

 1

 2

By

Jason Roberts

Foreword by Daniel Jebaraj

 3

Table of Contents

The Story behind the Succinctly Series of Books .. 9

About the Author ... 11

Chapter 1 LINQ Fundamentals ... 12

Why LINQ? .. 12

The building blocks of LINQ ... 12

Scalar return values and output sequences .. 13

Deferred execution ... 13

Lambda expressions in query operators .. 15

Local and interpreted queries .. 16

Chapter 2 Fluent and Query Expression Styles .. 18

Fluent style ... 18

Chained query operators ... 18

Query expression style .. 20

Range variables ... 22

Other query expression syntax .. 30

Using the different styles.. 35

Advantages of the different styles .. 35

Mixing the styles in a single query ... 36

Chapter 3 LINQ Query Operators ... 37

Restriction Operators ... 37

Where .. 38

Projection Operators .. 39

 4

Select ... 39

SelectMany .. 40

Partitioning Operators .. 42

Take ... 42

TakeWhile .. 43

Skip .. 45

SkipWhile ... 46

Ordering Operators .. 47

OrderBy .. 47

ThenBy ... 49

OrderByDescending... 50

ThenByDescending.. 51

Reverse .. 52

Grouping Operators ... 53

GroupBy ... 53

Set Operators ... 54

Concat .. 54

Union .. 55

Distinct ... 56

Intersect ... 56

Except .. 57

Conversion Operators .. 58

OfType ... 58

Cast .. 60

ToArray .. 61

ToList ... 61

ToDictionary ... 61

 5

ToLookup ... 63

Element Operators ... 64

First .. 64

FirstOrDefault ... 66

Last .. 67

LastOrDefault ... 67

Single ... 68

SingleOrDefault .. 69

ElementAt .. 71

ElementAtOrDefault ... 71

DefaultIfEmpty ... 72

Generation Operators .. 73

Empty ... 73

Range .. 75

Repeat ... 76

Quantifier Operators .. 76

Contains ... 76

Any ... 78

All ... 79

SequenceEqual.. 79

Aggregate Operators ... 80

Count ... 80

LongCount ... 81

Sum .. 82

Average .. 83

Min ... 84

Max .. 85

 6

Aggregate .. 85

Joining Operators ... 86

Join .. 86

GroupJoin .. 88

Zip .. 90

Chapter 4 LINQ to XML .. 92

X-DOM Overview ... 92

Key X-DOM types .. 92

Creating an X-DOM ... 93

Parsing Strings and Loading Files ... 93

Manual Procedural Creation .. 94

Functional Construction ... 95

Creation via Projection ... 95

Querying X-DOM with LINQ... 96

Finding Child Nodes... 97

Finding Parent Nodes .. 100

Finding Peer Nodes ... 101

Finding Attributes ... 102

Chapter 5 Interpreted Queries .. 104

Overview .. 104

Expression trees .. 104

Query providers ... 105

Entity Framework ... 106

Chapter 6 Parallel LINQ ... 109

Overview .. 109

Applying PLINQ ... 109

 7

Output element ordering .. 111

Potential PLINQ Problems ... 112

Mixing LINQ and PLINQ .. 113

Chapter 7 LINQ Tools and Resources ... 114

 8

Copyright © 2015 by Syncfusion Inc.

2501 Aerial Center Parkway

Suite 200

Morrisville, NC 27560

USA

All rights reserved.

mportant licensing information. Please read.

This book is available for free download from www.syncfusion.com on completion of a registration form.

If you obtained this book from any other source, please register and download a free copy from

www.syncfusion.com.

This book is licensed for reading only if obtained from www.syncfusion.com.

This book is licensed strictly for personal or educational use.

Redistribution in any form is prohibited.

The authors and copyright holders provide absolutely no warranty for any information provided.

The authors and copyright holders shall not be liable for any claim, damages, or any other liability arising

from, out of, or in connection with the information in this book.

Please do not use this book if the listed terms are unacceptable.

Use shall constitute acceptance of the terms listed.

SYNCFUSION, SUCCINCTLY, DELIVER INNOVATION WITH EASE, ESSENTIAL, and .NET ESSENTIALS are the

registered trademarks of Syncfusion, Inc.

Technical Reviewer: Stephen Haunts

Copy Editor: Courtney Wright

Acquisitions Coordinator: Hillary Bowling, marketing coordinator, Syncfusion, Inc.

Proofreader: Darren West, content producer, Syncfusion, Inc.

I

http://www.syncfusion.com/
http://www.syncfusion.com/
http://www.syncfusion.com/

 9

The Story behind the Succinctly Series
 of Books

Daniel Jebaraj, Vice President
Syncfusion, Inc.

taying on the cutting edge

As many of you may know, Syncfusion is a provider of software components for the
Microsoft platform. This puts us in the exciting but challenging position of always
being on the cutting edge.

Whenever platforms or tools are shipping out of Microsoft, which seems to be about every other
week these days, we have to educate ourselves, quickly.

Information is plentiful but harder to digest

In reality, this translates into a lot of book orders, blog searches, and Twitter scans.

While more information is becoming available on the Internet, and more and more books are
being published, even on topics that are relatively new, one aspect that continues to inhibit us is
the inability to find concise technology overview books.

We are usually faced with two options: read several 500+ page books or scour the web for
relevant blog posts and other articles. Just like everyone else who has a job to do and
customers to serve, we find this quite frustrating.

The Succinctly series

This frustration translated into a deep desire to produce a series of concise technical books that
would be targeted at developers working on the Microsoft platform.

We firmly believe, given the background knowledge such developers have, that most topics can
be translated into books that are between 50 and 100 pages.

This is exactly what we resolved to accomplish with the Succinctly series. Isn’t everything
wonderful born out of a deep desire to change things for the better?

The best authors, the best content

Each author was carefully chosen from a pool of talented experts who shared our vision. The
book you now hold in your hands, and the others available in this series, are a result of the

S

 10

authors’ tireless work. You will find original content that is guaranteed to get you up and running
in about the time it takes to drink a few cups of coffee.

Free forever

Syncfusion will be working to produce books on several topics. The books will always be free.
Any updates we publish will also be free.

Free? What is the catch?

There is no catch here. Syncfusion has a vested interest in this effort.

As a component vendor, our unique claim has always been that we offer deeper and broader
frameworks than anyone else on the market. Developer education greatly helps us market and
sell against competing vendors who promise to “enable AJAX support with one click” or “turn the
moon to cheese!”

Let us know what you think

If you have any topics of interest, thoughts, or feedback, please feel free to send them to us at
succinctly-series@syncfusion.com.

We sincerely hope you enjoy reading this book and that it helps you better understand the topic
of study. Thank you for reading.

Please follow us on Twitter and “Like” us on Facebook to help us spread the
word about the Succinctly series!

mailto:succinctly-series@syncfusion.com
http://twitter.com/Syncfusion
https://www.facebook.com/Syncfusion

 11

About the Author

Jason Roberts is a Microsoft C# MVP with over 13 years of commercial experience. He is a
writer, blogger, open source contributor, and Pluralsight course author, and he holds a Bachelor
of Science degree in computing.

You can find him on Twitter as @robertsjason and at his blog at http://dontcodetired.com/blog/.

http://dontcodetired.com/blog/

 12

Chapter 1 LINQ Fundamentals

Why LINQ?

At a high level, there are number of benefits that may be gained by using LINQ (Language
Integrated Query), including:

 Reduce the amount of code that needs writing.

 A better understanding of the intent of what the code is doing.

 Once learned, can use a similar set of LINQ query knowledge against different data
sources (in-memory objects, or remote sources such as SQL Server or even Twitter.)

 Queries can be composed together and built up in stages.

 Queries offer the safety of compile-time type checking.

Essentially, LINQ enables queries to be treated as first-class citizens in C# and Visual Basic.

The building blocks of LINQ

The two fundamental building blocks of LINQ are the concepts of elements and sequences.

A sequence can be thought of as a list of items, with each item in the list being an element. A
sequence is an instance of a class that implements the IEnumerable<T> interface.

If an array of numbers were declared as: int[] fibonacci = {0, 1, 1, 2, 3, 5}; the

variable fibonacci represents a sequence with each int in the array being an individual

element.

A sequence could be a local sequence of in-memory objects or a remote sequence, like a
SQL Server database. In the case of remote data sources (for example SQL Server), these
remote sequences also implement the IQueryable<T> interface.

Queries, or more specifically query operators, work on an input sequence and produce some
output value. This output value could be a transformed version of the input sequence, i.e. an
output sequence or single scalar value such as a count of the number of elements in the input
sequence.

Queries that run on local sequences are known as local queries or LINQ-to-objects queries.

There are a whole host of query operators that are implemented as extension methods in the
static System.Linq.Enumerable class. This set of query operators are known as the standard

query operators. These query operators will be covered in depth in the LINQ Query Operators
chapter later in this book.

 13

One important thing to note when using query operators is that they do not alter the input
sequence; rather, the query operator will return a new sequence (or a scalar value).

Scalar return values and output sequences

A query operator returns an output sequence or a scalar value. In the following code, the input
sequence fibonacci is operated on first by the Count query operator that produces a single

scalar value representing the number of elements in the input sequence. Next, the same input
sequence is operated on by the Distinct query operator that produces a new output sequence

containing the elements from the input sequence, but with duplicate elements removed.

The output from this code produces the following:

Count: 6
Elements in output sequence:
0
1
2
3
5

Deferred execution

The majority of query operators do not execute immediately; their execution is deferred to a
later time in the program execution. This means that the query does not execute when it is
created, but when it is used or enumerated.

int[] fibonacci = { 0, 1, 1, 2, 3, 5 };

// Scalar return value
int numberOfElements = fibonacci.Count();

Console.WriteLine("Count: {0}", numberOfElements);

// Output sequence return value
IEnumerable<int> distinctNumbers = fibonacci.Distinct();

Console.WriteLine("Elements in output sequence:");

foreach (var number in distinctNumbers)
{
 Console.WriteLine(number);

}

 14

Deferred execution means that the input sequence can be modified after the query is
constructed, but before the query is executed. It is only when the query is executed that the
input sequence is processed.

In the following code, the input sequence is modified after the query is constructed, but before it
is executed.

The query is not actually executed until the foreach is executed. The results of running this

code are as follows:

99
3
5

Notice that the value 99 has been included in the results, even though at the time the query was
constructed the first element was still the original value of 0.

With the exception of those that return a scalar value (or a single element from the input
sequence) such as Count, Min, and Last; the standard query operators work in this deferred

execution way. So using operators such as Count will cause the query to be executed

immediately, and not deferred.

There are a number of conversion operators that also cause immediate query execution, such
as ToList, ToArray, ToLookup, and ToDictionary.

int[] fibonacci = { 0, 1, 1, 2, 3, 5 };

// Construct the query
IEnumerable<int> numbersGreaterThanTwoQuery = fibonacci.Where(x => x > 2);

// At this point the query has been created but not executed

// Change the first element of the input sequence
fibonacci[0] = 99;

// Cause the query to be executed (enumerated)
foreach (var number in numbersGreaterThanTwoQuery)
{
 Console.WriteLine(number);

}

 15

In the following code, the fibonacci array is being modified as in the preceding example code,

but in this example, by the time the modification takes place (fibonacci[0] = 99), the query

has already been executed because of the additional ToArray().

The results of running this code are:

3
5

Notice here the value 99 is no longer present because the input sequence is being modified
after the query has executed.

Lambda expressions in query operators

Some query operators allow custom logic to be supplied. This custom logic can be supplied to
the query operator by way of a lambda expression.

The fibonacci.Where(x => x > 2) code in the preceding code sample is an example of a

query operator being supplied some custom logic. Here the lambda expression x => x > 2 will

only return elements (ints in this case) that are greater than 2.

When a query operator takes a lambda expression, it will apply the logic in the lambda
expression to each individual element in the input sequence.

The type of lambda expression that is supplied to a query operator depends on what task the
query operator is performing. In Figure 1, we can see the signature of the Where query operator;

here the input element int is provided and a bool needs to be returned that determines of the

element will be included in the output sequence.

int[] fibonacci = { 0, 1, 1, 2, 3, 5 };

// Construct the query
IEnumerable<int> numbersGreaterThanTwoQuery = fibonacci.Where(x => x > 2)
 .ToArray();

// At this point the query has been executed because of the .ToArray()

// Change the first element of the input sequence
fibonacci[0] = 99;

// Enumerate the results
foreach (var number in numbersGreaterThanTwoQuery)
{
 Console.WriteLine(number);

}

 16

Figure 1: Visual Studio showing the signature of the Where operator

As an alternative to using a lambda expression, it is also possible to use a traditional delegate
that points to a method.

Local and interpreted queries

LINQ provides for two distinct architectures: local and interpreted.

Local queries operate on IEnumerable<T> sequences and are compiled into the resulting

assembly at compile time. Local queries, as the name suggests, can be thought of as operating
on sequences local to the machine on which the query is executing (for example, querying an
in-memory list of objects).

Interpreted queries are interpreted at runtime and work on sequences that can come from a
remote source such as an SQL Server database. Interpreted queries operate on
IQueryable<T> sequences.

Interpreted queries will be discussed later in Chapter 5, “Interpreted Queries.”

The following code demonstrates the use of the Attribute(XName) method to locate a specific

XAttribute and get its value by reading its Value property. This example also shows the use

of the FirstAttribute method to get an element’s first declared attribute, and also how to

combine standard query operators such as Skip to query the IEnumerable<XAttribute>

provided by the Attributes method.

var xml = @"
<ingredients>
 <ingredient name='milk' quantity='200' price='2.99' />
 <ingredient name='sugar' quantity='100' price='4.99' />
 <ingredient name='safron' quantity='1' price='46.77' />
</ingredients>";

XElement xmlData = XElement.Parse(xml);

XElement milk =
 xmlData.Descendants("ingredient")
 .First(x => x.Attribute("name").Value == "milk");

 17

XAttribute nameAttribute = milk.FirstAttribute; // name attribute

XAttribute priceAttribute = milk.Attribute("price");

string priceOfMilk = priceAttribute.Value; // 2.99

XAttribute quantity = milk.Attributes()
 .Skip(1)
 .First(); // quantity attribute

 18

Chapter 2 Fluent and Query Expression
Styles

There are two styles of writing LINQ queries: the fluent style (or fluent syntax) and the query
expression style (or query syntax).

The fluent style uses query operator extension methods to create queries, while the query
expression style uses a different syntax that the compiler will translate into fluent syntax.

Fluent style

The code samples up until this point have all used the fluent syntax.

The fluent syntax makes use of the query operator extension methods as defined in the static
System.Linq.Enumerable class (or System.Linq.Queryable for interpreted or

System.Linq.ParallelEnumerable for PLINQ queries). These extension methods add

additional methods to instances of IEnumerable<TSource>. This means that any instance of a

class that implements this interface can use these fluent LINQ extension methods.

Query operators can be used singularly, or chained together to create more complex queries.

Chained query operators

If the following class has been defined:

The following code will use three chained query operators: Where, OrderBy, and Select.

class Ingredient
{
 public string Name { get; set; }
 public int Calories { get; set; }
}

Ingredient[] ingredients =
{
 new Ingredient{Name = "Sugar", Calories=500},
 new Ingredient{Name = "Egg", Calories=100},
 new Ingredient{Name = "Milk", Calories=150},
 new Ingredient{Name = "Flour", Calories=50},
 new Ingredient{Name = "Butter", Calories=200}
};

 19

Executing this code produces the following output:

Butter
Milk
Sugar

Figure 2 shows a graphical representation of this chain of query operators. Each operator works
on the sequence provided by the preceding query operator. Notice that the initial input
sequence (represented by the variable ingredients) is an IEnumerable<Ingredient>,

whereas the output sequence (represented by the variable
highCalorieIngredientNamesQuery) is a different type; it is an IEnumerable<string>.

