashMap if it doesn't exist and then increments the tf using the addTf() method:

 public void addWord(String string) {
 voc.computeIfAbsent(string, k -> new Word(k)).addTf();
 }
}

The HashMap class is not synchronized, but we can use it in our concurrent application
because it will not be shared between different tasks. A Document object will be generated
only by one task, so we won't have race conditions in our concurrent version derived by the
utilization of the HashMap class.

The DocumentParser class
The DocumentParser class reads the content of a text file and converts it into a Document
object. It splits the text into words and stores them in the Document object to generate the
vocabulary of the class. This class has two static methods. The first one is the parse()
method that receives a string with the path of the file and returns a Document object. It
opens the file and reads it line by line, using the parseLine() method to convert each line
into a sequence of words, and stores them in the Document class:

public class DocumentParser {

 public static Document parse(String path) {
 Document ret = new Document();
 Path file = Paths.get(path);
 ret.setFileName(file.toString());

 try (BufferedReader reader =
 Files.newBufferedReader(file)) {
 for(String line : Files.readAllLines(file)) {
 parseLine(line, ret);
 }
 } catch (IOException x) {
 x.printStackTrace();
 }
 return ret;

 }

Running Tasks Divided into Phases - The Phaser Class

[177]

The parseLine() method receives the line to parse and the Document object to store the
words as parameters.

First, it deletes the accents of the line using the Normalizer class and converts it into
lowercase:

private static void parseLine(String line, Document ret) {

 line = Normalizer.normalize(line, Normalizer.Form.NFKD);
 line = line.replaceAll("[^\\p{ASCII}]", "");
 line = line.toLowerCase();

Then, we split the line into words using the StringTokenizer class and add those words
to the Document object:

 private static void parseLine(String line, Document ret) {

 // Clean string
 line = Normalizer.normalize(line, Normalizer.Form.NFKD);
 line = line.replaceAll("[^\\p{ASCII}]", "");
 line = line.toLowerCase();

 // Tokenizer

 for(String w: line.split("\\W+")) {
 ret.addWord(w);
 }
 }

}

The serial version
We have implemented the serial version of our keyword algorithm in the
SerialKeywordExtraction class. It defines the main() method you are going to execute
to test the algorithm.

The first step is to declare the following necessary internal variables to execute the
algorithm:

Two Date objects to measure the execution time
A string to store the name of the directory that contains the document collection
An array of File objects to store the files with the document collection
A HashMap to store the global vocabulary of the document collection

Running Tasks Divided into Phases - The Phaser Class

[178]

A HashMap to store the keywords
Two int values to measure statistic data about the execution

The following includes the declaration of these variables:

public class SerialKeywordExtraction {

 public static void main(String[] args) {

 Date start, end;

 File source = new File("data");
 File[] files = source.listFiles();
 HashMap<String, Word> globalVoc = new HashMap<>();
 HashMap<String, Integer> globalKeywords = new HashMap<>();
 int totalCalls = 0;
 int numDocuments = 0;

 start = new Date();

Then, we have included the first phase of the algorithm. We parse all the documents using
the parse() method of the DocumentParser class. This method returns a Document
object, which contains the vocabulary of that document. We add the document vocabulary
to the global vocabulary using the merge() method of the HashMap class. If a word doesn't
exist, it inserts it in the HashMap. If the word exists, two word objects are merged together,
summing the Tf and Df attributes:

if(files == null) {
 System.err.println("Unable to read the 'data' folder");
 return;
}
for (File file : files) {

 if (file.getName().endsWith(".txt")) {
 Document doc = DocumentParser.parse (file.getAbsolutePath());
 for (Word word : doc.getVoc().values()) {
 globalVoc.merge(word.getWord(), word, Word::merge);
 }
 numDocuments++;
 }
}
System.out.println("Corpus: " + numDocuments + " documents.");

After this phase, the globalVocHashMap class contains all the words of the document
collection with their global TF (the total number of appearances of the word in the
collection) and their DF.

Running Tasks Divided into Phases - The Phaser Class

[179]

Then, we have included the second phase of the algorithm. We are going to calculate the
keywords of each document using the TF-IDF measure, as we explained before. We have to
parse each document again to generate its vocabulary. We have to do this because we can't
store the vocabularies of the 100,673 documents that form our document collection in
memory. If you work with a smaller document collection, you can try to parse the
documents only once and store the vocabularies of all the documents in memory, but in our
case, it's impossible. So, we parse all the documents again, and, for each word, we update
the df attribute using the values stored in the globalVoc. We also construct an array with
all the words in the document:

for (File file : files) {
 if (file.getName().endsWith(".txt")) {
 Document doc = DocumentParser.parse(file.getAbsolutePath());
 List<Word> keywords = new ArrayList<>(doc.getVoc().values());

 int index = 0;
 for (Word word : keywords) {
 Word globalWord = globalVoc.get(word.getWord());
 word.setDf(globalWord.getDf(), numDocuments);
 }

Now, we have the list of keywords with all the words in the document with their TF-IDF
calculated. We use the sort() method of the Collections class to sort the list, getting the
words with a higher value of TF-IDF in the first position. Then we get the first 10 words of
that list to store them in the globalKeywordsHashMap using the addKeyword() method.

There is no special reason to choose the first 10 words. You can try other options, as a
percentage of the words or a minimum value of the TF-IDF measure, and see their
behavior:

 Collections.sort(keywords);

 int counter = 0;

 for (Word word : keywords) {
 addKeyword(globalKeywords, word.getWord());
 totalCalls++;
 }
 }
}

Finally, we have included the third phase of our algorithm. We convert the
globalKeywordsHashMap into a list of Keyword objects, use the sort() method of the
Collections class to sort that array, getting the keywords with a higher DF value in the
first positions of the list, and write the first 100 words in the console.

Running Tasks Divided into Phases - The Phaser Class

[180]

Refer to the following code:

List<Keyword> orderedGlobalKeywords = new ArrayList<>();
for (Entry<String, Integer> entry : globalKeywords.entrySet()) {
 Keyword keyword = new Keyword();
 keyword.setWord(entry.getKey());
 keyword.setDf(entry.getValue());
 orderedGlobalKeywords.add(keyword);
}

Collections.sort(orderedGlobalKeywords);

if (orderedGlobalKeywords.size() > 100) {
 orderedGlobalKeywords = orderedGlobalKeywords.subList(0, 100);
}
for (Keyword keyword : orderedGlobalKeywords) {
 System.out.println(keyword.getWord() + ": " + keyword.getDf());
}

As in the second phase, there is no special reason to choose the first 100 words. You can try
other options if you want.

To finish the main method, we write the execution time and other statistic data in the
console:

 end = new Date();
 System.out.println("Execution Time: " + (end.getTime() -
 start.getTime()));
 System.out.println("Vocabulary Size: " + globalVoc.size());
 System.out.println("Keyword Size: " + globalKeywords.size());
 System.out.println("Number of Documents: " + numDocuments);
 System.out.println("Total calls: " + totalCalls);

}

The SerialKeywyordExtraction class also includes the addKeyword() method, which
updates the information of a keyword in the globalKeywordsHashMap class. If the word
exists, the class updates its DF, and if the word doesn't exist, it inserts it. Refer to the
following code:

 private static void addKeyword(Map<String, Integer>
 globalKeywords, String word) {
 globalKeywords.merge(word, 1, Integer::sum);
 }

}

Running Tasks Divided into Phases - The Phaser Class

[181]

The concurrent version
To implement the concurrent version of this example, we have used two different classes, as
follows:

The KeywordExtractionTasks class, which implements the tasks that are going
to calculate the keywords in a concurrent way. We are going to execute the tasks
as Thread objects, so this class implements the Runnable interface.
The ConcurrentKeywordExtraction class, which provides the main() method
to execute the algorithm and creates, starts, and waits for the finish of the tasks.

Let's look at these classes in detail.

The KeywordExtractionTask class
As we mentioned before, this class implements the tasks that are going to calculate the final
keyword list. It implements the Runnable interface, so we can execute them as a Thread,
and internally uses some attributes, most of which are shared between all the tasks:

Two ConcurrentHashMap objects to store the global vocabulary and the global
keywords: We use the ConcurrentHashMap because these objects are going to be
updated by all the tasks, so we have to use a concurrent data structure to avoid
race conditions.
Two ConcurrentLinkedDeque of File objects, to store the list of files that forms
the document collection: We use the ConcurrentLinkedDeque class because all
the tasks are going to extract (get and delete) elements of the list simultaneously,
so we have to use a concurrent data structure to avoid race conditions. If we use a
normal List, the same File can be parsed twice by different tasks. We have two
ConcurrentLinkedDeque because we have to parse the collection of documents
twice. As we mentioned before, we parse the document collection, extracting the
File objects from the data structures, so, when we have parsed the collection, the
data structure will be empty.
A Phaser object to control the execution of the tasks: As we explained before,
our keyword extraction algorithm is executed in three phases. None of the tasks
advance to the next phase until all the tasks have finished the previous one. We
use the Phaser object to control this. If we don't control this, we will obtain
inconsistent results.

Running Tasks Divided into Phases - The Phaser Class

[182]

The final step has to be executed by only one thread: We are going to
distinguish one main task from the others using a Boolean value. These main
tasks will execute that final phase.
The total number of documents in the collection: We need this value to calculate
the TF-IDF measure.

We have included a constructor to initialize all these attributes:

public class KeywordExtractionTask implements Runnable {

 private ConcurrentHashMap<String, Word> globalVoc;
 private ConcurrentHashMap<String, Integer> globalKeywords;

 private ConcurrentLinkedDeque<File> concurrentFileListPhase1;
 private ConcurrentLinkedDeque<File> concurrentFileListPhase2;

 private Phaser phaser;

 private String name;
 private boolean main;

 private int parsedDocuments;
 private int numDocuments;

 public KeywordExtractionTask(
 ConcurrentLinkedDeque<File> concurrentFileListPhase1,
 ConcurrentLinkedDeque<File> concurrentFileListPhase2,
 Phaser phaser, ConcurrentHashMap<String, Word>
 globalVoc,
 ConcurrentHashMap<String, Integer> globalKeywords,
 int numDocuments, String name, boolean main) {
 this.concurrentFileListPhase1 = concurrentFileListPhase1;
 this.concurrentFileListPhase2 = concurrentFileListPhase2;
 this.globalVoc = globalVoc;
 this.globalKeywords = globalKeywords;
 this.phaser = phaser;
 this.main = main;
 this.name = name;
 this.numDocuments = numDocuments;
 }

Running Tasks Divided into Phases - The Phaser Class

[183]

The run() method implements the algorithm with its three phases. First, we call the
arriveAndAwaitAdvance() method of the phaser to wait for the creation of the other
tasks. All the tasks will start their execution at the same moment. Then, as we explained in
the serial version of the algorithm, we parse all the documents and build the
globalVocConcurrentHashMap class with all the words and their global TF and DF
values. To complete phase one, we again call the arriveAndAwaitAdvance() method to
wait for the finalization of the other tasks before the execution of the second phase:

@Override
public void run() {
 File file;

 // Phase 1
 phaser.arriveAndAwaitAdvance();
 System.out.println(name + ": Phase 1");
 while ((file = concurrentFileListPhase1.poll()) != null) {
 Document doc = DocumentParser.parse(file.getAbsolutePath());
 for (Word word : doc.getVoc().values()) {
 globalVoc.merge(word.getWord(), word, Word::merge);
 }
 parsedDocuments++;
 }

 System.out.println(name + ": " + parsedDocuments +
 " parsed.");
 phaser.arriveAndAwaitAdvance();

As you can see, to get the File objects to process, we use the poll() method of the
ConcurrentLinkedDeque class. This method retrieves and removes the first element of
Deque, so the next task will obtain a different file to parse, and no file will be parsed twice.

The second phase calculates the globalKeywords structure, as we explained in the serial
version of the algorithm. First, calculate the best 10 keywords of every document and then
insert them in the ConcurrentHashMap class. The code is the same as in the serial version,
changing the serial data structures for the concurrent ones:

// Phase 2
System.out.println(name + ": Phase 2");
while ((file = concurrentFileListPhase2.poll()) != null) {

 Document doc = DocumentParser.parse(file.getAbsolutePath());
 List<Word> keywords = new ArrayList<>(doc.getVoc().values());

 for (Word word : keywords) {
 Word globalWord = globalVoc.get(word.getWord());
 word.setDf(globalWord.getDf(), numDocuments);

Running Tasks Divided into Phases - The Phaser Class

[184]

 }
 Collections.sort(keywords);

 if(keywords.size() > 10) keywords = keywords.subList(0, 10);
 for (Word word : keywords) {
 addKeyword(globalKeywords, word.getWord());
 }
 }
 System.out.println(name + ": " + parsedDocuments +
 " parsed.");

The final phase will be different for the main task and for the others. The main task uses the
arriveAndAwaitAdvance() method of the Phaser class to wait for the finalization of the
second phase of all the tasks before writing the best 100 keywords of the whole collection in
the console. Finally, it uses the arriveAndDeregister() method to deregister from the
phaser.

The rest of the tasks use the arriveAndDeregister() method to mark the finalization of
the second phase, deregister from the phaser, and finish their execution.

When all the tasks have finished their work, all of them deregister themselves from the
phaser. The phaser will have zero parties, and it will enter the termination state:

 if (main) {
 phaser.arriveAndAwaitAdvance();

 Iterator<Entry<String, Integer>> iterator =
 globalKeywords.entrySet().iterator(); Keyword
orderedGlobalKeywords[] = new
 Keyword[globalKeywords.size()];
 int index = 0;
 while (iterator.hasNext()) {
 Entry<String, AtomicInteger> entry = iterator.next();
 Keyword keyword = new Keyword();
 keyword.setWord(entry.getKey());
 keyword.setDf(entry.getValue().get());
 orderedGlobalKeywords[index] = keyword;
 index++;
 }

 System.out.println("Keyword Size: " +
 orderedGlobalKeywords.length);

 Arrays.parallelSort(orderedGlobalKeywords);
 int counter = 0;
 for (int i = 0; i < orderedGlobalKeywords.length; i++){

Running Tasks Divided into Phases - The Phaser Class

[185]

 Keyword keyword = orderedGlobalKeywords[i];
 System.out.println(keyword.getWord() + ": " +
 keyword.getDf());
 counter++;
 if (counter == 100) {
 break;
 }
 }
 }
 phaser.arriveAndDeregister();

 System.out.println("Thread " + name + " has finished.");
}

The ConcurrentKeywordExtraction class
The ConcurrentKeywordExtraction class initializes the shared objects, creates the tasks,
executes them, and waits for its finalization. It implements the main() method, which can
receive an optional parameter. By default, we are doing the number of tasks determined by
the availableProcessors() method of the Runtime class, which returns the number of
hardware threads available to the Java Virtual Machine (JVM). If we receive a parameter,
we convert it into an integer and use it as a multiplier of the number of available processors
to determine the number of tasks we are going to create.

First, we initialize all the necessary data structures and parameters. To fill the two
ConcurrentLinkedDeque structures, we use the listFiles() method of the File class
to get an array of File objects with the files that end with the txt suffix.

We also create the Phaser object using the constructor without parameters, so all the tasks
must register themselves in the phaser explicitly. Refer to the following code:

public class ConcurrentKeywordExtraction {

 public static void main(String[] args) {

 Date start, end;

 ConcurrentHashMap<String, Word> globalVoc = new
 ConcurrentHashMap<>();
 ConcurrentHashMap<String, Integer> globalKeywords = new
 ConcurrentHashMap<>();

 start = new Date();
 File source = new File("data");

Running Tasks Divided into Phases - The Phaser Class

[186]

 File[] files = source.listFiles(f ->
 f.getName().endsWith(".txt"));
 if (files == null) {
 System.err.println("The 'data' folder not found!");
 return;
 }
 ConcurrentLinkedDeque<File> concurrentFileListPhase1 = new
 ConcurrentLinkedDeque<>(Arrays.asList(files));
 ConcurrentLinkedDeque<File> concurrentFileListPhase2 = new
 ConcurrentLinkedDeque<>(Arrays.asList(files));

 int numDocuments = files.length();
 int factor = 1;
 if (args.length > 0) {
 factor = Integer.valueOf(args[0]);
 }

 int numTasks = factor *
 Runtime.getRuntime().availableProcessors();
 Phaser phaser = new Phaser();

 Thread[] threads = new Thread[numTasks];
 KeywordExtractionTask[] tasks = new
 KeywordExtractionTask[numTasks];

Then, we create the first task with the main parameter set to true, and the rest with the main
parameter set to false. After the creation of each task, we use the register() method of the
Phaser class to register a new participant in the phaser, as follows:

for (int i = 0; i < numTasks; i++) {
 tasks[i] = new KeywordExtractionTask(concurrentFileListPhase1,
 concurrentFileListPhase2, phaser, globalVoc,
 globalKeywords, concurrentFileListPhase1.size(),
 "Task" + i, i==0);
 phaser.register();
 System.out.println(phaser.getRegisteredParties() + "
 tasks arrived to the Phaser.");
}

Then, we create and start the thread objects that run the tasks and wait for its finalization:

for (int i = 0; i < numTasks; i++) {
 threads[i] = new Thread(tasks[i]);
 threads[i].start();
}

for (int i = 0; i < numTasks; i++) {
 try {

Running Tasks Divided into Phases - The Phaser Class

[187]

 threads[i].join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
}

Finally, we write some statistic information about the execution in the console, including
the execution time:

 System.out.println("Is Terminated: " + phaser.isTerminated());

 end = new Date();
 System.out.println("Execution Time: " + (end.getTime() -
 start.getTime()));
 System.out.println("Vocabulary Size: " + globalVoc.size());
 System.out.println("Number of Documents: " + numDocuments);

 }

}

Comparing the two solutions
Let's compare the serial and concurrent versions of our keyword extraction algorithm. To
test the algorithm, we used our document collection with 100,673 documents.

We executed the examples using the JMH framework
(http://openjdk.java.net/projects/code-tools/jmh/), which allows you to implement
micro benchmarks in Java. Using a framework for benchmarking is a better solution, which
simply measures time using methods such as currentTimeMillis() or nanoTime(). We
executed them 10 times in two different architectures:

A computer with an Intel Core i5-5300 CPU with Windows 7 and 16 GB of RAM -
this processor has two cores and each core can execute two threads, so we will
have four parallel threads
A computer with an AMD A8-640 APU with Windows 10 and 8 GB of RAM - this
processor has four cores

http://openjdk.java.net/projects/code-tools/jmh/

Running Tasks Divided into Phases - The Phaser Class

[188]

We can draw the following conclusions:

The concurrent version of the algorithm increases the performance of the serial
version in both architectures.
If we use more tasks than the number of the available hardware threads, we don't
get a better result. There's a slight difference, but it's not significant.

We compare the concurrent and serial versions of the algorithm, calculating the speed-up
using the following formula:

The second example - a genetic algorithm
Genetic algorithms are adaptive heuristic search algorithms based on the natural selection
principles used to generate good solutions to optimization and search problems. They work
with possible solutions to a problem, named individuals, or phenotypes. Each individual
has a representation formed of a set of properties named chromosomes. Normally, the
individuals are represented by a sequence of bits, but you can choose the representation
that better fits your problem.

Running Tasks Divided into Phases - The Phaser Class

[189]

You also need a function to determine whether a solution is good or bad, named the fitness
function. The main objective of the genetic algorithm is to find a solution that maximizes or
minimizes that function.

The genetic algorithm starts with a set of possible solutions to the problem. This set of
possible solutions is called the population. You can generate this initial set randomly or use
some kind of heuristic function to obtain better initial solutions.

Once you have the initial population, you begin an iterative process with three phases. Each
step of that iterative process is called a generation. The phases of each generation are:

Selection: You select the better individuals of your population. These are the
individuals with a better value in the fitness function.
Crossover: You cross the individuals selected in the previous step to generate the
new individuals that form the new generation. This operation takes two
individuals and generates two new individuals. The implementation of this
operation depends on the problem you want to solve and the representation of
the individuals you have chosen.
Mutation: You can apply a mutation operator to alter the values of an individual.
Normally, you will apply that operation to a very low number of individuals.
While mutation is a very important operation to find a good solution, we don't
apply it to simplify our example.

You repeat these three operations until you meet your finish criteria. These finish criteria
can be:

A fixed number of generations
A predefined value of the fitness function
A solution that meets the predefined criteria is found
A time limit
A manual stop

Normally, you will store the best individual you have found across the process outside of
the population. This individual will be the solution proposed by the algorithm, and
normally, it's going to be a better solution, as we generate new generations.

Running Tasks Divided into Phases - The Phaser Class

[190]

In this section, we are going to implement a genetic algorithm to solve the well-known
Traveling Salesman Problem (TSP). In this problem, you have a set of cities and the
distances between them, and you want to find the optimal route to go through all the cities,
minimizing the total distance of travel. As with other examples, we have implemented a
serial version and a concurrent one using the Phaser class. The main characteristics of a
genetic algorithm applied to the TSP problems are:

Individuals: An individual represents the traversal order of the cities.
Crossover: You have to create valid solutions after the crossover operation. You
must visit each city only once.
Fitness function: The main objective of the algorithm is to minimize the total
distance to travel between the cities.
Finish criteria: We are going to execute the algorithm for a predefined number of
generations.

For example, you could have a distance matrix with four cities, as shown in the following
table:

This means that the distance between City 2 and City 1 is 7, but the distance between City 1
and City 2 is 11. An individual could be (2,4,3,1) and its fitness function is the sum of the
distances between 2 and 4, 4 and 3, 3 and 1, and 1 and 2, that is, 2+4+7+11=24.

If you want to make the crossover between the individuals (1,2,3,4) and (1,3,2,4), you can't
generate the individual (1,2,2,4) because you are visiting City 2 twice. You could generate
the individuals (1,2,4,3) and (1,3,4,2).

To test the algorithm, we have used two examples of the City Distance Datasets
(http://people.sc.fsu.edu/~jburkardt/datasets/cities/cities.html) with 15
(lau15_dist) and 57 (kn57_dist) cities, respectively.

http://people.sc.fsu.edu/~jburkardt/datasets/cities/cities.html

Running Tasks Divided into Phases - The Phaser Class

[191]

Common classes
Both versions use the following three common classes:

The DataLoader class, which loads the distance matrix from a file. We don't
include the code of this class here. It has a static method that receives the name of
the file and returns an int[][] matrix with the distances between the cities. The
distances are stored in a CSV file (we have made a slight transformation to the
original format), so it's easy to make the conversion.
The Individual class stores the information of an individual of the population (a
possible solution to the problem). To represent each individual, we have chosen
an array of integer values that stores the order in which you visit the different
cities.
The GeneticOperators class implements the crossover, selection, and
evaluation of the population or an individual.

Let's see the details of the Individual and GeneticOperators classes.

The Individual class
This class stores each possible solution to our TSP problem. We call each possible solution
an individual, and its representation, chromosomes. In our case, we represent each possible
solution as an array of integers. That array contains the order in which our salesman will go
through the cities. This class also has an integer value to store the result of the fitness
function. We have the following code:

public class Individual implements Comparable<Individual> {
 private Integer[] chromosomes;
 private int value;

We have included two constructors. The first one receives the number of cities you must
visit, and we create an empty array. The other receives an Individual object and copies its
chromosomes, as follows:

public Individual(int size) {
 chromosomes=new Integer[size];
}

public Individual(Individual other) {
 chromosomes = other.getChromosomes().clone();

}

Running Tasks Divided into Phases - The Phaser Class

[192]

We have also implemented the compareTo() method to compare two individuals using the
result of the fitness function:

@Override
public int compareTo(Individual o) {
 return Integer.compare(this.getValue(), o.getValue());
}

Finally, we have included methods to get and set the values of the attributes.

The GeneticOperators class
This is a complex class because it implements the internal logic of the genetic algorithm. It
provides methods to make the initialization, selection, crossover, and evaluation operations,
introduced at the beginning of this section. We are going to describe only the methods
provided by this class, but not how they are implemented, to avoid unnecessary
complexity. You can get the source code of the example to analyze the implementation of
the methods.

The methods provided by this class are:

initialize(int numberOfIndividuals, int size): This creates a new
population. The number of individuals of that population will be determined by
the numberOfIndividuals parameter. The number of chromosomes (cities in
our case) will be determined by the size parameter. It returns an array of
Individual objects. It uses the method initialize(Integer[]) to initialize
each individual.
initialize(Integer[] chromosomes): This initializes the chromosomes of
an individual in a random way. It generates valid individuals (you have to visit
each city only once).
selection(Individual[] population): This method implements the
selection operation to get the best individuals of a population. It returns those
individuals in an array. The size of that array will be half of the population size.
You can test other criteria to determine the number of the selected individuals.
We select the individuals with the best fit function.

Running Tasks Divided into Phases - The Phaser Class

[193]

crossover(Individual[] selected, int numberOfIndividuals, int

size): This method receives the selected individuals of a generation as a
parameter and generates the population of the next generation using the
crossover operation. The number of individuals of the next generation will be
determined by the parameter of the same name. The number of chromosomes of
each individual will be determined by the size parameter. It uses the method
crossover(Individual, Individual, Individual, Individual) to
generate two new individuals from the two selected ones.
crossover(Individual parent1, Individual parent2, Individual

individual1, Individual individual2): This method performs the
crossover operation, taking the parent1 and parent2 individuals to generate
the individual1 and individual2 individuals of the next generation.
evaluate(Individual[] population, int [][] distanceMatrix): This
applies the fitness function to all the individuals of the population, using the
distance matrix it receives as a parameter. Finally, it sorts the population from the
best to worst solution. It uses the method evaluate(Individual, int[][]) to
evaluate each individual.
evaluate(Individual individual, int[][] distanceMatrix): This
applies the fitness function to one individual.

With this class and its methods, you have all you need to implement a genetic algorithm to
solve the TSP problem.

The serial version
We have implemented the serial version of the algorithm with the following two classes:

The SerialGeneticAlgorithm class, which implements the algorithm
The SerialMain class, which executes the algorithm with the input parameters
and measures the execution time

Let's analyze both classes in detail.

Running Tasks Divided into Phases - The Phaser Class

[194]

The SerialGeneticAlgorithm class
This class implements the serial version of our genetic algorithm. Internally, it uses the
following four attributes:

The distance matrix with the distances between all the cities
The number of generations
The number of individuals in the population
The number of chromosomes in each individual

The class also has a constructor to initialize all the attributes:

private int[][] distanceMatrix;

private int numberOfGenerations;
private int numberOfIndividuals;

private int size;

public SerialGeneticAlgorithm(int[][] distanceMatrix,
 int numberOfGenerations, int numberOfIndividuals) {
 this.distanceMatrix = distanceMatrix;
 this.numberOfGenerations = numberOfGenerations;
 this.numberOfIndividuals = numberOfIndividuals;
 size = distanceMatrix.length;
}

The main method of the class is the calculate() method. First, use the initialize()
method to create the initial population. Then, evaluate the initial population and get its best
individual as the first solution of the algorithm:

public Individual calculate() {
 Individual best;

 Individual[] population = GeneticOperators.initialize(
 numberOfIndividuals, size);
 GeneticOperators.evaluate(population, distanceMatrix);

 best = population[0];

Running Tasks Divided into Phases - The Phaser Class

[195]

Then, it executes a loop determined by the numberOfGenerations attribute. In each cycle,
it uses the selection() method to obtain the selected individuals, uses the crossover()
method to calculate the next generation, evaluates this new generation, and if the best
solution of the new generation is better than the best individual up until now, replaces it.
When the loop finishes, we return the best individual as the solution proposed by the
algorithm:

 for (int i = 1; i <= numberOfGenerations; i++) {
 Individual[] selected =
 GeneticOperators.selection(population);
 population = GeneticOperators.crossover(selected,
 numberOfIndividuals, size);
 GeneticOperators.evaluate(population, distanceMatrix);
 if (population[0].getValue() < best.getValue()) {
 best = population[0];
 }

 }

 return best;
}

The SerialMain class
This class executes the genetic algorithm for the two datasets used in this section: the lau15
with 15 cities and the kn57 with 57 cities.

The main() method must receive two parameters. The first one is the number of
generations we want to create, and the second parameter is the number of individuals we
want to have in each generation:

public class SerialMain {

 public static void main(String[] args) {

 Date start, end;

 int generations = Integer.valueOf(args[0]);
 int individuals = Integer.valueOf(args[1]);

Running Tasks Divided into Phases - The Phaser Class

[196]

For each example, we load the distance matrix using the load() method of the
DataLoader class, create the SerialGeneticAlgorith object, execute the calculate()
method measuring the execution time, and write the execution time and the result in the
console:

for (String name : new String[] { "lau15_dist", "kn57_dist" }) {
 int[][] distanceMatrix = DataLoader.load(Paths.get("data",
 name + ".txt"));
 SerialGeneticAlgorithm serialGeneticAlgorithm = new
 SerialGeneticAlgorithm(distanceMatrix, generations,
 individuals);
 start = new Date();
 Individual result = serialGeneticAlgorithm.calculate();
 end = new Date();
 System.out.println ("=======================================");
 System.out.println("Example:"+name);
 System.out.println("Generations: " + generations);
 System.out.println("Population: " + individuals);
 System.out.println("Execution Time: " + (end.getTime() -
 start.getTime()));
 System.out.println("Best Individual: " + result);
 System.out.println("Total Distance: " + result.getValue());
 System.out.println ("=======================================");
}

The concurrent version
We have implemented the concurrent version of the genetic algorithms different classes:

The SharedData class stores all the objects that will be shared between the tasks
The GeneticPhaser class extends the Phaser class and overrides its
onAdvance() method to execute code when all the tasks finish a phase
The ConcurrentGeneticTask class implements the tasks that will implement
the phases of the genetic algorithm
The ConcurrentGeneticAlgorithm class will implement the concurrent
version of the genetic algorithm using the previous classes
The ConcurrentMain class will test the concurrent version of the genetic
algorithm in our two datasets

Running Tasks Divided into Phases - The Phaser Class

[197]

Internally, the ConcurrentGeneticTask class will execute three phases. The first one is
the selection phase and will only be executed by one task. The second one is the crossover
phase, where all the tasks will construct the new generation using the selected individuals,
and the last phase is the evaluation phase, where all the tasks will evaluate the individuals
of the new generation.

Let's look at each of those classes in detail.

The SharedData class
As we mentioned before, this class contains all the objects shared by the tasks. This includes
the following:

The population array with all the individuals of a generation.
The selected array with the selected individuals.
An atomic integer, called index. This is the only thread-safe object used to know
the index of the individual a task has to generate or process.
The best individual of all the generations, which will be returned as the solution
of the algorithm.
The distance matrix, with the distances between the cities.

All these objects will be shared by all the threads, but we only need to use one concurrent
data structure. This is the only attribute that will be effectively shared by all the tasks. The
rest of the objects will be only read (the distance matrix), or each task will access a different
part of the object (the population and selected arrays), so we don't need to use concurrent
data structures or synchronization mechanisms to avoid race conditions:

public class SharedData {

 private Individual[] population;
 private Individual selected[];
 private AtomicInteger index;
 private Individual best;
 private int[][] distanceMatrix;
}

This class also includes the getters and setters to get and establish the values of these
attributes.

Running Tasks Divided into Phases - The Phaser Class

[198]

The GeneticPhaser class
We need to execute code on the phase changes of our tasks, so we have to implement our
own phaser and override the onAdvance() method, which is executed after all the parties
have finished a phase and before they begin the execution of the next one. The
GeneticPhaser class implements this phaser. It stores the SharedData object to work
with it and receives it as a parameter to the constructor:

public class GeneticPhaser extends Phaser {

 private SharedData data;

 public GeneticPhaser(int parties, SharedData data) {
 super(parties);
 this.data=data;
 }

The onAdvance() method will receive the number of the phase to the phaser and the
number of registered parties as parameters. The phaser internally stores the number of
phases as an integer that grows sequentially with every change of phase. On the contrary,
our algorithm has only three phases, which will be executed a lot of times. We have to
convert the phaser phase number to the genetic algorithm phase number to know if the
tasks are going to execute the selection, crossover, or evaluation phases. To do this, we
calculate the remainder between the phase number of the phaser and three, as follows:

protected boolean onAdvance(int phase, int registeredParties) {
 int realPhase=phase%3;
 if (registeredParties>0) {
 switch (realPhase) {
 case 0:
 case 1:
 data.getIndex().set(0);
 break;
 case 2:
 Arrays.sort(data.getPopulation());
 if (data.getPopulation()[0].getValue() <
 data.getBest().getValue()) {
 data.setBest(data.getPopulation()[0]);
 }
 break;
 }
 return false;
 }
 return true;
}

Running Tasks Divided into Phases - The Phaser Class

[199]

If the remainder is zero, the tasks have finished the selection phase and are going to execute
the crossover phase. We initialize the index object with the value zero.

If the remainder is one, the tasks have finished the crossover phase and are going to execute
the evaluation phase. We initialize the index object with the value zero.

Finally, if the remainder is two, the tasks have finished the evaluation phase and are going
to start again with the selection phase. We sort the population based on the fitness function
and update, if necessary, the best individual.

Take into account that this method will only be executed by one thread independently of
the tasks. It will be executed in the thread of the task, which was the last to finish the
previous phase (inside arriveAndAwaitAdvance() call). The rest of the tasks will be
sleeping and waiting for the phaser.

The ConcurrentGeneticTask class
This class implements the tasks that collaborate to execute the genetic algorithm. They
execute the three phases (selection, crossover, and evaluation) of the algorithm. The
selection phase will be executed by only one task (we call it the main task), while the rest of
the phases will be executed by all the tasks.

Internally, it uses four attributes:

A GeneticPhaser object to synchronize the tasks at the end of each phase
A SharedData object to access the shared data
The number of generations it has to calculate
The Boolean flag, which indicates whether it is the main task or not

All these attributes are initialized in the constructor of the class:

public class ConcurrentGeneticTask implements Runnable {
 private GeneticPhaser phaser;
 private SharedData data;
 private int numberOfGenerations;
 private boolean main;

 public ConcurrentGeneticTask(GeneticPhaser phaser, int
 numberOfGenerations, boolean main) {
 this.phaser = phaser;
 this.numberOfGenerations = numberOfGenerations;
 this.main = main;
 this.data = phaser.getData();
 }

Running Tasks Divided into Phases - The Phaser Class

[200]

The run() method implements the logic of the genetic algorithm. It has a loop to generate
the specified generations. As we mentioned before, only the main task will execute the
selection phase. The rest of the tasks will use the arriveAndAwaitAdvance() method to
wait for the finalization of this phase. Refer to the following code:

@Override
public void run() {

 Random rm = new Random(System.nanoTime());
 for (int i = 0; i < numberOfGenerations; i++) {
 if (main) {
 data.setSelected(GeneticOperators.selection(data
 .getPopulation()));
 }
 phaser.arriveAndAwaitAdvance();

The second phase is the crossover phase. We use the AtomicInteger variable index stored
in the SharedData class to get the next position in the population array each task will
calculate. As we mentioned before, the crossover operation generates two new individuals,
so each task first reserves two positions in the population array. For this purpose, we use
the getAndAdd(2) method, which returns the actual value of the variable and increments
its value by two units. It's an atomic variable, so we don't have to use any synchronization
mechanism - it's inherent to the atomic variables. Refer to the following code:

// Crossover
int individualIndex;
do {
 individualIndex = data.getIndex().getAndAdd(2);
 if (individualIndex < data.getPopulation().length) {
 int secondIndividual = individualIndex++;

 int p1Index = rm.nextInt (data.getSelected().length);
 int p2Index;
 do {
 p2Index = rm.nextInt (data.getSelected().length);
 } while (p1Index == p2Index);

 Individual parent1 = data.getSelected() [p1Index];
 Individual parent2 = data.getSelected() [p2Index];
 Individual individual1 = data.getPopulation()
 [individualIndex];
 Individual individual2 = data.getPopulation()
 [secondIndividual];
 GeneticOperators.crossover(parent1, parent2,
 individual1, individual2);
 }

Running Tasks Divided into Phases - The Phaser Class

[201]

} while (individualIndex < data.getPopulation().length);
phaser.arriveAndAwaitAdvance();

When all the individuals of the new population have been generated, the tasks use the
arriveAndAwaitAdvance() method to synchronize the end of the phase.

The last phase is the evaluation phase. We use the AtomicInteger index again. Each task
gets the actual value of the variable, which represents the position of an individual in the
population, and increments its value using the getAndIncrement() value. Once all the
individuals have been evaluated, we use the arriveAndAwaitAdvance() method to
synchronize the end of this phase. Remember that, when all the tasks have finished this
phase, the GeneticPhaser class will execute the code that sorts the population array and
updates, if necessary, the best individual variable as follows:

 // Evaluation
 do {
 individualIndex = data.getIndex().getAndIncrement();
 if (individualIndex < data.getPopulation().length) {
 GeneticOperators.evaluate(data.getPopulation()
 [individualIndex], data.getDistanceMatrix());
 }
 } while (individualIndex < data.getPopulation().length);
 phaser.arriveAndAwaitAdvance();

 }

 phaser.arriveAndDeregister();
}

Finally, when all the generations have been calculated, the tasks use the
arriveAndDeregister() method to indicate the end of its execution, so the phaser will
enter its finalization state.

The ConcurrentGeneticAlgorithm class
This class is the external interface of the genetic algorithm. Internally, it creates, starts, and
waits for the finalization of the tasks that calculate the different generations. It uses four
attributes: the number of generations, the number of individuals in each generation, the
number of chromosomes of each individual, and the distance matrix, as follows:

public class ConcurrentGeneticAlgorithm {

 private int numberOfGenerations;
 private int numberOfIndividuals;
 private int[][] distanceMatrix;

Running Tasks Divided into Phases - The Phaser Class

[202]

 private int size;

 public ConcurrentGeneticAlgorithm(int[][] distanceMatrix, int
 numberOfGenerations, int numberOfIndividuals) {
 this.distanceMatrix=distanceMatrix;
 this.numberOfGenerations=numberOfGenerations;
 this.numberOfIndividuals=numberOfIndividuals;
 size=distanceMatrix.length;
 }

The calculate() method executes the genetic algorithm and returns the best individual.
First, it creates the initial population using the initialize() method, evaluates that
population, and creates and initializes a SharedData object with all the necessary data, as
follows:

public Individual calculate() {

 Individual[] population=
 GeneticOperators.initialize(numberOfIndividuals,size);
 GeneticOperators.evaluate(population,distanceMatrix);

 SharedData data=new SharedData();
 data.setPopulation(population);
 data.setDistanceMatrix(distanceMatrix);
 data.setBest(population[0]);

Then, it creates the tasks. We use the number of available hardware threads of the
computer, returned by the method availableProcessors() of the Runtime class, as the
number of tasks we are going to create. We also create a GeneticPhaser object to
synchronize the execution of those tasks, as follows:

int numTasks=Runtime.getRuntime().availableProcessors();
GeneticPhaser phaser=new GeneticPhaser(numTasks,data);

ConcurrentGeneticTask[] tasks=new ConcurrentGeneticTask[numTasks];
Thread[] threads=new Thread[numTasks];

tasks[0]=new ConcurrentGeneticTask(phaser, numberOfGenerations,
 true);
for (int i=1; i< numTasks; i++) {
 tasks[i]=new ConcurrentGeneticTask(phaser, numberOfGenerations,
 false);
}

Running Tasks Divided into Phases - The Phaser Class

[203]

Then, we create the Thread objects to execute the tasks, start them, and wait for its
finalization. Finally, we return the best individual stored in the ShareData object, as
follows:

for (int i=0; i<numTasks; i++) {
 threads[i]=new Thread(tasks[i]);
 threads[i].start();
 }

 for (int i=0; i<numTasks; i++) {
 try {
 threads[i].join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 return data.getBest();
 }
}

The ConcurrentMain class
This class executes the genetic algorithm for the two datasets used in this section: the lau15
with 15 cities and the kn57 with 57 cities. Its code is analogous to the SerialMain class, but
it uses the ConcurrentGeneticAlgorithm instead of SerialGeneticAlgorithm.

Comparing the two solutions
Now it's time to test both solutions and see which has the better performance. As we
mentioned before, we have used two datasets from the City Distance Datasets
(http://people.sc.fsu.edu/~jburkardt/datasets/cities/cities.html) - the lau15 with 15 cities and
the kn57 with 57 cities. We have also tested different sizes for the population (100, 1,000,
and 10,000) individuals and different numbers of generations (10, 100, and 1,000).

Running Tasks Divided into Phases - The Phaser Class

[204]

We have executed the examples using the JMH framework
(http://openjdk.java.net/projects/code-tools/jmh/), which allows you to implement
micro benchmarks in Java. Using a framework for benchmarking is a better solution that
simply measures time using methods such as currentTimeMillis() or nanoTime(). We
have executed them 10 times in two different architectures:

A computer with an Intel Core i5-5300 CPU with Windows 7 and 16 GB of RAM.
This processor has two cores and each core can execute two threads, so we will
have four parallel threads
A computer with an AMD A8-640 APU with Windows 10 and 8 GB of RAM. This
processor has four cores

Lau15 dataset
These are the execution times (in milliseconds) for the first dataset:

http://openjdk.java.net/projects/code-tools/jmh/

Running Tasks Divided into Phases - The Phaser Class

[205]

Kn57 dataset
These are the execution times (in milliseconds) for the second dataset:

Conclusions
The behavior of the algorithms is similar for both datasets with both architectures. You can
see, as we have a low number of individuals and generations, the serial version of the
algorithm has a better execution time, but when the number of individuals or the number of
generations grows, the concurrent version has better throughput. For example, for the kn57
data set with 1,000 generations and 10,000 individuals, the speed-up is:

Running Tasks Divided into Phases - The Phaser Class

[206]

Summary
In this chapter, we explained one of the most powerful synchronization mechanisms
provided by the Java concurrency API: the phaser. Its main objective is to provide
synchronization between tasks that execute algorithms divided into phases. None of the
tasks can begin the execution of a phase before the rest of the tasks have finished the
previous one.

The phaser has to know how many tasks have to be synchronized. You have to register
your tasks in the phaser using the constructor, the bulkRegister() method, or the
register() method.

Tasks can synchronize with the phaser in different ways. The most common task is
indicating to the phaser that it has finished the execution of one phase and wants to
continue with the next one with the arriveAndAwaitAdvance(). This method will sleep
the thread until the rest of the tasks have finished the actual phase. But there are other
methods you can use to synchronize your tasks. The arrive() method is used to notify the
phaser that you have finished the current phase, but you won't wait for the rest of the tasks
(be very careful using this method). The arriveAndDeregister() method is used to
notify the phaser that you have finished the current phase and you don't want to continue
in the phaser (normally, because you have finished your job). Finally, the awaitAdvance()
method can be used to wait for the finalization of the current phase.

You can control the phase change and execute code after all the tasks have finished the
current phase and before they start the new one using the onAdvance() method. This
method is called between the executions of two phases and receives as parameters the
number of the phase and the number of participants in the phaser. You can extend the
Phaser class and override this method to execute code between two phases.

A phaser can be in two states: active, when it is synchronizing tasks, and in the termination
state, when it has finished its job. A phaser will enter into the termination state when all the
participants call the arriveAndDeregister() method or when the onAdvance() method
returns the true value (by default, it always returns false). When a Phaser class is in the
termination state, it won't accept new participants and the synchronization methods will
always return immediately.

We used the Phaser class to implement two algorithms: a keyword extraction algorithm
and a genetic algorithm. In both cases, we got an important increase of throughput against
the serial version of those algorithms.

Running Tasks Divided into Phases - The Phaser Class

[207]

In the next chapter, you will learn how to use another Java concurrency framework to solve
special kinds of problems. It's the fork/join framework, which has been developed to
execute in a concurrent way those problems that can be solved using the divide and
conquer algorithm. It's based in an executor, with a special work-stealing algorithm that
maximizes the performance of the executor.

7
Optimizing Divide and Conquer

Solutions - The Fork/Join
Framework

In Chapter 3, Managing Lots of Threads - Executors, Chapter 4, Getting the Most from
Executors, and Chapter 5, Getting Data from Tasks - The Callable and Future Interfaces, you
learned how to work with executors as a mechanism to improve the performance of
concurrent applications that execute lots of concurrent tasks. The Java 7 Concurrency API
introduced a special kind of executor through the fork/join framework. This framework is
designed to implement optimal concurrent solutions to those problems that can be solved
using the divide and conquer design paradigm. In this chapter, we will cover the following
topics:

An introduction to the fork/join framework
The first example - the k-means clustering algorithm
The second example - a data filtering algorithm
The third example - the merge sort algorithm

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[209]

An introduction to the fork/join framework
The executor framework, introduced in Java 5, provides a mechanism to execute concurrent
tasks without creating, starting, and finishing threads. This framework uses a pool of
threads that executes the tasks you send to the executor, reusing them for multiple tasks.
This mechanism provides the following advantages to programmers:

It's easier to program concurrent applications because you don't have to worry
about creating threads.
It's easier to control the resources used by the executor and your application. You
can create an executor that only uses a predefined number of threads. If you send
more threads, the executor stores them in a queue until a thread is available.
Executors reduce the overhead introduced by thread creation by reusing the
threads. Internally, it manages a pool of threads that reuses threads to execute
multiple tasks.

The divide and conquer algorithm is a very popular design technique. To solve a problem
using this technique, you divide it into smaller problems. You repeat the process in a
recursive way until the problems you have to solve are small enough to be solved directly.
You have to be very careful selecting the base case that is resolved directly. A bad choice of
the size of that problem can give you poor performance. This kind of problem can be solved
using the executor, but to solve them in a more efficient way, the Java 7 Concurrency API
introduced the fork/join framework.

This framework is based on the ForkJoinPool class, which is a special kind of executor,
two operations, the fork() and join() methods (and their different variants), and an
internal algorithm named the work-stealing algorithm. In this chapter, you will learn the
basic characteristics, limitations, and components of the fork/join framework in
implementing the following three examples:

The k-means clustering algorithm applied to the clustering of a set of documents
A data filter algorithm to get the data that meets certain criteria
The merge sort algorithm to sort big groups of data in an efficient way

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[210]

Basic characteristics of the fork/join framework
As we mentioned before, the fork/join framework must be used to implement solutions to
problems based on the divide and conquer technique. You have to divide the original
problem into smaller problems until they are small enough to be solved directly. With this
framework, you will implement tasks whose main method will be something like this:

if (problem.size() > DEFAULT_SIZE) {
 divideTasks();
 executeTask();
 taskResults=joinTasksResult();
 return taskResults;
} else {
 taskResults=solveBasicProblem();
 return taskResults;
}

The most important benefit of this method is that it allows you to divide and execute the
child tasks in an efficient way and to get the results of those child tasks to calculate the
results of the parent tasks. This functionality is supported by two methods provided by the
ForkJoinTask class:

The fork() method: This method allows you to send a child task to the fork/join
executor
The join() method: This method allows you to wait for the finalization of a child
task and returns its result

These methods have different variants, as you will see in the examples. The fork/join
framework has another critical feature: the work-stealing algorithm, which determines
which tasks are to be executed. When a task is waiting for the finalization of a child task
using the join() method, the thread that is executing that task takes another task from the
pool of tasks that are waiting and starts its execution. In this way, the threads of the
fork/join executor are always executing a task by improving the performance of the
application.

Java 8 included a new feature in the fork/join framework. Now, every Java application has a
default ForkJoinPool named common pool. You can obtain it by calling the
ForkJoinPool.commonPool() static method. You don't need to create one explicitly
(although you can). This default fork/join executor will automatically use the number of
threads determined by the available processors of your computer. You can change this
default behavior by changing the value of the system property
java.util.concurrent.ForkJoinPool.common.parallelism.

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[211]

Some features of the Java API use the fork/join framework to implement concurrent
operations. For example, the parallelSort() method of the Arrays class, which sorts
arrays in a parallel fashion, and the parallel streams introduced in Java 8 (described later, in
Chapter 8, Processing Massive Datasets with Parallel Streams - The Map and Reduce Model and
Chapter 9, Processing Massive Datasets with Parallel Streams - The Map and Collect Model) both
use this framework.

Limitations of the fork/join framework
As the fork/join framework is used to solve a certain kind of problem, it has some
limitations that you have to take into account when you use it to address your problem.
These limitations are as follows:

The basic problems that you're not going to subdivide have to be not very large,
but also not very small. According to the Java API documentation, it should have
between 100 and 10,000 basic computational steps.
You should not use blocking I/O operations, such as reading user input or data
from a network socket that is waiting until the data is available. Such operations
will cause your CPU cores to idle, thereby reducing the level of parallelism, so
you will not achieve full performance.
You can't throw checked exceptions inside a task. You have to include the code to
handle them (for example, wrapping into unchecked RuntimeException).
Unchecked exceptions have special treatment, as you will see in the examples.

Components of the fork/join framework
There are five basic classes in the fork/join framework:

The ForkJoinPool class: This class implements the Executor and
ExecutorService interfaces, and it is the Executor interface you're going to
use to execute your fork/join tasks. Java provides you with a default
ForkJoinPool object (named common pool), but you have some constructors to
create one if you want. You can specify the level of parallelism (the maximum
number of running parallel threads). By default, it uses the number of available
processors as the concurrency level.

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[212]

The ForkJoinTask class: This is the base abstract class of all of the fork/join tasks.
It's an abstract class, and it provides the fork() and join() methods and some
variants of them. It also implements the Future interface and provides methods
to know whether the task finished in a normal way, whether it was cancelled, or
if it threw an unchecked exception. The RecursiveTask, RecursiveAction,
and CountedCompleter classes provide a compute() abstract method, which
should be implemented in subclasses to perform actual computations.
The RecursiveTask class: This class extends the ForkJoinTask class. It's also an
abstract class, and it should be your starting point to implement fork/join tasks
that return results.
The RecursiveAction class: This class extends the ForkJoinTask class. It's also
an abstract class, and it should be your starting point to implement fork/join tasks
that don't return results.
The CountedCompleter class: This class extends the ForkJoinTask class. It
should be your starting point to implement tasks that trigger other tasks when
they're completed.

The first example - the k-means clustering
algorithm
The k-means clustering algorithm is a clustering algorithm that groups a set of items not
previously classified into a predefined number of clusters, K. It's very popular within the
data mining and machine learning world, and is used in these fields to organize and classify
data in an unsupervised way.

Each item is normally defined by a vector of characteristics or attributes (we use vector as a
math concept, not as a data structure). All the items have the same number of attributes.
Each cluster is also defined by a vector with the same number of attributes that represent all
the items classified into that cluster. This vector is named the centroid. For example, if the
items are defined by numeric vectors, the clusters are defined by the mean of the items
classified into that cluster.

