Hands-On
Data Science with
the Command Line

Jason Maorris, Chris McCubbin
and Raymond Page

Hands-On Data Science
with the Command Line

Automate everyday data science tasks using
command-line tools

Jason Morris
Chris McCubbin
Raymond Page

BIRMINGHAM - MUMBAI

Hands-On Data Science with the
Command Line

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Acquisition Editor: Divya Poojari

Content Development Editor: Mohammed Yusuf Imaratwale
Technical Editor: Diksha Wakode

Copy Editor: Safis Editing

Project Coordinator: Kinjal Bari

Proofreader: Safis Editing

Indexer: Tejal Daruwale Soni

Graphics: Jason Monteiro

Production Coordinator: Arvindkumar Gupta

First published: January 2019
Production reference: 1310119

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78913-298-4

www.packtpub.com

http://www.packtpub.com

A Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt .com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the authors

Jason Morris is a systems and research engineer with over 19 years of experience in system
architecture, research engineering, and large data analysis. His primary focus is machine
learning with TensorFlow, CUDA, and Apache Spark.

Jason is also a speaker and a consultant on designing large-scale architectures,
implementing best security practices on the cloud, creating near real-time image detection
analytics with deep learning, and developing serverless architectures to aid in ETL. His
most recent roles include solution architect, big data engineer, big data specialist, and
instructor at Amazon Web Services. He is currently the Chief Technology Officer of Next
Rev Technologies, and his favorite command-line program is netcat.

I want to thank the team at Packt Publishing for helping the authors from beginning to
end in the writing of this book. To the number of open source developers that helped make
the command line what it is today, thank you for all you do. This book wouldn’t be possible
without you. And to the readers of this publication, may this book aid you in your quest of
doing great things.

Chris McCubbin is a data scientist and software developer with 20 years' experience in
developing complex systems and analytics. He co-founded the successful big data security
start-up Sqrrl, since acquired by Amazon. He has also developed smart swarming systems
for drones, social network analysis systems in MapReduce, and big data security analytic
platforms using the Accumulo and Spark Apache projects. He has been using the Unix
command line, starting on IRIX platforms in college, and his favorite command-line
program is find.

Thanks to my wife, Angel, for giving me the time to finish this book. Also thanks to Tom
Swindell for his help with proofreading and editing.

Raymond Page is a computer engineer specializing in site reliability. His experience with
embedded development engendered a passion for removing the pervasive bloat from web
technologies and cloud computing. His favorite command is cat.

I want to thank Jason and Chris for adding my esoteric shell knowledge to this book, 1"ve
had a blast working with them. I also want to thank the entire Packt team for being so
helpful throughout the editorial process. To my family, all my love for enduring my
absences from game nights and story time to complete this book.

About the reviewers

Chankey Pathak is a data scientist from India. He's the author of the Python API for high
frequency trading of Morgan Stanley. He has worked with Citadel, Sophos, and Proofpoint
in the past. He's also well known in the Perl community for his contributions. He is an open
source contributor and loves Linux.

Tom Swindell is a systems engineer with 15 years of experience in software architecture,
data analysis, and algorithms. He works for Net Vision Consultants, performing a mix of
systems engineering, Python development, and system administration.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface

N

Chapter 1: Data Science at the Command Line and Setting It Up
History of the command line
We don't want to BaSH other shells, but...
Language-focused shells
So, why the command line?
Getting set up with Windows 10
Getting set up on OS X
Getting set up on Ubuntu Linux
Getting set up with Docker
Summary

Chapter 2: Essential Commands
Essential commands
Navigating the command line

Getting help
Customizing the shell
Summary

Chapter 3: Shell Workflows, and Data Acquisition and Massaging
Download the data
Using the file command
Performing a word count
Introduction to cut
Detached processing
How to background a process
Disregarding SIGHUP
Terminal multiplexers
Introduction to screen
Sharing a screen session between multiple users
Introduction to tmux
Summary

Chapter 4: Bash Functions and Data Visualization
My first shell script
She bangs, she bangs!
Function arguments, positional parameters, and IFS
Prompt me baby one more time
Feed the function input!

© 0o O O

11
16
18
19
20

21
21
26
28
30
30

31
32
33
35
37
39
40
41
41
41
44
44
46

47
48
48
49
49
51

Table of Contents

Down the rabbit hole of IFS and bash arrays
Advanced shell scripting magic

Here be dragons, ye be warned

Text injection of text files

Bash networks for fun and profit!

From dumb Terminal to glam Terminal

Who, what, where, why, how?

Enter the mind's eye
Summary

Chapter 5: Loops, Functions, and String Processing

Once, twice, three times a lady loops
It's the end of the world as we know it while and until
The simple case
Pay no heed to the magician redirecting your attention
Regular expressions and grep

Exact matches

Character sets

Dot the i (or anything else)

Capture groups

Either or, neither nor

Repetition

Other operators

Putting it all together
awk, sed, and tr

awk

sed

tr

sort and uniq

sort
uniq

Summary

Chapter 6: SQL, Math, and Wrapping it up
cut and viewing data as columnar
WHERE clauses
Join, for joining data
Group by and ordering
Simulating selects
Keys to the kingdom
Using SQLite
Math in bash itself
Using let
Basic arithmetic
Double-parentheses
bc, the unix basic calculator

52
53
53
53
54
56
59
63
66

67
68
70
72
73
75
76
76
77
78
78
79
79
80
80
80
82
83
83
83
85
86

87
88
90
91
92
93
94
94
96
96
96
96
97

[ii]

Table of Contents

Math in (g)awk
Python (pandas, numpy, scikit-learn)
Analyzing weather data in bash
Summary

Other Books You May Enjoy

98
99
100
105

106

Index

109

[iii]

Preface

In this book, we introduce the power of the command line using the bash shell. Bash is the
most widely accepted shell, and is found on everything from toasters to high-performance
computers. We start with the basics and quickly move to some more advanced skills
throughout the book.

Who this book is for

Hands-On Data Science with the Command Line provides useful tips and tricks on how to use
the command line for everyday data problems. This book is aimed for the reader that has
little to no command-line experience but has worked in the field of computer science and/or
has experience with modern data science problems.

You'll learn how to set up the command line on multiple platforms and configure it to your
liking, learn how to find help with commands, and learn how to create reusable scripts.
You will also learn how to obtain an actual dataset, perform some analytics, and learn how
to visualize the data. Towards the end of the book, we touch on some of the advanced
features of the command line and where to go from there.

In addition, all of the code examples are available to download in Packt's GitHub account.
Any updates to this book will be made available to you by the Packt platform.

What this book covers

Chapter 1, Data Science at the Command line and Setting It up, covers how to install and
configure the command line on multiple platforms of your choosing.

Chapter 2, Essential Commands, is a hands-on demo on using the basics of the command
line and where to find help if needed.

Chapter 3, Shell Workflows, and Data Acquisition and Massaging, really gets into performing
some basic data science exercises with a live dataset and customizing your command-line
environment as you see fit.

Chapter 4, Reusable Bash and Developing Reusable Code in Bash, builds on the previous
chapters and gets more advanced with creating reusable scripts and visualizations.

Preface

Chapter 5, Loops, Functions, and String Processing, is an advanced hands-on exercise on
iterating over data using loops and exploring with regular expressions.

Chapter 6, SQL, Math, and Wrapping it up, is an advanced hands-on exercise to use what
you've learned over the last chapters, and we introduce databases, streaming, and working
with APIs.

To get the most out of this book

For this book, all you require is the Bash shell and a operating system that can run the
command line or the latest version of Docker. You will also need an Internet connection
(preferably cable or higher) and strong typing skills.

Download the example code files

You can download the example code files for this book from your account at
www.packt . com. If you purchased this book elsewhere, you can visit
www.packt . com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt . com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

LN =

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WIinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Hands-On-Data-Science-with-Command-Line. In case there's an update
to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

[2]

http://www.packt.com
http://www.packt.com/support
http://www.packt.com
https://github.com/PacktPublishing/Hands-On-Data-Science-with-Command-Line
https://github.com/PacktPublishing/Hands-On-Data-Science-with-Command-Line
https://github.com/PacktPublishing/Hands-On-Data-Science-with-Command-Line
https://github.com/PacktPublishing/Hands-On-Data-Science-with-Command-Line
https://github.com/PacktPublishing/Hands-On-Data-Science-with-Command-Line
https://github.com/PacktPublishing/Hands-On-Data-Science-with-Command-Line
https://github.com/PacktPublishing/Hands-On-Data-Science-with-Command-Line
https://github.com/PacktPublishing/Hands-On-Data-Science-with-Command-Line
https://github.com/PacktPublishing/Hands-On-Data-Science-with-Command-Line
https://github.com/PacktPublishing/Hands-On-Data-Science-with-Command-Line
https://github.com/PacktPublishing/Hands-On-Data-Science-with-Command-Line
https://github.com/PacktPublishing/Hands-On-Data-Science-with-Command-Line
https://github.com/PacktPublishing/Hands-On-Data-Science-with-Command-Line
https://github.com/PacktPublishing/Hands-On-Data-Science-with-Command-Line
https://github.com/PacktPublishing/Hands-On-Data-Science-with-Command-Line
https://github.com/PacktPublishing/Hands-On-Data-Science-with-Command-Line
https://github.com/PacktPublishing/Hands-On-Data-Science-with-Command-Line
https://github.com/PacktPublishing/Hands-On-Data-Science-with-Command-Line
https://github.com/PacktPublishing/Hands-On-Data-Science-with-Command-Line
https://github.com/PacktPublishing/Hands-On-Data-Science-with-Command-Line
https://github.com/PacktPublishing/Hands-On-Data-Science-with-Command-Line
https://github.com/PacktPublishing/Hands-On-Data-Science-with-Command-Line
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10* . dmg disk image file as another disk in
your system."

A block of code is set as follows:

<<EOF cat >greetlib.sh
greet_yourself ()
echo Hello, \${1:-\SUSER}!

}
EOF

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

«

<key>Ctrl+b</key>
<key>Ctrl+b</key> <key></key>
<key>Ctrl+b</key> “

Any command-line input or output is written as follows:

sudo apt install -y screen tmux

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel.”

Warnings or important notes appear like this.

Tips and tricks appear like this.

[3]

Preface

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt .com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt .com.

[4]

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://www.packt.com/

Data Science at the Command
Line and Setting It Up

"In the beginning... was the command line" Years ago, we didn't have fancy frameworks
that handled our distributed computing for us, or applications that could read files
intelligently and give us accurate results. If we did, it was very expensive or only worked
for a small problem set, very few people had access to this technology, and it was mostly
proprietary.

For newcomers to the world of data science, you might have used the command line for a
small number of things. Maybe you moved a file from one place to another using mv, or
read a file using cat. Or you might have never used the command line at all, or at least not
for data science. In this book, we hope to show you a number of tools and ways you can
perform some everyday tasks that you can do locally, without using today's buzzword
framework.

We created this book for the folks who have little to no experience with the command line,
and perform a lot of data extraction, modelling, parsing, and analyzing. This doesn't mean
that if you do have a lot of command-line experience (a lot of DevOps and systems folks
do), you shouldn't read this book. In fact, you might pick up a couple commands and
techniques that you haven't used before.

In this chapter, we will cover the following topics:

e The history of the command line
¢ Language-focused shells
e Why use the command line?

Data Science at the Command Line and Setting It Up Chapter 1

We will also walk through the setup and configuration of the command line with the
following operating systems:

e Windows 10
e Mac OS X
e Ubuntu Linux

If you are running a different operating system, we suggest obtaining an instance from a
cloud provider or using the Docker container that's provided in this book.

History of the command line

Since the very first electronic machines, people have strived to communicate with them the
same way that we humans talk to each other. But since natural-language processing was
beyond the technological grasp of early computer systems, engineers relatively quickly
replaced the punch cards, dials, and knobs of early computing machines with teletypes:
typewriter-like machines that enabled keyed input and textual output to a display.
Teletypes were replaced fairly quickly with video monitors, enabling a world of graphical
displays. A novelty of the time, teletypes served a function that was missing in graphical
environments, and thus terminal emulators were born for serving as the modern interface
to the command line. The programs behind the terminals started out as an ingrained part of
the computer itself: resident monitor programs that were able to start a job, detect when it
was done, and clean up.

As computers grew in complexity, so did the programs controlling them. Resident monitors
gave way to operating systems that were able to share time between multiple jobs. In the
early 1960s, Louis Pouzin had the brilliant idea to use the commands being fed to the
computer as a kind of program, a shell around the operating system.

"After having written dozens of commands for CTSS, I reached the stage where I felt that
commands should be usable as building blocks for writing more commands, just like
subroutine libraries. Hence, I wrote RUNCOM, a sort of shell that drives the execution of
command scripts, with argument substitution. The tool became instantly popular, as it
became possible to go home in the evening and leaving long runcoms to execute
overnight."

Scripting in this way, and the reuse of tooling, would become an ingrained trope in the
exciting new world of programmable computing. Pouzin's concepts for a programmable
shell made their way into the design and philosophy of Multics in the 1960s and its Bell
Labs successor, Unix.

[6]

Data Science at the Command Line and Setting It Up Chapter 1

In the Bell System Technical Journal from 1978, Doug Mcllroy wrote the following
regarding the Unix system:

" A number of maxims have gained currency among the builders and users of the UNIX
system to explain and promote its characteristic style: Make each program do one thing
well. To do a new job, build afresh rather than complicate old programs by adding new
features.”

e Expect the output of every program to become the input to another, as yet
unknown, program. Don't clutter output with extraneous information. Avoid
stringently columnar or binary input formats. Don't insist on interactive input.

¢ Design and build software, even operating systems, to be tried early, ideally
within weeks. Don't hesitate to throw away the clumsy parts and rebuild them.

¢ Use tools in preference to unskilled help to lighten a programming task, even if
you have to detour to build the tools and expect to throw some of them out after
you've finished using them.

This is the core of the Unix philosophy and the key tenets that make the command line not
just a way to launch programs or list files, but a powerful group of community-built tools
that can work together to process data in a clean, simple manner. In fact, Mcllroy follows
up with this great example of how this had led to success with data processing, even back
in 1978:

"Unexpected uses of files abound: programs may be compiled to be run and also typeset to
be published in a book from the same text without human intervention; text intended for
publication serves as grist for statistical studies of English to help in data compression or
cryptography; mailing lists turn into maps. The prevalence of free-format text, even in
“data” files, makes the text-processing utilities useful for many strictly data processing
functions such as shuffling fields, counting, or collating.”

Having access to simple yet powerful components, programmers needed an easy way to
construct, reuse, and execute more complicated commands and scripts to do the processing
specific to their needs. Enter the early fully-featured command line shell: the Bourne shell.
Developed by Stephen Bourne (also at Bell Labs) in the late 1970s for Unix's System 7, the
Bourne shell was designed from the start with programmers like us in mind: it had all the
scripting tools needed to put the community-developed single-purpose tools to good use. It
was the right tool, in the right place, at the right time; almost all Unix systems today are
based upon System 7 and nearly all still include the original Bourne shell as an option. In
this book, we will use a descendant of the venerable Bourne shell, known as Bash, which is
a rewrite of the Bourne shell released in 1989 for the GNU project that incorporated the best
features of the Bourne shell itself along with several of its earlier spinoffs.

[7]

Data Science at the Command Line and Setting It Up Chapter 1

We don't want to BaSH other shells, but...

In this book, we decided to focus on using the Bourne-again shell (bash) for multiple
reasons. First, it's the most popular shell and you can find it everywhere. In fact, for the
majority of Linux distributions, bash is the default shell. It's a great first shell to learn and
very easy to work with. There's a number of examples and resources available to help you
with bash if you ever get stuck. It's also safe to say that since it's so popular, you can find it
on almost any system available today. From a bare-metal installation in a data center to an
instance running in the cloud, bash is there, installed, and waiting for input.

There are a number of other shells you can choose from, such as the Z shell (zsh). The Z
shell is fairly new (and by new I mean released in 1990, which is new in shell land) and
provides a number of powerful features. Other notable shells are tcsh, ksh, and £ish. The
C Shell (tcsh), the Korn Shell (ksh), and the Friendly Interactive Shell (fish) are still
widely used today. FreeBSD has made tcsh its default shell for the root user and ksh is
still used for a lot of Solaris operating systems. Fish is also a great starter shell with a lot of
features to help the user navigate the shell without feeling lost.

While these shells are still very powerful and stable, we will be focusing on using bash, as
we want to focus on consistency across multiple platforms and help you learn a very active
and popular shell that's been around for 30 years.

Language-focused shells

As a data scientist, I'm sure you do a lot of work with Python and Scala or have at least
heard of those two languages. Two of our favorite shell replacements are Xonsh and
Ammonite. Xonsh (https://xon.sh/)is a Python-powered shell that uses Python 3.4, and
Ammonite (http://ammonite.io/) is a Scala-powered shell that uses Scala 2.11.7 (both
versions are at time of writing). If you find yourself using a lot of Python or Scala in your
day-to-day work, we recommend checking those shell replacements out as well after you've
mastered the command line using bash.

[8]

https://xon.sh/
https://xon.sh/
https://xon.sh/
https://xon.sh/
https://xon.sh/
https://xon.sh/
https://xon.sh/
https://xon.sh/
http://ammonite.io/
http://ammonite.io/
http://ammonite.io/
http://ammonite.io/
http://ammonite.io/
http://ammonite.io/
http://ammonite.io/
http://ammonite.io/

Data Science at the Command Line and Setting It Up Chapter 1

So, why the command line?