In this example, the chain of operators is working with a sequence of Ingredient elements until

the Select operator transforms each element in the sequence; each Ingredient object is

transformed to a simple string. This transformation is called projection. Input elements are

projected into transformed output elements.

IEnumerable<string> highCalorieIngredientNamesQuery =
 ingredients.Where(x => x.Calories >= 150)
 .OrderBy(x => x.Name)
 .Select(x => x.Name);

foreach (var ingredientName in highCalorieIngredientNamesQuery)
{
 Console.WriteLine(ingredientName);
}

 20

Figure 2: Multiple query operators acting in a chain

The lambda expression provided to the Select query operator decides what “shape” the

elements in the output sequence will take. The lambda expression x => x.Name is telling the

Select operator “for each Ingredient element, output a string element with the value of the

Name property from the input Ingredient.”

Note: Individual query operators will be discussed later in Chapter 3, LINQ Query Operators.

Query expression style

Query expressions offer a syntactical nicety on top of the fluent syntax.

The following code shows the equivalent version using query syntax of the preceding fluent
style query.

output sequence : IEnumerable<string>

"Butter" "Milk" "Sugar"

Select(x => x.Name)

"Butter" "Milk" "Sugar"

OrderBy(x => x.Name)

Butter Milk Sugar

Where(x => x.Calories >= 150)

Sugar Milk Butter

initial input sequence : IEnumerable<Ingredient>

Sugar Egg Milk Flour Butter

 21

Executing this code produces the same output as the fluent syntax version:

Butter
Milk
Sugar

The steps that are performed are the same as in the fluent syntax version, with each query
clause (from, where, orderby, select) passing on a modified sequence to the next query

clause.

The query expression in the preceding code begins with the from clause. The from clause has

two purposes: the first is to describe what the input sequence is (in this case ingredients); the

second is to introduce a range variable.

The final clause is the select clause, which describes what the output sequence will be from

the entire query. Just as with the fluent syntax version, the select clause in the preceding code

is projecting a sequence of Ingredient objects into a sequence of string objects.

Ingredient[] ingredients =
{
 new Ingredient{Name = "Sugar", Calories=500},
 new Ingredient{Name = "Egg", Calories=100},
 new Ingredient{Name = "Milk", Calories=150},
 new Ingredient{Name = "Flour", Calories=50},
 new Ingredient{Name = "Butter", Calories=200}
};

IEnumerable<string> highCalorieIngredientNamesQuery =
 from i in ingredients
 where i.Calories >= 150
 orderby i.Name
 select i.Name;

foreach (var ingredientName in highCalorieIngredientNamesQuery)
{
 Console.WriteLine(ingredientName);
}

 22

Range variables

A range variable is an identifier that represents each element in the sequence in turn. It’s similar
to the variable used in a foreach statement; as the sequence is processed, this range variable

represents the current element being processed. In the preceding code, the range variable i is

being declared. Even though the same range variable identifier i is used in each clause, the

sequence that the range variable “traverses” is different. Each clause works with the input
sequence produced from the preceding clause (or the initial input IEnumerable<T>). This

means that each clause is processing a different sequence; it is simply the name of the range
variable identifier that is being reused.

In addition to the range variable introduced in the from clause, additional range variables can

be added using other clauses or keywords. The following can introduce new range variables
into a query expression:

 Additional from clauses

 The let clause

 The into keyword

 The join clause

The let clause

A let clause in a LINQ query expression allows the introduction of an additional range variable.

This additional range variable can then be used in other clauses that follow it.

In the following code, the let clause is used to introduce a new range variable called isDairy,

which will be of type Boolean.

Ingredient[] ingredients =
{
 new Ingredient{Name = "Sugar", Calories=500},
 new Ingredient{Name = "Egg", Calories=100},
 new Ingredient{Name = "Milk", Calories=150},
 new Ingredient{Name = "Flour", Calories=50},
 new Ingredient{Name = "Butter", Calories=200}
};

IEnumerable<Ingredient> highCalDairyQuery =
 from i in ingredients
 let isDairy = i.Name == "Milk" || i.Name == "Butter"
 where i.Calories >= 150 && isDairy
 select i;

foreach (var ingredient in highCalDairyQuery)
{
 Console.WriteLine(ingredient.Name);
}

 23

The output of this code produces:

Milk
Butter

In the preceding code, the isDairy range variable is introduced and then used in the where

clause. Notice that the original range variable i remains available to the select clause.

In this example, the new range variable is a simple scalar value, but let can also be used to

introduce a subsequence. In the following code sample, the range variable ingredients is not

a scalar value, but an array of strings.

Notice in the preceding code that we are using multiple let clauses as well as additional from

clauses. Using additional from clauses is another way to introduce new range variables into a

query expression.

The into keyword

The into keyword also allows a new identifier to be declared that can store the result of a

select clause (as well as group and join clauses.)

The following code demonstrates using into to create a new anonymous type and then using

this in the remainder of the query expression.

string[] csvRecipes =
{
 "milk,sugar,eggs",
 "flour,BUTTER,eggs",
 "vanilla,ChEEsE,oats"
};

var dairyQuery =
 from csvRecipe in csvRecipes
 let ingredients = csvRecipe.Split(',')
 from ingredient in ingredients
 let uppercaseIngredient = ingredient.ToUpper()
 where uppercaseIngredient == "MILK" ||
 uppercaseIngredient == "BUTTER" ||
 uppercaseIngredient == "CHEESE"
 select uppercaseIngredient;

foreach (var dairyIngredient in dairyQuery)
{
 Console.WriteLine("{0} is dairy", dairyIngredient);
}

 24

This code produces the following output:

Milk
Butter

Note that using into hides the previous range variable i. This means that i cannot be used in

the final select.

The let clause, however, does not hide the previous range variable(s), meaning they can still

be used later in query expressions.

The join clause

The join clause takes two input sequences in which elements in either sequence do not

necessarily have any direct relationship in the class domain model.

Ingredient[] ingredients =
{
 new Ingredient{Name = "Sugar", Calories=500},
 new Ingredient{Name = "Egg", Calories=100},
 new Ingredient{Name = "Milk", Calories=150},
 new Ingredient{Name = "Flour", Calories=50},
 new Ingredient{Name = "Butter", Calories=200}
};

IEnumerable<Ingredient> highCalDairyQuery =
 from i in ingredients
 select new // anonymous type
 {
 OriginalIngredient = i,
 IsDairy = i.Name == "Milk" || i.Name == "Butter",
 IsHighCalorie = i.Calories >= 150
 }
 into temp
 where temp.IsDairy && temp.IsHighCalorie
 // cannot write "select i;" as into hides the previous range variable i
 select temp.OriginalIngredient;

foreach (var ingredient in highCalDairyQuery)
{
 Console.WriteLine(ingredient.Name);
}

 25

To perform a join, some value of the elements in the first sequence is compared for equality with
some value of the elements in the second sequence. It is important to note here that the join

clause perform equi-joins; the values from both sequences are compared for equality. This
means that the join clause does not support non-equijoins such as inequality, or comparisons

such as greater-than or less-than. Because of this, rather than specifying joined elements using
an operator such as == in C#, the equals keyword is used. The design thinking about

introducing this keyword is to make it very clear that joins are equi-joins.

Common types of joins include:

 Inner joins.

 Group joins.

 Left outer joins.

The following join code examples assume that the following classes have been defined:

These two classes model the fact that recipes can have 0, 1, or many reviews. The Review

class has a RecipeID property that holds the id of the recipe that the Review pertains to; notice

here though that there is no direct relationship in the form of a property of type Recipe.

Inner join

An inner join returns an element in the output sequence for each item in the first sequence that
has matching items in the second sequence. If an element in the first sequence does not have
any matching elements in the second sequence, it will not appear in the output sequence.

class Recipe
{
 public int Id { get; set; }
 public string Name { get; set; }
}

class Review
{
 public int RecipeId { get; set; }
 public string ReviewText { get; set; }
}

 26

Take the following code example:

In this preceding code, two input sequences are created: recipes, holding a number of recipes,

and a second sequence, reviews of Review objects.

The query expression starts with the usual from clause pointing to the first sequence (recipes)

and declaring the range variable recipe.

Next comes the use of the join clause. Here another range variable (review) is introduced that

represents elements being processed in the reviews input sequence. The on keyword allows

the specification of what value of the recipe range variable object is related to which value of

the review range variable object. Again the equals keyword is used here to represent an equi-

join. This join clause is essentially stating that reviews belong to recipes as identified by the

common values of Id in Recipe and RecipeId in Review.

The result of executing this code is as follows:

Recipe[] recipes =
{
 new Recipe {Id = 1, Name = "Mashed Potato"},
 new Recipe {Id = 2, Name = "Crispy Duck"},
 new Recipe {Id = 3, Name = "Sachertorte"}
};

Review[] reviews =
{
 new Review {RecipeId = 1, ReviewText = "Tasty!"},
 new Review {RecipeId = 1, ReviewText = "Not nice :("},
 new Review {RecipeId = 1, ReviewText = "Pretty good"},
 new Review {RecipeId = 2, ReviewText = "Too hard"},
 new Review {RecipeId = 2, ReviewText = "Loved it"}
};

var query = from recipe in recipes
 join review in reviews on recipe.Id equals review.RecipeId
 select new // anonymous type
 {
 RecipeName = recipe.Name,
 RecipeReview = review.ReviewText
 };

foreach (var item in query)
{
 Console.WriteLine("{0} - '{1}'", item.RecipeName, item.RecipeReview);
}

 27

Mashed Potato - 'Tasty!'
Mashed Potato - 'Not nice :('
Mashed Potato - 'Pretty good'
Crispy Duck - 'Too hard'
Crispy Duck - 'Loved it'

Notice here that the recipe “Sachertorte” does not exist in the output. This is because there are
no reviews for it, i.e. there are no matching elements in the second input sequence (reviews).

Also notice that the result are “flat,” meaning there is no concept of groups of reviews belonging
to a “parent” recipe.

Group join

A group join can produce a grouped hierarchical result where items in the second sequence are
matched to items in the first sequence.

Unlike the previous inner join, the output of a group join can be organized hierarchically with
reviews grouped into their related recipe.

Recipe[] recipes =
{
 new Recipe {Id = 1, Name = "Mashed Potato"},
 new Recipe {Id = 2, Name = "Crispy Duck"},
 new Recipe {Id = 3, Name = "Sachertorte"}
};

Review[] reviews =
{
 new Review {RecipeId = 1, ReviewText = "Tasty!"},
 new Review {RecipeId = 1, ReviewText = "Not nice :("},
 new Review {RecipeId = 1, ReviewText = "Pretty good"},
 new Review {RecipeId = 2, ReviewText = "Too hard"},
 new Review {RecipeId = 2, ReviewText = "Loved it"}
};

var query =
 from recipe in recipes
 join review in reviews on recipe.Id equals review.RecipeId
 into reviewGroup
 select new // anonymous type
 {
 RecipeName = recipe.Name,
 Reviews = reviewGroup // collection of related reviews
 };

foreach (var item in query)
{
 Console.WriteLine("Reviews for {0}", item.RecipeName);

 28

In this version, notice the addition of the into keyword. This allows the creation of hierarchical

results. The reviewGroup range variable represents a sequence of reviews that match the join

expression, in this case where the recipe.Id equals review.RecipeId.

To create the output sequence of groups (where each group contains the related reviews) the
result of the query is projected into an anonymous type. Each instance of this anonymous type
in the output sequence represents each group. The anonymous type has two properties:
RecipeName coming from the element in the first sequence, and Reviews that come from the

results of the join expression, i.e. the reviews that belong to the recipe.

The output of this code produces the following:

Reviews for Mashed Potato
 - Tasty!
 - Not nice :(
 - Pretty good
Reviews for Crispy Duck
 - Too hard
 - Loved it
Reviews for Sachertorte

Notice the hierarchical output here, and also that “Sachertorte” has been included in the output
this time, even though it has no associated reviews.

Left outer join

To get flat, non-hierarchical output that also includes elements in the first sequence that have no
matching elements in the second sequence (in our example “Sachertorte”), the
DefaultIfEmpty() query operator can be used in conjunction with an additional from clause to

introduce a new range variable, rg, that will be set to null if there are no matching elements in

the second sequence. The select code to create the anonymous type projection is also modified
to account for the fact that we may now have a null review.

Notice in the following code that RecipeReview = rg.ReviewText will produce a

System.NullReferenceException; hence the need for the null checking code.

 foreach (var review in item.Reviews)
 {
 Console.WriteLine(" - {0}", review.ReviewText);
 }
}

Recipe[] recipes =
{
 new Recipe {Id = 1, Name = "Mashed Potato"},
 new Recipe {Id = 2, Name = "Crispy Duck"},
 new Recipe {Id = 3, Name = "Sachertorte"}
};

 29

This produces the following output:

Mashed Potato - 'Tasty!'
Mashed Potato - 'Not nice :('
Mashed Potato - 'Pretty good'
Crispy Duck - 'Too hard'
Crispy Duck - 'Loved it'
Sachertorte - 'n/a'

Notice here that the results are flat, and because of the null checking code in the select,

“Sachertorte” is included in the results with a review of “n/a.”

As an alternative to performing the null check in the select, the DefaultIfEmpty method can

be instructed to create a new instance rather than creating a null. The following code shows

this alternative query expression:

Review[] reviews =
{
 new Review {RecipeId = 1, ReviewText = "Tasty!"},
 new Review {RecipeId = 1, ReviewText = "Not nice :("},
 new Review {RecipeId = 1, ReviewText = "Pretty good"},
 new Review {RecipeId = 2, ReviewText = "Too hard"},
 new Review {RecipeId = 2, ReviewText = "Loved it"}
};

var query =
 from recipe in recipes
 join review in reviews on recipe.Id equals review.RecipeId
 into reviewGroup
 from rg in reviewGroup.DefaultIfEmpty()
 select new // anonymous type
 {
 RecipeName = recipe.Name,
 // RecipeReview = rg.ReviewText System.NullReferenceException
 RecipeReview = (rg == null ? "n/a" : rg.ReviewText)
 };

foreach (var item in query)
{
 Console.WriteLine("{0} - '{1}'", item.RecipeName, item.RecipeReview);
}

 30

Note that this code produces the same output as the previous version:

Mashed Potato - 'Tasty!'
Mashed Potato - 'Not nice :('
Mashed Potato - 'Pretty good'
Crispy Duck - 'Too hard'
Crispy Duck - 'Loved it'
Sachertorte - 'n/a'

Other query expression syntax

There are a number of other syntactical elements when using query expressions:

 The group clause

 The orderby clause

 The ascending and descending keywords

 The by keyword

The group clause and the by keyword

The group clause takes a flat input sequence and produces an output sequence of groups.

Another way to think of this is that the output produced is like a list of lists; because of this, a
nested for loop can be used to iterate over all the groups and group items.

The following code shows the use of the group clause and the by keyword to group all

ingredients together that have the same amount of calories.

var query =
 from recipe in recipes
 join review in reviews on recipe.Id equals review.RecipeId
 into reviewGroup
 from rg in reviewGroup
 .DefaultIfEmpty(new Review{ReviewText = "n/a"})
 select new // anonymous type
 {
 RecipeName = recipe.Name,
 RecipeReview = rg.ReviewText
 };

Ingredient[] ingredients =
{
 new Ingredient{Name = "Sugar", Calories=500},
 new Ingredient{Name = "Lard", Calories=500},
 new Ingredient{Name = "Butter", Calories=500},
 new Ingredient{Name = "Egg", Calories=100},

 31

This code produces the following output:

Ingredients with 500 calories
 - Sugar
 - Lard
 - Butter
Ingredients with 100 calories
 - Egg
 - Milk
Ingredients with 50 calories
 - Flour
 - Oats

In the preceding code, the first generic type parameter (int) in the IGrouping<int,
Ingredient> represents the key of the group, in this example the number of calories. The

second generic type parameter (Ingredient) represents the type of the list of items that have

the same key (calorie value).