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[213]

Basically, the algorithm has four steps:

Initialization: In the first step, you have to create the initial vectors that represent
the K clusters. Normally, you will initialize those vectors randomly.
Assignment: Then, you classify each item into a cluster. To select the cluster, you
calculate the distance between the item and every cluster. You will use a distance
measure, such as the Euclidean distance, to calculate the distance between the
vector that represents the item and the vector that represents the cluster. You will
assign the item to the cluster with the shortest distance.
Update: Once all the items have been classified, you have to recalculate the
vectors that define each cluster. As we mentioned earlier, you normally calculate
the mean of all the vectors of the items classified into the cluster.
End: Finally, you check whether any item has changed its assignment cluster. If
there has been a change, you go to the assignment step again. Otherwise, the
algorithm ends, and you have your items classified.

This algorithm has the following two main limitations:

If you make a random initialization of the initial vectors of the clusters, as we
suggested earlier, two executions that are used to classify the same item set may
give you different results.
The number of clusters is previously predefined. A bad choice of this attribute
will give you poor results in terms of classification.

Despite all this, this algorithm is a very popular method of clustering different kinds of
items. To test our algorithm, you are going to implement an application to cluster a set of
documents. As a document collection, we have taken a reduced version of the Wikipedia
pages containing information about the movies corpus we introduced in Chapter 5, Getting
Data from Tasks - The Callable and Future Interfaces. We have only taken 1,000 documents. To
represent each document, we have to use the vector space model representation. With this
representation, each document is represented as a numeric vector where each dimension of
the vector represents a word or a term, and its value is a metric that defines the importance
of that word or term in the document.

When you represent a document collection using the vector space model, the vectors will
have as many dimensions as the number of different words of the whole collection, so the
vectors will have a lot of zero values because each document doesn't have all the words.
You can use a more optimized representation in memory to avoid all those zero values and
save memory, increasing the performance of your application.

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[214]

In our case, we have chosen term frequency-inverse document frequency (TF-IDF) as the
metric that defines the importance of each word, and the 50 words with higher TF-IDF as
the terms that represent each document.

We use two files: the movies.words file stores a list of all the words used in the vectors,
and the movies.data file stores the representation of each document. The movies.data
file has the following format:

10000202,rabona:23.039285705435507,1979:8.09314752937111,argentina:7.953798
614698405,la:5.440565539075689,argentine:4.058577338363469,editor:3.0401515
284855267,spanish:2.9692083275217134,image_size:1.3701158713905104,narrator
:1.1799670194306195,budget:0.286193223652206,starring:0.25519156764102785,c
ast:0.2540127604060545,writer:0.23904044207902764,distributor:0.20430284744
786784,cinematography:0.182583823735518,music:0.1675671228903468,caption:0.
14545085918028047,runtime:0.127767002869991,country:0.12493801913495534,pro
ducer:0.12321749670640451,director:0.11592975672109682,links:0.079255823038
12376,image:0.07786973207561361,external:0.07764427108746134,released:0.074
47174080087617,name:0.07214163435745059,infobox:0.06151153983466272,film:0.
035415118094854446

Here, 10000202 is the identifier of the document, and the rest of the file follows the formant
word:tfxidf.

As with other examples, we are going to implement the serial and concurrent versions and
execute both versions to verify that the fork/join framework gives us an improvement of the
performance of this algorithm.

The common classes
There are some features that are shared between the serial and concurrent versions. These
features include:

VocabularyLoader: This is a class that loads the list of words that forms the
vocabulary of our corpus.
Word, Document, and DocumentLoader: These three classes load the information
about the documents. These classes have little difference between the serial and
concurrent versions of the algorithm.
DistanceMeasure: This is a class that is used to calculate the Euclidean distance
between two vectors.
DocumentCluster: This is a class that is used to store the information about the
clusters.

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[215]

Let's look at these classes in detail.

The VocabularyLoader class
As we mentioned before, our data is stored in two files. One of those files is the
movies.words file. This file stores a list with all the words used in the documents. The
VocabularyLoader class will transform that file into HashMap. The key of HashMap is the
whole word, and the value is an integer value with the index of that word in the list. We use
that index to determine the position of the word in the vector space model that represents
each document.

The class has only one method, named load(), which receives the path of the file as a
parameter and returns the HashMap:

public class VocabularyLoader {

 public static Map<String, Integer> load (Path path) throws
 IOException {
 int index=0;
 HashMap<String, Integer> vocIndex=new HashMap<String,
 Integer>();
 try(BufferedReader reader = Files.newBufferedReader(path)){
 String line = null;
 while ((line = reader.readLine()) != null) {
 vocIndex.put(line,index);
 index++;
 }
 }
 return vocIndex;

 }
}

The word, document, and DocumentLoader classes
These classes store all the information about the documents we will use in our algorithm.
First, the Word class stores information about a word in a document. It includes the index of
the word and the TF-IDF of that word in the document. This class only includes those
attributes (int and double, respectively), and implements the Comparable interface to sort
two words using their TF-IDF value, so we don't include the source code of this class.

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[216]

The Document class stores all the relevant information about the document. First, it stores
an array of Word objects with the words in the document. This is our representation of the
vector space model. We only store the words used in the document in order to save a lot of
memory space. Then, we store a String with the name of the file that stores the document,
and finally a DocumentCluster object to know the cluster associated with the document. It
also includes a constructor to initialize those attributes and methods to get and set their
value. We only include the code of the setCluster() method. In this case, this method
will return a Boolean value to indicate whether the new value of this attribute is the same as
the old value or a new one. We will use that value to determine whether or not we should
stop the algorithm:

public boolean setCluster(DocumentCluster cluster) {
 if (this.cluster == cluster) {
 return false;
 } else {
 this.cluster = cluster;
 return true;
 }
}

Finally, the DocumentLoader class loads the information about the document. It includes a
static method, load(), which receives the path of the file, and the HashMap with the
vocabulary, and returns an Array of Document objects. It loads the file line by line and
converts each line to a Document object. We have the following code:

public static Document[] load(Path path, Map<String, Integer>
 vocIndex) throws IOException{
 List<Document> list = new ArrayList<Document>();
 try(BufferedReader reader = Files.newBufferedReader(path)) {
 String line = null;
 while ((line = reader.readLine()) != null) {
 Document item = processItem(line, vocIndex);
 list.add(item);
 }
 }
 Document[] ret = new Document[list.size()];
 return list.toArray(ret);

}

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[217]

To convert a line of the text file to a Document object, we use the processItem() method:

private static Document processItem(String line,Map<String,
 Integer> vocIndex) {

 String[] tokens = line.split(",");
 int size = tokens.length - 1;

 Document document = new Document(tokens[0], size);
 Word[] data = document.getData();

 for (int i = 1; i < tokens.length; i++) {
 String[] wordInfo = tokens[i].split(":");
 Word word = new Word();
 word.setIndex(vocIndex.get(wordInfo[0]));
 word.setTfidf(Double.parseDouble(wordInfo[1]));
 data[i - 1] = word;
 }
 Arrays.sort(data);
 return document;
}

As we mentioned earlier, the first item in the line is the identifier of the document. We
obtain it from tokens[0], and we pass it to the Document class constructor. Then, for the
rest of the tokens, we split them again to obtain the information of every word that includes
the whole word and the TF-IDF value.

The DistanceMeasurer class
This class calculates the Euclidean distance between a document and a cluster (represented
as a vector). The words in our word arrays (after sorting) are placed in the same order as
they would be in a centroid array, but some words might be absent. For such words, we
assume that TF-IDF is zero, so the distance is just the square of the corresponding value
from the centroid array:

public class DistanceMeasurer {

 public static double euclideanDistance(Word[] words, double[]
 centroid) {
 double distance = 0;

 int wordIndex = 0;
 for (int i = 0; i < centroid.length; i++) {
 if ((wordIndex < words.length) (words[wordIndex].getIndex()
 == i)) {
 distance += Math.pow((words[wordIndex].getTfidf() -

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[218]

 centroid[i]), 2);
 wordIndex++;
 } else {
 distance += centroid[i] * centroid[i];
 }
 }

 return Math.sqrt(distance);
 }
}

The DocumentCluster class
This class stores the information about each cluster generated by the algorithm. This
information includes a list of all the documents associated with this cluster and the centroid
of the vector that represents the cluster. In this case, this vector has as many dimensions as
there are words in the documents' vocabulary. The class has the two attributes, a
constructor to initialize them, and methods to get and set their value. It also includes two
very important methods. First, it has the calculateCentroid() method. This method
calculates the centroid of the cluster as the mean of the vectors that represent the documents
associated with this cluster:

public void calculateCentroid() {

 Arrays.fill(centroid, 0);

 for (Document document : documents) {
 Word vector[] = document.getData();

 for (Word word : vector) {
 centroid[word.getIndex()] += word.getTfidf();
 }
 }

 for (int i = 0; i < centroid.length; i++) {
 centroid[i] /= documents.size();
 }
}

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[219]

The second method is the initialize() method, which receives a Random object and
initializes the centroid vector of the cluster with random numbers, as follows:

public void initialize(Random random) {
 for (int i = 0; i < centroid.length; i++) {
 centroid[i] = random.nextDouble();
 }
}

The serial version
Now that we have described the common features of the application, let's see how to
implement the serial version of the k-means clustering algorithm. We are going to use two
classes: SerialKMeans, which implements the algorithm, and SerialMain, which
implements the main() method to execute the algorithm.

The SerialKMeans class
The SerialKMeans class implements the serial version of the k-means clustering algorithm.
The main method of the class is the calculate() method. It receives the following as
parameters:

The array of Document objects with information about the documents
The number of clusters you want to generate
The size of the vocabulary
A seed for the random number generator

The method returns an Array of the DocumentCluster objects. Each cluster will have a list
of documents associated with it. First, the document creates the Array of clusters
determined by the numberClusters parameter and initializes them using the
initialize() method and a Random object, as follows:

public class SerialKMeans {

 public static DocumentCluster[] calculate(Document[] documents,
 int clusterCount, int vocSize, int seed) {
 DocumentCluster[] clusters = new DocumentCluster[clusterCount];

 Random random = new Random(seed);
 for (int i = 0; i < clusterCount; i++) {

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[220]

 clusters[i] = new DocumentCluster(vocSize);
 clusters[i].initialize(random);
 }

Then, we repeat the assignment and update phases until all the documents stay in the same
cluster. Finally, we return the array of clusters with the final organization of the documents,
as follows:

 boolean change = true;

 int numSteps = 0;
 while (change) {
 change = assignment(clusters, documents);
 update(clusters);
 numSteps++;
 }
 System.out.println("Number of steps: "+numSteps);
 return clusters;
}

The assignment phase is implemented in the assignment() method. This method receives
the array of Document and DocumentCluster objects. For each document, it calculates the
Euclidean distance between the document and all the clusters, and assigns the document to
the cluster with the lowest distance. It returns a Boolean value to indicate whether one or
more of the documents has changed their assigned cluster from one position to the next
one, as shown in the following code:

private static boolean assignment(DocumentCluster[] clusters, Document[]
documents) {

 boolean change = false;

 for (DocumentCluster cluster : clusters) {
 cluster.clearClusters();
 }

 int numChanges = 0;
 for (Document document : documents) {
 double distance = Double.MAX_VALUE;
 DocumentCluster selectedCluster = null;
 for (DocumentCluster cluster : clusters) {
 double curDistance = DistanceMeasurer.euclideanDistance
 (document.getData(), cluster.getCentroid());
 if (curDistance < distance) {
 distance = curDistance;
 selectedCluster = cluster;
 }

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[221]

 }
 selectedCluster.addDocument(document);
 boolean result = document.setCluster(selectedCluster);
 if (result)
 numChanges++;
 }
 System.out.println("Number of Changes: " + numChanges);
 return numChanges > 0;
 }

The update step is implemented in the update() method. It receives the array of
DocumentCluster with the information of the clusters, and it simply recalculates the
centroid of each cluster:

 private static void update(DocumentCluster[] clusters) {
 for (DocumentCluster cluster : clusters) {
 cluster.calculateCentroid();
 }
 }
}

The SerialMain class
The SerialMain class includes the main() method, which launches the tests of the k-
means algorithm. First, it loads the data (words and documents) from the files:

public class SerialMain {

 public static void main(String[] args) {
 Path pathVoc = Paths.get("data", "movies.words");

 Map<String, Integer> vocIndex=VocabularyLoader.load(pathVoc);
 System.out.println("Voc Size: "+vocIndex.size());

 Path pathDocs = Paths.get("data", "movies.data");
 Document[] documents = DocumentLoader.load(pathDocs,
 vocIndex);
 System.out.println("Document Size: "+documents.length);

Then, it initializes the number of clusters we want to generate and the seed for the random
number generator. If they don't come as parameters of the main() method, we use a set of
default values, as follows:

 if (args.length != 2) {
 System.err.println("Please specify K and SEED");
 return;

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[222]

 }
 int K = Integer.valueOf(args[0]);
 int SEED = Integer.valueOf(args[1]);
}

Finally, we launch the algorithm, measuring its execution time, and write the number of
documents per cluster.

 Date start, end;
 start=new Date();
 DocumentCluster[] clusters = SerialKMeans.calculate(documents,
 K ,vocIndex.size(), SEED);
 end=new Date();
 System.out.println("K: "+K+"; SEED: "+SEED);
 System.out.println("Execution Time: "+(end.getTime()-
 start.getTime()));
 System.out.println(Arrays.stream(clusters)
 .map (DocumentCluster::getDocumentCount)
 .sorted (Comparator.reverseOrder())
 .map(Object::toString)
 .collect(Collectors.joining(", ", "Cluster sizes: ", "")));
 }
}

The concurrent version
To implement the concurrent version of the algorithm, we have used the fork/join
framework. We have implemented two different tasks based on the RecursiveAction
class. As we mentioned earlier, the RecursiveAction task is used when you want to use
the fork/join framework with tasks that do not return a result. We have implemented the
assignment and the update phases as tasks to be executed in a fork/join framework.

To implement the concurrent version of the k-means algorithm, we are going to modify
some of the common classes to use concurrent data structures. Then, we are going to
implement the two tasks, and finally, we are going to implement, first, the
ConcurrentKMeans class, which implements the concurrent version of the algorithm, and
then the ConcurrentMain class to test it.

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[223]

Two tasks for the fork/join framework - AssignmentTask
and UpdateTask
As we mentioned earlier, we have implemented the assignment and update phases as tasks
to be implemented in the fork/join framework.

The assignment phase assigns a document to the cluster that has the lowest Euclidean
distance from the document, so we have to process all the documents and calculate the
Euclidean distances of all the documents and all the clusters. We are going to use the
number of documents that a task has to decide whether we have to split the task or not. We
start with the tasks that have to process all the documents, and we are going to split them
until we have tasks that have to process a number of documents lower than a predefined
size.

The AssignmentTask class has the following attributes:

The array of ConcurrentDocumentCluster objects with the data of the clusters
The array of ConcurrentDocument objects with the data of the documents
Two integer attributes, start and end, which determine the number of
documents the task has to process
An AtomicInteger attribute, numChanges, which stores the number of
documents that have changed their assigned cluster from the last execution to the
current one
An integer attribute, maxSize, which stores the maximum number of documents
a task can process

We have implemented a constructor to initialize all these attributes, as well as methods to
get and set its values.

The main method of this task is (as with every task) the compute() method. First, we check
the number of documents the task has to process. If it's less than or equal to the maxSize
attribute, then we process those documents. We calculate the Euclidean distance between
each document and each of the clusters, and select the cluster with the lowest distance. If it's
necessary, we increment the numChanges atomic variable using the incrementAndGet()
method. The atomic variable can be updated by more than one thread at the same time
without using synchronization mechanisms and without causing any memory
inconsistencies. Refer to the following code:

protected void compute() {
 if (end - start <= maxSize) {
 for (int i = start; i < end; i++) {
 ConcurrentDocument document = documents[i];

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[224]

 double distance = Double.MAX_VALUE;
 ConcurrentDocumentCluster selectedCluster = null;
 for (ConcurrentDocumentCluster cluster : clusters) {
 double curDistance = DistanceMeasurer.euclideanDistance
 (document.getData(), cluster.getCentroid());
 if (curDistance < distance) {
 distance = curDistance;
 selectedCluster = cluster;
 }
 }
 selectedCluster.addDocument(document);
 boolean result = document.setCluster(selectedCluster);
 if (result) {
 numChanges.incrementAndGet();
 }

 }

If the number of documents the task has to process is too big, we split that set into two parts
and create two new tasks to process each of those parts, as follows:

 } else {
 int mid = (start + end) / 2;
 AssignmentTask task1 = new AssignmentTask(clusters, documents,
 start, mid, numChanges, maxSize);
 AssignmentTask task2 = new AssignmentTask(clusters, documents,
 mid, end, numChanges, maxSize);

 invokeAll(task1, task2);
 }
}

To execute those tasks in the fork/join pool, we have used the invokeAll() method. This
method will return when the tasks have finished their execution.

The update phase recalculates the centroid of each cluster as the mean of all the documents,
so we have to process all the clusters. We are going to use the number of clusters a task has
to process as the measure to decide whether we have to split the task or not. We start with a
task that has to process all the clusters, and we are going to split it until we have tasks that
have to process a number of clusters lower than a predefined size.

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[225]

The UpdateTask class has the following attributes:

The array of ConcurrentDocumentCluster objects with the data of the clusters
Two integer attributes, start and end, which determine the number of clusters
the task has to process
An integer attribute, maxSize, which stores the maximum number of clusters a
task can process

We have implemented a constructor to initialize all these attributes, as well as methods to
get and set its values.

The compute() method first checks the number of clusters the task has to process. If that
number is less than or equal to the maxSize attribute, it processes those clusters and
updates their centroid:

@Override
protected void compute() {
 if (end - start <= maxSize) {
 for (int i = start; i < end; i++) {
 ConcurrentDocumentCluster cluster = clusters[i];
 cluster.calculateCentroid();
 }

If the number of clusters the task has to process is too big, we will divide the set of clusters
the task has to process in two and create two tasks to process each half of that set, as
follows:

 } else {
 int mid = (start + end) / 2;
 UpdateTask task1 = new UpdateTask(clusters, start, mid,
 maxSize);
 UpdateTask task2 = new UpdateTask(clusters, mid, end,
 maxSize);

 invokeAll(task1, task2);
 }
}

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[226]

The ConcurrentKMeans class
The ConcurrentKMeans class implements the concurrent version of the k-means clustering
algorithm. As the serial version, the main method of the class is the calculate() method.
It receives the following as parameters:

The array of ConcurrentDocument objects with the information about the
documents
The number of clusters you want to generate
The size of the vocabulary
A seed for the random number generator
The maximum number of items a fork/join task will process without splitting the
task into other tasks

The calculate() method returns an array of the ConcurrentDocumentCluster objects
with the information of the clusters. Each cluster has the list of documents associated with
it. First, the document creates the array of clusters determined by the numberClusters
parameter and initializes them using the initialize() method and a Random object:

public class ConcurrentKMeans {

 public static ConcurrentDocumentCluster[] calculate
 (ConcurrentDocument[] documents int numberCluster
 int vocSize, int seed, int maxSize) {
 ConcurrentDocumentCluster[] clusters = new
 ConcurrentDocumentCluster[numberClusters];

 Random random = new Random(seed);
 for (int i = 0; i < numberClusters; i++) {
 clusters[i] = new ConcurrentDocumentCluster(vocSize);
 clusters[i].initialize(random);
 }

Then, we repeat the assignment and update phases until all the documents stay in the same
cluster. Before the loop, we create ForkJoinPool, which is going to execute that task and
all of its subtasks. Once the loop has finished, as with other Executor objects, we have to
use the shutdown() method with a fork/join pool to finish its executions. Finally, we return
the array of clusters with the final organization of the documents:

 boolean change = true;
 ForkJoinPool pool = new ForkJoinPool();

 int numSteps = 0;
 while (change) {

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[227]

 change = assignment(clusters, documents, maxSize, pool);
 update(clusters, maxSize, pool);
 numSteps++;
 }
 pool.shutdown();
 System.out.println("Number of steps: "+numSteps);
 return clusters;
}

The assignment phase is implemented in the assignment() method. This method receives
the array of clusters, the array of documents, and the maxSize attribute. First, we delete the
list of associated documents to all the clusters:

private static boolean assignment(ConcurrentDocumentCluster[]
 clusters, ConcurrentDocument[] documents,
 int maxSize, ForkJoinPool pool) {

 boolean change = false;

 for (ConcurrentDocumentCluster cluster : clusters) {
 cluster.clearDocuments();
 }

Then, we initialize the necessary objects: an AtomicInteger to store the number of
documents whose assigned cluster has changed and the AssignmentTask, which will
begin the process. The AtomicInteger class supports atomic operations--that is to say, no
other threads will see the operation in an intermediate state. To the rest of the threads, the
operation is executed or not executed. They also establish a happens-before relation
between the set() operations and the subsequent get() operations. We use an
AtomicInteger object to guarantee that all the threads can update their value in a thread-
safe way.

AtomicInteger numChanges = new AtomicInteger(0);
AssignmentTask task = new AssignmentTask(clusters, documents, 0,
 documents.length, numChanges, maxSize);
ForkJoinPool pool = new ForkJoinPool();

Then, we execute the tasks in the pool in an asynchronous way using the execute()
method of ForkJoinPool and wait for finalization with the join() method of the
AssignmentTask object, as follows:

pool.execute(task);
task.join();

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[228]

Finally, we check the number of documents that have changed their assigned cluster. If
there have been changes, we return the true value. Otherwise, we return the false value.
We have the following code:

 System.out.println("Number of Changes: " + numChanges);
 return numChanges.get() > 0;
}

The update phase is implemented in the update() method. It receives the array of clusters
and the maxSize parameters. First, we create an UpdateTask object to update all the
clusters. Then, we execute that task in the ForkJoinPool object that the method receives as
a parameter, as follows:

 private static void update(ConcurrentDocumentCluster[] clusters,
 int maxSize, ForkJoinPool pool) {
 UpdateTask task = new UpdateTask(clusters, 0, clusters.length,
 maxSize, ForkJoinPool pool);
 pool.execute(task);
 task.join();
 }
}

The ConcurrentMain class
The ConcurrentMain class includes the main() method to launch the tests of the k-means
algorithm. Its code is equal to the SerialMain class, but the serial classes are changed for
the concurrent ones.

Comparing the solutions
To compare the two solutions, we executed different experiments that changed the values
of three different parameters:

The k-parameter will establish the number of clusters we want to generate. We
tested the algorithms with the values 5, 10, 15, and 20.
The seed for the Random number generator determines how the initial centroid is
positioned. We tested the algorithms with the values 1 and 13.
For the concurrent algorithm, the maxSize parameter determines the maximum
number of items (documents or clusters) a task can process without being split
into other tasks. We tested the algorithms with the values 1, 20, and 400.

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[229]

We executed the examples using the JMH framework (h t t p ://o p e n j d k . j a v a . n e t /p r o j e c t

s /c o d e - t o o l s /j m h /), which allows you to implement microbenchmarks in Java. Using a
framework for benchmarking is a better solution, which simply measures time using
methods such as currentTimeMillis() or nanoTime(). We executed them ten times in
two different architectures:

A computer with an Intel Core i5-5300 CPU with Windows 7 and 16 GB of1.
RAM: This processor has two cores and each core can execute two threads, so we
will have four parallel threads
A computer with an AMD A8-640 APU with Windows 10 and 8 GB of RAM:2.
This processor has four cores

These are the execution times that we obtained in milliseconds. First, we show the results
for the AMD architecture:

http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[230]

Here are the results for the Intel architecture:

We can draw the following conclusions:

The seed has an important and unpredictable impact on the execution time.
Sometimes, the execution times are lower with seed 13, but other times they are
lower with seed 1.
When you increment the number of clusters, the execution time increments too.
The maxSize parameter doesn't have much influence on the execution time. The
parameter K, or seed, has a higher influence on the execution time. If you increase
the value of the parameter, you will obtain better performance. The difference
between 1 and 20 is bigger than it is between 20 and 400.
In all the cases, the concurrent version of the algorithm has better performance
than the serial one. Only in the Intel architecture with a low number of clusters
does the serial version have better results than the concurrent one.

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[231]

For example, if we compare the serial algorithm with parameters K = 20 and seed = 13 with
the concurrent version with parameters K = 20, seed = 13, and maxSize = 400 using the speed-
up, we obtain the following result:

The second example - a data filtering
algorithm
Suppose that you have a lot of data that describes a list of items. For example, say that you
have a lot of attributes (name, surname, address, phone number, and so on) of a lot of
people. It's a common need to obtain the data that meets certain criteria. For example, you
might want to obtain the details of people who live in a certain street or with a certain
name.

In this section, you will implement one of those filtering programs. We have used the
Census-Income KDD dataset from the UCI (you can download it from
https://archive.ics.uci.edu/ml/datasets/Census-Income+%28KDD%29), which contains
weighted census data extracted from the 1994 and 1995 current population surveys
conducted by the U.S. Census Bureau.

In the concurrent version of this example, you will learn how to cancel tasks that are
running in the fork/join pool and how to manage unchecked exceptions that can be thrown
in a task.

https://archive.ics.uci.edu/ml/datasets/Census-Income+(KDD)

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[232]

Common features
We have implemented some classes to read the data from a file and to filter the data. These
classes are used by the serial and concurrent versions of the algorithm. The following are
the classes:

The CensusData class: This class stores the 39 attributes that define every person.
It defines the attributes and methods to get and set their value. We are going to
identify each attribute by a number. The evaluateFilter() method of this
class contains the association between the number and the name of the attribute.
You can visit
https://archive.ics.uci.edu/ml/machine-learning-databases/census-incom

e-mld/census-income.names to get the details of every attribute.
The CensusDataLoader class: This class loads the census data from a file. It has
the load() method that receives the path to the file as an input parameter and
returns an array of CensusData with the information of all the people in the file.
The FilterData class: This class defines a filter of data. A filter includes the
number of an attribute and the value of that attribute.
The Filter class: This class implements the methods that determine whether a
CensusData object meets the conditions of a list of filters.

We don't include the source code of these classes. They are very simple, and you can check
the source code of the example for details.

The serial version
We have implemented the serial version of the filter algorithm in two classes. The
SerialSearch class organizes the filtering of the data. It provides two methods:

The findAny() method: This receives the array of the CensusData object as a
parameter with all the data from the file and a list of filters and returns a
CensusData object with the first person it finds that meets all the criteria from
the filters
The findAll() method: This receives the array of the CensusData object as a
parameter with all the data from the file and a list of filters and returns an array
of CensusData objects with all the people that meet all the criteria from the filter

The SerialMain class implements the main() method of this version and tests it to
measure the execution time of this algorithm in some circumstances.

https://archive.ics.uci.edu/ml/machine-learning-databases/census-income-mld/census-income.names
https://archive.ics.uci.edu/ml/machine-learning-databases/census-income-mld/census-income.names

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[233]

The SerialSearch class
As we mentioned before, this class implements the filtering of data. It provides two
methods. The first one, the findAny() method, looks for the first data object that meets the
filter's criteria. When it finds the first data object, it finishes its execution. Refer to the
following code:

public class SerialSearch {

 public static CensusData findAny (CensusData[] data, List<FilterData>
 filters) {
 int index=0;
 for (CensusData censusData : data) {
 if (Filter.filter(censusData, filters)) {
 System.out.println("Found: "+index);
 return censusData;
 }
 index++;
 }

 return null;
 }

The second one, the findAll() method, returns an array of CensusData objects with all
the objects that meet the filter's criteria, as follows:

 public static List<CensusData> findAll (CensusData[] data,
 List<FilterData> filters) {
 List<CensusData> results=new ArrayList<CensusData>();

 for (CensusData censusData : data) {
 if (Filter.filter(censusData, filters)) {
 results.add(censusData);
 }
 }
 return results;
 }
}

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[234]

The SerialMain class
You're going to use this class to test the filtering algorithm in different circumstances. First,
we load the data from the file, as follows:

public class SerialMain {
 public static void main(String[] args) {
 Path path = Paths.get("data","census-income.data");

 CensusData data[]=CensusDataLoader.load(path);
 System.out.println("Number of items: "+data.length);

 Date start, end;

The first thing we are going to do is to use the findAny() method to find an object that
exists in the first place of the array. You construct a list of filters and then call the
findAny() method with the data of the file and the list of filters:

List<FilterData> filters=new ArrayList<>();
FilterData filter=new FilterData();
filter.setIdField(32);
filter.setValue("Dominican-Republic");
filters.add(filter);
filter=new FilterData();
filter.setIdField(31);
filter.setValue("Dominican-Republic");
filters.add(filter);
filter=new FilterData();
filter.setIdField(1);
filter.setValue("Not in universe");
filters.add(filter);
filter=new FilterData();
filter.setIdField(14);
filter.setValue("Not in universe");
filters.add(filter);
start=new Date();
CensusData result=SerialSearch.findAny(data, filters);
System.out.println("Test 1 - Result: "+result
 .getReasonForUnemployment());
end=new Date();
System.out.println("Test 1- Execution Time: "+(end.getTime()-
 start.getTime()));

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[235]

Our filters look for the following attributes:

32: This is the country of the birth father attribute
31: This is the country of the birth mother attribute
1: This is the class of the worker attributes; Not in universe is one of their
possible values
14: This is the reason for unemployment attribute; Not in universe is one of
their possible values

We are also going to test other cases, as follows:

Use the findAny() method to find an object that exists in the last position of the
array
Use the findAny()method to try to find an object that doesn't exist
Use the findAny() method in an error situation
Use the findAll() method to obtain all the objects that meet a list of filters
Use the findAll() method in an error situation

The concurrent version
We are going to include more elements in our concurrent version:

A task manager: When you use the fork/join framework, you start with one task
and you split that task into two (or more) child tasks that you split again and
again until your problem has the desired size. There can be situations where you
want to finish the execution of all those tasks. For example, when you implement
the findAny() method and you find an object that meets all the criteria, you
don't need to continue with the execution of the rest of the tasks.
A RecursiveTask class to implement the findAny() method: It's the
IndividualTask class, which extends RecursiveTask.
A RecursiveTask class to implement the findAll() method: It's the ListTask
class, which extends RecursiveTask.

Let's look at the details of all these classes.

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[236]

The TaskManager class
We are going to use this class to control the cancellation of tasks. We are going to cancel the
execution of tasks in the following two situations:

You're executing the findAny() operation and you find an object that meets the
requirements
You're executing the findAny() or findAll() operations and there's an
unchecked exception in one of the tasks

The class declares two attributes: ConcurrentLinkedDeque to store all the tasks we need
to cancel and an AtomicBoolean variable to guarantee that only one task executes the
cancelTasks() method. We use an AtomicBoolean variable to guarantee that all the
tasks access their value in a thread-safe way:

public class TaskManager {

 private Set<RecursiveTask> tasks;
 private AtomicBoolean cancelled;

 public TaskManager() {
 tasks = ConcurrentHashMap.newKeySet();
 cancelled = new AtomicBoolean(false);
 }

It defines methods to add a task to ConcurrentLinkedDeque, delete a task from
ConcurrentLinkedDeque, and cancel all the tasks stored in it. To cancel the tasks, we use
the cancel() method defined in the ForkJoinTask class. The true parameter forces the
interruption of the task if it is running, as follows:

public void addTask(RecursiveTask task) {
 tasks.add(task);
}

public void cancelTasks(RecursiveTask sourceTask) {

 if (cancelled.compareAndSet(false, true)) {
 for (RecursiveTask task : tasks) {
 if (task != sourceTask) {
 if(cancelled.get()) {
 task.cancel(true);
 }
 else {
 tasks.add(task);
 }
 }

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[237]

 }
 }
}

public void deleteTask(RecursiveTask task) {
 tasks.remove(task);
}

The cancelTasks() method receives a RecursiveTask object as a parameter. We're going
to cancel all the tasks except the one that is calling this method. We don't want to cancel the
tasks that have found the result. The compareAndSet(false, true) method sets the
AtomicBoolean variable to true and returns true only if the current value is false. If the
AtomicBoolean variable already has a true value, then false is returned. The whole
operation is performed atomically, so it's guaranteed that the body of the if statement will
be executed once at the most, even if the cancelTasks() method is concurrently called
several times from different threads.

The IndividualTask class
The IndividualTask class extends the RecursiveTask class parameterized with the
CensusData task and implements the findAny() operation. It defines the following
attributes:

An array with all the CensusData objects
The start and end attributes, which determine the elements it has to process
The size attribute, which determines the maximum number of elements the task
will process without splitting the task
A TaskManager class to cancel the tasks if necessary
The following code, which gives a list of filters to apply:

private CensusData[] data;
private int start, end, size;
private TaskManager manager;
private List<FilterData> filters;

public IndividualTask(CensusData[] data, int start,
 int end, TaskManager manager,
 int size, List<FilterData> filters) {
 this.data = data;
 this.start = start;
 this.end = end;
 this.manager = manager;
 this.size = size;

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[238]

 this.filters = filters;
}

The main method of the class is the compute() method. It returns a CensusData object. If
the number of elements the task has to process is less than the size attribute, it looks for the
object directly. If the method finds the desired object, it returns the object and uses the
cancelTasks() method to cancel the execution of the rest of the tasks. If the method
doesn't find the desired object, it returns null, as shown in the following code:

if (end - start <= size) {
 for (int i = start; i < end && ! Thread.currentThread()
 .isInterrupted(); i++) {
 CensusData censusData = data[i];
 if (Filter.filter(censusData, filters)) {
 System.out.println("Found: " + i);
 manager.cancelTasks(this);
 return censusData;
 }
 }
 return null;
}

If the number of items it has to process is more than the size attribute, we create two child
tasks to process half of the elements:

} else {
 int mid = (start + end) / 2;
 IndividualTask task1 = new IndividualTask(data, start, mid, manager,
 size, filters);
 IndividualTask task2 = new IndividualTask(data, mid, end, manager,
 size, filters);

Then, we add the newly created tasks to the task manager and delete the actual tasks. If we
want to cancel the tasks, then we want to cancel only the tasks that are running:

manager.addTask(task1);
manager.addTask(task2);
manager.deleteTask(this);

Then, we send the tasks to ForkJoinPool with the fork() method, which sends them
asynchronously, and wait for its finalization with the quietlyJoin() method.

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[239]

The difference between the join() and quietlyJoin() methods is that the join()
method launches an exception if the task is canceled or an unchecked exception is thrown
inside the method, whereas the quietlyJoin() method doesn't throw any exception.

task1.fork();
task2.fork();
task1.quietlyJoin();
task2.quietlyJoin();

Then, we delete the child tasks from the TaskManager class, as follows:

manager.deleteTask(task1);
manager.deleteTask(task2);

Now, we obtain the results of the tasks using the join() method. If a task throws an
unchecked exception, it will be propagated without special handling and the cancellation
will just be ignored, as follows:

 try {
 CensusData res = task1.join();
 if (res != null)
 return res;
 manager.deleteTask(task1);
 } catch (CancellationException ex) {
 }
 try {
 CensusData res = task2.join();
 if (res != null)
 return res;
 manager.deleteTask(task2);
 } catch (CancellationException ex) {
 }
 return null;
 }
}

The ListTask class
The ListTask class extends the RecursiveTask class, parameterized with a List of
CensusData. We are going to use this task to implement the findAll() operation. It's very
similar to the IndividualTask task. Both use the same attributes, but they have differences
in the compute() method.

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[240]

First, we initialize a List object to return the results and check the number of elements the
task has to process. If the number of elements the task has to process is less than the size
attribute, add all the objects that meet the criteria specified in the filters to the list of results:

@Override
protected List<CensusData> compute() {
 List<CensusData> ret = new ArrayList<CensusData>();
 List<CensusData> tmp;

 if (end - start <= size) {
 for (int i = start; i < end; i++) {
 CensusData censusData = data[i];
 if (Filter.filter(censusData, filters)) {
 ret.add(censusData);
 }
 }

If the number of items it has to process is more than the size attribute, we will create two
child tasks to process half of the elements:

int mid = (start + end) / 2;
ListTask task1 = new ListTask(data, start, mid, manager, size,
 filters);
ListTask task2 = new ListTask(data, mid, end, manager, size, filters);

Then, we will add the newly created tasks to the task manager and delete the actual tasks.
The actual task won't be canceled--its child tasks will be canceled, as follows:

manager.addTask(task1);
manager.addTask(task2);
manager.deleteTask(this);

Then, we will send the tasks to ForkJoinPool with the fork() method, which sends them
asynchronously, and wait for its finalization with the quietlyJoin() method:

task1.fork();
task2.fork();
task2.quietlyJoin();
task1.quietlyJoin();

Then, we will delete the child tasks from TaskManager:

manager.deleteTask(task1);
manager.deleteTask(task2);

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[241]

Now, we obtain the results of the tasks using the join() method. If a task throws an
unchecked exception, it will be propagated without special handling and the cancellation
will just be ignored:

 try {
 tmp = task1.join();
 if (tmp != null)
 ret.addAll(tmp);
 manager.deleteTask(task1);
 } catch (CancellationException ex) {
 }
 try {
 tmp = task2.join();
 if (tmp != null)
 ret.addAll(tmp);
 manager.deleteTask(task2);
 } catch (CancellationException ex) {
 }
 }
}

The ConcurrentSearch class
The ConcurrentSearch class implements the findAny() and findAll() methods. They
have the same interface as the methods of the serial version of the process. Internally, they
initialize the TaskManager object and the first task, and send them to default
ForkJoinPool using the execute method. They then wait for the finalization of the task
and write the results. This is the code of the findAny() method:

public class ConcurrentSearch {

 public static CensusData findAny (CensusData[] data,
 List<FilterData> filters, int size) {
 TaskManager manager=new TaskManager();
 IndividualTask task=new IndividualTask(data, 0, data.length,
 manager, size, filters);
 ForkJoinPool.commonPool().execute(task);
 try {
 CensusData result=task.join();
 if (result!=null) {
 System.out.println("Find Any Result: "+result.getCitizenship());
 return result;
 } catch (Exception e) {
 System.err.println("findAny has finished with an error: "+
 task.getException().getMessage());
 }

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[242]

 return null;
}

This is the code of the findAll() method:

public static CensusData[] findAll (CensusData[] data,
 List<FilterData> filters, int size) {
 List<CensusData> results;
 TaskManager manager=new TaskManager();
 ListTask task=new ListTask(data,0,data.length,manager,
 size,filters);
 ForkJoinPool.commonPool().execute(task);
 try {
 results=task.join();

 return results;
 } catch (Exception e) {
 System.err.println("findAny has finished with an
 error: " + task.getException().getMessage());
 }
 return null;
}

The ConcurrentMain class
The ConcurrentMain class is used to test the concurrent version of our object filter. It is
identical to the SerialMain class, but uses the concurrent version of the operations.

Comparing the two versions
To compare the serial and concurrent versions of the filtering algorithm, we test them in six
different situations:

Test 1: We test the findAny() method by looking for an object, which exists in
the first position of the CensusData array
Test 2: We test the findAny() method by looking for an object, which exists in
the last position of the CensusData array
Test 3: We test the findAny() method by looking for an object, which doesn't
exist
Test 4: We test the findAny() method in an error situation
Test 5: We test the findAll() method in a normal situation
Test 6: We test the findAll() method in an error situation

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[243]

For the concurrent version of the algorithm, we have tested three different values of the size
parameter that determines the maximum number of elements a task can process without
forking into two child tasks. We have tested this with a maximum threshold of 10, 200, 2000
and 4000 elements.

We have executed the examples using the JMH framework (h t t p ://o p e n j d k . j a v a . n e t /p r

o j e c t s /c o d e - t o o l s /j m h /), which allows you to implement microbenchmarks in Java.
Using a framework for benchmarking is a better solution, which simply measures time
using methods such as currentTimeMillis() or nanoTime(). We have executed them
ten times in two different architectures:

A computer with an Intel Core i5-5300 CPU with Windows 7 and 16 GB of1.
RAM: This processor has two cores and each core can execute two threads, so we
will have four parallel threads
A computer with an AMD A8-640 APU with Windows 10 and 8 GB of RAM:2.
This processor has four cores

As with the other examples, we have measured the execution time in milliseconds. First, we
show the results of the AMD architecture:

http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/
http://openjdk.java.net/projects/code-tools/jmh/

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[244]

Here are the results of the Intel architecture:

From these tables, we can draw the following conclusions:

The serial version of the algorithm has better performance when we have to
process a smaller number of elements.
The concurrent version of the algorithm has better performance when we have to
process all the elements or some of them.
In error situations, the serial version of the algorithm has better performance than
the concurrent version. The concurrent version has a very poor performance in
this situation when the value of the size parameter is small.

In this case, concurrency does not always give us an improvement in performance.

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[245]

The third example - the merge sort algorithm
The merge sort algorithm is a very popular sorting algorithm, which is often implemented
using the divide and conquer technique, so it's a very good candidate to test the fork/join
framework.

To implement the merge sort algorithm, we divide the unsorted lists into sublists of one
element. Then, we merge those unsorted sublists to produce ordered sublists until we have
processed all the sublists, and we have only the original list, but with all the elements
sorted.

To make the concurrent version of our algorithm, we have used the CountedCompleter
tasks, introduced in Java 8. The most important characteristic of these tasks is that they
include a method to be executed when all their child tasks have finished their execution.

To test out implementations, we have used the Amazon product co-purchasing network
metadata (you can download it from https://snap.stanford.edu/data/amazon-
meta.html). In particular, we have created a list with the salesrank of 542,184 products. We
are going to test our version of the algorithm, sorting this list of products and comparing
the execution time with the sort() and parallelSort() methods of the Arrays class.

Shared classes
As we mentioned earlier, we have built a list of 542,184 Amazon products with information
about those products, including their ID, title, group, salesrank, the number of reviews,
number of similar products, and number of categories each product belongs to. We have
implemented the AmazonMetaData class to store the information of a product. This class
declares the necessary attributes and the methods to get and set their values. This class
implements the Comparable interface to compare two instances of this class. We want to
sort the elements by salesrank in ascending order. To implement the compare() method,
we use the compare() method of the Long class to compare the salesrank of both objects, as
follows:

public int compareTo(AmazonMetaData other) {
 return Long.compare(this.getSalesrank(),
 other.getSalesrank());
}

We have also implemented AmazonMetaDataLoader, which provides the load() method.
This method receives a route to the file with the data as a parameter and returns an array of
AmazonMetaData objects with the information of all the products.

https://snap.stanford.edu/data/amazon-meta.html
https://snap.stanford.edu/data/amazon-meta.html

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[246]

We don't include the source code of these classes to focus on the
characteristics of the fork/join framework.

The serial version
We have implemented the serial version of the merge sort algorithm in the
SerialMergeSort class, which implements the algorithm and the SerialMetaData class
and provides the main() method to test the algorithm.

The SerialMergeSort class
The SerialMergeSort class implements the serial version of the merge sort algorithm. It
provides the mergeSort() method, which receives the following parameters:

The array with all the data we want to sort
The first element the method has to process (included)
The last element the method has to process (not included)

If the method has to process only one element, it returns; otherwise, it makes two recursive
calls to the mergeSort() method. The first call will process the first half of elements, and
the second call will process the second half of elements. Finally, we make a call to the
merge() method to merge the two halves of the elements and get a sorted list of elements:

public void mergeSort (Comparable data[], int start, int end) {
 if (end-start < 2) {
 return;
 }
 int middle = (end+start)>>>1;
 mergeSort(data,start,middle);
 mergeSort(data,middle,end);
 merge(data,start,middle,end);
}

We used the (end+start)>>>1 operator to obtain the mid-element to split the array. If you
have, for example, 1.5 billion elements (which is not that impossible with modern memory
chips), it still fits in the Java array. However, (end+start)/2 will overflow, resulting in a
negative number array. You can find a detailed explanation of this problem at
http://googleresearch.blogspot.ru/2006/06/extra-extra-read-all-about-it-nearly.

html.

http://googleresearch.blogspot.ru/2006/06/extra-extra-read-all-about-it-nearly.html
http://googleresearch.blogspot.ru/2006/06/extra-extra-read-all-about-it-nearly.html

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[247]

The merge() method merges two lists of elements to obtain a sorted list. It receives the
following parameters:

The array with all the data we want to sort
The three elements (start, mid, and end) that determine the two parts of the
array (start-mid, mid-end) that we want to merge and sort

We create a temporary array to sort the elements. Then, we sort the elements in the array
that is processing both parts of the list, and store the sorted list in the same position as the
original array, as shown in the following code:

 private void merge(Comparable[] data, int start, int middle,
 int end) {
 int length=end-start+1;
 Comparable[] tmp=new Comparable[length];
 int i, j, index;
 i=start;
 j=middle;
 index=0;
 while ((i<middle) && (j<end)) {
 if (data[i].compareTo(data[j])<=0) {
 tmp[index]=data[i];
 i++;
 } else {
 tmp[index]=data[j];
 j++;
 }
 index++;
 }

 while (i<middle) {
 tmp[index]=data[i];
 i++;
 index++;
 }

 while (j<end) {
 tmp[index]=data[j];
 j++;
 index++;
 }

 for (index=0; index < (end-start); index++) {
 data[index+start]=tmp[index];
 }
 }
}

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[248]

The SerialMetaData class
The SerialMetaData class provides the main() method to test the algorithm. We're going
to execute every sort algorithm 10 times to calculate the average execution time. First, we
load the data from the file and create a copy of the array:

public class SerialMetaData {

 public static void main(String[] args) {
 for (int j=0; j<10; j++) {
 Path path = Paths.get("data","amazon-meta.csv");

 AmazonMetaData[] data = AmazonMetaDataLoader.load(path);
 AmazonMetaData data2[] = data.clone();

Then, we sort the first array using the sort() method of the Arrays class:

Date start, end;

start = new Date();
Arrays.sort(data);
end = new Date();
System.out.println("Execution Time Java Arrays.sort(): " +
 (end.getTime() - start.getTime()));

Then, we sort the second array using our implementation of the merge sort algorithm:

SerialMergeSort mySorter = new SerialMergeSort();
start = new Date();
mySorter.mergeSort(data2, 0, data2.length);
end = new Date();
System.out.println("Execution Time Java SerialMergeSort: " +
 (end.getTime() - start.getTime()));

Finally, we check that the sorted arrays are identical:

 for (int i = 0; i < data.length; i++) {
 if (data[i].compareTo(data2[i]) != 0) {
 System.err.println("There's a difference is position " +
 i);
 System.exit(-1);
 }
 }
 System.out.println("Both arrays are equal");
 }
 }
}

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[249]

The concurrent version
As we mentioned before, we are going to use the Java 8 CountedCompleter class as the
base class for our fork/join tasks. This class provides a mechanism to execute a method
when all its child tasks have finished their execution. This mechanism is the
onCompletion() method, so we will use the compute() method to divide the array and
the onCompletion() method to merge the sublists into an ordered list.

The concurrent solution you are going to implement has three classes:

The MergeSortTask class, which extends the CountedCompleter class and
implements the task that executes the merge sort algorithm
The ConcurrentMergeSort task, which launches the first task
The ConcurrentMetaData class, which provides the main() method to test the
concurrent version of the merge sort algorithm

The MergeSortTask class
As we mentioned earlier, this class implements the tasks that are going to execute the merge
sort algorithm. This class uses the following attributes:

The array of data we want to sort
The start and end position of the array that the task has to sort

The class also has a constructor to initialize its parameters:

public class MergeSortTask extends CountedCompleter<Void> {

 private Comparable[] data;
 private int start, end;
 private int middle;

 public MergeSortTask(Comparable[] data, int start, int end,
 MergeSortTask parent) {
 super(parent);

 this.data = data;
 this.start = start;
 this.end = end;
 }

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[250]

If the difference between the start and end indexes is greater than or equal to 1024, then the
compute() method splits the task into two child tasks to process two subsets of the original
set. Both tasks use the fork() method to send a task to the ForkJoinPool asynchronously.
Otherwise, we execute SerialMergeSorg.mergeSort() to sort the part of the array
(which has 1024 or fewer elements) and then we call the tryComplete() method. This
method will internally call the onCompletion() method when the child task has finished
its execution, as shown in the following code:

@Override
public void compute() {
 if (end - start >= 1024) {
 middle = (end+start)>>>1;
 MergeSortTask task1 = new MergeSortTask(data, start, middle,
 this);
 MergeSortTask task2 = new MergeSortTask(data, middle, end,
 this);
 addToPendingCount(1);
 task1.fork();
 task2.fork();
 } else {
 new SerialMergeSort().mergeSort(data, start, end);
 tryComplete();
 }

In our case, we will use the onCompletion() method to make the merge and sort
operations obtain the sorted list. Once a task finishes the execution of the onCompletion()
method, it calls tryComplete() over its parent to try to complete that task. The source
code of the onCompletion() method is very similar to the merge() method of the serial
version of the algorithm, as shown in the following code:

@Override
public void onCompletion(CountedCompleter<?> caller) {
 if (middle==0) {
 return;
 }
 int length = end - start + 1;
 Comparable tmp[] = new Comparable[length];
 int i, j, index;
 i = start;
 j = middle;
 index = 0;
 while ((i < middle) && (j < end)) {
 if (data[i].compareTo(data[j]) <= 0) {
 tmp[index] = data[i];
 i++;
 } else {

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[251]

 tmp[index] = data[j];
 j++;
 }
 index++;
 }
 while (i < middle) {
 tmp[index] = data[i];
 i++;
 index++;
 }
 while (j < end) {
 tmp[index] = data[j];
 j++;
 index++;
 }
 for (index = 0; index < (end - start); index++) {
 data[index + start] = tmp[index];
 }

}

The ConcurrentMergeSort class
In the concurrent version, this class is very simple. It implements the mergeSort()
method, which receives the array of data to sort , as well as the start index (which will
always be 0) and the end index (which will always be the length of the array) to sort the
array as parameters. We have chosen to maintain the same interface as the serial version.

The method creates a new MergeSortTask and sends it to the default ForkJoinPool
using the invoke() method, which returns when the task has finished its execution and the
array is sorted:

 public class ConcurrentMergeSort {

 public void mergeSort (Comparable data[], int start, int end) {

 MergeSortTask task=new MergeSortTask(data, start, end,null);
 ForkJoinPool.commonPool().invoke(task);

 }
 }

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[252]

The ConcurrentMetaData class
The ConcurrentMetaData class provides the main() method to test the concurrent
version of the merge sort algorithm. In our case, the code is equal to the code of the
SerialMetaData class, but it uses the concurrent versions of the classes and the
Arrays.parallelSort() method instead of the Arrays.sort() method, so we don't
include the source code of the class.