As the field of data science is still fairly new (it used to be called operations research), the
tools and frameworks are also fairly new. With that being said, the command line is almost
50 years old and still one of the most powerful tools used today. If you're familiar with
interpreters, the command line will come easy to you. Think of it as a place to experiment
and see your results in real time. Every command you enter is executed interactively, and
when you call a bash script to run, it executes sequentially (unless you decide not to, more
in later chapters). As we know, experimenting and exploring is most of what data science
tries to accomplish (and it's the most fun!).

I was having a conversation with a newly-graduated data science student about parsing
text and asked, "How would you take a small file and provide a word count on how many
time the words appear?" By now everyone is familiar with the infamous Hadoop word-
count example. It's considered the "Hello, World" of data science.

The answer I received was a little shocking but expected. The student instantly replied that
they'd use Hadoop to read the file, tokenize the words to form a key/value pair, reduce all
the keys and values that are grouped together, and add up the occurrences. The student
isn't wrong, in fact, that's a perfectly acceptable answer. Especially if the file is too large for
a single system (big data), you already have the code in place to scale.

With that being said, what if I told you there's a quicker way to obtain the results that
doesn't require programming in Java and setting up a cluster or having Hadoop run
locally? In fact, it would only take one line to complete the task? Check out the following
code:

cat file.txt | tr '[:space:]' '[\n*]' | grep -v "*$" | sort | uniqg -c |
sort -bnr

(tr '[:space:]' '[\n*]' | grep -v "~$" | sort | uniq -c | sort -bnr
)<file.txt

[9]

Data Science at the Command Line and Setting It Up Chapter 1

This may seem like a lot, especially if you've never used the command line before, so let's
break it down. The cat command reads files sequentially and writes them to standard
output. |, also known as pipe or the pipe operator, combines a sequence of commands
chained together by their standard streams so that the output of each process (stdout)
feeds directly as input (stdin) to the next one. tr (translate) reads the input

from cat (via |) and writes the result to standard output that replaces spaces with new
lines. The grep command is very powerful and the most used for a lot of data

parsing. grep is used to search plain-text data for lines that match a regular expression. In
this example, grep trims out the empty lines. sort is used for, well, sorting! You'll notice a
lot of the commands are named for what they actually do. The sort command prints the
lines of its input or concatenation of files listed in its argument list in sorted order. uniqgis a
command that, when fed a text file, outputs the file with adjacent identical lines collapsed
to one. It usually works well with the sort command. In this example, uniq -c is called to
count occurrences. And finally, sort -bnr sorts in numeric reverse order and ignores
whitespace.

Don't worry if the example looks foreign to you. The command line also comes with
manual pages for each command. All you have to do is man the command to view the page.
You can even man man to get an idea of what the man command does! Give it a whirl

and man trorman sort.Oh, you don't have the command line set up? It's easier than you
think, and we can get you up in running in minutes, so let's get started.

[10]

Data Science at the Command Line and Setting It Up Chapter 1

Getting set up with Windows 10

We want the readers to keep in mind that PowerShell will not work with the examples
listed in this book. However, Microsoft has seen fit to release their Windows Subsystem for
Linux as of Windows 10 version 1607 and later. It's also easy to install: open the Microsoft
Store, search for Ubuntu (a Linux distribution), and install it:

S Microsoft Store o (m X
Home Apps Games Devices Movies& TV ~ Books Edge Extensions Search JoRN
Results for: Ubuntu

Departments o Available on o
All departments PC
. .
C:\> Linux on Windows?
Totally.
Install and run Linux distributions side-by-side on the Windows
Subsystem for Linux (WSL).
Get the apps
Apps (13) i Show all
- . . A
Ubuntu Ubuntu 18.04 Ubuntu 16.04 Linux Cheatsheet 2buntu.com FourPastebin WebUpd8 SAVE $35.00
kK ok *kk K *k ok Hokk ok Deq *oky X410
= = = =0 =20 = =]

[11]

Data Science at the Command Line and Setting It Up

In Windows 10 version 1607 and later, you have the ability to run Linux natively with your
choice of distribution. In this example, we will use Ubuntu on top of Windows 10 to get our
workspace set up. Make sure you have the latest version of Windows installed in order to
take advantage of WSL (Windows Subsystem for Linux); at a minimum, you need the
Windows 10 Fall Creator update to proceed. Also keep in mind that WSL is in beta at the
time of writing. If you don't feel comfortable installing beta software, I recommend finding
an alternative, such as an EC2 instance on AWS, or skipping ahead to the Docker section of

this book:

1. Go to the Start menu and search for PowerShell:

(S I T

Best match

E Windows Pox

Desktop app
Apps
¥ PowerPoint 201
2 Windows Powe
B Windows Powe
= Windows Powe

Settings

£ power

Filters ~

Run as administrator
Open file location
Pin to Start

Pin to taskbar

Uninstall

Run as Administrator
Run ISE as Administrator

Windows PowerShell ISE

[12]

Data Science at the Command Line and Setting It Up Chapter 1

2. Double-click Windows PowerShell and click Run as Administrator.
3. Type the following command to enable WSL.:

Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-
Windows—-Subsystem-Linux

The following should be displayed:

EX Administrator: Windows PowerShell

PS C:\WINDOWS\system32> Enable-Window

tionalFeature
Do you want to restart the computer to

Microsoft-Windows-Subsystem-Linux
mplete this operation now?

[Y] Yes [N] No [?] Help (default is "Y"): Y

4. You will be asked to confirm your choice. Use Y or press Enter:

EN Administrator: Windows PowerShell

PS C:\WINDOWS\system32> Enable-Windo

ptionalFeature
Do yo

want to restart the computer to complete this operation now?
[Y] Yes [N] Mo [2] Help (default is e

Microsoft-Windows -Subsystem-Linux

5. Press Y to reboot.

[13]

Data Science at the Command Line and Setting It Up Chapter 1

Once your system has rebooted, do the following:

1. Go to the Start menu and search for Store.
2. Search for Ubuntu:

& Microsoft Store

Home Apps Games Movies&TV Books

Run Linux on Windows
Get the apps

C:\> Linux on Windows? Totally. ountu

Install and run Linux distributions side-by-side on the Windows Subsystem for The Lessons of Ubuntu
Linux (WSL). Book

Get the apps Instant Ubuntu

Book

Ubuntu

Book

Ubuntu!

Book

Apps (10)

2 ' . .

Ubuntu Linux Cheatsheet 2buntu.com FourPastebin WebUpd8 ChaosDerTechnik Soter Center (for = Computer michaelbrooks.co
ok Aok Hok o (=L=0n] Hoks .de Linux NAS) Organization uk
= =20 =] = (=[N ok oAk =20

=]

Free

[14]

Data Science at the Command Line and Setting It Up Chapter 1

3. Click Install:

&= Microsoft Store

Home Apps Games t TV Books

Ubuntu

Canonical Group Limited « Jr 1

You own this product.

ubuntu®

Install

Description Available on
Ubuntu on Windows allows one to use Ubuntu Terminal and run Ubuntu Cd pc
command line utilities including bash, ssh, git, apt and many more.

To launch, use "ubuntu” on the command-line prompt (cmd.exe), or click on the
Ubuntu tile in the Start Menu.

To use this feature, one first needs to use "Turn Windows features on or off"
and select "Windows Subsystem for Linux", click OK, reboot, and use this app.

The above step can also be performed using Administrator PowerShell...
More

Screenshots

[15]

Data Science at the Command Line and Setting It Up Chapter 1

4. Click Launch.

5. When asked to create a username and password, go ahead and create one. Make
sure you remember this information as you'll need it throughout this book:

Installing, this may take a few minutes...
Installati
P C) name does not need to match your Windows username.

To run a commanc ator (user "root"), use "sudo <command>".
See "man sud for details.

6. Success! You now have completed the setup and installation of Linux on
Windows 10.

Install the following tools as we will be using them throughout this book:

sudo apt update

sudo apt install jgq python-pip gnuplot sqlite3 libsglite3-dev curl netcat
be

pip install pandas

Getting set up on OS X

OS X already has a full command-line system installed using bash as the default shell. To
access this shell, click the magnifying glass in the upper-right corner and type terminal in
the dialog box:

[16]

Data Science at the Command Line and Setting It Up

Chapter 1

Q_ terminal

TOP HIT

DEFIMITION

B terminal
SIRI SUGGESTED WEBSITES

® apple.com
® itunes.apple.com

itunes.apple.com
MOVIES

@ Terminal
NEWS

ﬂ Movie Trailers This Week: 'The Dar...

E] Bid to save Birmingham Airport's ic...
SRl KNOWLEDGE

£} Airport terminal
E Show all in Finder...

Terminal
Version: 2.8.2

Kind Application
Size 9.7 MB
Created 1/5/18
Meodified 1/5/18
Last opened 4/3/18

This will open a bash Terminal:

iy family — -bash — 118=34

Chriss-MacBook-Pro:~ family$ [

Last logim: Tue Apr 3 14:17:81 on ttys@E8

As in other bash shells, this Terminal doesn't have everything installed, so type the
following commands to install the requisite installers and command-line tools that we'll be

using in this book:

/usr/bin/ruby -e "$(curl -£fsSL

https://raw.githubusercontent.com/Homebrew/install/master/install)"
brew install jq sqglite gnuplot python netcat bc

pip3 install pandas

[17]

Data Science at the Command Line and Setting It Up Chapter 1

On OS X, this script installs a few installation tools, including pip and homebrew. It then
uses these tools to install the commands that we use in this book that aren't natively
installed, namely jq, gnuplot, sqlite, and pandas.

One thing to look out for in OS X is that certain standard tools are built a little differently
than the ones that come with Debian-based systems like the rest of the systems we talk
about in this chapter. In some circumstances, OS X tools work slightly differently or have
different options. Where this is the case we have noted it in the text.

Getting set up on Ubuntu Linux

Ubuntu has a full built-in command-line shell and typically uses bash as the default shell.
Different window managers have slightly different ways of opening a Terminal window.
For example, in the image of Ubuntu 17.10 Artful (located at https://www.osboxes.org/

ubuntu/), open the Terminal by clicking on Activities in the upper-left corner and typing
terminal in the dialog:

Activities Tue 15:14

Q terminall

Terminal

Ubuntu Software [] Terminator
15more
MATE Terminal

o terminatorX

7] Terminal Emulator

* Terminal icon

[18]

https://www.osboxes.org/ubuntu/
https://www.osboxes.org/ubuntu/
https://www.osboxes.org/ubuntu/
https://www.osboxes.org/ubuntu/
https://www.osboxes.org/ubuntu/
https://www.osboxes.org/ubuntu/
https://www.osboxes.org/ubuntu/
https://www.osboxes.org/ubuntu/
https://www.osboxes.org/ubuntu/
https://www.osboxes.org/ubuntu/
https://www.osboxes.org/ubuntu/

Data Science at the Command Line and Setting It Up Chapter 1

This will bring up a command-line prompt:

osboxes@osboxes: ~

File Edit View Search Terminal Help
osboxes@osboxes:~$ I

As in other bash shells, this shell doesn't have everything installed, so type the following
command to install the installers and command-line tools that we will use in this book:

sudo apt update

sudo apt install jq python-pip gnuplot sqlite3 libsqglite3-dev curl netcat
bc

pip install pandas

On Ubuntu, this script installs a few installation tools, including pip. It then uses these tools
to install the commands that we use in this book that aren't natively installed, namely jg,
gnuplot, sqlite, curl, and pandas.

Getting set up with Docker

What if there were a way to obtain an image with all the commands preinstalled and you
were able to run it on most major operating systems without any issues? That's exactly
what Docker provides, and you can quickly get up and running in a matter of minutes:

1. Visitnttps://www.docker.com/community-edition and install the version of
Docker for your operating system
2. Run the following command to obtain the Docker image:

docker run -ivt nextrevtech/commandline-book /bin/bash

[19]

https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition
https://www.docker.com/community-edition

Data Science at the Command Line and Setting It Up Chapter 1

Summary

The command line has a long history, and it can be quite foreign to newcomers. In this
chapter, we covered the environment setup steps so that you can follow along with the
examples in this book. Essential commands will introduce what you need to succeed,
followed by acquiring datasets that we can play with. We will cover all the shell magic,
such as background processes, writing shell functions, basic shell control-flow constructs,
visualizing results, processing strings, simulating database functionality, simple math
constructs, and finally a synthesis of all of these in a penultimate chapter of magical
fascination.

Everything you need to explore the rest of the book is now installed and configured. As you
saw, the command line can run on pretty much anything, which makes it an invaluable tool
to have in your toolkit.

In the next chapter, we will use our newly-installed command-line environment to run
some essential commands, learn how to customize the shell, and look at how to use the
built-in help when we get stuck.

[20]

Essential Commands

Now that we have the command line set up and installed, we will go over a list of everyday
commands that are considered the basics. Having a fundamental understanding of the
basic commands will be the building block on which we'll learn the advanced commands
found later in this book.

In this chapter, we will cover the following topics:

¢ Basic command-line navigation

¢ Redirecting input and output

e Where to get help if you're stuck

e How to customize the shell to your liking

Essential commands

Woah... hold your horses, we need to cover some basics about commands. A command is a
process run by a POSIX (Portable Operating System Interface) compliant OS (Operating
System). OpenGroup maintains the standard in addition to it being ratified as an IEEE
standard (http://pubs.opengroup.org/onlinepubs/9699919799/). In a POSIX
environment, the process being run will have an environment, a current working directory,
the command line (the path name that invoked the command and any arguments), and a
series of file descriptors with stdin, stdout, and stderr (referred to by integer numbers
0, 1, and 2, respectively) being connected prior to handoff to your command.

Now with a little background and an installed command line, you are ready to go and we
can actually start running commands. We will be going over some basic everyday
commands. For those that are ready to delve in, let's discuss how we locate the commands
we can run.

http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://pubs.opengroup.org/onlinepubs/9699919799/

Essential Commands Chapter 2

Locating commands is akin to searching through a filing cabinet, what we call a filesystem.
Commands are just files stored in the filing cabinet, and folders or directories are used to
organize the files into a hierarchy. Each directory may contain many files or other
directories, and has a single parent directory. To open our filing cabinet, we need to start at
the top of the hierarchy, the root directory, /. The first set of commands you need to know
involve commands to traverse the filesystem and get your bearings.

When you log into the command line, it's likely that you will be in your home directory.
What this directory is varies by system. To see where you are, try the pwd (present working
directory) command:

pwd
The following is what you should see on running the preceding command:

:~$ 1s

163

Here, ubuntu is your username. This means you are currently in the ubuntu directory,
which is in the home directory, /. From here, if you try to open a file with a relative path
name, that is, one that doesn't start with a /, the command line will look for that file in your
current directory (you can do things with files in other directories without changing your
current one, we will talk about that in a bit).

You might want to create your own directories. To do this, we can try the following
command:

mkdir foo

The following is what you should see on running the preceding command:

ubuntu@commandlinebook:~$ mkdir foo

ubuntu@commanc book:~%]

Which makes the directory foo inside your current directory. If this command completes
successfully, it won't print anything. To see the directory we just made, we use the list
command:

1s

[22]

Essential Commands Chapter 2

The following is what you should see on running the preceding command:

/home/ubuntu

It should be on a line by itself. We might want to print a little bit more information about
the directory. In this case, we can pass some flags to the 1s command to alter what it's
doing. For example, type the following;:

1ls -1

This is what you should see on running the preceding command:

~$ 1s -1

total 4
drwxrwxr-x 2 ubuntu ubuntu 4096 Jun 23 23:57

~$

It’s not too important right now to understand everything printed here, but we can see that
foo is a directory, not a data file (from the d code in the front), and the date and time it was
created. This is a common pattern among UNIX commands. The default version of the
command does one thing, and passing in flags like -1.

Sometimes, commands have arguments, and sometimes flags of commands will have
arguments, too. A general form of a command might appear as follows:

<command> -a <argument> -b -c -d <argument> <command arguments>

Here, a, b, ¢, and d are flags of the command. What exactly these commands are, and what
they do, are dependent on the command.

Let’s go into our newly-created directory and mess around with some data files:

cd foo

The following is what you should see on running the preceding command:

:~% cd foo/
: s B

[23]

Essential Commands Chapter 2

The cd (or change directory) command changes your current working directory. Let's now
string together two commands to create a data file. We will talk about this a bit later, but for
now we just need a file to mess around with:

echo “Hello world...” > hello.txt

The following is what you should see on running the preceding command:

$ echo “Hello world...” > hello.txt

s

This won't produce any output, but it will create a file called hello.txt (as we told the
shell to redirect stdout with > to a file) that contains the single line of Hello world... text.
To see this, we can use the concatenate command:

cat hello.txt

The following is what you should see on running the preceding command:

$ cat hello.txt
“Hello world...”

s 1

This will print the contents of any file. If we only want to see the first, or last, few lines of a
file, we could use head and tail instead of cat.

If this all sounds pretty simple, there’s a good reason: each command in UNIX is intended
to do one thing and do it well. Often options can be used to tailor a command’s behavior.
The really neat stuff you can do starts to happen when we start tying commands together
using pipes and redirection.

You see, almost every command in UNIX has some way to input data into it. The command
then takes the input, and, depending on its parameters and flags, transforms that input into
something else and outputs it. We can use the pipe, [, to take the output from one
command, and feed it into the input of another command. This simple but extremely
powerful idea will let us do a lot with a few commands.