Also note that explicit types have been used in the code to better illustrate what types are being
operated upon. The code could be simplified by using the var keyword; for example: var
query = … rather than IEnumerable<IGrouping<int, Ingredient>> query = …

The orderby clause and ascending & descending keywords

The orderby clause is used to produce a sequence sorted in either ascending (the default) or

descending order.

 new Ingredient{Name = "Milk", Calories=100},
 new Ingredient{Name = "Flour", Calories=50},
 new Ingredient{Name = "Oats", Calories=50}

};

IEnumerable<IGrouping<int, Ingredient>> query =
 from i in ingredients
 group i by i.Calories;

foreach (IGrouping<int, Ingredient> group in query)
{
 Console.WriteLine("Ingredients with {0} calories", group.Key);

 foreach (Ingredient ingredient in group)
 {
 Console.WriteLine(" - {0}", ingredient.Name);
 }
}

 32

 33

The following code sorts a list of ingredients by name:

This produces the following sorted output:

Butter
Egg
Flour
Lard
Milk
Oats
Sugar

To sort in descending order (the non-default order), the query can be modified, and the
descending keyword added, as shown in the following modified query:

This produces the following output:

Ingredient[] ingredients =
{
 new Ingredient{Name = "Sugar", Calories=500},
 new Ingredient{Name = "Lard", Calories=500},
 new Ingredient{Name = "Butter", Calories=500},
 new Ingredient{Name = "Egg", Calories=100},
 new Ingredient{Name = "Milk", Calories=100},
 new Ingredient{Name = "Flour", Calories=50},
 new Ingredient{Name = "Oats", Calories=50}

};

IOrderedEnumerable<Ingredient> sortedByNameQuery =
 from i in ingredients
 orderby i.Name
 select i;

foreach (var ingredient in sortedByNameQuery)
{
 Console.WriteLine(ingredient.Name);
}

IOrderedEnumerable<Ingredient> sortedByNameQuery =
 from i in ingredients
 orderby i.Name descending
 select i;

 34

Sugar
Oats
Milk
Lard
Flour
Egg
Butter

The orderby clause can also be used when grouping is being applied. In the following code, the

calorie-grouped ingredients are sorted by the number of calories (which is the Key of each

group).

Notice in the preceding code, that even though the input sequence ingredients is in

descending calorie order, the output below is sorted by the calorie value (the Key) of the group

in ascending order:

Ingredient[] ingredients =
{
 new Ingredient{Name = "Sugar", Calories=500},
 new Ingredient{Name = "Lard", Calories=500},
 new Ingredient{Name = "Butter", Calories=500},
 new Ingredient{Name = "Egg", Calories=100},
 new Ingredient{Name = "Milk", Calories=100},
 new Ingredient{Name = "Flour", Calories=50},
 new Ingredient{Name = "Oats", Calories=50}
};

IEnumerable<IGrouping<int, Ingredient>> query =
 from i in ingredients
 group i by i.Calories
 into calorieGroup
 orderby calorieGroup.Key
 select calorieGroup;

foreach (IGrouping<int, Ingredient> group in query)
{
 Console.WriteLine("Ingredients with {0} calories", group.Key);

 foreach (Ingredient ingredient in group)
 {
 Console.WriteLine(" - {0}", ingredient.Name);
 }
}

 35

Ingredients with 50 calories
 - Flour
 - Oats
Ingredients with 100 calories
 - Egg
 - Milk
Ingredients with 500 calories
 - Sugar
 - Lard
 - Butter

Using the different styles

The two LINQ styles can be used together; for example, fluent query operators can be mixed in
with the query expression style.

Advantages of the different styles

Each syntax style has its own benefits.

Query expression style keyword availability

Not every query operator that is available using the fluent syntax has an equivalent query
expression syntax keyword. The following query operators using the fluent style have
associated keywords when using the query expression syntax:

 GroupBy

 GroupJoin

 Join

 OrderBy

 OrderByDescending

 Select

 SelectMany

 ThenBy

 ThenByDescending

 Where

Number of operators

If the query only requires the use of a single query operator to get the required results, then a
single call to a fluent style operator is usually a smaller amount of code to write, and can also be
comprehended more quickly by readers.

The following code shows a query returning all ingredients over 150 calories using both the
fluent style (q1) and query expression style (q2). Notice the fluent style is much terser when

needing to use only a single operator.

 36

Simple queries using basic operators

If the query is relatively simple and uses a few basic query operators such as Where and

OrderBy, either the fluent or the query expression styles can be used successfully. The choice

between the two styles in these cases is usually down to the personal preference of the
programmer or the coding standards imposed by the organization/client.

Complex queries with range additional range variables

Once queries become more complex and require the use of additional range variables (e.g.
when using the let clause or performing joins), then query expressions are usually simpler than

the equivalent fluent style version.

Mixing the styles in a single query

If a query is being written using the query expression style, it is still possible to make use of
query operators that have no equivalent query syntax keyword. This is accomplished by mixing
both fluent syntax and query syntax in the same query.

We have already seen an example of mixing the two styles with the use of the DefaultIfEmpty

fluent style operator when we discussed left outer joins earlier in this chapter.

The following example shows mixing the Count query operator (using fluent syntax) with a

query expression (inside the parentheses).

var q1 = ingredients.Where(x => x.Calories > 100);

var q2 = from i in ingredients
 where i.Calories > 100
 select i;

int mixedQuery = (from i in ingredients
 where i.Calories > 100
 select i).Count();

 37

Chapter 3 LINQ Query Operators

This chapter discusses the standard query operators and is organized by the classification of
the operators. Query operators can be grouped into categories such as join operators,
generation operators, and projection operators.

At a higher level, query operators can be classified as falling into one of three categories based
on their inputs/outputs:

 Input sequence(s) result in an output sequence.

 Input sequence results in scalar value/single element output.

 No input results in an output sequence (these operators generate their own elements).

The final category might seem strange at first glance, as these operators do not take an input
sequence. These operators can be useful, for example, when sequence of integers needs
creating, by reducing the amount of code we need to write to perform this generation.

Beyond this simple categorization based on input/output, the standard query operators can be
grouped as shown in the following list. The operators in each category will be discussed in more
detail later in this chapter.

Query operators:

 Restriction: Where

 Projection: Select, SelectMany

 Partitioning: Take, Skip, TakeWhile, SkipWhile

 Ordering: OrderBy, OrderByDescending, ThenBy, ThenByDescending, Reverse

 Grouping: GroupBy

 Set: Concat, Union, Intersect, Except

 Conversion: ToArray, ToList, ToDictionary, ToLookup, OfType, Cast

 Element: First, FirstOrDefault, Last, LastOrDefault, Single, SingleOrDefault,
ElementAt, ElementAtOrDefault, DefaultIfEmpty

 Generation: Empty, Range, Repeat

 Quantifiers: Any, All, Contains, SequenceEqual

 Aggregate: Count, LongCount, Sum, Min, Max, Average, Aggregate

 Joining: Join, GroupJoin, Zip

Restriction Operators

Restriction query operators take an input sequence and output a sequence of elements that are
restricted (“filtered”) in some way. The elements that make up the output sequence are those
that match the specified restriction. Individual output elements themselves are not modified or
transformed.

 38

Where

The Where query operator returns output elements that match a given predicate.

Tip: A predicate is a function that returns a bool result of true if some condition is satisfied.

The preceding code shows the Where operator in use. Here the predicate x => x.Calories
>= 200 will return true for every ingredient that is greater than or equal to 200 calories.

This code produces the following output:

Sugar
Butter

An overload of Where provides the positional index of the input element for use in the predicate.

In the preceding code, “Sugar” has an index of 0 and “Butter” has an index of 4. The following
query produces the same output as the previous version.

Notice the lambda expression is different. In this code, the predicate function will be of type
Func<Ingredient, int, bool>; the int parameter provides the position of the element in the

input sequence.

Ingredient[] ingredients =
{
 new Ingredient {Name = "Sugar", Calories = 500},
 new Ingredient {Name = "Egg", Calories = 100},
 new Ingredient {Name = "Milk", Calories = 150},
 new Ingredient {Name = "Flour", Calories = 50},
 new Ingredient {Name = "Butter", Calories = 200}
};

IEnumerable<Ingredient> query = ingredients
 .Where(x => x.Calories >= 200);

foreach (var ingredient in query)
{
 Console.WriteLine(ingredient.Name);
}

IEnumerable<Ingredient> queryUsingIndex = ingredients
 .Where((ingredient, index) =>
 ingredient.Name == "Sugar" ||
 index == 4);

 39

Query expression usage

The where keyword is used in query expression style code, and is followed by a Boolean

expression, as shown in the following code.

Projection Operators

Projection query operators take an input sequence, transform each element in that sequence,
and produce an output sequence of these transformed elements. In this way, the input
sequence is projected into a different output sequence.

Select

The Select query operator transforms each element in the input sequence to an element in the

output sequence. There will be the same number of elements in the output sequence as there
are in the input sequence.

The following query projects the input sequence of Ingredient elements into the output

sequence of string elements. The lambda expression is describing the projection: taking each

input Ingredient element and returning a string element.

We could create an output sequence of ints with the following code:

The projection can also result in new complex objects being produced in output. In the following
code each input Ingredient is projected into a new instance of an IngredientNameAndLength

object.

IEnumerable<Ingredient> queryEx = from i in ingredients
 where i.Calories >= 200
 select i;

IEnumerable<string> query = ingredients.Select(x => x.Name);

IEnumerable<int> queryNameLength = ingredients.Select(x => x.Name.Length);

class IngredientNameAndLength
{
 public string Name { get; set; }
 public int Length { get; set; }

 public override string ToString()

 40

This query could also be written using an anonymous type; notice in the following code the
query return type has been change to var.

Query expression usage

The select keyword is used in query expression style code as shown in the following code that

replicates the preceding fluent style version using an anonymous type.

SelectMany

Whereas the Select query operator returns an output element for every input element, the

SelectMany query operator produces a variable number of output elements for each input

element. This means that the output sequence may contain more or fewer elements than were
in the input sequence.

The lambda expression in the Select query operator returns a single item. The lambda

expression in a SelectMany query operator produces a child sequence. This child sequence

may contain a varying number of elements for each element in the input sequence.

 {
 return Name + " - " + Length;
 }
}

…

IEnumerable<IngredientNameAndLength> query = ingredients.Select(x =>
 new IngredientNameAndLength
 {
 Name = x.Name,
 Length = x.Name.Length
 });

var query = ingredients.Select(x =>
 new
 {
 Name = x.Name,
 Length = x.Name.Length
 });

var query = from i in ingredients
 select new
 {
 Name = i.Name,
 Length = i.Name.Length
 };

 41

In the following code, the lambda expression will produce a child sequence of chars, one char

for each letter of each input element. For example. the input element “Sugar,” when processed
by the lambda expression, will produce a child sequence containing five elements: ‘S’, ‘u’, ‘g’,
‘a’, and ‘r’. Each input ingredient string can be a different number of letters, so the lambda
expression will produce child sequences of different lengths. Each of the child sequences
produced are concatenated (“flattened”) into a single output sequence.

This code produces the following output (notice there are more output elements than there were
in the input sequence that only contained five elements):

S
u
g
a
r
E
g
g
M
i
l
k
F
l
o
u
r
B
u
t
t
e
r

Query expression usage

In the query expression style, an additional from clause is added to produce the child

sequence.

string[] ingredients = {"Sugar", "Egg", "Milk", "Flour", "Butter"};

IEnumerable<char> query = ingredients.SelectMany(x => x.ToCharArray());

foreach (char item in query)
{
 Console.WriteLine(item);
}

 42

The following code produces the same output as the previous fluent version.

Partitioning Operators

The partitioning query operators take an input sequence and partition it, or “return a chunk” in
the output sequence. One use of these operators is to break up a larger sequence into “pages,”
for example, paging though ten results at a time in a user interface.

Take

The Take query operator takes in an input sequence and returns the specified number of

elements as an output.

The following code shows how to use the Take query operator to return the first three

ingredients in the sequence.

The preceding code produces the following output:

Sugar
Egg
Milk

IEnumerable<char> query = from i in ingredients
 from c in i.ToCharArray()
 select c;

Ingredient[] ingredients =
{
 new Ingredient {Name = "Sugar", Calories = 500},
 new Ingredient {Name = "Egg", Calories = 100},
 new Ingredient {Name = "Milk", Calories = 150},
 new Ingredient {Name = "Flour", Calories = 50},
 new Ingredient {Name = "Butter", Calories = 200}
};

IEnumerable<Ingredient> firstThree = ingredients.Take(3);

foreach (var ingredient in firstThree)
{
 Console.WriteLine(ingredient.Name);
}

 43

As with other query operators, Take can be chained together. In the following code, Where is

used to restrict the ingredients to only those containing more than 100 calories. The Take query

operator then takes this restricted sequence and returns the first two ingredients.

This code produces the following result:

Sugar
Milk

Query expression usage

There is no keyword for Take when using the query expression style; however, mixed style can

be used as the following code demonstrates.

TakeWhile

The TakeWhile query operator, rather than return elements based on a fixed specified number

of elements, instead continues to return input elements until such time as a specified predicate
becomes false.

Ingredient[] ingredients =
{
 new Ingredient {Name = "Sugar", Calories = 500},
 new Ingredient {Name = "Egg", Calories = 100},
 new Ingredient {Name = "Milk", Calories = 150},
 new Ingredient {Name = "Flour", Calories = 50},
 new Ingredient {Name = "Butter", Calories = 200}
};

IEnumerable<Ingredient> query = ingredients
 .Where(x => x.Calories > 100)
 .Take(2);

foreach (var ingredient in query)
{
 Console.WriteLine(ingredient.Name);
}

IEnumerable<Ingredient> query = (from i in ingredients
 where i.Calories > 100
 select i).Take(2);

 44

The following code will continue to “take” elements from the input sequence while the number of
calories is greater than or equal to 100.

This produces the following output:

Sugar
Egg
Milk

Notice here that as soon as an element in the input sequence is reached that does not match
the predicate, the “taking” stops; no more elements from the remainder of the input sequence
are returned, even if they match the predicate.

There is an overload of TakeWhile that allows the positional index of the input element to be

used; in the preceding code, this predicate would take the form Func<Ingredient, int,
bool>. The int generic type parameter here represents the positional index of the current

Ingredient being examined.

Query expression usage

There is no keyword for TakeWhile when using the query expression style; however, mixed

style can be used.

Ingredient[] ingredients =
{
 new Ingredient {Name = "Sugar", Calories = 500},
 new Ingredient {Name = "Egg", Calories = 100},
 new Ingredient {Name = "Milk", Calories = 150},
 new Ingredient {Name = "Flour", Calories = 50},
 new Ingredient {Name = "Butter", Calories = 200}
};

IEnumerable<Ingredient> query = ingredients
 .TakeWhile(x => x.Calories >= 100);

foreach (var ingredient in query)
{
 Console.WriteLine(ingredient.Name);
}

 45

Skip

The Skip query operator will ignore the specified number of input elements from the start of the

input sequence and return the remainder.

The following code skips over the first three elements and returns the rest:

This produces the following output:

Flour
Butter

Query expression usage

There is no keyword for Skip when using the query expression style; however, mixed style can

be used.

Using Skip and Take for result set paging

When used together, the Skip and Take query operators can implement the paging of result

sets for display to users, as demonstrated in the following code.

Ingredient[] ingredients =
{
 new Ingredient {Name = "Sugar", Calories = 500},
 new Ingredient {Name = "Egg", Calories = 100},
 new Ingredient {Name = "Milk", Calories = 150},
 new Ingredient {Name = "Flour", Calories = 50},
 new Ingredient {Name = "Butter", Calories = 200}
};

IEnumerable<Ingredient> query = ingredients.Skip(3);

foreach (var ingredient in query)
{
 Console.WriteLine(ingredient.Name);
}

Ingredient[] ingredients =
{
 new Ingredient {Name = "Sugar", Calories = 500},
 new Ingredient {Name = "Egg", Calories = 100},
 new Ingredient {Name = "Milk", Calories = 150},
 new Ingredient {Name = "Flour", Calories = 50},
 new Ingredient {Name = "Butter", Calories = 200}
};

 46

This produces the following output:

Page One:
 - Sugar
 - Egg
Page Two:
 - Milk
 - Flour
Page Three:
 - Butter

SkipWhile

Like TakeWhile, the SkipWhile query operator uses a predicate to evaluate each element in

the input sequence. SkipWhile will ignore items in the input sequence until the supplied

predicate returns false.