Comparing the two versions
We executed our serial and concurrent versions of the merge sort algorithm and compared
its execution times with both them and the Arrays.sort() and Arrays.parallelSort()
methods.

We executed the examples using the JMH framework
(http://openjdk.java.net/projects/code-tools/jmh/), which allows you to implement
microbenchmarks in Java. Using a framework for benchmarking is a better solution, which
simply measures time using methods such as currentTimeMillis() or nanoTime(). We
executed them ten times in two different architectures:

A computer with an Intel Core i5-5300 CPU with Windows 7 and 16 GB of1.
RAM: This processor has two cores and each core can execute two threads, so we
will have four parallel threads
A computer with an AMD A8-640 APU with Windows 10 and 8 GB of RAM:2.
This processor has four cores

These are the execution times in milliseconds that we obtained when we sorted our dataset
with 542,184 objects:

http://openjdk.java.net/projects/code-tools/jmh/

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[253]

We can draw the following conclusions:

The Arrays.parallelSort()method obtains the best result. For serial
algorithms, the Arrays.sort() method obtains better execution time than our
implementations.
For our implementations, the concurrent version of the algorithm has better
performance than the serial one.

We can compare our serial and concurrent versions of the merge sort algorithm using the
speed-up:

Other methods of the fork/join framework
In the three examples shown in this chapter, we have used a lot of methods of the classes
that forms the fork/join framework, but there are other interesting methods you have to
know.

We have used the methods execute() and invoke() from the ForkJoinPool class to
send tasks to the pool. We can use another method, named submit(). The main difference
between them is that the execute() method sends the task to the ForkJoinPool and
immediately returns a void value, the invoke() method sends the task to the
ForkJoinPool and returns when the task has finished its execution, and the submit()
method sends the task to the ForkJoinPool and immediately returns a Future object to
control the status of the task and obtain its result.

In all the examples of this chapter, we have used classes based on the ForkJoinTask class,
but you can use the ForkJoinPool tasks based on the Runnable and Callable interfaces.
To do this, you can use the submit() method, which has versions that accept a Runnable
object, a Runnable object with a result, and a Callable object.

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[254]

The ForkJoinTask class provides the get(long timeout, TimeUnit unit) method to
obtain the results returned by a task. This method waits for the period of time specified in
the parameters for the result of the task. If the task finishes its execution before that period
of time, the method returns the result. Otherwise, it throws a TimeoutException
exception.

The ForkJoinTask class provides an alternative to the invoke() method, namely the
quietlyInvoke() method. The main difference between the two versions is that the
invoke() method returns the result of the execution of the task or throws an exception if
necessary. The quietlyInvoke() method doesn't return the result of the task and doesn't
throw any exception. It's similar to the quietlyJoin() method used in the examples.

Summary
The divide and conquer design technique is a very popular approach to solve different
kinds of problems. You divide the original problem into smaller problems and those
problems into smaller ones until you have enough simple problems to solve them directly.
In version 7, the Java Concurrency API introduced a special kind of Executor optimized
for this kind of problem, namely the fork/join framework. It's based on the fork operations,
that allows you to create a new child task, and the join operation, that allows you to wait
for the finalization of a child task before getting its results.

Using those operations, your fork/join tasks will have the following appearance:

if (problem.size() > DEFAULT_SIZE) {
 childTask1=new Task();
 childTask2=new Task();
 childTask1.fork();
 childTask2.fork();
 childTaskResults1=childTask1.join();
 childTaskResults2=childTask2.join();
 taskResults=makeResults(childTaskResults1, childTaskResults2);
 return taskResults;
} else {
 taskResults=solveBasicProblem();
 return taskResults;
}

Optimizing Divide and Conquer Solutions - The Fork/Join Framework

[255]

In this chapter, you solved three different problems using the fork/join framework: the k-
means clustering algorithm, the data filtering algorithm, and the merge sort algorithm.

You used the default ForkJoinPool provided by the API, and created a new
ForkJoinPool object. You also used the three types of ForkJoinTasks. The
RecursiveAction class, used as the base class for those ForkJoinTasks that don't return
a result, the RecursiveTask class, used as the base class for those tasks that return a result,
and finally the CountedCompleter class, used as the base class for those tasks that need to
execute a method or launch another task when all their child subtasks finish their execution

In the next chapter, you will learn how to use the MapReduce programming technique
using parallel streams to get the best performance when processing very big datasets.

8
Processing Massive Datasets

with Parallel Streams - The Map
and Reduce Model

Undoubtedly, the most important innovations introduced in Java 8 are lambda expressions
and the stream API. A stream is a sequence of elements that can be processed in a
sequential or parallel way. We can transform the stream applying the intermediate
operations and then perform a final computation to get the desired result (a list, an array, a
number, and so on). In this chapter, we will cover the following topics:

An introduction to streams
The first example - a numerical summarization application
The second example - an information retrieval search tool

An introduction to streams
A stream is a sequence of data (is not a data structure) that allows you to apply a sequence
of operations in a sequential or concurrent way to filter, convert, sort, reduce, or organize
those elements to obtain a final object. For example, if you have a stream with the data of
your employees, you can use a stream to:

Count the total number of employees (this is an expensive terminal operation)
Calculate the average salary of all employees who live in a particular place
Obtain a list of the employees who haven't met their objectives
Any operation that implies work with all or some of the employees

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[257]

Streams are greatly influenced by functional programming (the Scala programming
language provides a very similar mechanism), and work with lambda expressions. Stream
API resembles LINQ (short for Language-Integrated Query) queries available in C#
language and, to some extent, could be compared with SQL queries.

In the following sections, we will explain the basic characteristics of streams and the parts
you will find in a stream.

Basic characteristics of streams
The main characteristics of a stream are as follows:

A stream does not store its elements. A stream takes the elements from its source
and sends them across all the operations that form the pipeline.
You can work with streams in parallel without any extra work. When you create
a stream, you can use the stream() method to create a sequential stream or
parallelStream() to create a concurrent one. The BaseStream interface
defines the sequential() methods to obtain a sequential version of the stream
and parallel() to obtain a concurrent version of the stream. You can convert a
sequential stream to parallel and a parallel to sequential as many times as you
want. Take into account that when the terminal stream operation is performed,
all the stream operations will be processed according to the last setting. You
cannot instruct a stream to perform some operations sequentially and other
operations concurrently. Internally, parallel streams in Oracle JDK 9 and Open
JDK 9 use an implementation of the fork/join framework to execute concurrent
operations.
Streams are greatly influenced by functional programming and the Scala
programming language. You can use the new lambda expressions as a way to
define the algorithm to be executed in an operation over a stream.
Streams can't be reused. When you obtain a stream, for example, from a list of
values, you can use that stream only once. If you want to perform another
operation on the same data, you have to create another stream.
Streams make for lazy processing of data. They don't obtain the data until it's
necessary. As you will learn later, a stream has an origin, some intermediate
operations, and a terminal operation. The data isn't processed until the terminal
operation needs it, so stream processing doesn't begin until the terminal
operation is executed.

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[258]

You can't access the elements of a stream in a different way. When you have a
data structure, you can access one determined element stored in it, for example,
indicating its position or its key. Stream operations usually process the elements
uniformly, so the only thing you have is the element itself. You don't know the
position of the element in the stream and the neighbor elements. In the case of
parallel streams, the elements can be processed in any order.
Stream operations don't allow you to modify the stream source. For example, if
you use a list as the stream source, you can store the processing result into the
new list, but you cannot add, remove, or replace the elements of the original list.
Although this sounds restrictive, it's a very useful feature, as you can return the
stream created from your internal collection without a fear that the list will be
modified by the caller.

Sections of a stream
A stream has three different sections:

A source which generates the data consumed by the stream.
Zero or more intermediate operations, which generate another stream as an
output.
One terminal operation which generates an object, which can be a simple object
or a collection as an array, a list, or a hash table. There can also be terminal
operations that don't produce any explicit result.

Sources of a stream
The source of the stream generates the data that will be processed by the Stream object.
You can create a stream from different data sources. For example, the Collection interface
included the stream() methods in Java 8 to generate a sequential stream and
parallelStream() to generate a parallel one. This allows you to generate a stream to
process all the data from almost all the data structures implemented in Java as lists
(ArrayList, LinkedList, and so on), sets (HashSet, EnumSet), or concurrent data
structures (LinkedBloFmackingDeque, PriorityBlockingQueue, and so on). Another
data structure that can generate streams is arrays. The Array classes includes four versions
of the stream() method to generate a stream from the array. If you pass an array of int
numbers to the method, it will generate IntStream. This is a special kind of stream,
implemented to work with integer numbers (you can still use Stream<Integer> instead of
IntStream, but performance might be significantly worse).

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[259]

Similarly, you can create LongStream or DoubleStream from the long[] or double[]
arrays. Of course, if you pass an array of object to the stream() method, you will obtain a
generic stream of the same type. In this case, there is no parallelStream() method, but
once you have obtained the stream, you can call the parallel() method defined in the
BaseStream interface to convert the sequential stream into a concurrent one.

Other interesting functionality provided by the Stream API is that you can generate a
stream to process the contents of directory or a file. The Files class provides different
methods to work with files using streams. For example, the find() method returns a
stream with the Path objects of the files in a file tree that meet certain conditions. The
list() method returns a stream of the Path objects with the contents of a directory. The
walk() method returns a stream of the Path objects processing all the objects in a directory
tree using a depth-first algorithm. But the most interesting method is the lines() method,
which creates a stream of String objects with the lines of a file, so you can process its
contents using a stream. Unfortunately, all of the methods mentioned here parallelize badly
unless you have many thousands of elements (files or lines).

Also, you can create a stream using two methods provided by the Stream interface: the
generate() and iterate() methods. The generate() method receives a Supplier
parameterized with an object type as a parameter and generates an infinite sequential
stream of objects of that type. The Supplier interface has the get() method. Every time
the stream needs a new object, it will call this method to obtain the next value of the stream.
As we mentioned earlier, streams process the data in a lazy way, so there is no problem
with the infinite nature of the stream. You will use other methods that will convert that
infinite stream. The iterate() method is similar, but in this case, the method receives a
seed and a UnaryOperator. The first value is the result of applying the UnaryOperator to
the seed; the second value is the result of applying the UnaryOperator to the first result,
and so on. This method should be avoided as much as possible in concurrent applications
because of their performance.

There are also more stream sources, as follows:

String.chars(): This returns an IntStream with the char values of the
String.
Random.ints(), Random.doubles(), or Random.longs(): This returns an
IntStream, DoubleStream, and LongStream, respectively with pseudorandom
values. You can specify the range of numbers between the random numbers or
the number of random values that you want to obtain. For example, you can
generate pseudorandom numbers between 10 and 20 using new
Random.ints(10,20).

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[260]

SplittableRandom: This class provides the same methods as the Random class
to generate pseudorandom int, double, and long values, but is more suitable
for parallel processing. You can check the Java API documentation to get the
details of this class.
Stream.concat(): This receives two streams as parameters and creates a new
stream with the elements of the first stream followed by the elements of the
second stream.

You can generate streams from other sources, but we think they are not significant.

Intermediate operations
The most important characteristic of intermediate operations is that they return another
stream as their result. The objects of the input and output stream can be of a different type,
but an intermediate operation will always generate a new stream. You can have zero or
more intermediate operations in a stream. The most important intermediate operations
provided by the Stream interface are:

distinct(): This method returns a stream with unique values. All the repeated
elements will be eliminated.
filter(): This method returns a stream with the elements that meet certain
criteria.
flatMap(): This method is used to convert a stream of streams (for example, a
stream of list, sets, and so on) in a single stream.
limit(): This method returns a stream that contains, at the most, the specified
number of the original elements in the encounter order, starting from the first
element.
map(): This method is used to transform the elements of a stream from one type
to another.
peek(): This method returns the same stream, but it executes some code;
normally, it is used to write log messages.
skip(): This method ignores the first elements (the concrete number is passed as
a parameter) of the stream.
sorted(): This method sorts the elements of the stream.

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[261]

Terminal operations
A terminal operation returns an object as a result. It never returns a stream. In general, all
streams will end with a terminal operation that returns the final result of the sequence of
operations. The most important terminal operations are:

collect(): This method provides a way to reduce the number of elements of the
source stream, organizing the elements of the stream in a data structure. For
example, if you want to group the elements of your stream by a criterion.
count(): This returns the number of elements of the stream.
max(): This returns the maximum element of the stream.
min(): This returns the minimum element of the stream.
reduce(): This method transforms the elements of the stream into a unique
object that represents the stream.
forEach()/forEachOrdered(): This methods apply an action to every element
in the stream. The second method uses the order of the elements of the stream if
the stream has a defined order.
findFirst()/findAny(): This returns 1 or the first element of the stream,
respectively, if they exist.
anyMatch()/allMatch()/noneMatch(): They receive a predicate as a
parameter and return a Boolean value to indicate if any, all, or none of the
elements of the stream match the predicate.
toArray(): This method returns an array with the elements of the stream.

MapReduce versus MapCollect
MapReduce is a programming model to process very large datasets in distributed
environments with a lot of machines working in a cluster. It has two steps, generally
implemented by two methods:

Map: This filters and transforms the data
Reduce: This applies a summary operation in the data

To make this operation in a distributed environment, we have to split the data and then
distribute it over the machines of the cluster. This programming model has been used for a
long time in the functional programming world. Google recently developed a framework
based on this principle, and in the Apache Foundation, the Hadoop project is very popular
as an open source implementation of this model.

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[262]

Java 9 with streams allows programmers to implement something very similar to this. The
Stream interface defines intermediate operations (map(), filter(), sorted(), skip(),
and so on) that can be considered as map() functions, and it provides the reduce()
method as a terminal operation whose main objective is to make a reduction of the elements
of the stream as the reduction of the MapReduce model.

The main idea of the reduce operation is to create a new intermediate result based on a
previous intermediate result and a stream element. An alternative method of reduction
(also called mutable reduction) is to incorporate the new resulting item into the mutable
container (for example, adding it into ArrayList). Such reduction is performed by the
collect() operation, and we will call it as a MapCollect model.

We will look at how to work with the MapReduce model in this chapter and how to work
with the MapCollect model in Chapter 9, Processing Massive Datasets with Parallel Streams -
The Map and Collect Model.

The first example - a numerical
summarization application
One of the most common needs when you have a big set of data is to process its elements to
measure certain characteristics. For example, if you have a set with the products purchased
in a shop, you can count the number of products you have sold, the number of units per
product you have sold, or the average amount that each customer spent. We have named
that process numerical summarization.

In this chapter, we are going to use streams to obtain some measures of the Online Retail
dataset of the UCI Machine Learning Repository, which you can download from
http://archive.ics.uci.edu/ml/datasets/Online+Retail. This dataset stores all the
transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered
non-store online retail.

Unlike other chapters, in this case, we explain the concurrent version using streams and
then how to implement a serial equivalent version to verify that concurrency improves
performance with streams too. Take into account that concurrency is transparent for the
programmer, as we mentioned in the introduction of the chapter.

http://archive.ics.uci.edu/ml/datasets/Online+Retail

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[263]

The concurrent version
Our numerical summarization application is very simple. It has the following components:

Record: This class defines the internal structure of every record of the file. It
defines the 8 attributes of every record and the corresponding get() and set()
method to establish their values. Its code is very simple, so it won't be included in
the book.
ConcurrentDataLoader: This class will load the Online_Retail.csv file with
the data and convert it to a list of Record objects. We will use streams to load the
data and make the conversion.
ConcurrentStatistics: This class implements the operations that we will use
to make the calculations over the data.
ConcurrentMain: This class implements the main() method to call the
operations of the ConcurrentStatistics class and measure its execution time.

Let's describe the last three classes in detail.

The ConcurrentDataLoader class
The ConcurrentDataLoader class implements the load() method which loads the file
with the Online Retail dataset and converts it to a list of Record objects. First, we use the
method readAllLines() of the Files method to load the file and convert its contents into a
list of strings. Every line of the file will be converted in an element of the list:

public class ConcurrentDataLoader {

 public static List<Record> load(Path path) throws IOException {
 System.out.println("Loading data");

 List<String> lines = Files.readAllLines(path);

Then, we apply the necessary operations to the stream to get the list of Record objects:

List<Record> records = lines.parallelStream()
 .skip(1).map(l -> l.split(";"))
 .map(t -> new Record(t))
 .collect(Collectors.toList());

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[264]

The operations we use are:

parallelStream(): We create a parallel stream to process all the lines of the
file.
skip(1): We ignore the first item of the stream; in this case, the first line of the
file, which contains the headers of the file.
map (l → l.split(";")): We convert each string in a String[] array
dividing the line by the ; character. We use a lambda expression, where l
represents the input parameter and l.split() will generate the array of strings.
We call this method in a stream of strings, and it will generate a stream of
String[].
map(t → new Record(t)): We convert each array of strings in a Record object
using the constructor of the Record class. We use a lambda expression, where t
represents the array of strings. We call this method in a stream of String[], and
we generate a stream of Record objects.
collect(Collectors.toList()): This method converts the stream into a list.
We will work with the collect method in more detail in Chapter 9, Processing
Massive Datasets with Parallel Streams - The Map and Collect Model.

As you can see, we have made the transformation in a compact, elegant, and concurrent
way without the utilization of any thread, task, or framework. Finally, we return the list of
Record objects, as follows:

 return records;
 }
}

The ConcurrentStatistics class
The ConcurrentStatistics class implements the methods that make the calculus over
the data. We have seven different operations to obtain information about the dataset. Let's
describe each of them.

Customers from the United Kingdom
The main objective of this method is to obtain the number of products ordered by each
customer from the the United Kingdom.

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[265]

This is the source code of this method:

public static void customersFromUnitedKingdom(List<Record> records) {
 System.out.println("**************************************");
 System.out.println("Customers from UnitedKingdom");
 Map<String, List<Record>> map = records.parallelStream().filter(r ->
r.getCountry().equals("the United
Kingdom")).collect(Collectors.groupingBy(Record::getCustomer));

 map.forEach((k, l) -> System.out.println(k + ": " + l.size()));
 System.out.println("**************************************");
}

The method receives the list of Record objects as input parameters. First, we use a stream to
obtain a ConcurrentMap<String, List<Record>> object where there are different
customer IDs and the list includes the records of each customer. This stream starts with the
parallelStream() method to create a parallel stream. Then, we use the filter()
method to select those Record objects with the country attribute equals to 'the United
Kingdom'. Finally, we use the collect() method passing the
Collectors.groupingByConcurrent() method to group the actual elements of the
stream by the values of the job attribute. Take into account that the
groupingByConcurrent() method is an unordered collector. The records collected into
the list can be in an arbitrary order, not in the original order (unlike the simple
groupingBy() collector).

Once we have the ConcurrentMap object, we use the forEach() method to write the
information on the screen.

Quantity from the United Kingdom
The main objective of this method is to obtain statistical information (maximum, minimum,
and average values) on the number of products in the orders from the the United Kingdom.
This is the source code of the method:

public static void quantityFromUnitedKingdom(List<Record> records) {

 System.out.println("**");
 System.out.println("Quantity from the United Kingdom");
 DoubleSummaryStatistics statistics = records.parallelStream()
 .filter(r -> r.getCountry().equals("the United Kingdom"))
 .collect(Collectors.summarizingDouble(Record::getQuantity));

 System.out.println("Min: " + statistics.getMin());
 System.out.println("Max: " + statistics.getMax());
 System.out.println("Average: " + statistics.getAverage());

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[266]

 System.out.println("**");
}

This method receives the list of Record objects as input parameters and uses a stream to get
a DoubleSummaryStatistics object with the statistical information. First, we use the
parallelStream() method to get a parallel stream. Then, we use the filter() method to
obtain the records from the the United Kingdom. Finally, we use the collect() method
with the Collectors.summarizingDouble() parameter to obtain the
DoubleSummaryStatistics object. This class implements the DoubleConsumer interface
and collects statistical data of the values it receives in the accept() method. This
accept() method is called internally by the collect() method of the stream. Java also
provides the IntSummaryStatistics and LongSummaryStatistics classes also to
obtain statistical data from the int and long values.

In this case, we use the max(), min(), and average() methods to obtain the maximum,
minimum, and average values, respectively.

Countries for product
The main objective of this method is to obtain the list of countries that have ordered the
product with the ID 85123A.

This is the source code of the method:

public static void countriesForProduct(List<Record> records) {

 System.out.println("**");
 System.out.println("Countries for product 85123A");

 records.parallelStream().filter(r -> r.getStockCode()
 .equals("85123A")).map(r -> r
 .getCountry()).distinct().sorted()
 .forEachOrdered(System.out::println);
 System.out.println("**");
}

The method receives the list of Record objects as input parameters and uses the
parallelStream() method to get a parallel stream. Then, we use the filter() method to
only get the records associated with that product. Then, we use the map() method to obtain
a stream of String objects with the country name associated with the record. With the
distinct method, we take only the unique values, and with the sorted() method, we sort
those values alphabetically.

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[267]

Finally, we use forEachOrdered() to print the result. Be careful not to use forEach()
here, as it will print the results in no particular order, which would make the sorted()
step useless. The forEach() operation is useful when the elements, order is not important
and may work much faster for parallel streams than forEachOrdered().

Quantity for product
One of the most common mistakes we make when we use streams is to try to reuse a
stream. We will show you the consequences of this mistake with this method, whose main
objective is to obtain the maximum and minimum number of products associated with a
record of the product with the ID 85123A.

The first version of the method is to try to reuse a stream. This is its source code:

public static void quantityForProduct(List<Record> records) {

 System.out.println("**");
 System.out.println("Quantity for Product");

 IntStream stream = records.parallelStream().filter(r -> r
 .getStockCode().equals("85123A"))
 .mapToInt(r -> r.getQuantity());

 System.out.println("Max quantity: " + stream.max().getAsInt());
 System.out.println("Min quantity: " + stream.min().getAsInt());
 System.out.println("**");
}

The method receives the list of Record objects as an input parameter. First, we create an
IntStream object using that list. With the parallelStream() method, we create a parallel
stream. Then, we use the filter() method to get records associated with the product and
the mapToInt() method to convert the Stream of the Record object in an IntStream
object, replacing each object by the value of the getQuantity() method.

We try to use that stream to get the maximum value, with the max() method, and the
minimum value, with the min() method. If we execute this method, we will obtain
IllegalStateException in the second call with the message the stream has already been
operated upon or closed.

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[268]

We can solve this problem by creating two different streams, one to obtain the maximum,
and the other to obtain the minimum. This is the source code of this option:

public static void quantityForProductOk(List<Record> records) {

 System.out.println("**");
 System.out.println("Quantity for Product Ok");
 int value = records.parallelStream().filter(r ->
r.getStockCode().equals("85123A")).mapToInt(r -> r.getQuantity()).max()
.getAsInt();

 System.out.println("Max quantity: " + value);

 value = records.parallelStream().filter(r -> r.getStockCode()
 .equals("85123A")).mapToInt(r -> r
 .getQuantity()).min().getAsInt();

 System.out.println("Min quantity: " + value);
 System.out.println("**");
}

Another option is to use the summaryStatistics() method to obtain an
IntSummaryStatistics object, as shown in a previous method.

Multiple data filter
The main objective of this method is to obtain the number of records that meet at least one
of the following conditions:

The quantity attribute has a value bigger than 50
The unitPrice attribute has a value bigger than 10

One solution to implement this method is to implement a filter that checks whether the
elements meet one of these conditions. You can implement another solution with the
concat() method provided by the Stream interface. This is the source code:

public static void multipleFilterData(List<Record> records) {

 System.out.println("**");
 System.out.println("Multiple Filter");

 Stream<Record> stream1 = records.parallelStream()
 .filter(r -> r.getQuantity() > 50);
 Stream<Record> stream2 = records.parallelStream()
 .filter(r -> r.getUnitPrice() > 10);

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[269]

 Stream<Record> complete = Stream.concat(stream1, stream2);

 Long value = complete.parallel().unordered().map(r -> r
 .getStockCode()).distinct().count();

 System.out.println("Number of products: " + value);
 System.out.println("**");

This method receives the list of Record objects as input parameters. First, we create two
streams with the elements that meet each of the conditions and then we use the concat()
method to generate a single stream. The concat() method only creates a stream with the
elements of the first stream followed by the elements of the second stream. For this reason,
with the final stream, we use the parallel() method to convert the final stream into a
parallel once, the unordered() method to get an unordered stream that will give us better
performance in the distinct() method with parallel streams, the map() method to
convert each record into a String value with the stockCode of the product, the
distinct() method to get only unique values, and the count() method to obtain the
number of elements in the stream.

This is not the most optimal solution. We have used it to show you how the concat() and
distinct() methods work. You can implement the same in a more optimal way using the
following code:

 public static void multipleFilterDataPredicate (List<Record> records) {

 System.out.println("**");
 System.out.println("Multiple filter with Predicate");

 Predicate<Record> p1 = r -> r.getQuantity() > 50;
 Predicate<Record> p2 = r -> r.getUnitPrice() > 10;

 Predicate<Record> pred = Stream.of(p1, p2)
 .reduce(Predicate::or).get();

 long value = records.parallelStream().filter(pred).count();

 System.out.println("Number of products: " + value);
 System.out.println("**");
}

We create a stream of two predicates and reduce them via the Predicate::or operation to
create the compound predicate, which is true when either of the input predicates is true.
You can also use the Predicate::and reduction operation to create a predicate, which is
true when all the input predicates are true.

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[270]

Highest invoice amounts
The main objective of this method is to obtain the 10 highest amounts of full invoices'.

First, we build a map where the keys are the IDs of the invoices and the values are a list to
all the records related with an invoice.

public static void getBiggestInvoiceAmmounts(List<Record> records) {

 System.out.println("**");
 System.out.println("Biggest Invoice Ammounts");

 Map<String, List<Record>> map = records.stream().unordered()
 .parallel().collect(Collectors
 .groupingByConcurrent(r -> r.getId()));

We use the unordered() method to delete the encounter order associated with a list a get a
good performance with parallel operations. Then, we convert the stream into a parallel one
using the parallel() method, and finally we use the collect() method with the
groupingByConcurrent() collector to get the final map.

In the second step, we build a ConcurrentLinkedDeque data structure of Invoice objects.
This is the source code of this block:

ConcurrentLinkedDeque<Invoice> invoices= new ConcurrentLinkedDeque();
map.values().parallelStream().forEach(list -> {
 Invoice invoice = new Invoice();
 invoice.setId(list.get(0).getId());
 double ammount=list.stream().mapToDouble(r -> r.getUnitPrice()* r
 .getQuantity()).sum();
 invoice.setAmmount(ammount);
 invoice.setCustomerId(list.get(0).getCustomer());

 invoices.add(invoice);
});

We have two streams here. First, we have a parallel stream to process all the values of the
previous map. For each list with the records of an invoice, we create an Invoice object with
the id of the invoice, the ID of the customer, and its total amount. To calculate the total
amount of every invoice, we use another stream and the mapToDouble() method to change
each record as per the quantity of the product and unitPrice attributes and the sum()
method to sum all the values of the final Stream. We use a ConcucrrentLinkedDeque
data structure because it allows us to make concurrent inserts on it without data-race
conditions, and that property is very important for us in this situation.

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[271]

Finally, we obtain the 10 invoices with a biggest amount. This is the source code of this part:

 System.out.println("Invoices: "+invoices.size()+": "+map.getClass());
 invoices.stream().sorted(Comparator.comparingDouble
 (Invoice::getAmmount).reversed()).limit(10).forEach(i ->
 System.out.println("Customer:"+i.getCustomerId() +
 "; Ammount: "+ i.getAmmount()));
 System.out.println("**");
}

We use the ConcurrentLinkedDeque data structure to create a Stream, sort them using
the sorted() method to first get the invoices with the highest amount and in the last
positions the ones with a lower amount, take the first 10 invoices using the limit()
method and print them in the console with the forEach() method. We work with a sorted
stream in this block, so we use a sequential stream. A parallel one wouldn't give us better
performance.

Products with a unit price between 1 and 10
The main objective of this method is to obtain the number of products in the file with a unit
price between 1 and 10.

This is the source code of this:

public static void productsBetween1and10(List<Record> records) {

 System.out.println("**");
 System.out.println("Products between 1 and 10");
 int count=records.stream().unordered().parallel().filter(r -> (r
 .getUnitPrice() >=1) && (r.getUnitPrice() <=10))
 .map(i -> i.getStockCode()).distinct()
 .mapToInt(a -> 1).reduce(0, Integer::sum);
 System.out.println("Products between 1 and 10: "+count);
 System.out.println("**");
}

The method receives the list of Record objects as input parameters and uses the stream(),
unordered() and parallel() methods to get a parallel stream without the encounter
order restriction in the stream. Then, we use the filter() method to get only the records
with a unitPrice between 1 and 10. Then, we use the map() method to replace each
record by the value of the stockCode attribute. Then, the distinct() method deletes the
duplicates and the map() method transforms each value in the value 1. Finally, the
reduce() method sums all the 1 values and returns the final result.

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[272]

The first parameter of the reduce() method is the identity value, and the second parameter
is the operation that is used to obtain a single value from all the elements of the stream.

In this case, we use the Integer::sum operation. The first sum is between the initial and
the first value of the stream, the second sum is between the result of the first sum and the
second value of the stream, and so on.

The ConcurrentMain class
The ConcurrentMain class implements the main() method to test the
ConcurrentStatistic class. First, we implement the measure() method, which
measures the execution time of a task:

public class ConcurrentMain {
 static Map<String, List<Double>> totalTimes = new LinkedHashMap<>();
 static List<Record> records;

 private static void measure(String name, Runnable r) {
 long start = System.nanoTime();
 r.run();
 long end = System.nanoTime();
 totalTimes.computeIfAbsent(name, k -> new ArrayList<>())
 .add((end - start) / 1_000_000.0);
 }

We use a map to store all the execution times of every method. We are going to execute
each method 10 times to see how the execution time decreases after the first execution.
Then, we include the main() method code. It uses the measure() method to measure the
execution time of every method and repeats this process 10 times:

public static void main(String[] args) throws IOException {
 Path path = Paths.get("data\\Online_Retail.csv");

 for (int i = 0; i < 10; i++) {
 measure("Customers from UnitedKingdom", () -> ConcurrentStatistics
 .customersFromUnitedKingdom(records));
 measure("Quantity from UnitedKingdom", () -> ConcurrentStatistics
 .quantityFromUnitedKingdom(records));
 measure("Countries for Product", () -> ConcurrentStatistics
 .countriesForProduct(records));
 measure("Quantity for Product", () -> ConcurrentStatistics
 .quantityForProductOk(records));
 measure("Multiple Filter for Products", () -> ConcurrentStatistics
 .multipleFilterData(records));
 measure("Multiple Filter for Products with Predicate", () ->

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[273]

 ConcurrentStatistics.multipleFilterDataPredicate(records));
 measure("Biggest Invoice Ammount", () -> ConcurrentStatistics
 .getBiggestInvoiceAmmounts(records));
 measure("Products Between 1 and 10", () -> ConcurrentStatistics
 .productsBetween1and10(records));
 }

Finally, we write in the console all the execution times and the average execution time, as
follows:

 times.stream().map(t -> String.format("%6.2f", t))
 .collect(Collectors.joining(" ")),
 times.stream().mapToDouble(Double::doubleValue)
 .average().getAsDouble()));
 }
}

The serial version
In this case, the serial version is almost equal to the concurrent one. We only replace all the
calls to the parallelStream() method by calls to the stream() method to obtain a
sequential stream instead of a parallel stream. We also have to delete the call to the
parallel() method we used in one of the samples and changed the call to the
groupingByConcurrent() method to groupingBy().

Comparing the two versions
We executed both versions of the operations to test whether the use of parallel streams
provides us with better performance.

We executed the examples using the JMH framework
(http://openjdk.java.net/projects/code-tools/jmh/), which allows you to implement
micro benchmarks in Java. Using a framework for benchmarking is a better solution which
simply measures time using methods such as currentTimeMillis() and nanoTime().
We executed them 10 times in two different architectures:

A computer with an Intel Core i5-5300 CPU with Windows 7 and 16 GB of
RAM: This processor has two cores and each core can execute two threads, so we
will have four parallel threads.
A computer with an AMD A8-640 APU with Windows 10 and 8 GB of RAM:
This processor has four cores.

http://openjdk.java.net/projects/code-tools/jmh/

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[274]

These are the results in milliseconds:

We can see how parallel streams always achieve better performance than serial streams.
This is the speed-up for all the examples:

Operation Speed-up - Intel Speed-up - AMD

Countries for product 1.23 1.77

Customers from the United Kingdom 1.01 1.04

Biggest invoice amounts 1.15 2.06

Multiple filter data 1.21 1.69

Multiple filter data with predicates 1.19 1.64

Products between 1 and 10 1.64 2.20

Quantity for product 1.08 1.91

Quantity from the United Kingdom 1.66 2.39

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[275]

The second example - an information
retrieval search tool
According to Wikipedia (https://en.wikipedia.org/wiki/Information_retrieval),
information retrieval is:

"The activity obtaining information resources relevant to an information need from a
collection of information resources"

Usually, the information resources are a collection of documents and the information
needed is a set of words, which summarizes our need. To do a quick search over the
document collection, we use a data structure named inverted index. It stores all the words
of the document collection, and for each word, a list of the documents that contains that
word. In Chapter 5, Getting Data From the Tasks - The Callable and Future Interfaces, you
constructed an inverted index of a document collection constructed with the Wikipedia
pages with information about movies to construct a set of 100,673 documents. We have
converted each Wikipedia page into a text file. This inverted index is stored in a text file
where each line contains the word, its document frequency, and all the documents in which
the word appears with the tfxidf attribute of the word in the document. The documents
are sorted by the value of the tfxidf attribute. For example, a line of the file looks like this:

velankanni:4,18005302.txt:10.13,20681361.txt:10.13,45672176.txt:10
13,6592085.txt:10.13

This line contains the velankanni word with a DF of 4. It appears in the 18005302.txt
document with a tfxidf value of 10.13, in the 20681361.txt document with a tfxidf
value of 10.13, in the document 45672176.txt with a tfxidf value of 10.13, and in the
6592085.txt document with a tfxidf value of 10.13.

In this chapter, we will use the stream API to implement different versions of our search
tool and obtain information about the inverted index.

An introduction to the reduction operation
As we mentioned earlier in this chapter, the reduce operation applies a summary operation
to the elements of a stream to generate a single summary result. This single result can be of
the same type as the elements of the stream or of another type. A simple example of a
reduce() operation is to calculate the sum of a stream of numbers.

https://en.wikipedia.org/wiki/Information_retrieval

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[276]

The stream API provides the reduce() method to implement reduction operations. This
method has the following three different versions:

reduce(accumulator): This version applies the accumulator function to all
the elements of the stream. There is no initial value in this case. It returns an
Optional object with the final result of the accumulator function or an empty
Optional object if the stream is empty. This accumulator function must be an
associative function. It implements the BinaryOperator interface. Both
parameters could be either the stream elements or the partial results returned by
previous accumulator calls.
reduce(identity, accumulator): This version must be used when the final
result and the elements of the stream have the same type. The identity value must
be an identity value for the accumulator function. That is to say, if you apply
the accumulator function to the identity value and any value V, it must return
the same value V: accumulator(identity,V)=V. That identity value is used
as the first result for the accumulator function and is the returned value if the
stream has no elements. As in the other version, the accumulator must be an
associative function that implements the BinaryOperator interface.
reduce(identity, accumulator, combiner): This version must be used
when the final result has a different type than the elements of the stream. The
identity value must be an identity for the combiner function, that is to say,
combiner(identity,v)=v. A combiner function must be compatible with the
accumulator function, that is to say,
combiner(u,accumulator(identity,v))=accumulator(u,v). The
accumulator function takes a partial result and the next element of the stream to
generate a partial result, and the combiner takes two partial results to generate
another partial result. Both functions must be associative, but in this case, the
accumulator function is an implementation of the BiFunction interface and the
combiner function is an implementation of the BinaryOperator interface.

The reduce() method has a limitation. As we mentioned before, it must return a single
value. You shouldn't use the reduce() method to generate a collection or a complex object.
The first problem is performance. As the documentation of the stream API specifies, the
accumulator function returns a new value every time it processes an element. If your
accumulator function works with collections, it processes an element and creates a new
collection every time, which is very inefficient. Another problem is that, if you work with
parallel streams, all the threads will share the identity value.

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[277]

If this value is a mutable object, for example, a collection, all the threads will be working
over the same collection. This does not comply with the philosophy of the reduce()
operation. In addition, the combiner() method will receive always two identical
collections (all the threads are working over only one collection), which doesn't comply
with the philosophy of the reduce() operation either.

If you want to make a reduction that generates a collection or a complex object, you have
the following two options:

Apply a mutable reduction with the collect() method. Chapter 9, Processing
Massive Datasets with Parallel Streams - The Map and Collect Model, explains in detail
how to use this method in different situations.
Create the collection and use the forEach() method to fill the collection with the
required values.

In this example, we will use the reduce() method to obtain information about the inverted
index, and the forEach() method to reduce the index to the list of relevant documents for
a query.

The first approach - full document query
In our first approach, we will use all the documents associated with a word. The steps of
this implementation of our search process are:

We select in the inverted index the lines corresponding with the words of the
query.
We group all the document lists into a single list. If a document appears that is
associated with two or more different words, we sum the tfxidf value of those
words in the document to obtain the final tfxidf value of the document. If a
document is only associated with one word, the tfxidf value of that word will
be the final tfxidf value for that document.
We sort the documents using their tfxidf value, from high to low.
We show the user the 100 documents with the highest value of tfxidf.

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[278]

We have implemented this version in the basicSearch() method of the
ConcurrentSearch class. This is the source code of the method:

public static void basicSearch(String query[]) throws IOException {

 Path path = Paths.get("index", "invertedIndex.txt");
 HashSet<String> set = new HashSet<>(Arrays.asList(query));
 QueryResult results = new QueryResult(new ConcurrentHashMap<>());

 try (Stream<String> invertedIndex = Files.lines(path)) {

 invertedIndex.parallel().filter(line -> set
 .contains(Utils.getWord(line)))
 .flatMap(ConcurrentSearch::basicMapper)
 .forEach(results::append);

 results.getAsList().stream().sorted().limit(100)
 .forEach(System.out::println);

 System.out.println("Basic Search Ok");
 }

}

We receive an array of string objects with the words of the query. First, we transform that
array into a set. Then, we use a try-with-resources stream with the lines of the
invertedIndex.txt file, which is the file that contains the inverted index. We use a try-
with-resources so we don't have to worry about opening or closing the file. The aggregate
operations of the stream will generate a QueryResult object with the relevant documents.
We use the following methods to obtain that list:

parallel(): First, we obtain a parallel stream to improve the performance of the
search process.
filter(): We select the lines that associate the word in the set with the words in
the query. The Utils.getWord() method obtains the word from the line.
flatMap(): We convert the stream of string where each string is a line of the
inverted index in a stream of Token objects. Each token contains the tfxidf
value of a word in a file. Of every line, we will generate as many tokens as files
that contain that word.
forEach(): We generate the QueryResult object, adding every token with the
add() method of that class.

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[279]

Once we have created the QueryResult object, we create another stream to obtain the final
list of results using the following methods:

getAsList(): The QueryResult object returns a list with the relevant
documents
stream(): Creates a stream to process the list
sorted(): To sort the list of documents by their tfxidf values
limit(): To get the first 100 results
forEach(): To process the 100 results and write the information on the screen

Let's describe the auxiliary classes and methods used in the example.

The basicMapper() method
This method converts a stream of strings into a stream of Token objects. As we will describe
in detail later, a token stores the tfxidf value of a word in a document. This method
receives a string with a line of the inverted index. It splits the line into the tokens and
generates as many Token objects as documents that contain the word. This method is
implemented in the ConcurrentSearch class. This is the source code:

public static Stream<Token> basicMapper(String input) {
 ConcurrentLinkedDeque<Token> list = new ConcurrentLinkedDeque();
 String word = Utils.getWord(input);
 Arrays.stream(input.split(",")).skip(1).parallel()
 .forEach(token -> list.add(new Token(word, token)));

 return list.stream();
}

First, we create a ConcurrentLinkedDeque object to store the Token objects. Then, we split
the string using the split() method and use the stream() method of the Arrays class to
generate a stream. Skip the first element (containing the information of the word) and
process the rest of the tokens in parallel. For each element, we create a new Token object
(we pass to the constructor the word and the token that has the file:tfxidf format) and
add it to the stream. Finally, we return a stream using the stream() method of the
ConcurrenLinkedDeque object.

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[280]

The Token class
As we mentioned earlier, this class stores the tfxidf value of a word in a document. So, it
has three attributes to store this information, as follows:

public class Token {

 private final String word;
 private final double tfxidf;
 private final String file;

The constructor receives two strings. The first one contains the word, and the second one
contains the file and the tfxidf attribute in the file:tfxidf format, so we have to
process it as follows:

public Token(String word, String token) {
 this.word=word;
 String[] parts=token.split(":");
 this.file=parts[0];
 this.tfxidf=Double.parseDouble(parts[1]);
}

Finally, we have added methods to obtain (not to set) the values of the three attributes and
to convert an object to a string, as follows:

@Override
public String toString() {
 return word+":"+file+":"+tfxidf;
}

The QueryResult class
This class stores the list of documents relevant to a query. Internally, it uses a map to store
the information of the relevant documents. The key is the name of the file that stores the
document, and the value is a Document object that also contains the name of the file and the
total tfxidf value of that document to the query, as follows:

public class QueryResult {

 private Map<String, Document> results;

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[281]

We use the constructor of the class to indicate the concrete implementation of the map
interface we will use. We use a ConcurrentHashMap to the concurrent version and a
HashMap in the serial version:

public QueryResult(Map<String, Document> results) {
 this.results=results;
}

The class includes the append method, which inserts a token in the map, as follows:

public void append(Token token) {
 results.computeIfAbsent(token.getFile(), s -> new
Document(s)).addTfxidf(token.getTfxidf());
}

We use the computeIfAbsent() method to create a new Document object if there is no
Document object associated with the file, or to obtain the corresponding one if it already
exists, and add the tfxidf value of the token to the total tfxidf value of the document
using the addTfxidf() method.

Finally, we have included a method to obtain the map as a list, as follows:

public List<Document> getAsList() {
 return new ArrayList<>(results.values());
}

The Document class stores the name of the file as a string and the total tfxidf value as
DoubleAdder. This class is a new feature of Java 8 and allows us to sum values to the
variable from different threads without worrying about synchronization. It implements the
Comparable interface to sort the documents by their tfxidf value, so the documents with
the highest tfxidf will be first. Its source code is very simple, so it is not included.

The second approach - reduced document query
The first approach creates a new Token object per word and file. We have noted that
common words, for example, the, take a lot of documents associated and a lot of them have
low values of tfxidf. We have changed our mapper method to take into account only 100
files per word, so the number of Token objects generated will be smaller.

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[282]

We have implemented this version in the reducedSearch() method of the
ConcurrentSearch class. This method is very similar to the basicSearch() method. It
only changes the stream operations that generates the QueryResult object, as follows:

invertedIndex.parallel().filter(line -> set
 .contains(Utils.getWord(line)))
 .flatMap(ConcurrentSearch::limitedMapper)
 .forEach(results::append);

Now, we use the limitedMapper() method as function in the flatMap() method.

The limitedMapper() method
This method is similar to the basicMapper() method, but, as we mentioned earlier, we
only take into account the first 100 documents associated with every word. As the
documents are sorted by their tfxidf values, we are using the 100 documents in which the
word is more important, as follows:

public static Stream<Token> limitedMapper(String input) {
 ConcurrentLinkedDeque<Token> list = new ConcurrentLinkedDeque();
 String word = Utils.getWord(input);

Arrays.stream(input.split(",")).skip(1).limit(100).parallel().forEach(token
-> {
 list.add(new Token(word, token));
 });

 return list.stream();
}

The only difference with the basicMapper() method is the limit(100) call, which takes
the first 100 elements of the stream.

The third approach - generating an HTML file with
the results
While working with a search tool using a web search engine (for example, Google), when
you make a search, it returns the results of your search (the 10 most important) and for
every result the title of the document and a fragment of the document where the words you
searched for appear.

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[283]

Our third approach to the search tool is based on the second approach, but by adding a
third stream to generate an HTML file with the results of the search. For every result, we
will show the title of the document and three lines where one of the words introduced in
the query appears. To implement this, you need access to the files that appears in the
inverted index. We have stored them in a folder named docs.

This third approach is implemented in the htmlSearch() method of the
ConcurrentSearch class. The first part of the method to construct the QueryResult object
with the 100 results is equal to the reducedSearch() method, as follows:

public static void htmlSearch(String query[], String fileName) throws
 IOException {
 Path path = Paths.get("index", "invertedIndex.txt");
 HashSet<String> set = new HashSet<>(Arrays.asList(query));
 QueryResult results = new QueryResult(new ConcurrentHashMap<>());

 try (Stream<String> invertedIndex = Files.lines(path)) {

 invertedIndex.parallel().filter(line -> set
 .contains(Utils.getWord(line)))
 .flatMap(ConcurrentSearch::limitedMapper)
 .forEach(results::append);

Then, we create the file to write the output and the HTML headers in it:

path = Paths.get("output", fileName + "_results.html");
try (BufferedWriter fileWriter = Files.newBufferedWriter(path,
 StandardOpenOption.CREATE)) {

 fileWriter.write("<HTML>");
 fileWriter.write("<HEAD>");
 fileWriter.write("<TITLE>");
 fileWriter.write("Search Results with Streams");
 fileWriter.write("</TITLE>");
 fileWriter.write("</HEAD>");
 fileWriter.write("<BODY>");
 fileWriter.newLine();

Then, we include the stream that generates the results in the HTML file:

results.getAsList().stream().sorted().limit(100).map(new
ContentMapper(query)).forEach(l -> {
 try {
 fileWriter.write(l);
 fileWriter.newLine();
 } catch (IOException e) {
 e.printStackTrace();

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[284]

 }
 });

 fileWriter.write("</BODY>");
 fileWriter.write("</HTML>");

}

We have used the following methods:

getAsList() to get the list of relevant documents for the query.
stream() to generate a sequential stream. We can't parallelize this stream. If we
try to do so, it results in the final file not being sorted by the tfxidf value of the
documents.
sorted() to sort the results by its tfxidf attribute.
map() to convert a Result object into a string with the HTML code for each
result using the ContentMapper class. We will explain the details of this class
later.
forEach() to write the String objects returned by the map() method in the file.
The methods of the Stream object can't throw a checked exception, so we have to
include the try...catch block which be thrown.

Let's look at the details of the ContentMapper class.

The ContentMapper class
The ContentMapper class is an implementation of the Function interface that converts a
Result object in an HTML block with the title of the document and three lines that include
one or more words of the query.

The class uses an internal attribute to store the query and implements a constructor to
initialize that attribute, as follows:

public class ContentMapper implements Function<Document, String> {
 private String query[];

 public ContentMapper(String query[]) {
 this.query = query;
 }

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[285]

The title of the document is stored in the first line of the file. We use a try-with-resources
instruction and the lines() method of the Files class to create and stream of String
objects with the lines of the file and take the first one with the findFirst() to obtain the
line as a string:

public String apply(Document d) {
 String result = "";
 try (Stream<String> content = Files.lines(Paths.get("docs",d
 .getDocumentName()))) {
 result = "<h2>" + d.getDocumentName() + ": " +
 content.findFirst().get() + ": " +
 d.getTfxidf() + "</h2>";
 } catch (IOException e) {
 e.printStackTrace();
 throw new UncheckedIOException(e);
 }

Then, we use a similar structure, but in this case, we use the filter() method to get only
the lines that contain one or more words of the query, and the limit() method to take
three of those lines. Then, we use the map() method to add the HTML tags for a paragraph
(<p>) and the reduce() method to complete the HTML code with the selected lines:

 try (Stream<String> content = Files.lines(Paths.get ("docs",
 d.getDocumentName()))) {
 result += content.filter(l -> Arrays.stream(query)
 .anyMatch (l.toLowerCase()::contains))
 .limit(3).map(l -> "<p>"+l+"</p>")
 .reduce("",String::concat);
 return result;
 } catch (IOException e) {
 e.printStackTrace();
 throw new UncheckedIOException(e);
 }
}

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[286]

The fourth approach - preloading the inverted
index
The three previous solutions have a problem when they are executed in parallel. As we
mentioned earlier, parallel streams are executed using the common fork/join pool provided
by the Java concurrency API. In Chapter 7, Optimizing Divide and Conquer Solutions - The
Fork/Join Framework, you learned that you shouldn't use I/O operations as read or write data
in a file inside the tasks. This's because when a thread is blocked reading or writing data
from or to a file, the framework doesn't use the work-stealing algorithm. As we use a file as
the source of our streams, we are penalizing our concurrent solution.

One solution to this problem is to read the data to a data structure and then create our
streams from that data structure. Obviously, the execution time of this approach will be less
when we compare it with the other approaches, but we want to compare the serial and
concurrent versions to see (as we expect) whether the concurrent version gives us better
performance than the serial version. The bad part of this approach is that you need to have
your data structure in memory, so you will need a large amount of memory.

This fourth approach is implemented in the preloadSearch() method of the
ConcurrentSearch class. This method receives the query as an Array of String and an
object of the ConcurrentInvertedIndex class (we will look at the details of this class
later) with the data of the inverted index as parameters. This is the source code of this
version:

public static void preloadSearch(String[] query,
 ConcurrentInvertedIndex invertedIndex) {

 HashSet<String> set = new HashSet<>(Arrays.asList(query));
 QueryResult results = new QueryResult(new ConcurrentHashMap<>());

 invertedIndex.getIndex().parallelStream()
 .filter(token -> set.contains(token.getWord()))
 .forEach(results::append);

 results.getAsList().stream().sorted().limit(100)
 .forEach(document -> System.out.println(document));

 System.out.println("Preload Search Ok.");
}

The ConcurrentInvertedIndex class has List<Token> to store all the Token objects
read from the file. It has two methods, get() and set() for this list of elements.