Let's try a simple example: let's use echo, with the —e flag, to tell it to pay attention to
control characters, to make a multi-line file (by using the \n) with some numbers on each
line.

echo -e "1\n3\n19\n1\n25\n5" > numbers.txt
cat numbers.txt

[24]

Essential Commands Chapter 2

The following is what you should see on running the preceding command:

$ echo -e "1\n3\n19\ni1\n25\n5" > numbers. txt
$ cat numbers.txt

Now, say we wanted to see those numbers sorted. The sort command does just this. Using

a flag to sort to consider the lines to be numbers and not strings, we can pipe the output
of cat into the sort function:

cat numbers.txt | sort -n

The following is what you should see on running the preceding command:

$ cat numbers.txt | sort -n

If we then want to see just the unique numbers in sorted order, we can re-pipe this output
to the unig command, which returns unique lines from the given input:

cat numbers.txt | sort -n | uniq

The following is what you should see on running the preceding command:

$ cat numbers.txt | sort -n | uniq

[25]

Essential Commands Chapter 2

And so on, and so on. We can build up the pipeline we want a bit at a time, debugging
along the way. You will see this technique throughout this book.

One last thing: in some of these commands, we have seen the >, or redirect. Redirection can
be used for a number of things, but most of the time it's used to redirect the output of a
command to a file:

<some pipeline of commands> > <filename>
This will replace the contents of the file named filename with the output of the pipeline.

With these simple tools, you have enough to get started hacking data with bash.

Navigating the command line

There's a couple of useful tricks for navigating the command line that, while optional, will
improve your quality of life. This section has a selection of those tricks.

Bash, by default, saves the history of your commands. It will even save the history across
sessions. This can be extremely useful because sometimes we make a small mistake and
don't want to retype an entire command, or we want to repeat the same commands over
and over. To see your history, type this command:

history

The following is what you should see on running the preceding command:

$ history

pwd

mkdir foo

1s

1s -1

cd foo/

echo "Hello world..." > hello.txt
cat hello.txt

echo -e "1\n3\n19\n1\n25\n5" > numbers.txt
cat numbers.txt

cat numbers.txt | sort -n

cat numbers.txt | sort -n | uniq

history
s

[26]

Essential Commands Chapter 2

You can see that there is a numbered list of output commands. To repeat a numbered
command, you can use the bang character, !. ! <number> will repeat the number command
verbatim:

110

The following is what you should see on running the preceding command:

cat numbers.txt | sort -n

A double bang, ! !, will repeat the last command.

You can also cycle through the list of commands with the up and down arrow keys on the
keyboard.

You can perform a reverse command search by typing Ctrl + R at an empty command line.
Then begin typing some substring of a command you’d like to search for. Bash will attempt
to find a matching command somewhere in your history. If multiple commands match, the
last one will be picked, but you can cycle through the others by pressing Ctrl + R
repeatedly.

cd - will take you back to the last directory you came from, even if it's halfway across the
system.

A thing that confuses some people is hitting Ctrl + S. This will stop all output to a terminal
session, and it will appear as if your session is frozen. To unfreeze the session, simply
press Ctrl+Q.

[27]

Essential Commands Chapter 2

Getting help

There are a number of resources available, both built into the command line and also
externally. One command that you will always find yourself using is the man command
(short for manual page). For example, type in man man to read what the man command can
do. You should see something similar to this:

MAN(1) General Commands Manual MAN(1)

NAME
man - display manual pages

SYNOPSIS
man [-acfhklw] [-C file] [-M path] [-m path] [-S subsection]
[[-s] section] name ...

DESCRIPTION
The man utility displays the manual pages entitled pname. Pages may be
selected according to a specific category (section) or machine
architecture (subsection).

The options are as follows:

-a Display all matching manual pages. Normally, only the first page
found is displayed.

Use the specified file instead of the default configuration file.
This permits users to configure their own manual environment.
See man.conf(5) for a description of the contents of this file.

Copy the manual page to the standard output instead of using
more(1l) to paginate it. This is done by default if the standard
output is not a terminal device.

A synonym for whatis(l). It searches for name in manual page
names and displays the header lines from all matching pages. The
search is case insensitive and matches whole words only.

Display only the SYNOPSIS lines of the requested manual pages.
Implies -a and -c.

A synonym for apropos(1). Instead of name, an expression can be
provided using the syntax described in the apropos(1) manual. By
default, it displays the header lines of all matching pages.

A synonym for mandoc(l) -a. The name arguments are interpreted
as filenames. No search is done and file, path, section,
subsection, and -w are ignored.

override the list of standard directories which man searches for
manual pages. The supplied path must be a colon (:') separated
list of directories. This search path may also be set using the
environment variable MANPATH.

Augment the list of standard directories which man searches for
manual pages. The supplied path must be a colon (" :') separated
list of directories. These directories will be searched before
the standard directories or the directories specified using the
-M option or the MANPATH environment variable.

[28]

Essential Commands Chapter 2

Let's take a look at two options we use just about every day, man -a and man -k, as you
will use them a lot for finding man pages at the command line. Go ahead and type man -k

. in the command line to view all of the man pages that are installed on the system. If you
are using the same Linux distribution as us, about 2,000 manuals just scrolled down your
screen, that's a lot to read! We don't expect you to start from the top and read every one
(feel free to do so if you're having trouble sleeping), so let’s figure out some smarter ways to
navigate all of these manuals.

If you wanted to slowly scroll through the entire list of manuals, you could run man -k

| more and just keep tapping the space bar to view the entire list. However, this is
inefficient. Notice in the previous examples we were searching using a dot (.) instead of a
string. Let's try this again, but this time remove the dot and enter a word:

man -k column

The following is what you should see on running the preceding command:

ubuntu@commandlinebook:~$ man -k column

coll (1) awk and print a column (based name program,
col2 (1) awk and print column (based name program,
col3 (1) awk and print column (based name program,
cola (1) awk and print column (based name program,

col6 awk and print
col7 awk and print

column (based name program,
column (based name program,
cols awk and print column (based name program,
col9 awk and print column (based ETC] program,
colrm (1) remove columns from a file

column (1) columnate lists

git-column (1) Display data in columns

NF (1) - awk and print a column (based on the name of the program,
Text::CharwWidth (3pm) - Get number of occupied columns of a string on terminal
ubuntu@commandlinebook:~$ I

a
a
a

col5 (1) awk and print a column (based name program,
a
a
a
a

Much better! Now I can quickly see whether there's a man page for the column command
instead of parsing through thousands of pages.

The manual is terrific, but sometimes it's not quite enough. Enter the Internet. Sites such as
Stack Overflow and Stack Exchange can be invaluable when trying to figure out esoteric
issues with commands, or give nice examples. The Internet is a big place: someone will be
trying to do what you are doing and it's likely they had the same issues you're having.
Answered questions might already exist with your exact issue, or you could submit a new
question.

[29]

Essential Commands Chapter 2

Customizing the shell

You might have noticed the prompt every time you enter a command to the left. Depending
on your system, it might look a little different from mine. Let's fix that! For example,
wouldn't it be great if you didn't have to type pwd all the time just to see where you are? Go
ahead and enter the following:

export PS1="\u@\h:\w>"

You should see something like this:

ubunt
ubunt

ubuntu@commandlinebook:~>
ubuntu@commandlinebook:~>pwd
/home/ubuntu
ubuntu@commandlinebook:~>l

Pretty nifty, right? You can add that command inside your ~/ .bash_profile file to keep
it permanent. You can use any editor that you like (vim, nano, emacs) to open the file. For
example, we used vim:

vim ~/.bash_profile

There's also an easy generator located at http://ezprompt .net/, which you can use to
customize your bash prompt even further. Take a look!

Now that you understand the basics and totally tricked out your bash prompt, let’s go
ahead and work on an actual dataset!

Summary

As you can see, the command line is very powerful for everyday tasks. We learned how to
do basic things, such as create files and directories, and navigate a system via the command
line. We learned about manual pages, where to find help, and how to customize the shell.

In the next chapter, we'll take what you learned here and apply it against a real dataset.
Feel free to come back to this chapter as it will be helpful throughout the rest of this book.

[30]

http://ezprompt.net/
http://ezprompt.net/
http://ezprompt.net/
http://ezprompt.net/
http://ezprompt.net/
http://ezprompt.net/
http://ezprompt.net/
http://ezprompt.net/

Shell Workflows, and Data
Acquisition and Massaging

In this chapter, we're going to work on an actual dataset and do some basic analysis. We'll
learn how to download files straight from the command line, determine what type of file it
is, and parse the data using a number of commands. We'll also cover how to perform non-
interactive detached processing and review some common terminal multiplexers that
enable us to prettify the command line as well as organize detached processing.

In this chapter, we'll cover the following topics:

e How to download a dataset using the command line

Using built-in tools to inspect the data and its type

How to perform a word count in bash

Analyzing a dataset with some simple commands

Detached processing

Terminal multiplexers

Shell Workflows, and Data Acquisition and Massaging Chapter 3

Download the data

Now that we have an understanding of the command line, let's do something cool with it!
Say we had a couple datasets full of book reviews from Amazon, and we wanted to only
view the reviews about Packt Publishing. First, let's go ahead and grab the data (if you are
using the Docker container, the data is located in /data):

curl -O
https://s3.amazonaws.com/amazon-reviews—-pds/tsv/amazon_reviews_us_Digital_E
book_Purchase_vl_00.tsv.gz && curl -O
https://s3.amazonaws.com/amazon-reviews—-pds/tsv/amazon_reviews_us_Digital_E
book_Purchase_vl_01l.tsv.gz

You should see the following;:

v/amazon_reviews_us_Digital Ebook_Purchase vi €0.tsv.gz & curl -0 http: mazonaws . com/amazo

d Average Speed Time Current

me
Dload Upload Total Left speed

52.7M 0 0:00
d Average Speed Til
Dload Upload
100 1234M 160 1234M O 46.6M e 0:00
ubuntu@commandlinebook :

We are introducing a couple of new commands and features here to download the files.
First, we call the curl command to download the file. You can run curl --help to view
all of the options available, or man curl, but we wanted to download a remote file and
save it as the original filename, so we used the -0 option. Second, notice the double
ampersands (&&)? Since we want to download both files at the same time (with no errors),
the double ampersand allows us to combine two commands together. If the first command
fails, the second command won't run.

Now you might be asking yourself, "What if I want to run multiple commands and I don’t
care whether the first command fails, I want to it to run anyway!" Well, you're in luck! If
you replace the double ampersands with a semicolon, ecoh "this isn't a command"
echo "but this is", you should see the following:

ubuntu@commandlinebook:~>ecoh "this isn't a command" ; echo "but this is"
No command 'ecoh' found, did you mean:
Command 'echo' from package 'coreutils' (main)

ecoh: command not found
but this is
ubuntu@commandlinebook:~>l

[32]

Shell Workflows, and Data Acquisition and Massaging Chapter 3

Ubuntu comes with a nice little helper if you mistype a command and recommends what
command you probably should have typed. If you're running this on another system, you
might not see it, but you will see ecoh: command not found.

Using the file command

Once the data is done downloading, let's take a look and see what we've got. Go ahead and
run ls -al amazon* to make sure the files actually downloaded:

ubuntu@commandlinebook:~>1s -al amazon*
-rw-rw-r-- 1 ubuntu ubuntu 2689739299 May 12 19:08 amazon_reviews_us_Digital Ebook_Purchase_vil 00,tsv,.gz

-rw-rw-r-- 1 ubuntu ubuntu 1294879674 May 12 19:08 amazon_reviews us_Digital Ebook Purchase _vi _01.tsv.gz
ubuntu@commandlinebook:~>l

If you have anything else in this directory named amazon, that will show up as well. Now
that the files are downloaded, let's introduce a new command, called file. Go ahead and
run the following file amazon* command:

ubuntu@commandlinebook:~>file amazon*
amazon_reviews_us_Digital_Ebook_Purchase_v1_00.tsv.gz: gzip compressed data, from FAT filesystem (MS-DOS, 0S/2, NT)

amazon_reviews_us_Digital Ebook Purchase_vil_01.tsv.gz: gzip compressed data, from FAT filesystem (MS-DOS, 0S/2, NT)
ubuntu@commandlinebook : ~>I

Wow, without any parameters set, the file command was able to figure out that this is a
compressed archive. You'll use the £ile command a lot to determine the type of files
you're working with. Let's decompress the files so we can work with them. This might take
a little bit, depending on the speed of your system.

To do so, run the following:

zcat amazon_reviews_us_Digital_Ebook_Purchase_vl_00.tsv.gz >>
amazon_reviews_us_Digital_Ebook_Purchase_vl_00.tsv && zcat
amazon_reviews_us_Digital_Ebook_Purchase_vl1l_01l.tsv.gz >>
amazon_reviews_us_Digital_Ebook_Purchase_vl_01l.tsv

[33]

Shell Workflows, and Data Acquisition and Massaging Chapter 3

Go ahead and run the file command again against the new datasets. Notice anything
different? Check out the following:

ubuntu@commandlinebook:~>file amazon_reviews_us_Digital Ebook_Purchase_vi_0*
amazon_reviews us_Digital Ebook Purchase_v1 00.tsv: UTF-8 Unicode text, with very long lines

amazon_reviews_us_Digital_Ebook_Purchase_vi1_01.tsv: UTF-8 Unicode text, with very long lines
ubuntu@commandlinebook:~>l

Very cool! The file command was able to verify that we are working with text files, and it
seems like a lot of text with very long lines. Let's take a look and sample one of the datasets
to see what we're working with. To do so, we can use the more command:

more amazon_reviews_us_Digital_Ebook_Purchase_vl_01l.tsv

We'll just sample the first file we downloaded:

marketplace customer_id review_id product_id product_parent product_title product_category star_rating helpful_votes total votes vin
verified_purchase review_headline review_body review_date
us 33605939 RGYFDX8QXKEIR ~ BOO7KOZMLO 328837464 Big Maria Digital Ebook Purchase 4 0 0 N N Quirky Elmore Leonard |
e iaim e o S Ludre, dis o ity el Wi sl e van st s lad G i ey He (. 2013-09-09
us 34058393 GTMNVORSZ BOOSFLODDE 764276359 The Woman Who Wasn't There: The True Story of an Incredible Deception Digital Ebook Purchase
1 2 N o The Woman Who Wasn't There This book was very interesting. It is a true story about a woman vho perpetrated a 6 ot Mo SRt o i
attack on 9/11. It was so amazing to me that she could/would do such a thing. It had such a devastating effect on so man
39601147 R7DRFHCOF7100 BOOEA3L350 535606445 Mary had A Sleepy Sheep Digital Ebook Purchase 5 o o N N This Sleepy Shei
5 L e elmpnetiay 5 Ve Ty U @ ey Sliegp By fublo et Sl my lanfoyarian el Qi diny WRIOE it vas lysiareall) (s e fead Wi Sy o
ltiple times and it's just as funny every time. It's about a little girl and her sheep who is so sleepy no matter what she tries to do to wake him up. she tries some prett
crazy things! You'll have to purchase it and see for yourself how she finally keeps her poor sheep awake
S 17351407 R27LUKEXU3KBXQ BOOBL3IVS0 240053004 Starstruck Digital Ebook_Purchase 5 Steamy and suspensefull
1 what a great read! I really couldn't put this book down! A suspenseful twist o this steamy love story will k»ep you reaamqw Where can T find a Jesser 7! dust Lo
ed nis relationship with Sam. You've jotta read this storyl It won't disappointl 13-69-69
us 10463 RIVXTPUYMNUGS7 BOGCXU7UBO 931520805 The complete sy saga Digital Ebook Purchase 5 1 2
BT o) 1670) | ks Siulics, Got fail rih Gnme, WD (i G2 D printed and read later. They can be read on a lapti Bravo
us 50484904 R30DKW1GJIWLI BOO4EWGSS5G 4424531 The Middle Passage (A Cat Royal Adventure) Digital Ebook_Purchase 3 Al 2 N
Y Menu. It was okay sly, u hadn't read the other beginning ' books,' well it would be confusing. Plus, there's the fact that it did not tell me
U oz vk @ smin gy @ iy, @i B0 (il S5 o o @R (e g R L @y e don 6 (i e, 200
7145636 R18DPFG2FALIIO BOGBNRJATE 856774152 Hide in Plain Sight (The Three Sisters Inn Book 1) pigital Ebook Purchase 5 o 0 N
7 Awesome book Very interesting and kept me reading. Read it in one day. Didn't get much of an\rthlnq Sl G, Vo R .. S-G90
us 6285538 R24DG77NSWBWSQ BOO7FZOXIM 5589837 Face of Betrayal (A Triple Threat Novel) pigital Ebook_Purcha: N Face of
betrayal Really enjoyed this book and the author! Ready to read the next one! Thanks for keeping e intrigued and e put my o G, e
10278048 R2FCJOBQLSIOR3 BOOBEAK7LU 3627013 Final Justice (A Romantic Suspense) Digital Ebook_Purchase 5
very good 1 really Liked this book. I felt like I got to know the characters. It was a really good read. 2013-09-09
us 165689 RIRGK4MAKDWTXI ~BOOEVMMLUO 342745087 Falling For My Husband (British Billionaires) Digital Ebook_Purchase 4 [} [
Y ouch! My neck is sore!!! Reading Callum and Stella's story was a bit like watching a tennis match. They bounced like a tennis ball back et g i) (S i o
T the court to her side of the court. They were together then not together, together and then not, over and over again. Like a tennis match, it was entertaining at times, but |
as nerve racking and tiring to watch. Yet, I couldn't stop reading. Although it was painful to witness, I did like the dilemma Callum found himself in when the woman who had sI
attered his heart suddenly came back to him and wanted him back. He was caught between that proverbial rock and a hard place and was forced to make an impossibly tough cho
ce. But, just like in a tennis match, in order for Callum to win in Love, he had to put himself out there, face his opponent head on with everything he had, and fight to win.
get why Stella's brother did what he did. He gave his \\"brother\\" and Qi W0 Gy oo IO O Tyl SErie-00-09
S 91763 RSRSDILCWMEI7B BOGEAWAOB4 117550 ting Tabitha Digital Ebook_Purchase 0 0 It was a wonder:
ul book I really enjoyed this book. It broke my heart to imagine \mat some of the children had to do to survive.
Tl\e book kept my interest thrnughuut the entire book.
I recommended my sister and her daughter both to read this book.<l ed it. 2013-09-09
us 48203259 RRSK72IZOCOFE BOOSA1JBBS 947574172 The Blacksmith's Son (Mageborn Book 1) Digital Ebook Purchase 4 o N
worth reading Although not completely original, it has a decent plot and entertaining points. Some humor it's well, but at times is a bit cheesy. StA1 worth reading though.
2613-09-09
us 45028038 R3KOPJUSGLDY30 BOO44DELIQ 427899617 vampire vacation: Adult Urban Fantasy (The V V Inn Book 1) pigital Ebook_Purchase 5
z Y Very Good Romp Enjoyed the characters and the story line. Kept me entertained and ready for more. A nice fantasy of the undead. S013-09-09
4‘554.»55 RIKTZMCDOJXAEK ~BOODJIQYATE 945574 By the Tail (Cougar Falls Book 7) Digital Ebook_Purchase 5) [}
i (s o I love the Cougar Falls Series, each time a mew one comes out I have new favorite. This was Quince and Joy's Story. Quince took over the Pride after it
had been corrupted by Lex. Quince was strong, loyal, charming, determined. He was determined to mate with Joy, he knew they were mates. Joy just kept avoiding him. The chemist
y between them was through the roof. I laughed out loud numerous times at his tactics in getting Joy's attention. Joy was strong-willed, funny, determined, and didn't take any
hing off anybody. Joy and Quince had to work out their issues while dealing with some of Lex' s followers that wanted to cause trouble. By the Tail was funny, heartwarming, ho
and steamy with added action. This was a great book, just like the rest of the Courgar Falls Series. I highly recommend. I received an ARC copy of this book in exchange for a
honest review. All opinions and thoughts are my own.My EUE el be found at [...] 2013-09-09
us 11251156 R3SBEH4Y3WOW11 BOGAXFYNNS 449163 The Kingdom (A Fargo Adventure Book 3) Digital Ebook Purchase ¢ 0 o N Y
Love this author I really enjoy Clive Cusslers work. The Fargos are a new team. I am going to read a lot more of his b 0
us Lt R3GBEWOHSWWZEG BOBAZ7Z6GO 969993834 6 Erotic Bedtime Stories (Adult, Sexual content) Digital Ebook_Purchase 3 0