The following code will skip input elements until “Milk” is encountered; at this point the predicate
x => x.Name != "Milk" becomes false, and the remainder of the ingredients will be returned.

IEnumerable<Ingredient> firstPage = ingredients.Take(2);

IEnumerable<Ingredient> secondPage = ingredients
 .Skip(2)
 .Take(2);

IEnumerable<Ingredient> thirdPage = ingredients
 .Skip(4)
 .Take(2);

Console.WriteLine("Page One:");
foreach (var ingredient in firstPage)
{
 Console.WriteLine(" - " + ingredient.Name);
}

Console.WriteLine("Page Two:");
foreach (var ingredient in secondPage)
{
 Console.WriteLine(" - " + ingredient.Name);
}

Console.WriteLine("Page Three:");
foreach (var ingredient in thirdPage)
{
 Console.WriteLine(" - " + ingredient.Name);
}

 47

This produces the following output:

Milk
Flour
Butter

Just as with TakeWhile, there is an overload of SkipWhile that allows the positional index of

the input element to be used.

Query expression usage

There is no keyword for SkipWhile when using the query expression style; however, mixed

style can be used.

Ordering Operators

The ordering query operators return the same number of elements as the input sequence, but
arranged in a (potentially) different order.

OrderBy

The OrderBy query operator sorts the input sequence by comparing the elements in the input

sequence using a specified key.

Ingredient[] ingredients =
{
 new Ingredient {Name = "Sugar", Calories = 500},
 new Ingredient {Name = "Egg", Calories = 100},
 new Ingredient {Name = "Milk", Calories = 150},
 new Ingredient {Name = "Flour", Calories = 50},
 new Ingredient {Name = "Butter", Calories = 200}
};

IEnumerable<Ingredient> query = ingredients.SkipWhile(x => x.Name != "Milk");

foreach (var ingredient in query)
{
 Console.WriteLine(ingredient.Name);
}

 48

The following code shows the sorting of a simple input sequence of strings. In this example, the
key is the string itself as specified by the lambda expression x => x.

This produces the following output:

Butter
Egg
Flour
Milk
Sugar

The lambda expression that is used to specify the sorting key can specify a property of the input
element itself, as the following code example shows.

string[] ingredients =
{
 "Sugar",
 "Egg",
 "Milk",
 "Flour",
 "Butter"
};

var query = ingredients.OrderBy(x => x);

foreach (var item in query)
{
 Console.WriteLine(item);
}

Ingredient[] ingredients =
{
 new Ingredient {Name = "Sugar", Calories = 500},
 new Ingredient {Name = "Egg", Calories = 100},
 new Ingredient {Name = "Milk", Calories = 150},
 new Ingredient {Name = "Flour", Calories = 50},
 new Ingredient {Name = "Butter", Calories = 200}
};

var query = ingredients.OrderBy(x => x.Calories);

foreach (var item in query)
{
 Console.WriteLine(item.Name + " " + item.Calories);

 49

In the preceding code, the lambda expression x => x.Calories is selecting the Calories

property to be the key that is sorted on.

This produces the following output:

Flour 50
Egg 100
Milk 150
Butter 200
Sugar 500

Query expression usage

The orderby keyword is used when using the query expression style, as shown in the following

code.

ThenBy

The ThenBy query operator can be chained one or multiple times following an initial OrderyBy.

The ThenBy operator adds additional levels of sorting. In the following code, the ingredients are

first sorted with the initial OrderBy sort (sorting into calorie order); this sorted sequence is then

further sorted by ingredient name while maintaining the initial calorie sort.

}

var query = from i in ingredients
 orderby i.Calories
 select i;

Ingredient[] ingredients =
{
 new Ingredient {Name = "Sugar", Calories = 500},
 new Ingredient {Name = "Milk", Calories = 100},
 new Ingredient {Name = "Egg", Calories = 100},
 new Ingredient {Name = "Flour", Calories = 500},
 new Ingredient {Name = "Butter", Calories = 200}
};

var query = ingredients.OrderBy(x => x.Calories)
 .ThenBy(x => x.Name);

foreach (var item in query)
{
 Console.WriteLine(item.Name + " " + item.Calories);
}

 50

This produces the following output:

Egg 100
Milk 100
Butter 200
Flour 500
Sugar 500

Notice that in the original input sequence, “Milk” came before “Egg,” but because of the ThenBy

operator, in the output the ingredients are sorted by name within matching calorie values.

Query expression usage

The orderby keyword is used when using the query expression style, but rather than a single

sort expression, subsequent sort expressions are added as a comma-separated list, as shown
in the following code.

OrderByDescending

The OrderByDescending query operator works in the same fashion as the OrderBy operator,

except that the results are returned in the reverse order, as the following code demonstrates.

var query = from i in ingredients
 orderby i.Calories, i.Name
 select i;

Ingredient[] ingredients =
{
 new Ingredient {Name = "Sugar", Calories = 500},
 new Ingredient {Name = "Milk", Calories = 100},
 new Ingredient {Name = "Egg", Calories = 100},
 new Ingredient {Name = "Flour", Calories = 500},
 new Ingredient {Name = "Butter", Calories = 200}
};

var query = ingredients.OrderByDescending(x => x.Calories);

foreach (var item in query)
{
 Console.WriteLine(item.Name + " " + item.Calories);
}

 51

This produces the following output:

Sugar 500
Flour 500
Butter 200
Milk 100
Egg 100

Note that this time the calorie numbers are in descending order.

Query expression usage

The descending keyword is used when using the query expression style, and is applied after

the sort expression itself, as shown in the following code.

ThenByDescending

The ThenByDescending query operator follows the same usage as the ThenBy operator, but

returns results in the reverse sort order.

The following code shows the ingredients being sorted first by calorie (in ascending order), then
by the ingredient names, but this time the names are sorted in descended order.

var query = from i in ingredients
 orderby i.Calories descending
 select i;

Ingredient[] ingredients =
{
 new Ingredient {Name = "Flour", Calories = 500},
 new Ingredient {Name = "Sugar", Calories = 500},
 new Ingredient {Name = "Egg", Calories = 100},
 new Ingredient {Name = "Milk", Calories = 100},
 new Ingredient {Name = "Butter", Calories = 200}
};

var query = ingredients.OrderBy(x => x.Calories)
 .ThenByDescending(x => x.Name);

foreach (var item in query)
{
 Console.WriteLine(item.Name + " " + item.Calories);
}

 52

This produces the following output:

Milk 100
Egg 100
Butter 200
Sugar 500
Flour 500

Notice here that in the input sequence, “Flour” comes before “Sugar,” but because of the
ThenByDescending, they are reversed in the output.

Query expression usage

The descending keyword is used when using the query expression style, as shown in the

following code.

Reverse

The Reverse query operator simply takes the input sequence and returns the elements in the

reverse order in the output sequence; so, for example, the first element in the input sequence
will become the last element in the output sequence.

The preceding code produces the following output:

C
B
A

Query expression usage

There is no keyword for Reverse when using the query expression style; however, mixed style

can be used.

var query = from i in ingredients
 orderby i.Calories, i.Name descending
 select i;

char[] letters ={'A', 'B', 'C'};

var query = letters.Reverse();

foreach (var item in query)
{
 Console.WriteLine(item);
}

 53

Grouping Operators

GroupBy

The GroupBy query operator takes an input sequence and returns an output sequence of

sequences (groups). The basic overload to the GroupBy method takes a lambda expression

representing the key to create the groups for.

The following code shows how to group all ingredients by number of calories.

Notice in the preceding code the output sequence of sequences is essentially a list
(IEnumerable) of IGrouping. Each IGrouping element contains the key (in this case an int

for the calories), and the list of ingredients that have the same number of calories.

Ingredient[] ingredients =
{
 new Ingredient{Name = "Sugar", Calories=500},
 new Ingredient{Name = "Lard", Calories=500},
 new Ingredient{Name = "Butter", Calories=500},
 new Ingredient{Name = "Egg", Calories=100},
 new Ingredient{Name = "Milk", Calories=100},
 new Ingredient{Name = "Flour", Calories=50},
 new Ingredient{Name = "Oats", Calories=50}

};

IEnumerable<IGrouping<int, Ingredient>> query =
 ingredients.GroupBy(x => x.Calories);

foreach (IGrouping<int, Ingredient> group in query)
{
 Console.WriteLine("Ingredients with {0} calories", group.Key);

 foreach (Ingredient ingredient in group)
 {
 Console.WriteLine(" - {0}", ingredient.Name);
 }
}

 54

This produces the following output:

Ingredients with 500 calories
 - Sugar
 - Lard
 - Butter
Ingredients with 100 calories
 - Egg
 - Milk
Ingredients with 50 calories
 - Flour
 - Oats

Query expression usage

The group keyword is used when using the query expression style; we saw the group keyword

in use in Chapter 2, “Fluent and Query Expression Styles.”

Set Operators

The set query operators perform set-based operations. These operators take two input
sequences representing the two “sets” and return a single output sequence.

The set query operators consist of the following:

 Concat

 Union

 Distinct

 Intersect

 Except

Concat

The Concat query operator takes a first sequence and returns this with all the elements of a

second sequence added to it, as shown in the following code.

string[] applePie = {"Apple", "Sugar", "Pastry", "Cinnamon"};
string[] cherryPie = { "Cherry", "Sugar", "Pastry", "Kirsch" };

IEnumerable<string> query = applePie.Concat(cherryPie);

foreach (string item in query)
{
 Console.WriteLine(item);
}

 55

This produces the following output:

Apple
Sugar
Pastry
Cinnamon
Cherry
Sugar
Pastry
Kirsch

Notice that any duplicate elements (such as “Sugar” and “Pastry”) are preserved.

Query expression usage

There is no keyword for Concat when using the query expression style; however, mixed style

can be used.

Union

The Union query operator performs a similar “joining” operation as Concat; however, any

duplicate elements that exist in both the first and second sequence are not duplicated in the
output.

This produces the following output:

Apple
Sugar
Pastry
Cinnamon
Cherry
Kirsch

Notice here that any duplicates (e.g. “Sugar” and “Pastry”) have been removed from the output
sequence.

Query expression usage

string[] applePie = { "Apple", "Sugar", "Pastry", "Cinnamon" };
string[] cherryPie = { "Cherry", "Sugar", "Pastry", "Kirsch" };

IEnumerable<string> query = applePie.Union(cherryPie);

foreach (string item in query)
{
 Console.WriteLine(item);
}

 56

There is no keyword for Union when using the query expression style; however, mixed style can

be used.

Distinct

While the Distinct query operator may not, strictly speaking, be a set operator in that it only

operates on a single input sequence, it is included here to show how the Union operator can by

simulated by using a Concat followed by a Distinct. Also note that the Distinct query

operator may be chained together with other query operators and not just the set-based
operators.

This produces the following output:

Apple
Sugar
Pastry
Cinnamon
Cherry
Kirsch

Notice this is that same output as when using Union.

Query expression usage

There is no keyword for Distinct when using the query expression style; however, mixed style

can be used.

Intersect

The Intersect query operator returns only those elements that exist in both the first and

second input sequences. In the following code, the only two elements that are common to both
sequences are “Sugar” and “Pastry.”

string[] applePie = { "Apple", "Sugar", "Pastry", "Cinnamon" };
string[] cherryPie = { "Cherry", "Sugar", "Pastry", "Kirsch" };

IEnumerable<string> query = applePie.Concat(cherryPie)
 .Distinct();

foreach (string item in query)
{
 Console.WriteLine(item);
}

 57

This produces the following output:

Sugar
Pastry

Also notice here that the common elements are not duplicated in the output sequence; we do
not see two “Sugar” elements, for example.

Query expression usage

There is no keyword for Intersect when using the query expression style; however, mixed

style can be used.

Except

The Except query operator will return only those elements in the first sequence where those

same elements do not exist in the second sequence.

Take the following code:

This produces the following output:

Apple
Cinnamon

string[] applePie = { "Apple", "Sugar", "Pastry", "Cinnamon" };
string[] cherryPie = { "Cherry", "Sugar", "Pastry", "Kirsch" };

IEnumerable<string> query = applePie.Intersect(cherryPie);

foreach (string item in query)
{
 Console.WriteLine(item);
}

string[] applePie = { "Apple", "Sugar", "Pastry", "Cinnamon" };
string[] cherryPie = { "Cherry", "Sugar", "Pastry", "Kirsch" };

IEnumerable<string> query = applePie.Except(cherryPie);

foreach (string item in query)
{
 Console.WriteLine(item);
}

 58

Note that we do not get any elements returned from the second sequence.

Query expression usage

There is no keyword for Except when using the query expression style; however, mixed style

can be used.

Conversion Operators

The conversion query operators convert from IEnumerable<T> sequences to other types of

collections.

The following query operators can be used to perform conversion of sequences:

 OfType

 Cast

 ToArray

 ToList

 ToDictionary

 ToLookup

OfType

The OfType query operator returns an output sequence containing only those elements of a

specified type. The extension method that implements the OfType query operator has the

following signature:

Notice here that the extension method is “extending” the non-generic type IEnumerable. This

means that the input sequence may contain elements of different types.

The following code shows an IEnumerable (object array) containing objects of different types.

The OfType query operator can be used here to return (for example) all the string objects.

Also notice in the following code that the result of the query is the generic version of
IEnumerable, namely IEnumerable<string>.

public static IEnumerable<TResult> OfType<TResult>(this IEnumerable source)

IEnumerable input = new object[]
 {
 "Apple", 33, "Sugar", 44, 'a', new DateTime()
 };

IEnumerable<string> query = input.OfType<string>();

foreach (string item in query)

 59

This produces the following output:

Apple
Sugar

Because IEnumerable<T> implements IEnumerable, OfType can also be used on strongly-

typed sequences. The following code show a simple object-oriented hierarchy.

The following code shows how OfType can be used to get a specific subtype, in this example

getting all the WetIngredient objects:

This produces the following output:

Milk
Water

{
 Console.WriteLine(item);
}

class Ingredient
{
 public string Name { get; set; }
}

class DryIngredient : Ingredient
{
 public int Grams { get; set; }
}

class WetIngredient : Ingredient
{
 public int Millilitres { get; set; }
}

IEnumerable<Ingredient> input = new Ingredient[]
 {
 new DryIngredient{ Name = "Flour"},
 new WetIngredient{Name = "Milk"},
 new WetIngredient{Name = "Water"}
 };

IEnumerable<WetIngredient> query = input.OfType<WetIngredient>();

foreach (WetIngredient item in query)
{
 Console.WriteLine(item.Name);
}

 60

Query expression usage

There is no keyword for OfType when using the query expression style; however, mixed style

can be used.

Cast

Like the OfType query operator, the Cast query operator can take an input sequence and return

an output sequence containing elements of a specific type. Each element in the input sequence
is cast to the specified type; however, unlike with OfType, which just ignores any incompatible

types, if the cast is not successful, an exception will be thrown.

The following code shows an example of where using Cast will throw an exception.

Running this code will cause a “System.InvalidCastException : Unable to cast object of type
'System.Int32' to type 'System.String'” exception.

Query expression usage

While there is no keyword for Cast when using the query expression style, it is supported by

giving the range variable a specific type, as in the following code.

Note in the preceding code the explicit type declaration string before the range variable name

i.