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[287]

As in other approaches, we use two streams: the first one to get a
ConcurrentLinkedDeque of Result objects with the whole list of results, and the second
one to write the results in the console. The second one doesn't change over other versions,
but the first one changes. We use the following methods in this stream:

getIndex(): First, we obtain the list of Token objects
parallelStream(): Then, we create a parallel stream to process all the elements
of the list
filter(): We select the token associated with the words in the query
forEach(): We process the list of tokens, adding them to the QueryResult
object using the append() method

The ConcurrentFileLoader class
The ConcurrentFileLoader class loads into memory the contents of the
invertedIndex.txt file with the information of the inverted index. It provides a static
method named load(), which receives a path with the route of the file where the inverted
index is stored and returns a ConcurrentInvertedIndex object. We have the following
code:

public class ConcurrentFileLoader {

 public ConcurrentInvertedIndex load(Path path) throws IOException {
 ConcurrentInvertedIndex invertedIndex = new ConcurrentInvertedIndex();
 ConcurrentLinkedDeque<Token> results=new ConcurrentLinkedDeque<>();

We open the file using a try-with-resources structure and create a stream to process all the
lines:

 try (Stream<String> fileStream = Files.lines(path)) {
 fileStream.parallel().flatMap(ConcurrentSearch::limitedMapper)
 .forEach(results::add);
 }

 invertedIndex.setIndex(new ArrayList<>(results));
 return invertedIndex;
 }
}

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[288]

We use the following methods in the stream:

parallel(): We convert the stream into a parallel one
flatMap(): We convert the line into a stream of Token objects using the
limitedMapper() method of the ConcurrentSearch class
forEach(): We process the list of Token objects, adding them to a
ConcurrentLinkedDeque object using the add() method

Finally, we convert the ConcurrentLinkedDeque object into ArrayList and set it in the
InvertedIndex object using the setIndex() method.

The fifth approach - using our own executor
To go further with this example, we're going to test another concurrent version. As we
mentioned in the introduction of this chapter, parallel streams use the common fork/join
pool introduced in Java 8. However, we can use a trick to use our own pool. If we execute
our method as a task of the fork/join pool, all the operations of the stream will be executed
in the same fork/join pool. To test this functionality, we have added the
executorSearch() method to the ConcurrentSearch class. This method receives the
query as an array of String objects as a parameter, the InvertedIndex object, and a
ForkJoinPool object. This is the source code of this method:

public static void executorSearch(String[] query,
 ConcurrentInvertedIndex invertedIndex, ForkJoinPool pool) {
 HashSet<String> set = new HashSet<>(Arrays.asList(query));
 QueryResult results = new QueryResult(new ConcurrentHashMap<>());

 pool.submit(() -> {
 invertedIndex.getIndex().parallelStream()
 .filter(token -> set.contains(token.getWord()))
 .forEach(results::append);

 results.getAsList().stream().sorted().limit(100)
 .forEach(document -> System.out.println(document));
 }).join();

 System.out.println("Executor Search Ok.");

}

We execute the content of the method, with its two streams, as a task in the fork/join pool
using the submit() method, and waits for its finalization using the join() method.

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[289]

Getting data from the inverted index - the
ConcurrentData class
We have implemented some methods to get information about the inverted index using the
reduce() method in the ConcurrentData class.

Getting the number of words in a file
The first method calculates the number of words in a file. As we mentioned earlier in this
chapter, the inverted index stores the files in which a word appears. If we want to know the
words that appear in a file, we have to process all the inverted indices. We have
implemented two versions of this method. The first one is implemented in
getWordsInFile1(). It receives the name of the file and the InvertedIndex object as
parameters, as follows:

public static void getWordsInFile1(String fileName, ConcurrentInvertedIndex
index) {
 long value = index.getIndex().parallelStream()
 .filter(token -> fileName
 .equals(token.getFile())).count();
 System.out.println("Words in File "+fileName+": "+value);
}

In this case, we get the list of Token objects using the getIndex() method and create a
parallel stream using the parallelStream() method. Then, we filter the tokens associated
with the file using the filter() method, and finally, we count the number of words
associated with that file using the count() method.

We have implemented another version of this method using the reduce() method instead
of the count() method. It's the getWordsInFile2() method:

public static void getWordsInFile2(String fileName, ConcurrentInvertedIndex
index) {

 long value = index.getIndex().parallelStream()
 .filter(token -> fileName.equals(token.getFile()))
 .mapToLong(token -> 1).reduce(0, Long::sum);
 System.out.println("Words in File "+fileName+": "+value);
}

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[290]

The start of the sequence of operations is the same as the previous one. When we have
obtained the stream of Token objects with the words of the file, we use the mapToInt()
method to convert that stream into a stream of 1 and then the reduce() method to sum all
the 1 numbers.

Getting the average tfxidf value in a file
We have implemented the getAverageTfxidf() method, which calculates the average
tfxidf value of the words of a file in the collection. We have used here the reduce()
method to show how it works. You can use other methods here with better performance:

public static void getAverageTfxidf(String fileName,
 ConcurrentInvertedIndex index) {

 long wordCounter = index.getIndex().parallelStream()
 .filter(token -> fileName.equals(token.getFile()))
 .mapToLong(token -> 1).reduce(0, Long::sum);

 double tfxidf = index.getIndex().parallelStream()
 .filter(token -> fileName.equals(token.getFile()))
 .reduce(0d,(n,t)-> n+t.getTfxidf(),(n1,n2) -> n1+n2);

 System.out.println("Words in File "+fileName+": "+
 (tfxidf/wordCounter));
}

We use two streams. The first one calculates the number of words in a file and has the same
source code as the getWordsInFile2() method. The second one calculates the total
tfxidf value of all the words in the file. We use the same methods to get the stream of
Token objects with the words in the file and then we use the reduce method to sum the
tfxidf value of all the words. We pass the following three parameters to the reduce()
method:

O: This is passed as the identity value.
(n,t) -> n+t.getTfxidf(): This is passed as the accumulator function. It
receives a double number and a Token object and calculates the sum of the
number and the tfxidf attribute of the token.
(n1,n2) -> n1+n2: This is passed as the combiner function. It receives two
numbers and calculates their sum.

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[291]

Getting the maximum and minimum tfxidf values
in the index
We have also used the reduce() method to calculate the maximum and minimum tfxidf
values of the inverted index in the maxTfxidf() and minTfxidf() methods:

 public static void maxTfxidf(ConcurrentInvertedIndex index) {
 Token token = index.getIndex().parallelStream()
 .reduce(new Token("", "xxx:0"), (t1, t2) -> {
 if (t1.getTfxidf()>t2.getTfxidf()) {
 return t1;
 } else {
 return t2;
 }
 });
 System.out.println(token.toString());
}

The method receives the ConcurrentInvertedIndex as a parameter. We use the
getIndex() to obtain the list of Token objects. Then, we use the parallelStream()
method to create a parallel stream over the list the reduce() method to obtain the Token
with the highest tfxidf. In this case, we use the reduce() method with two parameters:
an identity value and an accumulator function. The identity value is a Token object. We
don't care about the word and the file name, but we initialize its tfxidf attribute with the
value 0. Then, the accumulator function receives two Token objects as parameters. We
compare the tfxidf attribute of both objects and return the one with the greater value.

The minTfxidf() method is very similar, as follows:

public static void minTfxidf(ConcurrentInvertedIndex index) {
 Token token = index.getIndex().parallelStream()
 .reduce(new Token("", "xxx:1000000"),(t1, t2) -> {
 if (t1.getTfxidf()<t2.getTfxidf()) {
 return t1;
 } else {
 return t2;
 }
 });
 System.out.println(token.toString());
}

The main difference is that, in this case, the identity value is initialized with a very high
value for the tfxidf attribute.

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[292]

The ConcurrentMain class
To test all the methods explained in the previous sections, we have implemented the
ConcurrentMain class, which implements the main() method to launch our tests. In these
tests, we have used the following three queries:

query1, with the words james and bond
query2, with the words gone, with, the, and wind
query3, with the words rocky

We have tested the three queries with the three versions of our search process measuring
the execution time of each test. All the tests have a code similar to this:

public class ConcurrentMain {

 public static void main(String[] args) {

 String query1[]={"james","bond"};
 String query2[]={"gone","with","the","wind"};
 String query3[]={"rocky"};

 Date start, end;

 bufferResults.append("Version 1, query 1, concurrent\n");
 start = new Date();
 ConcurrentSearch.basicSearch(query1);
 end = new Date();
 bufferResults.append("Execution Time: " + (end.getTime() -
 start.getTime()) + "\n");

To load the inverted index from the file to an InvertedIndex object, you can use the
following code:

 ConcurrentInvertedIndex invertedIndex = new
 ConcurrentInvertedIndex();
 ConcurrentFileLoader loader = new ConcurrentFileLoader();
 invertedIndex = loader.load(Paths.get("index",
 "invertedIndex.txt"));

To create the Executor to use in the executorSearch() method, you can use the
following code:

ForkJoinPool pool = new ForkJoinPool();

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[293]

The serial version
We have implemented a serial version of this example with the SerialSearch,
SerialData, SerialInvertendIndex, SerialFileLoader, and SerialMain classes. To
implement that version, we have made the following changes:

Use sequential streams instead of parallel ones. You have to delete the use of the
parallel() method to convert the streams into parallel ones or replace the
method parallelStream() to create a parallel stream for the stream() method
to create a sequential one.
In the SerialFileLoader class, use ArrayList instead of
ConcurrentLinkedDeque.

Comparing the solutions
Let's compare the solutions of the serial and concurrent versions of all the methods we have
implemented.

We executed the examples using the JMH framework
(http://openjdk.java.net/projects/code-tools/jmh/), which allows you to implement
micro benchmarks in Java. Using a framework for benchmarking is a better solution which
simply measures time using methods such as currentTimeMillis() and nanoTime().
We have executed them 10 times in two different architectures:

A computer with an Intel Core i5-5300 CPU with Windows 7 and 16 GB of
RAM: This processor has two cores and each core can execute two threads, so we
will have four parallel threads.
A computer with an AMD A8-640 APU with Windows 10 and 8 GB of RAM:
This processor has four cores.

http://openjdk.java.net/projects/code-tools/jmh/

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[294]

For the first query, with the words james and bond, these are the execution times obtained
in milliseconds:

For the second query, with the words gone, with, the, and wind, these are the execution
times obtained in milliseconds:

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[295]

For the third query, with the words rocky, these are the execution times obtained in
milliseconds:

Finally, these are the average execution times in milliseconds for the methods that return
information about the inverted index:

We can draw the following conclusions:

When we read the inverted index to obtain the list of relevant documents,
concurrent versions of the algorithms give us better performance.
When we work with a preload version of the inverted index, concurrent versions
of the algorithms give us better performance in all cases too.
For the methods that give us information about the inverted index, concurrent
versions of the algorithms always give us better performance.

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[296]

We can compare the parallel and sequential streams for the three queries in this end using
the speed-up, for example, for the 'James Bond' query pre-loading the inverted index:

Finally, in our third approach, we generate an HTML web page with the results of the
queries. These are the first results with the query james bond:

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[297]

For the query gone with the wind, these are the first results:

Finally, these are the first results for the query rocky:

Processing Massive Datasets with Parallel Streams - The Map and Reduce Model

[298]

Summary
In this chapter, we were introduced to streams, a new feature introduced in Java 8 inspired
by functional programming, and got ready to work with the new lambda expressions. A
stream is a sequence of data (is not a data structure), which allows you to apply a sequence
of operations in a sequential or concurrent way to filter, convert, sort, reduce, or organize
those elements to obtain a final object.

You also learned the main characteristics of the streams that we have to take into account
when we use streams in our sequential or concurrent applications.

Finally, we used streams in two samples. In the first sample, we used almost all the
methods provided by the Stream interface to calculate the statistical data of a large Dataset.
We used the Bank Marketing dataset of the UCI Machine Learning Repository with its
45,211 records. In the second sample, we implemented different approaches to a search
application in an inverted index to obtain the most relevant documents to a query. This is
one of the most common tasks in the information retrieval field. For this purpose, we used
the reduce() method as the terminal operation of our streams.

In the next chapter, we will continue working with streams, but with more focus on the
collect() terminal operation.

9
Processing Massive Datasets

with Parallel Streams - The Map
and Collect Model

In Chapter 8, Processing Massive Datasets with Parallel Streams - The Map and Reduce Model,
we introduced the concept of streams . A Stream is a sequence of elements that can be
processed in a parallel or sequential way. In this chapter, you will learn how to work with
streams with the following topics:

The collect() method
The first example - searching data without indexing
The second example - a recommendation system
The third example - common contacts in a social network

Using streams to collect data
In Chapter 8, Processing Massive Datasets with Parallel Streams - The Map and Reduce Model,
we made an introduction to streams. Let's remember their most important characteristics:

Streams don't store their elements. They only process the elements stored on a
data source (a data structure, a file, and so on)
Streams can't be reusable
Streams make a lazy processing of data

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[300]

The stream operation cannot modify the stream source
Streams allow you to chain operations so the output of one operation is the input
of the next one

A stream is formed by the following three main elements:

A source that generates stream elements
Zero or more intermediate operations that generate output as another stream
One terminal operation that generates a result that could be either a simple
object, array, collection, map, or anything else

The Stream API provides different terminal operations, but there are two more significant
operations for their flexibility and power. In Chapter 8, Processing Massive Datasets with
Parallel Streams - The Map and Reduce Model, you learned how to use the reduce() method,
and in this chapter, you will learn how to use the collect() method. Let's make an
introduction to this method.

The collect() method
The collect() method allows you to transform and group the elements of the stream
generating a new data structure with the final results of the stream. You can use up to three
different data types: an input data type, the data type of the input elements that come from
the stream, an intermediate data type used to store the elements while the collect()
method is running, and an output data type returned by the collect() method.

There are two different versions of the collect() method. The first version accepts the
following three functional parameters:

Supplier: This is a function that creates an object of the intermediate data type. If
you use a sequential stream, this method will be called once. If you use a parallel
stream, this method may be called many times and must produce a fresh object
every time.
Accumulator: This function is called to process an input element and store it in
the intermediate data structure.
Combiner: This function is called to merge two intermediate data structures into
one. This function will be only called with parallel streams.

This version of the collect() method works with two different data types: the input data
type of the elements that comes from the stream and the intermediate data type that will be
used to store the intermediate elements and to return the final result.

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[301]

The second version of the collect() method accepts an object that implements the
Collector interface. You can implement this interface by yourself, but it's easier to use the
Collector.of() static method. The arguments of this method are as follows:

Supplier: This function creates an object of the intermediate data type, and it
works as seen earlier
Accumulator: This function is called to process an input element, transform it if
necessary, and store it in the intermediate data structure
Combiner: This function is called to merge two intermediate data structures into
one, and it works as seen earlier
Finisher: This function is called to transform the intermediate data structure into
a final data structure if you need to make a final transformation or computation
Characteristics: You can use this final variable argument to indicate some
characteristics of the collector you are creating

Actually, there's a slight difference between the two versions. The three-param collector
accepts a combiner, that is BiConsumer, and it must merge the second intermediate result
into the first one. Unlike that, this combiner is BinaryOperator and should return the
combiner. Therefore, it has the freedom to merge either the second inside the first or the
first inside the second, or create a new intermediate result. There is another version of the
of() method, which accepts the same arguments except the finisher; in this case, the
finishing transformation is not performed.

Java provides you with some predefined collectors in the Collectors factory class. You
can get those collectors using one of its static methods. Some of those methods are:

averagingDouble(), averagingInt(), and averagingLong(): This returns a
collector that allows you to calculate the arithmetic mean of a double, int, or
long function.
groupingBy(): This returns a collector that allows you to group the elements of
a stream by an attribute of its objects, generating a map where the keys are the
values of the selected attribute and the values are a list of the objects that have a
determined value.
groupingByConcurrent(): This is similar to the previous one except there are
two important differences. The first one is that it may work faster in the parallel
but slower in the sequential mode than the groupingBy() method. The second
and most important difference is that the groupingByConcurrent() function is
an unordered collector. The items in the lists are not guaranteed to be in the same
order as in the stream. The groupingBy() collector, on the other hand,
guarantees the ordering.

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[302]

joining(): This returns a Collector factory class that concatenates the input
elements into a string.
partitioningBy(): This returns a Collector factory class that makes a
partition of the input elements based on the results of a predicate.
summarizingDouble(), summarizingInt(), and summarizingLong(): These
return a Collector factory class that calculates summary statistics of the input
elements.
toMap(): This returns a Collector factory class that allows you to transform
input elements into a map based on two mapping functions.
toConcurrentMap(): This is similar to the previous one, but in a concurrent
way. Without a custom merger, toConcurrentMap() is just faster for parallel
streams. As occurs with groupingByConcurrent(), this is an unordered
collector too, whereas toMap() uses the encounter order to make the conversion.
toList():This returns a Collector factory class that stores the input elements
into a list.
toCollection(): This method allows you to accumulate the input elements into
a new Collection factory class (TreeSet, LinkedHashSet, and so on) in the
encounter order. The method receives an implementation of the Supplier
interface that creates the collection as a parameter.
maxBy() and minBy(): These return a Collector factory class that produces the
maximal and minimal element according to the comparator passed as a
parameter.
toSet(): This returns a Collector that stores the input elements into a set.

The first example - searching data without
an index
In Chapter 8, Processing Massive Datasets with Parallel Streams - The Map and Reduce Model,
you learned how to implement a search tool to look for the documents similar to an input
query using an inverted index. This data structure makes the search operation easier and
faster, but there will be situations where you will have to make a search operation over a
big set of data and you won't have an inverted index to help you. In these cases, you have to
process all the elements of the dataset to get the correct results. In this example, you will see
one of these situations and how the reduce() method of the Stream API can help you.

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[303]

To implement this example, you will use a subset of the Amazon product co-purchasing
network metadata that includes information about 548,552 products sold by Amazon,
which includes title, salesrank, and the lists of similar products, categories, and reviews.
You can download this dataset from https://snap.stanford.edu/data/amazon-meta.html.
We have taken the first 20,000 products and stored each product record in a separate file.
We have changed the format of some of the fields to ease the data processing. All the fields
have the property:value format.

Basic classes
We have some classes that are shared between the concurrent and serial versions. Let's see
the details of each one.

The Product class
The Product class stores the information about a product. The following are the Product
classes:

id: This is a unique identifier of the product.
asin: This is the Amazon standard identification number.
title: This is the title of the product.
group: This is the group of the product. This attribute can take the values Baby
Product, Book, CD, DVD, Music, Software, Sports, Toy, Video, or Video
Games.
salesrank: This indicates the Amazon salesrank.
similar: This is the number of similar items included in the file.
categories: This is a list of String objects with the categories assigned to the
product.
reviews: This is a list of Review objects with the reviews (user and value)
assigned to the product.

This class includes only the definition of the attributes and the corresponding getXXX()
and setXXX() methods, so its source code is not included.

https://snap.stanford.edu/data/amazon-meta.html

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[304]

The Review class
As we mentioned earlier, the Product class includes a list of Review objects with the
information of the reviews made by the users to a product. This class stores the information
of each review in the following two attributes:

user: The internal code of the user that made the review
value: The score given by the user to the product

This class includes only the definition of the attributes and the corresponding getXXX()
and setXXX() methods, so its source code is not included.

The ProductLoader class
The ProductLoader class allows you to load the information of a product from a file to a
Product object. It implements the load() method that receives a Path object with the path
to the file with the information of the product and returns a Product object. This is its
source code:

public class ProductLoader {
 public static Product load(Path path) {
 try (BufferedReader reader = Files.newBufferedReader(path)) {
 Product product=new Product();
 String line=reader.readLine();
 product.setId(line.split(":")[1]);
 line=reader.readLine();
 product.setAsin(line.split(":")[1]);
 line=reader.readLine();
 product.setTitle(line.substring (line.indexOf(':')+1));
 line=reader.readLine();
 product.setGroup(line.split(":")[1]);
 line=reader.readLine();
 product.setSalesrank(Long.parseLong (line.split(":")[1]));
 line=reader.readLine();
 product.setSimilar(line.split(":")[1]);
 line=reader.readLine();

 int numItems=Integer.parseInt(line.split(":")[1]);

 for (int i=0; i<numItems; i++) {
 line=reader.readLine();
 product.addCategory(line.split(":")[1]);
 }

 line=reader.readLine();

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[305]

 numItems=Integer.parseInt(line.split(":")[1]);
 for (int i=0; i<numItems; i++) {
 line=reader.readLine();
 String tokens[]=line.split(":");
 Review review=new Review();
 review.setUser(tokens[1]);
 review.setValue(Short.parseShort(tokens[2]));
 product.addReview(review);
 }
 return product;
 } catch (IOException x) {
 throw newe UncheckedIOException(x);
 }

 }
}

The first approach - basic search
The first approach receives a word as the input query and searches all the files that store the
information of the products, whether that word is included in one of the fields that define
the product, no matter which. It will only show the name of the file that includes the word.

To implement this basic approach, we have implemented the
ConcurrentMainBasicSearch class that implements the main() method. First, we
initialize the query and the base path that stores all the files:

public class ConcurrentMainBasicSearch {

 public static void main(String args[]) {
 String query = args[0];
 Path file = Paths.get("data");

We need only one stream to generate a list of strings with the results as follows:

try {
 Date start, end;
 start = new Date();
 ConcurrentLinkedDeque<String> results = Files.walk(file,
 FileVisitOption.FOLLOW_LINKS).parallel().filter(f ->
 f.toString().endsWith(".txt"))
 .collect(ArrayList<String>::new,
 new ConcurrentStringAccumulator (query), List::addAll);
 end = new Date();

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[306]

Our stream contains the following elements:

We start the stream with the walk() method of the Files class passing the base1.
Path object of our collection of files as a parameter. This method will return all
the files as a stream and directories stored under that route.
Then, we convert the stream into a concurrent one using the parallel()2.
method.
We are only interested in the files that end with the .txt extension, so we filter3.
them using the filter() method.
Finally, we use the collect() method to convert the stream of Path objects into4.
ConcurrentLinkedDeque of String objects with the names of the files.

We use the three parameters version of the collect() method using the following
functional parameters:

Supplier: We use the new method reference of the ArrayList class to create a
new data structure per thread to store the corresponding results.
Accumulator: We have implemented our own accumulator in the
ConcurrentStringAccumulator class. We will describe the details of this class
later.
Combiner: We use the addAll() method of the ConcurrentLinkedDeque class
to join two data structures. In this case, all the elements from the second
collection will be added to the first one. The first collection will be used for
further combining or as a final result.

Finally, we write the results obtained with the stream in the console:

 System.out.println("Results for Query: "+query);
 System.out.println("*************");
 results.forEach(System.out::println);
 System.out.println("Execution Time: "+(end.getTime()-
 start.getTime()));
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

The accumulator functional parameter will be executed each time we want to process a path
of the stream to evaluate whether we have to include its name into the result list. To
implement this functionality, we have implemented the ConcurrentStringAccumulator
class. Let's see the details of this class.

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[307]

The ConcurrentStringAccumulator class
The ConcurrentStringAccumulator class loads a file with the information of a product
to determine whether it contains the term of the query. It implements the BiConsumer
interface because we want to use it as a parameter of the collect() method. We have
parameterized that interface with the List<String> and Path classes:

public class ConcurrentStringAccumulator implements BiConsumer
 <List<String>, Path> {

It defines the query as an internal attribute that is initialized in the constructor as follows:

private String word;

public ConcurrentStringAccumulator (String word) {
 this.word=word.toLowerCase();
}

Then, we implement the accept() method defined in the BiConsumer interface. This
method receives two parameters: one of the ConcurrentLinkedDeque<String> classes
and one of the Path classes.

To load the file and determine whether it contains the query, we use the following stream:

@Override
public void accept(List<String> list, Path path) {

 long counter;

 try {
 counter = Files.lines(path).map(l -> l.split(":")[1].toLowerCase())
 .filter(l -> l.contains(word.toLowerCase())).count();

Our stream contains the following elements:

First, we load the lines of the file into a Stream using the lines() method of the1.
Files class. Every line of the file has the format property:value.
Then, we take the value of every property using the map() method.2.
Then, we take only the lines that contains the word we're searching for with the3.
filter() method.
Finally, we count the number of elements that remain in the Stream with the4.
count() method.

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[308]

If the counter variable has a value bigger than 0, the file contains the query term, and we
include the name of the file in the ConcurrentLinkedDeque class with the results:

 if (counter>0) {
 list.add(path.toString());
 }
 } catch (Exception e) {
 System.out.println(path);
 e.printStackTrace();
 }
 }
}

The second approach - advanced search
Our basic search has some drawbacks:

We look for the query term in all the properties, but maybe we only want to look
for it in some of them; for example, in the title
We only show the name of the file, but it would be more informative if we show
additional information as the title of the product

To solve these problems, we are going to implement the ConcurrentMainSearch class that
implements the main() method. First, we initialize the query and the base Path object that
stores all the files:

public class ConcurrentMainSearch {
 public static void main(String args[]) {
 String query = args[0];
 Path file = Paths.get("data");

Then, we generate a ConcurrentLinkedDeque class of Product objects using the
following stream:

try {
 Date start, end;
 start=new Date();
 List<Product> results = Files.walk(file, FileVisitOption
 .FOLLOW_LINKS).parallel().filter(f -> f
 .toString().endsWith(".txt"))
 .collect(ArrayList<Product>::new, new
 ConcurrentObjectAccumulator(query),
 List::addAll);

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[309]

This stream has the same elements as the one we implemented in the basic approach with
the following two changes:

In the collect() method, we use the ConcurrentObjectAccumulator class in
the accumulator parameter
We parameterize the ConcurrentLinkedDeque class with the Product one

Finally, we write the results in the console, but in this case, we write the title of each
product:

 System.out.println("Results");
 System.out.println("*************");
 results.forEach(p -> System.out.println(p.getTitle()));
 System.out.println("Execution Time: "+(end.getTime()-
 start.getTime()));

 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

You can change this code to write whatever information about the product you like, such as
the salesrank or the categories.

The most important change between this implementation and the previous one is the
ConcurrentObjectAccumulator class. Let's see the details of this class.

The ConcurrentObjectAccumulator class
The ConcurrentObjectAccumulator class implements the BiConsumer interface
parameterized with the ConcurrentLinkedDeque<Product> and Path classes because we
want to use it in the collect() method. It defines an internal attribute named word to
store the query term. This attribute is initialized in the constructor of the class:

public class ConcurrentObjectAccumulator implements BiConsumer
 <List<Product>, Path> {

 private String word;

 public ConcurrentObjectAccumulator(String word) {
 this.word = word;
 }

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[310]

The implementation of the accept() method (defined in the BiConsumer interface) is very
simple:

 @Override
 public void accept(List<Product> list, Path path) {

 Product product=ProductLoader.load(path);

 if (product.getTitle().toLowerCase().contains(word.toLowerCase())){
 list.add(product);
 }
 }

}

The method receives the Path object that points to the file we are going to process as a
parameter and the ConcurrentLinkedDeque class to store the results. We load the file in a
Product object using the ProductLoader class and then check whether the title of the
product contains the query term. If it contains the query, we add the Product object to the
ConcurrentLinkedDeque class.

A serial implementation of the example
As with the rest of the examples in this book, we have implemented a serial version of both
versions of the search operations to verify that the concurrent stream allows us to get an
improvement of the performance.

You can implement the serial equivalent of the four classes described earlier by deleting the
parallel() calls in the Stream objects to make the streams concurrent.

With the source code of the book, we have included the SerialMainBasicSearch,
SerialMainSearch, SerialStringAccumulator, and SerialObjectAccumulator
classes, which are the serial equivalent ones with the changes commented earlier.

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[311]

Comparing the implementations
We have tested our implementations (the two approaches: serial and concurrent versions)
to compare their execution times. To test them, we have used three different queries:

Patterns
Java
Tree

We have executed the examples using the JMH framework
(http://openjdk.java.net/projects/code-tools/jmh/) that allows you to implement
micro benchmarks in Java. Using a framework for benchmarking is a better solution that
simply measures time using methods such as currentTimeMillis() or nanoTime(). We
have executed them 10 times in two different architectures:

A computer with an Intel Core i5-5300 CPU with Windows 7 and 16 GB of RAM:
This processor has two cores and each core can execute two threads, so we will
have four parallel threads.
A computer with an AMD A8-640 APU with Windows 10 and 8 GB of RAM: This
processor has four cores.

These are the results in milliseconds. First, we show you the results of the string search
operation:

http://openjdk.java.net/projects/code-tools/jmh/

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[312]

Now, the results of the object search operation:

We can draw the following conclusions:

The results obtained with different queries are very similar. There's only a few
milliseconds of difference between them.
The execution time of the string search is always better than the execution time of
the object search.
Concurrent streams get better performance than serial ones in all cases.

If we compare the concurrent and serial versions, for example, for the string search with the
query patterns using the speed-up, we obtain the following result:

The second example - a recommendation
system
A recommendation system recommends a product or a service to a customer based on the
products/services he has bought/used and in the products/services bought/used by the
users that have bought/used the same services as him.

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[313]

We have used the example explained in the previous section to implement a
recommendation system. Each description of a product includes the reviews of a number of
customers to a product. This review includes the score the customer gives to the product.

In this example, you will use these reviews to get a list of the products that may be
interesting to a customer. We will obtain the list of the products purchased by a customer.
In order to get that list, a list of the users who have purchased those products and the list of
products purchased by those users are sorted using the average score given in the reviews.
That will be the suggested products for the user.

Common classes
We have added two new classes to the ones used in the previous section. These classes are:

ProductReview: This class extends the product class with two new attributes
ProductRecommendation: This class stores the information of the
recommendation of a product

Let's see the details of both classes.

The ProductReview class
The ProductReview class extends the Product class, adding two new attributes:

buyer: This attribute stores the name of a customer of the product
value: This attribute stores the value given by this customer to the product in his
review

The class includes the definition of the attributes: the corresponding getXXX() and
setXXX() methods, a constructor to create a ProductReview object from a Product object,
and the values for the new attributes. It's very simple, so its source code is not included.

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[314]

The ProductRecommendation class
The ProductRecommendation class stores the necessary information for a product
recommendation that includes the following:

title: The title of the product we are recommending
value: The score of that recommendation, which is calculated as the average
score of all the reviews for that product

This class includes the definition of the attributes, the corresponding getXXX() and
setXXX() methods, and the implementation of the compareTo() methods (the class
implements the Comparable interface) that will allow us to sort the recommendations in
descending order by its value. It's very simple, so its source code is not included.

Recommendation system - the main class
We have implemented our algorithm in the ConcurrentMainRecommendation class to
obtain the list of recommended products to a customer. This class implements the main()
method that receives as a parameter the ID of the customer whose recommended products
we want to obtain. We have the following code:

public static void main(String[] args) {
 String user = args[0];
 Path file = Paths.get("data");
 try {
 Date start, end;
 start=new Date();

We have used different streams to transform the data in the final solution. The first one
loads the whole list of the Product objects from its files:

List<Product> productList = Files.walk(file, FileVisitOption
 .FOLLOW_LINKS).parallel().filter(f-> f
 .toString().endsWith(".txt"))
 .collect(ArrayList<Product>::new, new
 ConcurrentLoaderAccumulator(),
 List::addAll);

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[315]

This stream has the following elements:

We start the stream with the walk() method of the Files class. This method will1.
create a stream to process all the files and directories under the data directory.
Then, we use the parallel() method to convert the stream into a concurrent2.
one.
Then, we get the files with the extension .txt only.3.
Finally, we use the collect() method to obtain a ConcurrentLinkedDeque4.
class of the Product objects. It's very similar to the one used in the previous
section with the difference that we use another accumulator object. In this case,
we use the ConcurrentLoaderAccumulator class, which we will describe later.

Once we have the list of products, we are going to organize those products in a map using
the identifier of the customer as the key for that map. We use the ProductReview class to
store the information of the customers of the products. We need a ProductReview object
for each review of a Product. We use the following stream to make the transformation:

Map<String, List<ProductReview>> productsByBuyer=
 productList.parallelStream()
 .<ProductReview>flatMap(p -> p.getReviews()
 .stream().map(r -> new ProductReview(p, r.getUser(),
 r.getValue()))).collect(Collectors
 .groupingByConcurrent(p -> p.getBuyer()));

This stream has the following elements:

We start the stream with the parallelStream() method of the productList1.
object, so we create a concurrent stream.
Then, we use the flatMap() method to convert the stream of Product objects2.
we have into a unique stream of ProductReview objects.
Finally, we use the collect() method to generate the final map. In this case, we3.
have used the predefined collector generated by the groupingByConcurrent()
method of the Collectors class. The returned collector will generate a map
where the keys will be the different values of the buyer attribute and the values
of a list of ProductReview objects with the information of the products
purchased by that user. This transformation will be done, as the method name
indicates, in a concurrent way.

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[316]

The next stream is the most important stream of this example. We take the products
purchased by a customer and generate the recommendations to that customer. It's a two-
phase process made by one stream. In the first phase, we obtain the users that purchased
the products purchased by the original customer. In the second phase, we generate a map
with the products purchased by those customers with all the reviews of those products
made by those customers. This is the code for that stream:

Map<String,List<ProductReview>> recommendedProducts= productsByBuyer
 .get(user).parallelStream().map(p -> p
 .getReviews()).flatMap(Collection::stream)
 .map(r -> r.getUser()).distinct()
 .map(productsByBuyer::get)
 .flatMap(Collection::stream)
 .collect(Collectors.groupingByConcurrent
 (p -> p.getTitle()));

We have the following elements in that stream:

First, we get the list of products purchased by the user and generate a concurrent1.
stream using the parallelStream() method.
Then, we get all the reviews for those products using the map() method.2.
At this moment, we have a stream of List<Review>. We convert that stream into3.
a stream of Review objects. Now we have a stream with all the reviews of the
products purchased by the user.
Then, we transform that stream into a stream of String objects with the names of4.
the users who made the reviews.
Then, we get the unique names of the users with the distinct() method. Now5.
we have a stream of String objects with the names of the users who purchased
the same products as the original user.
Then, we use the map() method to transform each customer into its list of6.
purchased products.
At this moment, we have a stream of List<ProductReview> objects. We convert7.
that stream into a stream of ProductReview objects using the flatMap()
method.
Finally, we generate a map of products using the collect() method and the8.
groupingByConcurrent() collector. The keys of the map will be the title of the
product and the values of the list of ProductReview objects with the reviews
made by the customers obtained earlier.

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[317]

To finish our recommendation algorithm, we need to complete one last step. For every
product, we want to calculate its average score in the reviews and sort the list in descending
order to show the top-rated products at first place. To make that transformation, we use an
additional stream:

 ConcurrentLinkedDeque<ProductRecommendation> recommendations
 = recommendedProducts.entrySet().parallelStream()
 .map(entry -> new ProductRecommendation(entry
 .getKey(), entry.getValue().stream().mapToInt(p->
 p.getValue()).average().getAsDouble()))
 .sorted().collect(Collectors.toCollection
 (ConcurrentLinkedDeque::new));
 end=new Date();
 recommendations. forEach(pr -> System.out.println (pr.getTitle()
 +": "+pr.getValue()));

 System.out.println("Execution Time: "+(end.getTime()-
 start.getTime()));

 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

We process the map obtained in the previous step. For each product, we process its list of
reviews, generating a ProductRecommendation object. The value of this object is
calculated as the average value of each review using a stream using the mapToInt()
method to transform the stream of ProductReview objects into a stream of integers and the
average() method to get the average value of all the numbers in the string.

Finally, in the recommendations ConcurrentLinkedDeque class, we have a list of
ProductRecommendation objects. We sort that list using the other stream with the
sorted() method. We use that stream to write the final list in the console.

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[318]

The ConcurrentLoaderAccumulator class
To implement this example, we have used the ConcurrentLoaderAccumulator class used
as the accumulator function in the collect() method that transforms the stream of Path
objects with the routes of all the files to process into the ConcurrentLinkedDeque class of
Product objects. This is the source code of this class:

public class ConcurrentLoaderAccumulator implements
 BiConsumer<List<Product>, Path> {

 @Override
 public void accept(List<Product> list, Path path) {

 Product product=ProductLoader.load(path);
 list.add(product);

 }
}

It implements the BiConsumer interface. The accept() method uses the ProductLoader
class (explained earlier in this chapter) to load the product information from the file and
add the resultant Product object in the List class received as a parameter.

The serial version
As with other examples in the book, we have implemented a serial version of this example
to check that parallel streams improve the performance of the application. To implement
this serial version, we have to follow these steps:

Replace the ConcurrentLinkedDeque data structure by the List or ArrayList1.
data structures.
Change the parallelStrem() method by the stream() method.2.
Change the gropingByConcurrent() method by the groupingBy() method.3.

You can see the serial version of this example in the source code of the book.

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[319]

Comparing the two versions
To compare the serial and concurrent versions of our recommendation system, we have
obtained the recommended products for three users:

A2JOYUS36FLG4Z

A2JW67OY8U6HHK

A2VE83MZF98ITY

We have executed the examples using the JMH framework
(http://openjdk.java.net/projects/code-tools/jmh/) that allows you to implement
micro benchmarks in Java. Using a framework for benchmarking is a better solution that
simply measures time using methods as currentTimeMillis() or nanoTime(). We have
executed them 10 times in two different architectures:

A computer with an Intel Core i5-5300 CPU with Windows 7 and 16 GB of
RAM: This processor has two cores and each core can execute two threads, so we
will have four parallel threads.
A computer with an AMD A8-640 APU with Windows 10 and 8 GB of RAM:
This processor has four cores.

These are the results in milliseconds:

We can draw the following conclusions:

The results obtained are very similar for the three users
The execution time of the concurrent streams is always better than the execution
time of the sequential ones

http://openjdk.java.net/projects/code-tools/jmh/

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[320]

If we compare the concurrent and serial versions, for example, for the second user using the
speed-up, we obtain the following result:

The third example - common contacts in a
social network
Social networks are transforming our society and the way people relate to each other.
Facebook, LinkedIn, Twitter, and Instagram have millions of users who use these networks
to share life moments with their friends, make new professional contacts, promote their
professional brand, meet new people, or simply know the latest trends in the world.

We can see a social network as a graph where users are the nodes of the graph and relations
between users are the arcs of the graph. As occurs with graphs, there are social networks
such as Facebook, where relations between users are undirected or bidirectional. If a user A
is connected with user B, the user B is connected with A too. On the contrary, there are
social networks such as Twitter where relations between users are directed. We say in this
case that user A follows user B, but the contrary is not necessarily true.

In this section, we are going to implement an algorithm to calculate the common contacts
for every pair of users in a social network with bidirectional relations between users. We are
going to implement the algorithm described in h t t p ://s t e v e k r e n z e l . c o m /f i n d i n g - f r i e n

d s - w i t h - m a p r e d u c e . The main steps of that algorithm are as follows:

Our data source will be a file where we store every user with their contacts:

 A-B,C,D,
 B-A,C,D,E,
 C-A,B,D,E,
 D-A,B,C,E,
 E-B,C,D,

http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce
http://stevekrenzel.com/finding-friends-with-mapreduce

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[321]

This means that user A has users B, C, and D as contacts. Take into account that
the relations are bidirectional, so if B is a contact for A, A will be a contact for B too
and both relations have to be represented in the file. So, we have elements with
the following two parts:

A user identifier
The list of contacts for that user

In the next step, we generate a set of elements with three parts per every element.
The three parts are:

A user identifier
The user identifier of a friend
The list of contacts for that user

Thus, for user A, we will generate the following elements:

 A-B-B,C,D
 A-C-B,C,D
 A-D,B,C,D

We follow the same process for all the elements. We are going to store the two
user identifiers alphabetically sorted. Thus, for user B, we generate the following
elements:

 A-B-A,C,D,E
 B-C-A,C,D,E
 B-D-A,C,D,E
 B-E-A,C,D,E

Once we have generated all the new elements, we group them for the two user
identifiers. For example, for the tuple A-B we will generate the following group:

 A-B-(B,C,D),(A,C,D,E)

Finally, we calculate the intersection between the two lists. The resultant lists are
the common contacts between the two users. For example, what the users A and B
have in common with the contacts C and D.

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[322]

To test our algorithm, we have used two datasets:

The test sample presented earlier.
The social circles: the Facebook dataset that you can download from
https://snap.stanford.edu/data/egonets-Facebook.html contains the contact
information of 4,039 users from Facebook. We have transformed the original data
into the data format used by our example.

Base classes
As with other examples in the book, we have implemented the serial and concurrent
versions of this example to verify that parallel streams improve the performance of our
application. Both versions share some classes.

The Person class
The Person class stores the information about every person in the social network that
includes the following:

Its user ID, stored in the ID attribute
The list of contacts of that user, stored as a list of String objects in the contacts
attribute

The class declares both attributes and the corresponding getXXX() and setXXX()
methods. We also need a constructor to create the list and a method named addContact()
to add a single contact to the list of contacts. The source code of this class is very simple, so
it won't be included here.

The PersonPair class
The PersonPair class extends the Person class, adding the attribute to store the second
user identifier. We called this attribute otherId. This class declares the attribute and
implements the corresponding getXXX() and setXXX() methods. We need an additional
method named getFullId() that returns a string with the two user identifiers separated
by a , character. The source code of this class is very simple, so it won't be included here.

https://snap.stanford.edu/data/egonets-Facebook.html

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[323]

The DataLoader class
The DataLoader class loads the file with the information of the users and their contacts and
converts it into a list of Person objects. It implements only a static method named load()
that receives the path of the file as a String object as a parameter and returns the list of
Person objects.

As we mentioned earlier, the file has the following format:

User-C1,C2,C3...CN

Here, User is the identifier of the user, and C1, C2, C3....CN are the identifiers of the
contacts of that user.

The source code of this class is very simple, so it won't be included here.

The concurrent version
First, let's analyze the concurrent version of this algorithm.

The CommonPersonMapper class
The CommonPersonMapper class is an auxiliary class that will be used later. It will generate
all the PersonPair objects you can generate from a Person object. This class implements
the Function interface parameterized with the Person and List<PersonPair> classes.

It implements the apply() method defined in the Function interface. First, we initialize
the List<PersonPair> object that we're going to return and obtain and sort the list of
contacts for the person:

public class CommonPersonMapper implements Function<Person,
 List<PersonPair>> {

 @Override
 public List<PersonPair> apply(Person person) {

 List<PersonPair> ret=new ArrayList<>();

 List<String> contacts=person.getContacts();
 Collections.sort(contacts);

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[324]

Then, we process the whole list of contacts creating the PersonPair object per contact. As
we mentioned earlier, we store the two contacts sorted in alphabetical order. The lesser one
in the ID field and the other in the otherId field:

for (String contact : contacts) {
 PersonPair personExt=new PersonPair();
 if (person.getId().compareTo(contact) < 0) {
 personExt.setId(person.getId());
 personExt.setOtherId(contact);
 } else {
 personExt.setId(contact);
 personExt.setOtherId(person.getId());
 }

Finally, we add the list of contacts to the new object and the object to the list of results. Once
we have processed all the contacts, we return the list of results:

 personExt.setContacts(contacts);
 ret.add(personExt);
 }
 return ret;
 }
}

The ConcurrentSocialNetwork class
The ConcurrentSocialNetwork is the main class of this example. It implements only a
static method named bidirectionalCommonContacts(). This method receives the list of
persons of the social network with their contacts and returns a list of PersonPair objects
with the common contacts between every pair of users who are contacts.

Internally, we use two different streams to implement our algorithm. We use the first one to
transform the input list of Person objects into a map. The keys of this map will be the two
identifiers of every pair of users, and the value will be a list of PersonPair objects with the
contacts of both users. So, these lists will always have two elements. We have the following
code:

public class ConcurrentSocialNetwork {

 public static List<PersonPair> bidirectionalCommonContacts
 (List<Person> people) { Map<String,
List<PersonPair>> group = people.parallelStream()

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[325]

 .map(new CommonPersonMapper())
 .flatMap(Collection::stream)
 .collect(Collectors.groupingByConcurrent
 (PersonPair::getFullId));

This stream has the following components:

We create the stream using the parallelStream() method of the input list.1.
Then, we use the map() method and the CommonPersonMapper class explained2.
earlier to transform every Person object in a list of PersonPair objects with all
the possibilities for that object.
At this moment, we have a stream of List<PersonPair> objects. We use the3.
flatMap() method to convert that stream into a stream of PersonPair objects.
Finally, we use the collect() method to generate the map using the collector4.
returned by the groupingByConcurrent() method using the value returned by
the getFullId() method as the keys for the map.

Then, we create a new collector using the of() method of the Collectors class. This
collector will receive a Collection of strings as input, use an
AtomicReference<Collection<String>> as an intermediate data structure, and return
a Collection of strings as the return type:

Collector<Collection<String>, AtomicReference<Collection<String>>,
 Collection<String>> intersecting = Collector.of(() ->
 new AtomicReference<>(null), (acc, list) -> {
 (acc, list) -> {
 if (acc.get() == null) {
 acc.updateAndGet(value -> new ConcurrentLinkedQueue<>(list));
 } else {
 acc.get().retainAll(list);
 }
}, (acc1, acc2) -> {
 if (acc1.get() == null) return acc2;
 if (acc2.get() == null)
 return acc1;
 acc1.get().retainAll(acc2.get());
 return acc1;
}, (acc) -> acc.get() == null ? Collections.emptySet() :
 acc.get(), Collector.Characteristics.CONCURRENT,
 Collector.Characteristics.UNORDERED);

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[326]

The first parameter of the of() method is the supplier function. This supplier is always
called when we need to create an intermediate structure of data. In serial streams, this
method is called only once, but in concurrent streams, this method will be called once per
thread.

() -> new AtomicReference<>(null),

In our case, we simply create a new AtomicReference to store the Collection<String>
object.

The second parameter of the of() method is the accumulator function. This function
receives an intermediate data structure and an input value as parameters:

(acc, list) -> {
 if (acc.get() == null) {
 acc.updateAndGet(value -> new ConcurrentLinkedQueue<>(list));
 } else {
 acc.get().retainAll(list);
 }
}

In our case, the acc parameter is an AtomicReference and the list parameter is a
ConcurrentLinkedDeque. If the acc reference stores a null value, we use the
updateAndGet() method of the AtomicReference. This method updates the current
value and returns the new value. In our case, we create a new ConcurrentLinkedDeque
with the elements of the list. If the AtomicReference is not null, we use the retainAll()
method to add all the elements of the list.

The third parameter of the of() method is the combiner function. This function is only
called in parallel streams, and it receives two intermediate data structures as a parameter to
generate only one.

(acc1, acc2) -> {
 if (acc1.get() == null)
 return acc2;
 if (acc2.get() == null)
 return acc1;
 acc1.get().retainAll(acc2.get());
 return acc1;
},

In our case, if one of the parameters is null, we return the other. Otherwise, we use the
retainAll() method in the acc1 parameter and return the result.

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[327]

The fourth parameter of the of() method is the finisher function. This function converts the
final intermediate data structure in the data structure we want to return. In our case, the
intermediate and final data structures are the same, so no conversion is needed.

(acc) -> acc.get() == null ? Collections.emptySet() : acc.get(),

Finally, we use the last parameter to indicate to the collector that the collector is concurrent:
the accumulator function can be called concurrently with the same result container from
multiple threads, and unordered; that is to say, this operation will not preserve the original
order of the elements.

As we have defined the collector, we now have to convert the map generated with the first
stream into a list of PersonPair objects with the common contacts of each pair of users. We
use the following code:

 List<PersonPair> peopleCommonContacts = group
 .entrySet().parallelStream().map((entry) -> {
 Collection<String> commonContacts = entry
 .getValue().parallelStream().map(p -> p
 .getContacts()).collect(intersecting);
 PersonPair person = new PersonPair();
 person.setId(entry.getKey().split(",")[0]);
 person.setOtherId(entry.getKey().split (",")[1]);
 person.setContacts(new ArrayList<String> (commonContacts));
 return person;
 }).collect(Collectors.toList());

 return peopleCommonContacts;
 }
}

We use the entySet() method to process all the elements of the map. We create a
parallelStream() method to process all the Entry objects and then use the map()
method to convert every list of PersonPair objects into a unique PersonPair object with
the common contacts.

For each entry, the key is the identifier of a pair of users concatenated with a , as a
separator, and the values are a list of two PersonPair objects. The first one contains the
contacts of one user, and the other contains the contacts of the other user.

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[328]

We create a stream for that list to generate the common contacts of both users with the
following elements:

We create the stream using the parallelStream() method of the list.1.
We use the map() method to replace each PersonPair() object for the list of2.
contacts stored in it.
Finally, we use our collector to generate ConcurrentLinkedDeque with the3.
common contacts.

Finally, we create a new PersonPair object with the identifier of both users and the list of
common contacts. We add that object to the list of results. When all the elements of the map
have been processed, we can return the list of results.

The ConcurrentMain class
The ConcurrentMain class implements the main() method to test our algorithm. As we
mentioned earlier, we have tested it with the following two datasets:

A very simple dataset to test the correctness of the algorithm
A dataset based on real data from Facebook

This is the source code of this class:

public class ConcurrentMain {

 public static void main(String[] args) {

 Date start, end;
 System.out.println("Concurrent Main Bidirectional - Test");
 List<Person> people=DataLoader.load("data","test.txt");
 start=new Date();
 List<PersonPair> peopleCommonContacts= ConcurrentSocialNetwork
 .bidirectionalCommonContacts (people);
 end=new Date();
 peopleCommonContacts.forEach(p -> System.out.println
 (p.getFullId()+": "+getContacts(p.getContacts())));
 System.out.println("Execution Time: "+(end.getTime()-
 start.getTime()));
 System.out.println("Concurrent Main Bidirectional -
 Facebook");
 people=DataLoader.load("data","facebook_contacts.txt");
 start=new Date();
 peopleCommonContacts= ConcurrentSocialNetwork
 .bidirectionalCommonContacts (people);

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[329]

 end=new Date();
 peopleCommonContacts.forEach(p -> System.out.println
 (p.getFullId()+": "+getContacts(p.getContacts())));
 System.out.println("Execution Time: "+(end.getTime()-
 start.getTime()));

 }

 private static String formatContacts(List<String> contacts) {
 StringBuffer buffer=new StringBuffer();
 for (String contact: contacts) {
 buffer.append(contact+",");
 }
 return buffer.toString();
 }
}

The serial version
As with other examples in this book, we have implemented a serial version of this example.
This version is equal to the concurrent one but makes the following changes:

Replace the parallelStream() method by the stream() method
Replace the ConcurrentLinkedDeque data structure by the ArrayList data
structure
Replace the groupingByConcurrent() method by the groupingBy() method
Don't use the final parameter in the of() method

Comparing the two versions
We have executed the examples using the JMH framework
(http://openjdk.java.net/projects/code-tools/jmh/) that allows you to implement
micro benchmarks in Java. Using a framework for benchmarking is a better solution that
simply measures time using methods as currentTimeMillis() or nanoTime(). We have
executed them 10 times in two different architectures:

A computer with an Intel Core i5-5300 CPU with Windows 7 and 16 GB of
RAM: This processor has two cores and each core can execute two threads, so we
will have four parallel threads.
A computer with an AMD A8-640 APU with Windows 10 and 8 GB of RAM:
This processor has four cores.

http://openjdk.java.net/projects/code-tools/jmh/

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[330]

These are the results in milliseconds:

We can draw the following conclusions:

For the example dataset, the serial version obtains a better execution time in the
Intel architecture and very similar results in the AMD architecture. The reason for
this result is that the example dataset has few elements.
For the Facebook dataset, the concurrent version obtains better execution time in
both architectures.