0
N Didn't finish. I have to admit I didn't finish. The first story was just so-so and I stopped when continuity was lost in the second story when both he
e on) G0F GomOsbs o changed and then back again. Its a super short story and the writer isn't skilled enough to make sure the names are constant? Is it Todd or
Perry? Ron or Robert? At this point, I just didn't care enough to continue. I didn't know what to rate it, so gave it middle of the road. 2013-09-00
us 34645512 RDMGBWMOEDNRJ BOOBEGVABQ 356 The Purpose Driven Life: What on Earth Am I Here For? Digital Ebook_Purchase
N Y can't unread it now! Thanx pi
You served us all with the word and hart of God! Amazing read!

Kind regard and luve in Chllﬂ

Very long lines indeed! You can keep hitting the spacebar to view the file (it might take you
a while to read the entire thing) and if you want to exit, just hit the Q key. Don't forget
to man more for more information on more.

[34]

Shell Workflows, and Data Acquisition and Massaging Chapter 3

Performing a word count

Now that we have some data to work with, let's combine the two files together into a single
file. To do so, perform the following;:

cat *.tsv > reviews.tsv

This is what you should see once you run the preceding command:

ubuntu@commandlinebook:~>cat *.tsv > reviews.tsv

ubuntu@commandlinebook:~>}}

Excellent. Let's say we wanted to count how many words or lines are in this file. Let's
introduce the we command. wc is short for (you guessed it) word count. Let's quickly man
wc to see the options available:

User Commands we(1)

wc - print newline, word, and byte counts for each file
SYNOPSIS
wc [OPTION] [EILE]...
wc [OPTIO| -files@-from=F
DESCRIPTION
Print newline, word, and byte counts for each FILE, and a total line if more than one FILE is specified. A word is a non-zero-length sequence of charac-
ters delimited by white space.
With no FILE, or when FILE is -, read standard input.
The options below may be used to select which counts are printed, always in the following order: newline, word, character, byte, maximum line length.

-c, --bytes
print the byte counts

-m, --chars
print the character counts

-1, --lines
print the newline counts

--files®-from=F
read input from the files specified by NUL-terminated names in file F; If F is - then read names from standard input

-L, --max-line-length
print the maximum display width

-W, --words
print the word counts

--help display this help and exit

--version
output version information and exit

AUTHOR
Written by Paul Rubin and David MacKenzie.

REPORTING BUGS
6NU coreutils online help: <http://www.gnu.org/software/coreutils/>

Report wc translation bugs to <http://translationproject.org/team/>

COPYRIGHT
Copyright © 2016 Free Software Foundation, Inc. License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>.
This is free software: you are free to change and redistribute it. There is NO WARRANTY, to the extent permitted by law.

SEE ALSO
Manual page wc(1) line 1 (press h for help or g to quit)

[35]

Shell Workflows, and Data Acquisition and Massaging Chapter 3

Looks like we can count the lines and also the words of a file. Let's see how many lines our
file actually has:

wec -1 reviews.tsv

The following is what you should see once you run the preceding command:

ubuntu@commandlinebook:~>wc -1 reviews.tsv
17622417 reviews.tsv

ubuntu@commandlinebook: ~>I

That's a lot of lines! What about words? Run the following:

wCc -w reviews.tsv

ubuntu@commandlinebook:~>wc -w reviews.tsv
1689661747 reviews.tsv

ubuntu@commandlinebook: ~>I

This looks like a great dataset to use. It's not big data by any means, but there's a lot of cool
stuff we can do with it. For example, did you notice the header in the file from earlier? It's
kind of hard to see since there's a lot of data being displayed on the screen. Let's strip just
the headers out and see what we have:

head -nl reviews.tsv

The following is what you should see once you run the preceding command:

ubuntu@commandlinebook:~>head -ni reviews.tsv
marketplace customer_id review_id product_id product_parent product_title product_category star_rating helpful_votes total_votes

ine verified_purchase review_headline review_body review_date
ubuntu@commandlinebook :~>f

Great, now we have a list of the headers we can use. Let's clean this up a bit. Imagine we're
only interested in the produce_title, star_rating, review_headline, and
review_body columns. Copying and pasting throughout the file would take hours, so let's
introduce a new command called cut.

[36]

Shell Workflows, and Data Acquisition and Massaging Chapter 3

Introduction to cut

Let's break the command down before you run it. The cut command removes sections
from each line of a file. The —d parameter tells cut we are working with a tsv (tab
separated values), and the - f parameter tells cut what fields we are interested in. Since
product_title is the sixth field in our file, we started with that:

cut -d$'\t' -f 6,8,13,14 reviews.tsv | more

Unlike most programs, cut starts at 1 instead of 0.

Let’s see the results:

product_title ~star_rating review_headline review, badv

Hunter's Moon (A Kate Shugak Investigation Book 9) Shugak is like a milder, more withdrawn Reacher This is the most intense of the Kate Shugak series tha

t I've read thus far. Truly dark stuff, beautifully wvlt[en Shugak is the kind of uncompromising, unwilling hero that resonates with me. And the characters that surr

ound her ring true. I think I'm going to be quite disappointed when I'm finished the whole series.

Flying Toward Forgiveness 5 For the young heart that, ages later, asks "what if" This story holds so much more than meets the eye at first glance. So o

ften we find love and forge bonds that, over time, are lost to circumstance. Such is true for Charlotte (Charlie) and Clay. This story takes you to the a;what ifes

34;. can love be rekindled and bonds reforged after two lives have diverged for so long? Can hearts and minds go back in time, finding old comfort and forgiving two 1

ifetimes of pain, change, and hardship? These are all questions asked and answered in Flying Toward Forgiveness. A truly unique and heart wrenching story of love, los

s, and starting again that will lpave you speechless and begging for more.

Falling For A Real Nigga Five stars A true love story I think

The Good Neighbor E! Not really my type of read A bit contrived and weak for my liking. I did not find the characters very convincing. Probably becau

se I am a senior male and I don' t think this book was really targeted for people like me

The Martian: A Novel 4 coming soon to a theater near you Moved well. Seemed almost like a sketch for a movie.

The Painter: A novel 5 I liked it a very different and extremely well written; I liked it a lot

METEOR STORM 5] The author delivered his promise for an interesting read and a book that could not be put down. Once I started reading this novel I could not

put it down. The premise of a meteor storm added to an ancient civilization and then the enemy being the very government we have come to trust makes this riveting.

piary of a Crazy Steve [An Unofficial Minecraft Book] (Minecraft Tales Book 15) 5 This book is amazing., Super gquality, great grammar, no spelling issues, ths

book is pristine. A must buy for any true minecraft fan. And a bargain too at one dollar!

unlocking Potential: 7 Coaching Skills That Transform Individuals, Teams, and Organizations 4 Four Stars A useful primer.

The Einstein Prophecy 4 Four stars enjoyed the story

Make It Ahead: A Barefoot Contessa Cookbook 5 Because of her I bought little cast iron skille This isn't the healthiest cookbook I own, but what I h

ave tried so far has been very good and I truly appreciate the make ahead assurances. Try the guat cheese tart, the veggie lasagna and the brownie:)

The Shipwreck of the Essex: The History of the Fateful Expedition That Inspired Moby Dick Very interesting account This is a very quick read that

tells an amazing story. The true story that inspired Moby Dick. 21 sailors set sail, 8 h—;turned. It must have been a terrifying experience. Excellent.

compelling Evidences That God Exists: Discover why Believing in God Makes So Much Sense 5 xcellent For some reason I didn't expect a lot from ti

s book but was pleasantly surprised. This may become my go-to recommendation for those who need apologetic answers without having to have a dictionary with them as th

ey read.

What Alice Forgot 5 good read Good character development; I could hardly wait to see if Alice was ever going to remember!

To Kill a Mockingbird (Harperperennial Modern Classics) § I last read it in high school (I'm 78 years old) and it was as good now as it was then This was a rer

ead for me. I last read it in high school (I'm 78 years old) and it was as good now as it was then. Now I have familiarized myself with Harper Lee's characters, I'm

going to read "Go Set a Watchman," and expect it tr) be just as historic a book.

The Housewife A: sin's Killer App (Housewife Assa: se Book 8) 4 Four Stars enjoyable

Illusive (Storm MC #8) 5 Fantastic Oh how UNFAIR this book is to my love for Kick :)

I've been following this series since the beginning, and

this installment just might have taken 1st place as my favorite. I was unsure about Griff prior to this book, but now that I've gotten to know him better I love him.

All the Storm guys deep down have the biggest hearts and their women have even bigger ones to be strong enough to cope with such strong alpha males.

Sophia has actually missed out on a lot of things in her life, which makes her appreciate the things Griff does for her that much more. But she's no pushover, s

he's sassy, quick witted and has a smart mouth. She's awesomeness in a nutshell. I loved her honest rambling and laughed at her rants many time

A Mansion, A Drag Queen, And A New Job (Deanna Oscar Paranormal Mystery Book 1) 4 Four Stars Light reading, very enjoyable. Very likable characters.

Wolf Hunter 3 Good This is a ok book. To me it was a little long and drawn out. But it had it's good parts.

Miss Peregrine's Home for Peculiar Children (Mi: Peregrine's Peculiar children Book 1) 5 Five Stars Great book! My students love reading it!

A New Hope (Thunder Point series) a Good read! she always gives us a good read. This another one, good, clean, hopeful story.

Kings of Tort 4 Four Stars Well written. Unfortunately the subject matter is very disheartening

Evil Abounds: Bear Rising (Alpha Guardians Book 1) 5 Great lead up to what sounds to be a very interesting series. Evil Abound (Alpha Guardians, #1 prequ

el r />by Vivian Wood

I believe this is the start of really interesting series. Shifters, magic, warriors and good vs evil. You really can't ask for more

. I am looking forward to reading the next book.

ARC given for an honest review

Revelation: A Kid Sensation Novel (Kid Sensation #4) 5 Five Stars Good.

Love After Pain 4 Talented author great book I received an ARC of this book in exchange for an honest review.

When I fi started reading this

book I wasn't positive I would enjoy it. While it is very well writ the first 2 chapters start off kind of slow. I am, however, very thankful that I continued to

read it. This is a second chance romance, but I like the fact that lt s not like all the others. There is so much pain, anger and confusion for the main characters

at times that you can't help but feel like you want to comfort them SOmehOvL I know that sounds odd sense they are fictional, but the author makes them real. She mak
ese people feel like someone you know and care about. T couldn't help but think about how I would possibly deal with the events in this book. Either as a bystand
as the nerson aoina throuah it.
T think my favorite part of this hook is that. while love is a bin factor. it doesn't focus solelv on the love of fwo neonl

[371]

Shell Workflows, and Data Acquisition and Massaging Chapter 3

Much better! Let's go ahead and save this as a new file:

cut -d$'\t' -f 6,8,13,14 reviews.tsv > stripped_reviews.tsv

The following is what you should see once you run the preceding command:

ubuntu@commandlinebook:~>cut -d$'\t' -f 6,8,13,14 reviews.tsv > stripped_reviews.tsv

ubuntu@commandlinebook:~>I

Let's see how many times the word Packt shows up in this dataset:

grep —-i Packt stripped_reviews.tsv | wc -w

The following is what you should see once you run the preceding command:

ubuntu@commandlinebook:~>grep -i packt stripped_reviews.tsv | wc -w
140197

ubuntu@commandlinebook:~>l

Let's convert this from .tsv to . csv so we have a little more structure to work with:

cat stripped_reviews.tsv | tr "\\t" "," > all_reviews.csv

The following is what you should see once you run the preceding command:

ubuntu@commandlinebook:~>cat stripped_reviews.tsv | tr "\\t" "," > all reviews.csv

ubuntu@commandlinebook:~>I

Now let's go ahead and filter out all of the reviews that have the word Packt in them:

cat all_reviews.csv | awk -F "," '{print $4}' | grep -i Packt

[38]

Shell Workflows, and Data Acquisition and Massaging Chapter 3

The following is what you should see once you run the preceding command:

ubuntu@commandlinebook:~>cat all_reviews.csv | awk -F "," ‘'{print $4}' | grep -i Packt

I rurrently have a PacktLib subscription which is why I haven't purchased this from Amazon.
I'm currently only in Chapter 1

Cons:<br indle format text is WAY too big (at least on my device) - they're looking into getting this fixed if they can
- Packt Publishing didn't do the be

t job with editing. There are quite a few (not a LOT

Good books published by Packt do st

I was interested in learning/reading about Julia language and I happily accepted the invitation to review this book (for PacktPub). Before I get into the review of

he book

Dieses Buch hat mich von der ersten Seite an gepackt und nicht mehr losgelassen

There was this sale on Packt and I had my quota of book budget with m

Do not buy this book unless a second edition is released.

I was excited to buy this book. Unfortunately the code no longer works on npm install. I contact

d Packtpub and they said NodeJS had advanced and the code was no longer applicable. It really shouldn't be for sale. I suggest buying the Angularls test driven devel

pment book from them instead.

This Book has been a great mentor for me learning through the basics to advanced for the topic :) Im really Mastering it. Thank You Nipun Jaswal And Packt for such a

wonderful contribution to the world of hacking.