IEnumerable input = new object[]
 {
 "Apple", 33, "Sugar", 44, 'a', new DateTime()
 };

IEnumerable<string> query = input.Cast<string>();

foreach (string item in query)
{
 Console.WriteLine(item);
}

IEnumerable input = new object[] {"Apple", "Sugar", "Flour"};

IEnumerable<string> query = from string i in input
 select i;

 61

ToArray

The ToArray query operator takes an input sequence and creates an output array containing

the elements. ToArray will also cause immediate query execution (enumeration of the input

sequence) and overrides the default deferred execution behavior of LINQ.

In the following code, the IEnumerable<string> is converted to an array of strings.

Query expression usage

There is no keyword for ToArray when using the query expression style; however, mixed style

can be used.

ToList

The ToList query operator, like the ToArray operator, usually bypasses deferred execution.

Whereas ToArray creates an array representing the input elements, ToList, as its name

suggests, instead outputs a List<T>.

Query expression usage

There is no keyword for ToList when using the query expression style; however, mixed style

can be used.

ToDictionary

The ToDictionary query operator converts an input sequence into a generic

Dictionary<TKey, TValue>.

The simplest overload of the ToDictionary method takes a lambda expression representing a

function, which selects what is used for the key for each item in the resulting Dictionary.

IEnumerable<string> input = new List<string> { "Apple", "Sugar", "Flour" };

string[] array = input.ToArray();

IEnumerable<string> input = new []{ "Apple", "Sugar", "Flour" };

List<string> list = input.ToList();

IEnumerable<Recipe> recipes = new[]
 {
 new Recipe {Id = 1, Name = "Apple Pie", Rating = 5},
 new Recipe {Id = 2, Name = "Cherry Pie", Rating = 2},
 new Recipe {Id = 3, Name = "Beef Pie", Rating = 3}
 };

 62

In the preceding code, the Key of the items in the resultant Dictionary is of type int and is set

to the Id each Recipe. The Value of each item in the Dictionary represents the Recipe itself.

Dictionary<int, Recipe> dict = recipes.ToDictionary(x => x.Id);

foreach (KeyValuePair<int, Recipe> item in dict)
{
 Console.WriteLine("Key = {0}, Recipe = {1}", item.Key, item.Value.Name);
}

 63

Running the preceding code produces the following output:

Key = 1, Recipe = Apple Pie
Key = 2, Recipe = Cherry Pie
Key = 3, Recipe = Beef Pie

Query expression usage

There is no keyword for ToDictionary when using the query expression style; however, mixed

style can be used.

ToLookup

The ToLookup query operator works in a similar fashion to the ToDictionary operator, but

rather than producing a dictionary, it creates an instance of an ILookUp.

The following code shows the creation of a lookup that groups recipes into similar ratings. In this
example, the key comes from the byte rating.

IEnumerable<Recipe> recipes = new[]
 {
 new Recipe {Id = 1, Name = "Apple Pie", Rating = 5},
 new Recipe {Id = 1, Name = "Banana Pie", Rating = 5},
 new Recipe {Id = 2, Name = "Cherry Pie", Rating = 2},
 new Recipe {Id = 3, Name = "Beef Pie", Rating = 3}
 };

ILookup<byte, Recipe> look = recipes.ToLookup(x => x.Rating);

foreach (IGrouping<byte, Recipe> ratingGroup in look)
{
 byte rating = ratingGroup.Key;

 Console.WriteLine("Rating {0}", rating);

 foreach (var recipe in ratingGroup)
 {
 Console.WriteLine(" - {0}", recipe.Name);
 }
}

 64

This produces the following output:

Rating 5
 - Apple Pie
 - Banana Pie
Rating 2
 - Cherry Pie
Rating 3
 - Beef Pie

Query expression usage

There is no keyword for ToLookup when using the query expression style; however, mixed style

can be used.

Element Operators

The element operators take an input sequence and return a single element from that input
sequence, or some other default single value. In this way, the element operators do not
themselves return sequences.

First

The First query operator simply returns the initial element in the input sequence, as the

following code demonstrates.

This produces the following output:

Sugar

An overload of First allows a predicate to be specified. This will return the first item in the input

sequence that satisfies this predicate. The following code shows how to find the first
Ingredient element that has a calorie value of 150.

Ingredient[] ingredients =
{
 new Ingredient {Name = "Sugar", Calories = 500},
 new Ingredient {Name = "Egg", Calories = 100},
 new Ingredient {Name = "Milk", Calories = 150},
 new Ingredient {Name = "Flour", Calories = 50},
 new Ingredient {Name = "Butter", Calories = 500}
};

Ingredient element = ingredients.First();

Console.WriteLine(element.Name);

 65

This produces the following output:

Milk

If the input sequence contains zero elements, the use of First will result in an exception.

The following code will result in an exception: “System.InvalidOperationException : Sequence
contains no elements”.

If First is used with a predicate and that predicate cannot be satisfied by any element in the

input sequence, an exception will also be thrown. The following code produces the exception:
“System.InvalidOperationException : Sequence contains no matching element.” This is because
no Ingredient exists with 9,999 calories.

Query expression usage

There is no keyword for First when using the query expression style; however, mixed style

can be used.

Ingredient[] ingredients =
{
 new Ingredient {Name = "Sugar", Calories = 500},
 new Ingredient {Name = "Egg", Calories = 100},
 new Ingredient {Name = "Milk", Calories = 150},
 new Ingredient {Name = "Flour", Calories = 50},
 new Ingredient {Name = "Butter", Calories = 500}
};

Ingredient element = ingredients.First(x => x.Calories == 150);

Console.WriteLine(element.Name);

Ingredient[] ingredients = {};

Ingredient element = ingredients.First();

Ingredient[] ingredients =
{
 new Ingredient {Name = "Sugar", Calories = 500},
 new Ingredient {Name = "Egg", Calories = 100},
 new Ingredient {Name = "Milk", Calories = 150},
 new Ingredient {Name = "Flour", Calories = 50},
 new Ingredient {Name = "Butter", Calories = 500}
};

Ingredient element = ingredients.First(x => x.Calories == 9999);

 66

FirstOrDefault

The FirstOrDefault query operator works in a similar way to First, but instead of an

exception being thrown, the default value for the element type is returned. This default value will
be null for reference types, zero for numeric types, and false for Boolean types.

The following code uses FirstOrDefault with an empty sequence:

This produces the following output:

True

Notice that no exception is thrown, and the resulting element is set to null. The same behavior is
true for the version of FirstOrDefault that takes a predicate, as the following example shows.

This produces the following output:

True

Query expression usage

There is no keyword for FirstOrDefault when using the query expression style; however,

mixed style can be used.

Ingredient[] ingredients = { };

Ingredient element = ingredients.FirstOrDefault();

Console.WriteLine(element == null);

Ingredient[] ingredients =
{
 new Ingredient {Name = "Sugar", Calories = 500},
 new Ingredient {Name = "Egg", Calories = 100},
 new Ingredient {Name = "Milk", Calories = 150},
 new Ingredient {Name = "Flour", Calories = 50},
 new Ingredient {Name = "Butter", Calories = 500}
};

Ingredient element = ingredients.FirstOrDefault(x => x.Calories == 9999);

Console.WriteLine(element == null);

 67

Last

The Last query operator returns the final element in the input sequence. As with First, there

is an overloaded version that also takes a predicate. This predicate version will return the last
element in the sequence that satisfies the predicate. Also as with First, an exception will be

thrown if the input sequence contains zero elements, or if the predicate cannot be satisfied by
any element.

The following code shows the predicate version of Last.

This produces the following output:

Flour

Notice here that “Flour” is not the last element in the sequence as a whole, but rather the last
element that has 50 calories.

Query expression usage

There is no keyword for Last when using the query expression style; however, mixed style can

be used.

LastOrDefault

The LastOrDefault query operator works in a similar way to Last, and also has an overloaded

version that takes a predicate.

Like FirstOrDefault, if the input sequence is empty or no element satisfies the predicate,

rather than an exception being thrown, the default value for the element type is returned
instead.

Query expression usage

There is no keyword for LastOrDefault when using the query expression style; however,

mixed style can be used.

Ingredient[] ingredients =
{
 new Ingredient {Name = "Sugar", Calories = 500},
 new Ingredient {Name = "Egg", Calories = 100},
 new Ingredient {Name = "Milk", Calories = 50},
 new Ingredient {Name = "Flour", Calories = 50},
 new Ingredient {Name = "Butter", Calories = 500}
};

Ingredient element = ingredients.Last(x => x.Calories == 50);

Console.WriteLine(element.Name);

 68

Single

The Single query operator returns the only element in the input sequence. If the input

sequence contains more than one element, an exception is thrown:
”System.InvalidOperationException : Sequence contains more than one element.” If the input
sequence contains zero elements, an exception will also be thrown:
“System.InvalidOperationException : Sequence contains no elements.”

The following code uses Single to retrieve the only element in the input sequence.

This produces the following output:

Sugar

There is an overload of Single that allows a predicate to be specified. The predicate will locate

and return the single element that matches it. If there is more than one element in the input
sequence that matches the predicate, then an exception will be thrown:
“System.InvalidOperationException : Sequence contains more than one matching element.”

The following code shows how to use the predicate version of Single. Even though there is

more than one element in the input sequence, because there is not more than one element that
matches the predicate, an exception will not be thrown.

This produces the following output:

Butter

Ingredient[] ingredients =
{
 new Ingredient {Name = "Sugar", Calories = 500}
};

Ingredient element = ingredients.Single();

Console.WriteLine(element.Name);

Ingredient[] ingredients =
{
 new Ingredient {Name = "Sugar", Calories = 500},
 new Ingredient {Name = "Butter", Calories = 150},
 new Ingredient {Name = "Milk", Calories = 500}
};

Ingredient element = ingredients.Single(x => x.Calories == 150);

Console.WriteLine(element.Name);

 69

If the predicate is changed (as in the following code) so that it matches more than one element,
then an exception will be thrown.

Notice the predicate in the preceding code will find two ingredients with calories of 500, there
will be an exception.

Query expression usage

There is no keyword for Single when using the query expression style; however, mixed style

can be used.

SingleOrDefault

The SingleOrDefault query operator works in a similar fashion to Single. However, rather

than throwing an exception when there are zero input elements, the default for the type is
returned. If the predicate version is being used and no matching elements are found, the default
value is again returned, rather than an exception (as happens with Single). To summarize, for

SingleOrDefault to not throw an exception, either zero or one element must be found. Zero

found elements will result in a default value, one element found will be returned, more than one
element found will result in an exception.

The following code shows the predicate version of SingleOrDefault being used where there

will be zero matching elements found for 9,999 calories.

This produces the following output:

True

Ingredient[] ingredients =
{
 new Ingredient {Name = "Sugar", Calories = 500},
 new Ingredient {Name = "Butter", Calories = 150},
 new Ingredient {Name = "Milk", Calories = 500}
};

Ingredient element = ingredients.Single(x => x.Calories == 500);

Ingredient[] ingredients =
{
 new Ingredient {Name = "Sugar", Calories = 500},
 new Ingredient {Name = "Egg", Calories = 100},
 new Ingredient {Name = "Milk", Calories = 50}
};

Ingredient element = ingredients.SingleOrDefault(x => x.Calories == 9999);

Console.WriteLine(element == null);

 70

Note that no exception is thrown, rather the default value (null) is returned.

 71

Query expression usage

There is no keyword for SingleOrDefault when using the query expression style; however,

mixed style can be used.

ElementAt

The ElementAt query operator returns the element that exists at the specified position in the

input sequence.

The following code selects the third element from the input sequence.

This produces the following output:

Milk

Notice that the value passed to ElementAt is a zero-based index; for example, to select the first

element, the value would be 0.

If the value passed to ElementAt tries to select an element that is greater than the number of

elements in the input sequence, an exception will be thrown: “Index was out of range. Must be
non-negative and less than the size of the collection.”

Query expression usage

There is no keyword for ElementAt when using the query expression style; however, mixed

style can be used.

ElementAtOrDefault

The ElementAtOrDefault query operator works in a similar way to ElementAt, but rather than

throw an exception if the value passed to it exceeds the size of the input sequence, it will return
the default value for the input type. The following code demonstrates this.

Ingredient[] ingredients =
{
 new Ingredient {Name = "Sugar", Calories = 500},
 new Ingredient {Name = "Egg", Calories = 100},
 new Ingredient {Name = "Milk", Calories = 50}
};

Ingredient element = ingredients.ElementAt(2);

Console.WriteLine(element.Name);

Ingredient[] ingredients =

 72

This produces the following output:

True

Query expression usage

There is no keyword for ElementAtOrDefault when using the query expression style; however,

mixed style can be used.

DefaultIfEmpty

The DefaultIfEmpty query operator takes an input sequence and does one of two things. If

the input sequence contains at least one element, then the input sequence is returned without
any changes. If, however, the input sequence contains zero elements, the output sequence
returned will not be empty; it will contain a single element with a default value.

The following code shows what happens when the input sequence contains elements.

This produces the following output:

{
 new Ingredient {Name = "Sugar", Calories = 500},
 new Ingredient {Name = "Egg", Calories = 100},
 new Ingredient {Name = "Milk", Calories = 50}
};

Ingredient element = ingredients.ElementAtOrDefault(4);

Console.WriteLine(element == null);

Ingredient[] ingredients =
{
 new Ingredient {Name = "Sugar", Calories = 500},
 new Ingredient {Name = "Egg", Calories = 100},
 new Ingredient {Name = "Milk", Calories = 50}
};

IEnumerable<Ingredient> query = ingredients.DefaultIfEmpty();

foreach (Ingredient item in query)
{
 Console.WriteLine(item.Name);
}

 73

Sugar
Egg
Milk

Note this is exactly the same as the input sequence.

The following code shows the second mode of operation where the input sequence contains
zero elements.

This produces the following output:

True

Notice here that the input sequence was empty, but the output sequence contains a single null

element, a null being the default value for Ingredient (which is a reference type).

Query expression usage

There is no keyword for DefaultIfEmpty when using the query expression style; however,

mixed style can be used.

Generation Operators

The generation query operators create sequences for us.

The generation operators differ from the majority of the other standard query operators in two
main ways. The first is that they do not take an input sequence; the second is that they are not
implemented as extension methods, but rather as plain static methods of the Enumerable class.

As an example, the following code shows the signature of the Empty query operator.

Empty

The Empty query operator creates an empty sequence (zero elements) of a specified type.

Ingredient[] ingredients = {};

IEnumerable<Ingredient> query = ingredients.DefaultIfEmpty();

foreach (Ingredient item in query)
{
 Console.WriteLine(item == null);
}

public static IEnumerable<TResult> Empty<TResult>()

 74

The following code shows the creation of empty sequence of Ingredient. Notice that the type

of the empty sequence we want is specified as a generic type parameter of the Empty method.

 75

This produces the following output:

0

Query expression usage

There is no keyword for Empty when using the query expression style; however, mixed style can

be used.

Range

The Range query operator creates a sequence of integer values. When using Range, the first

parameter specified is the starting number of the range to be generated. The second parameter
is the total number of integer elements to generate, starting at the first parameter value.

This produces the following output:

5
6
7
8
9
10

Notice that a total of six elements have been generated, as specified by the second parameter
in the call to Range.

Query expression usage

There is no keyword for Range when using the query expression style; however, mixed style can

be used.

IEnumerable<Ingredient> ingredients = Enumerable.Empty<Ingredient>();

Console.WriteLine(ingredients.Count());

IEnumerable<int> fiveToTen = Enumerable.Range(5, 6);

foreach (int num in fiveToTen)
{
 Console.WriteLine(num);
}

 76

Repeat

The Repeat query operator repeats a specified integer a specified number of times, as the

following code shows.

This produces the following output:

42
42
42
42
42

Query expression usage

There is no keyword for Repeat when using the query expression style; however, mixed style

can be used.

Quantifier Operators

The quantifier query operators take an input sequence (or in the case of SequenceEqual, two

input sequences), evaluate it, and return a single Boolean result.