If we compare the concurrent and serial versions for the Facebook dataset, we obtain the
following results:

Processing Massive Datasets with Parallel Streams - The Map and Collect Model

[331]

Summary
In this chapter, we used the different versions of the collect() method provided by the
Stream framework to transform and group the elements of a Stream. This and Chapter 8,
Processing Massive Datasets with Parallel Streams - the Map and Reduce Model, teach you how to
work with the whole stream API.

Basically, the collect() method needs a collector that processes the data of the stream and
generates a data structure returned by the set of aggregate operations that forms the stream.
A collector works with three different data structures-the class of the input elements, an
intermediate data structure used while processing the input elements, and a final data
structure that is returned.

We used the different versions of the collect() method to implement a search tool that
must look for a query in a set of files without an inverted index, a recommendation system,
and a tool to calculate the common contacts between two users in a social network.

In the next chapter, we will take a deep look at Reactive Stream programming, a new
feature introduced in Java 9.

10
Asynchronous Stream

Processing - Reactive Streams
Reactive streams (http://www.reactive-streams.org/) define a standard for
asynchronous stream processing with non-blocking back pressure. The biggest problem
with these kinds of systems is resource consumption. A fast producer can overload a slower
consumer. The queue of data between those components can increase its size in excess and
affects the behavior of the whole system. The back pressure mechanism ensures that the
queue which mediates between the producer and a consumer has a limited number of
elements.

Reactive streams define a minimal set of interfaces, methods, and protocols that describe the
necessary operations and entities. They are based on the following three elements:

A publisher of information
One or more subscribers of that information
A subscription between the publisher and a consumer

The reactive streams specification determines how these classes should interact between
them, according to the following rules:

The publisher will add the subscribers that want to be notified
The subscriber receives a notification when they're added to a publisher
The subscribers request one or more elements from the publisher in an
asynchronous way, that is to say, the subscriber requests the element and
continues with their execution
When the publisher has an element to publish, it sends it to all its subscribers that
have requested an element

http://www.reactive-streams.org/

Asynchronous Stream Processing - Reactive Streams

[333]

As we mentioned before, all this communication is asynchronous, so we can take advantage
of all the power of our multi-core processor.

Java 9 has included three interfaces, the Flow.Publisher, the Flow.Subscriber, and the
Flow.Subscription, and a utility class, the SubmissionPublisher class, to allow us to
implement reactive stream applications. In this recipe, you will learn how to use all these
elements to implement a basic reactive stream application.

In this chapter, you will learn how to work with reactive streams in the following topics:

Introduction to reactive streams in Java
The first example - a centralized system for event notification
The second example - a news system

Introduction to reactive streams in Java
In the introduction of this chapter, we explained what reactive streams are, which elements
form the standard, and how those elements are implemented in Java:

The Flow.Publisher interface: This interface represents a producer of items.
The Flow.Subscriber interface: This interface represents a consumer of items.
The Flow.Subscription interface: This interface represents the connection
between a producer and a consumer. The class that implements it manages the
item interchange between the producer and the consumer.

In addition to these three interfaces, we have the SubmissionPublisher class that
implements the Flow.Publisher interface. It also uses an implementation of the
Flow.Subscription interface. It implements the method of the Flow.Publisher
interface that allows the subscription of consumers and also methods to send items to those
consumers, so we only have to implement one or more classes that implement the
Flow.Subscriber interface.

Let's look at the methods provided by those classes and interfaces in detail.

Asynchronous Stream Processing - Reactive Streams

[334]

The Flow.Publisher interface
As we mentioned before, this interface represents a producer of items. It only provides one
method:

subscribe(): This method receives as a parameter an implementation of the
Flow.Subscriber interface and adds that subscriber to its internal list of
subscribers. This method doesn't return any results. Internally, it uses the
methods provided by the Flow.Subscriber interface to send items, errors, and
the subscription object to the subscribers.

The Flow.Subscriber interface
As we mentioned earlier, this interface represents a consumer of items. It provides four
methods:

onSubscribe(): This method is invoked by the publisher to complete the
subscription of a subscriber. It sends to the subscriber the Flow.Subscription
object that manages the communication between the publisher and the
subscriber.
onNext(): This method is invoked by the publisher when it wants to send a new
item to the subscriber. In this method, the subscriber has to process that item. It
doesn't return any results.
onError(): This method is invoked by the publisher when an unrecoverable
error has occurred and no other methods of the subscriber will be called. It
receives as a parameter a Throwable object with the error that has occurred.
onComplete(): This method is invoked by the publisher when it's not going to
send any more items. It doesn't receive parameters and it doesn't return a result.

Asynchronous Stream Processing - Reactive Streams

[335]

The Flow.Subscription interface
As we mentioned earlier, this object represents the communication between a publisher and
a subscriber. It provides two methods that can be used by the subscriber to tell the
publisher how their communication will evolve.

cancel(): This method is invoked by the subscriber to tell the publisher it
doesn't want any more items.
request(): This method is invoked by the subscriber to tell the publisher it
wants more items. It receives the number of items the subscriber wants as a
parameter.

The SubmissionPublisher class
As we mentioned earlier, this class, provided by the Java 9 API, implements the
Flow.Publisher interface. It also uses the Flow.Subscription interface and provides
methods to send items to the consumers, to know the number of consumers, the
subscription between the publisher and the consumer, and to close the communication
between them. These are its more significant methods:

subscribe(): This method is provided by the Flow.Publisher interface. It's
used to subscribe a Flow.Subscriber object to this publisher
offer(): This method publishes an item to each subscriber by asynchronously
invoking its onNext() method
submit(): This method publishes an item to each subscriber by asynchronously
invoking its onNext() method, blocking uninterruptedly while resources for any
subscriber are unavailable
estimateMaximumLag(): This method estimates the items produced by this
publisher but not yet consumed by its subscribed subscribers
estimateMinimumDemand(): This method estimates the number of items
requested by the consumers but not yet produced by this publisher
getMaxBufferCapacity(): This method returns the maximum size of the
buffer for each subscriber
getNumberOfSubscribers(): This method return the number of subscribers

Asynchronous Stream Processing - Reactive Streams

[336]

hasSubscribers(): This method returns a Boolean value that indicates
whether the publisher has subscribers or not
close(): This method calls the onComplete() method of all the subscribers of
this publisher
isClosed(): This method returns a Boolean value to indicate if this publisher is
closed or not

The first example - a centralized system for
event notification
In our first example, we are going to implement a system to send items from generators of
events to consumers of events. We're going to use the SubmissionPublisher class to
implement the communication between the producers and the consumers of events.

The Event class
This class stores the information of every item. Each item contains three attributes:

The msg attribute, to store a message in the Event
The source attribute, to store the name of the class that produces the Event
The date attribute, to store the date when the Event was produced

You have to declare the three attributes as private and include the methods to get() and
set() the values of the attributes in the class.

The Producer class
We're going to use this class to implement tasks that generate events that will be sent to the
consumers using a SubmissionPublisher object. The class implements the Runnable
interface and stores two attributes:

The publisher attribute, that stores the SubmissionPublisher object to send
the events to the consumers
The name attribute, to store the name of this producer

Asynchronous Stream Processing - Reactive Streams

[337]

We use the constructor of the class to initialize both attributes:

public class Producer implements Runnable {

 private SubmissionPublisher<Event> publisher;
 private String name;

 public Producer(SubmissionPublisher<Event> publisher, String name) {
 this.publisher = publisher;
 this.name = name;
 }

Then, we implement the run() method. On it, we generate 10 events. Between one event
and the next one, we wait a random number of seconds between 0 and 10. This is the source
code of this method:

@Override
public void run() {

 Random random = new Random();

 for (int i=0 ; i < 10; i++) {
 Event event = new Event();
 event.setMsg("Event number "+i);
 event.setSource(this.name);
 event.setDate(new Date());

 publisher.submit(event);

 int number = random.nextInt(10);

 try {
 TimeUnit.SECONDS.sleep(number);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 }
}

The Consumer class
Now it's time to implement the consumers of events in the Consumer class. This class
implements the Flow.Subscriber interface parameterized with the Event class, so we
have to implement the four methods provided by that interface.

Asynchronous Stream Processing - Reactive Streams

[338]

First, we declare two attributes:

The name attribute, to store the name of the consumer
The subscription attribute, to store the Flow.Subscription instance that
manages the communication between the consumer and the producer

We use the constructor of the class to initialize the name attribute, as you can see in the
following piece of code:

public class Consumer implements Subscriber<Event> {

 private String name;
 private Subscription subscription;

 public Consumer (String name) {
 this.name = name;
 }

Now it's time to implement the four methods of the Flow.Subscriber interface. The
onComplete() and onError() methods will only show information in the console:

@Override
public void onComplete() {
 this.showMessage("No more events");
}

@Override
public void onError(Throwable error) {
 this.showMessage("An error has ocurred");
 error.printStackTrace();
}

In the onSubscribe()method, that will be called by the SubmissionPublisher class
when the consumer wants to subscribe to its notifications, we store the Subscription
object passed as a parameter in the subscription attribute and then we request the first
message to the publisher using the request() method. Finally, we write a message in the
console:

@Override
public void onSubscribe(Subscription subscription) {
 this.subscription=subscription;
 this.subscription.request(1);
 this.showMessage("Subscription OK");
}

Asynchronous Stream Processing - Reactive Streams

[339]

Finally, the onNext() method will be called by the SubmissionPublisher class for each
event. We show a message in the console with the information of the event, request the next
event using the request() method, and we call the auxiliary method proccesEvent():

@Override
public void onNext(Event event) {
 this.showMessage("An event has arrived: "+event.getSource()+":
 "+event.getDate()+": "+event.getMsg());
 this.subscription.request(1);

 processEvent(event);
}

We use the processEvent() method to simulate a time while the consumer is processing
the event. We implement this behavior waiting a random number of seconds between 0 and
3:

private void processEvent(Event event) {
 Random random = new Random();

 int number = random.nextInt(3);

 try {
 TimeUnit.SECONDS.sleep(number);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

}

Finally, we have to implement the auxiliary method showMessage() used in the previous
method. It shows the String received as a parameter with the name of the thread that is
executing the consumer and the name of the consumer:

 private void showMessage (String txt) {
 System.out.println(Thread.currentThread().getName()+":"+this
 .name+":"+txt);
 }
}

Asynchronous Stream Processing - Reactive Streams

[340]

The Main class
Finally, we implement the Main class with the main() method that creates and runs all the
components of this example:

We create the following elements:

A SubmissionPublisher object called publisher. We're going to use this
object to send the events to the consumers.
Five Consumer objects that will receive all the events created by the publishers.
We subscribe the consumers to the publisher using the subscribe() method.
Two Producer objects that will generate the events and send them to the
consumers using the publisher object. We execute the producer objects using
the default ForkJoinPool object provided by the JVM. We use the
commonPool() method to get the ForkJoinPool object and the submit()
method to execute them.

public class Main {

 public static void main(String[] args) {

 SubmissionPublisher<Event> publisher = new SubmissionPublisher();

 for (int i = 0; i < 5; i++) {
 Consumer consumer = new Consumer("Consumer "+i);
 publisher.subscribe(consumer);
 }

 Producer system1 = new Producer(publisher, "System 1");
 Producer system2 = new Producer(publisher, "System 2");

 ForkJoinTask<?>task1 = ForkJoinPool.commonPool().submit(system1);
 ForkJoinTask<?>task2 = ForkJoinPool.commonPool().submit(system2);

Then, we include a while loop to write information about the tasks and the publisher object
every ten seconds with the following block of code:

do {
 System.out.println("Main: Task 1: "+task1.isDone());
 System.out.println("Main: Task 2: "+task2.isDone());

 System.out.println("Publisher: MaximunLag:"+
 publisher.estimateMaximumLag());
 System.out.println("Publisher: Max Buffer Capacity: "+
 publisher.getMaxBufferCapacity());

Asynchronous Stream Processing - Reactive Streams

[341]

 try {
 TimeUnit.SECONDS.sleep(10);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

} while ((!task1.isDone()) || (!task2.isDone()) ||
 (publisher.estimateMaximumLag() > 0));

To finish the execution of the loop, we wait for three conditions:

The task that executes the first producer object has finished its execution.
The task that executes the second producer object has finished its execution.
There are no pending events in the SubmissionPublisher object. We use the
estimateMaximumLag() method to get that number.

Finally, we use the close()method of the SubmissionPublisher object to notify the
subscribers about the end of the execution.

During the execution of the example, the producers send events to the
SubmissionPublisher using the submit() method. The SubmissionPublisher sends
the events to the different consumers. Each consumer requests the events one by one using
the request() method.

The following screenshot shows part of the output of one execution of the program:

Asynchronous Stream Processing - Reactive Streams

[342]

You can see how the main() method writes information about the tasks and the
publisher object, how the consumers receive the different events, and finally, how they
write the message written by the onComplete() method called when the main() method
calls the close() method of the SubmissionPublisher object.

The second example - a news system
In the previous example, we used the SubmissionPublisher class, so we didn't
implement the Flow.Publisher and the Flow.Subscription interfaces. If the
functionality provided by the SubmissionPublisher doesn't fit our needs, we will have to
implement our own publisher and subscription.

In this section, you will learn how to implement both interfaces to learn the specification of
the reactive streams. We are going to implement a news system where each piece of news
will be associated with a category. A subscriber will be subscribed to one or more categories
and the publisher will only send a piece of news to each subscriber if it's subscribed to its
category.

The News class
The first class we're going to implement is the News class. This class represents each piece of
news we're going to send from the publisher to the consumer. We're going to store three
attributes:

The category attribute: An int value that stores the category of the news. It can
take the values 0, 1, 2, or 3 to represent news from sports, world, economic, and
science categories.
The txt attribute: A String value that stores the text of the news.
The date attribute: A Date value that stores the date of the news.

As usual, declare the attributes as private and implement methods to get() and set() the
values of these attributes.

Asynchronous Stream Processing - Reactive Streams

[343]

The publisher classes
We need four classes to implement the Flow.Publisher and the Flow.Subscription
interfaces. The first one is the MySubscription class that implements the
Flow.Subscription interface. We are going to store three attributes in this class:

The canceled attribute: A Boolean value that indicates if the subscription is1.
cancelled or not
The requested attribute: An AtomicLong value that stores the number of news2.
items that have been requested by the consumer
The categories attribute: A Set of Integer values that stores the categories of3.
the news associated with this subscription

The following code shows the declaration of the attributes:

public class MySubscription implements Subscription {
 private boolean cancelled = false;
 private AtomicLong requested = new AtomicLong(0);
 private Set<Integer> categories;

Then, we have to implement the two methods provided by the Flow.Subscription
interface: the cancel() and request() methods:

@Override
public void cancel() {
 cancelled=true;
}

@Override
public void request(long value) {
 requested.addAndGet(value);
}

The cancel() method only sets the cancelled attribute to true and the request()
method increments the value of the requested attribute. In a real example, you may have to
include validations of the values passed as parameters to these methods.

Then, we have implemented other additional methods to get and set the value of the
attributes of this class:

isCancelled(): This method returns the value of the cancelled attribute
getRequested(): This method returns the value of the requested attribute using
the get() method

Asynchronous Stream Processing - Reactive Streams

[344]

decreaseRequested(): This method decrements the value of the requested
attribute using the decrementAndGet() method
setCategories(): This method establishes the value of the categories
attribute
hasCategory(): This method returns a Boolean value to indicate if the category
(an int value) received as a parameter is associated with this subscription

Then we're going to implement the ConsumerData class. We will use this class to store the
information of a Subscriber and the Subscription between the Publisher and that
Subscriber. So, this class will have two attributes:

The consumer attribute: A Subscriber value parameterized with the News
class. It will store a reference to a consumer of news.
The subscription attribute: A MySubscription value that references the
subscription between the publisher and the Subscriber.

We have included methods to get() and set() the values of the attributes.

Then, we´re going to implement the PublisherTask class that implements the Runnable
interface. We will use this task to send an item to a consumer. We declare two attributes to
store the data related to the consumer, the subscription between the consumer and the
publisher, and the item (in our case, a piece of news) we want to send:

The consumerData attribute: A ConsumerData object that, as we explained
before, stores the Subscriber object and the MySubscription object with the
consumer of items and the subscription between the publisher and it respectively
The news attribute: A News object with the piece of news we want to send to the
subscriber

We use the constructor of the class to initialize both attributes:

public class PublisherTask implements Runnable {

 private ConsumerDataconsumerData;
 private News news;

 public PublisherTask(ConsumerDataconsumerData, News news) {
 this.consumerData = consumerData;
 this.news = news;
 }

Asynchronous Stream Processing - Reactive Streams

[345]

Then, we implement the run() method. It will check if it has to send the news object to the
subscriber. It will check three conditions:

The subscription is not cancelled: We use the isCancelled() method of the
subscription object.
The subscriber has requested more items: We use the getRequested() method
of the subscription object.
The category of the news object is in the categories associated with the subscriber.
We use the hasCategory() method of the subscription object.

If the news object passes the three conditions, we send it to the subscriber using the
onNext() method. We also use the decreaseRequested() method of the subscription
object to decrement the number of items requested by this subscriber. This is the source
code of this method:

@Override
public void run() {
 MySubscription subscription = consumerData.getSubscription();
 if (!(subscription.isCanceled()) && (subscription.getRequested() > 0)
 && (subscription.hasCategory(news.getCategory()))) {
 consumerData.getConsumer().onNext(news);
 subscription.decreaseRequested();
 }
}

Finally, we implement the MyPublisher class that is the class that implements the
Flow.Publisher interface parameterized with the News class. We are going to use two
attributes to implement the behavior of the class:

The consumers attribute: A ConcurrentLinkedDeque object parameterized
with the ConsumerData class to store the information of all the Subscribers
subscribed to this publisher
The executor attribute: A ThreadPoolExecutor object we're going to use to
execute the PublisherTask objects

We use the constructor of the class to initialize both attributes.

public class MyPublisher implements Publisher<News> {

 private ConcurrentLinkedDeque<ConsumerData> consumers;
 private ThreadPoolExecutor executor;

 public MyPublisher() {
 consumers=new ConcurrentLinkedDeque<>();

Asynchronous Stream Processing - Reactive Streams

[346]

 executor = (ThreadPoolExecutor)Executors.newFixedThreadPool
 (Runtime.getRuntime().availableProcessors());
 }

Then, we implement the subscribe() method provided by the Flow.Publisher
interface. This method receives the Subscriber object that wants to subscribe to this
publisher as a parameter. We create a new MySubscription object, a new ConsumerData
object, add the last one to the consumer's data structure, and call the onSubscribe()
method of the Subscriber object passing the MySubscription object, as a parameter.

@Override
public void subscribe(Subscriber<? super News> subscriber) {

 ConsumerDataconsumerData=new ConsumerData();
 consumerData.setConsumer((Subscriber<News>)subscriber);

 MySubscription subscription=new MySubscription();
 consumerData.setSubscription(subscription);

 subscriber.onSubscribe(subscription);

 consumers.add(consumerData);
}

Then, we implement the publish() method. This method receives a News object as a
parameter and tries to send it to all the subscriber's of this publisher. We process all the
elements stored in the consumers data structure, create a new PublisherTask object, and
execute them in the executor using the execute() method.

If an error occurs, we use the onError() method to the subscriber object to notify the
error to the subscriber.

public void publish(News news) {
 consumers.forEach(consumerData -> {
 try {
 executor.execute(new PublisherTask(consumerData, news));
 } catch (Exception e) {
 consumerData.getConsumer().onError(e);
 }
 });
}

Asynchronous Stream Processing - Reactive Streams

[347]

Finally, we implement the shutdown() method to notify the end of the communication to
all subscribers and to finish the execution of the ThreadPoolExecutor used internally:

 public void shutdown() {
 consumers.forEach(consumerData -> {
 consumerData.getConsumer().onComplete();
 });
 executor.shutdown();
 }
}

With these four classes, we have implemented the publisher part of the example. Now it's
time for the consumer part.

The Consumer class
This class implements the Flow.Subscriber interface and implements the consumer of
news. Internally, it uses three attributes:

The subscription attribute: A MySubscription object that stores the
subscription between this subscriber and the publisher
The name attribute: A String attribute that stores the name of the subscriber
The categories attribute: A Set of Integer numbers that stores the categories of
the news this subscriber wants to receive

As usual, we use the constructor of the class to initialize these attributes:

public class Consumer implements Subscriber<News> {

 private MySubscription subscription;
 private String name;
 private Set<Integer> categories;

 public Consumer(String name, Set<Integer> categories) {
 this.name=name;
 this.categories = categories;
 }

Now, we have to implement the methods provided by the Flow.Subscriber interface. The
onComplete() and onError() methods only write information in the console:

@Override
public void onComplete() {
 System.out.printf("%s - %s: Consumer - Completed\n", name,

Asynchronous Stream Processing - Reactive Streams

[348]

 Thread.currentThread().getName());
}

@Override
public void onError(Throwable exception) {
 System.out.printf("%s - %s: Consumer - Error: %s\n", name,
 Thread.currentThread().getName(),
 exception.getMessage());
}

The onSubscribe() method, that receives the Subscription object as a parameter, stores
that object in the subscription attribute, and updates it with the categories associated to
this subscriber. Finally, we ask for the first News object with the request() method:

@Override
public void onSubscribe(Subscription subscription) {
 this.subscription = (MySubscription)subscription;
 this.subscription.setCategories(this.categories);
 this.subscription.request(1);
 System.out.printf("%s: Consumer - Subscription\n",
 Thread.currentThread().getName());
}

Finally, the onNext() method, that receives a News object as a parameter, writes the
information of that object in the console and asks for the next one using the request()
method:

@Override
public void onNext(News item) {
 System.out.printf("%s - %s: Consumer - News\n", name,
 Thread.currentThread().getName());
 System.out.printf("%s - %s: Text: %s\n", name,
 Thread.currentThread().getName(),item.getTxt());
 System.out.printf("%s - %s: Category: %s\n", name,
 Thread.currentThread().getName(),
 item.getCategory());
 System.out.printf("%s - %s: Date: %s\n", name,
 Thread.currentThread().getName(),item.getDate());
 subscription.request(1);
}

Asynchronous Stream Processing - Reactive Streams

[349]

The Main class
Finally, we implement the Main class with the main() method to test all the classes we
have implemented in this example.

We create a MyPublisher object and three Consumer objects, which are as follows:

The consumer1 object wants to receive only news about sports
The consumer2 object wants to receive only news about science
The consumer3 object wants to receive news of the four categories

We create the objects and subscribe them to the publisher:

public class Main {

 public static void main(String[] args) {

 MyPublisher publisher=new MyPublisher();

 Subscriber<News>consumer1, consumer2, consumer3;

 Set<Integer> sports = new HashSet();
 sports.add(News.SPORTS);
 consumer1=new Consumer("Sport Consumer",sports);

 Set<Integer> science = new HashSet();
 science.add(News.SCIENCE);
 consumer2=new Consumer("Science Consumer", science);

 Set<Integer> all = new HashSet();
 all.add(News.ECONOMIC);
 all.add(News.SCIENCE);
 all.add(News.SPORTS);
 all.add(News.WORLD);
 consumer3=new Consumer("All Consumer", all);

 publisher.subscribe(consumer1);
 publisher.subscribe(consumer2);
 publisher.subscribe(consumer3);

 System.out.printf("Main: Start\n");

Asynchronous Stream Processing - Reactive Streams

[350]

Then, we send four pieces of news to the consumers using the publisher object, one for
each category. We left 1 second between each piece of news:

News news=new News();
news.setTxt("Basketball news");
news.setCategory(News.SPORTS);
news.setDate(new Date());

publisher.publish(news);

try {
 TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
 e.printStackTrace();
}

news=new News();
news.setTxt("Money news");
news.setCategory(News.ECONOMIC);
news.setDate(new Date());
publisher.publish(news);

try {
 TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
 e.printStackTrace();
}

news=new News();
news.setTxt("Europe news");
news.setCategory(News.WORLD);
news.setDate(new Date());
publisher.publish(news);

try {
 TimeUnit.SECONDS.sleep(1);
} catch (InterruptedException e) {
 e.printStackTrace();
}

news=new News();
news.setTxt("Space news");
news.setCategory(News.SCIENCE);
news.setDate(new Date());
publisher.publish(news);

Asynchronous Stream Processing - Reactive Streams

[351]

Finally, we use the shutdown() method of the publisher object to finish the execution of
all the elements of the system:

 publisher.shutdown();
 System.out.printf("Main: End\n");
 }
}

The following screenshot shows part of the output of an execution of this example. You can
see how the consumer3 object receives all the news, but the consumer1 and consumer2
objects only receive the news of their associated categories:

Asynchronous Stream Processing - Reactive Streams

[352]

Summary
In this chapter, you have learnt how Java 9 implements the reactive streams specification. It
defines a standard for asynchronous stream processing with non-blocking back pressure.
It's based on the following three elements:

A publisher of information
One or more subscribers of that information
A subscription between the publisher and a consumer

Java provides three interfaces to implement those elements:

The Flow.Publisher interface, to implement the publishers of information
The Flow.Subscriber interface, to implement the subscribers (consumers) of
that information
The Flow.Subscription interface, to implement the subscription between
publishers and subscribers

Java also provides a utility class, the SubmissionPublisher class that implements the
Publisher interface and can be used if our application has default behavior.

We have implemented two examples with the two implementation variants you can use
with reactive streams in Java. We have implemented an event notification system
implementing the Subscriber class and using the SubmissionPublisher class to send
the events to the subscribers, and a news system implementing all the necessary elements.

Take into account that the reactive streams specification defines the expected behavior of
these kinds of streams but, as Java provides interfaces, we can implement a different
behavior. This is not a good idea.

In the next chapter, we are going to explain the data structures and synchronization
mechanisms we can use in concurrent applications in detail.

11
Diving into Concurrent Data

Structures and Synchronization
Utilities

One of the most important elements in every computer program is the data structures. Data
structures allow us to store the data that our applications read, transform, and write in
different ways according to our needs. The selection of an adequate data structure is a
critical point to achieve good performance. A bad choice can degrade the performance of an
algorithm considerably. Java Concurrency API includes some data structures designed to be
used in concurrent applications without provoking data inconsistencies or loss of
information.

Another critical point in concurrent applications are synchronization mechanisms. You use
them to implement mutual exclusion by creating a critical section, that is to say, a piece of
code that can only be executed by one thread at a time. But you can also use
synchronization mechanisms to implement dependencies between threads when, for
example, a concurrent task must wait for the finalization of another task. The Java
Concurrency API includes basic synchronization mechanisms, such as the synchronized
keyword and very high-level utilities, such as the CyclicBarrier class or the Phaser class
you used in Chapter 6, Running Tasks Divided into Phases - The Phaser Class.

In this chapter, we will cover the following topics:

Concurrent data structures
Synchronization mechanisms

Diving into Concurrent Data Structures and Synchronization Utilities

[354]

Concurrent data structures
Every computer program works with data. They get the data from a database, a file, or
another source, transform that data, and then write the transformed data into a database, a
file, or another destination. Programs work with data stored in memory and use data
structures to store the data in memory.

When you implement a concurrent application, you must be very careful with the
utilization of data structures. If different threads can modify the data stored in a unique
data structure, you have to use a synchronization mechanism to protect the modifications
over that data structure. If you don't do this, you may have a data race condition. Your
application may sometimes work correctly, but next time may crash with a random
exception, stuck in an infinite loop or silently produce an incorrect result. The outcome will
depend on the order of execution.

To avoid data race conditions, you can:

Use a non-synchronized data structure and add the synchronization mechanisms
by yourself
Use a data structure provided by the Java Concurrency API that implements the
synchronization mechanism internally and is optimized to be used in concurrent
applications

The second option is the most recommended. Through the pages of this section, you will
review the most important concurrent data structures.

Blocking and non-blocking data structures
The Java Concurrency API provides two kinds of concurrent data structures:

Blocking data structures: This kind of data structure provides methods to insert
and delete data on it that, when the operation cannot be done immediately (for
example, you want to take an element and the data structure is empty), the
thread that made the call will be blocked until the operation can be done
Non-blocking data structures: This kind of data structure provides methods to
insert and delete data on it that, when the operation cannot be done immediately,
returns a special value or throws an exception

Diving into Concurrent Data Structures and Synchronization Utilities

[355]

Sometimes, we have a non-blocking equivalent for the blocking data structure. For example,
the ConcurrentLinkedDeque class is a non-blocking data structure and the
LinkedBlockingDeque is the blocking equivalent. Blocking data structures have methods
that have a behavior of non-blocking data structures. For example, the Deque interface
defines the pollFirst() method that does not block and returns null if the deque is
empty. On the other hand, the getFirst() method throws an Exception in that
circumstance. Every blocking queue implementation implements this method as well.

Concurrent data structures
The Java Collections Framework (JCF) provides a set of different data structures that can
be used in sequential programming. The Java Concurrency API extends those structures,
providing others that can be used in concurrent applications. This includes:

Interfaces: That extends the interfaces provided by the JCF, adding some
methods that can be used in concurrent applications
Classes: That implements the previous interfaces to provide the implementations
that can be used in the applications

In the following sections, we make an introduction to the interfaces and classes you can use
in concurrent applications.

Interfaces
First, let's describe the most important interfaces implemented by the concurrent data
structures.

BlockingQueue
A queue is a linear data structure that allows you to insert elements at the end of the queue
and get elements from the start. It's a First-In-First-Out (FIFO) data structure, where the
first elements introduced in the queue are the first ones that are processed.

The JCF defines the Queue interface that defines the basic operations to be implemented in a
queue. This interface provides methods to:

Insert an element at the end of the queue
Retrieve and remove an element from the head of the queue
Retrieve, but not remove, an element from the head of the queue

Diving into Concurrent Data Structures and Synchronization Utilities

[356]

The interface defines two versions of these methods that have different behavior when the
method can be done (for example, if you want to retrieve an element of an empty queue):

Methods that throw an exception
Methods that return a special value, for example false or null

The next table includes the names of the methods for every operation:

Operation Exception Special value

Insert add() offer()

Retrieve and remove remove() poll()

Retrieve but don't remove element() peek()

The BlockingDeque interface extends the Queue interface, adding methods that block the
calling thread if the operation can be done. These methods are:

Operation Blocks

Insert put()

Retrieve and remove take()

Retrieve but don't remove N/A

BlockingDeque
A deque is a linear data structure, similar to a queue, but it allows you to insert and delete
elements from both sides of the data structure. The JCF defines the Deque interface that
extends the Queue interface. In addition to the methods provided by the Queue interface, it
provides methods to insert, retrieve and remove, and retrieve but not remove at both ends:

Operation Exception Special value

Insert addFirst(), addLast() offerFirst(), offerLast()

Retrieve and remove removeFirst(), removeLast() pollFirst(), pollLast()

Retrieve but don't
remove

getFirst(), getLast() peekFirst(), peekLast()

Diving into Concurrent Data Structures and Synchronization Utilities

[357]

The BlockingDeque interface extends the Deque interface adding the methods that block
the calling threads when the operation can't be done:

Operation Blocks

Insert putFirst(), putLast()

Retrieve and remove takeFirst(), takeLast()

Retrieve but don't remove N/A

ConcurrentMap
A map (sometimes also called an associative array) is a data structure that allows you to
store key-value pairs. The JCF provides the Map interface that defines the basic operations to
work with the map. This includes methods to:

put(): Insert a key-value pair into the map
get(): Return the value associated with a key
remove(): Remove the key-value pair associated with the specified key
containsKey() and containsValue(): Return true if the map contains the
specified key of the value

This interface was modified in Java 8 to include the following new methods. You will learn
how to work with these methods later in this chapter:

forEach(): This method executes the given function over all the elements of the
map.
compute(), computeIfAbsent(), and computeIfPresent(): These methods
allows you to specify a function that calculates the new value associated with a
key.
merge(): This method allow you to specify to merge a key-value pair into an
existing map. If the key isn't in the map, it's inserted directly. If not, the function
specified is executed.

ConcurrentMap extends the Map interface to provide the same methods to concurrent
applications. Notice that in Java 8 and Java 9 (unlike Java 7), the ConcurrentMap interface
didn't add new methods to the Map interface.

Diving into Concurrent Data Structures and Synchronization Utilities

[358]

TransferQueue
This interface extends the BlockingQueue interface and adds methods to transfer elements
from producers to consumers, where producers can wait until a consumer takes off its
element. The new methods added by this interface are:

transfer(): Transfer an element to a consumer and wait (blocking the calling
thread) until the element is consumed.
tryTransfer(): Transfer an element if there is a consumer waiting. If not, this
method returns the false value and doesn't insert the element in the queue.

Classes
The Java Concurrency API provides different implementations of the interfaces described
before. Some of them don't add any new characteristics, but others add new, interesting
functionality.

LinkedBlockingQueue
This class implements the BlockingQueue interface to provide a queue with blocking
methods that optionally can have a limited number of elements. It also implements the
Queue, Collection, and Iterable interfaces.

ConcurrentLinkedQueue
This class implements the Queue interface to provide a thread-save unlimited queue.
Internally, it uses a non-blocking algorithm to guarantee that there won't be a data race in
your application.

LinkedBlockingDeque
This class implements the BlockingDeque interface to provide a deque with blocking
methods that optionally can have a limited number of elements. It has more functionality
than LinkedBlockingQueue, but may have more overhead, thus LinkedBlockingQueue
should be used when deque features are unnecessary.

Diving into Concurrent Data Structures and Synchronization Utilities

[359]

ConcurrentLinkedDeque
This class implements the Deque interface to provide a thread-save unlimited deque that
allows you to add and delete elements at both ends of the deque. It has more functionality
than ConcurrentLinkedQueue, but may have more overhead, as occurs with
LinkedBlockingDeque.

ArrayBlockingQueue
This class implements the BlockingQueue interface to provide an implementation of a
blocking queue with a limited number of elements based on an array. It also implements the
Queue, Collection, and Iterable interfaces. Unlike non-concurrent, array-based data
structures (ArrayList and ArrayDeque), ArrayBlockingQueue allocates the array of a
fixed size specified in the constructor and never resizes it.

DelayQueue
This class implements the BlockingDeque interface to provide an implementation of a
queue with blocking methods and an unlimited number of elements. The elements of this
queue must implement the Delayed interface, so they have to implement the getDelay()
method. If that method returns a negative or zero value, the delay has expired and the
element can be taken off the queue. The head of the queue is the element with the most
negative value of delay.

LinkedTransferQueue
This class provides an implementation of the TransferQueue interface. It provides a
blocking queue with an unlimited number of elements and with the possibility to use them
as a communication channel between producers and consumers, where producers can wait
for consumers to process their elements.

PriorityBlockingQueue
This class provides an implementation of the BlockingQueue interface where the elements
can be polled according to their natural order or by a comparator specified in the
constructor of the class. The head of this queue is determined by the sorting order of the
elements.

Diving into Concurrent Data Structures and Synchronization Utilities

[360]

ConcurrentHashMap
This class provides an implementation of the ConcurrentMap interface. It provides a
thread-safe hash table. In addition to the methods added in the Map interface in the Java 8
version, this class has added other ones:

search(), searchEntries(), searchKeys(), and searchValues(): These
methods allow you to apply a search function over the key-value pairs, over the
keys, or over the values. The search function can be a lambda expression and the
method ends when the search function returns a not-null value. That is the result
of the execution of the method.
reduce(), reduceEntries(), reduceKeys(), and reduceValues(): These
methods allows you to apply a reduce() operation to transform the key-value
pairs, the keys, or the entries, as occurs with streams (refer to Chapter 9,
Processing Massive Datasets with Parallel Streams - The Map and Collect Model to get
more details about the reduce() method).

ConcurrentHashMap is for programs that rely on its thread safety but not on its
synchronization details. Resizing of the map may be a slow operation. More methods have
been added (forEachValue, forEachKey, and so on), but they are not covered here.

Using the new features
In this section, you will learn how to use the new features introduced in Java 8 and Java 9
for the concurrent data structures.

First example with ConcurrentHashMap
In Chapter 9, Processing Massive Datasets with Parallel Streams - The Map and Collect Model,
you implemented an application to make a search in a dataset from 20,000 Amazon
products. We took that information from the Amazon product co-purchasing network
metadata that includes information about 548,552 products, including title, salesrank, and
similar products. You can download this dataset from
https://snap.stanford.edu/data/amazon-meta.html. In that example, you used a
ConcurrentHashMap<String, List<ExtendedProduct>> named productsByBuyer to
store information about the products purchased by a user. The keys of this map are the
identifier of the user and the values in a list of the products purchased by the user. You're
going to use that map to learn how to work with the new methods of the
ConcurrentHashMap class.

https://snap.stanford.edu/data/amazon-meta.html

Diving into Concurrent Data Structures and Synchronization Utilities

[361]

The forEach() method
This method allows you to specify a function that will be executed on every key-value pair
of ConcurrentHashMap. There are many versions of this method, but the most basic
version has only a BiConsumer function that can be expressed as a lambda expression. For
example, you can use this method to print how many products every user has purchased,
using the following code:

productsByBuyer.forEach((id, list) -> System.out.println(id+":
 "+list.size()));

This basic version is a part of the usual Map interface and is always executed sequentially. In
this code, we have used a lambda expression where id is the key of the element and list is
the value of the element.

In this other example, we have used the forEach() method to calculate the average rating
given per user:

productsByBuyer.forEach((id, list) -> {
 double average=list.stream().mapToDouble(item -> item.getValue())
 .average().getAsDouble();
 System.out.println(id+": "+average);
});

In this code, we have also used a lambda expression where id is the key of the element and
list is its value. We have used a stream applied to the list of products to calculate the
average rating.

Other versions of this method are as follows:

forEach(parallelismThreshold, action): This is the version of the method
you have to use in concurrent applications. If the map has more elements than
the number specified in the first parameter, this method will be executed in
parallel.
forEachEntry(parallelismThreshold, action): The same as the previous,
but in this case, the action is an implementation of the Consumer interface that
receives a Map.Entry object with the key and the value of the element. You can
also use a lambda expression in this case.

Diving into Concurrent Data Structures and Synchronization Utilities

[362]

forEachKey(parallelismThreshold, action): The same as the previous,
but in this case, the action will be applied only over the keys of
ConcurrentHashMap.
forEachValue(parallelismThreshold, action): The same as the previous,
but in this case, the action will be applied only over the values of
ConcurrentHashMap.

The current implementation uses the common ForkJoinPool instance to execute the
parallel tasks.

The search() method
This method applies a search function to all the elements of ConcurrentHashMap. This
search function can return a null value or a value different from null. The search()
method will return the first non-null value returned by the search function. This method
receives two parameters:

parallelismThreshold: If the map has more elements than the number
specified by this parameter, this method will be executed in parallel.
searchFunction: This is an implementation of the BiFunction interface that
can be expressed as a lambda expression. This function receives the key and the
value of each element as parameters and, as we mentioned before, has to return a
non-null value if you find what you are searching for and a null value if you
don't.

For example, you can use this function to find the first book that contains a word:

ExtendedProduct firstProduct=productsByBuyer.search(100,
 (id, products) -> {
 for (ExtendedProduct product: products) {
 if (product.getTitle().toLowerCase().contains("java")) {
 return product;
 }
 }
 return null;
});
if (firstProduct!=null) {
 System.out.println(firstProduct.getBuyer()+":"+
 firstProduct.getTitle());
}

Diving into Concurrent Data Structures and Synchronization Utilities

[363]

In this case, we use 100 as parallelismThreshold and a lambda expression to implement
the search function. In this function, for every element, we process all the products of the
list. If we find a product that contains the word java, we return that product. This is the
value returned by the search() method. Finally, we write the buyer and the title of the
product in the console.

There are other versions of this method:

searchEntries(parallelismThreshold, searchFunction): In this case,
the search function is an implementation of the Function interface that receives
a Map.Entry object as a parameter
searchKeys(parallelismThreshold, searchFunction): In this case, the
search function is applied only over the keys of ConcurrentHashMap
searchValues(parallelismThreshold, searchFunction): In this case, the
search function is applied only over the values of ConcurrentHashMap

The reduce() method
This method is similar to the reduce() method provided by the Stream framework, but in
this case, you work directly with the elements of ConcurrentHashMap. This method
receives three parameters:

parallelismThreshold: If ConcurrentHashMap has more elements than the
number specified in this parameter, this method will be executed in parallel.
transformer: This parameter is an implementation of the BiFunction interface
that can be expressed as a lambda function. It receives a key and a value as
parameters and returns a transformation of these elements.
reducer: This parameter is an implementation of the BiFunction interface that
can be expressed as a lambda function too. It receives two objects returned by the
transformer function as parameters. The objective of this function is to group
those two objects into a single one.

As an example of this method, we will obtain a list of products that have a review with a
value of 1 (the worst value). We have used two auxiliary variables. The first one is
transformer. It is a BiFunction interface that we will use as the transformer element of
the reduce() method:

BiFunction<String, List<ExtendedProduct>, List<ExtendedProduct>>
 transformer = (key, value) ->value.stream().filter(product ->
 product.getValue() == 1).collect(Collectors.toList());

Diving into Concurrent Data Structures and Synchronization Utilities

[364]

This function will receive the key, which is the id of a user, and a list of ExtendedProduct
objects with the products purchased by that user. We process all the products of the list and
return the products that have a rating of 1.

The second variable is the reducer BinaryOperator. We use it as the reducer function of
the reduce() method:

BinaryOperator<List<ExtendedProduct>> reducer = (list1, list2) ->{
 list1.addAll(list2);
 return list1;
};

The reducer receives two lists of ExtendedProduct and concatenates them into a single
one using the addAll() method.

Now, we only have to implement the call to the reduce() method:

List<ExtendedProduct> badReviews=productsByBuyer.reduce(10,
 transformer, reducer);
badReviews.forEach(product -> {
 System.out.println(product.getTitle()+":"+
 product.getBuyer()+":"+product.getValue());
});

There are other versions of the reduce() method:

reduceEntries(), reduceEntriesToDouble(), reduceEntriesToInt(),
and reduceEntriesToLong(): In this case, the transformer and reducer
functions work over Map.Entry objects. The last three versions return
respectively, a double, an int, and a long value.
reduceKeys(), reduceKeysToDouble(), and reduceKeysToInt(),
reduceKeysToLong(): In this case, the transformer and reducer functions work
over the keys of the map. The last three versions return respectively, a double, an
int. and a long value.
reduceToInt(), reduceToDouble(), and reduceToLong(): In this case, the
transformer function works over the keys and values and the reducer method
works over int, double, or long number respectively. These methods return an
int, double, and long values.
reduceValues(), reduceValuesToDouble(), reduceValuesToInt(), and
reduceValuesToLong(): In this case, the transformer and reducer functions
work over the values of the map. The last three versions return a double, an int,
and a long value respectively.

Diving into Concurrent Data Structures and Synchronization Utilities

[365]

The compute() method
This method (which is defined in the Map interface) receives the key of an element and an
implementation of the BiFunction interface that can be expressed as a lambda expression
as parameters. This function will receive the key and value of the element if the key exists in
ConcurrentHashMap, or null if the key doesn't exist in ConcurrentHashMap. The method
will replace the value associated with the key with the value returned by the function, insert
them in ConcurrentHashMap if it doesn't exist, or remove the item if null is returned for a
previously existing item. Note that, during the BiFunction execution, one or several map
entries can be locked. Thus, your BiFunction should not work for very long and should
not try to update any other entries in the same map, otherwise a deadlock might occur.

For example, we can use this method with the new atomic variable introduced in Java 8,
named LongAdder, to calculate the number of bad reviews associated with every product.
We create a new ConcurrentHashMap named counter. The keys will be the title of the
products and the value an object of the LongAdder class to count how many bad reviews
every product has.

ConcurrentHashMap<String, LongAdder> counter=new ConcurrentHashMap<>();

We process all the elements of badReviewsConcurrentLinkedDeque calculated in the
previous section and use the compute() method to create and update the LongAdder
associated with every product.

badReviews.forEach(product -> {
 counter.computeIfAbsent(product.getTitle(), title -> new
 LongAdder()).increment();
});
counter.forEach((title, count) -> {
 System.out.println(title+":"+count);
});

Finally, we write the results in the console.

Another example with ConcurrentHashMap
There is another method added in the ConcurrentHashMap class and defined in the Map
interface. It's the merge() method that allows you to merge a key-value pair into the map.
If the key doesn't exist in ConcurrentHashMap, it is inserted directly.

Diving into Concurrent Data Structures and Synchronization Utilities

[366]

If the key exists, you have to define which will be the new value associated with that key
from the old one and the new one. This method receives three parameters:

The key we want to merge.
The value we want to merge.
An implementation of BiFunction that can be expressed as a lambda
expression. This function receives the old value and the new value associated
with the key as parameters. The method will associate with the key the value
returned by this function. BiFunction is executed under a partial lock of the
map, so it's guaranteed that it's not concurrently executed for the same key.

For example, we have split the 20,000 products of Amazon used in the previous section in
files by the year of the review. For every year, we load ConcurrentHashMap, where the
products are the keys and a list of reviews are the values. So, we can load the reviews of
1995 and 1996 with the following code:

Path path=Paths.get("data\\amazon\\1995.txt");
ConcurrentHashMap<BasicProduct, ConcurrentLinkedDeque<BasicReview>>
 products1995=BasicProductLoader.load(path);
showData(products1995);

path=Paths.get("data\\amazon\\1996.txt");
ConcurrentHashMap<BasicProduct,ConcurrentLinkedDeque<BasicReview>>
 products1996=BasicProductLoader.load(path);
System.out.println(products1996.size());
showData(products1996);

If we want to merge both ConcurrentHashMap into one, we can use the following code:

products1996.forEach(10,(product, reviews) -> {
 products1995.merge(product, reviews, (reviews1, reviews2) -> {
 System.out.println("Merge for: "+product.getAsin());
 reviews1.addAll(reviews2);
 return reviews1;
 });
});

We process all the elements of the 1996 ConcurrentHashMap and for every key-value pair,
we call the merge() method over the 1995 ConcurrentHashMap. The merge function will
receive two lists of reviews, so we only have to concatenate them into one.

Diving into Concurrent Data Structures and Synchronization Utilities

[367]

An example with the ConcurrentLinkedDeque class
The Collection interface has also included new methods in Java 8. Most of the concurrent
data structures implement this interface, so we can use these new features with them. Two
of them are the stream() and parallelStream() methods used in Chapter 8, Processing
Massive Datasets with Parallel Streams - The Map and Reduce Model and Chapter 9, Processing
Massive Datasets with Parallel Streams - The Map and Collect Model. Let's see how to use the
other two using ConcurrentLinkedDeque with the 20,000 products we used in the
previous sections.

The removeIf() method
This method has a default implementation in the Collection interface that is not
concurrent and is not overridden by the ConcurrentLinkedDeque class. This method
receives an implementation of the Predicate interface as a parameter that will receive an
element of the Collection as a parameter and should return a true or a false value. The
method will process all the elements of the Collection and will delete those that obtain a
true value with the predicate.

For example, if you want to delete all the products with a salesrank higher than 1,000, you
can use the following code:

System.out.println("Products: "+productList.size());
productList.removeIf(product -> product.getSalesrank() > 1000);
System.out.println("Products; "+productList.size());
productList.forEach(product -> {
 System.out.println(product.getTitle()+": "+
 product.getSalesrank());
});

The spliterator() method
This method returns an implementation of the Spliterator interface. A spliterator defines
the data source that can be used by the Stream API. You rarely need to use spliterator
directly, but sometimes you may want to create your own spliterator to produce a custom
source for the stream (for example, if you implement your own data structure). If you have
your own spliterator implementation, you can create a stream on top of it using
StreamSupport.stream(mySpliterator, isParallel). Here, isParallel is a
Boolean value that determines whether the created stream will be parallel or not. A
spliterator is like an iterator in the sense that you can use it to traverse all the elements in
the collection, but you can split them to make that traversal in a concurrent way.

Diving into Concurrent Data Structures and Synchronization Utilities

[368]

A spliterator has eight different characteristics that define its behavior:

CONCURRENT: The spliterator source may be safely concurrently modified
DISTINCT: All the elements returned by the spliterator are distinct
IMMUTABLE: The spliterator source cannot be modified
NONNULL: The spliterator never returns a null value
ORDERED: The elements returned by the spliterator are ordered (which means
their order matters)
SIZED: The spliterator is capable of returning an exact number of elements with
the estimateSize() method
SORTED: The spliterator source is sorted
SUBSIZED: If you use the trySplit() method to divide this spliterator, the
resulting spliterators will be SIZED and SUBSIZED

The most useful methods of this interface are:

estimatedSize(): This method will give you an estimation of the number of
elements in the spliterator.
forEachRemaining(): This method allows you to apply an implementation of
the Consumer interface that can be represented with a lambda function to the
elements of the spliterator that haven't yet been processed.
tryAdvance(): This method receives an implementation of the Consumer
interface. It takes the next element of the spliterator, process them using the
Consumer implementation and returns the true value. If the spliterator has no
elements to process, it returns the false value.
trySplit(): This method tries to split the spliterator into two parts. The caller
spliterator will process some elements and the returned spliterator will process
the others. If the spliterator is ORDERED, the returned spliterator must process a
strict prefix of the elements and the call must process the strict suffix.
hasCharacteristics(): This method allows you to check the properties of the
spliterator.

Let's see an example of this method with the ArrayList data structure with 20,000
products.