Recently I was asked by Packt Publishing to review Joe Kuan’s new book

There are many assets available for Unity that implement Artificial Intelligence (AI). Simple AIs can also be created by coding a state machine. Unity also provides

Navigation Meshes which help with developing pathfinding AIs. “Unity AI Programming Essentials” by Curtis Bennett and Dan Violet Sagmiller covers 6 different AI‘s t

at are available in Unity’s asset store. Each of the following AI solutions are presented in the form of a project that you can download from Packt Publishing’s web
te.
Quick Path AT by Alkehine Games is available for $10 at Unity’s asset store. Its main focus is on pathfinding. The manual and a demo are available on Alkeh

ne Games’ website. This solution is covered in Chapter one in the book and is great for beginners.
React AI is by Different Methods and is available for $45 at

he asset store. This asset provides a way of building behavior trees that make use of Mecanim animation and allow you to code items such as chain-of-command AIs and

NPC behavior. The book discusses how to use React in chapters one

This is the 3th book I read from the GeoServer Packt's series r />while some of the content slightly overlaps with the other two books

This book Packt’s Masterng series guide you to become an expert in making apps for Leap Motion using object-oriented programming through practical use cases. The aut

or in 224 pages with a quick step-by-step guide to get you set up and an overview of the Leap Motion API. Then the book teach you effective techniques and innovative

design processes that are ideal for creating and testing 2D and 3D applications.
In particular you will create a 2D painting application using only Java and the

Leap Motion API and a 3D application using the Unity3D toolkit.
Featuring diagrams

once again - last time it was with another Packt bo

Packt sent me a free copy of Ramesh Chauhan's Book \\"Learning Alfresco Web Scripts\\"

It was my good fortune to be one of the first who receive this book from Packt Publiching for free in exchange of my promise to write an honest review about its cont

nt when I read it. So I am going to follow the promise with great pleasure r />
0One of the great things about this book is that it is not just Neutron configu

ation howto

I recently received a e-copy of Blender 3D Basics Beginner's Guide Second Edition
 from Packt Publishing by Gordon Fisher. This is the second edition of his boo

Mostly all PacktPub books I've read are written using this no nonsense style

“yUnity Game Development Blueprints” by John P. Doran is a book about creating three different games in Unity 4.6. Packtpub’s listing for the book at http://bit.ly/u

itybl includes a fairly hefty download of the assets for the games you will create. This is an “advanced beginner”-to-intermediate level programmer book and the aut

or has provided videos of the completed games at https://www.youtube.com/user/netravelr/videos.
 Over the course of the first two chapters you create a 2D game

alled Twin-Stick Shooter. The author compares this design to the game Geometry Wars. In the first chapter the whole game is created with all the usual trappings. T

e second chapter goes into detail on creating the interface for the game using the Unity legacy GUI system. One of the things I liked about this book is that at the

end of each chapter the author provides challenges for you to personalize the game and make it your own.
 In chapter 3 you get to create a side-scrolling platfo

mer which combines 2D and 3D gaming. I found this chapter very interesting in that you create your own tile-based level. This is something that I have always wante
to do and the chapter a nice introduction into how this could b c ished. It also pre s you for later chapters in wh 0 t-up a 3D environment usin
prefabs that you create.
 The rest of the book

As most books in PacktPub's Essentials series

Another Unity game engine book from Packtpub was released in October

Packt should be ashamed of itself.

neoj4 now comes out an IDE that includes a Cypher editor a window that shows what the database looks like

It has been a long time since a book had such impackt on m r

Note: Packt Publishing provided a digital copy for review.
 />'Learning Xamarin Studio' can be a great resource for the developer with little to no experienc
in mobile development and interest in the Xamarin platform. The book walks you through the 'Hello World' app but it is not a coding how-to. This is about all the ot
er logistics that go into the mobile development lifecycle in Xamarin Studio. Topics include

sensibel und persénlich verpackt

A few weeks ago I have been selected by Packt Publishing to review the new book “OpenCV Essentials” by Oscar Deniz Suarez et.al. Thus here is my objective review:

This book is for people who have at least basic knowledge in OpencV and Computer Vision

Interesting! Using the commands you just learned, go ahead and play with this dataset for a
bit.

We will talk more about the t r command in chapter 5, Loops, Functions, and String
Processing; for now, don't worry about it.

Detached processing

Detached processing runs a command in the background. This means that terminal control
is immediately returned to the shell process while the detached process runs in the
background. With job control, these back grounded processes can be resumed in the
foreground or killed directly.

[39]

Shell Workflows, and Data Acquisition and Massaging Chapter 3

How to background a process

Remember when we used the double ampersand to conditionally execute two commands
that run one after another? By using a single ampersand, you can fork a process in the
background and let it run. Let's use the command to save to a new file and run in the
background:

cat all_reviews.csv | awk -F ", " '"{print $4}' | grep -i Packt >
background_words.txt &

This will take the example from earlier but run it in the background, like so:

ubuntu@commandlinebook:~>cat all reviews.csv | awk -F ' '{print $4}' | grep -i Packt > background words.txt &

[1] 1504
ubuntu@commandlinebook : ~>f

Notice to <output> [1] 1504</output> that was printed (avoiding all the output!) this
shows you that the job was run successfully in the background. You canrun tail -
F background_words.txt to view the data in real time as it runs in the background:

ubuntu@commandlinebook t all_reviews.csv | awk -F "," ‘'{print $4}' | grep -i Packt > background_words.txt &
[1] 1504
ubuntu@commandlinebook:~>tail -f background_words.txt
Breits nach den ersten Zeilen der Leseprobe musste ich mehr erfahren. Das Buch Revue des Todes\\" hat mich gepackt und bewegt.<br ie bildhafte Sprache von Barbel
iipker 1lasst reale Bilder beim Lesen entstehen
Da mich die beiden erste beiden Gesichten der i Das Doktorhau \\" gepackt haben
[[ASIN: 1849691924 Unreal Development Kit Game Programming with Un ipt: Beginner's Guide]]
 purchased this book through the Packt Publishing we
I must say the title should be \\"Unrealscript for Dummies\\". It was written in a manner for a non-programmer to understand br />I highly recommend you to
rchase this book if you want to learn Unrealscript.
Als ehemaliger Lastwagenchauffeur konnte ich mich sehr gut mit der Hauptperson identifizieren. Auch die Geschichte selbst hat mich sofort gepackt. Ich konnte nicht
ders
very disappointed after I read 20% of this book that there are numerous missing and erroneous paragraphs with important facts or illustrations missing. This on
tains to the Kindle edition as all these sections are correct as per PDF from Packt's own website. I bought the Kindle version due to PDF rendering issues for
Kindle. This is not a good reflection on Kindle edition or Amazon. e.g look at the section on \\"install\\" in Chapter 3 (should be page 43) - the example bundles
fter the \\"1b\\" command has the bundle with ID 7 missing from Kindle edition
I was waiting for many years for a serious book around Cakephp framework. And finally it came From Packt Ed and his author Mariano Iglesias.
I enjoy all the top

cs

This book was horrible Thank goodness I purchased the Kindle version for half the price of the printed book. This book is supposed to help developers new to NetBe
ns learn how to develope application using the Netbeans Platform. Unfortunately the author leaves out details in how to perform some of the tasks he tells you to do
and then the code examples are littered with errors making it pointless to copy and paste the code and try to figure your way through the sample. I even obtained the
updated source code from Packt Publishing and it was missing some of the modules needed to make the application work completely. I was given the option to run the a
plication without enabling the features of the missing modul I chose to do that and everything was in German. Fortunately I can read German

Unterhaltsam verpacktes Wissen

Interessante und naturwissentschaftliche Erkenntnisse toll VE‘V‘}JaCk[mit einer spannenden Geschichte. Dieckmanns Werk llEgE voll im Trend der \\"FactFiction\\" wie ic
es nennen wiirde. Wer gerne Werke wie die von Hawkings und Co. liest

Der Autor erkldrt das aktuelle wWissen Uber die zusammenhdnge der welt (Evolution: warum - wohin - sind wir allein im ALl - u.s.w.) verpackt in eine spannende Geschic

To bring the job back from the bg (background), type £g and you brought the process back
to the foreground like so:

ubuntu@commandlinebook:~>fg
cat all reviews.csv | awk -F "," '{print $4}' | grep -i Packt > background_words.txt

[40]

Shell Workflows, and Data Acquisition and Massaging Chapter 3

Go ahead and run a couple of commands in the background. You can use
the jobs command to view them all. Feel free to check the manual page for the jobs
command by entering man Jjobs for more options.

Disregarding SIGHUP

Commands are attached to their controlling command-line terminal by default. When the
command line terminates, child processes (backgrounded or not) are sent a SIGHUP and
should terminate. Let's say you wanted to run a command and keep it running if you log
out. nohup comes in handy, especially if you're working on remote systems and have a
need to log out, or you're worried about your connection to the server that keeps
disconnecting (I'm looking at you, Amtrak WiFi).

Go ahead and run the command we ran earlier, but add nohup to the beginning, like so:

nohup cat all_reviews.csv | awk -F "," '{print $4}' | grep -i Packt >
background_words.txt &

Now, log out of your shell by typing 1ogout or by using control-d, and then bring the
shell back up and run tail -f background_words.txt. You'll notice that the command
is still running in the background and the file is being updated. You might have tried to
bring the command back by issuing fg and noticed it didn't work. Keep that in mind

as nohup the command will run until completion or failure or until you ki1l the process.
Feel free to check out the manual page for ki1l by doing aman kill, as there's a lot of
options to choose from.

Terminal multiplexers

Let's now take a look at the screen command, it will give you the ability to do many
different things, as we will see in the following section.

Introduction to screen

So far, you've learned how to run a command in the background and you've

mastered nohup. Now it's time to talk about the screen command. screen gives you the
ability to attach and detach sessions on the fly, keep a shell active even with network
disruptions, disconnect and reconnect to a shell from multiple locations, share a shell with a
remote user, and keep a long-running process running without maintaining an active
session.

[41]

Shell Workflows, and Data Acquisition and Massaging Chapter 3

First, let's make sure you have screen and tmux (we will use tmux later) installed. In
Ubuntu, run the following:

sudo apt install -y screen tmux

You might already have it installed (depending on which version of Ubuntu you are
running), but better safe than sorry. Now, let's go ahead and fire up screen:

screen

You should see the following:

Screen version 4.03.01 (GNU) 28-Jun-15

Copyright (c) 2010 Juergen Weigert, Sadrul Habib Chowdhury

Copyright (c) 2008, 2009 Juergen Weigert, Michael Schroeder, Micah Cowan, Sadrul Habib Chowdhury
Copyright (c) 199: 2003, 2005, 2006, 2007 Juergen Weigert, Michael Schroeder

Copyright (c) 1987 Oliver Laumann

This program 1s free software; you can redistribute it and/or VllOﬂlfy it under the terms of the GNU General Public License as published Dy the Free Software
Foundation; either version 3, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the 6NU General Public License along with this program (see the file COPYING); if not, see http://www.gnu.org/licenses/, or
contact Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA ©2111-1301 USA

Send bugreports, fixes, enhancements, t-shirts, money, beer & pizza to screen-devel@gnu.org

capabilities:
+copy +remote-detach +power-detach +multi-attach +multi-user +font +color-256 +utf8 +rxvt +builtin-telnet

Go ahead and send the team some pizza and beer (really, these folks are great!) and hit the
spacebar to continue. You'll notice... well, nothing really changed. The command prompt is
still the same, just some information about copyrights and where to send beer money
appeared. Let's go ahead and run a new command, called top. The top command (table of
processes) shows you all of the processes that are currently running. Go ahead and give it a
try!

Your output will look slightly different.

Execute the top:

top

[42]

Shell Workflows, and Data Acquisition and Massaging Chapter 3

With top running:

top - 19:51:06 up 43 min, 2 users, load average: 0.00, 0.02, 0.08

Tasks: 133 total, 1 running, 132 sleeping, 0 stopped, © zombie

%Cpu(s): 0.0 us, 0.0 sy, 0.0 ni,100.0 id, 0.6 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 16431384 total, 8011860 free, 82164 used, 8337360 buff/cache

KiB Swap: 0 total, 0 free, ® used. 16651560 avail Mem

37844 5856 3980
] 0

0.0 0.0 systemd
kthreadd
ksoftirqd/@
kworker/0:0H
rcu_sched
rcu_bh
migration/e
watchdog/0
watchdog/1
migration/1
ksoftirqd/1
kworker/1:@H
watchdog/2
migration/2
ksoftirqd/2
kworker/2:@H
watchdog/3
migration/3
ksoftirqd/3
kworker/3:0H
kdevtmpfs
netns

perf
xenwatch
xenbus
khungtaskd
writeback
ksmd
khugepaged
crypto
kintegrityd
bioset
kblockd
ata_sff

md
devfreq_wq
kworker/1:1
kworker/2:1
kswapde
vmstat
fsnotify_mark
ecryptfs-kthrea
kthrotld
bioset
bioset

0
0
0
(]
0
0
0
(0}
0
(0]
0
(0}
0
(0]
(]
(0}
(]
0
0
(0]
(]

DL LLOLOHLLOLOOLOOLOOLOOLOOONDOOLONDOOLOLOOLOOOLOLOOOOOLOLOONDOOOOnnwunnon
[eoNoo oo NoNoNooooNoojNojooNoooooNojolo oo NojojojojoNoNoNoNooNoNojoNoNojojoNo)

]
]
0
0
o]
]
0
]
0]
0
]
]
]
0
0]
0
]
o]
0
o]
0
]
0
o]
0
0
]
]
0
0]
]
0
0
]
o]
0
0
]
o]
0
]
]
o]
0

oo oo oo NoNoNooooNoNoNojoNoNoNoNojo oo oo Nojo NoNojoojoNoNoNoNoNoNoNoNoNoNo ol
oo oo NoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNo oo NojNo NoNoooNoNoNoNoNoNoNoNoNoNoNoNol
oo oo oo oo Nojooojojojojooojojojojoo oo oo NojojojojoNoNooojojoNooNoNo ool
looooN oo NoNoNoooojooojoooojojojooolo oo NojojojojoNoNojoojoNoNoooNo ool
[clcNoNoNoloNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoloNolNoNolNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNoNol
[clcjoo oo NoNo oo NoNoNoNoNoNoNoNoNo oo Nojo oo oo NoNoNoNoNoNoNoNoNoNoloNoloNoNoNoNol

Admire the awesomeness of top. This is a great command to use if you ever what to know
what’s taking up a lot of the system's resources.

While top is running, let's go ahead and detach from screen. Type the following:

<key>Ctrl+a</key> d

[43]

Shell Workflows, and Data Acquisition and Massaging Chapter 3

Notice that the screen went back to a clean shell:

[detached from 1788.pts-1.commandlinebook]

uhuntu@commandlinebook:~>I

To check whether the screen session is still active, let's go ahead and run screen -r.
Notice that the top command didn't die—it ran in a screen session. What's great is that you
can log out of this session, reconnect, and attach the screen session like nothing happened.
It's very useful for running long processes from a laptop or any place where you'll need to
disconnect for a bit.

Go ahead and run multiple screen sessions. You can view them by running screen -
list.

Sharing a screen session between multiple users

We've all been there: trying to troubleshoot someone's code remotely when you’re unable to
see what’s going on is a very painful process. A user can create a shared session by doing
the following:

screen -d -m —-S shared_screen
And while you're logged into the same machine, go ahead and type the following:

screen —-x shared_screen

Introduction to tmux

tmux is the newest terminal multiplexer on the block, with a lot of great features to enhance
your command line skills and provides a lot of features over just the standard shell. Let's
fire it up and check it out:

tmux

You should see something like this when you run tmux:

Output for tmux command

[44]

Shell Workflows, and Data Acquisition and Massaging Chapter 3

One thing to keep in mind is that, by default, all tmux commands require the prefix Ctrl
+ B before you can run tmux commands. For example, let's try a couple out. Having one
shell window is great, but how about two?

Output for tmux command with two shells

How about two more but on the bottom?

«

<key>Ctrl+b</key>
<key>Ctrl+b</key> <key></key>
<key>Ctrl+b</key>

ubuntu@commandlinebook:~: ubuntu@commandlinebook:~>

|
|
|
|
|
|
ubuntu@commandlinebook: ~>] |ubuntu@commandlinebook:~>
I
|
|
|
|
|
|
|
|
|
|
|
|

[6] ©:bash*

[45]

Shell Workflows, and Data Acquisition and Massaging Chapter 3

Pretty awesome, right? Go ahead and customize your tmux session to your liking. There's a
bunch of options located in the man page, man tmux, to choose from. Our personal favorites
are <key>Ctrl+b</key> : setw synchronize-panes on <key>enter</key>. Now, go
ahead and type top. Did you notice that all of the panes are the same? This comes in handy
when you're logged into multiple servers and need to run a command across them all
manually.

Summary

In this chapter, we only scratched the surface on what we can do with the command line.
We were able to download a dataset, save it, inspect the file type, and perform some simple
analytics. The word count example is considered the "Hello, World" of data science and we
saw just how easy it is to perform in bash.

We then took your shell customization to the next level by using terminal multiplexers and
background processes. Think of it like using an IDE, but for the command line. It will make
working with bash a lot easier.

Being able to control processes and workflows will improve productivity. Detached
processing ensures programs can complete without interruption. The terminal multiplexer
provides a means of maximizing the use of screen real-estate, while also providing a
detached processing environment, which is a double win for all.

In the next chapter, we'll explore reusable shell bash scripts and functions.

[46]

Bash Functions and Data
Visualization

So far, we've been working with bash interactively and had to rely on the bash history for
what we've done. Wouldn't it be nice if you had a portable way to share and store the
commands you want to run? Well, that functionality exists in the form of shell scripts
composed of shell functions.

We're going to extend the history we covered in Chapter 1, Data Science at the Command
Line and Setting It Up. Terminals originated as text-only devices and evolved graphical
support for simple drawing primitives, such as rendering enclosed cells in tabular data. The
pinnacle of Terminal graphics was made by DEC with canvas and vector-graphic support
in the form of SIXEL and REGIS graphics, respectively. As physical Terminals became a
thing of the past, lightweight Terminal emulators regressed to being text-only. A
renaissance in graphics support from Terminal emulators has been occurring with the
alacritty, wsltty, xterm, mlterm, st, iTerm2, and hterm emulators.

mlterm with SIXEL support for Linux users, and iTerm2 on macOS with

We recommend wsltty with SIXEL support for Windows users, xterm or
0 PNG rendering (SIXEL support may be added in the future).