Contains

The Contains query operator evaluates the elements in the input sequence and returns true if

a specified value exists.

IEnumerable<int> nums = Enumerable.Repeat(42, 5);

foreach (int num in nums)
{
 Console.WriteLine(num);
}

int[] nums = {1, 2, 3};

bool isTwoThere = nums.Contains(2);
bool isFiveThere = nums.Contains(5);

Console.WriteLine(isTwoThere);
Console.WriteLine(isFiveThere);

 77

 78

This produces the following output:

True
False

Query expression usage

There is no keyword for Contains when using the query expression style; however, mixed style

can be used.

Any

There are two overloads of the Any query operator. The first version simply returns true if the

input sequence contains at least one element. The second version of Any takes a predicate as a

parameter and returns true if at least one element in the input sequence satisfies the predicate.

The following code demonstrates the simple version of Any.

This produces the following output:

True
False

The following code shows the predicate overload of Any to determine if a sequence contains

any even numbers.

This produces the following output:

True

Query expression usage

There is no keyword for Any when using the query expression style; however, mixed style can

be used.

int[] nums = { 1, 2, 3 };

IEnumerable<int> noNums = Enumerable.Empty<int>();

Console.WriteLine(nums.Any());
Console.WriteLine(noNums.Any());

int[] nums = { 1, 2, 3 };

bool areAnyEvenNumbers = nums.Any(x => x % 2 == 0);

Console.WriteLine(areAnyEvenNumbers);

 79

All

The All query operator takes a predicate and evaluates the elements in the input sequence to

determine if every element satisfies this predicate.

The following code checks that a sequence of ingredients constitutes a low-fat recipe.

This produces the following output:

False

Note: As soon as an element is found that does not satisfy the predicate, All() returns false

and does not examine any subsequent elements.

Query expression usage

There is no keyword for All when using the query expression style; however, mixed style can

be used.

SequenceEqual

The SequenceEqual query operator compares two sequences to see if they both have exactly

the same elements in the same order.

The following code compares two identical sequences:

Ingredient[] ingredients =
{
 new Ingredient {Name = "Sugar", Calories = 500},
 new Ingredient {Name = "Egg", Calories = 100},
 new Ingredient {Name = "Milk", Calories = 150},
 new Ingredient {Name = "Flour", Calories = 50},
 new Ingredient {Name = "Butter", Calories = 400}
};

bool isLowFatRecipe = ingredients.All(x => x.Calories < 200);

Console.WriteLine(isLowFatRecipe);

IEnumerable<int> sequence1 = new[] {1, 2, 3};
IEnumerable<int> sequence2 = new[] {1, 2, 3};

bool isSeqEqual = sequence1.SequenceEqual(sequence2);

Console.WriteLine(isSeqEqual);

 80

This produces the following output:

True

If the two sequences being compared contain the same elements, but in different orders, then
SequenceEqual will return false, as the following code demonstrates.

This produces the following output:

False

Notice here that even though the sequences contain the same values (1, 2, 3) the order is
different, so SequenceEqual returns false.

Query expression usage

There is no keyword for SequenceEqual when using the query expression style; however,

mixed style can be used.

Aggregate Operators

The aggregate operators take an input sequence and return a single scalar value. The returned
value is not one of the elements from the input sequence, but rather some derived value
computed from the elements in the input sequence.

The aggregate query operators are:

 Count

 LongCount

 Sum

 Min

 Max

 Average

 Aggregate

Count

The Count query operator simply returns the number of elements contained in the input

sequence. There are two overloads, one of which accepts a predicate.

IEnumerable<int> sequence1 = new[] { 1, 2, 3 };
IEnumerable<int> sequence2 = new[] { 3, 2, 1 };

bool isSeqEqual = sequence1.SequenceEqual(sequence2);

Console.WriteLine(isSeqEqual);

 81

The following example shows the non-predicate version.

This produces the following output:

3

When a predicate is supplied, the count is restricted to those elements satisfying the predicate.
The following code shows a predicate being used to count all the even numbers in the input
sequence.

This produces the following output:

1

Tip: Using Any() instead of Count() != 0 usually conveys the intent of the code better, and in

some circumstances, can perform better.

Query expression usage

There is no keyword for Count when using the query expression style; however, mixed style can

be used.

LongCount

The LongCount query operator provides the same features as Count (including a predicate

overload), but instead of returning an int, it returns a long, so it can be used with very long

input sequences.

Query expression usage

There is no keyword for LongCount when using the query expression style; however, mixed

style can be used.

int[] nums = {1, 2, 3};

int numberOfElements = nums.Count();

Console.WriteLine(numberOfElements);

int[] nums = { 1, 2, 3 };

int numberOfEvenElements = nums.Count(x => x % 2 == 0);

Console.WriteLine(numberOfEvenElements);

 82

Sum

The Sum query operator adds together all the elements of the input sequence and returns the

total result.

The following code demonstrates adding together a sequence of ints.

This produces the following output:

6

The Sum query operator is implemented as individual separate extension methods for

IEnumerable<T> (for example, IEnumerable<long>) for each of the numeric types (and

nullable equivalents). This means that in order to use Sum on non-numeric sequences, an

overload must be used to select a numeric value from the non-numeric input elements. The
following code shows how to Sum the calorie values of a sequence of Ingredient.

This produces the following output:

1200

Query expression usage

There is no keyword for Sum when using the query expression style; however, mixed style can

be used.

int[] nums = { 1, 2, 3 };

int total = nums.Sum();

Console.WriteLine(total);

Ingredient[] ingredients =
{
 new Ingredient {Name = "Sugar", Calories = 500},
 new Ingredient {Name = "Egg", Calories = 100},
 new Ingredient {Name = "Milk", Calories = 150},
 new Ingredient {Name = "Flour", Calories = 50},
 new Ingredient {Name = "Butter", Calories = 400}
};

int totalCalories = ingredients.Sum(x => x.Calories);

Console.WriteLine(totalCalories);

 83

Average

The Average query operator works on a sequence of numeric values and calculates the

average.

The following code shows Average in use.

This produces the following output:

2

Notice in the preceding code the type for total has not been explicitly set; instead, var is being

used. Depending on the numeric input type, Average will return different output numeric types.

For example, the following code will not compile because the implementation of Average for

IEnumerable<int> returns a double.

Average will return either a double, float, or decimal return type (or the nullable versions of

these.)

As with Sum, Average can be used on an input sequence of non-numeric values using an

overload, which allows a numeric value to be selected, as shown in the following code.

This produces the following output:

240

int[] nums = { 1, 2, 3 };

var avg = nums.Average();

Console.WriteLine(avg);

int[] nums = { 1, 2, 3 };

int avg = nums.Average(); // this line causes compilation failure

Ingredient[] ingredients =
{
 new Ingredient {Name = "Sugar", Calories = 500},
 new Ingredient {Name = "Egg", Calories = 100},
 new Ingredient {Name = "Milk", Calories = 150},
 new Ingredient {Name = "Flour", Calories = 50},
 new Ingredient {Name = "Butter", Calories = 400}
};

var avgCalories = ingredients.Average(x => x.Calories);

Console.WriteLine(avgCalories);

 84

Query expression usage

There is no keyword for Average when using the query expression style; however, mixed style

can be used.

Min

The Min query operator returns the smallest element from the input sequence, as the following

code demonstrates.

This produces the following output:

1

An overload of Min also allows the selector to be specified, as the following code shows.

This produces the following output:

50

Query expression usage

There is no keyword for Min when using the query expression style; however, mixed style can

be used.

int[] nums = { 3, 2, 1 };

var smallest = nums.Min();

Console.WriteLine(smallest);

Ingredient[] ingredients =
{
 new Ingredient {Name = "Sugar", Calories = 500},
 new Ingredient {Name = "Egg", Calories = 100},
 new Ingredient {Name = "Milk", Calories = 150},
 new Ingredient {Name = "Flour", Calories = 50},
 new Ingredient {Name = "Butter", Calories = 400}
};

var smallestCalories = ingredients.Min(x => x.Calories);

Console.WriteLine(smallestCalories);

 85

Max

The Max query operator complements the Min operator and returns the smallest value from the

input sequence, as the following code demonstrates.

This produces the following output:

3

As with Min, there is an overload of Max that allows a selector to be specified.

Query expression usage

There is no keyword for Max when using the query expression style; however, mixed style can

be used.

Aggregate

The previous aggregate operators all perform a specific aggregation; the Aggregate query

operator is a more advanced operator that allows custom aggregations to be defined and
executed against an input sequence.

There are two main versions of Aggregate: one that allows a starting “seed” value to be

specified, and one that uses the first element in the sequence as the seed value.

All versions of Aggregate require an “accumulator function” to be specified. The accumulator,

as its name suggests, accumulates a result as each element in the input sequence is
processed. The accumulator function is passed the value of the current element being
processed and the current accumulated value.

The following code demonstrates how to simulate the Sum operator using Aggregate.

This produces the following output:

int[] nums = { 1, 3, 2 };

var largest = nums.Max();

Console.WriteLine(largest);

int[] nums = { 1, 2, 3 };

var result = nums.Aggregate(0,
 (currentElement, runningTotal) => runningTotal + currentElement);

Console.WriteLine(result);

 86

6

The preceding code uses an overload of Aggregate that specifies the initial seed value, in this

example a seed of zero.

Query expression usage

There is no keyword for Aggregate when using the query expression style; however, mixed

style can be used.

Joining Operators

The joining query operators take two input sequences, combine them in some way, and output a
single sequence.

Join

The Join query operator takes an initial input sequence (the “outer sequence”), and to this

outer sequence a second “inner sequence” is introduced. The output from the Join query

operator is a flat (i.e. non-hierarchical) sequence.

The Join operator takes a number of parameters:

 IEnumerable<TInner> inner – the inner sequence.

 Func<TOuter, TKey> outerKeySelector – what key to join on in outer sequence
elements.

 Func<TInner, TKey> innerKeySelector - what key to join on in inner sequence
elements.

 Func<TOuter, TInner, TResult> resultSelector – What the output elements will
look like

Note: There is also an overload that allows a specific IEqualityComparer to be used.

The following code shows the Join query operator in use. Note the explicit type definitions in

the key selection lambdas; this is for demonstration code clarity. For example: (Recipe
outerKey) => outerKey.Id could be simplified to outerKey=> outerKey.Id.

Recipe[] recipes = // outer sequence
{
 new Recipe {Id = 1, Name = "Mashed Potato"},
 new Recipe {Id = 2, Name = "Crispy Duck"},

 87

This produces the following output:

Mashed Potato - Tasty!
Mashed Potato - Not nice :(
Mashed Potato - Pretty good
Crispy Duck - Too hard
Crispy Duck - Loved it

Notice in this output that “Sachertorte” does not appear. This is because Join performs a left

join, so elements in the outer sequence that have no matches in the inner sequence will not be
included in the output sequence.

 new Recipe {Id = 3, Name = "Sachertorte"}
};

Review[] reviews = // inner sequence
{
 new Review {RecipeId = 1, ReviewText = "Tasty!"},
 new Review {RecipeId = 1, ReviewText = "Not nice :("},
 new Review {RecipeId = 1, ReviewText = "Pretty good"},
 new Review {RecipeId = 2, ReviewText = "Too hard"},
 new Review {RecipeId = 2, ReviewText = "Loved it"}
};

var query = recipes // recipes is the outer sequence
 .Join(
 reviews, // reviews is the inner sequence
 (Recipe outerKey) => outerKey.Id, // the outer key
 (Review innerKey) => innerKey.RecipeId, // the inner key
 // choose the shape ("projection") of resulting elements
 (recipe, review) => recipe.Name + " - " + review.ReviewText);

foreach (string item in query)
{
 Console.WriteLine(item);
}

 88

Query expression usage

The join keyword is used when using the query expression style. The following code shows

how to perform an inner join using the query expression style. See Chapter 2, “Fluent and
Query Expression Styles for usage of the join keyword.

Tip: Consider using the query expression style when performing joins, as it is usually more

readable.

GroupJoin

The GroupJoin query operator joins an inner and outer sequence, just as with the Join query

operator; however, GroupJoin produces a hierarchical result sequence. The output sequence is

essentially a sequence of groups, with each group able to contain the sequence of items from
the inner sequence that belong to that group.

The GroupJoin operator takes a number of parameters:

 IEnumerable<TInner> inner: The inner sequence.

 Func<TOuter, TKey> outerKeySelector: What key to join on in outer sequence
elements.

 Func<TInner, TKey> innerKeySelector: What key to join on in inner sequence
elements.

 Func<TOuter, IEnumerable<TInner>, TResult> resultSelector: What the output
groups will look like.

Notice the final parameter here is different from Join’s (Func<TOuter, TInner, TResult>
resultSelector). Rather than a single TInner, GroupJoin has IEnumerable<TInner>. This

IEnumerable<TInner> contains all the elements from the inner sequence that match the outer

sequence key; it is essentially all the inner sequence elements that belong in the group.

The following code shows GroupJoin in use. Notice the result selector is creating an

anonymous type containing the group “key” (i.e. the recipe name), and a list of the reviews that
belong to that recipe.

var query = from recipe in recipes
 join review in reviews on recipe.Id equals review.RecipeId
 select new // anonymous type
 {
 RecipeName = recipe.Name,
 RecipeReview = review.ReviewText
 };

Recipe[] recipes =
{
 new Recipe {Id = 1, Name = "Mashed Potato"},

 89

This produces the following output:

Reviews for Mashed Potato
 - Tasty!
 - Not nice :(
 - Pretty good
Reviews for Crispy Duck
 - Too hard
 - Loved it
Reviews for Sachertorte

Notice the “Sachertorte” group has been included even though it has no related reviews.

 new Recipe {Id = 2, Name = "Crispy Duck"},
 new Recipe {Id = 3, Name = "Sachertorte"}
};

Review[] reviews =
{
 new Review {RecipeId = 1, ReviewText = "Tasty!"},
 new Review {RecipeId = 1, ReviewText = "Not nice :("},
 new Review {RecipeId = 1, ReviewText = "Pretty good"},
 new Review {RecipeId = 2, ReviewText = "Too hard"},
 new Review {RecipeId = 2, ReviewText = "Loved it"}
};

var query = recipes
 .GroupJoin(
 reviews,
 (Recipe outerKey) => outerKey.Id,
 (Review innerKey) => innerKey.RecipeId,
 (Recipe recipe, IEnumerable<Review> rev =>
 new {
 RecipeName = recipe.Name,
 Reviews = revs
 }
);

foreach (var item in query)
{
 Console.WriteLine("Reviews for {0}", item.RecipeName);

 foreach (var review in item.Reviews)
 {
 Console.WriteLine(" - {0}", review.ReviewText);
 }
}

 90

Query expression usage

The join keyword is used when using the query expression style; see Chapter 2, “Fluent and

Query Expression Styles,” for usage of the join keyword. The following code shows a group

join using the query expression style.

Zip

The Zip query operator joins two sequences together, but unlike Join and GroupJoin, does not

perform joining based on keys, and the concepts of inner and outer sequences do not apply.
Instead, Zip simply interleaves each element from the two input sequences together, one after

the other, much like joining two sides of a zipper on an item of clothing.

When using Zip, the resulting shape of the output elements is specified. In the following

example, the result elements are of type Ingredient.

This produces the following output:

Flour has 100 calories
Butter has 400 calories
Sugar has 500 calories

var query =
 from recipe in recipes
 join review in reviews on recipe.Id equals review.RecipeId
 into reviewGroup
 select new // anonymous type
 {
 RecipeName = recipe.Name,
 Reviews = reviewGroup // collection of related reviews
 };

string[] names = {"Flour", "Butter", "Sugar"};
int[] calories = {100, 400, 500};

IEnumerable<Ingredient> ingredients =
 names.Zip(calories, (name, calorie) =>
 new Ingredient
 {
 Name = name,
 Calories = calorie
 });

foreach (var item in ingredients)
{
 Console.WriteLine("{0} has {1} calories", item.Name, item.Calories);
}

 91

If there is a greater number of elements in one of the two input sequences, these extra elements
are ignored and do not appear in the output.