Diving into Concurrent Data Structures and Synchronization Utilities

[369]

First, we need an auxiliary task that will process a set of products to convert their title to
lowercase. This task will have a Spliterator as an attribute:

 public class SpliteratorTask implements Runnable {

 private Spliterator<Product> spliterator;

 public SpliteratorTask (Spliterator<Product> spliterator) {
 this.spliterator=spliterator;
 }

 @Override
 public void run() {
 int counter=0;
 while (spliterator.tryAdvance(product -> {
 product.setTitle(product.getTitle().toLowerCase());
 })) {
 counter++;
 };
 System.out.println(Thread.currentThread().getName()
 +":"+counter);
 }

}

As you can see, this task writes the number of products processed when it finishes its
execution.

In the main method, once we have loaded ConcurrentLinkedQueue with the 20,000
products, we can obtain the spliterator, check some of its properties, and look at its
estimated size.

Spliterator<Product> split1=productList.spliterator();
System.out.println(split1.hasCharacteristics(Spliterator.CONCURRENT));
System.out.println(split1.hasCharacteristics(Spliterator.SUBSIZED));
System.out.println(split1.estimateSize());

Then, we can divide the spliterator using the trySplit() method and look at the size of
the two spliterators:

Spliterator<Product> split2=split1.trySplit();
System.out.println(split1.estimateSize());
System.out.println(split2.estimateSize());

Diving into Concurrent Data Structures and Synchronization Utilities

[370]

Finally, we can execute two tasks in an executor, one for the spliterator, to see that every
spliterator has really processed the expected number of elements.

ThreadPoolExecutor executor=(ThreadPoolExecutor)
 Executors.newCachedThreadPool();
executor.execute(new SpliteratorTask(split1));
executor.execute(new SpliteratorTask(split2));

In the following screenshot, you can see the results of the execution of this example:

You can see how before splitting the spliterator, the estimatedSize() method returns
20,000 elements. After the execution of the trySplit() method, both spliterators have
10,000 elements. These are the elements processed by each of the tasks.

Atomic variables
Atomic variables were introduced in Java 1.5 to provide atomic operations over integer,
long, boolean, reference, and Array objects. They provide some methods to increment,
decrement, establish the value, return the value, or establish the value if its current value is
equal to a predefined one. Atomic variables offer guarantees similar to the volatile
keyword.

In Java 8, four new classes were added. These are DoubleAccumulator, DoubleAdder,
LongAccumulator, and LongAdder. In a previous section, we used the LongAdder class to
count the number of bad reviews of the products. This class provides similar functionality
to AtomicLong, but it has better performance when you frequently update the cumulative
sum from different threads and request the result only at the end of the operation. The
DoubleAdder function is equal to it but with double values. The main objective of both
classes is to have a counter that can be updated by different threads in a consistent way. The
most important methods of these classes are:

add(): Increment the value of the counter with the value specified as a parameter
increment(): Equivalent to add(1)

Diving into Concurrent Data Structures and Synchronization Utilities

[371]

decrement(): Equivalent to add(-1)
sum(): This method returns the current value of the counter

Take into account that the DoubleAdder class doesn't have the increment() and
decrement() methods.

The LongAccumulator and LongAdder classes are similar but they have a very important
difference. They have a constructor where you specify two parameters:

The identity value of the internal counter
A function to accumulate the new value into the accumulator

Note that the function must not depend on the order of accumulation. In this case, the most
important methods are:

accumulate(): This method receives a long value as a parameter. It applies the
function to increment or decrement the counter to the current value and the
parameter.
get(): Returns the current value of the counter.

For example, the following code will write 362,880 in the console in all the executions:

LongAccumulator accumulator=new LongAccumulator((x,y) -> x*y, 1);

IntStream.range(1, 10).parallel().forEach(x -> accumulator
 .accumulate(x));
System.out.println(accumulator.get());

We use a commutative operation inside the accumulator so the result is the same for any
input order.

Variable handles
A variable handle is a dynamically typed reference to a variable, static field, or element of
array that allows you different access modes to that variable. You can, for example, protect
access to that variable in a concurrent application allowing an atomic access to the variable.
Until now, you could only obtain this behavior with atomic variables, but now you can use
variable handles to obtain the same functionality without using any synchronization
mechanisms.

Diving into Concurrent Data Structures and Synchronization Utilities

[372]

This mechanism is a new feature in Java 9 and is provided by the VarHandle class. You can
get the following access methods to a variable handle:

Read access mode: This mode allows you to read the value of the variable with
different memory ordering rules depending on the method. You can use the
get(), getVolatile(), getAcquire() and getOpaque() methods to read the
value of the variable. The first method reads the variable as if it was a non-
volatile variable. The second method read the value of the variable as if it was a
volatile variable. The third method guarantees that other access to this variable
will not be reordered before this sentence for optimization purposes and finally
the last method is similar to the previous one, but it only affects to the current
thread.
Write access mode: This mode allows you to write the value of the variable with
different memory ordering rules depending on the method. You can use the
methods set(), setVolatile(), setRelease(), and setOpaque(). They are
equivalent to the previous ones, but with write access.
Atomic update access mode: To get functionality similar to the one provided by
the atomic variables with operations to, for example, compare the values of the
variable. You can use the following methods:

compareAndSet(): Change the value of the variable as it was
declared as a volatile variable if the expected value passed as a
parameter is equal to the current value of the variable.
weakCompareAndSet() and weakCompareAndSetPlain():
Atomically change the current value of the variable with the new
one if the expected value passed as parameter is equals to the
current one. The first method works as if the variable was a volatile
variable and the second one as if the variable was a non-volatile
variable

Numeric atomic update access mode : To modify numerical values in an atomic
way. You can use the following methods:

getAndAdd(): Increase the value of the variable and return the
previous value as it was declared as a volatile variable atomically.

Bitwise atomic update access mode: To modify bitwise values in an atomic way.
You can use methods such as getAndBitwiseOr() or getAndBitwiseAnd().

Diving into Concurrent Data Structures and Synchronization Utilities

[373]

For example, let's use a class named VarHandleData with two double attributes named
safeValue and unsafeValue:

public class VarHandleData {
 public double safeValue;
 public double unsafeValue;
}

Let's implement an example where we have 10 threads that concurrently update the value
of both attributes. We are going to use a VarHandle to update the value of the safeValue
attribute and update the value of the unsafeValue attribute directly.

The easiest way to create a VarHandle object of a field of an object is by using the static
method lookup() of the MethodHandles class. This method returns a
MethodHandles.Lookup object that is a factory for creating MethodHandles . Then, we
use the in() method to obtain a MethodHandles for the class, in this case for the
VarHandleData , and finally, we use the findVarHandle() method to obtain the
VarHandle object to access a field of the object.

For example, if we want a VarHandle to access the safeValue attribute of the
VarHandleData object, we can use the following instruction:

handler = MethodHandles.lookup().in(VarHandleData.class)
 .findVarHandle(VarHandleData.class,
 "safeValue", double.class);

So, we implement a class named VarHandleTask that implements the Runnable interface
that increments and decrements the value of both attributes of a VarHandleData object. As
we mentioned before, we use a VarHandle object to access the safeValue attribute (with
the getAndAdd() method) and we modify the unsafeValue attribute directly:

public class VarHandleTask implements Runnable {
 private VarHandleData data;
 public VarHandleTask(VarHandleData data) {
 this.data = data;
 }
 @Override
 public void run() {
 VarHandle handler;
 try {
 handler = MethodHandles.lookup().in(VarHandleData.class)
 .findVarHandle(VarHandleData.class,
 "safeValue", double.class);
 for (int i = 0; i < 10000; i++) {
 handler.getAndAdd(data, +100);

Diving into Concurrent Data Structures and Synchronization Utilities

[374]

 data.unsafeValue += 100;
 handler.getAndAdd(data, -100);
 data.unsafeValue -= 100;
 }
 } catch (NoSuchFieldException | IllegalAccessException e) {
 e.printStackTrace();
 }
 }
}

Finally, we implement the VarHandleMain class that creates a VarHandleData object and
10 VarHandleTasks that update the same object concurrently:

public class VarHandleMain {
 public static void main(String[] args) {
 VarHandleData data = new VarHandleData();
 for (int i=0; i<10; i++) {
 VarHandleTask task=new VarHandleTask(data);
 ForkJoinPool.commonPool().execute(task);
 }
 ForkJoinPool.commonPool().shutdown();
 try {
 ForkJoinPool.commonPool().awaitTermination(1, TimeUnit.DAYS);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 System.out.println("Safe Value: "+data.safeValue);
 System.out.println("Unsafe Value: "+data.unsafeValue);
 }
 }

When you execute this example, you will see how the value of the safeValue attribute is
always 0 as expected, but the value of the unsafeValue attribute varies from one execution
to another, as you will get data race conditions.

Synchronization mechanisms
Synchronization of tasks is the coordination between those tasks to get the desired results.
In concurrent applications, we can have two kinds of synchronizations:

Process synchronization: We use this kind of synchronization when we want to
control the order of execution of tasks. For example, a task must wait for the
finalization of other tasks before it starts its execution.

Diving into Concurrent Data Structures and Synchronization Utilities

[375]

Data synchronization: We use this kind of synchronization when two or more
tasks access the same memory object. In this case, you have to protect the access
in the write operations to that object. If you don't do this, you could have a data
race condition where the final results of a program vary from one execution to
another.

The Java Concurrency API provides mechanisms that allow you to implement both types of
synchronization. The most basic synchronization mechanism provided by the Java language
is the synchronized keyword. This keyword can be applied to a method or to a block of
code. In the first case, only one thread can execute the method at a time. In the second case,
you have to specify a reference to an object. In this case, only one block of code protected by
an object can be executed at the same time.

Java also provides other synchronization mechanisms:

The Lock interfaces and its implementation classes: This mechanism allows you
to implement a critical section to guarantee that only one thread will execute that
block of code.
The Semaphore class that implements the well-known semaphore
synchronization mechanism introduced by Edsger Dijkstra.
CountDownLatch allows you to implement a situation where one or more
threads wait for the finalization of other threads.
CyclicBarrier allows you to synchronize different tasks in a common point.
Phaser allows you to implement concurrent tasks divided into phases. We made
a detailed description of this mechanism in Chapter 6, Running Tasks Divided into
Phases - The Phaser Class.
Exchanger allows you to implement a point of data interchange between two
threads.
CompletableFuture, a new feature of Java 8, extends the Future mechanism of
executor tasks to generate the result of a task in an asynchronous way. You can
specify tasks to be executed after the result is generated, so you can control the
order of the execution of tasks.

In the following section, we will show you how to use these mechanisms, giving special
attention to the CompletableFuture mechanism introduced in the Java 8 version.

Diving into Concurrent Data Structures and Synchronization Utilities

[376]

The CommonTask class
We have implemented a class named the CommonTask class. This class will sleep the calling
thread for a random period of time between 0 and 10 seconds. This is its source code:

public class CommonTask {

 public static void doTask() {
 long duration = ThreadLocalRandom.current().nextLong(10);
 System.out.printf("%s-%s: Working %d seconds\n",
 new Date(),Thread.currentThread().getName(),
 duration);
 try {
 TimeUnit.SECONDS.sleep(duration);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

}

All the tasks we're going to implement in the following sections will use this class to
simulate its execution time.

The Lock interface
One of the most basic synchronization mechanisms is the Lock interface and its
implementation classes. The basic implementation class is the ReentrantLock class. You
can use this class to implement a critical section in an easy way. For example, the following
task gets a lock in the first line of its code using the lock() method and releases it in the
last line using the unlock() method. You must include the calling to the unlock() method
in a finally section to avoid any problems. Otherwise, if an Exception is thrown, the
lock won't be released and you will have a deadlock. Only one task can execute the code
between these two sentences at the same time.

public class LockTask implements Runnable {

 private static ReentrantLock lock = new ReentrantLock();
 private String name;

 public LockTask(String name) {
 this.name=name;
 }

Diving into Concurrent Data Structures and Synchronization Utilities

[377]

 @Override
 public void run() {
 try {
 lock.lock();
 System.out.println("Task: " + name + "; Date: " + new Date()
 + ": Running the task");
 CommonTask.doTask();
 System.out.println("Task: " + name + "; Date: " + new Date()
 + ": The execution has finished");
 } finally {
 lock.unlock();
 }

 }
}

You can check this if, for example, you execute ten tasks in an executor using the following
code:

public class LockMain {

 public static void main(String[] args) {
 ThreadPoolExecutor executor=(ThreadPoolExecutor)
 Executors.newCachedThreadPool();
 for (int i=0; i<10; i++) {
 executor.execute(new LockTask("Task "+i));
 }
 executor.shutdown();
 try {
 executor.awaitTermination(1, TimeUnit.DAYS);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
}

Diving into Concurrent Data Structures and Synchronization Utilities

[378]

In the following image, you can see the results of an execution of this example. You can see
how only one task was executed at a time:

The Semaphore class
The semaphore mechanism was introduced by Edsger Dijkstra in 1962 and is used to
control the access to one or more shared resources. This mechanism is based in an internal
counter and two methods named wait() and signal().When a thread calls the wait()
method, if the internal counter has a value bigger than 0, then the semaphore decrements
the internal counter and the thread gets access to the shared resource. If the internal counter
has a value of 0, the thread is blocked until a thread calls the signal() method. When a
thread calls the signal() method, the semaphore looks whether there are some threads
waiting in the waiting state (they have called the wait() method). If there are no threads
waiting, it increments the internal counter. If there are threads waiting for the semaphore, it
gets one of those threads that will return for the wait() method and access the shared
resource. The other threads that were waiting continue waiting for their turn.

In Java, semaphores are implemented in the Semaphore class. The wait() method is called
acquire() and the signal() method is called release(). For example, in this example,
we have used this task where a Semaphore class is protecting its code:

public class SemaphoreTask implements Runnable{
 private Semaphore semaphore;
 public SemaphoreTask(Semaphore semaphore) {
 this.semaphore=semaphore;
 }
 @Override
 public void run() {
 try {
 semaphore.acquire();
 CommonTask.doTask();
 } catch (InterruptedException e) {

Diving into Concurrent Data Structures and Synchronization Utilities

[379]

 e.printStackTrace();
 } finally {
 semaphore.release();
 }
 }
}

In the main program, we execute 10 tasks that share a Semaphore class initialized with two
shared resources, so we will have two tasks running at the same time:

public static void main(String[] args) {

 Semaphore semaphore=new Semaphore(2);
 ThreadPoolExecutor executor=(ThreadPoolExecutor)
 Executors.newCachedThreadPool();

 for (int i=0; i<10; i++) {
 executor.execute(new SemaphoreTask(semaphore));
 }

 executor.shutdown();
 try {
 executor.awaitTermination(1, TimeUnit.DAYS);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
}

The following screenshot shows the results of an execution of this example. You can see
how two tasks are running at the same time:

Diving into Concurrent Data Structures and Synchronization Utilities

[380]

The CountDownLatch class
This class provides a mechanism to wait for the finalization of one or more concurrent tasks.
It has an internal counter that must be initialized with the number of tasks we are going to
wait for. Then, the await() method sleeps the calling thread until the internal counter
arrives at zero and the countDown() method decrements that internal counter.

For example, in this task, we use the countDown() method to decrement the internal
counter of the CountDownLatch object it receives as a parameter in its constructor:

public class CountDownTask implements Runnable {

 private CountDownLatch countDownLatch;

 public CountDownTask(CountDownLatch countDownLatch) {
 this.countDownLatch=countDownLatch;
 }

 @Override
 public void run() {
 CommonTask.doTask();
 countDownLatch.countDown();

 }
}

Then, in the main() method, we execute the tasks in an executor and wait for their
finalization using the await() method of CountDownLatch. The object is initialized with
the number of tasks we want to wait for.

public static void main(String[] args) {

 CountDownLatch countDownLatch=new CountDownLatch(10);

 ThreadPoolExecutor executor=(ThreadPoolExecutor)
 Executors.newCachedThreadPool();

 System.out.println("Main: Launching tasks");
 for (int i=0; i<10; i++) {
 executor.execute(new CountDownTask(countDownLatch));
 }

 try {
 countDownLatch.await();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

Diving into Concurrent Data Structures and Synchronization Utilities

[381]

 System.out.

 executor.shutdown();
}

The following screenshot shows the results of an execution of this example:

The CyclicBarrier class
This class allows you to synchronize some tasks at a common point. All tasks will wait at
that point until all have arrived. Internally, it also manages an internal counter with the
tasks that haven't arrived at that point yet. When a task arrives at the determined point, it
has to execute the await() method to wait for the rest of the tasks. When all the tasks have
arrived, the CyclicBarrier object wakes them up so they continue with their execution.

This class allows you to execute another task when all the parties have arrived. To configure
this, you have to specify a Runnable object in the constructor of the object.

For example, we have implemented the following Runnable that uses a CyclicBarrier
object to wait for other tasks:

public class BarrierTask implements Runnable {

 private CyclicBarrier barrier;

 public BarrierTask(CyclicBarrier barrier) {
 this.barrier=barrier;
 }

 @Override
 public void run() {
 System.out.println(Thread.currentThread().getName()+": Phase 1");
 CommonTask.doTask();

Diving into Concurrent Data Structures and Synchronization Utilities

[382]

 try {
 barrier.await();
 } catch (InterruptedException e) {
 e.printStackTrace();
 } catch (BrokenBarrierException e) {
 e.printStackTrace();
 }
 System.out.println(Thread.currentThread().getName()+": Phase 2");

 }
}

We have also implemented another Runnable object that will be executed by
CyclicBarrier when all the tasks have executed the await() method.

public class FinishBarrierTask implements Runnable {

 @Override
 public void run() {
 System.out.println("FinishBarrierTask: All the tasks have finished");
 }
}

Finally, in the main() method, we execute 10 tasks in an executor. You can see how
CyclicBarrier is initialized with the number of tasks we want to synchronize and with an
object of the FinishBarrierTask object:

public static void main(String[] args) {
 CyclicBarrier barrier=new CyclicBarrier(10,new FinishBarrierTask());

 ThreadPoolExecutor executor=(ThreadPoolExecutor)
Executors.newCachedThreadPool();

 for (int i=0; i<10; i++) {
 executor.execute(new BarrierTask(barrier));
 }

 executor.shutdown();

 try {
 executor.awaitTermination(1, TimeUnit.DAYS);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
}

Diving into Concurrent Data Structures and Synchronization Utilities

[383]

The following screenshot shows the results of an execution of this example:

You can see how, when all the tasks arrive at the point where the await() method is called,
FinishBarrierTask is executed and then all the tasks continue with their execution.

The CompletableFuture class
This is a synchronization mechanism introduced in the Java 8 concurrency API that has new
methods in Java 9. It extends the Future mechanism, giving it more power and flexibility.
It allows you to implement an event-driven model, linking tasks that will only be executed
when others have finished. As with the Future interface, CompletableFuture must be
parameterized with the type of the result that will be returned by the operation. As with a
Future object, the CompletableFuture class represents a result of an asynchronous
computation, but the result of CompletableFuture can be established by any thread. It has
the complete() method to establish the result when the computation ends normally and
the method completeExceptionally() when the computation ends with an exception. If
two or more threads call the complete() or completeExceptionally() methods over
the same CompletableFuture, only the first call will take effect.

First, you can create CompletableFuture using its constructor. In this case, you have to
establish the result of the task using the complete() method, as we explained before. But
you can also create one using the runAsync() or supplyAsync() methods. The
runAsync() method executes a Runnable object and returns CompletableFuture<Void>
so that computation can't return any results. The supplyAsync() method executes an
implementation of the Supplier interface parametrized with the type that will be returned
by this computation. The Supplier interface provides the get() method. In that method,
we have to include the code of the task and return the result generated by it. In this case, the
result of CompletableFuture will be the result of the Supplier interface.

Diving into Concurrent Data Structures and Synchronization Utilities

[384]

This class provides a lot of methods that allow you to organize the order of execution of
tasks implementing an event-driven model, where one task doesn't start its execution until
the previous one has finished. These are some of those methods:

thenApplyAsync(): This method receives an implementation of the Function
interface that can be represented as a lambda expression as a parameter. This
function will be executed when the calling CompletableFuture has been
completed. This method will return CompletableFuture to get the result of the
Function.
thenComposeAsync(): This method is analogue to thenApplyAsync, but is
useful when the supplied function returns CompletableFuture too.
thenAcceptAsync(): This method is similar to the previous one, but the
parameter is an implementation of the Consumer interface that can also be
specified as a lambda expression; in this case, the computation won't return a
result.
thenRunAsync(): This method is equivalent to the previous one, but in this case
receives a Runnable object as a parameter.
thenCombineAsync(): This method receives two parameters. The first one is
another CompletableFuture instance. The other is an implementation of the
BiFunction interfaces that can be specified as a lambda function. This
BiFunction will be executed when both CompletableFuture (the calling one
and the parameter) have been completed. This method will return
CompletableFuture to get the result of the BiFunction.
runAfterBothAsync(): This method receives two parameters. The first one is
another CompletableFuture. The other one is an implementation of the
Runnable interface that will be executed when both CompletableFuture (the
calling one and the parameter) have been completed.
runAfterEitherAsync(): This method is equivalent to the previous one, but
the Runnable task is executed when one of the CompletableFuture objects is
completed.
allOf(): This method receives a variable list of CompletableFuture objects as
a parameter. It will return a CompletableFuture<Void> object that will return
its result when all the CompletableFuture objects have been completed.
anyOf(): This method is equivalent to the previous one, but the returned
CompletableFuture returns its result when one of the CompletableFuture is
completed.

Diving into Concurrent Data Structures and Synchronization Utilities

[385]

Finally, if you want to obtain the result returned by CompletableFuture, you can use the
get() or join() methods. Both methods block the calling thread until
CompletableFuture has been completed and then returns its result. The main difference
between both methods is that get() throws ExecutionException, which is a checked
exception, but join() throws RuntimeException (which is an unchecked exception).
Thus, it's easier to use join() inside non-throwing lambdas (like Supplier, Consumer, or
Runnable).

Most of the methods explained before have the Async suffix. This means that these
methods will be executed in a concurrent way using the ForkJoinPool.commonPool
instance. Those methods that have versions without the Async suffix will be executed in a
serial way (that is to say, in the same thread where CompletableFuture is executed) and
with the Async suffix and an executor instance as an additional parameter. In this case,
CompletableFuture will be executed asynchronously in the executor passed as a
parameter.

Java 9 has added some methods to give more power to the CompletableFuture class.

defaultExecutor(): This method returns the default Executor used for Async
operations that don't receive an Executor as a parameter. Normally, it will be
the returned value of the ForkJoinPool.commonPool() method.
copy(): This method creates a copy of a CompletableFuture object. If the
original CompletableFuture completes normally, the copy will also be
completed normally with the same value. If the original CompletableFuture
completes exceptionally, the copy completes exceptionally with a
CompletionException.
completeAsync(): This method receives a Supplier object as a parameter (and
optionally, an Executor). Completes the CompletableFuture with the result of
the Supplier.
orTimeout(): Receives a timeout (a period of time and a TimeUnit). If the
CompletableFuture is not completed after that period of time, completes
exceptionally with a TimeoutException.
completeOnTimeout(): This method is similar to the previous one, but it
completes normally with the value received as a parameter.
delayedExecutor(): This method returns an Executor that executes a task
after the specified delay.

Diving into Concurrent Data Structures and Synchronization Utilities

[386]

Using the CompletableFuture class
In this example, you will learn how to use the CompletableFuture class to implement the
execution of some asynchronous tasks in a concurrent way. We will use our collection of
20,000 products from Amazon to implement the following tree of tasks:

First, we're going to use the examples. Then, we will execute four concurrent tasks. The first
one will make a search of products. When the search finishes, we will write the results to a
file. The second one will obtain the best-rated product. The third one will obtain the best-
selling product. When these both finish, we will concatenate their information using
another task. Finally, the fourth task will get a list with the users who have purchased a
product. The main() program will wait for the finalization of all the tasks and then will
write the results.

Let's see the details of the implementation.

Diving into Concurrent Data Structures and Synchronization Utilities

[387]

Auxiliary tasks
In this example, we will use some auxiliary tasks. The first one is LoadTask that will load
the product information from the disk and will return a list of Product objects:

public class LoadTask implements Supplier<List<Product>> {

 private Path path;

 public LoadTask (Path path) {
 this.path=path;
 }
 @Override
 public List<Product> get() {
 List<Product> productList=null;
 try {
 productList = Files.walk(path, FileVisitOption.FOLLOW_LINKS)
 .parallel().filter(f -> f.toString()
 .endsWith(".txt")).map(ProductLoader::load)
 .collect (Collectors.toList());
 } catch (IOException e) {
 e.printStackTrace();
 }

 return productList;
 }
}

It implements the Supplier interface to be executed as CompletableFuture. Inside, it
uses a stream to process and parse all the files obtaining a list of products.

The second task is SearchTask that will implement the search in the list of Product
objects, looking for the ones that contain a word in the title. This task is an implementation
of the Function interface.

public class SearchTask implements Function<List<Product>,
 List<Product>> {

 private String query;

 public SearchTask(String query) {
 this.query=query;
 }

 @Override
 public List<Product> apply(List<Product> products) {
 System.out.println(new Date()+": CompletableTask: start");
 List<Product> ret = products.stream()

Diving into Concurrent Data Structures and Synchronization Utilities

[388]

 .filter(product -> product.getTitle()
 .toLowerCase().contains(query))
 .collect(Collectors.toList());
 System.out.println(new Date()+": CompletableTask: end:
 "+ret.size());
 return ret;
 }

}

It receives List<Product> with the information of all the products and returns
List<Product> with the products that meet the criteria. Internally, it creates the stream on
the input list, filters it, and collects the results in another list.

Finally, the WriteTask is going to write the products obtained in the search task in a File.
In our case, we generate a HTML file, but feel free to write this information in the format
you want. This task implements the Consumer interface, so its code must be something like
the following:

public class WriteTask implements Consumer<List<Product>> {

 @Override
 public void accept(List<Product> products) {
 // implementation is omitted
 }
}

The main() method
We have organized the execution of the tasks in the main() method. First, we execute the
LoadTask using the supplyAsync() method of the CompletableFuture class. We are
going to wait three seconds before the start of the LoadTask to show how the
delayExecutor() method works.

public class CompletableMain {

 public static void main(String[] args) {
 Path file = Paths.get("data","category");
 System.out.println(new Date() + ": Main: Loading products
 after three seconds....");
 LoadTask loadTask = new LoadTask(file);

 CompletableFuture<List<Product>>loadFuture = CompletableFuture
 .supplyAsync(loadTask,CompletableFuture
 .delayedExecutor(3, TimeUnit.SECONDS));

Diving into Concurrent Data Structures and Synchronization Utilities

[389]

Then, with the resultant CompletableFuture, we use thenApplyAsync() to execute the
search task when the load task has been completed:

System.out.println(new Date() + ": Main: Then apply for
 search");

CompletableFuture<List<Product>> completableSearch = loadFuture
 .thenApplyAsync(new SearchTask("love"));

Once the search task has been completed, we want to write the results of the execution in a
file. As this task won't return a result, we use the thenAcceptAsync() method:

CompletableFuture<Void> completableWrite = completableSearch
 .thenAcceptAsync(new WriteTask());

completableWrite.exceptionally(ex -> {
 System.out.println(new Date() + ": Main: Exception "
 + ex.getMessage());
 return null;
});

We have used the exceptionally() method to specify what we want to do if the write
task throws an exception.

Then, we use the thenApplyAsync() method over the completableFuture object to
execute the task to get the list of users who purchased a product. We specify this task as a
lambda expression. Take into account that this task will be executed in parallel with the
search task:

System.out.println(new Date() + ": Main: Then apply for users");

CompletableFuture<List<String>> completableUsers = loadFuture
 .thenApplyAsync(resultList -> {

 System.out.println(new Date() + ": Main: Completable users :start");
 List<String> users = resultList.stream()
 .flatMap(p -> p.getReviews().stream())
 .map(review -> review.getUser())
 .distinct()
 .collect(Collectors.toList());
 System.out.println(new Date() + ": Main: Completable users :end");

 return users;
});

Diving into Concurrent Data Structures and Synchronization Utilities

[390]

In parallel with these tasks, we also executed the tasks using the thenApplyAsync()
method to find the best-rated product and the best-selling product. We have defined these
tasks using a lambda expression too:

 System.out.println(new Date() + ": Main: Then apply for best
 rated product....");

 CompletableFuture<Product> completableProduct = loadFuture
 .thenApplyAsync(resultList -> {
 Product maxProduct = null;
 double maxScore = 0.0;

 System.out.println(new Date() + ": Main: Completable product:
 start");
 for (Product product : resultList) {
 if (!product.getReviews().isEmpty()) {
 double score = product.getReviews().stream()
 .mapToDouble(review -> review.getValue())
 .average().getAsDouble();
 if (score > maxScore) {
 maxProduct = product;
 maxScore = score;
 }
 }
 }
 System.out.println(new Date() + ": Main: Completable product : end");
 return maxProduct;
});

System.out.println(new Date() + ": Main: Then apply for best
 selling product....");
CompletableFuture<Product> completableBestSellingProduct =
 loadFuture.thenApplyAsync(resultList -> {
 System.out.println(new Date() + ": Main: Completable best
 selling: start");
 Product bestProduct = resultList.stream()
 .min(Comparator.comparingLong
 (Product::getSalesrank))
 .orElse(null);
 System.out.println(new Date() + ": Main: Completable best
 selling: end");
 return bestProduct;

});

Diving into Concurrent Data Structures and Synchronization Utilities

[391]

As we mentioned before, we want to concatenate the results of the last two tasks. We can do
this using the thenCombineAsync() method to specify a task that will be executed after
both tasks have been completed:

CompletableFuture<String> completableProductResult =
 completableBestSellingProduct
 .thenCombineAsync(
 completableProduct, (bestSellingProduct,
 bestRatedProduct) -> {
 System.out.println(new Date() + ": Main: Completable product
 result: start");
 String ret = "The best selling product is "
 + bestSellingProduct.getTitle() + "\n";
 ret += "The best rated product is "
 + bestRatedProduct.getTitle();
 System.out.println(new Date() + ": Main: Completable product
 result: end");
 return ret;
});

Finally, we give one second to the completableProductResult task to finish using the
completeOnTimeout() method. If it doesn't finish before one second, we complete that
CompletableFuture with the result "TimeOut". Then, we wait for the end of the final
tasks using the allOf() and join() methods and write the results using the get()
method to obtain them:

System.out.println(new Date() + ": Main: Waiting for results");

completableProductResult.completeOnTimeout("TimeOut", 1,
 TimeUnit.SECONDS);
CompletableFuture<Void> finalCompletableFuture = CompletableFuture
 .allOf(completableProductResult, completableUsers,
 completableWrite);
finalCompletableFuture.join();

try {
 System.out.println("Number of loaded products: "
 + loadFuture.get().size());
 System.out.println("Number of found products: "
 + completableSearch.get().size());
 System.out.println("Number of users: "
 + completableUsers.get().size());
 System.out.println("Best rated product: "
 + completableProduct.get().getTitle());
 System.out.println("Best selling product: "
 + completableBestSellingProduct.get()
 .getTitle());

Diving into Concurrent Data Structures and Synchronization Utilities

[392]

 System.out.println("Product result:
 "+completableProductResult.get());
} catch (InterruptedException | ExecutionException e) {
 e.printStackTrace();
}

In the following screenshot, you can see the results of an execution of this example:

First, the main() method executes all the configurations and waits for the finalization of the
tasks. The execution of the tasks follows the order we have configured. You can see how the
LoadTask starts after three seconds and how the completableProductResult returns the
String "TimeOut", as it isn't completed in one second.

Diving into Concurrent Data Structures and Synchronization Utilities

[393]

Summary
In this chapter, we have reviewed two components of all concurrent applications. The first
one is data structures. Every program uses them to store in memory the information it has
to process. We have quickly been introduced to concurrent data structures to create a
detailed description of the new features introduced in the Java 8 Concurrency API that
affects the ConcurrentHashMap class and the classes that implement the Collection
interface.

The second one is the synchronization mechanisms that allow you to protect your data
when more than one concurrent task wants to modify them, and to control the order of
execution of the tasks if it's necessary. In this case, we have also quickly been introduced to
the synchronization mechanisms, giving a detailed description of CompletableFuture, a
new feature of the Java 8 Concurrency API.

In the next chapter, we will show you how you can implement complete concurrent
systems, integrating different parts that can also be concurrent and using different classes to
implement concurrency.

12
Testing and Monitoring

Concurrent Applications
Software testing is a critical task in every development process. Every application has to
fulfill end user requirements, and the testing phase is the place to prove this. It has to
generate valid results in an acceptable time and with the specified format. The main
objective of the testing phase is to detect as many errors as possible in the software to
correct them and increase the global quality of the product.

Traditionally, in the waterfall model, the testing phase begins when the development phase
is very advanced, but nowadays, more and more development teams are using agile
methodologies, where the testing phase is integrated into the development phase. The main
objective is to test the software as soon as possible to detect errors earlier in the process.

In Java, there are a lot of tools, such as JUnit or TestNG, to automatize the execution of
tests. Other tools, such as JMeter, allow you to test how many users can execute your
application at the same time, and there are other tools, such as Selenium, that you can use
to make integration tests in web applications.

The testing phase is more critical and more difficult in concurrent applications. You have
two or more threads running at the same time, but you can't control their order of
execution. You can do a lot of tests on an application, but you can't guarantee that there isn't
an order of execution of the different threads that provokes a race condition or a deadlock.
This circumstance also causes difficulty in the reproduction of errors. You can find an error
that only occurs in certain circumstances, so it can be difficult to find its real cause. In this
chapter, we will cover the following topics to help you to test concurrent applications:

Monitoring concurrency objects
Monitoring concurrency applications
Testing concurrency applications

Testing and Monitoring Concurrent Applications

[395]

Monitoring concurrency objects
Most of the concurrency objects provided by the Java concurrency API include methods to
learn their status. This status can include the number of threads that are executing, the
number of threads blocked waiting for a condition, the number of tasks executed, and so on.
In this section, you will learn the most important methods you can use and the information
you can obtain from them. This information can be very useful to detect the cause of an
error, especially if it only occurs in very rare conditions.

Monitoring a thread
The thread is the most basic element in the Java concurrency API. It allows you to
implement a raw task. You decide what code is going to execute (extending the Thread
class or implementing the Runnable interface), when it starts its execution, and how it
synchronizes with other tasks of the application. The Thread class provides some methods
to obtain information about a thread. These are the most useful methods:

getId(): This method returns the identifier of the thread. It's a long positive
number and it's unique.
getName(): This method returns the name of the thread. By default, it has the
format Thread-xxx, but it can be modified in the constructor or using the
setName() method.
getPriority(): This method returns the priority of the thread. By default, all
the threads have a priority of five, but you can change it using the
setPriority() method. Threads with higher priority may have preference over
threads with lower priority.
getState(): This method returns the state of the thread. It returns a value of
Enum Thread.State, which can take the values: NEW, RUNNABLE, BLOCKED,
WAITING, TIMED_WAITING, and TERMINATED. You can check the API
documentation to see the real significance of every state.
getStackTrace(): This method returns the stack of calls of this thread as an
array of StackTraceElement objects. You can print this array to know what
calls have made the thread.

Testing and Monitoring Concurrent Applications

[396]

For example, you can use a piece of code like this to obtain all the relevant information of a
thread:

System.out.println("**********************");
System.out.println("Id: " + thread.getId());
System.out.println("Name: " + thread.getName());
System.out.println("Priority: " + thread.getPriority());
System.out.println("Status: " + thread.getState());
System.out.println("Stack Trace");
for(StackTraceElement ste : thread.getStackTrace()) {
 System.out.println(ste);
}

System.out.println("**********************\n");

With this block of code, you will obtain an output as follows:

Testing and Monitoring Concurrent Applications

[397]

Monitoring a lock
A lock is one of the basic synchronization elements provided by the Java concurrency API.
It's defined in the Lock interface and in the ReentrantLock class. In a basic way, a lock
allows you to define a critical section in your code, but the lock mechanism is more flexible
than other mechanisms, such as the synchronized keyword (for example, you can have
different locks to read and write operations or have non-linear critical sections). The
ReentrantLock class has some methods that allow you to know the status of a Lock object:

getOwner(): This method returns a Thread object with the thread that currently
has the lock, that is to say, the thread that is executing the critical section.
hasQueuedThreads(): This method returns a boolean value to indicate if there
are threads waiting to acquire this lock.
getQueueLength(): This method returns an int value with the number of
threads that are waiting to acquire this lock.
getQueuedThreads(): This method returns a Collection<Thread> object
with the Thread objects that are waiting to acquire this lock.
isFair(): This method returns a boolean value to indicate the status of the
fairness attribute. The value of this attribute is used to determine which will be
the next thread that acquires the lock. You can check the Java API information to
get a detailed description of this functionality.
isLocked(): This method returns a boolean value to indicate if this lock is
owned by a thread or not.
getHoldCount(): This method returns an int value with the number of times
this thread has acquired the lock. The returned value is zero if this thread does
not hold the lock. Otherwise it returns the number of times the lock() method
was called in the current thread for which the matching unlock() method was
not called.

The getOwner() and the getQueuedThreads() methods are protected, so you don't have
direct access to them. To solve this problem, you can implement your own Lock class and
implemented methods that provide you with that information.

For example, you can implement a class named MyLock , as follows:

public class MyLock extends ReentrantLock {

 private static final long serialVersionUID = 8025713657321635686L;

 public String getOwnerName() {
 if (this.getOwner() == null) {

Testing and Monitoring Concurrent Applications

[398]

 return "None";
 }
 return this.getOwner().getName();
 }

 public Collection<Thread> getThreads() {
 return this.getQueuedThreads();
 }
}

So, you can use a fragment of code similar to this to obtain all the relevant information
about a lock:

System.out.println("************************\n");
System.out.println("Owner : " + lock.getOwnerName());
System.out.println("Queued Threads: " + lock.hasQueuedThreads());
if (lock.hasQueuedThreads()) {
 System.out.println("Queue Length: " + lock.getQueueLength());
 System.out.println("Queued Threads: ");
 Collection<Thread> lockedThreads = lock.getThreads();
 for (Thread lockedThread : lockedThreads) {
 System.out.println(lockedThread.getName());
 }
}
System.out.println("Fairness: " + lock.isFair());
System.out.println("Locked: " + lock.isLocked());
System.out.println("Holds: "+lock.getHoldCount());
System.out.println("************************\n");

With this block of code, you will obtain an output similar to the following:

Testing and Monitoring Concurrent Applications

[399]

Monitoring an executor
The executor framework is a mechanism that allows you to execute concurrent tasks
without worrying about the creation and management of threads. You can send the tasks to
the executor. It has an internal pool of threads that re-utilize to execute the tasks. The
executor also provides a mechanism to control the resources consumed by your tasks so
you won't overload the system. The executor framework provides the Executor and
ExecutorService interfaces and some classes that implement those interfaces. The most
basic class that implements them is the ThreadPoolExecutor class. It provides some
methods that allow you to know the status of the executor:

getActiveCount(): This method returns the number of threads of the executor
that are executing tasks.
getCompletedTaskCount(): This method returns the number of tasks that have
been executed by the executor and have finished its execution.
getCorePoolSize(): This method returns the core number of threads. This
number determines the minimum number of threads in the pool. Even if there are
no tasks running in the executor, the pool won't have less threads than the
number returned by this method.
getLargestPoolSize(): This method returns the maximum number of threads
that have been in the pool of the executor at the same time.
getMaximumPoolSize(): This method returns the maximum number of threads
that can exist in the pool at the same time.
getPoolSize(): This method returns the current number of threads in the pool.
getTaskCount(): This method returns the number of tasks that have been sent
to the executor, including waiting, running, and already completed tasks.
isTerminated(): This method returns true if the shutdown() or
shutdownNow() method has been called and the Executor has finished the
execution of all its pending tasks. This method returns false otherwise.
isTerminating(): This method returns true if the shutdown() or
shutdownNow() method has been called but the executor is still executing tasks.

Testing and Monitoring Concurrent Applications

[400]

You can use a fragment of code similar to this to obtain the relevant information of a
ThreadPoolExecutor:

System.out.println ("***");
System.out.println("Active Count: "+executor.getActiveCount());
System.out.println("Completed Task Count: "+
executor.getCompletedTaskCount());
System.out.println("Core Pool Size:"+ executor.getCorePoolSize());
System.out.println("Largest Pool Size: "+ executor.getLargestPoolSize());
System.out.println("Maximum Pool Size: "+ executor.getMaximumPoolSize());
System.out.println("Pool Size: "+executor.getPoolSize());
System.out.println("Task Count: "+executor.getTaskCount());
System.out.println("Terminated: "+executor.isTerminated());
System.out.println("Is Terminating: "+executor.isTerminating());
System.out.println ("***");

With this block of code, you will obtain an output similar to this:

Testing and Monitoring Concurrent Applications

[401]

Monitoring the fork/join framework
The fork/join framework provides a special kind of executor for algorithms that can be
implemented using the divide and conquer technique. It is based in a work-stealing
algorithm. You create an initial task that has to process the whole problem. This task creates
other subtasks that process smaller parts of the problem and waits for its finalization. Each
task compares the size of the sub-problem it has to process with a predefined size. If the size
is smaller than the predefined size, it solves the problem directly. Otherwise, it splits the
problem into other subtasks and waits for the results returned by them. The work-stealing
algorithm takes advantage of the threads that are executing tasks that are waiting for the
results of their child tasks to execute other tasks. The ForkJoinPool class provides
methods that allow you to obtain its status:

getParallelism(): This method returns the desired level of parallelism
established for the pool.
getPoolSize(): This method returns the number of threads in the pool.
getActiveThreadCount(): This method returns the number of threads in the
pool that are currently executing tasks.
getRunningThreadCount(): This method returns the number of threads that
are not waiting for the finalization of their child tasks.
getQueuedSubmissionCount(): This method returns the number of tasks that
have been submitted to a pool that haven't started their execution yet.
getQueuedTaskCount(): This method returns the number of tasks in the work-
stealing queues of this pool.
hasQueuedSubmissions(): This method returns true if there are tasks that have
been submitted to the pool that haven't started their execution yet. It returns false
otherwise.
getStealCount(): This method returns the number of times the fork/join pool
has executed the work-stealing algorithm.
isTerminated(): This method returns true if the fork/join pool has finished its
execution. It returns false otherwise.

You can use a fragment of code like this to obtain the relevant information of a
ForkJoinPool class:

System.out.println("**********************");
System.out.println("Parallelism: "+ pool.getParallelism());
System.out.println("Pool Size: "+ pool.getPoolSize());
System.out.println("Active Thread Count: "+ pool.getActiveThreadCount());
System.out.println("Running Thread Count: "+ pool.getRunningThreadCount());
System.out.println("Queued Submission: "+ pool.getQueuedSubmissionCount());

Testing and Monitoring Concurrent Applications

[402]

System.out.println("Queued Tasks: "+pool.getQueuedTaskCount());
System.out.println("Queued Submissions: "+ pool.hasQueuedSubmissions());
System.out.println("Steal Count: "+ pool.getStealCount());
System.out.println("Terminated : "+ pool.isTerminated());
System.out.println("**********************");

Where pool is a ForkJoinPool object (for example, ForkJoinPool.commonPool()). With
this block of code, you will obtain an output similar to this:

Monitoring a Phaser
A Phaser is a synchronization mechanism that allows you to execute tasks that can be
divided into phases. This class also includes some methods to obtain the status of the
Phaser:

getArrivedParties(): This method returns the number of registered parties
that have finished the current phase.
getUnarrivedParties(): This method returns the number of registered parties
that haven't finished the current phase.

Testing and Monitoring Concurrent Applications

[403]

getPhase(): This method returns the number of the current phase. The number
of the first phase is 0.
getRegisteredParties(): This method returns the number of registered
parties in the Phaser.
isTerminated(): This method returns a boolean value to indicate if the Phaser
has finished its execution.

You can use a fragment of code like this to obtain the relevant information of a Phaser:

System.out.println ("***");
System.out.println("Arrived Parties: "+ phaser.getArrivedParties());
System.out.println("Unarrived Parties: "+ phaser.getUnarrivedParties());
System.out.println("Phase: "+phaser.getPhase());
System.out.println("Registered Parties: "+ phaser.getRegisteredParties());
System.out.println("Terminated: "+phaser.isTerminated());
System.out.println ("***");

With this block of code, you will obtain an output similar to this:

Monitoring the Stream API
The Stream mechanism is one of the most important new features introduced in Java 8. It
allows you to process large collections of data in a concurrent way, transforming that data
and implementing the map and reduce programming model in an easy way. This class
doesn't provide any methods (except the isParallel() method that returns if the stream
is parallel or not) to know the status of the stream, but includes a method named peek()
that you can include in the pipeline of methods to write log information about the
operations or transformations that you are executing in the stream.

Testing and Monitoring Concurrent Applications

[404]

For example, this code calculates the average of the square of the first 999 numbers:

double result=IntStream.range(0,1000)
 .parallel()
 .peek(n -> System.out.println (Thread.currentThread()
 .getName()+": Number "+n))
 .map(n -> n*n)
 .peek(n -> System.out.println (Thread.currentThread()
 .getName()+": Transformer "+n))
 .average()
 .getAsDouble();

The first peek() method writes the numbers that the stream is processing and the second,
the square of those numbers. If you execute this code, as you're executing the stream in a
concurrent way, you will obtain an output similar to this:

Monitoring concurrency applications
When you implement Java applications, you normally use an IDE such as Eclipse or
NetBeans to create your projects and write your source code. But the JDK (short for Java
Development Kit) includes tools you can use to compile, execute, or generate Javadoc
documents. One of those tools is JConsole, which is a graphical tool that shows you
information about the applications that are executing in a JVM. You can find it in the bin
directory of your JDK installation (jconsole.exe).

Testing and Monitoring Concurrent Applications

[405]

If you execute it, you will see a window similar to this:

You can monitor processes that are running in your own computer by selecting one of the
processes that appear in the Local Process section, or a remote process introducing its data
in the Remote Process section.

Testing and Monitoring Concurrent Applications

[406]

Once you have selected or introduced the data of the process you want to monitor, you click
the Connect button. You may see a window alerting you that you are starting an insecure
connection. That window will be similar to this:

In that case, press the Insecure connection button.

You will see a screen with six tabs:

Overview: This tab shows general information about the application.
Memory: This tab shows information about memory use.
Threads: This tab shows the evolution over time of the threads of the application
and allows you to see detailed information about a Thread.

Testing and Monitoring Concurrent Applications

[407]

Classes: This tab shows information about the class loading and the number of
classes.
VM Summary: This tab shows information about the Java Virtual Machine that is
running the process.
MBeans: This tab shows information about the MBeans of the process. An MBean
is a managed Java object that can represent a device, an application, or any
resource; and are the base of the JMX API.

In the following sections, you will learn what information you can obtain in every tab. You
can consult the complete documentation about this tool at:
http://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html.

The Overview tab
As we mentioned before, this tab shows you general information about the application in a
graphical way, which allows you to see the evolution of the values across time. This
information includes:

Heap Memory Use: This graphic shows the size of the memory used by the
application. It also shows the used memory, the committed memory, and the max
memory.
Threads: This graphic shows the evolution in the number of threads used by the
application. It includes the threads explicitly created by the programmer and the
threads created by the JVM.
Classes: This graphic shows the evolution of the number of classes loaded by the
application.
CPU Usage: This graphic shows the evolution of the CPU usage of the
application.

http://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.html

Testing and Monitoring Concurrent Applications

[408]

It has an appearance similar to the following screenshot:

Testing and Monitoring Concurrent Applications

[409]

The Memory tab
As we mentioned earlier, this tab shows you graphical information about the memory used
by the application. You can see the evolution of these metrics over time. The appearance of
this tab is similar to this:

On top of the screen, you have a drop-down menu where you can select the kind of
memory. It gives you different options, such as heap memory, non-heap memory, and
specific memory tools, such as the Eden Space, which shows information about the
memory that is initially allocated for most objects, or the Survivor Space which shows
information about the memory used by objects that survived the garbage collector of the
Eden Space.

Testing and Monitoring Concurrent Applications

[410]

Then, you have the graphical evolution over time of the selected element. Finally, you have
a Details section, which shows information about memory consumption:

Used: The current amount of memory use by the application
Committed: The amount of memory that is guaranteed to the JVM
Max: The maximum amount of memory that can be used by the JVM
GC time: The time spent on garbage collection

The Threads tab
As we mentioned earlier, in the Threads tab, you can see the evolution of the threads of the
application over time. Its appearance is similar to this:

Testing and Monitoring Concurrent Applications

[411]

This screen shows the evolution over time of the number of threads. You will see two
numbers. The Live Threads are the threads that are running and the Peak number of
threads are the maximum number of threads.

At the bottom, you have a list of all the current threads in the left of the window. If you
select one of those threads, on the right-hand side, you will see information about that
thread, such as the name, its state, and the current stack trace.

The Classes tab
The Classes tab shows you information about class loading. This tab's appearance is similar
to this:

Testing and Monitoring Concurrent Applications

[412]

This tab shows a graphic on top with the evolution over time of the number of classes
loaded by the application. It shows a red line with the total number of classes loaded by the
application and a red line with the current number of classes loaded.

At the bottom of the tab, it shows the details section, which has current information:

Current classes loaded
Total classes loaded
Total classes unloaded

The VM summary tab
The VM Summary tab shows you information about the Java Virtual Machine. This tab's
appearance is similar to this:

Testing and Monitoring Concurrent Applications

[413]

As you can see in the image, this tab shows you the following information:

Summary section: This block shows information about the Java Virtual Machine
implementation that is running the process:

Virtual Machine: Name of the Java Virtual Machine that is
executing the process
Vendor: Name of the organization that has implemented the Java
Virtual Machine
Name: Name of the machine that is running the process
Uptime: Time since the JVM was started
Process CPU time: CPU time consumed by the JVM

Threads: This section shows information about the threads of the application:
Live threads: Total number of threads that are currently running
Peak: Highest number of threads that have been executing in the
JVM
Daemon threads: Total number of daemon-threads that are
currently running
Total threads started: Total number of threads that have started
their execution since the JVM started running

Classes: This section shows information about the number of classes of the
application:

Current classes loaded: Number of classes currently loaded into
memory
Total classes loaded: Number of classes loaded into memory since
the JVM started running
Total classes unloaded: Number of classes unloaded from memory
since the JVM started running

Testing and Monitoring Concurrent Applications

[414]

Memory: This section shows information about the memory used by the
application:

Current heap size: Size of the heap
Committed memory: Amount of memory allocated for use by the
heap
Maximum heap size: Maximum size of the heap
Garbage collector: Information about garbage collection

Operating System: This section shows information about the operating system
that is executing the Java Virtual Machine:

Operating System: Version of the OS that is running the JVM
Number of Processors: Number of cores and/or CPUs that the
computer has
Total physical memory: Size of the RAM available to the OS
Free physical memory: Free RAM available to the OS
Committed virtual memory: Memory guarantee to the current
process

Other Information: This section shows additional information about the Java
Virtual Machine:

VM arguments: Arguments passed to the JVM
Class path: Class path of the JVM
Library path: Library path of the JVM
Boot class path: Path where the JVM looks for java.* and
javax.* classes

Testing and Monitoring Concurrent Applications

[415]

The MBeans tab
The MBeans tab shows you information about all the MBeans registered in the platform.
This tab's appearance is similar to this:

In the left part of the tab, you have all the MBeans that are running, in a tree. When you
select one, you will see its MBean Info and its MBean Descriptor in the right-hand side of
the tab.