With a recommended Terminal emulator, we will show off canvas-style graphical
rendering in the Terminal, and of course, include text mode support for DUMB Terminals.
We'll only mention that ascii-art libraries exists, aalib (ascii art lib), 1ibcaca, and braille
fonts that attempt to render graphics to the Terminal using font characters only. Here, we'll
work with SIXEL for Linux/Windows and PNG for macOS, and leave DUMB Terminal
output for all advanced alternatives as an adventure for the reader. In this chapter, we'll
cover the following topics:

¢ How to execute a script
¢ Function arguments/parameters

Bash Functions and Data Visualization Chapter 4

e Advanced shell scripting

¢ How to configure your Terminal for graphics mode
e Data mining graphable data

¢ Graphing data with gnuplot

My first shell script

Our first shell script will cover the basics of how to tell the computer to run the shell script.

She bangs, she bangs!

We're not talking about that popular Ricky Martin song. We're talking about what every
bash script needs in order to run. If you've worked with other programming languages,
you may have noticed the first line always starts with a #!. This tells the system which
interpreter to use. For example, if you've worked with Python before, you've probably seen
#!/usr/bin/env python2.7 in a script. With bash, it's no different. Let's go ahead and
create a new file named hello_world. sh and enter the following:

#!/bin/bash
A function to greet everyone
greet_everyone () {

echo Hello, World!

}
greet_yourself () {
echo Hello, S${USER}

}
greet_everyone
greet_yourself

File editors are the new, hip thing to debate about on the Internet. For
example, search for vim versus emacs or nano versus pico. If you don't
have a favorite editor, we won't force your selection, but you should use a
Very Immensely Method to find your one true editor.

Go ahead and save this file as hello_world. sh and then let's make the script executable:

chmod +x hello_world.sh

[48]

Bash Functions and Data Visualization Chapter 4

Now, you can run the script like so:

./hello_world.sh

Let's break this down. The first line is the shebang that we mentioned. Our functions are
called greet_everyone and greet_yourself. Inside the curly brackets, { }, we can run
as many commands as we want. Finally, the functions are called below it. Also, notice

the ${USER} variable inside the script. You might be wondering how bash was smart
enough to print out your username without you defining it. Every bash environment has a
set of preconfigured variables that you can view. Go ahead and run

the printenv command to see what's available.

This is great if we want to greet the entire world and use your username. But, what if we
want to take this further?

Function arguments, positional parameters, and
IFS

Functional arguments, positional parameters, and the IFS (internal field separator) are
advanced list-processing mechanics in bash. We'll cover each of them in turn to ensure a
base knowledge of how the shell interacts with them.

Prompt me baby one more time

We discussed how to invoke our function, but how do we prompt our users for input? The
computer can't read your mind—it can only read your keyboard input! For bash to read
input, you'll have to use the (you guessed it) read command. Let's expand our function's
capabilities. Go ahead and modify your hello_world. sh script from the previous section
with the following;:

#!/bin/bash
A function to greet everyone
echo Who would you like to greet?
read name
greet_yourself () |

echo Hello, ${1:-SUSER}!
}

greet_yourself $name

[49]

Bash Functions and Data Visualization Chapter 4

We've added the read name code, replaced the ${USER} variable with ${1:-$USER} in
the greet_yourself function, and added our first argument to our greet_yourself
$name function call. When $name is passed into the greet_yourself function, it's
assigned to the $1 variable. That ${1:-$USER} magic variable is saying expand $1; if
empty, replace with $USER retaining the same output behavior of our original function if no
username is provided by just pressing the enter key. Run it again to see the following;:

:~%$./hello_world.sh
who would you like to greet?
Thor
Hello, Thor!

ey |

Let's focus on just our function. Paste the following code into your shell:

<<EQF cat >greetlib.sh
greet_yourself () |
echo Hello, \${1:-\SUSER}!

}
EOF

This is a fancy means of creating the greet1ib. sh file. The <<EOF here is doc redirection
that indicates that we want to specify the standard input to cat and redirect its standard
output to greetlib. sh. Everything after that first line is shell-interpreted content that's to
be concatenated to the end of our output file until EOF is read. Shell-interpreted content
means that variables are replaced with values from your current shell environment, we've
escaped our shell variables with \'$ so that they will be rendered into the greetlib. sh file
as $ and not interpreted into actual values. Finally, we can source our function into our
current shell environment and invoke it. We'll practice that in the next section.

[50]

Bash Functions and Data Visualization Chapter 4

Feed the function input!

Our shell function accepts arguments, known as positional parameters, which are the
equivalent of ARGV from a POSIX C runtime. Function arguments are automatically
assigned by their numeric position to variables in this form: $1, $2, $3, .., $9.

The $0 variable exists, but contains the name that was used to invoke the shell. Some
inquiring minds might wonder what happens after the ninth argument. Well we need to
use the full variable dereferencing syntax, for the tenth and eleventh variables, ${10} and
${11}, respectively. So what does that all look like? Check it out:

greet_yourself () {
echo Hello, ${1:-SUSER}!

}
./greetlib.sh
greet_yourself “Joey”

The . operator is used to read and evaluate a shell script in your current execution
environment, as though you had typed all of greet1ib. sh into the command line and
pressed the enter key. This calls the greet_yourself function with the first positional
parameter, "Joey", assigned to $1. To jump ahead, we have types of positional parameters:
options (covered at the end of the chapter) and arguments. Options come in short and long
forms and are identified by a single hyphen or double-hyphen, respectively. Short options
are single characters and long options are full semantic words that describe values to set. If
an argument needs a literal hyphen at the start of its value, it needs to be distinguished
from options by proceeding with a double-hyphen. Hypothetically, this is gobbledygook
looks like this:

greet_yourself —--capitalize —-—name="Joey"
greet_yourself —--lowercase —— —-RoBoT1

These examples showcase how options and arguments can be passed to a function, because
the options are just positional parameters. In the first greeting call, we assign —-
capitalize to the first positional parameter, $1, and -—-name="Joey” to the second
positional parameter, $2. In the second greeting call, we assign ——lowercase to $1, —— to
$2, and ~RoBoT1 to $3. Our function is basic and lacks the ability to process the —-
capitalize and --lowercase options as function features. We pretend the first greeting
call should output "JOEY", and the second greeting ~robot 1. Some may wonder how a
command can distinguish options that begin with a hyphen from an argument, such as -
RoBoT1. The bare double-hyphen -- indicates that all following positional parameters are
to be treated as arguments and not processed as options. Again, we'll dig into option
processing at the end of the chapter, but it's easiest to show function invocations all at once.

[51]

Bash Functions and Data Visualization Chapter 4

Down the rabbit hole of IFS and bash arrays

Positional parameters are created from the arguments to a shell script, function, or the set
command. The assignment of words to positional variables is accomplished by splitting the
unquoted string along any of the delimiters contained within the IFS variable. The IFS
variable defaults to the string, which consists of a space, tab, and newline characters. Since
the IFS is a variable, it's possible to modify this variable, which is useful when iterating over
non-space-delimited text:

IFS=:

for P in $PATH ; do
echo S$P

done

unset IFS

The preceding code exemplifies how the PATH variable, which consists minimally of
/bin:/usr/bin, can be split with a colon delimiter so that each path segment can be
manipulated. We expect the reader can extrapolate how this might be useful for iterating
over comma-separated lists, or similar simply delimited datasets.

Due to limitations in modifying positional parameters, bash 4 introduced arrays. In the
event that your shell scripts become sufficiently complex to require arrays, we encourage
you to consider upgrading to a full-fledged scripting language, such as Perl, Python, or
Ruby, that's better-suited to handling various list iterations that bash doesn't natively
support. Delving in, bash arrays are zero-indexed, and are accessed with

the ${ARRAY [#] } special syntax, where the # sign should be replaced by the integer array
index or the special values of @ or *, which represent the quoted elements or unquoted
elements converted into a string. Here's some code as an example of bash arrays:

TMP_PATH=/bin:/usr/bin:/sbin:/usr/sbin

IFS=:
PATH_ARRAY= (STMP_PATH)
unset IFS

echo First element - ${PATH_ARRAY}
echo First element - S${PATH_ARRAY[O]}
echo Second element - ${PATH_ARRAY[1]}
echo All elements - S${PATH_ARRAY[*]}
echo All elements - S${PATH_ARRAY[@]}

[52]

Bash Functions and Data Visualization Chapter 4

Advanced shell scripting magic

This is the dark magic section of the chapter. It will demonstrate advanced shell scripting
by taking the preceding lessons and features, and converting them into what could be
considered a small program.

Here be dragons, ye be warned

A simple piece of introductory code is great to get a feel for the flavor of a language, but
we're going to introduce some dark magic in the form of some complex utility functions
that can be helpful in everyday situations. We'll use a 1ineinfile function to insert
arbitrary text into a file—it's not a full-featured application, just enough to help ensure
some simple text is injected into a file. The second function, ncz, leverages bash IP
networking (yes, bash4 can support IP networking YMMYV with your distro) to perform a
socket test equivalent to what netcat -z does. Additionally, it shows how to make a
function behave like a command-line program by parsing simple argument flags.

Text injection of text files
We're going to create a function that can inject text into an existing file. Here's our function:

lineinfile () {
FILE=$1 ; shift
LINE=""1" ; shift
CONTEXT="$1.*” ; shift
MODE=${1:-add} ; shift
case “S{MODE}” in
add)
grep —-s “S{LINE}” “S{FILE}” || sed —-i —e “s/\ (S$S{CONTEXT}\)/\1\n$S{LINE}/”
“S{FILE}”
del)
grep —-s “S{LINE}” “S{FILE}” || sed -i -e “/S${LINE}/d” “S{FILE}”
esac

}

The intended usage is as follows:

lineinfile <filename> <string> <insert-after-context-string> <add | [del]l>

[53]

Bash Functions and Data Visualization Chapter 4

lineinfile starts off with the standard function() {} definition template. It reads the
first positional parameter passed to the function, $1, into the FILE variable, and shifts the
positional parameters so that each parameter's index is decremented by one, so $2 becomes
$1, $3 becomes $2, and so on. The second parameter is assigned to the LINE variable and
we prefix it with the regular expression start of line ~ and end of line $ delimiters to
indicate that the string being injected must match an entire line (sorry, there's no advanced
regex support in this simple function). The third parameter looks for context so that we can
inject the line after the context. Again no ability to specify injecting before the context, just
after the context if it exists. The fourth parameter is the operating mode of

our lineinfile function to either add (adding text is the default behavior) or to delete
(use the del mode).

Bash networks for fun and profit!

Sometimes, we need to interact with network services or APIs. Here, we'll introduce some
complete code that tests TCP endpoints, which is useful for checking whether an API
service is listening and available. This code can be pasted into your Terminal, or saved to a
file and loaded into your shell environment with the . operator:

ncz () {

OPTIND=1 ; while getopts ":hv" opt; do

case ${opt} in

v) VERBOSE=true
r s
h|\?) printf "Usage: $0 [-v] <host | host:port>" ; return
I

esac

done

shift $(($OPTIND - 1))

HOST=${1%:*}

PORT=S${1#*:}

PORT=${2:-SPORT}

(exec 6<>/dev/tcp/${HOST}/S${PORT} 2>&1)
RC=$7

case "$S{VERBOSE}S${RC}" in

truel) printf "open\n";;

true*) printf "closed\n";;

esac

return SRC
}

[54]

Bash Functions and Data Visualization Chapter 4

Now, this code has some minor magic. getopts is a function that parses positional
parameters, according to POSIX processing into options, and assigns the next option to the
variable specified, in this case opt. It supports short and long options, and options can have
parameters; parameters would be stored in OPTARG. This example uses a trivial option
string of :hv. The colon character indicates that invalid option flags should be denoted
with the question mark character, 2. The h option is for our help flag and v is used so we
can set a VERBOSE flag. The while loop calls the getopts function, which modifies the
positional parameters. When the getopts function completes, it's necessary to shift the
processed positional parameters out so that we can treat non-options as function
arguments. OPTIND is the index of the last option parsed, so subtracting one from that and
shifting the positional parameters by that amount ensures that we only proper arguments
remain in our positional parameters.

The code attempts to support accepting arguments in the form of host : port or host
port. The support for single-parameter or two-parameter arguments is handled by always
using the second argument as the port, and if there's no second argument, defaults to
splitting the first parameter on the colon character using prefix and suffix removal.

The HOST=${1%: *} assignment attempts to extract a host component from a host :port
argument by expanding the first positional argument, stripping all trailing characters (% is a
reverse-substitution match) to the first colon character (the delimiter between host : port)
so that we're left with just the host portion of the variable. If the reverse match fails, which
indicates no port components, the unmodified expansion of $1 will be assigned. To get the
port, we look at the second argument. If it doesn't exist, we default to the port extracted
from the first positional argument by stripping the host : portion of $1.

The real dark magic involves file descriptors and bash's IP network support. We open file
descriptor 6 inside a subshell. We attach the input/output of the socket created

by /dev/tcp/$HOST/$PORT to this file descriptor. Anything written to the file descriptor
will be sent via a TCP socket to tcp: //$HOST: SPORT, and any responses can be read from
the same file descriptor. As network connections can error, we capture the return code of
the socket open to the RC (that’s short for return code) variable. We then evaluate whether
output is desired from a verbose option flag and the status of the return code, printing
success/failure according to the return code. In C programs, a return code of 0 indicates
success, so t rue0 indicates that the function has invoked to request the verbose mode and
a successful socket connection was made. Finally, the return code is returned from the
function so that the status of the remote socket can be evaluated via a shell pipeline.

[551]

Bash Functions and Data Visualization Chapter 4

Here's a self-explanatory invocation of the preceding explanation:

ncz google.com:80 && echo "yay!! Interwebz are up!" || echo "booh! No
kitties for us!"

From dumb Terminal to glam Terminal

We're going to use gnuplot to render dumb text graphics and canvas-style plots inside our
Terminal. To begin, we need some basic configuration for our gnuplot startup. Put the
following in ~/ . gnuplot:

set term dumb

Next, we need a wrapper around gnuplot to get some fancy graphical output. This wrapper
looks at the GNUTERM environment variable of your current shell and does some
calculations on the Terminal's width and height so that gnuplot knows how big a window
it has. The wrapper will update our ~/ . gnuplot configuration with the graphics
capabilities specified for our Terminal. We aren't going to delve into the wrapper, but just
use it as another command. Here it is:

__gnuplot () |

SIZE=$ (stty size 2>/dev/null)
SIZE=S${SIZE:-$ (tput lines) $(tput cols)}
COLS=${SIZE#* }

ROWS=${SIZE% *}

XPX=${XPX:-13}

YPX=${YPX:-24}
COLUMNS=${COLUMNS:-${COLS}}

LINES=$ (($S{LINES:-${ROWS}}-3))

case "S$S{GNUTERM%% *}" in

dumb) X=${COLUMNS} ; Y=${LINES} ; DCS_GUARD="cat" ;;

png) X=$ ((XPX*COLUMNS)) ; Y=S$((YPX*LINES)) ;
DCS_GUARD="imgcat";;

sixelgd) X=$ ((XPX*COLUMNS)) ; Y=$((YPX*LINES));;

esac

sed -1 "s/"set term[[:space:]]["[:space:]]*/set term ${GNUTERM%%
*}/" ~/.gnuplot

GNUTERM="S${GNUTERM} size $X,$Y" \gnuplot "$@" | ${DCS_GUARD:-cat}

t
alias barchart="FUNCNAME=barchart _ barchart"
_ _barchart () |
local STACKED
local DATA
OPTIND=1 ; while getopts ":hf:s" opt; do
case ${opt} in

[561]

Bash Functions and Data Visualization Chapter 4

f) [-r "${OPTARG}"] && DATA=S$ (printf 'S$data <<EOD\n' ; cat "$S{OPTARG}"
printf 'EOD\n')

rr

s) STACKED="; set style histogram rowstacked ; set boxwidth 0.75"
h|\?) printf "Usage: ${FUNCNAME} [-s] [-f <file>] <gnuplot commands\n"
return

esac

done

shift $(($OPTIND - 1))

{

cat <<-EOF

S$DATA

set key autotitle columnheader outside
set style data histograms S${STACKED}
set style fill solid border 1t -1
set xtics rotate by -45

EOF

printf "%s" "s@"

} | gnuplot

}

Depending on your OS and Terminal, you'll need to specify the correct graphics backend
for your Terminal.

Windows users with wsltty, and Linux users with mlterm or xterm, should set the
following environment variable:

export GNUTERM=sixelgd
macOS users with iTerm2 should use this environment variable:
export GNUTERM=png

Let's verify that we're able to plot a graphical test pattern. If your dumb Terminal doesn't
support graphical mode, we include a text mode test afterwards.

For the graphical test, run the following;:

gnuplot —e "set terminal $GNUTERM background rgb 'white'; test"

[571

Bash Functions and Data Visualization Chapter 4

This should result in a graphical Terminal output like this:

{l user@localhost:~ — O X
useralocalhost:~/src/book$ gnuplot -e "s ‘'white'; test”
sixelgd terminal test show ticscale -~ a
gnuplot version 5.2.2
filled polygons: 1 +
2 x
6 3
7 »
9 &
10 b
left justified
centre+d text
- right justified 14 +
% 8 15 x
bt S
g 0@@ frue vs. estimated text dimensions 17 o
£ ta 12345678901234567890 18 "
- %,
=]
= ¥ Enhanced text: xJ™ 22 -
23 v
Bold italic
25 <
26 +
linewidth
— G dashtype
W5 Y n °
31 [
w4 . di4 pattern fill
3 4 . 33 -
Iw 3 —dt3 M A
w2 _—dt2
w1 _——dt1

userd@localhost:~/src/book$ I

Some quick callouts to the test output are important for styling your output graphs. The
line type on the far right of the test graphic is abbreviated as 1t and provides the visual
marker for the plotted tics (or points) of the plot, for example, *, +, and x. The linewidth,
abbreviated to 1w, is on the bottom left and sets the line's thickness for the plotted line.