Query expression usage

There is no keyword for Zip when using the query expression style; however, mixed style can

be used.

 92

Chapter 4 LINQ to XML

The building blocks that comprise LINQ to XML allow the creation, modification, querying, and
saving of XML data.

At a high level, LINQ to XML consists of two key architectural elements that are designed to
work well together:

 XML document object model.

 Additional LINQ to XML query operators.

The XML document object model in LINQ to XML (the X-DOM) is not the W3C DOM; it is a set
of .NET types that represent in-memory XML data. While the types that make up the X-DOM
can be used independently from any LINQ queries, they are designed to be LINQ-friendly and
facilitate easy interaction when using LINQ.

X-DOM Overview

The types that make up the X-DOM are used to represent the structure of an XML document or
fragment. They represent an in-memory model of the structure and content of XML data.

Key X-DOM types

There are numerous types that make up the X-DOM object model. Some of the keys types are
shown in the following class hierarchy diagram.

XObject

XAttribute XNode

XContainer

XElement XDocument

 93

XContainer

An XContainer represents the idea of an item in the XML hierarchy that may have zero, one, or

many children XNode objects. XContainer is an abstract class, so it cannot be instantiated

directly; instead, either XElement or XDocument can be used.

XElement and XDocument

An XElement represents an element in an XML document such as an <ingredient> element.

An XElement can contain a value such as “Butter,” and may contain zero, one, or many

XAttributes. By virtue of it inheriting from XContainer, it may also have child XNode objects

that belong to it.

An XDocument wraps a root XElement to provide the additional capability of XML declaration

items such as XML version and encoding, as well as other “header” items, such a DTD for the
XML document. Unless these kind of additional capabilities are required, using XElement is

usually sufficient.

XAtrribute

An XAttribute represents an XML attribute on an XML element. For example, the calories

attribute in the following XML would be represented as an XAttribute object: <ingredient

calories="500">

XNode

While an XNode object has the concept of belonging to a parent (XElement) node that it can

navigate to, unlike XContainer (and its subclasses XElement and XDocument), it has no

concept of having any child nodes.

XName

XName is not part of the hierarchy, but it is used in many methods when wanting to specify

node(s) to locate in the XML document hierarchy. It is used to represent the name of an XML
element or attribute. In addition to representing elements as simple name strings, XName also

contains logic for working with XML namespaced names.

Creating an X-DOM

There are a number of ways to arrive at an in-memory X-DOM, including loading XML files and
instantiation through code.

Parsing Strings and Loading Files

To create an XElement from a string, the static Parse method can be used, as the following

code shows.

 94

This produces the following output:

<ingredients>
 <ingredient>Sugar</ingredient>
 <ingredient>Milk</ingredient>
 <ingredient>Butter</ingredient>
</ingredients>

To create an XElement from a physical XML file, the XElement.Load method can be used with

a path specifying the file to be loaded.

Manual Procedural Creation

The types that make up the X-DOM can be instantiated, just as with regular .NET types. To
create an X-DOM that represents the previous <ingredients> XML, the following code can be

written.

This produces the following output:

string xmlString = @"<ingredients>
 <ingredient>Sugar</ingredient>
 <ingredient>Milk</ingredient>
 <ingredient>Butter</ingredient>
 </ingredients>";

XElement xdom = XElement.Parse(xmlString);

Console.WriteLine(xdom);

XElement ingredients = new XElement("ingredients");

XElement sugar = new XElement("ingredient", "Sugar");
XElement milk = new XElement("ingredient", "Milk");
XElement butter = new XElement("ingredient", "Butter");

ingredients.Add(sugar);
ingredients.Add(milk);
ingredients.Add(butter);

Console.WriteLine(ingredients);

 95

<ingredients>
 <ingredient>Sugar</ingredient>
 <ingredient>Milk</ingredient>
 <ingredient>Butter</ingredient>
</ingredients>

Note in the preceding code that even though the XML structure is simple, this manual creation
style does not make it particularly easy to understand what the XML structure that is being
created is. An alternative approach is to use functional construction.

Functional Construction

Using the functional construction style can make the resulting XML structure easier to relate to
when reading the code.

The following code shows the same <ingredients> XML created, this time using functional

construction.

Notice in the preceding code, it is much easier for the reader to form a mental picture of what
the XML structure is.

Notice the overload of XElement constructor in the preceding code is one which allows any

number of content objects to be specified after the XElement name (“ingredients”). The

signature of this version of the constructor is: public XElement(XName name, params
object[] content).

Creation via Projection

One of the benefits of the functional construction style is that results from LINQ queries can be
projected into an X-DOM.

The following code adapts the preceding code to populate the X-DOM with the result of a LINQ
query.

XElement ingredients =
 new XElement("ingredients",
 new XElement("ingredient", "Sugar"),
 new XElement("ingredient", "Milk"),
 new XElement("ingredient", "Butter")
);

Console.WriteLine(ingredients);

 96

This produces the following output:

<ingredients>
 <ingredient calories="500">Sugar</ingredient>
 <ingredient calories="150">Milk</ingredient>
 <ingredient calories="200">Butter</ingredient>
</ingredients>

Notice in the preceding code the addition of an XAttribute to each <ingredient> representing

the calories. Again, this is possible because the constructor takes any number of content
objects, even when those objects are of different types. In the preceding code, this allows the
text content of the XElement to be set (for example, “Sugar”) at the same time an attribute is

added.

Querying X-DOM with LINQ

Querying and navigating an X-DOM is implemented in two main ways. The first of these are the
methods that belong to the X-DOM types themselves. The second is a set of additional query
operators (i.e. extension methods) that are defined in the System.Xml.Linq.Extensions class.

The methods of the X-DOM types often return IEnumerable sequences. The additional LINQ-

to-XML query operators can then do further work with these sequences.

Note: The standard query operators can also be combined with the XML query operators.

As a simple example, the following code demonstrates both implementations.

Ingredient[] ingredients =
{
 new Ingredient {Name = "Sugar", Calories = 500},
 new Ingredient {Name = "Milk", Calories = 150},
 new Ingredient {Name = "Butter", Calories = 200}
};

XElement ingredientsXML =
 new XElement("ingredients",
 from i in ingredients
 select new XElement("ingredient", i.Name,
 new XAttribute("calories", i.Calories))
);

Console.WriteLine(ingredientsXML);

 97

In the preceding code, the first execution of the Descendants method belongs to XElement.

More specifically, the method belongs to XContainer, from which XElement inherits. This

method returns an IEnumerable<XElement> into the variable allRecipes.

The second Descendants method call is a call to the LINQ-to-XML query operator extension

method that has the signature: public static IEnumerable<XElement>
Descendants<T>(this IEnumerable<T> source, XName name) where T : XContainer.

Finding Child Nodes

There are a number of properties and methods (in some cases both instance and query
operator extension methods) that allow the locating of child nodes.

The following tables outline the methods and properties available for finding children.

Table 1: Finding Child Nodes

Method(parameter) /
Property

Returns Operates On

FirstNode XNode XContainer

LastNode XNode XContainer

Element(XName) XElement XContainer

Nodes() IEnumerable<XNode> XContainer,

IEnumerable<XContainer>

DescendantNodes() IEnumerable<XNode> XContainer,

IEnumerable<XContainer>

XElement xmlData = XElement.Load("recipes.xml");

// Here Descendants() is an instance method of XContainer
var allrecipes = xmlData.Descendants("recipe");

// Here Descendants() is a query operator extension method
var allIngredients = allrecipes.Descendants("ingredient");

 98

Method(parameter) /
Property

Returns Operates On

Elements() IEnumerable<XElement> XContainer,

IEnumerable<XContainer>

 99

Method(parameter) /
Property

Returns Operates On

Elements(XName) IEnumerable<XElement> XContainer,

IEnumerable<XContainer>

Descendants() IEnumerable<XElement> XContainer,

IEnumerable<XContainer>

Descendants(XName) IEnumerable<XElement> XContainer,

IEnumerable<XContainer>

HasElements Boolean XElement

DescendantNodesAndSelf() IEnumerable<XNode> XElement,

IEnumerable<XElement>

DescendantsAndSelf() IEnumerable<XElement> XElement,

IEnumerable<XElement>

DescendantsAndSelf(
XName)

IEnumerable<XElement> XElement,

IEnumerable<XElement>

The following code demonstrates how to retrieve the first <ingredient> element that has

any child elements. Here, Descendants is used to retrieve all ingredients, in conjunction with

the standard query operator First. The predicate supplied to First is restricting the returned

element to the first one that has any child elements by using the XElement’s HasElements

property.

XElement xmlData = XElement.Load("recipes2.xml");

XElement firstIngredientWithSubElements = xmlData.Descendants("ingredient")
 .First(x => x.HasElements);

 100

Finding Parent Nodes

XDOM types that inherit from XNode contain a Parent property that returns the parent

XElement.

Table 2: Finding Parent Nodes

Method(parameter) /
Property

Returns Operates On

Parent XElement XNode

Ancestors() IEnumerable<XElement> XNode,

IEnumerable<XNode>

Ancestors(XName) IEnumerable<XElement> XNode,

IEnumerable<XNode>

AncestorsAndSelf() IEnumerable<XElement> XElement,

IEnumerable<XElement>

AncestorsAndSelf(XName
)

IEnumerable<XElement> XElement,

IEnumerable<XElement>

The following example shows the use of the Parent method to move up the XML hierarchy.

This example finds the first ingredient that has child elements, then moves one level up to get
the <ingredients> element. Then, another call to Parent moves another level up to get to the

<recipe>.

XElement xmlData = XElement.Load("recipes2.xml");

XElement recipe = xmlData.Descendants("ingredient")
 .First(x => x.HasElements)
 .Parent // <ingredients>
 .Parent; // <recipe name="Cherry Pie">

 101

Finding Peer Nodes

The following table shows the methods defined in the XNode class for working with nodes at the

same level.

Table 3: Finding Peer Nodes

Method(parameter) / Property Returns

IsBefore(XNode) Boolean

IsAfter(XNode) Boolean

PreviousNode XNode

NextNode XNode

NodesBeforeSelf() IEnumerable<XNode>

NodesAfterSelf() IEnumerable<XNode>

ElementsBeforeSelf() IEnumerable<XElement>

ElementsBeforeSelf(XName) IEnumerable<XElement>

ElementsAfterSelf() IEnumerable<XElement>

ElementsAfterSelf(XName) IEnumerable<XElement>

The following code shows the use of the NextNode and IsBefore methods. This code also

demonstrates how the standard query operators (such as Skip) can be used in LINQ-to-XML

queries.

XElement xmlData = XElement.Load("recipes2.xml");

var applePieIngredients =
 xmlData.Descendants("recipe")
 .First(x => x.Attribute("name").Value == "Apple Pie")
 .Descendants("ingredient");

 102

Finding Attributes

An XElement may have a number of XAttributes. The following table shows the methods

defined in XElement for working with attributes that belong to it.

Table 4: Finding XElement Attributes

Method(parameter) / Property Returns

HasAttributes Boolean

Attribute(XName) XAttribute

FirstAttribute XAttribute

LastAttribute XAttribute

Attributes() IEnumerable<XAttribute>

Attributes(XName) IEnumerable<XAttribute>

The following code demonstrates the use of the Attribute(XName) method to locate a specific

XAttribute and get its value by reading its Value property. This example also shows the use

of the FirstAttribute method to get an element’s first declared attribute, and also how to

combine standard query operators such as Skip to query the IEnumerable<XAttribute>

provided by the Attributes method.

var firstIngredient = applePieIngredients.First(); // Sugar
var secondIngredient = firstIngredient.NextNode; // Apples
var lastIngredient = applePieIngredients.Skip(2).First(); // Pastry

var isApplesBeforeSugar =
 secondIngredient.IsBefore(firstIngredient); // false

var xml = @"
<ingredients>
 <ingredient name='milk' quantity='200' price='2.99' />

 103

 <ingredient name='sugar' quantity='100' price='4.99' />
 <ingredient name='safron' quantity='1' price='46.77' />
</ingredients>";

XElement xmlData = XElement.Parse(xml);

XElement milk =
 xmlData.Descendants("ingredient")
 .First(x => x.Attribute("name").Value == "milk");

XAttribute nameAttribute = milk.FirstAttribute; // name attribute

XAttribute priceAttribute = milk.Attribute("price");

string priceOfMilk = priceAttribute.Value; // 2.99

XAttribute quantity = milk.Attributes()
 .Skip(1)
 .First(); // quantity attribute

 104

Chapter 5 Interpreted Queries

Overview

Up until this point in the book, we have focused mainly on local queries. Local queries are those
that operate on IEnumerable<T> sequences. Local queries result in the query operators that

are defined in the System.Linq.Enumerable class being executed. In this way, executing local

queries results in specific code running (from the query operators in the Enumerable class) as

defined at compile time.

Interpreted queries, on the other hand, describe the “shape” of the query that instead is
interpreted at runtime—hence the name “interpreted.” Interpreted queries operate on
IQuerable<T> sequences, and when writing LINQ queries, the query operators resolve to

methods defined in the System.Linq.Queryable class rather than the

System.Linq.Enumerable class as with local queries.

Another way to think about the difference between local (IEnumerable<T>) queries and

interpreted (IQueryable<T>) queries is that the local query operators contain the actual query

implementation code that gets executed, whereas the interpreted query operators do not. With
interpreted queries, the actual query code that gets executed and returns some result is defined
in a query provider. The query provider is passed the description of the query that needs to be
executed; it executes the query (for example, executing some SQL against a database) and
returns the result.

Expression trees

The query operators that work on IQueryable<T> differ from their equivalent versions for local

queries.

Local (IEnumerable<T>) versions of query operators take delegates as parameters (often

described using a lambda expression). In contrast, interpreted queries take expression trees
as parameters.

Because C# will implicitly convert a lambda expression when used as a query operator
parameter to an expression, the same lambda expression can be used regardless of whether
the query operator is a local or remote one. The following code shows both the local
(IEnumerable<T>) version of the Where query operator and the interpreted (IQueryable<T>)

version being used. Notice that the lambda expression is the same in both cases.

IQueryable<int> interpretedQuery = remoteData.Where(x => x > 100);
IEnumerable<int> localQuery = localData.Where(x => x > 100);

 105

The following code shows the method signatures for the Where query operator for both the local

and interpreted versions.

Notice in the preceding code that the local version takes a predicate parameter of type
Func<TSource, bool>. Contrast this with the interpreted version where the predicate

parameter type is Expression<Func<TSource, bool>>. This is the expression tree that the

query provider can turn into some meaningful code execution, such as generating an equivalent
SQL statement and executing against a database.

Because IQueryable<T> is a subtype of IEnumerable<T>, the compiler has to choose whether

to use the local or remote version of a give query operator. The compiler rules dictate that the
more specific version will be chosen. Because IQueryable<T> is more specific than

IEnumerable<T>, the compiler will choose the interpreted versions of the query operators (as

defined in System.Linq.Queryable) when dealing with interpreted queries, and local versions

of query operators (as defined in System.Linq.Enumerable) when dealing with local queries.

This fact (and C#’s implicit conversion of lambda expressions to Expression<T>) means that

LINQ queries can provide a unified API regardless of whether the query is a local one or a
remote interpreted query.

Note: Not all of the standard query operators will be supported by all interpreted query

providers.

Query providers

Microsoft™ has provided pre-built query providers that operate with databases, such as the
older LINQ to SQL and the newer Entity Framework.

There are also numerous third party or open source query providers including:

 LINQ to Twitter

 LINQ to flickr

 LINQ to JSON

These examples serve to demonstrate the powerful and flexible nature of LINQ interpreted
queries. Remote data stores of different types can be queried using a common set of LINQ
query operators.