Testing and Monitoring Concurrent Applications

[416]

Concurrent applications are represented with the threading MBean, which has two sections.
The Attributes section with the attributes of the MBean, and the Operations section, that
shows all the operations you can run with that MBean.

The About tab
Finally, you can obtain information about the JConsole version you're running with the
About option in the Help menu. You will see a window similar to the following one:

Testing and Monitoring Concurrent Applications

[417]

Testing concurrency applications
Testing concurrency applications is a hard task. The threads of your application run on your
computer without any guarantee of their execution order (except the synchronization
mechanisms that you have included), so it's very difficult (impossible most of the time) to
test all the circumstances that can occur. You can have errors impossible to reproduce
because it only happens under rare or unique circumstances, or errors that happen on one
machine but not on others due to the number of cores within the CPU. To detect and
reproduce this situation, you can use different tools:

Debug: You can use a debugger to debug the application. This process will be
very tedious if you have only a few threads in the application and you have to go
step by step in every thread. You can configure Eclipse or NetBeans to test
concurrent applications.
MultithreadedTC: This is an archived project of Google Code that can be used to
force the order of execution in a concurrent application.
Java PathFinder: This is an execution environment used by NASA for the
verification of Java programs. It includes support for validating concurrent
applications.
Unit testing: You can create a bunch of unit-tests (using JUnit or TestNG) and
launch every test, for example, 1,000 times. If every test succeeds then, even if
your application has races, their chances are not very high and probably
acceptable for production. You can include assertions in your code to verify that
it hasn't any race conditions.

In the following sections, you will see basic examples of testing concurrent applications
with the MultithreadedTC and Java PathFinder tools.

Testing concurrent applications with
MultithreadedTC
MultithreadedTC is an archived project that you can download from
http://code.google.com/p/multithreadedtc/. Its latest version is from 2007, but you can
still use it to test small concurrent applications or parts of large applications independently.
You can't use it to test real tasks or threads, but you can use it to test different orders of
execution to check if they provoke race conditions or deadlocks.

http://code.google.com/p/multithreadedtc/

Testing and Monitoring Concurrent Applications

[418]

It's based on an internal clock that works with ticks, which allows you to control the order
of execution of different threads to test if that order of execution could cause any
concurrency problems.

First of all, you need to associate two libraries to your project:

The MultithreadedTC library: The latest version is the 1.01 version
The JUnit library: We have tested this example with the 4.12 version

To implement a test using the MultithreadedTC library, you have to extend the
MultithreadedTestCase class that extends the Assert class of the JUnit library. You can
implement the following methods:

initialize(): This method will be executed at the beginning of the test
execution. You can override it if you need to execute initialization code for the
creation of data objects, database connections, and so on.
finish(): This method will be executed at the end of the test execution. You can
override it to implement the validations of the test.
threadXXX(): You have to implement a method whose name begins with the
thread keyword for every thread you have in your test. For example, if you want
to make a test with three threads, you will have three methods in you class.

The MultithreadedTestCase provides the waitForTick() method. This method
receives the number of ticks you wait for as a parameter. This method sleeps the calling
thread until the internal clock arrives at that tick.

The first tick is the tick number 0. The MultithreadedTC framework checks the status of the
test threads at certain intervals. If all the running threads are waiting in the
waitForTick() method, it increments the tick number and wakes up all the threads that
are waiting for that tick.

Let's look at an example of its use. Suppose you want to test a Data object with an internal
int attribute. You want a thread that increments the value and a thread that decrements the
value. You can create a class named TestClassOk, extending the
MultithreadedTestCase class. We use three attributes with the data object: the amount
we will use to increment and decrement the data and the initial value of the data:

public class TestClassOk extends MultithreadedTestCase {

 private Data data;
 private int amount;
 private int initialData;

Testing and Monitoring Concurrent Applications

[419]

 public TestClassOk (Data data, int amount) {
 this.amount=amount;
 this.data=data;
 this.initialData=data.getData();
 }

We implement two methods to simulate the execution of two threads. The first thread is
implemented in the threadAdd() method:

public void threadAdd() {
 System.out.println("Add: Getting the data");
 int value=data.getData();
 System.out.println("Add: Increment the data");
 value+=amount;
 System.out.println("Add: Set the data");
 data.setData(value);
}

It reads the value of the data, increments its value, and writes the value of the data again.
The second thread is implemented in the threadSub() method:

 public void threadSub() {
 waitForTick(1);
 System.out.println("Sub: Getting the data");
 int value=data.getData();
 System.out.println("Sub: Decrement the data");
 value-=amount;
 System.out.println("Sub: Set the data");
 data.setData(value);
 }
}

First, we wait for tick 1. Then, we get the value of the data, decrement its value, and rewrite
the value of the data.

To execute the test, we can use the runOnce() method of the TestFramework class:

public class MainOk {

 public static void main(String[] args) {

 Data data=new Data();
 data.setData(10);
 TestClassOk ok=new TestClassOk(data,10);

 try {
 TestFramework.runOnce(ok);
 } catch (Throwable e) {

Testing and Monitoring Concurrent Applications

[420]

 e.printStackTrace();
 }

 }
}

When the execution of the test begins, the two threads (threadAdd() and threadSub())
are launched in a concurrent way. threadAdd() begins the execution of its code and
threadSub() waits in the waitForTick() method. When threadAdd() finishes its
execution, the internal clock of the MultithreadedTC detects that the only thread running is
waiting in the waitForTick() method, so it increments the tick value to 1 and wakes up
the thread that executes its code.

In the following screenshot, you can see the output of the execution of this example. In this
case, everything goes well:

But you can change the order of execution of the threads to provoke an error. For example,
you can implement the following order, which will provoke a race condition:

public void threadAdd() {
 System.out.println("Add: Getting the data");
 int value=data.getData();
 waitForTick(2);
 System.out.println("Add: Increment the data");
 value+=amount;
 System.out.println("Add: Set the data");
 data.setData(value);
}

public void threadSub() {
 waitForTick(1);
 System.out.println("Sub: Getting the data");
 int value=data.getData();
 waitForTick(3);
 System.out.println("Sub: Decrement the data");
 value-=amount;
 System.out.println("Sub: Set the data");

Testing and Monitoring Concurrent Applications

[421]

 data.setData(value);
}

In this case, the order of execution makes sure that both threads first read the value of the
data and then makes its operation, so the final result won't be correct.

In the following screenshot, you can see the result of the execution of this example:

In this case, the assertEquals() method throws an exception because the expected and
actual values are not equal.

The main limitation of this library is that it is only useful for testing basic concurrent code
and, as you implement the tests, they can't be used to test real thread code.

Testing concurrent applications with Java
Pathfinder
Java Pathfinder or JPF is an open source execution environment from NASA that can be
used to verify Java applications. It includes its own virtual machine to execute Java
bytecode. Internally, it detects the points of the code where it can be more than one
execution path and executes all the possibilities. In concurrent applications, this means that
it will execute all the possible execution orders between the threads that run in your
application. It also includes tools that allow you to detect race conditions and deadlocks.

Testing and Monitoring Concurrent Applications

[422]

The main advantage of this tool is that it allows you to completely test your concurrent
application to guarantee that it is free of race conditions and deadlocks. The inconvenient
features of this tool are:

You have to install it from its source code
If your application is complex, you will have thousands of possible paths of
execution and the test will be very long (maybe many hours if the application is
complex)

In the following sections, we will show you how to test a concurrent application using Java
Pathfinder.

Installing Java Pathfinder
As we mentioned earlier, you have to install JPF from its source code. That code is in a
Mercurial repository, so the first step is to install Mercurial and, as we will use the Eclipse
IDE, the Mercurial plugin for Eclipse.

You can download Mercurial from: https://www.mercurial-scm.org/wiki/Download. You
download the installation program, which provides an assistant to install Mercurial on your
computer. Maybe you will need to restart your system after the installation of Mercurial.

You can download the Mercurial plugin for Eclipse using Help | Install new software from
the Eclipse menu and visiting:
http://mercurialeclipse.eclipselabs.org.codespot.com/hg.wiki/update_site/stable

to look for the software. Follow the same steps as with other plugins.

You can also install a JPF plugin for Eclipse. You can download it from:
http://babelfish.arc.nasa.gov/trac/jpf/raw-attachment/wiki/projects/eclipse-jpf

/update.

Now you can access the Mercurial repository explorer perspective and add the repository of
Java Pathfinder. We will use only the core module, which is stored in
http://babelfish.arc.nasa.gov/hg/jpf/jpf-core. You don't need a username or
password to access the repository. Once you have created the repository, you can right-click
the repository and select the Clone repository option to download the source code in your
computer. The option will open a window to select some options, but you can leave the
default values and click on the Next button. Then you have to choose the version you want
to load. Leave the default value and click on the Next button. Finally, click on the Finish
button to finish the download process. Eclipse will automatically run ant to compile the
project. If you have any compilation problems, you have to solve them and relaunch ant.

https://www.mercurial-scm.org/wiki/Download
http://mercurialeclipse.eclipselabs.org.codespot.com/hg.wiki/update_site/stable
http://babelfish.arc.nasa.gov/trac/jpf/raw-attachment/wiki/projects/eclipse-jpf/update
http://babelfish.arc.nasa.gov/trac/jpf/raw-attachment/wiki/projects/eclipse-jpf/update
http://babelfish.arc.nasa.gov/hg/jpf/jpf-core

Testing and Monitoring Concurrent Applications

[423]

If everything went well, you will have a project named jpf-core in your workspace, as in
the following screenshot:

The last configuration step is to create a file named site.properties with the
configuration of JPF. If you access the configuration window in Window | Preferences and
select the JPF Preferences option, you will see the path where the JPF plugin is looking for
that file. You can change that path if you want.

Testing and Monitoring Concurrent Applications

[424]

As we will only use the core module, the file will only contain the route to the jpf-core
project:

jpf-core = D:/dev/book/projectos/jpf-core

Testing and Monitoring Concurrent Applications

[425]

Running Java Pathfinder
Once we have installed JPF, let's see how we can use it to test a concurrent application. First,
we have to implement a concurrent application. In our case, we will use a Data class with
an internal int value. It will be initialized with 0 and will have an increment() method to
increment the value.

Then, we will have a task named NumberTask , that implements the Runnable interface
that will increment the value of a Data object ten times.

public class NumberTask implements Runnable {

 private Data data;

 public NumberTask (Data data) {
 this.data=data;
 }

 @Override
 public void run() {

 for (int i=0; i<10; i++) {
 data.increment(10);
 }
 }

}

Finally, we have the MainNumber class, which implements the main() method. We will
launch two NumberTasks objects that will modify the same Data object. Finally, we will
obtain the final value of the Data object:

public class MainNumber {

 public static void main(String[] args) {
 int numTasks=2;
 Data data=new Data();

 Thread threads[]=new Thread[numTasks];
 for (int i=0; i<numTasks; i++) {
 threads[i]=new Thread(new NumberTask(data));
 threads[i].start();
 }

 for (int i=0; i<numTasks; i++) {
 try {
 threads[i].join();

Testing and Monitoring Concurrent Applications

[426]

 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 System.out.println(data.getValue());
 }

}

If everything goes well and no race conditions occur, the final result will be 200, but our
code doesn't use any synchronization mechanisms so it's possible that this circumstance
occurs.

If we want to execute this application with JFP, we need to create a configuration file inside
the project with the .jpf extension. For example, we have created the NumberJPF.jpf file
with the most basic configuration file we can use:

+classpath=${config_path}/bin
target=com.javferna.packtpub.mastering.testing.main.MainNumber

We modify the class path of JPF, adding the bin directory of our project, and indicate the
main class of our application. Now, we're ready to execute the application through JPF. To
do this, we right-click the .jpf file and select the Verify option. We will see a lot of output
messages in the console. Every output message comes from a different execution path of the
application:

Testing and Monitoring Concurrent Applications

[427]

When JPF ends the execution of all the possible execution paths, it shows statistical
information about the execution:

The JPF execution says that no errors were detected, but we can see that most of the results
are different from 200, so our application has race conditions, as we expected.

In the introduction of this section, we said that JPF provides tools to detect race conditions
and deadlocks. JPF implements this as a Listener mechanism that implements the
Observer pattern to respond to certain events that occur in the execution of the code. For
example, we can use the following listeners:

PreciseRaceDetector: Use this listener to detect race conditions
DeadlockAnalyzer: Use this listener to detect deadlock situations
CoverageAnalyzer: Use this listener to write coverage information at the end of
the execution of JPF

You can configure the listeners you want to use in the .jpf file with the configuration of an
execution. For example, we have extended the previous test in the
NumberListenerJPF.jpf file by adding the PreciseRaceDetector and the
CoverageAnalyzer listeners:

+classpath=${config_path}/bin
target=com.javferna.packtpub.mastering.testing.main.MainNumber
listener=gov.nasa.jpf.listener.PreciseRaceDetector,gov.nasa.jpf.li
 stener.CoverageAnalyzer

Testing and Monitoring Concurrent Applications

[428]

If we execute this configuration file through JPF with the Verify option, you will see
information about this circumstance as the application ends and it detects the first race
condition showing in the console:

You will also see how the CoverageAnalyzer listener writes the information:

Testing and Monitoring Concurrent Applications

[429]

JPF is a very powerful application which includes more listeners and more extension
mechanisms. You can find its whole documentation at:
http://babelfish.arc.nasa.gov/trac/jpf/wiki.

Summary
Testing concurrent applications is a very hard task. There's no guarantee of the order of
execution of the threads (unless the synchronization mechanisms have been introduced in
your application), so you should test many more different situations than in a serial
application. Sometimes, you will have errors in your application that you can reproduce
because they only occur in very rare situations, and sometimes you will have errors that
only occur on specific machines because of their hardware or software configurations.

In this chapter, you have learned some mechanisms that can help you to test concurrency
applications more easily. First, you learned how to obtain information about the status of
the most important components of the Java concurrency API as thread, lock, executor, or
stream. This information can be very useful if you need to detect the cause of an error. Then,
you learned how to use JConsole to monitor Java applications in general and concurrent
applications in particular. Finally, you learned to use two different tools to test concurrent
applications.

In the next chapter, you will learn how to implement concurrent applications with other
languages and libraries that also allow you to implement concurrent applications for the
Java Virtual Machine. You will learn the basic principles of concurrent applications with
Clojure, Groovy with the GPars library, and Scala.

http://babelfish.arc.nasa.gov/trac/jpf/wiki

13
Concurrency in JVM - Clojure

and Groovy with the Gpars
Library and Scala

Java is the most popular, but not the only programming language we can use to implement
programs for the Java Virtual Machine (JVM). In the page
https://en.wikipedia.org/wiki/List_of_JVM_languages you can find a list of all the
programming languages you can use to implement programs for the JVM. Some of them
are implementations of existing languages for the JVM, such as JRuby, which is an
implementation of the Ruby programming language or Jython, which is an implementation
of the Python programming language. Other languages follow different programming
paradigms, such as Clojure, which is a functional programming language, and others are
scripting and dynamic programming languages, such as Groovy. Most of them have good
integration with the Java language; in fact you can use elements of Java directly in those
programming languages, including concurrency elements such as Threads or Executors.
Some of those languages implement their own concurrency models. In this chapter, we will
undertake a fast introduction to the concurrency elements provided by three of those
languages:

Clojure: Provides reference types such as Atom and Agent and other elements
such as Future and Promise
Groovy: With the GPars library, provides elements for data parallelization, its
own actor model, agents, and dataflow
Scala: Provides two elements, futures and promises

https://en.wikipedia.org/wiki/List_of_JVM_languages

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[431]

Concurrency in Clojure
Clojure is a dynamic, general-purpose functional programming language based on the Lisp
programming language created by Rich Hickey. Via https://clojure.org/index, you can
download the lastest version of the language (at the time of writing it is the 1.8.0 version)
and find documentation and guides about how to program in the Clojure programming
language. You can install support for Clojure in the most popular Java IDEs such as Eclipse.
Another interesting web page is http://clojure-doc.org, where you can find the
community-driven documentation site for the Clojure programming language.

In this section, we will show you the most important concurrency elements of the Clojure
programming language and how to use them. We are not going to make an introduction to
the Clojure programming language. You can review the commented webs to learn how to
program in Clojure.

One of the design objectives of the Clojure programming language was to make concurrent
programming easier. With this objective in mind, two important decisions were taken:

Clojure data structures are immutable, so they can be shared between threads
without any problem. This does not mean that you can't have mutable values on
concurrent applications as you'll see later.
Clojure separates the concepts of identity and value, almost deleting the need for
explicit locks.

Let's describe and work with the most important concurrent structures provided by the
Clojure programming language.

Using Java elements
You can use all the Java elements when you're programming in Clojure, including the
concurrency ones, so you can create Threads or Executors or use the fork/join framework.
This is not good practice, because Clojure makes easier concurrent programming, but you
can explicitly create a Thread, as you can see in the following block of code:

https://clojure.org/index
http://clojure-doc.org/

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[432]

(ns example.example1)

(defn example1 ([number]
 (println (format "%s : %d"(Thread/currentThread) number))
))

(dotimes [i 10] (.start (Thread. (fn[] (example1 I)))))

In this code, first, we define a function called example1 that receives a number as a
parameter. Inside the function, we write information about the Thread that is executing the
function and the number we have received as a parameter.

Then, we create and execute 10 Thread objects. Each thread will make a call to the function
example1.

In the following screenshot, you can see the results of an execution of this code:

In the previous screenshot, you can see how the name of the Thread is different for all the
10 threads.

Reference types
As we mentioned before, Clojure data structures are immutable, but Clojure provides
mechanisms that allow you to work with mutable variables using reference types. We can
classify reference types as coordinated or uncoordinated and as synchronous or
asynchronous:

Coordinated: When two or more operations cooperate with each other
Uncoordinated: When the operation doesn't affect other operations
Synchronous: When the caller waits for the finalization of the operation
Asynchronous: When the caller doesn't wait for the finalization of the operation

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[433]

The most important reference types in the Clojure programming language are:

Atoms
Agents
Refs

Let's see in the following sections how to work with these elements.

Atoms
An atom is basically an atomic reference of the Java programming language. Changes in
these kinds of variables are visible immediately to all the threads. We're going to use the
following functions to work with atoms. They are an uncoordinated and synchronized
reference type:

atom: To define a new atom object.
swap!: Atomically changes the value of the atom to a new one based on the result
of a function. It follows the format (swap! atom function) where atom is the
name of the atom object, and function is the function that returns the new value
of the atom.
reset!: Establish the value of the atom to a new value. It follows the format
(reset! atom value) where atom is the name of the atom object and value
the new value.
compare-and-set!: Atomically changes the value of the atom if the actual value
is the same as the value passed as a parameter. It follows the format (compare-
and-set! atom old-value new-value) where atom is the name of the atom
object, old-value is the expected actual value of the atom, and new value is the
new value we want to assign to the atom.

Let's see an example of how to work with an atom object. First, we declare a function
named company that receives two parameters named account and salary. Account will
be an atom object, as you will see later, and salary will be a number. We use the swap!
function to increment the value of the account object. Then, we write in the console
information about the Thread that is executing the function and the actual value of the
atom object using the @ (dereferencing) function:

(ns example.example2)

(defn company ([account salary]
 (swap! account + salary)

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[434]

 (println (format "%s : %d"(Thread/currentThread) @account))
))

Then, we create a similar function named user. It also receives the accountatom object as a
parameter and another parameter named money. We also use the swap! function, but in
this case, to decrease the value of the Atom object:

(defn user ([account money]
 (swap! account - money)
 (println (format "%s : %d"(Thread/currentThread) @account))
))

Then, we create a function named myTask that receives an atom object named account as a
parameter and calls the company function 1000 times with the value 100 and the user
function with the value 100, so the final value of the account object should be the same:

(defn myTask ([account]
 (dotimes [i 1000]
 (company account 100)
 (user account 100)
 (Thread/sleep 100)
)))

Finally, we create the myAccount object as an atom object with the initial value of 0 and
create 10 threads to execute the myTask function:

(def myAccount (atom 0))

(dotimes [i 10] (.start (Thread. (fn[] (myTask myAccount)))))

The following screenshot shows you an execution of this example:

In this image you can see how there are different threads running the myTask function and
how the final value of the myAccount Atom is 0 as expected.

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[435]

Agents
An Agent is a reference that is updated asynchronously, at some point in the future. It's
associated with a single storage location throughout its life and you can only change the
value of that location. Agents are an uncoordinated data structure.

You can use the following functions to work with agents:

agent: To create a new Agent object.
send: To establish the new value of the agent. It follows the syntax (send agent
function value) where agent is the name of the agent we want to modify,
function is a function to be executed to calculate the new value of the agent,
and value is the value that will be passed to the function with the actual value of
the agent to calculate the new one.
send-of: You can use this function when you want to use a function to update
the value that is a blocking function (for example, reading a file). The send-of
function will return immediately and the function that updates the value of the
agent continues its execution in another thread. It follows the same syntax as the
send function.
await: Waits (blocking the current thread) until all the pending operations with
the agent have finished. If follows the syntax (await agent) where agent is the
name of the agent we want to wait for.
await-for: You can use this function to wait the number of milliseconds
specified as a parameter for the actualization of an Agent. It returns a boolean
value to indicate if the Agent has been updated or not. It follows the syntax
(await-for time agent) where agent is the name of the agent and time is
the number of milliseconds we want to wait.
agent-error: Returns the exception thrown by an Agent if the Agent fails. It
follows the syntax (agent-error agent) where agent is the name of the
agent.
shutdown-agents: To finish the execution of any running agents. It follows the
syntax (shutdown-agents).

Let's see with an example, how we can work with agents.

First, we create an Agent with an initial value of 300:

(ns example.example3)
(def myAgent (agent 300))

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[436]

Then, we implement a function named myTask. We repeat a process where we use the send
method to first increment the value of the agent 1000 times and then the same method to
decrement them, so the final value of the agent should be the same:

(defn myTask ([a]
 (dotimes [i 1000]
 (send a + 100)
 (send a - 100)
 (println (format "%s : %d"(Thread/currentThread) @a))
 (Thread/sleep 100)
)))

Finally, we create 10 threads that execute the myTask function:

(dotimes [i 10] (.start (Thread. (fn[] (myTask myAgent)))))

The following screenshot shows an output of the execution of this example:

In this screenshot, you can see how there are different threads executing the myTask
function and how the value of the agent is 300 as expected.

Refs
Finally, we come to Ref objects. They are the only coordinated reference type in Clojure and
are a synchronous data structure. They allow you to modify multiple references
concurrently within a transaction, so all the references are modified or none of them are
modified.

You will use the following functions to work with refs:

ref: To create a new Ref object.
alter: This function modifies the value of the reference value in a safe way. It
follows the syntax (alter ref function) where ref is the Ref name you want
to modify and function is a function that will be executed to obtain the new
value of the reference.

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[437]

ref-set: This set establishes the value of a Ref. It follows the syntax (ref-set
ref value) where ref is the name of the ref you want to modify and value is
the new value of the Ref.
conmute: This function also changes the value of a Ref. It follows the syntax
(conmute ref function) where ref is the name of the Ref you want to modify
and function is a function that calculates the new value of the Ref.
dosync: Executes the expression passed as a parameter in a transaction way. If an
exception occurs during the execution of the expression, none of the operations
related to Refs will be executed. On the other hand, the functions alter and
commuted must be executed inside a dosync function. It follows the syntax
(dosync expression) where expression is the expression to execute.

Let's see an example of how to work with Refs.

First, declare two refs named account1 and account2 and initialize them to 0:

(ns example.example4)
(def account1 (ref 0))
(def account2 (ref 0))

Then, define a function named myTask that will receive two refs objects named source and
destination. For 1000 times, we decrement the value of the source and increment the
value of the destination, as it were a transaction between two bank accounts. We use the
alter function to change the value of the refs, so we have to include both calls inside a
dosync function:

(defn myTask ([source, destination]
 (dotimes [i 1000]
 (dosync
 (alter source - 100)
 (alter destination + 100)
)
 (println (format "%s : %d - %d"(Thread/currentThread)
 @source @destination))
 (Thread/sleep 100)
)))

Finally, create 10 threads to call the function myTask where the source is account1 and the
destination is account2, and another 10 threads to call the function myTask where the
source is account2 and the destination is account1:

(dotimes [i 10] (.start (Thread. (fn[] (myTask account1 account2)))))
(dotimes [i 10] (.start (Thread. (fn[] (myTask account2 account1)))))

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[438]

The following screenshot shows the output of an execution of this example:

In this screenshot, you can see the different threads that are executing the myTask function
and how the final value of both references are 0 as expected.

Delays
A Delay is a data structure that is evaluated the first time it is dereferenced to obtain its
value. You can use the following functions to work with Delays:

delay: Use this function to declare a new Delay.
@: This is the dereferenced function. You can use it to read the value of the Delay.
This is the dereferenced function. You can use it to read the value of the Delay.
realized?: This function will return a boolean value to indicate if the Delay
has been initialized or not.

Let's see an example of a Delay.

First, declare three objects named now, otherNow, and later. In this objects we are going to
store a String with the current date. The later object will be defined as a Delay:

(ns example.example5)

(def now (.toString (java.util.Date.)))
(def otherNow (.toString (java.util.Date.)))
(def later (delay (.toString (java.util.Date.))))

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[439]

Then, define the myTest function. First, write the value of the now variable. Then, sleep the
current Thread for five seconds and then write the value of the otherNow and later
variables. With the later variable, we have to use the dereference function to obtain its
value:

(defn myTest ([]
 (println (format "%s" now))
 (Thread/sleep 5000)
 (println (format "%s : %s" otherNow @later))
))
(myTest)

The following screenshot shows the output of an execution of this example:

In this screenshot, you can see how the values of the Delay are not initialized until the
value is obtained using the dereference function.

Futures
A Future is a piece of code that is evaluated in another thread. You can use the following
functions to work with futures:

future: Use this function to create a new Future.
realized?: Use this function to check if the execution of the future has finished.
Dereference function (@): Use this function to obtain the value of the Future.
Calling the dereference function blocks the current Thread until the Future has
finished its execution and returned a value.
deref: Use this function to block the current Thread with a timeout. If the
timeout finish and the Future haven't finished their execution, the function
returns.

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[440]

Let's see an example of the utilization of Futures:

First, declare a function named initializeEnv that sleeps its execution thread for a
second. It writes information about the Thread that is executing the code and finally
returns the "Ok" value:

(ns example.example6)

(def initializeEnv (future
 (println (format "%s : Initializing environment"(Thread/currentThread)))
 (Thread/sleep 1000)
 (println (format "%s : Environment initialized"(Thread/currentThread)))
 "Ok"
))

Then, declare another function called initilizeApp. This function is equal to the
initializeEnv function, but it sleeps its execution Thread for three seconds:

(def initializeApp (future
 (println "Initializing app")
 (Thread/sleep 3000)
 (println "Environment app")
 "Ok"
))

Finally, include some instructions to call the realized? and dereference function:

(println (realized? initializeEnv))
(println (realized? initializeApp))
(println @initializeEnv)
(println (realized? initializeEnv))
(println (realized? initializeApp))
(println @initializeApp)

When you execute the code, you will see how both futures start their execution at the same
time and that first the initializeEnv function ends its execution and the initializeEnv
will return true to the realized? function. Then, the intializeApp will end its execution.

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[441]

Promises
A Promise is a mechanism similar to a Future. The main difference is that it doesn't
evaluate a block of code; you have to explicitly establish its value. The functions you can
use with a Promise are:

promise: Use this function to create a new Promise.
realized?: Use this function to check if the Promise has a value or not.
dereference function (@): Use this function to obtain the value of the Promise.
Calling the dereference function blocks the current Thread until the Promise has
finished its execution and returned a value.
deref: Use this function to block the current Thread with a timeout. If the
timeout finishes and the Promise hasn't finished its execution, the function
returns.
deliver: Use this function to establish the return value of a Promise.

Let's see an example of how to use a Promise. First, define a new Promise named
myPromise:

(ns example.example7)

(def myPromise (promise))

Then, create a function named myTest that will receive a Promise as a parameter. Wait for
five seconds and then verify that the promise has no value yet and establish its value using
the deliver function:

(defn myTest ([p]
 (def now (java.util.Date.))
 (println (format "Start : %s" now))
 (Thread/sleep 5000)
 (def now (java.util.Date.))
 (println (format "End : %s" now))
 (println (realized? p))
 (deliver p "ok")
))

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[442]

Finally, start a Thread to execute the myTest function and use the realized? and
dereference function to check if the Promise has value and to write it:

(def now (java.util.Date.))
(println (format "Main : %s" now))
(println (realized? myPromise))
(println @myPromise)
(def now (java.util.Date.))
(println (format "Main : %s" now))
(println (realized? myPromise))

The following screenshot shows the output of an execution of this example:

Concurrency in Groovy with the GPars
library
Groovy is a dynamic, object-oriented programming language for the Java platform similar
to python, Ruby, or perl. GPars is a concurrency and parallelism framework for Groovy and
Java. It introduces a lot of classes and elements to make parallel programming easier. The
most important are:

Data parallelism: Provides mechanisms that allow you to process data structures
in parallel
fork/join process: Allows you to implement concurrent algorithms using the
divide and conquer technique
Actors: Implement a message-passing based concurrency model
Dataflow: Allows an alternative concurrency model to process data in a
concurrent way
Agents: Inspired by the agents provided in the Clojure programming language
explained in the first section of this book

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[443]

Software transactional memory
Software transactional memory is a mechanism that provides programmers transactional
semantic for accessing data in memory. In this section, you will learn how to apply these
elements in Groovy. Take into account that we don't make an introduction to the Groovy
programming language. You can find a lot of tutorials about the Groovy programming
language on the internet. The main page about GPars is http://gpars.org. You can
download the library and find documentation about how to use them. As we mentioned
before, you also can use this library in the Java programming language.

Using Java elements
Groovy is a programming language that generates byte codes for the JVM. You can use all
the elements of the Java programming language in a Groovy program, including all those
elements related with concurrency.

For example, in the following example you're going to create a Thread. First, declare a
Groovy class named Example1 with a main() method:

class Example1 {
 static main(args) {

Then, create and execute a thread using the start() method of the Thread class. You
specify the code executed by the thread. In this case, we will show the current date, sleep
the current thread for a second, and then write the current date again:

 def task = Thread.start {
 println Thread.currentThread().getName()+": Starting the thread:
 "+new Date();
 Thread.currentThread().sleep(1000);
 println Thread.currentThread().getName()+": Ending the thread:
 "+new Date();
 }

We can use the join() method to wait for the finalization of this Thread:

 task.join();
 println Thread.currentThread().getName()+": Main has ended: "
 +new Date();
 }
}

http://gpars.org/

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[444]

When you execute this application you will see how the thread shows the first message and
a second later the second message. Then, when it has finished its execution, the main()
method shows its message.

Data parallelism
In this section, we're going to include all the elements provided by the Groovy
programming language to process data structures in a concurrent way. The first element we
have to consider is the GParsPool class. This class is an implementation of the JSR-166y
based on the fork/join framework that gives us a very good performance to process data
structures in a concurrent way.

Let's see an example of how we can use the GParsPool class. First, we have to include the
necessary import sentences. Then, create a class name Example2 with a main() method:

import groovyx.gpars.GParsPool
import static groovyx.gpars.GParsPool.withPool
class Example2 {
 static main(args) {

Then, declare a range of number between one and 1000 and use the withPool sentence to
process all those numbers in a parallel way. We use the println method to write the name
of the Thread that is processing that number and the number is processing. We can access
that number using the it variable:

 def numbers = 1..1000;
 println "Example 2 - Part 1"
 withPool {
 numbers.eachParallel {
 println Thread.currentThread().getName() +": "+ it;
 }
 }

Then we use the withPool sentence, but now with a parameter to indicate the maximum
number of threads it can use:

 println "Example 2 - Part 2"
 withPool(4){
 List numberList = numbers.collectParallel { it *it}
 List smallNumberList = numberList.findAllParallel{ it < 100 }
 smallNumberList.eachParallel {
 println Thread.currentThread().getName() +": "+ it;
 }
 }

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[445]

We use three methods provided by Groovy to process the numbers of the range in a parallel
way. With the collectParallel() method we calculate the square of each number. With
the findAllParallel() method we filter the list of numbers to take only those that are
smaller than 100 and, finally, with the eachParallel() method, we process all the
methods of the resultant list.

We can use other methods to process the data of a data structure in a parallel way such as
minParallel(), maxParallel(), or countParallel(). Take a look at the GPars API to
see the details of all these methods.

The following screenshot shows the output of an execution of this application:

Another option provided by the GParsPool class is to call a closure in a different Thread
using the callAsync() or the executeAsyncAndWait() methods. The first method starts
the execution of the closure in a different thread and returns immediately while the other
waits for the finalization of the closure before it returns. Let's see an example of how we can
work with these functions.

First, we include the import sentences and create a new class named Example3 with the
main() method. In the main() method, we create two closures named code1 and code2:

import groovyx.gpars.GParsPool

class Example3 {
 static main(args) {
 Closure code1 = {
 println "Closure 1: "+Thread.currentThread().getName()+": Start:"
 +new Date();
 Thread.currentThread().sleep(1000)
 println "Closure 1: "+Thread.currentThread().getName()+": End: "
 +new Date();
 }
 ...
 Closure code2 = {
 println "Closure 2: "+Thread.currentThread().getName()+": Start:"
 +new Date();

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[446]

 Thread.currentThread().sleep(2000)
 println "Closure 2: "+Thread.currentThread().getName()+": End: "
 +new Date();
 }

First, we call the two closures in a sequential way, using the normal syntax of Groovy:

 println "Closure 1 sequential"
 code1.call();
 println "Closure 2 sequential"
 code2.call();

Then, we use the withPool method of the GParsPool class to execute the code1 closure in
a concurrent way using the callAsync() method, and then the code1 and code2 closures
using the executeAsyncAndWait() method of the GParsPool class:

 GParsPool.withPool {
 println "Closure 1 async";
 code1.callAsync();
 println "Closure 1 and closure 2 async with wait"
 GParsPool.executeAsyncAndWait(code1,code2);
 println "End"
 }
 println "Main end"
 }
}

The following screenshot shows the output of an execution of this example:

You can see how we can easily differentiate the sequential and the concurrent executions of
the closures (with the name of the Thread).

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[447]

Another option with the GParsPool class is using the Map/Reduce programming model to
process in parallel any data structure. When you use the Map/Reduce in Groovy, your data
structure is converted internally in a parallel array and all the methods you use work over
that data structure. It is similar to Stream processing in the Java programming language.

Let's see an example of how to use this functionality. First, introduce the necessary import
sentences and create a new class named Example4 with the main() method. In that
method, declare a range between 1 and 10000:

import groovyx.gpars.GParsPool

class Example4 {

 static main(args) {
 def numbers = 1..10000

Then, use the withPool sentence and the fork/join functionality to process that range in a
parallel way. We use the parallel method to convert the range in a parallel data structure,
the map method to replace each element for its square, the filter method to retain only the
numbers smaller than 100000, and the sum method to sum all the elements of the list:

 GParsPool.withPool {
 int result = numbers.parallel.map{it*it}.filter{it < 100000}
 .sum();
 println result;

Then, we apply other examples of this functionality. Dynamically create another range
between 1 and 1000000 and use the parallel method to convert the range in a parallel
data structure, the filter method to retain only the even numbers, the map method to
replace every number with its square root, and, finally, the collection method to convert
the parallel data structure in a list:

 List numberList = (1..1000000).parallel.filter{it % 2 == 0}
 .map{Math.sqrt it}.collection
 numberList.forEach{
 println it;
 }
 }
 }
}

When you execute this example, you will see the numbers of the output in the console.

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[448]

Finally, the last aspect we're going to learn about the GParsPool class is to use a promise to
obtain the value of an asynchronous function. Let's see an example of how to use this
functionality. First, create a class named Example5 with the main() method and a closure
named code1:

import static groovyx.gpars.GParsPool.withPool;

class Example5 {

 static main(args) {
 Closure code1 = {
 println "Closure 1: "+Thread.currentThread().getName()+": Start:"
 +new Date();
 Thread.currentThread().sleep(1000)
 println "Closure 1: "+Thread.currentThread().getName()+": End: "
 +new Date();
 return new Date().toString();
 }

Then, we use the withPool sentence to execute in an asynchronous way the code1 closure
with the asyncFun() method and then generate a promise with the result of that method.
Finally, we use the get() method of the promise to obtain the result of the code1 closure.
Take into account that the get() method sleeps the calling thread until the closure has
finished its execution:

 withPool {
 def aCode1 = code1.asyncFun();
 def promise = aCode1();
 println "We have call the closure";
 println "The result is : "+promise.get();
 }
 }
}

The following screenshot shows the output of an execution of this example:

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[449]

The fork/join processing
The fork/join implementation provided by GPars is similar to the one provided by Java in
its concurrency API. The main objective of this functionality is to solve a problem using the
divide and conquer technique. The first time you execute the algorithm, with the full
problem, you check the size of the problem. If it's smaller than a predefined size, you solve
the problem directly. Otherwise, you divide the problem into a predefined number of
smaller problems and make asynchronous recursive calls, one for each sub-problem. In each
recursive call, the process is the same. You check the size of the problem and if it's smaller
than the predefined size, you solve it directly; otherwise, you divide the problem again and
make recursive calls again. Once all the recursive calls have ended, the method that started
those calls gets the control again to get the results of each call and groups those results. The
final result is returned. At the end, we have solved a big problem, by grouping the results of
the solution of a lot of small problems.

Take into account that not all the algorithms can be solved using this technique, but if you
can use it, it makes an optimized use of the resources and gives very good performance
results.

The GPars library provides the following methods to work with the fork/join framework:

runForkJoin(): Create a fork/join execution. You have to specify the
parameters of the algorithm and the closure that implements that algorithm. The
recursive calls you make have the same parameters.
forOffChild(): Create a new child task to execute a sub-problem. This task will
be executed in the future. The method sends the task to be scheduled in the
ForkJoinPool that is executing all the tasks, and returns immediately.
runChildDirectly(): Runs a child task within the current thread and returns
when it finishes its execution.
getChildrenResults(): Waits for the finalization of all the children tasks and
returns a List object with their results. You can use this list to calculate the result
that will be returned by the task.

Let's see an example of how to work with the fork/join framework of GPars. We're going to
implement a function that counts the number of files that end with the .log extension that
exists in a directory. First, include the necessary import sentences and create a class named
Example6 with the main() method:

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[450]

import static groovyx.gpars.GParsPool.withPool;
import static groovyx.gpars.GParsPool.runForkJoin;

class Example6 {

 static main(args) {

Then, in the withPool instruction, call the runForkJoin() method passing a File object
as a parameter. This is the path where we are going to start the search of files that end with
the .log extension. We have to specify the code of the algorithm. For the directory we
receive as a parameter, we process all the files and directories that it contains. If the item is a
file, we check if its extension is log. If it is, we increment a counter. If the item is a directory,
we make a recursive asynchronous call using the forkOffChild() method.

When we have processed all the items, we obtain the results of all the children tasks and
sum all the results of those tasks with the counter. The final value is the result returned:

withPool() {
 def count = runForkJoin(new File("c:\\windows")) {file ->
 long count = 0
 file.eachFile {
 if (it.isDirectory()) {
 println "Forking a child task for $it"
 forkOffChild(it)
 } else {
 if (it.getName().endsWith("log")) {
 count++;
 println it.getName();
 }
 }
 }
 return count + (childrenResults.sum(0))
}

Take into account that a children task can have children tasks too and so on. Finally, when
the original call ends, we write the final result:

 println "Total: "+ count;
 }
 }
}

When you execute the example, you will see the total number of files.

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[451]

Actors
Actors implement a message-passing concurrency model. Each actor is an independent
object that sends and receives messages from/to other actors. There's no association between
actors and threads. A thread can execute different actors and an actor can be executed by
different threads. Actors don't have shared-state and GPars guarantees that the code of the
actor will be executed, so no messages will be lost. Memory will also be synchronized each
time a thread is assigned to an actor, so no explicit synchronization is needed. There are two
types of actors:

Stateless actors: Based on the DynamicDispatchActor or the ReactiveActor
classes. They have no track of what messages have arrived before.
Stateful actors: Based on the DefaultActor class. The actor can manage an
internal state and each message can change that state and the way it processes the
messages.

One of the biggest benefits of actors is the throughput you can obtain in these systems. An
actor will be only executed when it has to process a message, so you can have a large
number of actors running with a small number of threads.

When you work with actors, you will use the following methods to make the most common
actions:

send(): This method sends a message to an actor asynchronously. It returns
immediately and doesn't wait for the response.
sendAndWait(): This method sends a message to an actor and waits for the
response.
sendAndContinue(): This method sends a message to an actor and returns
immediately. It receives as a parameter a closure that will be executed when the
response of this message arrives.
sendAndPromise(): This method sends a message to an actor and returns a
promise we can use to get the response of the message.
react(): This method will be called to consume the next message. Usually, it
will be included in a loop sentence to process all the messages an actor receives.
reply(): This method sends a reply to the sender of a message.
forward(): This method allows us to forward a message received to another
actor.
join(): This method waits for the finalization of an actor.

There are different ways to create an Actor.

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[452]

You can use the actor() method of the Actors class. In this case, you specify the code of
the actor using a closure. The actor starts its execution immediately.

You can extend the DefaultActor class and implement the act() method. In this case, we
have to call the start() method of the actor to begin its execution.

You can extend the DynamicDispatchACtor class and implement one or more versions of
the onMessage() method (one version for each type of message the actor can receive).

Finally, an actor has a life cycle and has some methods you can implement to execute
actions on determined states of that life cycle. These methods are:

afterStart()

afterStop()

onTimeOut()

onInterrupt()

onException()

The name of the method is auto explicative, so no additional description is needed.

Let's see three examples that show how we can work with actors. In the first one, we are
only going to create two basic Actor objects that will send a message between them.

Create a class named Example7 with the main() method:

import groovyx.gpars.actor.Actor
import groovyx.gpars.actor.Actors

class Example7 {

 static main(args) {

Then, create an Actor using the actor() method of the Actors class. In the code of the
actor we include the code for the react() method. In our case, when a message arrives, we
write it in the console and then send a response to that message including the name of the
current Thread and the text Ok:

def receiver = Actors.actor {
 println Thread.currentThread().getName()+": Receiver is running"
 react { msg ->
 println Thread.currentThread().getName()+": Recevier: I've
 received a message: "+msg
 reply Thread.currentThread().getName()+": Ok"
 }

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[453]

 println Thread.currentThread().getName()+": Receiver has finished"
}

Then, we create another Actor using the actors() method again. In this case, we send a
message to the other actor using the send() method and we also include the code for the
react() method that will be executed when the actor receives a message. It will write the
message in the console:

def sender = Actors.actor {
 println Thread.currentThread().getName()+": Sender is running"
 receiver.send Thread.currentThread().getName()+": From sender to
 receiver"
 react { msg ->
 println Thread.currentThread().getName()+": Sender: The response
 has arrived: "+msg
 }
 println Thread.currentThread().getName()+": Sender has finished"
}

As we explained before, both actors will start execution immediately. Finally, in the main()
method, we wait for the finalization of both threads using the join() method:

 sender.join();
 receiver.join();
 }
}

The following screenshot shows the output of an execution of this example:

You can see how the sender sends its message that arrives at the receiver, which sends the
response that arrives at the sender.

The second example is an implementation of the producer/consumer problem. First, we are
going to implement the consumer class. Create a class named Consumer and specify that it
implements the DefaultActor class:

import groovyx.gpars.actor.Actor
import groovyx.gpars.actor.DefaultActor

class Consumer extends DefaultActor {

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[454]

Then, implement the act() method that contains the main code of the Actor. We use the
loop sentence to process all the messages and the react() method that will be called for
each message received by the Actor. We pass the parameter 5000 to the react() method.
If the actor waits five seconds without receiving a message, it throws a TimeOut error and
ends its execution. For each message, we only write information about the message and the
sender in the console:

void act() {
 loop {
 react(5000) { msg ->
 println "*****************************";
 println "Thread Name: "+Thread.currentThread().getName();
 println "Sender: "+sender.remoteClass;
 println "Message: "+msg;
 println "*****************************";
 }
 }
}

Then, we implement some of the life cycle methods of the Actor to write in the console
information about those events:

 void afterStart() {
 println "Consumer: After Start";
 }
 void afterStop(List undeliveredMessages) {
 println "Consumer: After Stop";
 println "Undelivered Messages: "+undeliveredMessages.size()
 }
 void onInterrupt(InterruptedException e) {
 println "Consumer: Interrupted"
 e.printStackTrace()
 terminate()
 }
 void onTimeout() {
 println "Consumer: Timeout"
 terminate()
 }
 void onException(Throwable e) {
 println "Consumer: An exception has ocurred"
 e.printStackTrace()
 }
}

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[455]

Now is time to implement the Producer class. Create a class named Producer and specify
that it implements the DefaultActor class. This class will have two attributes with the
name of the Producer and the Consumer to send the messages and a constructor to
initialize them:

import java.lang.invoke.AbstractValidatingLambdaMetafactory
import java.util.List

import groovyx.gpars.actor.DefaultActor
import groovyx.gpars.actor.Actor

class Producer extends DefaultActor {

 private Actor consumer;
 private String name;
 def Producer (Actor consumer, String name) {
 this.consumer = consumer
 this.name = name
 }

Now, implement the act() method with the main code of the Actor. It will send 100
messages to the consumer and ends its execution:

void act() {
 def i;
 for (i = 0; i<100; i++) {
 def msg = Thread.currentThread().getName()
 msg+= ": "+name
 msg+= ": Message "+i;
 consumer.send msg;
 Thread.currentThread().sleep(500);
 }
}

Finally, we write the code of the afterStop() method to write a message in the console:

 void afterStop(List undeliveredMessages) {
 println name+": After Stop";
 }
}

Now, create a class named Example8 with the main() method:

import groovyx.gpars.actor.Actor
import groovyx.gpars.actor.DefaultActor

class Example8 {

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[456]

 static main(args) {
 Consumer consumer = new Consumer();
 consumer.start();

 Producer producer1 = new Producer(consumer,"Producer 1");
 Producer producer2 = new Producer(consumer, "Producer 2");
 producer1.start();
 Thread.currentThread().sleep(300);
 producer2.start();
 consumer.join();
 println "Main end"
 }

}

In the main() method, we create a consumer and two producers and start the three actors
using the start() method. We use the join() method to wait for the finalization of the
consumer actor. That actor will finish five seconds after the finalization of the producers
sending a TimeOut exception

The following screenshot shows the output of an execution of this example:

You can see how the producers end its execution and write the message of the
afterStop() method. Then, the consumer has a TimeOut and executes the methods
onTimeOut() and afterStop(). Then, the main program ends its execution.

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[457]

The last example about actors will show you how to work with stateless actors. First, create
a class named Event with two attributes: a String attribute named msg and a Date
attribute named date:

class Event {
 String msg;
 Date date;
 @Override
 public String toString() {
 return "Event: "+msg+": on "+date;
 }
}

Now, create a class named Logger and specify that it extends the
DynamicDispatchActor. We implement three versions of the onMessage() method that
receives respectively an Event class, a String, and an Exception. We only write in the
console information about the kind of message it has received:

class Logger extends DynamicDispatchActor {

 def onMessage (Event event) {
 println "Logger: "+Thread.currentThread().getName()+": "+event;
 replyIfExists "Logger: Event received";
 }
 def onMessage(String msg) {
 println "Logger: "+Thread.currentThread().getName()+
 ": Direct mgs: "+msg;
 replyIfExists "Logger: Direct msg received";
 }
 def onMessage(Exception e) {
 println "Logger: "+Thread.currentThread().getName()+": Error:
 "+e.getLocalizedMessage();
 replyIfExists "Logger: Error received"
 }
}

Finally, we create a class named Example9 with the main() method. First, we create a
Logger actor and start its execution with the start() method:

import groovyx.gpars.actor.Actor
import groovyx.gpars.actor.Actors

class Example9 {
 static main(args) {
 Logger logger = new Logger();
 logger.start();

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[458]

Then, we create another actor with the actor() method of the Actors class. In the code, we
send three messages to the logger class, one of each type, and include the code to process
the three responses:

def tester = Actors.actor {
 println "Tester: "+Thread.currentThread().getName()+
 ": is running"
 loop(3) {
 react(1000) { msg ->
 println "Tester: "+Thread.currentThread().getName()+
 ": I've received a message: "+msg
 }
 }
 Event event = new Event()
 event.msg = "I'm an event"
 event.date = new Date()
 logger.send event
 logger.send "I'm a message"
 Exception e = new Exception("I'm an exception")
 logger.send e;
 println "Tester: "+Thread.currentThread().getName()+
 ": Tester has finished"
}

Finally, we wait for the finalization of the tester actor using the join() method, stop the
logger actor using the stop() method, and wait for its finalization using the join()
method:

 tester.join();
 logger.stop();
 logger.join();
 println "Main End"
 }
}

The following screenshot shows the output of an execution of this example:

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[459]

Agent
An Agent protects a mutable data object that can be shared between threads in a safe way.
The agent accepts messages and processes them asynchronously. Messages are functions or
Groovy closures and will be executed inside the agent. The return value of the function or
the closure will be the new value/state of the agent. The function or the closure will receive
as a parameter the current value/state of the agent.

The commands we send to an agent are stored in order and processed one by one, so no
race condition will occur.

To create an agent, you create a new object of the Agent class parameterized with the type
of the value stored in the agent.