If your Terminal doesn't support graphics mode, text plotting can be used. Invoke the text
test:

GNUTERM=dumb \gnuplot
gnuplot> test
gnuplot> exit

[581]

Bash Functions and Data Visualization Chapter 4

Which should result in a Terminal output like this:

{} user@localhost = | X

-dumb terminal test show ticscale--XXXXX-----—--—-—--
$$4 HOOOCXX a00
:). 9.0.0.0.0.0.9.0.0 ¢ *kkkk
left justifiXXOXXXXXXXX :3:3:5: 83
centre+d text XOO0OOOXX $$$%9%
right justified: JOOOOOOOOXX P%67%6F%%
: JOOOOOOOX

nuplot versi.> 5.2.2

A

|

|

|

|

| .- 5 KXXKXXX

| .. true vs. estimated text dimensions XXXXX
.cannot rotate text

|

|

|

|

|

|

|

énhanced text: x0
5 Bold Italic

.] pattern fill
> + 0+ 1+ 2+ 3+ 4+ 5+ 6+ 7+ 8
T I T Y O Y I I

linewidth 1w 6----dashtype dt 5--+-+H-+H-+H-+H-+H-+H-+H-+H-F+------——-———— +
userglocalhost:~/src/book$
userglocalhost:~/src/book$
userdlocalhost:~/src/book$ [JJ

Finally, we need an alias to invoke our function with the GNUTERM environment variable
that's set to an acceptable graphics backend. Run the following alias with the GNUTERM
variable set as determined to work with your Terminal:

alias gnuplot="GNUTERM=$GNUTERM __gnuplot"

Who, what, where, why, how?

Let's return to our book data and start to pare it down to the interesting bits. Let's look at
just a little bit of our data:

head amazon_reviews_us_Digital_Ebook_Purchase_v1l_00.tsv

That spat out a bunch of data with very long lines. Let's try again—maybe we really only
care about the headers, so let's try this:

head -nl amazon_reviews_us_Digital_Ebook_Purchase_vl_00.tsv

[591]

Bash Functions and Data Visualization Chapter 4

Since there's a lot of text, let's remove the text fields and focus on numeric data by
removing product_title, review_headline, and review_body, which correspond to
fields 6,13, and 14. Since we're looking at pseudo big data, let's take all the numerical or
Boolean flag fields and dump all the text reviews (we can leave that for the natural-
language processing folks to analyze), try this:

cat amazon_reviews_us_Digital_Ebook_Purchase_vl_00.tsv | cut -d $'\t' -f
4,8-12,15 > test.tsv

Just like that, we've reduced our data size from 6.3 GB to 383 MB of pruned test.tsv data,
which is much more manageable. Now, let's import this into a SQL database to make
aggregating tabular data as easy as a SQL query:

sqlite3 aws—ebook-reviews.sq3 <<EOF
.mode csv

.separator "\t"

.import test.tsv reviews

EOF

Let's find the products with the most reviews:

sqlite3 -header -column aws—-ebook-reviews.sq3 " select product_id as 1ID,
strftime ('$Y-%m', review_date) DATE, star_rating as STAR, count (product_id)
as COUNT from reviews group by ID order by COUNT desc limit 10"

The following output (counts may differ) should be displayed:

D DATE STAR COUNT

BOOLO9B7IKE 2015-01 5 54534
BOO5ZOBNOI 2013-09 5 50581
BOO6LSZECO 2013-09 3 45467
BOOBAXFECK 2013-10 5 34253
BOO3WUYPPG 2013-09 3 30890
BOODPM7TIG 2014-05 4 28234
BOOJYWUHO4 2014-10 1 26722
BO089LOGO2 2013-09 5 26155
BOOCNQ7HAU 2013-10 5 24454
BOO4CFA9RS 2013-09 5 23677

[60]

Bash Functions and Data Visualization Chapter 4

54,000 reviews seems like something we could plot some interesting data for, so let's focus
on the product ID B00L9B7IKE. For plotting, we know which product ID we're looking at,
so let's adjust our query to not report the product ID and just focus on the dates, star rating,
and counts:

sqlite3 -header -column aws—-ebook-reviews.sqg3 " select strftime('%Y-%m',
review_date) DATE, star_rating as STAR, count (star_rating) as COUNT from
reviews where product_id = 'BOOL9B7IKE' group by DATE, STAR"

The following output will be displayed:

DATE STAR COUNT
2015-01 1 30
2015-01 2 44
2015-01 3 108
2015-01 4 304
2015-01 5 822
2015-02 1 290
2015-02 2 352
2015-02 3 818
2015-02 4 2040
2015-02 5 3466
2015-03 1 446
2015-03 2 554
2015-03 3 1294
2015-03 4 3186
2015-03 5 5092
2015-04 1 466
2015-04 2 508
2015-04 3 1178
2015-04 4 2550
2015-04 5 3806
2015-05 1 442
2015-05 2 538
2015-05 3 1152
2015-05 4 2174
2015-05 5 3058
2015-06 1 382
2015-06 2 428
2015-06 3 952
2015-06 4 1920
2015-06 5 2898
2015-07 1 388
2015-07 2 484
2015-07 3 972
2015-07 4 2122
2015-07 5 3004

[61]

Bash Functions and Data Visualization Chapter 4

2015-08 1 374
2015-08 2 458
2015-08 3 884
2015-08 4 1762
2015-08 5 2788

That's some plottable data if I've ever seen some. We can track how many reviews we're
getting by day or month, and when we graph this, we can look for anomalies, such as an
exceptional number of five-star reviews on a single day when prior days didn't stick out so
much.

Our data still isn't quite right; for plotting, we want to group the star ratings by date in a
single row, so we'll need to perform another translation on the data. We also drop the -
column option so we get condensed output, and we can pipe this through tr when we're
ready to pass the data to gnuplot. We'll also save this output into clusterchart.dat so
that our plotting commands are short and simple:

sqlite3 —-header aws—ebook-reviews.sq3 "select DATE, MAX(CASE WHEN STAR='1l'
THEN COUNT END) as 'lSTAR', MAX(CASE WHEN STAR='2' THEN COUNT END) as
'2STAR', MAX(CASE WHEN STAR='3' THEN COUNT END) as '3STAR', MAX(CASE WHEN
STAR='4' THEN COUNT END) as '4STAR', MAX(CASE WHEN STAR='5' THEN COUNT END)
as '5STAR', SUM(COUNT) as TOTAL from (select strftime('%Y-%m’,
review_date) DATE, star_rating as STAR, count (star_rating) as COUNT from
reviews where product_id = 'BOOL9B7IKE' group by DATE, STAR) results group
by DATE" | tr '|' '\t' > clusterchart.dat

cat clusterchart.dat

Finally, here's our condensed output for graphing with gnuplot:

DATE 1STAR 2STAR 3STAR 4STAR 5STAR TOTAL
2015-01 30 44 108 304 822 1308

2015-02 290 352 818 2040 3466 6966
2015-03 446 554 1294 3186 5092 10572
2015-04 466 508 1178 2550 3806 8508
2015-05 442 538 1152 2174 3058 7364
2015-06 382 428 952 1920 2898 6580
2015-07 388 484 972 2122 3004 6970
2015-08 374 458 884 1762 2788 6266

[62]

Bash Functions and Data Visualization Chapter 4

Enter the mind's eye
Let's check out what this looks like. Run the following code:

gnuplot —e "set style data histograms ; set style fill solid border 1t -1 ;
plot 'clusterchart.dat' using 2:xtic(l) ti col, '' u 3 ti col, '' u 4 ti
col, '""u 5 ticol, '"'u 6 ti col"

This should produce the following in your Terminal:

A user@localhost:~
userglocalhost:~/src/book$ gnuplot -e "set style data histograms ; set style fill solid border Lt -1 ; plot 'clusterchart.dat' using 2:xtic(1) ti col, ''
""'u 4 ticol, "' u5 ticol, "' u6 ticol"

6000 T T T

0
2015-01

user@localhost:~/src/book$ i

Let's do the exact same operation, but output the dumb output:

GNUTERM=dumb gnuplot -e "set style data histograms ; set style fill solid
border 1t -1 ; plot 'clusterchart.dat' using 2:xtic(l) ti col, '' u 3 ti
col, ""u 4 ticol, '""ubticol, '"u6 ticol"

[63]

Bash Functions and Data Visualization Chapter 4

We get a text-based output:

{} user@localhost = O X

aa 2STAR

aa 3STAR

aa 4STAR

aa aa aa 5STAR

an %aa) aa aa aa

aa %aa) aa aa aa aa aa
aa %aa %ala) aa aa aa aa
%%aa %) %) %%aa %aa) % aa
% aa %aa %ala) % aa %aa) %aa %%a)
% an $%a@ % $% @ %aa %aa % @@
@a $% aa $%ad $%a@ $% @@ $%@a $%aa $% @a
+%an *#$% Qo ~#$%an **#$%aa *#$% D@ *4$%aa r*#$%a@ *#$% AD

2015-012015-02 2015-02 2015-042015-05 2015-06 2015-072015-08

userillocalhost:~/src/book$
userglocalhost:~/src/book$
usergllocalhost:~/src/book$ Wi

To break down what we did, check out the following code:

GNUTERM=dumb gnuplot -e "set style data histograms ; set style fill solid
border 1t -1 ; plot 'clusterchart.dat' using 2:xtic(l) ti col, '' u 3 ti
col, '""u 4 ticol, '""ubticol, ''"u6 ticol"

The first step is to set GNUTERM, which should default to what we setin ~/ .bash_profile.
This tells our gnuplot wrapper which output backend to use. For GNUTERM=dumb, it will be
a text backend. The next part is gnuplot with the —e expression argument. The expression
is gnuplot syntax. We first set our plots to histograms instead of line graphs with set
style data histograms. Next, we specify the bar color by setting it to a flood fill with a
solid border and use linetype -1 as the default linetype. After we've defined our plot style,
we tell gnuplot to plot our data with plot 'clusterchart.dat'. Each comma-separated
parameter to plot represents a column to plot for each row of data in clusterchart.dat.
We specify that the first column in our plot should use the second column of data and use
the first column of data as our x-label, as denoted by 2:xtic (1) ti col.

[64]

Bash Functions and Data Visualization Chapter 4

The second column in our plot uses the same clusterchart.dat as input by indicating
the same with two concatenated single quotes and specifies the use of the third data
column for tick data. The third, fourth, and fifth columns use the same notation as the
second column, which is to indicate the reuse of clusterchart.dat and to specify the
data column to extract the y-tick data.

If we want to get a little fancier, we can use rowstacking instead of clustered bar graphs so
we can visualize our data more compactly. Try this:

barchart -s —-f clusterchart.dat 'plot for [i=2:6] $data using i:xtic(1l)'

We get a stacked bar chart:

{} user@localhost = O X

useralocalhost:~/src/book$ barchart -s -f clusterchart.dat 'plot for [i=2:6] $da
ta using i:xtic(1)'

12000
10000
8000
6000

4000

o, 2

user@localhost:~/src/book$ [J

Now, if we want to see percentages, we can use our barchart wrapper in stacked mode.
It's nice to see the discrepancy between different data segments. Try invoking the following
code:

barchart -s —-f clusterchart.dat 'plot for [i=2:6] $data using
(100.*column (i) /column (7)) :xtic (1) title column (i)'

[65]

Bash Functions and Data Visualization Chapter 4

It produces the following output:

;} user@localhost = | X

user@localhost:~/src/book$ barchart -s -f clusterchart.dat 'plot for [i=2:6] $da
ta using (100.xcolumn(i)/column(7)):xtic(1) title column(i)

100

4 2 %

userglocalhost:~/src/book$ |J

This is using our bar chart wrapper in stacked mode (-s), and specifying our
clusterchart.dat input file, with the gnuplot script as the last parameter. For gnuplot,
we're telling it to perform a single iterative plot for i=2 to 6. The $data variable is being set
by the bar chart wrapper to the content of clusterchart .dat. The using parameter is
multiplying our fraction by 100 to create the percentage of the bar chart for each element, i,
of the total from column 7. xtic (1) is setting the xtic mark titles to the contents of
column 1 for each row of data graphed in a column. In this example, we need to add

the column (i) title to get the key title set properly to the column headers, instead of using
the last referenced column (7) header.

Summary

With the ability to reuse bash code, a collection of scripts can be cobbled together to
enhance your command-line productivity. And with the ability to visualize results, you can
peer into datasets and perform data mining tasks more quickly.

In the next chapter, we'll dig deeper into bash control flow to create richer functions.

[66]

Loops, Functions, and String

Processing

Sometimes, magic one-liners are insufficient for manipulating data. Loops and conditionals
enable us to iterate over data in interesting ways without sticking to default behavior.

Bash views non-binary files and streams as collections of characters. We commonly think of
these characters as groups of strings separated by some kind of whitespace. It makes sense
that some of the most useful and common tools in the command-line universe are the ones
that search and manipulate these strings.

The following topics will be covered in this chapter:

for loops

while loops

File test conditionals

Numeric comparisons

String case statements

Using regular expressions and grep to search and filter
String transformations using awk, sed, and tr

Sorting lists of strings with sort and uniqg

Along the way, we'll see how we can pipe the results of one program into another to get the
results we want.

Loops, Functions, and String Processing Chapter 5

Once, twice, three times a lady loops

Few command-line tools have implicit looping and conditionals built into them. Often,
tasks will only operate on each line of an input stream and then terminate. The shell
provides just enough control flow and conditionals to solve many complex problems,
making up for any deficiencies that command-line tools have for operating on data.

The almighty for loop is a common loop idiom, however bash's for loop might feel a little
unfamiliar to users of more traditional languages. The for loop allows you to iterate over a
list of words, and assign each one to a variable for processing. For example, (pun intended):

:~$ for word in one two three; do echo $word; done

one
two
three

~$ i

Often, we want a more traditional range of numbers in our for loops. The POSIX method
of generating a number range is to use the seq command, asin seq —— $(seq 1 1

5), which will generate numbers from 1 (the first argument) to 5 (the third argument) in
steps of 1 increment (the second argument).

In the following examples, you'll notice we are using bracket
expansions, {}, and parentheses, ().For more information about both,
check out https://ss64.com/bash/syntax-brackets.html.

Modern versions of bash provide an easy shorthand for this:

:~$ for ((i=1; i<=4; i++)); do echo "$i"; done

We can also set the amount that the sequence is incremented by:

:~% for 1 in {1..4..2}; do echo $i; done

N |

[68]

https://ss64.com/bash/syntax-brackets.html

Loops, Functions, and String Processing Chapter 5

Alternatively, we can use the bash supported C-like syntax:

:~$ for ((i=1; i<=4; i++)); do echo "$i"; done

Looping for a specified number of times may be what we need, but we can also pass in the
result of a sub-command to generate the list of things to loop over. For example, we may
want to do something to each file in the current directory:

i=$i s

amazon_reviews_us_Digital Ebook_Purchase_v1_00.tsv amazon_reviews_us_Digital Ebook_Purchase_vi_01.tsv
:~$ for file in $(1s); do wc -1 $file; done

12520723 amazon_reviews_us_Digital_Ebook_Purchase_vi1_00.tsv

5101694 amazon_reviews_us_Digital Ebook_Purchase_vi1_01.tsv
el |

Often, we may want to test one or more conditionals, especially in loops. Bash has an i f-
then construct, like most languages:

:~$ if [-f amazon_reviews_us_Digital Ebook_Purchase_vl @e.tsv]; then echo "yep"; fi

Rt |

The statement inside the brackets is a test, and bash contains a set of special tests, such as -
f for common tasks. Here's a list of some of the most common ones:

Test type [Parameter|Description

Filesystem [-O True if file exists and is owned by the effective user ID
Filesystem [-£ True if file exists and is a regular file

Filesystem |-G True if file exists and is owned by the effective group ID
Filesystem [-r True if file exists and is readable

Filesystem [-w True if file exists and is writable

Filesystem [-x True if file exists and is executable

Filesystem |-s True if file exists and has a size greater than zero
Filesystem [-h True if file exists and is a symbolic link

Arithmetic|<= Less than equal

Arithmetic|>= Greater than equal

[69]

Loops, Functions, and String Processing Chapter 5

Arithmetic|< Less than
Arithmetic|> Greater than
Arithmetic|!= Not equal
Arithmetic|= Equal

Like other languages, we can also include else-if tests, and finally an else if nothing
else matches:

:~$ if [@ = 1]; then echo "a"; elif [© = 2]; then echo "b"; else echo "c"; fi

~s i

Even though the if-else construct exists, most shell scripts use the pipeline semantics

of && (AND) and || (OR).We briefly mentioned this in chapter 3, Obtaining and Working
with Data and Detached Processing and Terminal Multiplexers, but here's a more detailed
example:

[0O =11 && echo "a" || ([0==2] && echo b || echo c)
[-f /myconfig] && read_params /myconfig

It's the end of the world as we know it while
and until

Let's explore two more options for assisting with iteration. The while construct allows for
the repetitive execution of a list or set of commands as long as the command that controls
the while loop exits successfully. Let's see an example:

Let's say I wanted to print the "hello!" string four times in a script—no more and no less.
We can do so with the following:

[70]

Loops, Functions, and String Processing Chapter 5

1 while.sh +
#!/bin/bash

i:IIOH

while [$i -1t 4]

Let's save and run this script to see what happens.