// Local version of Where from System.Linq.Enumerable
public static IEnumerable<TSource> Where<TSource>(this IEnumerable<TSource>
source, Func<TSource, bool> predicate)

// Interpreted version of Where from System.Linq.Queryable
public static IQueryable<TSource> Where<TSource>(this IQueryable<TSource>
source, Expression<Func<TSource, bool>> predicate)

 106

In addition to LINQ providers built by others, it is also possible to create them ourselves, though
the work required may be quite involved.

Entity Framework

As an example of using LINQ to query a database using Entity Framework, imagine a SQL
Server database that contains the following entities (tables).

In the preceding code, the model represents that a recipe can have multiple reviews.

Tip: To learn more about using Entity Framework, be sure to check out the Entity Framework

Code First Succinctly eBook from Syncfusion.

Now that the entities are defined, a data context class can be defined, as the following code
demonstrates.

public class Recipe
{
 public int ID { get; set; }
 public string Name { get; set; }
 public virtual ICollection<Review> Reviews { get; set; }
}

public class Review
{
 public int ID { get; set; }
 public int RecipeID { get; set; }
 public string ReviewText { get; set; }
 public virtual Recipe Recipe { get; set; }
}

public class RecipeDbContext : DbContext
{
 public RecipeDbContext() : base ("RecipeDbConnectionString")
 {
 }

 public DbSet<Recipe> Recipes { get; set; }
 public DbSet<Review> Reviews { get; set; }

 protected override void OnModelCreating(DbModelBuilder modelBuilder)
 {
 modelBuilder.Conventions.Remove<PluralizingTableNameConvention>();
 }
}

 107

A database initializer is created to always recreate the database and populate it with some initial
demo data, as the following code shows.

Now that there is an EF model and a database containing some demo data, it can be queried
using LINQ via the RecipeDbContext. The following code shows how to use fluent style syntax

to get all the recipes sorted by the recipe name.

This produces the following output:

Apple Pie
Cherry Pie

Just as with local queries, query expression syntax can also be used with interpreted queries.

The following code shows the combination of using query expression syntax against an Entity
Framework model and projecting into an X-DOM using functional construction.

public class RecipeDbInitializer :
 System.Data.Entity.DropCreateDatabaseAlways<RecipeDbContext>
{
 protected override void Seed(RecipeDbContext context)
 {
 context.Recipes.Add(new Recipe { Name = "Cherry Pie" });
 context.Recipes.Add(new Recipe {Name = "Apple Pie"});
 context.SaveChanges();

 context.Reviews.Add(new Review {ReviewText = "Quite nice",
 RecipeID = 1});
 context.Reviews.Add(new Review {ReviewText = "I hate cherries!",
 RecipeID = 1});
 context.Reviews.Add(new Review {ReviewText = "Ok",
 RecipeID = 1});
 context.Reviews.Add(new Review {ReviewText = "Not too bad",
 RecipeID = 2});
 context.SaveChanges();
 }
}

RecipeDbContext ctx = new RecipeDbContext();

IQueryable<Recipe> allRecipies = ctx.Recipes
 .OrderBy(x => x.Name);

foreach (var recipe in allRecipies)
{
 Console.WriteLine(recipe.Name);
}

 108

This produces the following output:

<recipes>
 <recipe name="Cherry Pie" id="1">
 <reviews>
 <review>Quite nice</review>
 <review>I hate cherries!</review>
 <review>Ok</review>
 </reviews>
 </recipe>
 <recipe name="Apple Pie" id="2">
 <reviews>
 <review>Not too bad</review>
 </reviews>
 </recipe>
</recipes>

In the preceding code, there are a couple of noteworthy items. The first is the Entity Framework
Include extension method. This instructs Entity Framework to retrieve all the related reviews

for each of the recipes. Without this, Entity Framework will end up submitting multiple select
queries to the database, rather than just a single SELECT.

The second item of note is the explicit call to ToList(). This is required to retrieve the results

into local entity objects before the X-DOM projection takes place. Without this, an exception will
be thrown: “System.NotSupportedException : Only parameterless constructors and initializers
are supported in LINQ to Entities.” This is because XElement does not have a default

parameterless constructor defined.

Other than these Entity Framework specific items, the LINQ query follows the same pattern and
syntax it would if we were working with a local data.

RecipeDbContext ctx = new RecipeDbContext();

XElement xml = new XElement("recipes",
 from rec in ctx.Recipes.Include(x => x.Reviews).ToList()
 select
 new XElement("recipe",
 new XAttribute("name", rec.Name),
 new XAttribute("id", rec.ID),
 new XElement("reviews",
 from rev in rec.Reviews
 select
 new XElement("review", rev.ReviewText))
));

Console.WriteLine(xml);

 109

Chapter 6 Parallel LINQ

Overview

The area of parallel programming is vast and potentially complicated. This chapter introduces
parallel LINQ (PLINQ) as a method of reducing processing time when executing LINQ queries.

PLINQ is a higher level abstraction that sits above various lower level .NET multithreading
related components and aims to abstract away the lower-level details of multithreading, while at
the same time offering the familiar general LINQ query semantics.

Note: Because PLINQ is at a higher level of abstraction, the programmer still needs to have

basic working knowledge of multithreaded programming.

When converting a LINQ query to a PLINQ query, PLINQ takes care of the following lower-level
aspects of parallelization:

 Split the query work (input sequence) into a number of smaller sub-segments.

 Execute query code against each sub-segment on different threads.

 Once all sub-segments have been processed, reassemble all the results from the sub-
segments back into a single output sequence.

In this way, PLINQ may help reduce overall query processing time by utilizing multiple cores of
the machine on which it is executing. It should also be noted that PLINQ works on local queries,
as opposed to remote interpreted queries.

Not all queries will benefit from PLINQ, and indeed, depending on the number of input elements
and the amount of processing required, PLINQ queries may actually take longer to run due to
the overhead of splitting/threading/reassembly. As with all performance-related tasks,
measurements/profiling and methodical performance-tuning adjustments should be made rather
than randomly turning all LINQ queries in the code base into PLINQ queries.

It should also be noted that simply using PLINQ is no guarantee of the query actually executing
in parallel. This is because not all query operators are able to be parallelized. Even with those
query operators that are parallelizable, during execution, PLINQ may decide to still run them
sequentially if it determines that it may be perform better.

Applying PLINQ

To turn a normal LINQ query to a PLINQ query, the AsParallel method is added to the query.

This extension method is defined in the System.Linq.ParallelEnumerable class. When the

AsParallel method is added to a query, it essentially “switches on” PLINQ for that query.

 110

The following code shows the method signature for AsParallel method.

Notice that the AsParallel extension method extends IEnumerable<TSource>. Because local

LINQ queries operate on IEnumberable<T> sequence, the method is available to be added to

regular local LINQ queries. The other important thing to note in the preceding code is that the
return type is ParallelQuery<TSource>. It is this different return type that “switches on”

PLINQ. Because the query “stream” has now been converted from an IEnumerable<T> to a

ParallelQuery<TSource> the other PLINQ versions of the query operators can now be

applied to the query.

To illustrate this, the following code shows the differences in the signature of the Where operator

between regular local LINQ and PLINQ

Notice in the preceding code the second PLINQ version of the Where query operator is

extending ParallelQuery<T> and not IEnumerable<T>.

So once we have switched our regular LINQ query to PLINQ using AsParallel, when we use

subsequent query operators, they will use the PLINQ versions and be executed in parallel
where possible, and when PLINQ does not decide sequential (non-parallel) execution is better.

The following code shows two queries that both filter the input sequence of numbers where the
string version of that number contains the string “3”. This example code is to create enough of a
CPU load to see some meaningful output timings. The second version of the query uses PLINQ
to parallelize the query. In both queries the output sequence result is being ignored and
ToArray is being used to force the query to run. The execution time for both queries is being

captured using a StopWatch.

public static ParallelQuery<TSource> AsParallel<TSource>(
 this IEnumerable<TSource> source)

// Where query operator from System.Linq.Enumerable
public static IEnumerable<TSource> Where<TSource>(
 this IEnumerable<TSource> source, Func<TSource, bool> predicate)

// Where query operator from System.Linq.ParallelEnumerable
public static ParallelQuery<TSource> Where<TSource>(
 this ParallelQuery<TSource> source, Func<TSource, bool> predicate)

var someNumbers = Enumerable.Range(1, 10000000).ToArray();

var sw = new Stopwatch();

sw.Start();
someNumbers.Where(x => x.ToString().Contains("3")).ToArray();
sw.Stop();

Console.WriteLine("Non PLINQ query took {0} ms", sw.ElapsedMilliseconds);

 111

This produces the following output:

Non PLINQ query took 3218 ms
PLINQ query took 1494 ms

We can see from these results that the PLINQ version of the query executed about twice as fast
as the non-PLINQ version.

Output element ordering

When a PLINQ query executes in parallel, the input sequence is broken up into sub-segments,
so once each sub-segment has been processed, it needs to be added into the overall resulting
output sequence.

While regular LINQ queries respect the ordering of input elements when they appear in the
output sequence, PLINQ queries may not return elements in the same order as they were put
in.

The following code demonstrates this by performing a simple Select query that just returns the

input number unchanged on ten input numbers. The query uses PLINQ. The numbers are in the
input and output sequences and output for comparison.

sw.Restart();
someNumbers.AsParallel().Where(x => x.ToString().Contains("3")).ToArray();
sw.Stop();

Console.WriteLine("PLINQ query took {0} ms", sw.ElapsedMilliseconds);

var inputNumbers = Enumerable.Range(1, 10).ToArray();

Console.WriteLine("Input numbers");
foreach (var num in inputNumbers)
{
 Console.Write(num + " ");
}

var outputNumbers = inputNumbers.AsParallel().Select(x => x);

Console.WriteLine();
Console.WriteLine("Output numbers");
foreach (var num in outputNumbers)
{
 Console.Write(num + " ");
}

 112

This produces the following output:

Input numbers
1 2 3 4 5 6 7 8 9 10

Output numbers
1 4 7 9 2 5 8 10 3 6

Notice the output sequence element ordering does not match the input ordering.

To force the output sequence to be in the same order as the input sequence, the AsOrdered

PLINQ extension method can be used, as the following code demonstrates.

This produces the following output:

Output numbers
1 2 3 4 5 6 7 8 9 10

Notice now the output elements are in the same order as the input elements. It should be noted
that PLINQ has to do extra work to track the position of input elements when AsOrdered is

used, so there may be some negative performance implications, depending on the size of the
input sequence. If only part of the query requires ordering preservation, then AsOrdered can be

used for those parts. If other parts of the query do not require order preservation, then the
default unordered behavior can be restored by adding a call to the AsUnordered extension

method. Subsequent query operators after the AsUnordered will not track the input ordering of

elements.

Potential PLINQ Problems

There are a number of things to be aware of when using PLINQ:

 PLINQ may not always be faster than LINQ

 Avoid writing to shared memory (such as static variables)

 Do not call non-thread safe methods from PLINQ

 Calling thread-safe methods may incur locking/synchronization overheads

var inputNumbers = Enumerable.Range(1, 10).ToArray();

var outputNumbers = inputNumbers.AsParallel().AsOrdered().Select(x => x);

Console.WriteLine("Output numbers");
foreach (var num in outputNumbers)
{
 Console.Write(num + " ");
}

 113

For further information and a more comprehensive list, see the MSDN documentation at
https://msdn.microsoft.com/en-us/library/dd997403%28v=vs.110%29.aspx.

Mixing LINQ and PLINQ

A single query can execute partly in standard sequential mode and have some parts of the
query execute in parallel. This provides flexibility to the query author and enables non-thread-
safe parts of the query (or parts where parallelization may run more slowly) to run sequentially,
while other parts run in parallel.

While the AsParallel method switches the query into PLINQ mode, the companion

AsSequential extension method switches back to regular LINQ.

The following code shows the method signature of the AsSequential method. Notice that the

extension method works on a ParallelQuery<TSource> input sequence and returns a

standard IEnumerable<T>. Because the return type is a normal IEnumerable<T>, subsequent

query operators will bind to the standard local LINQ operators, not the PLINQ ones.

The following code demonstrates how to switch between LINQ and PLINQ in a single query.

public static IEnumerable<TSource> AsSequential<TSource>(
 this ParallelQuery<TSource> source)

IEnumerable<int> inputNumbers = Enumerable.Range(1, 10).ToArray();

IEnumerable<int> outputNumbers = inputNumbers
 .AsParallel()
 .Select(x => x) // PLINQ version of Select
 .AsSequential()
 .Select(x => x); // LINQ version of Select

https://msdn.microsoft.com/en-us/library/dd997403%28v=vs.110%29.aspx

 114

Chapter 7 LINQ Tools and Resources

MSDN LINQ Home

The starting page for the MSDN coverage of LINQ can be found at
https://msdn.microsoft.com/en-AU/library/bb397926.aspx.

101 LINQ Samples

This MSDN resource provides a multitude of sample code demonstrating the various LINQ
query operators. You can download all the samples or browse the code at
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b.

C# 5.0 In a Nutshell

This book (authored by Joseph Albahari & Ben Albahari, published by O’Reilly) covers just
about everything related to C#, including comprehensive coverage of LINQ.

LINQPad

LINQPad is the “.NET Programmer’s Playground,” and is a desktop tool that helps you quickly
prototype and execute LINQ queries, in addition to many other features. LINQPad can be
downloaded (including free and paid-for versions) from http://www.linqpad.net/.

https://msdn.microsoft.com/en-AU/library/bb397926.aspx
https://code.msdn.microsoft.com/101-LINQ-Samples-3fb9811b
http://www.linqpad.net/

	The Story behind the Succinctly Series of Books
	About the Author
	Chapter 1 LINQ Fundamentals
	Why LINQ?
	The building blocks of LINQ

	Scalar return values and output sequences
	Deferred execution
	Lambda expressions in query operators
	Local and interpreted queries
	Chapter 2 Fluent and Query Expression Styles
	Fluent style
	Chained query operators

	Query expression style
	Range variables
	The let clause

	The into keyword
	The join clause
	Other query expression syntax
	The group clause and the by keyword

	The orderby clause and ascending & descending keywords
	Using the different styles
	Advantages of the different styles

	Mixing the styles in a single query
	Chapter 3 LINQ Query Operators
	Restriction Operators

	Where
	Projection Operators
	Select

	SelectMany
	Partitioning Operators
	Take

	TakeWhile
	Skip
	SkipWhile
	Ordering Operators
	OrderBy

	ThenBy
	OrderByDescending
	ThenByDescending
	Reverse
	Grouping Operators
	GroupBy

	Set Operators
	Concat

	Union
	Distinct
	Intersect
	Except
	Conversion Operators
	OfType

	Cast
	ToArray
	ToList
	ToDictionary
	ToLookup
	Element Operators
	First

	FirstOrDefault
	Last
	LastOrDefault
	Single
	SingleOrDefault
	ElementAt
	ElementAtOrDefault
	DefaultIfEmpty
	Generation Operators
	Empty

	Range
	Repeat
	Quantifier Operators
	Contains

	Any
	All
	SequenceEqual
	Aggregate Operators
	Count

	LongCount
	Sum
	Average
	Min
	Max
	Aggregate
	Joining Operators
	Join

	GroupJoin
	Zip
	Chapter 4 LINQ to XML
	X-DOM Overview
	Key X-DOM types

	XContainer
	XElement and XDocument
	XAtrribute
	XNode
	XName
	Creating an X-DOM
	Parsing Strings and Loading Files

	Manual Procedural Creation
	Functional Construction
	Creation via Projection
	Querying X-DOM with LINQ
	Finding Child Nodes
	Finding Parent Nodes
	Finding Peer Nodes
	Finding Attributes
	Chapter 5 Interpreted Queries
	Overview
	Expression trees

	Query providers
	Entity Framework
	Chapter 6 Parallel LINQ
	Overview
	Applying PLINQ

	Output element ordering
	Potential PLINQ Problems
	Mixing LINQ and PLINQ
	Chapter 7 LINQ Tools and Resources