When you work with agents, you will normally use the following methods:

send(): This method sends a command to the agent
addListener(): This method adds a listener that will be notified each time the
value of the agent changes
addValidator(): This method adds a validator that is similar to a listener, but
can reject a change in the value of the Agent throwing an Exception

Let's implement an example to see how to work with agents. First, create a class named
Account with an internal integer attribute named value, a method named increment() to
increment the value of the attribute, a method named decrement() to decrement the value
of the attribute, and a method to return the value of the attribute:

class Account {
 private int value = 0;
 def void increment (int amount) {
 println "Account.increment: "+Thread.currentThread().getName()+": "
 +amount;
 value+=amount
 }
 def void decrement (int amount) {
 println "Account.decrement: "+Thread.currentThread().getName()+": "
 +amount;
 value-=amount
 }
 def int getValue() {
 return value;
 }

}

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[460]

Then, create a class named Example10 with the main() method. Create a new Agent that
will store an Account object:

class Example10 {

 static main(args) {

 Agent agent = new Agent<Account>(new Account())

Then, create an Actor that will call 100 times to the increment() method of the account
object of the agent. You can use the it variable to access the current value of the Agent:

def incrementer = Actors.actor {
 for (def i=0; i<100; i++) {
 agent.send {it.increment(1000)}
 }
}

Now, create another Actor. This actor will call 99 times the decrement() method of the
account object stored in the agent:

def decrementer = Actors.actor {
 for (def i=0; i<99; i++) {
 agent.send {it.decrement(1000)}
 }
}

Finally, wait for the finalization of both actors and write the final value of the Agent:

 incrementer.join()
 decrementer.join()
 println "Final value: "+agent.val.getValue()
 }
}

If you execute this example, you will see how the result will be 1000 (100 increments and 99
decrements).

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[461]

Dataflow
Dataflows provide safe channels to share data between producers and consumers. The
most basic element of a dataflow is dataflow variables. You just create an object of the
Dataflows class and then we can define variables on it. These variables have two
important characteristics:

You can only set the value once
When a task tries to use the value of a dataflow's variable, its execution thread is
blocked until the variable has a value

The benefits you can obtain with dataflow variables are:

You don't have race conditions
You don't need to use locks or other synchronization mechanisms explicitly
If there's a deadlock provoked by dataflow's variables, you can determine its
cause

Let's see an example of how dataflow variables work. First, create a class named Example1
with a main() method:

import static groovyx.gpars.dataflow.Dataflow.task;
import java.util.concurrent.TimeUnit
import groovyx.gpars.dataflow.Dataflows;

class Example11 {

 static main(args) {

Now, create a Dataflows object and a Date object with the starting date of the execution of
this method:

def store = new Dataflows()
def mainStart = new Date();
println "Main: Start "+mainStart

Now, we start a logical task that will be executed by another thread using the task function.
We sleep its execution thread for one second and then create a variable in our Dataflows
object and assign to it the value 3:

task {
 TimeUnit.SECONDS.sleep(1)
 store.x = 3
}

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[462]

Now, we create another task like the previous one. In this case we sleep its execution thread
for two seconds and we assign to it a variable named y, with the value 4:

task {
 TimeUnit.SECONDS.sleep(2)
 store.y = 4
}

Then, we create a third task that will calculate the sum between the variables x and y and
store that value in another dataflow variable called z:

task {
 def start = new Date()
 println "Calculus Task: "+start
 store.z = store.x + store.y
 def end = new Date()
 println "Calculus Task: "+end
}

Finally, in the main() method, we write the value of the variable z:

 println "Main: The final result is: "+store.z
 println "Main: End"
 }
}

The following screenshot shows the output of an execution of this example:

We can also create an object of the DataflowVariable class and assign a value to it using
the << operator. For example, create a class named Example13 with a main() method and
create an object of the DataflowVariable class named data:

import static groovyx.gpars.dataflow.Dataflow.task;
import java.util.concurrent.TimeUnit
import groovyx.gpars.dataflow.DataflowVariable;
class Example13 {

 static main(args) {
 def data = new DataflowVariable()

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[463]

Now, create a task that sleeps its execution thread for two seconds and assign the value 2 to
the variable using the << operator:

task {
 println Thread.currentThread().getName()+": Wait two seconds to
 set the value"
 TimeUnit.SECONDS.sleep(2);
 data << 2;
}

Finally, in the main() method, include a sentence to write the value of the data variable:

 println Thread.currentThread().getName()+" : Bind handler : "
 +data.val;
 }
}

When you execute this example, you will see the message written by the task and two
seconds later the message written by the main() method with the value of the
DataflowVariable object.

Another element provided by dataflows is the Dataflow Broadcasts. They allow us to send
data between a producer and a consumer as if there were a queue between them. It offers a
publish-subscription mechanism to have one or more producers and one or more
consumers.

Let's see an example of how this mechanism works. First, create a class name Producer. It
will have two private attributes: a DataflowBroadcast object named broadcast and a
String object named name. Use the constructor of the class to initialize them:

import java.util.concurrent.TimeUnit
import groovyx.gpars.dataflow.DataflowBroadcast;

class Producer {

 private DataflowBroadcast broadcast
 private String name
 public Producer (DataflowBroadcast broadcast, String name) {
 this.broadcast = broadcast
 this.name = name
 }

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[464]

Now, implement a method named execute(). In this method, write 100 String objects
into the broadcast object using the << operator. Sleep the execution thread for 500
milliseconds between each message:

 public void execute() {
 for (int i=0; i<100; i++) {
 def msg = name + " MSG "+i+" : "+new Date();
 broadcast << msg
 TimeUnit.MILLISECONDS.sleep(500);
 }
 }
}

Now, create a class named Consumer. It will have the same attributes as the Producer
class. Use the constructor of the class to initialize them:

import groovyx.gpars.dataflow.DataflowBroadcast
import groovyx.gpars.dataflow.DataflowReadChannel

class Consumer {

 private DataflowBroadcast broadcast
 private String name
 public Consumer (DataflowBroadcast broadcast, String name) {
 this.broadcast = broadcast
 this.name = name
 }

Now, implement the execute() method. First, create an object of the
DataflowReadChannel class to read the values from the DataflowBroadcast. Then,
write 200 messages from it using the val function. This function will sleep the current
thread until new data is available in the DataflowBroadcast:

 public void execute() {
 DataflowReadChannel stream = broadcast.createReadChannel()
 for (int i=0; i<200; i++) {
 println "Consumer "+name+": "+stream.val
 }
 }
}

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[465]

We have the producer and the consumer. Now it's time to put them to work. Create a class
named Example12 with a main method. We create a DataflowBroadcast object, two
producers, and three consumers. Create a thread to execute each producer and each
consumer. Then, wait for their finalization using the join() method:

import groovyx.gpars.dataflow.DataflowBroadcast
import static groovyx.gpars.dataflow.Dataflow.task

class Example12 {

 static main(args) {
 DataflowBroadcast dataflow = new DataflowBroadcast()
 def producer1, producer2, consumer1, consumer2, consumer3
 Thread thread1 = Thread.start {
 producer1 = new Producer(dataflow, "Producer 1")
 producer1.execute()
 }
 Thread thread2 = Thread.start {
 producer2 = new Producer(dataflow, "Producer 2")
 producer2.execute()
 }
 Thread thread3 = Thread.start{
 consumer1 = new Consumer(dataflow, "Consumer 1")
 consumer1.execute()
 }
 Thread thread4 = Thread.start {
 consumer2 = new Consumer(dataflow, "Consumer 2")
 consumer2.execute()
 }
 Thread thread5 = Thread.start {
 consumer3 = new Consumer(dataflow, "Consumer 3")
 consumer3.execute()
 }
 thread1.join()
 thread2.join()
 thread3.join()
 thread4.join()
 thread5.join()
 println "Main: end"
 }
}

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[466]

The following screenshot shows the output of an execution of this example:

You can see how each message generated by a producer arrives to the three consumers.

Another functionality provided by dataflows is the option to select a value from multiple
channels using the select() function. This function receives as parameters a list of
channels, and it selects one for all the channels that have a value to read. It returns a
SelectResult object with the value returned and information about the channel it has
selected. This mechanism is very configurable to, for example, prioritize some channels over
others.

Let's see an example of how this mechanism works. First, create a class named Example14
with the main() method. Create three DataflowVariable objects named source1,
source2, and source3:

import static groovyx.gpars.dataflow.Dataflow.task
import static groovyx.gpars.dataflow.Dataflow.select
import java.util.concurrent.TimeUnit
import groovyx.gpars.dataflow.DataflowVariable

class Example14 {
 static main(args) {

 def source1 = new DataflowVariable()
 def source2 = new DataflowVariable()
 def source3 = new DataflowVariable()

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[467]

Now, create three tasks to give a value to each data source. Each task will sleep its execution
thread for a different time before assigning a value to its DataflowVariable:

task {
 TimeUnit.SECONDS.sleep(3);
 source1 << "source1"
}

task {
 TimeUnit.SECONDS.sleep(5);
 source2 << "source2"
}

task {
 TimeUnit.SECONDS.sleep(1);
 source3 << "source3"
}

Now, use the select function to obtain a value from these data sources and write it in the
console:

 def result = select([source1, source2, source3])
 println "Main: "+result.select()
 }

}

The following screenshot shows the output of an execution of this example:

In this case, the source3 object is the one that gets the value first, after one second, so it is
the one returned by the select function.

Finally, the last mechanism of dataflows we're going to analyze is operators. Operators
receive values from input channels and generate new values that are written to output
channels. All these channels are dataflow's variables. An operator waits for all input
channels until it starts its execution.

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[468]

Let's see an example of how this mechanism works. Create a class named Example15 with a
main() method. Create four DataflowVariable objects named a, b, c, d:

import groovyx.gpars.dataflow.DataflowVariable;
import static groovyx.gpars.dataflow.Dataflow.operator;
import java.util.concurrent.TimeUnit

class Example15 {

 static main(args) {

 def a = new DataflowVariable();
 def b = new DataflowVariable();
 def c = new DataflowVariable();
 def d = new DataflowVariable();

Now create a new operator named op using the operator command. It receives three inputs,
the dataflows variables a, b, and c, and returns the value for the dataflow variable d. We
establish the value of the output using the bindOutput function:

def op = operator(inputs: [a, b, c], outputs: [d]) {x, y, z ->
 println "Operator"
 bindOutput 0, x + y + z
}

Finally, we assign the value for the a, b, and c variables and write the value of the
DataflowVariable in the console using the val property of the variable d:

 a << 3;
 b << 5;
 c << 7;
 println "Main: "+d.val
 }
}

When we assign the value to the three DataflowVariable objects, the operator executes its
code. Once it finishes, the DataflowVariable d has its value and is written in the last
sentence of the main() method.

The following screenshot shows the output of an execution of this example:

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[469]

Concurrency in Scala
Scala is a general purpose multi-paradigm programming language that includes
characteristics of object-oriented and functional programming. Its code is compiled to Java
byte code. It provides Java interoperability, so you can use elements of Java (including the
Java Concurrency API) in Scala code and libraries written in Scala in Java programs.

As we mentioned with Clojure and Groovy, the main purpose of this section is not to
provide an introduction to the Scala programming language and its installation and
configuration. You can download the tools to work in Scala from
https://www.scala-lang.org/. You can install a plug-in to get support for Scala in your
IDE. Eclipse, for example, has the Scala IDE plug-in that you can install via the Eclipse
Marketplace.

The Scala concurrency model is based on Futures and Promises. A future stores a value that
doesn't exist yet and will be calculated by an asynchronous task that will be executed by
another thread. A Future uses a non-blocking mechanism and makes use of callbacks to
process the value when it's available (or when an error occurs). A promise is a mechanism
that allows you to complete (gives a value) a Future.

A very important element in the Scala concurrency API is the ExecutionContext object.
It's responsible for executing the Future objects started in an application. By default, it is
supported by a ForkJoinPool of the Java Concurrency API, but you can create a different
one. For most of your needs, you can use the default ExecutionContext, including the
following sentence:

import ExecutionContext.Implicits.global

This sentence must be included in the import section of your code

Future objects in Scala
As we mentioned before, a Future stores a value that doesn't exist yet, but will be available
at some point in the future. This value will be calculated by an asynchronous task that will
be executed by another thread. Most of the time, you will specify that task when you define
the Future and the task will be scheduled for its execution that can begin anytime in the
future.

Futures don't use a blocking mechanism to get their result. You can associate one or more
callback functions that will be executed when the Future has a value or an exception occurs
during its process.

https://www.scala-lang.org/

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[470]

Futures have two possible return values. If the task ends its execution without errors and
returns a value, we say that the Future has been successfully completed and will execute
the successful callback. When a Future throws an Exception, we say that the Future
failed its execution and the failure callback is executed.

The easiest way to create a Future is using the apply() method of the Future class. This
method creates and schedules an asynchronous computation that will execute the code that
is specified in the apply() method. This method returns the Future object.

We can associate the different Future callback functions to process its result. These
callbacks are:

onComplete: This function is called when the Future ends its execution, no
matter if it ends successfully or with error. Inside the code of this function, you
should include code to distinguish if the Future finished with error or not.
onSuccess: This function is called when the Future ends its execution
successfully.
onFailure: This function is called when the Future ends its execution throwing
an exception.

Let's see some examples of how to work with Futures in Scala. Create a class named Task
and a method named doAction(). This method will receive a String and an Int as
parameters and will return a String. Internally, it writes information about the Thread
that is executing the task, sleeps the thread for the number of seconds specified in the
parameters, and returns a String object:

class Task {
 def doAction(name : String, number: Int) : String = {
 var result : String = "";
 println(Thread.currentThread().getName()+": "+name+": Starting
 execution");
 TimeUnit.SECONDS.sleep(number);
 println(Thread.currentThread().getName()+": "+name+": End
 execution");
 result = name +" has been sleeping for " + number + " seconds ";
 return result;
 }
}

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[471]

Now, let's make some tests with the Future class. First, include all the necessary classes for
this example and create an object named TestConcurrency with the main() method:

import scala.concurrent.ExecutionContext
import java.util.concurrent.ThreadPoolExecutor
import java.util.concurrent.Executors
import scala.concurrent.Future
import ExecutionContext.Implicits.global
import scala.util.{Success, Failure}
import java.util.concurrent.TimeUnit

object TestConcurrency {
 def main(args: Array[String]) {

Then, create 10 Future objects using the Future class. Each Future will create a Task
object and call the doAction() method:

for (i <- 1 to 10) {
 val result : Future[String] = Future {
 var task : Task = new Task();
 task.doAction("Task "+i,i);
 }

Then, associate the onComplete callback to the result Future object. If the Future finishes
with an Exception (case Failure), we write a message. Otherwise, we write the value
returned by the Future:

 result onComplete {
 case Success(value) => println(value)
 case Failure(e) => println("An error has occured: "
 +e.getMessage)
 }
 }
 TimeUnit.SECONDS.sleep(20)
 }
}

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[472]

The following screenshot shows the output of an execution of this example:

Now, create a class named TestConcurrency2. This class is similar to the
TestConcurrency class, but with one important difference. In this case, we use two
different callback functions. The onSuccess() callback function that will be called when
the Future ends successfully. The onFailure() method will be called if the Future ends
with an Exception:

import scala.concurrent.ExecutionContext
import java.util.concurrent.ThreadPoolExecutor
import java.util.concurrent.Executors
import scala.concurrent.Future
import ExecutionContext.Implicits.global
import scala.util.{Success, Failure}
import java.util.concurrent.TimeUnit

object TestConcurrency2 {
 def main(args: Array[String]) {
 for (i <- 1 to 10) {
 val result : Future[String] = Future {
 var task : Task = new Task();
 task.doAction("Task "+i,i);
 }
 result onSuccess {
 case value => println(value);
 }
 result onFailure {
 case e => println("An error has ocurred: "+e.getMessage);
 }
 }
 TimeUnit.SECONDS.sleep(20)
 }
}

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[473]

Now we're going to implement the same version, but using our ExecutionContext.
Create a class named TestConcurrency3. To create the ExecutionContext object, use the
fromExecutor() method of the ExecutionContext class. We pass these methods an
Executor object that will be used to execute the tasks of the ExecutionContext. We use
the newFixedThreadPool() method of the Executors class to create an Executor with
10 execution threads:

import scala.concurrent.ExecutionContext
import java.util.concurrent.ThreadPoolExecutor
import java.util.concurrent.Executors
import scala.concurrent.Future
import scala.util.{Success, Failure}
import java.util.concurrent.TimeUnit

object TestConcurrency3 {
 def main(args: Array[String]) {
 implicit val ec : ExecutionContext = ExecutionContext
 .fromExecutor(Executors.newFixedThreadPool(10));
 for (i <- 1 to 10) {
 val result : Future[String] = Future {
 var task : Task = new Task();
 task.doAction("Task "+i,i);
 }
 result onSuccess {
 case value => println(value);
 }
 result onFailure {
 case e => println("An error has ocurred: "+e.getMessage);
 }
 }
 TimeUnit.SECONDS.sleep(20)
 }
}

Now, let's make a test about what happens when a Future throws an Exception. Create a
class named Task and add to it a method named doAction() that receives two parameters,
a String named name, and an Int named number. If number is equal to three, the
doAction() method throws an Exception. Otherwise, we follow the same behavior of the
Task class explained before:

class Task {
 def doAction(name : String, number: Int) : String = {
 var result : String = "";
 if (number == 3) {
 throw new Exception("Error");
 }

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[474]

 println(Thread.currentThread().getName()+": "+name+": Starting
 execution");
 TimeUnit.SECONDS.sleep(number);
 println(Thread.currentThread().getName()+": "+name+": End
 exeuction");
 result = name +" has been sleeping for " + number + " seconds ";
 return result;
 }
}

Then, we create the TestConcurrency class that creates 10 Future objects and associate to
them the onComplete() callback:

object TestConcurrency {
 def main(args: Array[String]) {
 // First example with error
 for (i <- 1 to 10) {
 val result : Future[String] = Future {
 var task : Task = new Task();
 task.doAction("Task "+i,i);
 }
 result onComplete {
 case Success(value) => println(value)
 case Failure(e) => println("An error has occured: "
 +e.getMessage)
 }
 }
 TimeUnit.SECONDS.sleep(20)
 }
}

The following screenshot shows the output of an execution of this example:

When the doAction() method is executed with the parameter 3, the method throws an
Exception and the callback associated with that Future executes the Failure case of the
onComplete() method, writing the error message you can see in the preceding screenshot.

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[475]

In the previous examples, we have associated only one callback per event (success or
failure), but you can associate more than one callback per event. Let's see an example. You
can use one of the previous Task objects, but let's create a new TestConcurrency class. In
this case, we associate the onComplete() and onSuccess() callback functions to each
Future. You can even associate more than one callback of the same type (more than one
onComplete(),onSuccess() or onFailure()) to one Future:

object TestConcurrency {
 def main(args: Array[String]) {
 for (i <- 1 to 10) {
 val result : Future[String] = Future {
 var task : Task = new Task();
 task.doAction("Task "+i,i);
 }
 result onComplete {
 case Success(value) => println(value)
 case Failure(e) => println("An error has occured: "
 +e.getMessage)
 }
 result onSuccess {
 case value => println("Second callback: "+value);
 }
 }
 TimeUnit.SECONDS.sleep(20)
 }
}

The following screenshot shows the output of an execution of this example:

Another option that Future objects give us is to link the execution of two futures; that is to
say, they make sure that a Future starts its execution after the end of the execution of the
other Future, and uses the result of the first one as a parameter in the second one. Let's see
an example of how to use this functionality.

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[476]

First, create a class named Step1 with a method named doAction() that receives a
String and a number as parameters and returns a String:

class Step1 {
 def doAction(name : String, number: Int) : String = {
 var result : String = "";
 println(Thread.currentThread().getName()+": "+name+": Step 1:
 Starting execution");
 TimeUnit.SECONDS.sleep(number);
 println(Thread.currentThread().getName()+": "+name+": Step 1: End
 exeuction");
 result = name +" has been sleeping for " + number + " seconds ";
 return result;
 }
}

Then, create a class named Step2 similar to the previous one:

class Step2 {
 def doAction(name: String, msg : String) : String = {
 var result : String = "";
 println(Thread.currentThread().getName()+": "+name+": Step 2:
 Starting execution");

 result = name +" has executed Step 2: "+msg;
 println(Thread.currentThread().getName()+": "+name+": Step 2: End
 exeuction");
 return result;
 }
}

Finally, create an object named TestConcurrency with a main() method and a loop that
will be executed 10 times:

object TestConcurrency {
 def main(args: Array[String]) {

 for (i <- 1 to 10) {

Then, create the first Future that will create an object of the Step1 class and call the
doAction() method:

var name : String = "Task "+i;
val result : Future[String] = Future {
 var task : Step1 = new Step1();
 task.doAction(name,i);
}

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[477]

Then, link a Future with the result Future object using the map() function. This future
creates an object of the Step2 class and calls the doAction() method:

val result2 = result map { value =>
 var task : Step2 = new Step2();
 task.doAction(name, value);
}

The value parameter specified in the body of this Future is the result of the first one.

Finally, associate an onSuccess() callback with the second Future to write the result in
the console. The following screenshot shows the output of an execution of this example:

You can see how the second Future doesn't start its execution until the first one has
finished its execution.

Promises
A Promise is a mechanism that can be used to complete a Future. First, we create an object
of the Promise class and then we use that object to create the Future this promise will
complete. We can associate callback functions with that Future so, when we assign a value
to the Promise using the success or failure methods, the Future is completed and the
callback functions will be executed.

Let's see an example of how this mechanism works. Create an object named
TestConcurrency with a main() method and create a Promise and a Future object:

object TestConcurrency {

 def main(args: Array[String]) {

 val promise : Promise[String] = Promise[String]()
 val future : Future[String] = promise.future;

Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala

[478]

We use the Promise constructor to create the Promise object and the future() method of
the Promise object to create the Future associated with that Promise.

Now, let's associate a callback function to the future object:

future onSuccess {
 case value => println("The future has been completed: "+value)
}

After that, we executed another Future to complete the promise. In this case, we use the
success() method to assign a value to the Promise and complete the Future:

Future {
 promise success "Hola Mundo";
}

Finally, we wait for the finalization of the Future for 10 seconds using the ready()
method of the Await class:

 Await.ready(future, 10 seconds);
 }
}

When you execute this example, you will see the message written by the onSuccess()
function. When you execute the success method of the Promise, the future is completed
and its onSuccess() callback is executed.

Summary
Java is not the only programming language that you can use to make programs to the JVM.
There are a lot of different programming languages, of different paradigms, that can be
used for that purpose. Most of this has its own mechanism to implement concurrent
applications.

In this chapter, we have seen how you can implement concurrent applications using three
languages of the JVM. First, Clojure, which is an implementation of the Lisp functional
programming language that offers different mechanisms to write concurrency applications
as Atoms, agents, references, delays, futures, and promises. Then, Groovy with the GPars
library, offers us a lot of different possibilities with its actors, its dataflows, and its
concurrent data structures. Finally, we have Scala and its concurrency model based on
Futures and Promises.

Index

@
@ (dereferencing) function 433

A
actors
 stateful actor 451
 stateless actors 451
 working with 451, 452, 454
advanced characteristics, executors
 cancellation of tasks 97
 execution of tasks, scheduling 97
 executor methods, overriding 98
 initialization parameters, changing 98
advanced server application
 about 99
 command classes 106
 ServerExecutor class 100
agent
 about 459
 working with 459
Apache Foundation 261
atomic operation 10
atomic variable 10

B
Bank Marketing dataset
 download link 65
 reference 65
basic classes, Java concurrency API
 ThreadLocal class 18
 Runnable interface 18
 Thread class 18
best-matching algorithm
 about 148
 common classes 133
 concurrent version 136

 implementing 132
 second concurrent version 141
 serial version 134

C
cache system
 CacheItem class 86
 CleanCacheTask class 86
 ParallelCache class 86
Callable interface 130, 131
centralized system, for event notification
 about 336
 Consumer class 337
 Event class 336
 Main class 340
 Producer class 336
characteristics, Executor framework
 concurrency, in a client/server environment 63
 k-nearest neighbors algorithm 63
City Distance Datasets
 reference 190
classes, executor
 Callable interface 20
 Executor and ExecutorService interface 19
 executors 20
 Future interface 20
 ScheduledThreadPoolExecutor 20
 ThreadPoolExecutor 19
classes
 ArrayBlockingQueue 359
 ConcurrentHashMap 360
 ConcurrentLinkedDeque 359
 ConcurrentLinkedQueue 358
 DelayQueue 359
 LinkedBlockingDeque 358
 LinkedBlockingQueue 358
 LinkedTransferQueue 359

[480]

 PriorityBlockingQueue 359
client part
 ConcurrentClient class 117
 MultipleConcurrentClient class 117
Clojure
 about 430
 concurrency 431
 Delays 438
 Future 439
 Java elements, using 431
 Promises 441
 reference 431
 reference types 432
 refs 436
 refs, functions 436
clustering algorithm 152
coarse-grained granularity 9
Coffman's conditions
 circular wait 12
 hold and wait condition 12
 mutual exclusion 12
 no pre-emption 12
command classes
 client part 116
 concrete commands 108
 ConcurrentCommand class 106
 server part 110
common classes, keyword extraction algorithm
 Document class 175
 DocumentParser class 176
 Keyword class 175
 Word class 174
compare-and-swap (CAS) 9
components, executors
 Executor interface 64
 Executors class 64
 ExecutorService interface 64
 ThreadPoolExecutor class 64
components, log system
 logger 89
 LogTask 89
concurrency applications
 About tab 416
 Classes tab 411
 MBeans tab 415

 Memory tab 409
 monitoring 404, 407
 Overview tab 407
 testing 417
 testing, with Java Pathfinder 421
 testing, with MultithreadedTC 417, 420
 Threads tab 410
 VM summary tab 412
concurrency design patterns
 about 22
 barrier 24
 double-checked locking 24
 Multiplex design pattern 24
 mutex 23
 read-write lock 26
 rendezvous 22
 signaling 22
 thread local storage 27
 thread pool 26
concurrency objects
 executor, monitoring 399, 400
 fork/join framework, monitoring 401
 lock, monitoring 397
 monitoring 395
 phaser, monitoring 402
 Stream API, monitoring 403
 thread, monitoring 395
concurrency, client/server environment
 about 75
 concurrent server, components 84
 parallel version 79, 80
 serial version 76
 server application, serial version 76
concurrency
 concepts 7
 versus parallelism 8
concurrent algorithms, designing
 sequential version, creating 14
concurrent algorithms
 designing, methodology 13
 designing, tips 27
concurrent application, considerations
 efficiency 17
 portability 18
 scalability 18

[481]

 simplicity 18
concurrent applications
 implementing, mechanism 62
concurrent data structures
 about 354, 355
 atomic variables 370
 blocking data structure 21, 94
 blocking data structures 354
 classes 355, 358
 ConcurrentMap 357
 deque 356
 interfaces 355
 new features 360
 non-blocking data structure 94
 non-blocking structures 21, 354
 TransferQueue 358
 variable handle 371
concurrent server
 cache system 86
 components 84
 log system 89
 status command 85
 two solutions, comparing 91
concurrent version, best-matching algorithm
 BestMatchingBasicConcurrentCalculation class

138

 BestMatchingBasicTask class 137
concurrent version, data filtering algorithm
 ConcurrentMain class 242
 ConcurrentSearch class 241
 elements 235
 IndividualTask class 237
 ListTask class 239
 TaskManager class 236
concurrent version, genetic algorithm
 ConcurrentGeneticAlgorithm class 201
 ConcurrentGeneticTask class 199, 201
 ConcurrentMain class 203
 GeneticPhaser class 198
 SharedData class 197
concurrent version, inverted index
 ConcurrentIndexing class 159
 IndexingTask class 156
 InvertedIndexTask class 157
concurrent version, k-means clustering algorithm

 AssignmentTask 223
 ConcurrentKMeans class 226
 ConcurrentMain class 228
 UpdateTask 223
concurrent version, merge sort algorithm
 ConcurrentMergeSort class 251
 ConcurrentMetaData class 252
 MergeSortTask class 249
concurrent version, numerical summarization

application
 ConcurrentDataLoader class 263
 ConcurrentMain class 272
 ConcurrentStatistics class 264
 highest invoice amounts 270
 list of countries, obtaining for product 266
 multiple data filter 268
 products between unit price between 1 and 10,

obtaining 271
 quantity product 267
concurrent version, social network
 CommonPersonMapper class 323
 ConcurrentMain class 328
 ConcurrentSocialNetwork class 324
 two versions, comparing 329
ConcurrentHashMap
 compute() method 365
 example 365
 forEach() method 361
 reduce() method 363
 search() method 362
 using, example 360
ConcurrentLinkedDeque class
 removeIf() method 367
 spliterator() method 367
 using, example 367
ConcurrentStatistics class
 products, obtaining from customers from United

Kingdom 264
 statistical information, obtaining 265
consumer attribute 344
Consumer class
 categories attribute 347
 name attribute 347
 subscription attribute 347
consumerData attribute 344

[482]

consumers attribute 345
critical section 8

D
Data Access Object (DAO) 76
data collection
 collect() method 300
 streams, using 299
data decomposition 15
data filtering algorithm
 about 231
 common features 232
 concurrent version 235
 serial version 232
 versions, comparing 242
data structures 353
data, searching without index
 about 302
 advanced search 308
 basic classes 303
 basic search 305
 ConcurrentObjectAccumulator class 309
 ConcurrentStringAccumulator class 307
 implementations, comparing 311
 Product class 303
 ProductLoader class 304
 Review class 304
 serial implementation 310
Dataflow Broadcasts 463
dataflows 461, 467
dataflows variables 461
debug tool 417
design pattern 22
designing tips, concurrent algorithms
 atomic variables, using instead of

synchronization 33
 blocking operations, avoiding 35
 concurrency at highest possible level,

implementing 28
 correct independent tasks, identifying 27
 deadlocks, avoiding by ordering locks 32
 execution order 30
 immutable objects, using 31
 lazy initialization, precautions 35
 local thread variables, preferring 30

 locks, holding 34
 parallelizable version of algorithm, finding 31
 scalability 28
 thread-safe APIs, using 29
Document class 152
Document Frequency (DF) 172
DocumentParser class 153

E
elements, parallel streams
 collectors 21
 lambda expressions 21
 optional 20
 Stream interface 20
Euclidean distance 65
executor attribute 345
executors
 about 63
 advanced characteristics 96
 characteristics 63
 methods, overriding 128
exist algorithms 149

F
Factory 22
fairness 13
file search example
 about 53
 common classes 53
 concurrent example 54
 serial version 54
 solutions, comparing 59
fine-grained granularity 9
first version, collect() method
 accumulator 300
 combiner 300
 supplier parameter 300
First-In-First-Out (FIFO) 355
Flow.Publisher interface 333
Flow.Subscriber interface 333
Flow.Subscription interface 333
fork/join framework
 advantages 209
 characteristics 210
 components 211

[483]

 limitations 211
 methods 253
full document query approach
 QueryResult class 280
 about 277
 basicMapper() method 279
 Token class 280
Future interface 131
Futures 469

G
genetic algorithm
 about 188, 189
 characteristics 190
 common classes 191
 conclusions 205
 concurrent version 196
 crossover phase 189
 GeneticOperators class 192
 individual class 191
 Kn57 dataset 205
 Lau15 dataset 204
 mutation 189
 selection phase 189
 serial version 193
 solutions, comparing 203
Google Code 417
GPars library
 actors 442
 agents 442
 concurrency, in Groovy 442
 data parallelism 442
 dataflow 442
 fork/join process 442
 reference 443
Groovy
 about 430, 442
 actors 451
 data parallelism 444, 447
 fork/join processing 449
 Java elements, using 443

H
Hadoop 262
HTML file

 ContentMapper class 284
 generating, with results 282

I
immutable object 10
information retrieval search tool
 about 275
 average tfxidf value, obtaining in file 290
 ConcurrentMain class 292
 data, obtaining from inverted index 289
 full document query approach 277
 HTML file, generating with results 282
 inverted index, preloading 286
 maximum and minimum tfxidf values, obtaining in

index 291
 own executor, using 288
 reduced document query 281
 reduction operation 275
 serial version 293
 two versions, comparing 293, 297
 word count, obtaining in file 289
information retrieval
 reference 275
interface
 queue 355
Inverse Document Frequency (IDF) 172
inverted index, preloading
 about 287
 ConcurrentFileLoader class 287
inverted index
 about 275
 common classes 152
 concurrent version, implementing 155
 creating, for collection of documents 151
 multiple documents per task 161
 other methods 166
 serial version 154
 solutions, comparing 164
issues, concurrent applications
 about 11
 data race 11
 deadlock 12
 livelock 13
 priority inversion 13
 resource starvation 13

[484]

J
Java Collections Framework (JCF) 355
Java concurrency API
 about 18
 concurrent data structures 21
 executers 19
 fork/join framework 20
 parallel streams 20
 synchronization mechanisms 19
Java Development Kit (JDK) 404
Java Pathfinder
 about 417
 installing 422, 424
 reference 422
 running 425, 428
 used, for testing concurrent application 421
Java Virtual Machine (JVM) 39, 185
Java
 reactive streams 333
 threads 37
JConsole
 about 404
 reference 407
JMeter 394
JMH framework
 reference 51, 59, 73
JPF
 for Eclipse, reference 422
 reference 429
JRuby 430
JUnit 394, 418
Jython 430

K
k-means clustering algorithm
 about 212
 classes 214
 concurrent version 222
 DistanceMeasurer class 217
 document 215
 DocumentCluster class 218
 DocumentLoader class 215
 serial version 219
 solutions, comparing 228

 VocabularyLoader class 215
 word class 215
k-nearest neighbors algorithm
 coarse-grained concurrent version 71
 distance metric 65
 fine-grained concurrent version 68
 serial version 66
 solutions, comparing 73
 test dataset 65
 train dataset 65
keyword extraction algorithm
 about 172
 common classes 173
 concurrent version 181
 KeywordExtractionTask class 181
 serial version 177
 solutions, comparing 187

L
Language-Integrated Query (LINQ) 257
Levenshtein distance
 reference 132
livelock 13
lock 397

M
Map/Reduce programming 447
MapCollect 262
MapReduce
 reference 320
 versus MapCollect 261
matrix multiplication
 about 42
 common classes 42
 parallel version 44
 reference 42
 serial version 43
 solutions, comparing 51
mechanisms, for avoiding deadlocks
 avoidance 12
 detection 12
 ignorance 12
 prevention 12
Mercurial
 download link 422

[485]

merge sort algorithm
 about 245
 concurrent version 249
 serial version 246
 shared classes 245
 versions, comparing 252
message passing 10
methods, Executors
 newCachedThreadPool() 93
 newSingleThreadExecutor() 93
metrics
 Amdahl's law 16
 Gustafson-Barsis' law 17
 speedup 16
monitor 9
multiple documents per task approach
 MultipleConcurrentIndexing class 163
 MultipleIndexingTask class 161
 MultipleInvertedIndexTask class 162
MultithreadedTC
 about 417
 used, for testing concurrent applications 418
mutual exclusion (mutex) 8, 9

N
news attribute 344
news system
 about 342
 category attribute 342
 Consumer class 347
 date attribute 342
 Main class 349, 351
 News class 342
 publisher class 343, 345
 txt attribute 342
NewsBuffer class
 ConcurrentHashMap 119
 LinkedBlockingQueue 119
numerical summarization application
 about 262
 concurrent version 263
 serial version 273
 versions, comparing 273

O
Online Retail dataset
 download link 262
operators 467

P
parallel version, server application
 command part 84
 server part 80
parallel versions, implementing
 one thread per element in the result matrix 44
 one thread per row 47
 threads, determined by processors 49
periodic task execution
 advanced reader 124
 basic reader 120
 common parts 118
periodic tasks
 executing 117
Phaser class
 about 169
 functionalities 171
 participants, deregistration 169
 participants, registration 169
 phase change, synchronizing 170
phaser
 about 168
 active state 171
 termination state 171
priority inversion 13
ProductRecommendation class
 ConcurrentLoaderAccumulator class 318
 main class 314
 serial version 318
 two versions, comparing 319
Promises 469, 477

Q
queries, command classes
 query 106
 report 106
 status 106
 stop 106

[486]

R
race condition 11
reactive streams, Java
 about 333
 Flow.Publisher interface 334
 Flow.Subscriber interface 334
 Flow.Subscription interface 335
 SubmissionPublisher class 335
recommendation system
 about 312
 common classes 313
 ProductRecommendation class 314
 ProductReview class 313
reduced document query approach
 limitedMapper() method 282
reference types
 agents 435
 atoms 433
 coordinated 432
 synchronous 432
 uncoordinated 432
resource starvation 13
RSS feed reader 118
Runnable interface 40, 130

S
Scala
 about 257, 430
 concurrency 469
 Future objects 469, 473, 475
 reference 469
second version, collect() method
 accumulator 301
 characteristics 301
 combiner 301
 finisher 301
 supplier 301
semaphore 9
sequential version, algorithm
 analyzing 14
 designing 14
 implementing 15
 parallelizing, considerations 17
 testing 15

 tuning 16
serial version, best-matching algorithm
 BestMachingSerialMain class 136
 BestMatchingSerialCalculation class 135
serial version, genetic algorithm
 SerialGeneticAlgorithm class 194
 SerialMain class 195
serial version, k-means clustering algorithm
 SerialKMeans class 219
 SerialMain class 221
serial version, SerialMergeSort class
 about 246
 SerialMetaData class 248
serial version, server application
 command part 77
 DAO part 76
 server part 78
server part
 ConcurrentServer class 110
 RequestTask class 110, 113
ServerExecutor class
 about 100
 executor 103
 executor tasks 102
 rejected task controller 101
 statistics object 100
shared memory
 versus message passing 10
short-circuit operation 144
Simple API for XML (SAX) 118
singleton 22
social network
 base classes 322
 common contacts 320
 concurrent version 323
 DataLoader class 323
 person class 322
 PersonPair class 322
 serial version 329
software testing 394
software transactional memory 443
spliterator 367
stop words 151
stream
 about 256

 characteristics 257
 intermediate operation 258
 intermediate operations 260
 source 258, 260
 terminal operation 258
 terminal operations 261
streams
 used, for data collection 299
subscription attribute 344
synchronization mechanisms
 about 8, 168, 353
 control synchronization 8
 CountDownLatch class 19
 CyclicBarrier class 19
 data access synchronization 8
 Lock interface 19
 Phaser class 19
 Semaphore class 19
 synchronized keyword 19

T
task decomposition 15
Term Frequency (TF) 172
TestNG 394
TF-IDF measure 172
Thread class 40
thread safety 9
threads, Java
 advantages 38

 characteristics and states 38
Traveling Salesman Problem (TSP) 190

U
UCI Machine Learning Repository 262
UK Advanced Cryptics Dictionary (UKACD) 132
unit testing 417

V
variable handle
 atomic update access mode 372
 bitwise atomic update access mode 372
 numeric atomic update access mode 372
 read access mode 372
 write access mode 372

W
word exists algorithm
 about 142
 concurrent version 144
 ExistBasicConcurrentCalculation class 146
 ExistBasicConcurrentMain class 147
 ExistBasicTasks class 145
 ExistSerialCalculation class 143
 ExistSerialMain class 143
 solutions, comparing 148
World Development Indicators
 about 99
 reference 75

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: The First Step - Concurrency Design Principles
	Basic concurrency concepts
	Concurrency versus parallelism
	Synchronization
	Immutable object
	Atomic operations and variables
	Shared memory versus message passing

	Possible problems in concurrent applications
	Data race
	Deadlock
	Livelock
	Resource starvation
	Priority inversion

	A methodology to design concurrent algorithms
	The starting point - a sequential version of the algorithm
	Step 1 - analysis
	Step 2 - design
	Step 3 - implementation
	Step 4 - testing
	Step 5 - tuning
	Conclusion

	Java Concurrency API
	Basic concurrency classes
	Synchronization mechanisms
	Executors
	The fork/join framework
	Parallel streams
	Concurrent data structures

	Concurrency design patterns
	Signaling
	Rendezvous
	Mutex
	Multiplex
	Barrier
	Double-checked locking
	Read-write lock
	Thread pool
	Thread local storage

	Tips and tricks for designing concurrent algorithms
	Identifying the correct independent tasks
	Implementing concurrency at the highest possible level
	Taking scalability into account
	Using thread-safe APIs
	Never assume an execution order
	Preferring local thread variables over static and shared when possible
	Finding the easier parallelizable version of the algorithm
	Using immutable objects when possible
	Avoiding deadlocks by ordering the locks
	Using atomic variables instead of synchronization
	Holding locks for as short a time as possible
	Taking precautions using lazy initialization
	Avoiding the use of blocking operations inside a critical section

	Summary

	Chapter 2: Working with Basic Elements - Threads and Runnables
	Threads in Java
	Threads in Java - characteristics and states
	The Thread class and the Runnable interface

	First example: matrix multiplication
	Common classes
	Serial version
	Parallel versions
	First concurrent version - a thread per element
	Second concurrent version - a thread per row
	Third concurrent version - the number of threads is determined by the processors

	Comparing the solutions

	Second example - file search
	Common classes
	Serial version
	Concurrent version
	Comparing the solutions

	Summary

	Chapter 3: Managing Lots of Threads - Executors
	An introduction to executors
	Basic characteristics of executors
	Basic components of the Executor framework

	First example - the k-nearest neighbors algorithm
	k-nearest neighbors - serial version
	K-nearest neighbors - a fine-grained concurrent version
	k-nearest neighbors - a coarse-grained concurrent version
	Comparing the solutions

	Second example - concurrency in a client/server environment
	Client/server - serial version
	The DAO part
	The command part
	The server part

	Client/version - parallel version
	The server part
	The command part

	Extra components of the concurrent server
	The status command
	The cache system
	The log system
	Comparing the two solutions

	Other methods of interest

	Summary

	Chapter 4: Getting the Most from Executors
	Advanced characteristics of executors
	Cancellation of tasks
	Scheduling the execution of tasks
	Overriding the executor methods
	Changing some initialization parameters

	First example - an advanced server application
	The ServerExecutor class
	The statistics object
	The rejected task controller
	The executor tasks
	The executor

	The command classes
	The ConcurrentCommand class
	The concrete commands

	The server part
	The ConcurrentServer class
	The RequestTask class

	The client part

	Second example - executing periodic tasks
	The common parts
	The basic reader
	The advanced reader

	Additional information about executors
	Summary

	Chapter 5: Getting Data from Tasks - The Callable and Future Interfaces
	Introducing the Callable and Future interfaces
	The Callable interface
	The Future interface

	First example - a best-matching algorithm for words
	The common classes
	A best-matching algorithm - the serial version
	The BestMatchingSerialCalculation class
	The BestMachingSerialMain class

	A best-matching algorithm - the first concurrent version
	The BestMatchingBasicTask class
	The BestMatchingBasicConcurrentCalculation class

	A best-matching algorithm - the second concurrent version
	Word exists algorithm - a serial version
	The ExistSerialCalculation class
	The ExistSerialMain class

	Word exists algorithm - the concurrent version
	The ExistBasicTasks class
	The ExistBasicConcurrentCalculation class
	The ExistBasicConcurrentMain class

	Comparing the solutions
	Best-matching algorithms
	Exist algorithms

	The second example - creating an inverted index for a collection of documents
	Common classes
	The Document class
	The DocumentParser class

	The serial version
	The first concurrent version - a task per document
	The IndexingTask class
	The InvertedIndexTask class
	The ConcurrentIndexing class

	The second concurrent version - multiple documents per task
	The MultipleIndexingTask class
	The MultipleInvertedIndexTask class
	The MultipleConcurrentIndexing class

	Comparing the solutions
	Other methods of interest

	Summary

	Chapter 6: Running Tasks Divided into Phases - The Phaser Class
	An introduction to the Phaser class
	Registration and deregistration of participants
	Synchronizing phase change
	Other functionalities

	First example - a keyword extraction algorithm
	Common classes
	The Word class
	The Keyword class
	The Document class
	The DocumentParser class

	The serial version
	The concurrent version
	The KeywordExtractionTask class
	The ConcurrentKeywordExtraction class

	Comparing the two solutions

	The second example - a genetic algorithm
	Common classes
	The Individual class
	The GeneticOperators class

	The serial version
	The SerialGeneticAlgorithm class
	The SerialMain class

	The concurrent version
	The SharedData class
	The GeneticPhaser class
	The ConcurrentGeneticTask class
	The ConcurrentGeneticAlgorithm class
	The ConcurrentMain class

	Comparing the two solutions
	Lau15 dataset
	Kn57 dataset
	Conclusions

	Summary

	Chapter 7: Optimizing Divide and Conquer Solutions - The Fork/Join Framework
	An introduction to the fork/join framework
	Basic characteristics of the fork/join framework
	Limitations of the fork/join framework
	Components of the fork/join framework

	The first example - the k-means clustering algorithm
	The common classes
	The VocabularyLoader class
	The word, document, and DocumentLoader classes
	The DistanceMeasurer class
	The DocumentCluster class

	The serial version
	The SerialKMeans class
	The SerialMain class

	The concurrent version
	Two tasks for the fork/join framework - AssignmentTask and UpdateTask
	The ConcurrentKMeans class
	The ConcurrentMain class

	Comparing the solutions

	The second example - a data filtering algorithm
	Common features
	The serial version
	The SerialSearch class
	The SerialMain class

	The concurrent version
	The TaskManager class
	The IndividualTask class
	The ListTask class
	The ConcurrentSearch class
	The ConcurrentMain class

	Comparing the two versions

	The third example - the merge sort algorithm
	Shared classes
	The serial version
	The SerialMergeSort class
	The SerialMetaData class

	The concurrent version
	The MergeSortTask class
	The ConcurrentMergeSort class
	The ConcurrentMetaData class

	Comparing the two versions

	Other methods of the fork/join framework
	Summary

	Chapter 8: Processing Massive Datasets with Parallel Streams - The Map and Reduce Model
	An introduction to streams
	Basic characteristics of streams
	Sections of a stream
	Sources of a stream
	Intermediate operations
	Terminal operations

	MapReduce versus MapCollect

	The first example - a numerical summarization application
	The concurrent version
	The ConcurrentDataLoader class
	The ConcurrentStatistics class
	Customers from the United Kingdom
	Quantity from the United Kingdom

	Countries for product
	Quantity for product
	Multiple data filter
	Highest invoice amounts
	Products with a unit price between 1 and 10

	The ConcurrentMain class

	The serial version
	Comparing the two versions

	The second example - an information retrieval search tool
	An introduction to the reduction operation
	The first approach - full document query
	The basicMapper() method
	The Token class
	The QueryResult class

	The second approach - reduced document query
	The limitedMapper() method

	The third approach - generating an HTML file with the results
	The ContentMapper class

	The fourth approach - preloading the inverted index
	The ConcurrentFileLoader class

	The fifth approach - using our own executor
	Getting data from the inverted index - the ConcurrentData class
	Getting the number of words in a file
	Getting the average tfxidf value in a file
	Getting the maximum and minimum tfxidf values in the index
	The ConcurrentMain class
	The serial version
	Comparing the solutions

	Summary

	Chapter 9: Processing Massive Datasets with Parallel Streams - The Map and Collect Model
	Using streams to collect data
	The collect() method

	The first example - searching data without an index
	Basic classes
	The Product class
	The Review class
	The ProductLoader class

	The first approach - basic search
	The ConcurrentStringAccumulator class

	The second approach - advanced search
	The ConcurrentObjectAccumulator class

	A serial implementation of the example
	Comparing the implementations

	The second example - a recommendation system
	Common classes
	The ProductReview class
	The ProductRecommendation class

	Recommendation system - the main class
	The ConcurrentLoaderAccumulator class
	The serial version
	Comparing the two versions

	The third example - common contacts in a social network
	Base classes
	The Person class
	The PersonPair class
	The DataLoader class

	The concurrent version
	The CommonPersonMapper class
	The ConcurrentSocialNetwork class
	The ConcurrentMain class

	The serial version
	Comparing the two versions

	Summary

	Chapter 10: Asynchronous Stream Processing - Reactive Streams
	Introduction to reactive streams in Java
	The Flow.Publisher interface
	The Flow.Subscriber interface
	The Flow.Subscription interface
	The SubmissionPublisher class

	The first example - a centralized system for event notification
	The Event class
	The Producer class
	The Consumer class
	The Main class

	The second example - a news system
	The News class
	The publisher classes
	The Consumer class
	The Main class

	Summary

	Chapter 11: Diving into Concurrent Data Structures and Synchronization Utilities
	Concurrent data structures
	Blocking and non-blocking data structures
	Concurrent data structures
	Interfaces
	BlockingQueue
	BlockingDeque
	ConcurrentMap
	TransferQueue

	Classes
	LinkedBlockingQueue
	ConcurrentLinkedQueue
	LinkedBlockingDeque
	ConcurrentLinkedDeque
	ArrayBlockingQueue
	DelayQueue
	LinkedTransferQueue
	PriorityBlockingQueue
	ConcurrentHashMap

	Using the new features
	First example with ConcurrentHashMap
	The forEach() method
	The search() method
	The reduce() method
	The compute() method

	Another example with ConcurrentHashMap
	An example with the ConcurrentLinkedDeque class
	The removeIf() method
	The spliterator() method

	Atomic variables
	Variable handles

	Synchronization mechanisms
	The CommonTask class
	The Lock interface
	The Semaphore class
	The CountDownLatch class
	The CyclicBarrier class
	The CompletableFuture class
	Using the CompletableFuture class
	Auxiliary tasks
	The main() method

	Summary

	Chapter 12: Testing and Monitoring Concurrent Applications
	Monitoring concurrency objects
	Monitoring a thread
	Monitoring a lock
	Monitoring an executor
	Monitoring the fork/join framework
	Monitoring a Phaser
	Monitoring the Stream API

	Monitoring concurrency applications
	The Overview tab
	The Memory tab
	The Threads tab
	The Classes tab
	The VM summary tab
	The MBeans tab
	The About tab

	Testing concurrency applications
	Testing concurrent applications with MultithreadedTC
	Testing concurrent applications with Java Pathfinder
	Installing Java Pathfinder
	Running Java Pathfinder

	Summary

	Concurrency in JVM - Clojure and Groovy with the Gpars Library and Scala
	Concurrency in Clojure
	Using Java elements
	Reference types
	Atoms
	Agents

	Refs
	Delays
	Futures
	Promises

	Concurrency in Groovy with the GPars library
	Software transactional memory
	Using Java elements
	Data parallelism
	The fork/join processing
	Actors
	Agent
	Dataflow

	Concurrency in Scala
	Future objects in Scala
	Promises

	Summary

	Index