Don't forget to chmod -x these scripts to make them executable.

Executing the script produces the following:

:~$./while.sh
hello!
hello!

hello!
hello!

Notice that, in the script, we created a variable called i="0". This sets the i variable to zero.
Do you see the while [$i -1t 4] block? This allows us to run the loop as the i
variable is less than the 4 integer. Go ahead and play around with this code for a bit to get a
better understanding. Also, you canman [for more information.

[71]

Loops, Functions, and String Processing Chapter 5

In our while script, we counted up until four for our output. Let's use the until construct
to count down and provide the goodbye ! output:

1 until.sh
#!/bin/bash

i=“ 20u

until [$i -1t 10]
do

echo "Goodbye!" &
let i-=1

done

Let's save and run this script to see what happens:

:~$./until.sh
goodbye!
goodbye!
goodbye!
goodbye!
goodbye!
goodbye!

goodhye!
goodbye!
goodbye!
goodbye!

:~%$ goodbye!

The simple case

Frequently, string comparison is done using the test operator, [. This is ill-advised in bash,
as there's a much more convenient format for string comparison, using the case statement.
Here's a simple example:

testcase () |
for VAR; do
case “S{VAR}” in
'") echo “empty”;;

w_»,

a) echo “a’;;

[72]

Loops, Functions, and String Processing Chapter 5

b) echo “b”;;

c) echo “c”;;

*) echo “not a, b, c”;;
esac
done

}

testcase '' foo a bar b c d

The testcase function lets us test the case statement by wrapping it in a for loop that
assigns each function argument to the VAR variable, then executes the case statement. With
the foo a bar b ¢ darguments, we can expect the following output:

empty

not a, b, c
a

not a, b, c
b

c

d

Pay no heed to the magician redirecting
your attention

Looping is great for working over sequences of data in an iterative fashion, but sometimes,
when you're doing all that work, you get lots of irrelevant output. Enter our little magician:
the output redirection operator, >. This operator directs output to a specified file or file
descriptor. We've talked about file descriptors, they are integers that the OS uses to identify
a file handle that has been opened, and by default there are three opened for every

process: stdin, stdout, and stderr. The default file descriptors, denoted by f£d#, are £d0
for standard input, £d1 for standard output, and £d2 for standard error. The > operator by
default, redirects stdout, the equivalent of 1>, unless it's preceded by an integer file-
descriptor. Let's see some examples of output redirection, before we get lost in what we're
referring to:

1s /

1ls / >/dev/null

ls /foobar 2>/dev/null

ls / /foobar >stdout_and_stderr.log 2>&l
ls / /foobar >stdout.log 2>stderr.log

1ls / /foobar 2>&1 >/dev/null

[73]

Loops, Functions, and String Processing Chapter 5

Normal messaging is sent to standard output, and is rendered as text in your Terminal
window. This is how 1s / will show the contents of the root filesystem to your Terminal.
In the second invocation, we use > to indicate that st dout should be redirected to
/dev/null, which will discard the output. The third sends error messages to dev/null, so
they don't render to the Terminal. The fourth example redirects stdout to a file named
stdout_and_stderr.log and then copies stderr to the same location as stdout

with &1. The fifth example splits stdout to stdout.logand stderr to stderr.log. The
sixth example doesn't redirect stderr to /dev/null, rather it redirects stderr to where
stdout is pointing at the time of the assignment—the Terminal and then stdout is
redirected to /dev/null. This shows that the order of operators matters and diligence
should be paid to ensure that assignments occur in definition order. The last point to make
is that because stdout is a file descriptor, and not the Terminal, it's possible to direct other
output to the Terminal, and have stdout directed to another file descriptor that won't
result in Terminal output.

There are three less-frequently-used redirection operators: < for input redirection, >> for
output append redirection, and << for HEREDOC. Input redirection is used to feed data into
a pipeline, like this:

cat <stdout.log | grep lines

This will read stdout . log into the standard input of the cat command, which will write
its output to the pipe operator. There's really not much more to input redirection, as
pipelines implicitly set the stdout of the previous command to the standard input of the
next command. We also mentioned the append operator, >>, and it's necessary to point out
that the > redirection operator truncates files to zero content before writing. This behavior
isn't desired if data needs to be preserved between runs. To clarify, this truncates data in
keys.log:

grep keyword > keys.log
The other option is appending the following:

grep keyword >> keys.log

[74]

Loops, Functions, and String Processing Chapter 5

Lastly, the heredoc operator, <<, it replaces standard input with a predefined text-stream
book ended by a keyword that follows << KEYWORD. For example, the following example
can be used to truncate an options.conf file and write the three option values into the
file:

cat <<EOF >options.conf
option=true
option2=false
option3=cat

EOF

Regular expressions and grep

One key task you will face over and over is matching particular patterns of text. The match
might be as simple as finding one instance of a specific string in a body of text, or it could
be much more complicated. A great tool for matching text is the language of regular
expressions. A regular expression is an abstract way of expressing certain types of string-
matching patterns.

Contrary to popular belief, regular expressions can't match everything you might want to
match. They're limited to certain types of matches, and depending on the particular flavor
of regular expression implementation, they could have a little more or a little less power.
As an academic exercise, one might try to characterize exactly what you can match and
what you can't. It's a very interesting endeavor that cuts to the very core of theoretical
computer science. But we won't be doing that here: we are here to do practical things!

First up, you'll want to find a way to test your regular expressions. There are several tools
available on the web that allow you to interactively test your matches. A couple of good
ones are listed at the end of this section. Of course, this is a command-line book, and you
can test matches yourself just by putting test text in a file and using grep. Grep is a
program that takes a regular expression and emits the lines in the input stream that match
that regular expression (by default, it emits lines where any substring of the line matches
the regular expression).

[75]

Loops, Functions, and String Processing Chapter 5

Exact matches

A regular expression is a string itself. Several characters are reserved, that is, when they're
present in the string, they have a special meaning. Any non-reserved character in the regex
must be matched exactly, in the exact order that it appears. Notably, a regex that's nothing
but a normal character must be an exact match on the entire string.

You do multiple things with a regex. Sometimes, you may require that the entire target
strings match. Other times, you may want to find if and where a substring of the target
string matches.

Here's a table of regex pattern matches:

Regex String Matches? Matches substring?
abc abc Yes Yes

abc abcd No Yes (abcd)

abc def No No

Let's look for an exact match on the aardvark string in the review titles of our test dataset:

zcat amazon_reviews_us_Digital_Ebook_Purchase_vl_01l.tsv.gz | cut -£f13 |
grep aardvark

The red-highlighted content is the matched content:

ubuntu@commandlinebook:~$ zcat amazon_reviews_us_Digital Ebook_Purchase_vi_01.tsv.gz | cut -fi13 | grep aardvark
ingly absolutely great

May an follow the author, and keep all his pic-nics free of ants.
ubuntu@commandlinebook:~$ l

Character sets

After an exact string, you might want to match one of a couple of characters instead of one
exactly. To do this, we use the characters [] bracket to enclose the list of characters that
we might want to match. We can only match one of the possible characters inside the
brackets.

[76]

Loops, Functions, and String Processing Chapter 5

Here's a table of regex pattern matches:

Regex String Matches? Matches substring?
ab[cd] abc Yes Yes

ab[cd] abcd No Yes (abcd)

ab[cd] abe No No

Let's see whether there are any examples of a capitalized aardvark in our review data:

zcat amazon_reviews_us_Digital_Ebook_Purchase_vl_0l.tsv.gz | cut -£f13 |

grep [Aa]ardvark

The red-highlighted content is the matched content:

ubuntu@commandlinebook:~$ zcat amazon_reviews_us_Digital Ebook_Purchase_vi1 01.tsv.gz | cut -fi13 | grep [Aa]ardvark
review - Yes, We Treat

s
Yea, We Treat s by Robert M. Miller DVM

ingly absolutely great
follow the author, and keep all his pic-nics free of ants.
ubuntu@commandlinebook:~$ I

May an

Dot the i (or anything else)

The dot character, ., is a one-character wildcard character. It will match anything. There are
also restricted wildcards that only match certain types of characters: \d matches a digit, \w
matches any alphanumeric character or an underscore, and \ s matches whitespace.

Here's a table of regex pattern matches:

Regex String Matches? Matches substring?
\s..ick The trick Yes Yes

ce abcd No Yes (abcd)
abc\ddef abc_def No No

We could have done the last search for a capital A (or anything else starting our ardvark

string) using a dot:

zcat amazon_reviews_us_Digital_Ebook_Purchase_vl_01l.tsv.gz |

grep

.ardvark

[77]

cut

-£13

Loops, Functions, and String Processing Chapter 5

The red-highlighted content is the matched content:

ubuntu@commandlinebook:~$ zcat amazon_reviews_us_Digital Ebook_Purchase vl ©1.tsv.gz | cut -fi13 | grep .ardvark
review - Yes, We Treat S
Yea, We Treat s by Robert M. Miller DVM

ingly absolutely great
May an follow the author, and keep all his pic-nics free of ants.
ubuntu@commandlinebook:~$ l

Capture groups

We can set apart groups of characters with parentheses. While not terribly useful on their
own, these groups can be combined with other operators to do very useful things. We call
these groups capture groups because the regex engine captures what was matched inside
the group. Later on, you can use what was captured to match something else.

We will show some examples of using capture groups later, in the section on awk.

Either or, neither nor

The pipe character, |, lets us match one or the other of something. We can delineate where
the pair starts by using a capture group. Invoke the following;:

zcat amazon_reviews_us_Digital_Ebook_Purchase_vl_0l.tsv.gz | cut -f13 |
grep -E ' (aardvark|giraffe)'

The red-highlighted content is the matched content:

ubuntu@commandlinebook:~$ zcat amazon_reviews_us_Digital Ebook_Purchase_vl 01.tsv.gz | cut -f13 | grep -E '(aardvark|giraffe)’
The white
Cute photos that kids love
Tears of the
felly the tiny
Short
Good
ingly absolutely great

May an follow the author, and keep all his pic-nics free of ants.
white is great

I loved the

A big " UZe)

the white

the white

ubuntu@commandlinebook:~$ i

[78]

Loops, Functions, and String Processing Chapter 5

Repetition

There are three heavily-used operators that let us match repetitions. They are the question
mark, 2, the plus, +, and the asterisk, *.

The question mark, 2, matches exactly 0 or 1 instances of the thing it's applied to (a

character, set, or group). Invoke the following;:

zcat amazon_reviews_us_Digital_Ebook_Purchase_vl_0l.tsv.gz | cut -£f13 |
grep -E ' (a)?ardvark'

The red-highlighted content is the matched content:

ubuntu@commandlinebook:~$ zcat amazon_reviews_us_Digital Ebook_Purchase_vi1_01.tsv.gz | cut -fi3 | grep -E '(a)?ardvark
review - Yes, We Treat A s
Yea, We Treat A s by Robert M. Miller DVM

ingly absolutely great
May an follow the author, and keep all his pic-nics free of ants.
ubuntu@commandlinebook:~$ l

The plus operator, +, matches one or more things, and the asterisk operator, *, matches 0 or
more things. Invoke the following:

zcat amazon_reviews_us_Digital_Ebook_Purchase_vl_0l.tsv.gz | cut -f13 |
grep -E 'aaaaaaa(a)*' | head -n 3

It produces this output:

ubuntu@commandlinebook:~$ zcat amazon_reviews_us_Digital Ebook_Purchase_vi_01.tsv.gz | cut -fi13 | grep -E 'aaaaaaa(a)*' | head -n 3
Aaaaaaaaaahhhhhhh, much better!

Whaaaaaaatttt?!?2!?2!1?!

Maaaaaaaan

ubuntu@commandlinebook:~$ [}

Other operators

You can match many things with regex, and each implementation of regex is a little
different. I suggest looking at these resources for a full treatment of each kind of regex and
what you can do with them:

¢ A great, comprehensive site with many examples: https://www.regular-
expressions.info/

A site to test and debug different types of regex: https://regex101.com/

Another regex test site: https://www.regexpal.com/

A library of regex instances that others have created: http://www.regexlib.com

[79]

https://www.regular-expressions.info/
https://www.regular-expressions.info/
https://www.regular-expressions.info/
https://www.regular-expressions.info/
https://www.regular-expressions.info/
https://www.regular-expressions.info/
https://www.regular-expressions.info/
https://www.regular-expressions.info/
https://www.regular-expressions.info/
https://www.regular-expressions.info/
https://www.regular-expressions.info/
https://regex101.com/
https://regex101.com/
https://regex101.com/
https://regex101.com/
https://regex101.com/
https://regex101.com/
https://regex101.com/
https://regex101.com/
https://www.regexpal.com/
https://www.regexpal.com/
https://www.regexpal.com/
https://www.regexpal.com/
https://www.regexpal.com/
https://www.regexpal.com/
https://www.regexpal.com/
https://www.regexpal.com/
https://www.regexpal.com/
https://www.regexpal.com/
http://www.regexlib.com
http://www.regexlib.com
http://www.regexlib.com
http://www.regexlib.com
http://www.regexlib.com
http://www.regexlib.com
http://www.regexlib.com
http://www.regexlib.com
http://www.regexlib.com

Loops, Functions, and String Processing Chapter 5

Putting it all together

As a recap, we have the following operators:

Operator Use

Brackets [] Specifies sets of characters to match

Capture Group () |Groups characters, and pulls out what was matched later
Or | Matches one of two things

? Matches zero or one times

+ Matches one or more times

* Matches zero or more times

awk, sed, and tr

In this section, we will be looking at awk, sed, and tr.

awk

awk (including the gnu implementation, gawk) is designed for streaming text processing,
data extraction, and reporting. An awk program is structured as a set of patterns that are
matched, and actions to take when those patterns are matched:

pattern {action}
pattern {action}
pattern {action}

For each record (usually each line of text passed to awk), each pattern is tested to see
whether the record matches, and if so, the action is taken. Additionally, each record is
automatically split into a list of fields by a delimiter (any run of whitespace by default). The
default action, if none is given, is to print the record. The default pattern is to match
everything. There are two special patterns, BEGIN and END, which are matched only before
any records are processed, or after, respectively.

awk is very good at doing certain kinds of math on input streams, which we'll discuss later
in the book. For strings, awk is great at filtering an input stream on complex conditions,
doing transformations on input data, and combinations of these things.

[80]

Loops, Functions, and String Processing Chapter 5

Filtering on a complex condition is as easy as supplying the filter condition as a pattern and
the default action (which is to say, nothing). awk will then, by default, print out the whole
line. As an example, we might want to simulate grep by matching on a regular expression:

zcat amazon_reviews_us_Digital_Ebook_Purchase_vl_0l.tsv.gz | cut -f13 | awk
' /aardvark/'

The preceding code produces this:

ubuntu@commandlinebook:~$ zcat amazon_reviews_us_Digital_Ebook_Purchase_vi1 01.tsv.gz | cut -fi13 | awk '/aardvark/'
aardvarkingly absolutely great

May an aardvark follow the author, and keep all his pic-nics free of ants.
ubuntu@commandlinebook:~$ |

Here, the forward slashes indicate that the string inside is a regex. We can even get rid of
cut here, as awk itself can look for the tab field separators. If we do this, we need to tell awk
that we're looking for substrings of the appropriate field. The special variables, $1, $2, and
so on, represent the fields of each record. $0 is the entire record. Invoke the following:

zcat amazon_reviews_us_Digital_ Ebook_Purchase_vl_0l.tsv.gz | awk -F"\t"
'$13 ~ /aardvark/'

The preceding code produces this:

uhur\tum ommandlinebook:~$ zcat amazon_reviews_us_Digital Ebook_Purchase_v1_01.tsv.gz | awk -F"\t" '$13 ~ /aardvark/'

41926810 R3BIQZHST3RVCL BOO28OLYHI 144519531 Sea of Monsters, The (Percy Jackson and the Olympians, Book 2) Digital Ebook_Purchase 5]]
N N aardvarkingly absolutely great sometimes when i read this book i cry. my dream? to save the WORLD. to have great powers. i want it to be real so badly. and i w
ish it was real but i read all the books and i know the future. but i would watch. and i woukd help percy! basically im sure that im the biggest fan because ive reread the ligh
tning thief exactly 137 times. im SO not kidding. ive kept track and i AM an extremley fast reader hust read the book. i KNOW you think its dorky geeky and nerdy. umm....NO IT
ISNT. 2012-11-07
us 26712568 R2KBY7HIEZODF8 BOOSKLTOM6 670479126 Curses and Blessings for All Occasions Digital Ebook_Purchase 5 2 2 N N M
ay an aardvark follow the author, and keep all his pic-nics free of ants. I was blessed to get this free in a kindle edition. It is superb! There is an originality that
it rarely found these days, and the humour is brillianti
I follow BT on gocomics, and would never miss a panel. Plus, for purists, the artwork is outstanding. 2012-08-
0

2
ubuntu@commandlinebook:~$ [

We printed the entire record here since we didn't cut it in advance, and we told awk to do
the default, which is printing the entire record. Maybe we want to just print out the title,
field 6, when we match aardvark in the review description. We have to add a non-default
action to our filter:

> zcat amazon_reviews_us_Digital_Ebook_Purchase_vl_01l.tsv.gz | awk -F"\t"
'$13 ~ /aardv